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Predictive On-Line Operational Management of V2G 

Participating in the Frequency Regulation for an Office Garage 

 

Abstract 

by 

YIN GUO 

The development of vehicle-to-grid (V2G) technology offers potential benefits to both electric 

vehicle owners and grid operators by providing frequency regulation service. Such benefits could 

be significant, because the vehicles are usually idle for most of the time in a day. However, it is 

difficult to maximize such benefits via cost-optimized on-line scheduling based on predictive 

real-time prices. First and foremost, this is due to the uncertainty of actual prices and the 

variability of prediction obtained at different time points. In addition, the energy needed for 

providing regulation service is unknown when making the schedule. Second, in order to 

participate in the frequency regulation market, an aggregator is usually needed as an interface 

between vehicles and grid operators. However, the optimal bidding capacity for the aggregator 

may conflict with the optimal schedule of individual vehicles. Last, the vehicle’s ability to gain 

maximum profit is limited when the battery’s state of charge (SOC) is close to its extreme values. 

To overcome those limitations, this thesis proposes a new tool for the operational management of 

V2G frequency regulation. The proposed tool integrates: 1) a cost-optimized predictive on-line 

scheduling model for individual vehicles, 2) a cost-optimized frequency regulation capacity 

bidding model for an aggregator, and 3) a real-time synergetic dispatch model. The scheduling 
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model for individual vehicles is formulated as a three-stage stochastic linear program which 

considers the uncertainties in 1) energy and frequency regulation prices, and 2) hourly average 

frequency regulation signal.  

The advantages of the proposed tool are: 1) the proposed tool properly integrates scheduling, 

capacity bidding and real-time dispatch; 2) the proposed scheduling models for individual EVs 

and the aggregator are on-line scheduling models which take the advantage of the most recent 

predicted electricity prices; 3) the proposed scheduling models for individual EVs and the 

aggregator forms a semi-centralized scheduling schema, which overcomes the disadvantages of 

centralized and decentralized models; 4) the consideration of the stochastic property of the 

parameters helps reduce the risk associate with the uncertainty, and also increase the potential 

profit; 5) the proposed three-stage stochastic linear programming model for the scheduling of 

individual vehicles greatly reduces the computational effort required by a conventional multi-

stage model; 6) the proposed heuristic solution method with the utilization of GPU for parallel 

computation can significantly further increase the computational efficiency; 7) the proposed real-

time synergetic dispatch can properly maintain the battery’s SOC within a designated range, 

which insures that the battery energy constraint can be eliminated from the scheduling model, 

and helps reduce the complexity of the scheduling model. 

The proposed tool is evaluated via a simulation of an arbitrary aggregator for an office garage 

which consists of 100 EVs. The simulation result shows that the proposed integrated tool is 

suitable for practical deployment. 



 

 

 

 

CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivation 

With the growing concerns about global warming, sustainable energy systems—such as wind 

farms and solar panels—have been developing fast in the past decade. It is reported that 700 

gigawatts of power will be generated by sustainable energy systems by the year 2020, which is 

equal to a 26% share of global power generation [1]. Due to the importance of sustainable energy 

systems, increasing attention has been drawn from researchers on the topics of developing new 

models for the control and scheduling of such energy systems for a variety of purposes. 

The electric vehicle (EV) is one of those sustainable systems that could help reduce CO2 

emissions [2]. In the narrow sense, an EV refers to a type of passenger car that uses the energy 

from the self-contained battery and electric motors for propulsion. In the general and broad 

definition, EV also includes electric rail trains, surface and underwater vessels and electric 

aircrafts. Besides on-board battery, they may also use an on-board generator for power 

generation, such as solar panels or fuel cell. In this thesis, EVs are defined as a passenger car 

powered by an on-board battery. The definition also includes plug-in hybrid passenger cars. 

EVs can achieve zero CO2 emission via charging the battery by using the electricity generated by 

other renewable generation units, such as solar panels and wind turbines. However, because the 

EVs are charged by consuming energy from the power system and not all the energy is generated 

by renewable generation units, in reality the CO2 emissions caused by the EVs are not zero and 



 

2 

 

depend on the constitution of electricity sources. Thus, the reduction in CO2 emissions varies 

among locations. But despite that, the EVs have still a lower global warming emission than the 

conventional internal combustion motor vehicles as for nationwide [3]. 

In the past decade, the sales volume of EVs has been increased significantly. Figure 1 shows the 

EV sales volume from 2008 to 2018. It is also reported that the penetration of EVs in 13 US 

regions may grow to 25% by the year 2020 [4]. 

 
  Source: insideevs.com 

Figure 1  EV sales volume in the United States 

As the EV market keeps expanding rapidly, technologies related to EVs are also developing at a 

fast pace. One of these technologies is known as vehicle-to-grid (V2G). While the traditional 

charging stations only allow one-directional energy flow: power grid to EVs, the current V2G 

charging station enables bidirectional energy exchange between EVs and the power grid. This 

technology allows EVs not only to consume energy from the power grid to charge the battery for 

driving, but also to provide energy or ancillary services back to the power grid [5]. In other 
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words, with V2G technology, EVs can function as either an ordinary load or a mobile generation 

unit. 

The energy and ancillary services provided by EVs through V2G are beneficial to both vehicle 

owners and the power grid operator—they bring profit to the vehicle owners and help improve 

the economics, stability and reliability of the power grid. More importantly, such benefits 

brought by V2G could be significant, because EVs are parked in garages and plugged in for an 

average of 22 hours per day [6]. Therefore, taking the most advantage of those idle vehicles 

during such a significant period of time becomes attractive for both vehicle owners and grid 

operators. Thus it has drawn great attentions from researchers in the past decade. 

However, traditional energy and ancillary services through V2G, such as peak load shifting, are 

proven to be uneconomical, when the cost of battery’s degradation is taken into consideration [5, 

7-9]. Take peak load shifting for example: it requires one direction energy flow constantly for a 

significant period of time. Such an action requires a significant amount of energy from the 

battery, which leads to faster battery degradation. On the contrary, primary frequency regulation 

services deal with the real-time deviation of power grid frequency caused by the imbalance 

between power generation and demand. Since the primary frequency regulation services usually 

deals with the high frequency part of power imbalance, it demands much less total energy 

delivered or absorbed by the battery. For some cases, e,g, in the Pennsylvania-New Jersey-

Maryland Interconnection (PJM) system, the mean value of such an imbalance is expected to be 

zero for a long period of time, such a one hour. Therefore, the primary frequency regulation 

services are considered to be more profitable and suitable, compared to traditional energy and 

other ancillary services via V2G [5, 7]. Furthermore, the characteristics of V2G technology—
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namely its ability to respond quickly to regulation signals—makes EVs an ideal primary 

frequency regulator [7, 10, 11].  

1.2 Introduction of Aggregator 

Research in the past several years has shown the promising financial potential of V2G frequency 

regulation [8, 12-15]. In order to participate in the primary frequency regulation market and to 

realize the monetary potential, an aggregator is usually needed as an interface between grid 

operators and individual EVs. This is because the power supply from individual EVs is too small 

compared to the total power available from the power grid and is therefore negligible. Several 

frameworks have been proposed in previous research to implement the aggregator concept [16-

17]. 

Generally, an aggregator should be able to accomplish several important functions. First and 

most importantly, the aggregator should be able to charge the batteries appropriately so that the 

vehicle owner’s travel needs in later travel can be fulfilled. Another elementary function of the 

aggregator is to meet the contract requirements for providing the frequency regulation service, 

such as the minimum power requirement. For instance, the PJM requires a minimal power of 0.1 

MW to be able to participate in the frequency regulation market. 

Besides the elementary functions, advanced functions are necessary for different high-level 

missions. One advanced function of the aggregator is to make smart decisions for the charge 

schedule of each individual EV to achieve certain purposes, such as maximum profit for each 

individual EV. Another advanced function is the appropriate dispatch of real-time control signals 

to each EV in a coordinated manner. Such coordinated assignments should 1) ensure that the 
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aggregated frequency regulation power meets the frequency regulation tasks, and 2) be capable 

of maintaining a reasonable battery state of charge (SOC) so that the maximum frequency 

regulation power is always accessible. 

To accomplish these functions, optimal scheduling and real-time synergetic dispatch are 

necessary. As EVs are idle for most of the time in a day, aside from the time used to charge the 

battery for daily travel, it is very likely that there will be ample time to provide frequency 

regulation services from the EVs to the power grid and make a profit. By properly scheduling the 

battery charge and the use for frequency regulation, such a profit could be potentially significant 

without interfering with the vehicle owners’ driving needs. 

1.3 Difficulties in the Scheduling 

It is important to acknowledge the difficulty associated with maximizing the profit obtained 

through V2G frequency regulation. First of all, several uncertainties make the decision process 

of the cost-optimized scheduling an incredibly challenging task. For example, price prediction, 

including the energy cost rate and frequency regulation credit rates, is essential in order to make 

optimal decisions for frequency regulation schedules. However, the uncertainty of actual prices 

and the variability of prediction obtained at different time points are the first challenges that need 

to be overcome. Such uncertainty and variability suggest that the actual rates would almost 

always vary from the predicted values. To be specific, not only may the predicted cost rate 

deviate from the actual value, but the predicted cost rate may also alter at different time points. 

In addition, the total energy absorbed or delivered due to providing frequency regulation services 

for a specific time period is also unknown when making the decision. Moreover, an EV’s arrival 
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and departure times are usually random. Most importantly, making a long-term schedule (for 

example eight hours) under the aforementioned uncertainties is usually computationally costly 

and almost impossible at times. 

Second, although centralized scheduling models can promise a better overall result, the fact that 

those models suffer from high computational cost makes them inappropriate for the scheduling 

problem of V2G frequency regulation, especially when the aforementioned uncertainties are 

considered. However, the fact that decentralized models may not be able to achieve the best 

overall result makes them unsuitable for deployment. This is because decentralized scheduling 

model aims at the maximum profit for individual vehicle, while the bidding capacity is 

determined for the maximum profit of all vehicles. To be specific, the optimal schedules of 

individual vehicles are obtained based on the information of each vehicle itself in a decentralized 

model. In contrast, the optimal decision of the aggregator, namely the optimal bidding capacity, 

is obtained based on the information of all available vehicles. Therefore, the optimal decisions of 

individual vehicles may disagree with that of the aggregator for all vehicles in a decentralized 

model. Thus, coordination is needed to resolve the conflict of different objectives between the 

two parties in a decentralized scheduling model. 

Last, without an intelligent dispatch, a vehicle’s ability to gain maximum profit could be limited. 

This is because the optimal scheduling of an individual vehicle usually uses the hourly average 

regulation signal [18-21]. However, the average regulation signal from the start point of that hour 

to a certain time point within that hour could be significantly different from the hourly average 

regulation signal. Thus, at that certain time point, the vehicle’s battery could have been empty or 
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full and therefore the vehicle becomes unavailable for providing frequency regulation services. 

Such challenges have already caught researchers’ attention [22-24]. 

Lastly, most existing research focuses on only one topic in scheduling, capacity bidding or real-

time dispatch [10-26]. However, the integration between the three parts has not been well studied. 

1.4 Proposed Solution 

To overcome these limitations, a new tool for the operational management of V2G frequency 

regulation is proposed in this thesis. The proposed tool integrates three sub-models: 1) a cost-

optimized predictive on-line scheduling model for individual EVs, 2) a cost-optimized stochastic 

model for the capacity bidding of an aggregator, and 3) a real-time synergetic dispatch model. 

