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Abstract

Towards a Canfield Joint for Deep Space Optical Communication

KRISTINA VENEPHE COLLINS

This thesis comprises work supporting the integration of a Canfield joint (carpal

wrist) in the Integrated Radio and Optical Communication project at NASA Glenn

Research Center. The Canfield joint is a 3 DoF (degree of freedom) parallel linkage

used for pointing a range of end effectors. Several tests were devised and performed

to validate an existing prototype for optical pointing requirements including field

of regard, pointing resolution, and slew rate for a trajectory between Earth and

Mars; these requirements were partially satisfied. A kinematic analysis of the robot

is performed, including forward and inverse kinematics and preliminary singularity

analysis, and the effect of altering the ratio of base and leg lengths is investigated.

Designs for physical models of the Canfield joint, produced using rapid prototyping,

are presented, as are computer models produced for use in Geogebra and Robot

Operating System.

xv
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1 Motivation

NASA has sent space probes to every planet in the solar system and several moons,

and its networks currently maintain communication with approximately 100 space-

craft. Up to 95% of data collected by these probes never finds its way to Earth. [4] This

is partly a consequence of signal attenuation over vast distances, and partly a func-

tion of the finite capacity of the space communication network. For future missions,

Figure 1.1. Simplified model of the Canfield with coordinate frame,
approximating the revolute leg joints as a single spherical joint.
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and especially for human exploration, it is imperative to construct a robust space

communications infrastructure capable of higher data rates. Optical communication

systems currently under development can offer a hundredfold increase in data rate at

a fraction of the mass of existing radio-based systems. The successful Lunar Laser

Communication Demonstration, part of NASA’s Lunar Atmosphere and Dust Envi-

ronment Explorer (LADEE) mission in 2013, set a downlink record of 622 megabits

per second (Mbps) from spacecraft to ground. The focus of the Integrated Radio and

Optical Communication Project (iROC) at NASA Glenn Research Center, through

which this work was supported, is to continue this evolution by combining optical

and radio frequency communication infrastructure into a single unit.

However, deep space laser communication requires high precision pointing. From

Mars, the beam footprint of an X-band radar using a 3m antenna is greater than

10,000 times the projected area of the Earth, whereas an optical beam from a 30 cm

antenna is on the order of 1% of the Earth’s projected area. [5] Currently, there are no

commercially available gimbals that can satisfy the pointing precision and articulated

mass requirements for the iROC project. The Canfield joint, shown schematically in

Figure 1.1, offers a potential solution for this problem, because of its reduced size,

weight and power (SWaP) constraints compared to a traditional gimbal.

The Canfield joint, first proposed in 1997 [6], is a parallel robotic linkage with 3

degrees of freedom (DoF), modeled on the movement of a wrist. Each of its 3 identical

legs has a RUR kinematic chain.1 The linkage is actuated by three driven revolute

joints at its base, which enable pointing motion in a hemispherical workspace.

1Per the notation in Section 2.6.1, R represents a revolute joint and U a universal joint. Driven
joints are underlined.
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In order to deploy the Canfield joint in an operational environment, it is necessary

to ensure that the robot can be reliably controlled. If the robot enters a singular

configuration (i.e., a configuration in which it loses one or more degrees of freedom),

control may be compromised. Although forward and inverse kinematics solutions are

already available [6], a rigorous analysis of the kinematics is required.

Another goal of using the Canfield joint in this work is to raise the technology

readiness level2 (TRL) of the linkage so it may be used for a wider range of applica-

tions. NASA has expressed interest in using it for a variety of end effectors in space

applications, including pointing and tracking for solar cells and thrusters. These

projects are discussed in detail in Chapter 2.

The goals of this research were threefold: First, to validate the existing NASA

prototype according to the project requirements of the iROC project; second, to

perform a rigorous kinematic analysis of the Canfield joint; and third, to produce

computer models extensible to future use. This document is intended to serve as an

engineering reference for implementing this linkage, both in integration tasks specific

to iROC and in general usage. Following a literature review in Chapter 2, validation

procedures and results for the existing prototype are presented in Chapter 4. A

general kinematic analysis is presented in Chapter 3, which builds on existing work [6].

Physical and computer models of the Canfield joint are presented in Chapter 5.

2For the optical communication use case, the continuing efforts to validate the prototype described
in Chapter 4 represent an increase from TRL 3 (Analytical and experimental critical function and/or
characteristic proof-of-concept) to TRL 4 (Component and/or breadboard validation in laboratory
environment). [7]
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2 Background

2.1 Gimbals

Pointing is a necessary component of many engineering applications. The first point-

ing device developed, and the most commonly used, is the gimbal, an assembly of

orthogonally mounted concentric rings. “Gimbaled” is commonly used as a transitive

verb to denote orientation control in general, particularly with regard to thrusters.

Passive gimbals appear since antiquity in domestic applications as a means of isolat-

ing mechanisms or containers of liquid from rotation, particularly on boats. An early

description of a gimbal mechanism is credited to Philo of Byzantium, who described

an inkpot gimbaled to remain upright without spilling. Gimbaled incense burners ap-

pear in China during the second and third century BCE. Roman historian Athenaeus

Mechanicus describes [8] the use of gimbals to yoke siege machines to the decks of

ships:

“When, you see, they plan to take a coastal city, certain master-
builders are in the habit of yoking the machines onto merchant-ships
in calm waters and taking them towards the walls; but if they are
caught unawares by the wind and a wave is nurtured which swamps
the vessels, the machine which has been attached rolls around, as the
vessels are not making the same movement; hence, with the machines
breaking up, boldness is induced in the enemy... One must therefore
fix on the platform attached to the merchant-ships in the middle
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the [gimbal suspension], so that the machine stays upright in any
inclination as the billow shakes it...”

