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Dynamic Co-occurrence of Local Anisotropic Gradient Orientations 
(DyCoLIAGe) Descriptors from Pre-treatment Perfusion DSC-MRI to 

Predict Overall Survival in Glioblastoma 

 
Abstract 

By 

 

BOLIN SONG 

   A significant clinical challenge in glioblastoma is to risk-stratify patients for clinical 

trials, preferably using MRI scans. Radiomics involves mining of sub-visual features that 

could serve as surrogate markers of tumor heterogeneity from routine imaging. 

Previously our group had developed a new gradient-based radiomic descriptor, Co-

occurrence of Local Anisotropic Gradient Orientations (COLLAGE), to capture tumor 

heterogeneity on structural MRI. I present an extension of CoLLAGE on perfusion MRI, 

termed dynamic COLLAGE (DyCoLIAGe), and demonstrate its application in predicting 

overall survival in glioblastoma. Following manual segmentation, 52 CoLIAGe features 

were extracted from edema and enhancing tumor at different time phases during 

contrast administration of perfusion MRI. Each feature was separately plotted across 

different time-points, and a 3rd-order polynomial was fit to each feature curve. The 

corresponding polynomial coefficients were evaluated in terms of their prognosis 

performance. My results suggest that DyCoLIAGe may be prognostic of overall survival 

in glioblastoma. 
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                                 1      Introduction 
Glioblastoma is the most common malignant primary brain tumor in adults with a 

median survival time ranging from 12-14 months. Prognosis outcome for GBM patients 

vary substantially, with less than 5% of patients surviving for more than 5 years1. With 

new experimental clinical trials becoming available, there is a need to identify patients 

who may have poor prognosis and may be at high-risk of experiencing conventional 

treatment failure, so they could be recruited in alternate experimental treatments. 

While KPS, IDH, and MGMT mutations have shown promise, currently there do not exist 

any clinically validated biomarkers to predict patient survival in Glioblastoma. There is 

hence a need for identifying markers that can predict overall survival in Glioblastoma.   

Imaging plays an important role in disease diagnosis, outcome prediction and treatment 

evaluation because it contains information that reflects the underlying pathophysiology 

of the disease. For instance, structural MRI (T1w, T1-Gd contrast, T2w, FLAIR) provide 

structural information regarding the lesion location, level of tissue involvement, and 

resultant mass effect upon the brain2. Diffusion weighted imaging utilizes apparent 

diffusion coefficient (ADC) to identify early ischemic stroke. 

Dynamic susceptibility contrast (DSC) perfusion imaging is a T2* weighted imaging 

technique which utilizes reduction of local susceptibility caused by injection of a 

paramagnetic contrast agent. A signal intensity time curve is obtained and perfusion 

metrics regarding blood flow of tissue are derived from the signal intensity time curve. 

Perfusion imaging is based on the rationale that malignant tumors tend to have higher 
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level of neovascularization compared to benign tumors, thus affecting amount of 

contrast agent absorbed and the intrinsic tissue T2/T2* signal on the perfusion images. 

Previous studies have shown that perfusion parameters using maximum relative 

cerebral blood volume (rCBVmax)3 and maximum relative cerebral blood flow (rCBFmax)4 

computed from the signal intensive time curves, have the potential to predict 

glioblastoma patients’ overall survival. Histogram analysis of perfusion parameters has 

also been found to be a useful method for survival prediction. Romano, A. et al have 

used rCBV histograms generated from the solid portions of the tumor and the mean, 

median, kurtosis and skewness of rCBV were statistically evaluated regarding prognosis 

performance5. However, a few other studies have demonstrated the inter subject 

variability in DSC parameters39, which limit their applications in a clinical environment. 

Calculation of cerebral blood flow is also known to be affected by contrast agent leakage 

as a result of disruption of blood brain barrier (BBB) in malignant brain tumors. Further, 

a single statistic obtained from DCE-MRI may not be sufficient to capture the intra-

tumor heterogeneity extant in GBM. 