The scheduling model for individual EVs considers the uncertainties in 1) the energy cost rate 

and frequency regulation credit rates, and 2) the hourly average frequency regulation signal. To 

reduce the high computational cost that the proposed stochastic scheduling model encountered, a 

solution algorithm with the utilization of GPU for parallel computation is introduced. Moreover, 

the proposed capacity bidding model coordinates the different interests between the aggregator 

and the individual vehicles. Lastly, the real-time synergetic dispatch model can appropriately 

dispatch control signals to each individual EV in order to prevent battery from extreme SOCs 

and unavailability for frequency regulation service. 

The features of the proposed model are as follows.  

First, the proposed tool proper integrates scheduling, capacity bidding and real-time dispatch, 

while such integration between the three parts has not been will studied in the existing research. 
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Second, the proposed scheduling models for individual EVs are on-line scheduling models which 

focus on the determination of the nearest future planning period. Because the models take the 

advantage of the most recent predicted electricity prices, they can guarantee that the schedule of 

each period is generated with the most reliable information at the time when the schedule is 

made. 

Third, the proposed scheduling models for individual EVs and the capacity bidding model for the 

aggregator forms a semi-centralized scheduling schema. It overcomes the disadvantages of 

centralized and decentralized models: it coordinates the schedules of individual vehicles, and 

reduces the computational difficulty. Therefore, it can improve the reliability of the scheduling 

decision when comparing with a decentralized model. 

Fourth, the consideration of the stochastic property of the parameters helps reduce the risk 

associate with the uncertainty. Thus, such consideration can not only further improve the 

reliability of the scheduling decision, but also increase the potential profit. 

Fifth, the proposed three-stage stochastic linear programming models for the scheduling of 

individual vehicles requires less computational effort compared with a conventional multi-stage 

model. In addition, such a modeling form better fit with the characteristic of on-line scheduling 

schema: it focus on the most nearest future period’s schedule. Moreover, by applying a fixed-

length time frame for the consideration of stochastic parameters, the computational complexity 

of the scheduling problem is reduced again, while it would not result in a significant worse 

solution. 
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Sixth, the proposed heuristic solution method with the utilization of GPU for parallel 

computation can significantly further improve the computational efficiency. 

Last, the proposed real-time synergetic dispatch model can properly maintain the battery’s SOC 

within a designated range, which insures that the battery energy constraint can be eliminated 

from the scheduling model. It can help reduce the complexity of the scheduling model, without 

requiring a significant extra burden. In addition, such a smart dispatch of control signals to each 

individual EV can help improve the EVs’ reliability to provide frequency regulation services. 

This thesis is structured as follows. A survey of existing research is reviewed in Chapter 2. 

System models are presented in Chapter 3. The proposed problem formulation is then developed 

in Chapter 4. The simulation results are presented and discussed in Chapter 5, while the 

conclusions are drawn in Chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

With the rapid development of the EV market, more and more researchers focus on the 

optimization problems of EVs’ operation. Those problems usually can be classified into four 

major categories: optimal vehicle charging, integration with other renewable generation 

resources, integration with micro-grid or smart grid, and last ancillary services via V2G. 

Optimal vehicle charging problems was the first research area that caught the researcher’s 

attention, because this problem usually does not require that the charging station has to be a V2G 

charging station. Numerous researches about the optimal charging problems of EVs have been 

reported in the past decade [25-35]. These researches aimed at the minimal charging cost for EVs 

through the determination of optimal charging schedule.  

Along with the fast development of other renewable energy generation systems, such as wind 

farm or solar panel, some research focused on the integration of those systems and EVs to 

improve the energy outflow from the integrated system [26-27, 36-50]. Since the amount of 

energy generated from those systems are not stable and usually depends on many factors, EVs 

are used as buffer to stabilize the energy outflow from the integrated system. 

In the mean time, some researchers studied the impact of EVs in a micro-grid or smart grid 

system. Various models have been proposed to improve the economics, reliability and stability 

of the micro-grid or smart grid system [27-32, 47-54]. 
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The last group the researchers took the advantage of V2G technique, and utilized the EVs to 

participate in different ancillary services [54-73]. Primary frequency regulation has been the 

main focus of those researchers, because it has the most promising financial benefits. Usually, 

the proposed models can be classified into two categories depending on the solution scheme – 

decentralized and centralized methods.  

2.1 Decentralized Scheduling Models  

The decentralized scheduling models focus on the determination of the optimal schedule for one 

individual vehicle based on the information of the vehicle itself. They do not have or consider 

the information from other vehicles. However, the computation does not necessary have to be 

performed in a distributed manner – at the charging stations for each vehicle. As a matter of fact, 

the schedule can be computed by the server at the aggregator either one vehicle by one vehicle or 

in parallel.  

S. Han et al. first developed a discrete dynamic programming model for the decentralized 

scheduling of V2G frequency regulation [74]. Optimal charge and frequency regulation sequence 

charts were generated for practical operations based on profiles of historical energy and 

frequency regulation prices. Later on, the energy constraint for V2G frequency regulation was 

further discussed when the stochastic characteristic of regulation signals was considered [18]. 

The stochastic characteristic was described as a random walk process with an approximated 

Bernoulli distribution. A quadratic programming model was then directly developed from their 

previous work to produce a better result [19]. It was assumed that the power capacities for 

regulation down and up could be different in their new model, while those two power capacities 
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had been assumed to be identical in their previous model. In addition, the SOC deviation caused 

by frequency regulation, which they had not considered in their previous work, was also taken 

into account in their new model. A linearly degrading weight function was used in their models 

to prevent battery over-charge. However, such a function restricted the EV’s regulation power 

capacity when the battery SOC was not far from its extreme values. Thus, the EVs’ ability to 

achieve a higher profit was still limited in their models. 

Although Han’s work provided a solution for the scheduling problem of V2G frequency 

regulation, their models did not consider several uncertainties related to the scheduling problem 

in real-world situations. First, the rates were from the day-ahead market and therefore assumed to 

be known in their model. In addition, EVs can start to provide regulation services immediately 

when they are plugged in. However, such assumptions are not reliable in real-world practice. 

This is because not all prices are available in the day-ahead market. For example, PJM has a day-

ahead market for energy, but the frequency regulation service market at PJM is a real-time 

market. In addition, ISOs usually require the regulator to submit the frequency regulation service 

bid in advance, including the price and capacity. For example, PJM requires the market 

participator to submit the bid to PJM an hour ahead of when the target service hour begins. After 

that time point, the frequency regulation service market prices are settled based on the bids from 

all suppliers and the total power capacity needed. In other words, the V2G frequency regulation 

operation scheduling of individual vehicles as well as the capacity bid of the aggregator need to 

be made without the knowledge of the actual market prices. Moreover, this schedule should be 

generated even before the vehicle is plugged in, so that the frequency regulation or battery 

charge can be performed in a timely manner. Lastly, the uncertainty in the hourly average 
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regulation signal, which caused SOC deviation when providing frequency regulation, was also 

not well considered in their model. 

To overcome some of those drawbacks, J. Donadee and M. Ilic first proposed a stochastic 

dynamic programming algorithm for the scheduling problem with a one-hour planning horizon 

[20]. The stochastic characteristic of the SOC deviation caused by frequency regulation was 

examined at five-minute intervals. The main drawback of this model is that the planning horizon 

is too short. It may lose the broad view and cannot guarantee maximum profit for the entire 

plugged-in period. Later on, they expanded the planning horizon, and thus the scheduling 

problem became a Markov decision problem [21]. A new stochastic dynamic programming 

algorithm was developed to heuristically solve the Markov decision problem where the cost of 

the subsequent time period was estimated by a piecewise linear convex function. However, the 

battery discharge was not allowed in their model. This constraint prevented vehicles from 

achieving a higher profit.  

In addition, their model considered the hourly average regulation signal for a certain hour and the 

energy and regulation prices for the same hour in the same stage. This is inappropriate in real-

world practice, and those stochastic parameters should be considered at different stages. This is 

because the energy and frequency regulation prices become certain at the start of that hour, while 

the hourly average regulation signal is realized at the end of that hour, or namely the start of the 

next hour. Therefore, if they are considered within the same stage, the execution of operation 

will be unknown at the start of that hour. This is because the information of the hourly average 

regulation signal for that hour is not accessible at that time. Thus, the hourly average regulation 

signal should be considered in a later stage. 



 

14 

 

E. Yao et al. first proposed a V2G frequency regulation algorithm based on robust optimization. 

Their model examined the influence on revenue for following regulation signals under the 

performance-based compensation paradigm [22]. Later, a risk-averse model was developed for 

the optimal day-ahead contract of V2G frequency regulation for an aggregator with the 

consideration of uncertain capacity due to unknown arrival and departure times of a particular 

EV [23]. After that, a new V2G frequency regulation algorithm based on chance-constrained 

robust optimization was developed directly from their previous work to produce an optimal bid 

[24]. By combining their previous work, a two-step algorithm was developed for EV scheduling 

and capacity bidding in a day-ahead market with consideration of uncertainties in vehicle’s 

availability, market price, regulation signal. The first step used a decentralized stochastic 

program for EV scheduling. Given the result from the first step, the second step used another 

stochastic program to determine the bidding capacity. However, the proposed algorithm suffers 

from high computational burden, which requires powerful cloud computing. 

Although extensive research has been reported on the decentralized scheduling method for the 

V2G frequency regulation for individual EVs, one common issue of decentralized scheduling 

models is that they did not consider the aggregator’s obligation of proposing regulation bidding 

capacity. In addition, little has been discussed about the relation and coordination between the 

optimal bidding capacity of an aggregator and the optimal schedule of individual EVs in a 

decentralized model.  

To achieve the maximum profit, the aggregator needs to decide the optimal bidding capacity 

which is going to be submitted to the ISO. For those models using day-ahead market prices or 

the mean values of the predicted real-time market prices, the optimal bidding capacity is the sum 
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of available capacity from all vehicles, because for each hour there is only one operation decision 

for each vehicle. However, for those models which considered the uncertainties involving the 

operation, such a decision is made on the premise of uncertain prices, and there is a risk that it 

may conflict with the operation schedule of individual EVs. Because for each hour there will be 

several operations decision for each possible realization of uncertain parameters for each vehicle, 

it is necessary in this case for the aggregator to propose a proper bidding capacity considering the 

available capacity from all vehicles for all possible realizations. 

If the aggregator’s bidding capacity is less than the total capacity available from all EVs for a 

certain hour, the aggregator and all EVs are losing profit, because they lose the opportunity of 

making higher profit in that hour. If the aggregator’s bidding capacity is more than the total 

capacity available, then the aggregator needs to buy capacity usually at a higher rate from other 

regulators to fulfill the contract with the ISO or pay a penalty to the ISO for the failure of 

fulfilling the contract. Either way, both the aggregator and EVs are losing profit. Therefore, the 

coordination between the bid of an aggregator and the operation schedule of individual EVs is 

important. 

2.2 Centralized Scheduling Models 

Aside from the decentralized scheduling approach mentioned above, several models were 

proposed through a centralized scheduling approach. A centralized scheduling model focuses on 

the determination of the optimal schedules for all participating vehicles as well as the optimal 

bidding capacity for the aggregator based on the information from all vehicles. Different from a 
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decentralized scheduling model, a centralized scheduling model usually cannot be computed in a 

distributed manner. 

E. Sortomme and M.A. El-Sharkawi proposed a linear programming model to generate the 

optimal schedule of individual EVs and optimal bid of the aggregator at the same time [75]. The 

costs of energy and battery degradation were considered in this model along with the revenue for 

frequency regulation and spinning reserve. M. G. Vaya and G. Andersson proposed a day-ahead 

scheduling model for a micro-grid to minimize the total cost of electricity generation from all 

generation units [76]. R. Wang et al. proposed a centralized on-line scheduling model based on 

the mean value of predicted prices with a moving window of a fixed length of time [77]. J. J. 

Escudero-Garzas et al. proposed and discussed several schemes for the aggregator to achieve 

maximum profit via V2G frequency regulation [78]. In their model, different criteria were 

implemented to achieve different degrees of fairness among EVs when allocating power to each 

EV. However, because centralized scheduling approaches usually require higher computational 

power and memory, all existing centralized scheduling models are based on the mean value of 

predicted prices. Therefore, these models do not account for the stochastic characteristic of 

prices or the hourly average regulation signal. 

Although centralized scheduling models can promise a better overall profit than decentralized 

models by generating the schedules for individual vehicles and the bidding capacity for the 

aggregator simultaneously, the fact that they suffer from higher computational cost makes them 

unsuitable to handle the uncertainties mentioned in the previous section. 
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2.3 Integration of Scheduling, Capacity Bidding and Real-time Synergetic Dispatch 

Most existing research focuses on only one topic in scheduling, capacity bidding or real-time 

dispatch, while the existing research on operation scheduling of V2G frequency regulation 

hardly considers the importance of the integration with capacity bidding and real-time dispatch. 

As mentioned above, without a proper integration with capacity bidding, a decentralized 

scheduling model is not appropriate for deployment, because of the conflict of different 

objectives between individual EVs and the aggregator. Although a centralized scheduling model 

can properly resolve the conflict, the fact that it suffer from high computational cost makes it 

unsuitable for deployment when uncertainties are considered. Therefore, proper integration of 

scheduling and capacity bidding is necessary. 

On the other hand, without a proper integration with real-time synergetic dispatch, not only the 

ability of EVs to achieve the best profit could be limited, but also the battery could be over-

discharged and over-charged. However, if there are other EVs providing frequency regulation 

that have a much lower battery energy level, the regulation tasks that cannot be accomplished by 

the EVs with full batteries can be shifted to those EVs with lower battery energy levels. 

Furthermore, the full batteries can be actively discharged by proper signal assignments in certain 

situations. Thus, the battery over-discharge and over-charge of that particular EV could be 

avoided without reducing the frequency regulation power capacity. The synergy of an 

aggregator’s ability to dispatch control signals to EVs in a coordinated manner makes this 

operation possible. Therefore, appropriate integration of scheduling and real-time synergetic 

dispatch is also necessary.  
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CHAPTER 3  

SYSTEM MODELS 

This chapter presents the structure of the V2G frequency regulation system, the frequency 

regulation compensation model, and the randomness of frequency regulation signals. 

3.1 V2G Frequency Regulation System 

The general architecture and information flow of a V2G frequency regulation system is shown in 

Figure 1. The main components of such a system are EVs, an aggregator, and an ISO. Although 

an aggregator can be connected to another aggregator in practice, such cases are not discussed in 

this thesis. This is because a child aggregator in such a scheme is mostly used in the exchange of 

information. Therefore, the EVs which are connected to such a child aggregator are equivalent to 

being connected directly to the root aggregator. 

As a participant in the frequency regulation market, also known as a regulator, the aggregator 

needs to submit the bid to the ISO at some time point. Such a bid, including prices and capacity, 

is usually submitted prior to when the target service hour begins. For example, as mentioned 

above, PJM requires all regulators to submit their bid at least an hour before the target service 

hour starts. After receiving the bids from all available regulators, the ISO will select a certain 

number of regulators with the lowest bidding prices until the sum of their bidding capacities 

meets the total frequency regulation capacity needed by the grid. Thus, the frequency regulation 

market is settled and all selected regulators will be paid by the highest bidding prices from those 

selected regulators. Then, the ISO will inform the aggregator of the contract prices and capacity. 
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During the target service hour, the ISO will also send real-time regulation signals to the 

aggregator. In addition, as an energy consumer, the aggregator will also be informed of the 

energy price for charging EVs. 

 

Figure 1  General framework of the V2G frequency regulation system 

On the other hand, the aggregator also needs to communicate with each individual EV. Such 

communication includes constant queries of an EV’s SOC and a one-time query of an EV’s 

driving profile when the EV joins the aggregator. The driving profile of an EV consists of arrival 

and departure times, SOC at arrival, and desired SOC at departure. After collecting information 

from the EVs, the cost-optimized charge schedule for each EV is generated based on the 

predicted real-time frequency regulation credit rates and the energy cost rate. With other charge 

schedules, the aggregator determines the optimal bid to the ISO for the maximum profit. During 

the service hour, the aggregator will distribute real-time charge or discharge signals to each 

individual EV according to the charge schedule, battery status, frequency regulation contract, 
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and regulation signal from the ISO. The charge and discharge signals combine two parts: one is 

for the battery charge and the other is for the frequency regulation. However, the portion of the 

signal for frequency regulation may not directly follow the regulation signal broadcasted by the 

ISO. In other words, the real-time frequency regulation task may not evenly distribute to each 

EV according to its scheduled capacity for frequency regulation. Adjustments can be made based 

on the battery’s status, priority and so on. However, the aggregated signal of all EVs should be 

able to fulfill the frequency regulation service contract with the ISO. 

3.2 Frequency Regulation Compensation Model 

Current frequency regulation compensation schemes in the industry are developed from the 

performance-based compensation paradigm, which was required by the Federal Energy 

Commission in Order 755. The performance-based compensation paradigm was introduced 

mainly to promote faster-ramping resources that provide frequency regulation, because the 

traditional capacity-based compensation methods failed to provide proper incentives to faster 

ramping regulators. In addition, these regulators usually have higher operation cost than other 

traditional regulators. 

Take the frequency regulation compensation scheme of PJM, for example [79, 80]. The total 

frequency regulation credit consists of two parts: capability credit and performance credit. The 

capability credit is the product of the hourly-integrated frequency regulation power, actual 

performance score and frequency regulation market capability clearing price. The performance 

credit is the product of the hourly-integrated frequency regulation power, actual performance 
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score, mileage, and frequency regulation market performance clearing price. Such credits can be 

calculated by using the following equation: 

)()()()()()()()( hRhmhPhRhPhChChC PCPCR ηη +=+=  (1) 

It is necessary to note that some ISOs, e.g. PJM, require symmetric frequency regulation capacity. 

In this situation, both regulation up and regulation down capacities are identical and participating 

regulators are paid based on one side capacity. On the contrary, other ISOs allow asymmetric 

frequency regulation capacity. In other words, regulation up and regulation down capacities can 

differ and participating regulators can be paid based on both sides of capacity. 

The performance score, which is a scalar ranging from 0 to 1, describes how quickly and 

accurately the response from a regulator follows the regulation signals from ISO. It was 

evaluated in three aspects: correlation, delay and precision. The correlation score measures the 

degree of the relationship between the response and the regulation signal, while the delay score 

measures the point in time at which maximum correlation between the two signals is achieved. 

The precision score, on the other hand, measures the difference in the energy provided versus the 

energy requested by the regulation signal. One advantage of V2G frequency regulation, as 

mentioned in the previous discussion, is its ability to quickly respond to regulation signals. 

Therefore, both the correlation and delay scores can be considered as 1 for V2G frequency 

regulation. In addition, as long as there is sufficient capacity, the precision score can also be 

considered as 1 for V2G frequency regulation. Therefore, without losing generality, the 

performance score of V2G frequency regulation can be assumed to be 1. The calculation of those 

scores is illustrated by Eq. (2)-(5) [80]. 
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As shown in Eq. (6), the mileage is defined as the summation of movement requested by the 

regulation control signal that a resource is following [80]. In other words, it is the summation of 

the absolute difference between two consecutive regulation signals. 

∑
=

−−=
T

t
tdtdhm

1
)1()()(  (6) 

3.3 Randomness of Frequency Regulation Signal 

The frequency regulation signal is generated from an automatic generation control (AGC) signal, 

where the AGC signal is the real-time mismatch between generation and load in the power grid 

governed by the ISO. Usually, the frequency regulation signal is the high frequency part of the 

AGC signal. Therefore, the time interval between two consecutive frequency regulation signals 

is generally very short, especially when compared with the time interval for a frequency 

regulation service contract. For example, in PJM, the contract commitment is for one hour, while 

the frequency regulation signal is broadcasted every two seconds. 
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The frequency regulation signal, by definition, is the real-time power mismatch in the power grid 

divided by the designated frequency regulation power capacity. Therefore, the frequency 

regulation signal has no unit. Typically, different regulators have different committed frequency 

regulation capacities. During a real-time operation, instead of sending different numbers of real-

time charge or discharge power to different regulators, the ISO sends only one number to all 

regulators. Thus, the real-time frequency regulation task for a regulator is the product of the 

contract capacity and the frequency regulation signal. Therefore, the communication between an 

ISO and a regulator is simplified, and the communication reliability is improved. 

 
  Source: pjm.com 

Figure 2  Distribution of frequency regulation signals 

Although the frequency regulation signal is assumed to follow normal distribution with zero 

mean in many models, the actual distribution of the frequency regulation signal shows otherwise. 
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Figure 2 shows the actual distribution of the frequency regulation signal broadcast by PJM from 

June 1 2013 to May 31 2014 [82]. Although the main part of frequency regulation signal data 

follows the normal distribution, the frequencies at both ends are much higher than the theoretical 

values according to Figure 2, because the frequency regulation signal is bounded between -1 and 

1. 

 
  Source: pjm.com 

Figure 3  Histogram of frequency regulation signals 

Since the frequency regulation signal is random, both the hourly average frequency regulation 

signal and the hourly integrated mileage are also random. Figure 3. is the 2-D histogram of the 

hourly average frequency regulation signal and the hourly integrated mileage generated from the 

same data. The distribution of the hourly average frequency regulation signal is similar to the 
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distribution shown in Figure 2, due to the same issue. Although the hourly average frequency 

regulation signal and the hourly integrated mileage are all generated from the same data, a 

correlation coefficient of 0.0010 indicates their independence. 

 
  Source: pjm.com 

Figure 4  Histogram of frequency regulation signals 

Figure 4 shows the autocorrelation of the aforementioned three signals. On one hand, the 

frequency regulation signal is highly dependent on its most recent values, and such dependence 

decreases gradually as time increases. On the other hand, although there is a seasonal pattern for 

both the hourly average frequency regulation signal and the hourly integrated mileage, their 

ability to remember their previous status differs. Specifically, the hourly average frequency 

regulation signal hardly remembers its previous status, while the hourly integrated mileage has a 

better memory of its past status. 
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CHAPTER 4  

PROBLEM FORMULATION 

The proposed model is developed in this Chapter. 

4.1 Scheme of the Proposed Model 

The proposed model contains three sub-models: 1) the on-line cost-optimized predictive V2G 

frequency regulation scheduling model for individual vehicles, 2) the predictive frequency 

regulation capacity bidding model for an aggregator, and 3) the real-time synergetic dispatch 

model. Although the proposed models are based on the PJM market regulation and cost structure, 

with small modifications, it can be implemented to other ISOs with different market regulations 

and cost structures. 

Figure 5 demonstrates the scheme of the proposed model.  