Radiomics, high-throughput extraction of quantitative imaging features from standard 

of care images, has recently emerged as a promising field to capture intra-tumoral 

heterogeneity on imaging. Radiomic features contain first-, second-, and higher-order 

statistics computed from descriptor map in a region of interest and could capture fine-

grained texture characteristics. For instance, the gray-level co-occurrence matrix (GLCM) 

measures image texture properties between pixel pairs40 and the gray-level run length 

matrix (GLRLM) reflects the distribution of a set of consecutive collinear voxels having 
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the same gray‐level value41. Recently many routinely available imaging sequences in 

conjunction with radiomics approach have shown promising results in finding 

associations between quantitative imaging descriptors and clinical outcome in the 

context of Glioblastoma. For instance, Beig et al employed 30 radiomics features (i.e. 

Haralick, Laws energy, Gabor) from structural MRI scans (T1- Gd contrast, T2w, FLAIR) to 

capture molecular variations of tumor hypoxia, which is an important trait associated 

with survival. They identified a set of 10 radiomic features correlated with the extent of 

hypoxia, which were used to classify GBM patients into short-, mid- and long-term 

survival6. Similarly, Li et al proposed a fully automatic radiomic model for reproducibly 

evaluating prognosis of GBM patients using multiparametric signatures from T1w and T1 

contrast MRI. They applied the least absolute shrinkage and selection operator (LASSO) 

Cox regression model on the training data set and eventually found out that 12 out of 36 

signatures were correlated with overall survival7. Kim et al discovered that histogram 

parameters from apparent diffusion coefficients (ADC) are prognostic biomarkers to 

predict the survival of patients with treatment-naive GBM8. However, few studies have 

explored the role of radiomics in predicting survival in the context of perfusion imaging, 

where information on tumor heterogeneity is available in a dynamic fashion across 

different time phases during contrast administration. 

A common methodology to quantify intensity spatial distribution using radiomics 

analysis is to acquire texture descriptors from grey-level co-occurrence matrix (GLCM), 

via quantifier functions like entropy or energy9. Recently Prasanna, P et al developed a 

new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations 
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(CoLlAGe), to distinguish tumor confounders and molecular subtypes on MRI 10. 

Previous studies have demonstrated that CoLIAGe could be utilized in a variety of cancer 

applications for tumor characterizations13,14. For instance, Shiradkar R et al found out 

that CoLIAGe from pretreatment biparametric MRI could predict biochemical recurrence 

of prostate cancer13. While highly promising, CoLIAGe has so far only been explored in 

the context of structural MRI. The rationale for using CoLIAGe features on DSC-perfusion 

imaging is that even though perfusion images of patients with different survival may 

look similar, they will differ in their local entropy patterns to some extent, in turn 

reflecting subtle local differences in tissue microarchitecture. 

Previous study have shown that polynomial coefficients computed from breast DCE-MRI 

texture features could differentiate the benign tumors from those malignant ones16. 

Polynomial coefficients are related to the shape of curves in an affine invariant way17 

and it’s likely that they would reflect difference of DyCoLIAGe expression across patients 

with varying survival characteristics. The rationale of using polynomial coefficients as 

predictors is that tumors from short-term survivors might have different contrast agent 

absorption over time compared to the tumors from patients with improved outcome 

and it is likely that this dynamic variation could be captured by the polynomial 

representations extracted from the DyCoLIAGe expression profile. 

In this work, I present a new radiomic model, dynamic CoLIAGe (DyCoLIAGe), by 

extending CoLIAGe features on dynamic susceptibility contrast perfusion MRI. 

DyCoLIAGe will be applied on enhancing tumor region and infiltrative edema region to 

distinguish long-term from short-term survivors of GBM using pre-treatment DSC-MRI. 
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To further explore the difference of CoLIAGe profile changing over time between LTS 

and STS, I extracted polynomial coefficients from the DyCoLIAGe profile to quantify 

different powers of variation for each feature over different time phases.  

I hypothesize that the DyCoLIAGe and the polynomial representations of the DyCoLIAGe 

profile from DSC-perfusion MRI could differentiate long-term from short-term survivors 

of GBM patients. 

The rest of the paper is organized as follows. Section 2 describes the overall 

experimental design of this work (illustrated in Figure 1), including the data, registration 

and feature extraction, as well as the methodology for evaluating prognosis 

performance of both dynamic CoLIAGe descriptors and their corresponding polynomial 

representations. In Section 3, I present and discuss my experimental results followed by 

the concluding remarks in section 4. 

 

                                 2      Methodology 

2.1 Data Description 

Our retrospective study utilized dynamic susceptibility contrast (DSC) T2 perfusion MRI 

from 73 glioblastoma patients. The data set was obtained from three different cohorts 

on the publicly available The Cancer Imaging Archive (TCIA)11. Overall survival (OS) time 

was available for all patients and was defined as the time interval between the date of 

diagnosis and the date of death29. Patients who were still alive without the event of 

death on the last reported date were labeled as censored. Based on the median survival 
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time (t = 13.4 months) of all patients included in this study, I dichotomized the patients 

into long-term survivors (LTS) and short-term survivors (STS). These studies were split 

into training and testing set  by including 2/3rd of the studies for training, while the 

remaining 1/3rd for testing. Each MRI dataset was acquired pre-operatively using a coil 

on a 3 Tesla MRI scanner, from a patient confirmed with grade IV glioblastoma based on 

the histology and who later underwent surgery followed by chemoradiotherapy.  

 

Figure 1 Data set overview and radiomic analysis workflow. 
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For each patient, the DSC perfusion MRI 2D slices from each individual time phase was 

acquired as a series of DICOM images, which were directly saved from the scanner 

(acquisition parameters summarized in Table 1). The raw DICOM data was restructured 

into MHA format using in-house developed software Dicomvert. Temporal resolution 2 

seconds for all the cases with pixel dimensions of 128×128. Annotations were 

performed by an expert on the 2D slice with the biggest tumor size. The annotations 

were also confirmed by a senior radiologist. 

Cohort Training set 

TCGA-GBM 

Testing set 

UCSF+Rembrandt 

 Long-term 

survivors 

Short-term 

survivors 

Long-term 

survivors 

Short-term 

survivors 

Population (patients) 23 26 11 13 

Mean OS (months) 26.11 7.22 36 5.15 

Mean age (Years) 53.6 55.4 54.3 56.75 

Gender Male 14 13 7 8 

Female 9 13 4 5 

Table 1 Demographics and clinical information of discovery and testing cohorts 

2.2 Image Registration 

Because the tumor boundaries are not as appreciable on perfusion scans, perfusion 

images were first registered to the corresponding T2w, FLAIR and T1 Gadolinium 

contrast enhanced MRI scans using 3D Slicer (4.8.0)12. An affine registration with 12 

degrees of freedom encoding rotation, translation, sheer, and scale was applied and a 

nearest neighbor interpolation was used during registration. 
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2.3 Perfusion Time Span Standardization 

Since my perfusion data were acquired from different institutions and different cohorts, 

the time in reference to contrast agent injection when the image series began varied 

between different patients. To address this issue, I standardized the time period across 

all dynamic scans before DyCoLIAGe feature extraction. Specifically, some studies were 

down-sampled so that all perfusion images from patients in training and testing set had 

the same time phase relative to peak contrast bolus time (signal intensity falls to 

minimum). Since temporal resolution is the same (2 sec) for all perfusion scans, they 

had the same number of time phases (T = 50) and all images are acquired for the same 

length of time during contrast manipulation. 

 

2.4 Tumor Sub-Compartment Delineation 

The 2-D slice with the largest visible tumor was annotated by an expert radiologist into 3 

regions (1) edema,(2) tumor necrosis, and (3) enhancing tumor. Tumor necrosis on Gd-

T1w is represented as areas of relatively hyper-intensed regions usually centrally located 

in the tumoral region. Hyper-intense FLAIR signals correlate with greater interstitial 

leakage and low cellular density, reflecting infiltrative edema outside the tumor. 