The scheduling model for individual vehicles determine the initial operation schedules of the 

individual EVs for one hour at a time based on the predicted market prices for the entire plug-in 

period. The scheduling model for individual vehicles considers two aspects of stochastic 

parameters: the electricity market prices and the hourly average frequency regulation signal. The 

operation schedule for the hour after the current target hour will be determined at the start of the 

hour following the current target time. 

The initial optimal schedules of all individual EVs and the predicted electricity prices then 

become the inputs for the frequency regulation capacity bidding model for an aggregator. It 
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determines the optimal bidding capacity of the aggregator and the intermediate operation 

schedules of individual EVs. Such schedules are generated through the adjustment on the initial 

operation schedule in accordance to the optimal bidding capacity of the aggregator. 

 

Figure 5  Scheme of the Proposed Model 

After an hour’s delay, as the market prices are settled,  the schedule for individual EVs will be 

finalized. The finalized schedules then become the input for the real-time dispatch model and 

will also be used as deterministic parameter in the scheduling model for individual vehicles to 

determine the operation schedule of an individual EV for the hour right after the current target 

hour. The real-time synergetic dispatch model will generate the real-time control signal for each 
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individual vehicle based on the finalized schedule and the original regulation signal from the ISO. 

The dispatch model assures that the battery’s SOC at any time during the plug-in period is within 

the designated feasible range. Therefore, it is practical to neglect the battery’s energy constraints 

which are necessary for the optimal operation scheduling. 

4.2 Assumptions 

The proposed tool is designed for an aggregator of an office garage which participates in the 

real-time market of the PJM. As the profile of the participating EVs in an office garage 

environment is more stable than a residential, the EVs’ arrival and departures times and the 

SOCs at those time points could be estimated by using historical data with a high confidence 

level. In addition, the arrival and departure times as well as the desired SOC at the departure 

could be specified in the contract agreement with the vehicle owners. 

The proposed tool considers two stochastic parameters: 1) energy and frequency regulation 

prices, and 2) hourly average frequency regulation signal. However, since the uncertainty of 

vehicle’s arrival and departure times have to be handled in a different way, it is beyond the scope 

of this paper and will be presented in our future work. 

Thus, the following assumptions are made in this thesis. 

 The necessary communication frame and infrastructure have been well established. 

 Charge and discharge efficiency are considered to be 1. 

 All vehicles have the same type of battery. 

 The EVs’ arrival and departures times are known. 
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 Maximum battery capacity and maximum battery charging and discharging rates are 

identical. 

 The EVs’ SOCs at arrival and the EVs’ desired SOCs at departure are known prior to 

vehicles’ arrival. 

4.3 On-line Predictive Cost-optimized Scheduling of V2G Frequency Regulation for 

Individual EVs 

This section develops the on-line predictive cost-optimized scheduling model of V2G frequency 

regulation for individual EVs. First, the simple linear programming and the corresponding multi-

stage stochastic linear programming models are introduced. Then, the proposed scheduling 

model which is formulated as a three-stage stochastic linear program is developed. Last, a three-

stage stochastic linear program with a fixed-length time window for the consideration of the 

stochastic parameters is elaborated for practical implementation.  

The stochastic scheduling models discussed in this section consider the uncertainties in: 

1) The cost rate for energy and the credit rates for frequency regulation in the real-time market 

2) The total energy delivered and absorbed by the battery due to regulation service in an hour, or 

namely the hourly average frequency regulation signal 

Basically, the profit of ith EV’s operation for a certain hour h can be expressed as follows. 
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Basically, the total profit of a vehicle’s operation contains two parts. The first part, CE(h), is the 

cost of energy that is charged into the battery. The second part, CC(h)+CP(h), is the credit for 

providing frequency regulation. The energy cost can be calculated by the first two terms in the 

second line of Eq. (7). The first term is for the energy needed to charge battery for driving, while 

the second term is for the total energy delivered and absorbed by the battery due to frequency 

regulation. It is necessary to note that RE(h), RC(h) and RP(h) are known at the start of hour h, 

while D(h) and m(h) are unknown until the end of hour h. Therefore, the profit of a vehicle for 

hour h is estimated by using the mean value of D(h) and m(h), which are zero and M respectively. 

Because the first two terms in the last line of Eq. (7) are parameters, the maximization of a 

vehicle’s profit is equivalent to the minimization of the total cost for charging the vehicle and for 

the failure to provide regulation service, which is represented by the last term. 

4.3.1 Deterministic Simple Linear Programming Models 

According to the previous discussion, the simple linear program for the scheduling of ith vehicle 

from Hpi until Hpo based on the prefect information of the aggregated cost rate and the hourly 

average frequency regulation signal is formulated as follows. This model is denoted as PI model. 
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The objective function, Eq. (8), calculates the total operational cost from Hpi until Hpo. Eq. (9) 

requires that the battery’s SOC when the vehicle leaves the aggregator should be greater than the 

desired SOC. Eq. (10) ensures that the battery’s SOC at the start of each hour between Hpi and 

Hpo should be within the feasible range. Eq. (11) defines the feasible region of the decision 

variable. 

Because in the practical operation both the aggregated cost rate and the hourly average frequency 

regulation signal are unknown before they realize, PI model cannot be used for practical 

implementation. However, it is a suitable model for benchmarking purpose which calculates the 

least minimal operational cost. Any scheduling model with imperfect information cannot obtain 

an operational cost lower than that obtained from the PI model. The difference between the 

operational costs obtained from a scheduling model with imperfect information and from the PI 

model is defined as the cost of prefect information. The lower the cost of prefect information, the 

better performance the scheduling model with imperfect information has. 
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The simple linear program based on the mean values of the predicted aggregated cost rate and 

the hourly average frequency regulation signal is a practical model for the on-line scheduling of 

ith vehicle from a certain hour H until Hpo. This model is denoted as MV model and formulated 

as follows. Because the mean of the hourly average frequency regulation signal is zero, the total 

energy delivered and absorbed by the battery due to regulation service is zero. 
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As the objective function, Eq. (12) calculates the total operational cost from H until Hpo. Eq. (13) 

ensures that the battery’s SOC when the vehicle leaves the aggregator should be greater than the 

desired SOC. Eq. (14) ensures that the battery’s SOC at the start of each hour between H and Hpo 

should be within the feasible range. Eq. (15) defines the feasible region of the decision variable. 

Generally, the cost of prefect information of the MV model depends on the prediction accuracy 

of the aggregated cost rate. The higher the prediction accuracy is, the lower the cost of prefect 

information is. It is also necessary to mention that because the mean value of the hourly average 

regulation signal is zero, participating in the frequency regulation will not affect the battery’s 
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SOC. Therefore, only the charging process will count for the change in the battery’s SOC in Eq. 

(13). 

Specifically, a simple and straightforward estimation of future market prices is directly using the 

yesterday’s market prices. This specific model is denoted as YM model. 

4.3.2 Multi-stage Stochastic Linear Programming Model 

If the uncertainties of the predicted aggregated cost rate and the hourly average frequency 

regulation signal are considered, a multi-stage stochastic linear program can be developed 

directly from the MV model. The multi-stage stochastic linear programming model is denoted as 

HN model and formulated as follows. 
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The objective function, Eq. (16), calculates the expected total cost for charging the vehicle and 

for the failure to provide regulation service from the start of hour H until the EV plugs-out. The 

first term in Eq. (16) represents the cost related to the operation in hour H and the second term is 

the expected cost due to the operation from hour H+1 until the EV plugs-out. 

Eq. (17) calculates the SOC of ith EV at the start of hour H for a possible realization of ω. 

Basically, yi,ω(H) is equal to the sum of the SOC which is known for sure and the change of SOC 

caused by charging the battery and providing frequency regulation service for a possible 

realization of ω. For different values of H, yi,ω(H) has different expressions due to the knowledge 

of information. 
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Eq. (19) and (20) calculate the expected cost due to the operation from hour H+1 to Hi,po. The 

fact that stochastic parameters realize hour by hour directly leads to the recursion of Q(x,y). Thus, 

the HN model is multi-stage stochastic linear programming model. 

The SOC at the start of every hour after H can be determined by using Eq. (21), while Eq. (22) 

guarantees that the SOC meets the vehicle owner’s need for travel when the vehicle plugs-out. 

Eq. (18), (23) and (24) define the feasible range of the decision variables. 

There are several issues with the HN model. First and foremost, the model confronts extreme 

high computational density. It is well known that solving a multi-stage stochastic linear program 

is not only time costly, but also requires enormous memory to complete the calculation. This is 

true even if the number of possible scenarios for each stage and the number of stages are not too 

large. This is simply because the total number of scenarios grows exponentially as the number of 

stages increase. For example, if both RS
ω(h) and Dω(h) have five possible values for each stage, 

there will be a total of 258=516≈1.5×1011 possible scenarios for a vehicle whose plug-in period is 

eight hours. It is almost impossible to solve such a problem by using a commercial desktop. 

Therefore, the HN is meaningless in practice. 

Second, the decision of an individual EV’s schedule for hour H+1, H+2,..., Hi,po is not so 

important for the on-line predictive scheduling when compared to that for hour H, but the value 

of Q(x(H),y(H)) is vital. This is because the decision for hour H is the most important for both 

the individual EV’s operation and the aggregator’s decision of capacity bidding for hour H. Once 

the schedule and the capacity bidding for hour H are made, they are settled, while those for hour 

H+1 and after can be revised in the future. Since the prediction of rates updates at the start of 
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each hour, it is more confident to decide the schedule for hour H+1 based on the predicted rates 

obtained at the next update. In addition, as mentioned in the previous discussion, both the 

prediction mean and distribution change between two contiguous predictions. For example, the 

prediction of R(H+1), R(H+2),…, R(Hi,po), which are generated in hour H-2, will be different 

from those generated in hour H-1. Therefore, the decision made at hour H-1 for the operation of 

hour H+1 is more confident than that made at hour H-2. Thus, on-line scheduling is appropriate 

for this problem. An on-line scheduling model focuses on making decisions for one individual 

time step at a time. 

Third, there is no assurance that the battery’s SOC is within feasible range at any time during the 

plug-in period. The frequency regulation signal is broadcasted at a very small time interval. For 

example, in PJM the signal is broadcasted every two second. Therefore, there will be thousands 

of battery’ energy constraints for only one hour. In the meantime, the battery’s SOC at a given 

time is determined by its previous value, schedule decision and a frequency regulation signal. 

The fact that the frequency regulation signal is a stochastic parameter makes the examination of 

battery’s energy constraint at every small time interval impossible. This is why the battery’s 

energy constraint is only examined at the start of each hour in HN model and in the literature 

mentioned in the previous discussion [19-21]. 

4.3.3 Proposed Three-stage Stochastic Linear Programming Model 

To overcome the aforementioned drawbacks of a multi-stage stochastic linear programming 

model, a three-stage stochastic linear program is proposed. The proposed model is denote as PH 

model and formulated as follows. 



 

37 

 

( ){ } NiHyHxQHxHREz PH
i

PH
i

PH
i

PH
i

S

yxi ,...,2,1)(),()()(min ,,,,
=∀+=

Ω∈ ωωωωω
 (25) 

subject to: 

( )( )⎪
⎩

⎪
⎨

⎧

≤<−−−+−+−

=

=
poipiiiii

piipii
PH
i HHHHXHDHX

E
P

HSOC

HHSOC
Hy

,,
max

max

,,

, )1(1)1()1()1(
)(

ω
ω

 (26) 

1)(0 , ≤≤ Hx PH
i ω  (27) 

where 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

+=
Π∈

poiH

Hh

PH
i

S

yx

PH
i

PH
i

PH
i hxhREHyHxQ

,

1
,,,, )()(min)(),( πππωω  (28) 

subject to: 

( ) ( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++−++≤ ∑

+=

poiH

Hh

PH
i

PH
i

PH
i

PH
i

PH
itgti hxhDhxHxHDHx

E
P

HySOC
,

1
,,,,

max

max
,, )(1)()()(1)()()( πππωπωω

 (29) 

poipiipii
PH
i HHHhhx ,,,, ,...,2,11)(0 ++=≤≤ π  (30) 

The objective function, which is Eq. (25), calculates the expected total cost for charging the 

vehicle and for the failure to provide regulation service from the start of hour H until the EV 

plugs-out.  Eq. (26) determines the SOC of ith EV at the start of hour H under the condition of a 

possible realization of ω. Eq. (28) calculates the expected cost due to the operation from hour 

H+1 to Hi,po. Eq. (29) requires that the SOC meets the vehicle owner’s need for travel when the 

vehicle plugs-out. Eq. (27) and (30) define the feasible range of the decision variables. 
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In the proposed PH model, Q(x(H),y(H)) is calculated by using the wait-and-see method, while 

the calculation of Q(x(H),y(H)) in the HN model uses the here-and-now method. Those two 

methods are introduced, compared and discussed in [83]. The difference of the two methods is 

the realization time of the stochastic parameters. In the here-and-now method, the stochastic 

parameters realize gradually in each time period, while the stochastic parameters in the wait-and-

see method realize all at once in one stage. 

In the on-line scheduling situation, the proposed PH model is more appropriate. Indeed, no 

matter what model is used, the stochastic parameters realize gradually in each time period. 

However, the on-line scheduling scheme gives the decision maker the flexibility to make 

decisions for hours after the target hour H in a later time. On the contrary, the advantage of the 

HN model is that it minimizes the risk of high cost when the decision maker has to make the 

decision for both target hour H and hours after that all at once right before the target hour H. But 

those decisions will not be revised in a later time. However, the on-line scheduling scheme does 

not require such strict restriction, which means over-conservative. Therefore, the proposed PH 

model is more appropriate in the on-line scheduling situation. 

Due to the proposed real-time synergetic dispatch model, the battery’s energy constraint is 

neglected. Such neglect is feasible because: 1) based on the statistical result [84], only a small 

portion of EVs need to be fully charged for normal daily travel. In other words, only a small 

portion of EVs have SOCs close to 0 when they join the aggregator and have SOCs close to 1 

when they leave the aggregator. Only those vehicles may have the chance to reach the minimum 

or maximum allowable energy. And only those vehicles may have limited retrievable regulation 

power. 2) According to Figure 2, the regulation signal rarely deviates from zero significantly:  
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for example below -0.6 or above 0.6. Hence, by sending charge or discharge signals to each EV 

under the aggregator in a coordinated manner, vehicles that have low SOC could be actively 

charged and those that have high SOC could be actively discharged, without violating the 

frequency regulation service contract. 3) Because the maximum value of hourly average 

frequency regulation signal is 1, the maximum change to SOC due to frequency regulation in a 

single hour is Pmax/Emax. Therefore, despite the possible inconvenience and loss of profit, the 

battery will never get over-charged or over-discharged when SOCrsv=Pmax/Emax. Thus the SOC of 

a battery could be maintained within a feasible range and not reach its extreme values when 

providing regulation services. Therefore, the battery’s energy constraint can be fulfilled and 

ignored. 

In addition, due to the proposed real-time synergetic dispatch model, the minimum SOC when an 

EV leaves the aggregator is calculated by using the following equation. 

⎩
⎨
⎧

−

−−<+
=

otherwisemax

minmax,,min
,

rsv

rsvdrvidrvi
tgti SOCSOC

SOCSOCSOCSOCSOCSOC
SOC  (31) 

Generally, SOCi,tgt is the sum of SOCmin and SOCi,drv, where SOCmin is the minimum allowable 

value below which may result in a significant reduction in battery life. Also, due to the proposed 

real-time synergetic dispatch model, SOCi,tgt should not exceed SOCmax-SOCrsv, so that there is 

still room for the forced charge energy to be stored in the battery to provide regulation services 

after the charging process. 

This definition of SOCi,tgt may cause inconvenience to vehicle owner when SOCi,drv is very close 

to SOCmax. At the end of Hi,po, the SOC of the battery could be slightly lower than the actual 
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desired SOC in this case. However, this situation is rare and can be neglected. This is because 1) 

the portion of the vehicle whose SOCi,drv is greater than SOCmax-SOCmin-SOCrsv is small 

according to [84]; 2) since Hi,po is the last whole hour before an EV leaves the aggregator, there 

will be some time to charge the battery which is less than an hour from the end of Hi,po to the 

time at which an EV actually leaves the aggregator; 3) the difference between the actual desired 

SOC and SOCmax-SOCrsv is small, and therefore can be charged in a short period of time. 

4.3.4 Proposed Heuristic Solution Algorithm 

Since one possible realization of ω is independent from all other possible realizations, the PH 

model can be first decomposed into several two-stage stochastic linear programs. In addition, the 

introduction of the real-time dispatch model removes the constraint that the SOC should be 

within the feasible range at any time point between the plug-in and plug-out times from the PH 

model. Such removal leaves only one constraint when calculating Qi(xi,ω(H),yi,ω(H)). In addition, 

because the wait-and-see method calculates the expected value of a set of simple linear programs 

for each possible scenario, by using the wait-and-see method, the calculation of Qi(xi,ω(H),yi,ω(H)) 

can be broken down from a huge linear programming problem to a large number of small linear 

programming problems, which are independent from each other. Thus, the calculation of 

Qi(xi,ω(H),yi,ω(H)) can be then decomposed into thousands of simple linear programs, given x(H) 

and y(H) as parameters. Hence, the two-stage stochastic linear programs can be solved using 

decomposition method. 

Therefore, the original PH model can be rewritten as follows, and it can be solved through the 

procedure illustrated in Figure 6. 
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Based on Eq. (36)-(37), since the contribution of each x’i,π(h) to the battery’s final SOC is 

equivalent, the greedy algorithm can be implemented to solve the small simple linear programs 

after the decomposition by selecting the x’i,π(h) with lowest R’S
π(h) to fulfill the charge demand. 

Because current GPU contains thousands of cores, compared with 2-16 cores in CPU, the 

parallel computation of Qi(xi,ω(H),yi,ω(H)) becomes very efficient when performed on GPU. Thus, 

the utilization of GPU for parallel computation is very suitable and efficient in solving such 

simple linear programming problems by using the greedy algorithm.  
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Figure 6  Solution scheme for the proposed solution algorithm 

Although it is still impossible to calculate Qi(xi,ω(H),yi,ω(H)) with 258 scenario within an 

acceptable time, the proposed PH model enables the implementation of the Monte Carlo 

sampling method. By applying the Monte Carlo sampling method, the computational burden can 

be controlled by the user via selecting the appropriate number of samples. Thus, the 

computational time for solving a scheduling problem with a long plug-in period is controllable. 

4.3.5 Optimality Test of the Proposed Heuristic Solution Method 

A general optimization problem can be described by Eq. (38)-(39). 
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)(min xf  (38) 

s.t. 

0)( ≤xg  (39) 

Without losing generality, by fixing the decision variable x1 as the parameter, one sub-problem 

of the above problem can be described by Eq. (40)-(41). 

( )132 ,...,,min xxxxf K  (40) 

s.t. 

( ) 0,...,, 132 ≤xxxx Kg  (41) 

By fixing the rest decision variables as parameter, the counter-part sub-problem can be described 

by Eq. (42)-(43). 

( )Kxxxxf ,...,,min 321  (42) 

s.t. 

( ) 0,...,, 321 ≤Kxxxxg  (43) 

By cyclically solving the one sub-problem and use the solution from that sub-problem as the 

parameters to solve another sub-problem, a final solution denoted as x* may be reached when the 

difference between the current value and its previous value of any element is less than a 

threshold value defined by the convergence criteria. Obviously, x* is a regular point of the 

original optimization problem. 

According to [87-88], if there exists λ1≥0, λ2≥0, and λ1=λ2 such that 
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then x* is the optimal solution of the original optimization problem. 

Now, in order to prove the optimality of the solution obtained by the proposed solution algorithm, 

the two-stage stochastic linear program decomposed from the proposed PH model can be written 

in the extensive form as follows. 
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s.t. 



 

45 

 

( ) ( ) WjAhxhDHxHD
j

poi

jjj

H

Hh
ii ,...,2,10)(1)()(1)(

,

1
,, =∀≤−−+− ∑

+=
πππωπ  (49) 

0)(, ≤− Hxi ω  (50) 

01)(, ≤−Hxi ω  (51) 

WjHHHhhx poii j
,...,2,1,...,2,10)( ,, =∀++=∀≤− π  (52) 

WjHHHhhx poii j
,...,2,1,...,2,101)( ,, =∀++=∀≤−π  (53) 

Then the two sub-problems are formulated as Eq. (54)-(57) and (58)-(61) respectively. 
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Thus, Eq. (44)-(47) can be written as follows. 
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Since lb
Hλ  and ub

Hλ  do not appear in Eq. (66)-(69), while lb
jh,λ  and ub

jh,λ  do not appear in the Eq. 

(62)-(65), the solution is optimal when there exists λ1≥0, λ2≥0, and λ1=λ2 such that the problem 

formulated by Eq. (62)-(69) has a non-negative solution. 
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Because the corresponding elements of x* are the optimal solutions of the two sub-problems, for 

the first sub-problem, there are three situations: 

First situation: 0)(*
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jh,λ  in Eq. (62) and (66) are negative, their value is positive. Thus, the KKT condition 

for the original problem is met and x* is the optimal solution of the original problem. The 

physical meaning of this situation is that without charging the battery the final SOC when the 

vehicle leaves the aggregator is still greater than the desired SOC.  
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, ≠hx

ji π  for at least one h. Since the coefficients of 1
jλ , 2

jλ , lb
Hλ  and 

lb
jh,λ  in Eq. (62) and (66) are negative, there exists non-negative solutions, in which 21

jj λλ =  for 
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the j where ( ) 0)(1)( 1*
, =−− ji AHxHD

j ωπ . Thus, the KKT condition for the original problem is 

met and x* is the optimal solution of the original problem. The physical meaning of this situation 

is that in some scenarios the vehicle needs to be charged so that the final SOC when the vehicle 

leaves the aggregator is the desired SOC, while in the rest of scenarios the final SOC when the 

vehicle leaves the aggregator is still greater than the desired SOC without charging the battery. 

In the third situation, 0)(*
, ≠Hxi ω  means, and ub

Hλ  could any non-negative number. 

( ) 0)(1)( 1*
, =−− ji AHxHD

j ωπ  means 1
jλ  and 2

jλ  can be any number. Since the coefficients of 1
jλ , 

2
jλ  in Eq. (62) and (66) are negative, there exists non-negative solutions, where 21

jj λλ = . Thus, 

the KKT condition for the original problem is met and x* is the optimal solution of the original 

problem. The physical meaning of this situation is that in all scenarios the vehicle needs to be 

charged so that the final SOC when the vehicle leaves the aggregator is the desired SOC. 

Therefore, the optimality of the proposed heuristic solution method is guaranteed. 

4.3.6 Proposed Fixed-length Time Frame Model 

Another practical way to control the computational burden is not to consider the uncertainty of 

stochastic parameters for the entire plug-in period, but only consider in a fix-length time frame. 