 

2.5 Dynamic CoLIAGe Feature Extraction 

CoLlAGe feature seeks to capture and exploit local anisotropic differences in voxel-level 

gradient orientations. It measures entropy disorder of co-occurrences of pixel/voxel-
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level gradient orientations computed from the region of interest. The basic idea of 

CoLAIGe is to apply Haralick measures to the dominant gradient orientation within an n 

× n window, where n is the window size. Some measurements obtained via CoLIAGe 

quantify homogeneity of gradient orientations (e.g., CoLlAGe information measure of 

correlation), while some of them are reflective of gradient disorder (e.g., CoLlAGe 

entropy). Thirteen CoLIAGe descriptors are evaluated in this study. Four first-order 

statistics (median, standard deviation, skewness, and kurtosis) of each descriptor map 

were calculated for each tumor sub-region and phase included, which result in 52 

statistical features on both edema and enhancing tumor. All feature extraction was 

performed in MATLAB, 2017b. 

 

2.6 Computing Polynomial Kinetic Representations 

Let  𝑓𝑓𝑞𝑞𝑠𝑠(t) be the feature value at time t, where t ∈  {1, 2, … , T}, q be the index for the 

CoLIAGe descriptor, q ∈  {1, 2, … , 13}, s indicates the statistic computed from the 

descriptor map and s ∈ {1, 2, 3, 4}. For each combination of q and s, I could get a 

CoLIAGe kinetic feature vector across the 50 time phases, 𝐹𝐹𝑞𝑞𝑠𝑠 = [𝑓𝑓𝑞𝑞𝑠𝑠(1), 𝑓𝑓𝑞𝑞𝑠𝑠(2), … ,

𝑓𝑓𝑞𝑞𝑠𝑠(T)]. A third order polynomial is fitted to  𝐹𝐹𝑞𝑞𝑠𝑠 to characterize its shape as 

                  𝐹𝐹𝑞𝑞𝑠𝑠� = 𝑝𝑝𝑞𝑞,3
𝑠𝑠  𝑡𝑡3 +  𝑝𝑝𝑞𝑞,2

𝑠𝑠  𝑡𝑡2 +  𝑝𝑝𝑞𝑞,1
𝑠𝑠  𝑡𝑡 +  𝑝𝑝𝑞𝑞,0

𝑠𝑠                                                (1)   

, where [𝑝𝑝𝑞𝑞,3
𝑠𝑠 ,  𝑝𝑝𝑞𝑞,2

𝑠𝑠 , 𝑝𝑝𝑞𝑞,1
𝑠𝑠 , 𝑝𝑝𝑞𝑞,0

𝑠𝑠  ] are the model coefficients obtained by minimizing the 

root mean squared difference error between 𝐹𝐹𝑞𝑞𝑠𝑠 and 𝐹𝐹𝑞𝑞𝑠𝑠�. The reason for fitting the data 

into a 3rd order polynomial model is that the four coefficients in this model may be 
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sufficient to account for the variations of CoLIAGe expressions over time. I found out 

that when fitting our data into a higher polynomial model, most of the higher order 

coefficients were zero. Hence, I chose to fit our data to a 3rd order polynomial model. 

 

 

2.7 Feature Selection and Model Building 

I used the 4 coefficients that were computed for each feature using our 3rd polynomial 

fit, to train linear discriminant analysis and quadratic discriminant analysis classifiers for 

classification of patients as long-term or short-term survivors. Then I used a least 

absolute shrinkage and selection operator (LASSO) feature selection19,20  in conjunction 

with a Cox Proportional Hazard model21 to build a classification model for all the 

polynomial representations. The reason for using feature selection in this experiment is 

that each individual polynomial coefficient from a DyCoLIAGe profile will represent 

information for all time phases of that feature to some extent. For example, the first 

coefficient extracted from the first DyCoLIAGe feature represents magnitude of 3rd 

power variations of median DyCoLIAGe Entropy across all the time phases on edema 

region. 

The LASSO method applies a shrinking (regularization) process where it penalizes the 

coefficients of the regression variables and shrinks some of them to zero. Depending on 

the regularization weight 𝞴𝞴, LASSO shrinks regression coefficients towards 0 to eliminate 

irrelevant features from the regression model22. I employed 5-fold cross validation to 
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find an optimal value of 𝞴𝞴. The goal of this process is to minimize the prediction error. 