For example, if the remaining plug-in period of a certain vehicle is eight hours, the parameters 

for the first five hours in to the future are considered as stochastic parameters when determining 

the charge schedule. The parameters for the last three hours are considered as deterministic 

parameters and are estimated by using the predicted mean value. Thus, the total number of 

scenario for such a scheduling problem is limited to 255. This method can be recognized as 
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fixed-length time frame method. The corresponding model is formulated as follows and denoted 

as FT model. 
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The objective function is formulated Eq. (70), which calculates the expected total cost for 

charging the vehicle and for the failure to provide regulation service from the start of hour H 

until the EV plugs-out.  Eq. (71) determines the SOC of ith EV at the start of hour H under the 

condition of a possible realization of ω. Eq. (73) calculates the expected cost due to the operation 

from hour H+1 to Hi,po. Eq. (74) and (75) require that the SOC meets the vehicle owner’s need 

for travel when the vehicle plugs-out. Eq. (72) and (76) define the feasible range of the decision 

variables. 

The reason behind the FT model is that as the prediction time increases, the prediction accuracy 

will decrease and the risk associated with the decision will also increase. So after certain hours, 

the improvement of reliability between using the predicted mean value and several scenarios 

becomes insignificant. Thus, it is not worthwhile to pay a significant extra amount of 

computational cost for such an insignificant improvement. 

On the other hand, the proposed FT model gives the user to control the computational cost, and 

to study the trade-off between the reliability improvement and the computational cost. Thus, the 

FT model gives the user the ability to determine the best number of scenarios for each hour into 

the future, based on the computational resources he has.  
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4.4 Predictive Frequency Regulation Capacity Bidding for the Aggregator 

Generally, the profit of the aggregator for a certain hour based on a given frequency regulation 

bidding capacity can be expressed as Eq. (77). Since the last term in the last line of Eq. (77) does 

not contain any decision variables, the maximization of the profit is equivalent to the 

maximization of the first term. 
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Therefore, given the optimal operation schedules of each EV obtained from the scheduling 

model proposed in the previous section, the optimal bidding capacity of the aggregator is 

determined by the following two-stage stochastic linear program. The proposed stochastic linear 

program maximizes the revenue of the aggregator by providing frequency regulation service in 

the hour H. 
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The first term in the objective function, which is Eq. (78), stands for the profit of the aggregator 

for frequency regulation. The second and third terms derive the penalty cost when the aggregated 

frequency regulation capacity, PA
ω, is different from the bidding capacity, p. Eq. (79) requires 

that the proposed frequency regulation bidding capacity should not be greater than the maximum 

total power from all available vehicles. 

It is important to note that the aggregated frequency regulation capacity, PA
ω, is determined by 

the optimal schedules obtained from the scheduling model for individual vehicles according to 

Eq. (80). Since the optimal schedule is a stochastic parameter with respect to ω, PA
ω is also 

stochastic. This indicates that a possible realization of PA
ω could be either higher or lower than 

the bidding capacity, p.  

However, the operation is executed based on the smaller of the two in real world operation. In 

other words, if p>PA
ω, the operation will be based on PA

ω, because the aggregator cannot provide 

more capacity than what is available. On the contrary, the operation will be based on p, because 

providing more capacity than what is settled in the contract will not be credited. 

Obviously, the mismatch between PA
ω and p may result in a loss of profit. When p<PA

ω, the 

aggregator is losing money because of 1) its failure to fully utilize the available capacity and 2) a 

higher charging point than necessary at a relatively higher rate. In contrast, when p>PA
ω, the 

aggregator needs to buy the shortage of frequency regulation capacity from other regulators at a 

potentially higher rate to meet the contract. 

In practice, R+
ω and R-

ω rely on RS
ω, and should be no smaller than RS

ω. Moreover, there is a 

correlation between parameters R+
ω, R-

ω and RS
ω. However, there is also a special case when R+

ω 
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and R-
ω are identical to RS

ω. In this case, the optimal bidding capacity of the aggregator is the 

maximum of all possible PA
ω.  

After obtaining the optimal bidding frequency regulation power capacity of the aggregator for 

hour H, namely p*(H), the corresponding coordinated operation schedules of individual EVs for 

the same hour, namely Xi,ω(H), can be calculated by using the following equation. 
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Basically, if p>PA
ω, vehicles will keep their original schedule. However, if p< PA

ω, the shortage 

between p and PA
ω will be evenly distributed to each vehicle. Correspondingly, adjustments are 

made to their schedules. The finalized schedule, Xω, will be used to determine the operation 

schedule of each vehicle and the capacity bidding of the aggregator for hour H+1. 

4.5 Real-time Synergetic Dispatch 

Suppose the aggregator receives a new regulation signal from the grid operator at the start of that 

arbitrary time interval t. To maintain the SOC of the vehicles in S+ is within the normal range, 

which is between SOCmin+SOCrsv and SOCmax-SOCrsv, d+
adj should be as large as possible. This 

ensures that the adjusted regulation signal for those vehicles, d(t)-d+
adj, will be as small as 

possible. Correspondingly, for the vehicles in S-, d-
adj should also be as large as possible, so that 

the adjusted regulation signal for those vehicles, d(t)+d-
adj, can be as large as possible. The 

vehicles in S should evenly share the total adjustment to the regulation signals from vehicles in 

those two sets. 
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Thus, the real-time dispatch model can be formulated as a linear program, where the objective 

function is to maximize the adjustment to the regulation signal for each vehicle in S- and S+. 

Hence, the optimal adjustments to the regulation signal for all the vehicles are generated by 

solving the following problem. 
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1)()(1 ≤+≤− tdtd adj  (84) 

1)()( −≥− + tdtd adj  (85) 

1)()( ≤+ − tdtd adj  (86) 

0)(),( ≥−+ tdtd adjadj  (87) 

The objective function maximizes the adjustment to the original frequency regulation signal for 

all vehicles in S- and S+. There are three constraints in the dispatch model. The adjustment to the 

regulation signals for vehicles in S is calculated by using Eq. (83). Equation (84) ensures that the 

adjusted regulation signals for the vehicles in S is within the range of -1 and 1, after evenly 

sharing the total adjustment to regulation signal from vehicles in the other two sets. Equations 

(85) and (86) require that the adjusted regulation signals for the vehicles in S+ and S- also fall 

within the range of -1 and 1. However, because d(t) is between -1 and 1 and d+
adj is non-negative, 

d(t)-d+
adj is always less than 1. Similarly, d(t)+ d-

adj is always greater than -1. Therefore, only one 
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side of the boundary needs to be considered. Eq. (84) defines the feasible region of the decision 

variables 

Then, the final actual charge or discharge signal for each vehicle at time t is calculated as follows. 
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Depending on the value of di,act(t), vehicles in S+ can generally have two different actions. If 

di,act(t) is negative, the vehicles in S+ are in the active discharging process, and the SOC of those 

vehicles will be gradually reduced to SOCmax-SOCrsv or below. According to Figure 2, there is a 

very rare chance that the regulation signal consistently reaches 1 for a long period of time. 

Therefore, it is very likely that the SOC of the EVs in S+ can be reduced by actively discharging 

the battery. Hence, through the proper assignment of the charge or discharge signal to each EV, 

the SOC of each EV can be maintained at a safe level between SOCmin and SOCmax. For example, 

assume there are three EVs and their SOCs are 0.5, 0.6 and 1.0 respectively. The new regulation 

signal is 0.6. Instead of assigning a signal of 0.6 to each EV, which is infeasible because the third 

vehicle would be over-charged, the aggregator could assign 1.0 to the first two EVs and -0.2 to 

the last EV. If di,act(t) is positive, the vehicles in S+ are in the forced charging process and the 

SOCs of those vehicles are still rising. In this situation, SOCrsv is necessary to buffer the forced 

charged energy so that the battery will not be over-charged. In the same way, vehicles in S- can 

also be in two similar processes. If di,act(t) is negative, the vehicles in S- are in the forced 

discharging process; and vice versa. 
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Although the proposed real-time synergetic dispatch model requires additional computational 

efforts for the aggregator, such additional computational efforts are not significant. Based on the 

proposed model, the signal adjustment occurs only when there are vehicles in either S- or S+. 

However, for most of the time the SOCs of vehicles are between SOCmin+SOCrsv and SOCmax-

SOCrsv. Thus, vehicles are all in S and no vehicles are in S- or S+ during the majority of the time, 

and no signal adjustments are needed. Therefore, the signal adjustment is infrequent and the 

computational efforts required for that are limited and minor. 

When the regulation signal adjustment occurs, vehicles in S- and S+ are actually using the 

capacity of vehicles in S to meet the frequency regulation service obligation. Thus, the part of 

profit earned by vehicles in S- and S+ during that time should be literally credited to the vehicles 

in S. However, the proper assignment of that part of profit is straightforward and therefore is not 

discussed in this thesis. 

Considering the possible lag in communication between the aggregator and individual EVs, the 

information of a vehicle’s status may not be available immediately at the start of time interval t, 

when a new regulation signal arrives. Thus, instead of using the information of a vehicle’s status 

at time t, the most recent available information, such as at time t-1 or t-2, could be used. 

Moreover, the disptach model can use the regulation signal predicted by time series models. 

It is also necessary to note that the determination of SOCrsv is important, because it may affect 

both the battery charge schedule and final battery SOC. Generally, a higher value of SOCrsv 

means that the regulation signal adjustment is more likely to occur, but the battery is less likely 

to be over-charged. However, for vehicles whose SOCdrv is equal to SOCmax-SOCmin, a higher 
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value of SOCrsv means lower SOCi,tgt based on Eq. (34). As a result, this leads to higher 

inconvenience for the vehicle owner, less charging time and a higher profit for the vehicle. 

Nevertheless, such a high value of SOCrsv will not affect the majority of vehicle owners based on 

[84]. 

The optimal value of SOCrsv should be determined based on the driving profile of EVs and the 

regulation signal profile. The optimal value can be determined through the simulation of the 

charging process based on historical data. The lowest SOCrsv that ensures no frequency 

regulation capacity reduction and battery over-charge is the optimal value. 
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CHAPTER 5  

SIMULATION RESULT 

This chapter presents the simulation results by using the proposed PH and FT models on an 

arbitrary aggregator for an office building garage from May 1 to May 10 2014. The results are 

compared with those obtained by using the PI, the MV, the YM and the HN models. An 

additional simulation is conducted to investigate the performance of the proposed synergetic 

dispatch model for different settings for the period of June 1, 2013 to May 31, 2014. 

5.1 Introduction of simulation background 

There are 100 participating EVs in both simulations, while each EV has a battery capacity of 24 

kWh. The maximum charge and discharge rates of the battery are 0.15C, or equivalently 3.6 kW 

for both directions. 

 

Figure 7  Profile of total number of available EVs in a day 
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In the first simulation, SOCmin, SOCmax and SOCrsv are assumed to be 0, 1 and 0.025 respectively. 

The availability profit of each EV is generated randomly and illustrated by Figure 7. SOCi,drv is 

generated based on the driving profile reported in [84] and shown in Figure 8. The real-time 

frequency regulation credit rate, real-time energy rate and real-time frequency regulation signal 

are obtained from PJM website [82, 85-86]. The simulation is performed by using Matlab® 

R2016a on a PC with Intel® Core i7-4770, 16 Gb RAM and NVIDIA GeForce® GT 730 

graphic card. 

 

Figure 8  Profile of energy needed for driving 

5.2 Electricity Market Prices Prediction 

An accurate prediction of the actual aggregated rate (RS) is important for the operation of 

electricity generation units and electricity consumers. However, the development of a new 

prediction model is beyond the scope of this thesis. Therefore, a seasonal autoregressive model is 

directly implemented in the simulation. The best fit model is expressed as Eq. (89).  
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)24(186.0)3(062033.0)2(1347219.0)1(622613.0)( −+−+−+−= hRhRhRhRhR SSSSS

 (89) 

 

Figure 9  Actual and one-hour ahead predicted RS for May 1st 2014 

 

Figure 10  Prediction error of aggregated cost rate with different prediction time 

The actual and one-hour ahead prediction of Rs obtained using the model for May 1st 2014 is 

illustrated by Figure 9, while the standard error of estimate (SEE) for different prediction times 

are compared in Figure 10. 
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5.3 Scenario Description 

Generally, the actual aggregated cost rate can be decomposed into its prediction mean and 

prediction error. The actual aggregated cost rate is one of the important stochastic parameters 

that are considered when making schedules using the proposed model. Since the prediction mean 

for a specific hour is a deterministic parameter, the consideration of the actual aggregated cost 

rate is equivalent to the consideration of its prediction error when making a schedule. Since the 

optimality of the scenario is beyond the scope of this thesis, five scenarios are generated for the 

two stochastic parameters considered in the model: predicted aggregated rate and hourly average 

regulation signal. Details of the scenarios are listed in Tables 1 and 2. 

Table 1  Scenarios of Prediction Error of Aggregated Cost Rate 

Prediction time Scenario Value Range Probability 

1 Hour Ahead 

1 -102.77 (-∞, -56.19) 0.125 
2 -35.56 [-56.19, -21.08) 0.225 
3 -6.78 [-21.08, 9.24) 0.300 
4 28.95 [9.24, 56.13) 0.225 
5 131.10 [56.13, ∞) 0.125 

2 Hours Ahead 

1 -114.27 (-∞, -66.23) 0.125 
2 -42.83 [-66.23, -25.81) 0.225 
3 -8.44 [-25.81, 10.56) 0.300 
4 32.69 [10.56, 63.48) 0.225 
5 153.02 [63.48, ∞) 0.125 

3 Hours Ahead 

1 -119.24 (-∞, -73.10) 0.125 
2 -48.06 [-73.10, -29.52) 0.225 
3 -9.89 [-29.52, 12.09) 0.300 
4 35.61 [12.09, 67.94) 0.225 
5 165.74 [67.94, ∞) 0.125 

4 Hours Ahead 

1 -121.83 (-∞, -76.32) 0.125 
2 -51.85 [-76.32, -32.52) 0.225 
3 -11.20 [-32.52, 11.94) 0.300 
4 36.38 [11.94, 71.18) 0.225 
5 177.00 [71.18, ∞) 0.125 
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Table 2  Scenarios of Prediction Error of Aggregated Cost Rate (Continued) 

Prediction time Scenario Value Range Probability 

5 Hours Ahead 

1 -123.50 (-∞, -77.43) 0.125 
2 -53.61 [-77.43, -34.23) 0.225 
3 -12.00 [-34.23, 11.86) 0.300 
4 36.62 [11.86, 71.52) 0.225 
5 183.39 [71.52, ∞) 0.125 

6 Hours Ahead 

1 -121.60 (-∞, -78.33) 0.125 
2 -54.76 [-78.33, -25.66) 0.225 
3 -13.43 [-25.66, 10.12) 0.300 
4 36.48 [10.12, 73.04) 0.225 
5 187.28 [73.04, ∞) 0.125 

7 Hours Ahead 

1 -120.15 (-∞, -78.30) 0.125 
2 -55.16 [-78.30, -37.16) 0.225 
3 -14.24 [-37.16, 9.59) 0.300 
4 35.50 [9.59, 71.76) 0.225 
5 190.34 [71.76, ∞) 0.125 

8 Hours Ahead 

1 -118.48 (-∞, -77.55) 0.125 
2 -56.10 [-77.55, -38.30) 0.225 
3 -15.10 [-38.30, 8.91) 0.300 
4 35.04 [8.91, 71.26) 0.225 
5 193.31 [71.26, ∞) 0.125 

9 Hours Ahead 

1 -117.47 (-∞, -77.38) 0.125 
2 -56.72 [-77.38, -38.91) 0.225 
3 -15.88 [-38.91, 8.42) 0.300 
4 34.38 [8.42, 71.03) 0.225 
5 196.50 [71.03, ∞) 0.125 

10 Hours Ahead 

1 -116.74 (-∞, -77.64) 0.125 
2 -57.26 [-77.64, -39.78) 0.225 
3 -16.61 [-39.78, 8.22) 0.300 
4 34.10 [8.22,70.53 ) 0.225 
5 199.05 [70.53, ∞) 0.125 

11 Hours Ahead 

1 -116.83 (-∞, -77.45) 0.125 
2 -57.47 [-77.45, -39.78) 0.225 
3 -17.06 [-39.78, 6.99) 0.300 
4 33.46 [6.99, 70.76) 0.225 
5 201.78 [70.76, ∞) 0.125 
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Table 2  Scenarios of Hourly Average Regulation Signal 

Scenario Value Range Probability 
1 -0.6953 [-1, -0.4740) 0.125 
2 -0.3063 [-0.4740, -0.1777) 0.225 
3 -0.0536 [-0.1777, 0.0691) 0.300 
4 0.1813 [0.0691, 0.3234) 0.225 
5 0.5188 [0.3234, 1] 0.125 

 

5.4 Operation Simulation 

In the first simulation, the extensive form of the proposed scheduling model for individual 

vehicles is used to determine the schedule of an individual vehicle when its remaining plug-in 

period is seven hours or less. The total number of scenarios is 513≈1.22×109 when the remaining 

plug-in period is seven hours. On the contrary, Monte Carlo sampling is used to determine the 

schedule of an individual vehicle when its remaining plug-in period is eight hours or more. 511 

samples are generated for the third stage of the proposed model. Therefore, the total number of 

scenarios is still 513≈1.22×109 in this case. It is important to note that those two numbers become 

512=2.44×108 when the target hour is the first whole hour after plug-in. Without explicit 

specification, the following discussion considers situations in which the target hour is not the 

first hour after an individual vehicle plug-in. 

Table 3 compares the running times to finish the calculation which determines the schedule of an 

individual vehicle with different remaining plug-in periods for the 100 EVs by using three 

different models. Generally, the running time increases as the remaining plug-in hours increase. 

The PH model requires significantly higher computational time than the FT model when the 

remaining plug-in hours is greater than 7. As for the HN model, the running times for the cases 

where the remaining plug-in hours are greater than 6 are not available, because the calculation of 
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those cases requires more than 16 Gb of memory and therefore the computation cannot be 

completed by the desktop. However, when the remaining plug-in hours are less than 5, the HN 

model requires significantly higher time and memory than the PH and FT models. For example, 

when the remaining plug-in hours are 5, the HN model requires 5 Gb of memory. On the 

contrary, the PH and FT models require about 4Gb and 12 Gb of memory when the remaining 

plug-in hours are 5 and 10 respectively. Therefore, the proposed PH and FT models significantly 

reduce the computational efforts. 

Table 3  Running Time with Different Remaining Plug-in Periods for a Single Vehicle 

 Running Time, minutes 
PH Model FT Model HN 

ModelMinimum Average Maximum Minimum Average Maximum 

R
em

ai
ni

ng
 P

lu
g-

in
 

H
ou

rs
 

10 211.67 218.73 229.08 7.36 7.58 7.97 NA 
9 35.27 159.83 212.98 1.24 5.69 7.26 NA 
8 30.56 141.39 175.02 1.11 5.14 6.65 NA 
7 22.34 108.95 140.97 0.97 4.71 5.82 NA 
6 0.75 3.66 4.69 0.75 3.72 4.70 67.16 
5 0.03 0.16 0.22 0.04 0.17 0.24 2.92 
4 <0.01 0.02 0.02 <0.01 0.02 0.03 0.14 
3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 
2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 

 

Table 4 presents the total running times to complete the calculation which determines the 

schedule of all 100 vehicles for a specific hour. The total running times to complete the 

calculation on two types of graphic card are also compared in Table 4. Basically, the total 

running time increases from 8:00 to 11:00 as more and more vehicles plug-in, while it decreases 

after 11:00 as the average remaining plug-in period decreases. The heaviest computational 

burden occurs when determining the schedule for 11:00. 
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Table 4  Total Running to Determine the Schedule of 100 Vehicles for a Specific Hour 

 Hour of 
the Day 

Number of 
Available Vehicles

PH Model FT Model 
GT 730 GTX 1050 TI GT 730 GTX 1050 TI

R
un

ni
ng

 T
im

e,
 h

ou
rs

 

8:00 25 10.1 2.74 0.32 0.09 
9:00 69 68.5 17.18 2.33 0.68 
10:00 98 155.8 41.28 5.65 1.70 
11:00 100 176.4 52.06 6.99 2.18 
12:00 100 80.2 25.62 5.81 1.81 
13:00 100 2.71 1.62 2.45 0.75 
14:00 100 0.10 0.11 0.12 0.05 
15:00 100 0.01 0.03 0.02 0.01 
16:00 91 <0.01 0.01 <0.01 <0.01 
17:00 39 <0.01 <0.01 <0.01 <0.01 

 

As it is shown in the table, it takes significant amount of time to finish the computation for the 

schedule at 11:00, which is not acceptable for real-world implementation. However, such effort 

could be reduced without using a super computer. Compared with NVIDIA GeForce® GT 730 

which has 384 cores in total with 902 MHz for each core, NVIDIA GeForce® GTX 1050 TI has 

768 cares in total with 1392 MHz for each core. Theoretically, the total running time for by using 

NVIDIA GeForce® GT 730 should be 3.0865 times longer than that of using NVIDIA 

GeForce® GTX 1050 TI. As a matter of fact, the actual rate is higher than 3.10 based on the 

results shown in Table 4.  Hence, if a NVIDIA GeForce® GTX 1080 TI graphic card is used, 

which has 3584 cores altogether with 1556 MHz for each core, theoretically the total running 

time can be reduce by 93.79%, comparing to NVIDIA GeForce® GT 730. Thus, the total 

running time for 11:00 can be reduced to 11.0 hours and 0.434 hours by using the PH and the FT 

models respectively. If 4 NVIDIA GeForce® GTX 1080 TI graphic cards are used in parallel, 

the total running time through the PH model can be further reduced to 0.683 hours, while 
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through the FT model it can be reduced to 0.1085 hours, which is about 6.5 minutes. Therefore, 

the computational burden is within an acceptable range with acceptable computational cost. 

Table 5 lists the optimal expected operational cost calculated at different time point by using the 

PH, the FT, the HN and the MV models for two vehicles that are randomly selected. Basically, 

the optimal expected operational cost obtained by the PH model is lower than that obtained by 

using the FT model when the planning period is longer than 5 hours. When the planning period is 

less than 5 hours, the optimal expected operational costs obtained by the two models are the 

same, because they have the same formulation in this situation. 