LASSO has previously been extensively used for feature selection23,24. 

The combination of selected polynomial signatures and their coefficients are in the form 

of: 

                              𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 = 𝑥𝑥1𝛽𝛽1 + 𝑥𝑥2𝛽𝛽2 + ⋯+ 𝑥𝑥𝑛𝑛𝛽𝛽𝑛𝑛                                       (2) 

, where 𝑥𝑥𝑛𝑛 represent the selected polynomial coefficients and 𝛽𝛽𝑛𝑛 are the model 

parameters. This combined signature could be regarded as a “risk score”, representing 

the predicted relative hazard of death given the features from that patient28. 

The Cox proportional hazards model is similarly frequently used for survival prediction 

and survival outcome studies25,26. Based on the selected polynomial coefficients, a 

multivariate Cox regression analysis is performed on the training set to acquire the 

proportional hazard model parameters 𝛽𝛽𝑛𝑛. 

 

2.8 Statistical and Survival Analysis 

Hazard ratios (HR) were used to quantify individual feature effect on survival. 

Polynomial signatures yielding a HR between 0 and 1 are positively correlated with 

survival (i.e. lower signature values correlated with shorter survival). Then the median 

risk score from training set was set as a threshold to dichotomize patients into LTS and 

STS. Kaplan–Meier survival analysis30 was used to examine the difference of overall 

survival between LTS and STS categorized by the classification output on both training 
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and testing set. The difference of OS was assessed by the log-rank test. P values were 

two-sided, and all values under 0.05 were considered to be statistically significant. The R 

package “glmnet” was used for LASSO Cox regression modeling31,32. 

 

 

                         3     Experimental evaluation 

3.1    Experiment 1:  Evaluation of DyCoLIAGe features in predicting 

overall survival 

To evaluate prognostic performance of DyCoLIAGe profile, I first subsample the 

DyCoLIAGe values after every 10 phases of contrast injection on perfusion MRI. For each 

feature, corresponding feature values from time phase 5, 15, 25, 35, 45 were selected to 

reduce the redundancy of the input predictors. Since temporal resolution is 2 seconds 

for all the studies, time interval between two adjacent selected time phases is 20 

seconds. 

Then for each of the 52 CoLIAGe features on both edema and enhancing tumor, I fed the 

5 feature values, from all different phases, separately into LDA and QDA classifiers. I 

performed 10 iterations of 3 fold-cross-validation in the training set to identify features 

with optimal classification performance between the two survival groups (long-term 

versus short-term survivors). I chose these two classifiers owing to the fact that they 

have no hyper-parameters to tune and are able to learn both linear and quadratic 

boundaries. Area under receiver operating characteristic curve (AUC) is obtained for 
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each iteration, for every feature. Features with mean AUC above 0.6 across the 10 

iterations in the training set were selected as top features and their classification 

performance were separately evaluated in the test set. 

 

3.2    Experiment 2:  Evaluation of polynomial signatures from DyCoLIAGe 

in predicting overall survival 

To evaluate prognostic performance of polynomial signatures from DyCoLIAGe features, 

I computed the four coefficients for the 3rd order polynomial model for each of the 52 

DyCoLIAGe features. Similar to the method in Experiment 1, I first evaluated coefficients 

from each DyCoLIAGe feature in distinguishing the two survival groups using LDA and 

QDA classifiers. AUC and accuracy were reported for top features in both training and 

hold out testing set. 

To further do a survival analysis, I fed all the coefficients from all features across the two 

tumor sub-compartments from the training set, into a LASSO model. To find an optimal 

model parameter λ, 5-fold cross validation with minimum criteria was employed, where 

the final value of λ provided minimum cross validation error. The retained polynomial 

representations with nonzero coefficients were used for multivariate Cox regression 

model fitting and combined into a risk score as illustrated in Equation 2. A relative high-

risk score for a specific patient in testing set is predicted to have high level of hazard, 

thus may have a poor survival based on the selected signatures and model parameters 
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learned from the training set. Based on the median risk score obtained on the hold-out 

test set, I classified each patient as a long-term or short-term survivor. 