Table 5  Optimal Expected Operational Cost Obtained by Using Different Methods 

 Cost, $ 
Vehicle No. 1 2 

Model PH FT HN MV PH FT HN MV

H
ou

r o
f t

he
 D

ay
 

9:00 - - - - 0.25 0.30 NA 0.49
10:00 - - - - 0.38 0.40 NA 0.59
11:00 1.15 1.29 NA 1.65 0.25 0.25 NA 0.79
12:00 0.89 0.95 NA 1.85 0.24 0.24 0.25 0.27
13:00 0.56 0.56 NA 1.70 0.24 0.24 0.26 0.28
14:00 0.53 0.53 0.73 0.87 0.29 0.29 0.30 0.31
15:00 0.44 0.44 0.60 1.06 0.21 0.21 0.21 0.42
16:00 0.23 0.23 0.34 0.89 - - - - 
17:00 0.13 0.13 0.13 0.34 - - - - 

 

In contrast, the optimal expected operational cost obtained by the HN model is greater than those 

of the PH and FT models, because as mentioned in the previous discussion the HN model is 

more conservative. In addition, the optimal expected operational cost obtained by the MV model 

is always highest among the four models. It is also important to note that the optimal operational 

cost does not constantly decrease as the time approaches the vehicle’s plug-out time. This is due 
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to the variation of cost rate prediction. As mentioned in a previous section, the predictions of the 

cost rate generated at two adjacent hours are always different. Therefore, the optimal expected 

operational cost from a later hour could be higher than a previous hour in practice, due to a 

sudden spike in the predicted cost rates. 

Table 6  Comparison of Vehicle’s Operational Cost 

 Operational Cost, $ 
Vehicle No. 1 2 

Method PH FT MV PI PH FT MV PI 

H
ou

r o
f t

he
 D

ay
 

9:00 - - - - 0.000 0.092 0.271 0.271
10:00 - - - - 0.170 0.112 0.000 0.000
11:00 0.301 0.471 0.475 0.000 0.000 0.000 0.135 0.000
12:00 0.346 0.346 0.346 0.242 0.000 0.000 0.096 0.000
13:00 0.069 0.000 0.260 0.000 0.000 0.000 0.000 0.000
14:00 0.237 0.185 0.280 0.000 0.247 0.205 0.000 0.000
15:00 0.208 0.202 0.268 0.268 0.144 0.135 0.000 0.083
16:00 0.113 0.108 0.084 0.270 - - - - 
17:00 0.153 0.153 0.000 0.313 - - - - 

Total Cost, $ 1.426 1.465 1.712 1.092 0.561 0.544 0.502 0.355
Total Profit, $ 1.029 0.991 0.743 1.363 1.468 1.485 1.527 1.674
Cost of Prefect 
Information, $ 0.334 0.373 0.620 - 0.206 0.189 0.147 - 

 

The operational costs for May 1 2014 by using the different models are compared in Table 6. 

Since the solution of HN model cannot be obtained within a reasonable time, the result of HN 

model is not compared in Tables 6. Basically, the operations based on the schedule generated by 

using the PH and the FT models are similar but considerably different from the operation 

obtained based on the MV and PI models. Since both the cost rate and the hourly average 

frequency regulation signal for future hours are uncertain when making the schedule, the 

proposed PH and FT models tend to avoid high operational cost by spreading the charging need 

to the hours with relatively low aggregated cost rate according to the predicted prices. In addition, 
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different Table 5, the daily operational cost obtained by using the MV model could be higher 

than that obtained by using the PH and FT models, due to such uncertainty. 

Table 7 lists the operational cost, profit and cost of prefect information of 100 vehicles for 10 

days’ operation. Generally, the total operational profits obtained by using the PH and FT models 

for 10 days are $1393.32 and $1409.42 respectively. The similar profits suggest that the 

consideration of the stochastic parameters after five hours from the target hour does not 

guarantee a more profitable schedule. In other words, those stochastic parameters are not as 

valuable as those within five hours from the target hour. Thus, PH model is not significantly 

better than FT model. However, the fact that FT model requires less computational time makes it 

a more suitable model for practical implementation. 

Meanwhile, the profits by using the PH and FT models are about 20.32% and 21.71% higher 

than that obtained by using the MV model, while they are about 10.47% and 9.43% lower than 

that obtained by using the PI model. Thus, the information cost can be reduced on an average of 

59.09% and 63.14%, by using the PH and the FT models, when compared with the MV model. 

Although the YM model may have a higher profit in some days than the other three models, the 

low prediction accuracy by directly using yesterday’s market day suggests unreliable 

performance. Therefore, statistically it can make less profit than the other three models. 
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Total, $ 

Day of the Month M
odel 

 

Table 7  C
om

parison of 100 V
ehicles’ D

aily O
perational C

ost 

10 

9 8 7 6 5 4 3 2 1 

1393 

136.70 

65.81 

173.34 

120.62 

120.87 

49.06 

242.59 

187.45 

120.62 

176.26 

PH
 

O
perational Profit, $ 

1409 

137.18 

72.58 

171.50 

120.14 

123.54 

54.13 

241.59 

192.71 

119.47 

176.59 

FT 

1158 

99.54 

37.30 

145.78

113.54

91.73 

38.72 

229.43

151.30

84.46 

166.53

M
V

 

1123 

102.90

22.60 

110.59

104.94

104.58

5.99 

246.42

157.28

94.44 

173.70

Y
M

 

1556 

142.77

78.64 

205.33

140.92

140.51

69.82 

262.96

197.65

126.84

190.74

PI 

162.86

6.07 

12.84 

31.99 

20.30 

19.64 

20.76 

20.38 

10.19 

6.22 

14.48 

PH
 C
ost of Prefect Inform

ation, $ 

146.76 

5.59 

6.07 

33.82 

20.78 

16.97 

15.69 

21.37 

4.94 

7.37 

14.15 

FT 

398.15

43.23 

41.34 

59.55 

27.38 

48.78 

31.10 

33.93 

46.34 

42.38 

24.21 

M
V

 

432.74

39.87 

56.04 

94.74 

35.99 

35.93 

63.82 

16.54 

40.37 

32.40 

17.05 

Y
M
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Table 8 lists the optimal frequency regulation bidding capacities based on the proposed PH and 

the PI models. Because the determination of the optimal frequency regulation bidding capacity is 

based on all individual vehicles’ schedules according to the proposed algorithm, the aggregator’s 

operation also tries to avoid the risk of high operation cost. Because both R+ and R- are identical 

to RS in the simulation, the optimal frequency regulation bidding capacity equal to product of the 

number of plug-in vehicles, n(h), and the maximum power of a single EV, Pmax. 

Table 8  Bidding Capacity of the Aggregator for Each Hour 

 Bidding Capacity, kW 
Hour of 
the Day 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

PH 
Method 90.0 248.4 352.8 360.0 360.0 360.0 360.0 356.4 327.6 140.4

FT 
Method 90.0 248.4 352.8 360.0 360.0 360.0 360.0 356.4 327.6 140.4

MV 
Method 90.0 100.5 352.8 179.8 180.5 310.1 309.0 275.4 279.9 138.9

PI 
Method 90.0 98.5 272.9 360.0 318.7 345.2 357.5 176.6 203.4 115.7

 

Table 9 presents the number of full discharge circles for 100 vehicles for different days by using 

different models. Theoretically, the number of full discharge circles increases as the total 

frequency regulation power capacity increases. A higher total frequency regulation power 

capacity means a higher profit. Therefore, the number of full discharge circles by using the PI 

method is in generally higher than those of the other three models, because the PI model has the 

highest profit. On the contrary, the number of full discharge circles by using the MV model is the 

lowest in general, as the MV model has the lowest profit. On average, V2G frequency regulation 

contributes 0.11 full discharge circles to one vehicle’s battery, which is significantly lower than 
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what is contributed by daily travel for most vehicles. Based on [8], that will cost each vehicle 

approximately $0.15 dollars per day. Therefore, the battery degradation due to frequency 

regulation is not significant and the cost for the degradation can be covered by the profit earned 

from providing frequency regulation service. 

Table 9  Number of Full Discharge Circles 

Model Day of the Month Total1 2 3 4 5 6 7 8 9 10 

Fu
ll 

D
is

ch
ar

ge
 C

irc
le

s PH 8.32 11.08 10.80 10.19 13.19 12.41 10.41 11.26 12.46 13.47 114

FT 8.25 11.00 10.72 10.10 12.75 12.44 10.03 11.13 12.43 13.51 112

MV 9.72 9.88 10.19 9.94 11.08 11.01 12.00 10.96 10.96 11.94 108

PI 10.62 11.31 10.70 11.04 12.40 12.71 12.74 11.22 11.72 12.87 117

 

5.5 Real-time Dispatch Simulation 

Due to the 100 vehicles’ driving profiles, there is no adjustment of frequency regulation signal in 

the aforementioned simulation. Therefore, in order to investigate the performance of the real-

time synergetic dispatch model, another simulation is conducted. The new simulation is 

performed on 100 vehicles for each hour from June 1st 2013 to May 31st 2014. That is 8760 

hours in total. Specific numbers of vehicles are assigned to S+ at the start of each hour, while the 

rest of the vehicles are assigned to S. To be specific, among the 100 vehicles, the number of 

vehicles in S+ is Np. In addition, those vehicles in S+ have an SOC of SOCmax-SOCrsv at the start 

of each hour, while the rest of the vehicles have an SOC of 0.5. Different values of SOCrsv are 
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used in this simulation to assess the success rate of the operation of each hour. If the SOC of any 

vehicle does not exceed SOCmax during a certain hour, it is called a success. 

The simulation results are presented in Table 10. Generally, as Np increases, fewer successes are 

achieved. On the contrary, the higher SOCrsv, the higher number of successes are realized. Based 

on Figure 8, about 5% of vehicles have a SOCdrv of more than 0.95. Only those vehicles may 

need frequency regulation signal. Therefore, 0.040 is the optimal SOCrsv. For real world 

operation, 0.020 is an economical value, because the failure rate is less than 0.15% when Np is no 

greater than 20. 

Table 10  Success Rate for Different Parameters 

  Success Rate, % 
 Np 5 10 15 20 25 30 35 40 45 50 

SO
C

rs
v 

0.005 96.1 95.7 95.2 94.7 94.2 93.5 92.9 92.4 91.6 90.7 
0.010 99.1 98.9 98.9 98.8 98.7 98.7 98.5 98.2 98.1 97.8 
0.015 99.7 99.7 99.6 99.6 99.5 99.4 99.4 99.3 99.3 99.2 
0.020 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 
0.025 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.99 99.9 99.9 
0.030 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.035 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.040 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.045 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.050 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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CHAPTER 6  

CONCLUSION 

A new model for the V2G frequency regulation operation of an office garage was proposed in 

this thesis. The proposed model consists of three sub-models: a cost-optimized predictive on-line 

scheduling model for individual vehicles, a cost-optimized frequency regulation capacity bidding 

model for an aggregator, and a real-time synergetic dispatch model. The proposed scheduling 

model for individual vehicles was formulated as a three-stage stochastic linear program, which 

copes with the uncertainties in 1) energy and frequency regulation prices, and 2) hourly average 

frequency regulation signal. A near optimal solution procedure was proposed in this thesis to 

reduce the high computational cost that a traditional multi-stage stochastic linear program 

encountered. The capacity bidding model for an aggregator coordinates the schedules for 

individual EVs and the decision for the aggregator. Lastly, the real-time synergetic dispatch 

model can properly dispatch charge and discharge signals to each individual EVs to protect the 

battery from extreme SOCs which result in unavailability for frequency regulation. The proposed 

model is investigated through a simulation of an arbitrary aggregator for an office garage which 

consists of 100 EVs. The simulation result shows that the computational effort needed by the 

proposed model is suitable for practical implementation. 
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