 

                        4     Results and Discussion 

4.1    Experiment 1:  Evaluation of DyCoLIAGe features in predicting 

survival 

Table 2 summarizes top DyCoLIAGe features and top polynomial representations 

computed from DyCoLIAGe profile in descending order of AUC on the testing set (n=24). 

The most significant feature belongs to variance of sum of variance on enhancing tumor 

region. When applied to a QDA classifier, a mean AUC of 0.71 was obtained across 10 

iterations of cross validation in the training set and an AUC of 0.78 on the retrospective 

validation cohort. Figure 2 shows the plots for this feature over time on both the 

training (a) and the testing (b) cohort. Figure 3 (a) illustrates two sum of variance 

feature curves for one long-term survivors (blue, t=55.3 months) and one short-term 

survivors (red, t=4.6 months) over five-time phases. Figure 3 (b) provides enhancing 

tumor region for these two patients, with the same color of the curves and Figure 3 (c) is 

a visualization of the feature distribution over time phases. 
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Figure 2 Dynamic variance of CoLIAGe sum of variance for long-term (blue) and short-term 
(red) survivors on training (a) and testing (b) cohorts. 

 

Among the 4 optimal features, three features, kurtosis of correlation (AUC=0.72), 

kurtosis of information-2 (AUC=0.69) and median of correlation (AUC=0.65) were 

obtained from the edema region. This result is consistent with the previous finding33, in 

which radiomic features from edema were reported to be predictive of overall survival 

in GBM patients. 
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Figure 3 (a) Dynamic variance of CoLIAGe sum of variance for long-term (survival = 55.3 
months, blue) and short-term (survival = 4.6 months, red) survivor. (b) Enhancing tumor region. 

(c) Feature map over time. 

 

 

4.2    Experiment 2:  Evaluation of polynomial signatures from DyCoLIAGe 

in predicting overall survival 

The best polynomial representations were from median of CoLIAGe information-2 

obtained from the edema region. Combined with a QDA classifier, it yielded an AUC of 

0.62 on the training set and 0.71 on the test set. Interestingly, only kurtosis of 

correlation was picked up to be associated with survival in both Experiments 1 and 2. 
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# Tumor 

Sub-region 

Descriptor Statistic Classifier 

used 

AUC on 

training 

AUC on 

testing 

Experiment using DyCoLIAGe features to predict survival 

1 Enhancing 

tumor 

Sum of Variance Variance QDA 0.71 0.78 

2 Edema Correlation Kurtosis LDA 0.63 0.72 

3 Edema Information-2 Kurtosis LDA 0.74 0.69 

4 Enhancing 

tumor 

Sum of Variance Variance LDA     0.61      0.68 

5 Edema Correlation Median QDA     0.64      0.65 

Experiment using polynomial representations from  

DyCoLIAGe to predict survival 

1 Edema Information-2 Median QDA 0.62 0.71 

2 Edema Energy Median QDA 0.64 0.63 

3 Enhancing 

tumor 

Correlation Kurtosis LDA 0.63 0.63 

4 Enhancing 

tumor 

Entropy Skewness QDA 0.61 0.58 

Table 2 Predictive DyCoLIAGe features and polynomial coefficients from DyCoLIAGe on 
edema and enhancing tumor and corresponding AUC on training and testing data set 

 

When I combined all the polynomial representations from both edema and enhancing 

tumor and fed them into a LASSO feature selection model, a total of 6 polynomial 

coefficients were identified with non-zero coefficients. Table 3 lists hazard ratio and 

statistical significance when fitting these 6 polynomial coefficients into the Cox model.  

Polynomial Coefficients 95% confidence interval for 
Hazard Ratio in final Cox 
model 

p-value 

1st power of Skewness of  
diff-av on enhancing tumor 

0.7-0.9 0.000837 

2nd power of kurtosis of  2.1-2.77 0.003 
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information-2 on edema 
2nd power of kurtosis of  
entropy on enhancing tumor 

0.69-0.98 0.004 

1st power of kurtosis of  
idm on edema 

0.77-0.94 0.005 

2nd power of median of  
energy on edema 

0.91-0.98 0.03 

2nd power of median of  
sum-av on enhancing tumor 

1.08    8.47 0.048 

Table 3Polynomial coefficients in the final Cox model. 

Figure 4 shows the KM curves on the training (left) and test (right) set obtained using 

selected polynomial signatures from edema and enhancing tumor. The concordance 

index (CI)34,35 were found to be 0.85 and 0.83, respectively. 

 

Figure 4 Kaplan-Meier curves generated using the 6 polynomial coefficients to distinguish long-
term and short-term survivors in training (left) and testing (right) data set. 

 

4.3    Discussion 

In this study, I presented a noninvasive radiomic approach to predict overall survival in 

Glioblastoma based on DyCoLIAGe extracted from pre-treatment DSC perfusion MRI at 

multiple time phases. Quantitative imaging features from multiple image modalities 

have shown to have prognostic value for patient outcome prediction6,36. A few studies 

have investigated the role of dynamic susceptibility-weighted contrast (DSC) perfusion 
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MRI in glioma diagnosis37, outcome prediction5 and treatment evaluation38. Parameters 

such as maximum relative cerebral blood volume (rCBVmax)3 and maximum relative 

cerebral blood flow (rCBFmax)4 have been explored previously in predicting overall 

survival. Histogram analysis of these parameters has also been conducted by Romano, 

A. et al to verify their prognostic values5. However, it’s likely that the intra-tumor 

heterogeneity of GBM and the variation of interaction between tumor and the contrast 

agent over time may not be fully captured by utilizing rCBV or rCBF alone. My method 

computes 4 statistics from across 13 descriptors from CoLIAGe feature family to stratify 

the patients into long-term and short-term survivors. All of these features are 

reflections of local intensity gradient orientation. For example, correlation is a measure 

of association in gradient orientation between the pixels in the pre-specified region. The 

more similar the gradient orientation, the higher the correlation. My results show that 

multiple DyCoLIAGe features have optimal prognostic value on both training and test 

cohorts. Among these features, sum of variance from enhancing tumor turned out to be 

the most significant feature. A higher variation of sum of variance on enhancing tumor 

indicated poor survival, compared to those with improved outcome. 

I also applied polynomial coefficients from the DyCoLIAGe feature curve to perform 

classification between the two survival groups. I believe that the changes in interaction 

between tumor and contrast agent susceptibility over time may be different for long-

term and short-term survivors of GBM. Shape of dynamic DyCoLIAGe feature curves 

may be able to capture this difference and may be manifested by the combination of 

various polynomial coefficients. My results showed that 6 polynomial coefficients which 
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were significantly correlated with overall survival were selected using LASSO feature 

selection. The final Cox model with these polynomial coefficients yielded optimal 

separation between the long-term and short-term survival groups. 

 

                                          5    Concluding remarks 
Below are the key take aways for my study: 

1. Dynamically extracted gradient-based radiomic descriptors from edema and 

enhancing tumor on pre-treatment DSC perfusion MRI may be able to predict 

survival. Results show that higher variations of sum of variance on both edema 

and enhancing tumor from perfusion imaging indicates poor survival. 

2. Polynomial representations computed from dynamic feature curve provide 

information on the shape of the curves over time and this information may be 

associated with patient survival outcome. A combined polynomial signature 

yielded improved prognostic value compared with individual predictors. 

Despite my effort in exploring the prognostic value of different radiomic features, I do 

acknowledge a few limitations. Though I standardized all perfusion image scans into the 

same time period, I did not normalize the feature values across all patients. My study 

was also limited by a relatively small number of patients. Because of this, a large 

independent validation of the radiomic features could not be performed. 
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Other aspects I could include in the future may be to improve prognostic performance 

by integrating CoLIAGe features from perfusion MRI with other structural multi-

parametric MRI scans. I could also perform studies to see if combining the DyCoLIAGe 

features with the rCBV and rCBF parameters could improve prognostic ability of our 

model. 
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