Active (i.e., driven) gimbals are commonly used in space and military applications.

Several such gimbals are listed on page 12.

2.1.1 Gimbal Lock

Gimbal lock is a singular configuration in which the concentric rings of a gimbal are

rotated such that two of the three axes are parallel, resulting in the loss of a degree

of freedom. The gimbal does not get stuck in this position, but temporarily loses

the capability to revolve around one axis. A common remedy is the addition of a

redundant fourth ring, which adds complexity and mass, but simplifies control.

2.2 Parallel Robots

In a parallel manipulator, sometimes called a closed chain manipulator, two or more

series chains connect the end effector to the base of the robot. The state of joints at

the end effector can then be controlled by actuators at the base, resulting in a lighter

robot overall, since the actuators at the base don’t have to support the weight of more

actuators above them in addition to the weight of the links. The multiple chains also

comprise multiple load paths, enabling the robot to support heavy loads. These

advantages come at the cost of reduced workspace and more difficulty with obstacle

avoidance than comparable serial (open-chain) linkages. Additionally, the nature of

closed chains complicates the forward kinematics of parallel linkages. Still, parallel

linkages have found a home in industrial robotics since its inception — a patent for a

spray-painting robot, shown in Figure 2.1, was filed in 1942. Like the Canfield, it has

three degrees of freedom and routes cables through a central chase, although the legs
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are asymmetric and the arrangement of joints is slightly different. [9] A range of 3 DoF

parallel manipulators are in active usage in industrial applications. The most common

and best-known is the delta robot, which has three kinematic chains of the RRPaR

type. [10] Developed by Clavel in 1988, the delta is used in pick-and-place applications,

for rapid transfer of light loads, and in additive manufacturing applications. Pollard’s

mechanism may be considered an ancestor of the delta. One variant of the delta,

the Linapod, replaces its rotary actuator and lever with a linear actuator. Another

familiar parallel linkage is the Stewart platform, attributed independently to Stewart,

Gough, and Cavell. The Stewart platform is a 6 DoF parallel robot with prismatic

joints, commonly used in flight simulators, where its parallel structure enables it to

support significant weight. Further variants and other 3 DoF parallel manipulators

are enumerated by Merlet. [10] Parallel architectures have also been developed for

microelectrical/mechanical systems (MEMS). Several three-dimensional architectures

similar to the Canfield are surveyed by Bamberger. [11] 1

2.3 Canfield Joint

2.3.1 Structure

The Canfield joint consists of two triangular plates of equal size connected by three

symmetric legs, where each leg has a universal joint (3 DoF) in the middle of its

length and is connected to each plate by a revolute joint (1 DoF each). The top

(distal) half of the Canfield joint is passive: movement is achieved by controlling the

1Notably, the means of realizing similar architectures in the context of MEMS manufacturing, where
actuated revolute joints are a proven technology and 3D architectures are common, may offer lessons
for additive manufacturing of Canfield joints.
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Figure 2.1. Among the first industrial robot designs, a parallel link-
age intended for spray painting, similar to a delta robot. Designed by
Willard Pollard in 1942. [2]

angles of the three basal legs. Notably, the midjoints of the joint are not driven. The

kinematic chain, either 3-RUR or 3-RRRRR,2 removes the need for linear actuators.

The patent [12] expired in 2001, so the joint is now in the public domain.

2.3.2 Advantages

The Canfield benefits from the advantages of parallel linkages listed above — (1)

increased strength and (2) reduced weight compared to serial actuators. It is notable

among parallel actuators for having a relatively large workspace and angular range [6],

enabling its use for some applications traditionally reserved for serial linkages. The

2The specifics of the kinematic chain are discussed in Section 3.1.1.
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use of revolute, rather than prismatic, driven joints is another advantage for reducing

size, weight and power. The structure of the Canfield joint allows for its center to

act as a cable chase; it was originally proposed under the name “carpal wrist joint,”

and its construction lends itself to prosthetic wrists, largely because the central cable

runmimics a carpal tunnel. One of the key advantages of the Canfield joint is its

capacity to “fail gracefully” when one leg freezes. Since load paths exist between

each of the motors and the passive top halves of the opposing legs, a significant

pointing workspace can still be achieved with only two degrees of freedom. The size

of this workspace varies according to the angle of the frozen leg, but in most cases the

joint can retain significant partial operation until repair is possible. In a deep space

application, where the robot is remotely controlled but unrecoverable in the case of

a failure, this capability allows its use to continue.

2.4 Pointing Applications

Previous NASA projects have explored the use of the Canfield joint for pointing solar

cells and thrusters.

2.4.1 Solar Cell Tracking

The Canfield joint was researched for solar tracking applications at NASA Mar-

shall Space Flight Center [13] in the Momentum-Exchange/Electrodynamic Reboost

(MXER) project. Its hemispheric pointing workspace allows solar cells to remain

pointed at the sun as the spacecraft rotates, and the power cables to the solar cells,

routed through the center of the Canfield joint, will not tangle. [13]
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2.4.2 Thrusters

The Canfield joint was also proposed as a mounting scheme for thrusters in the

reaction system of the Crew Exploration Vehicle (CEV), a part of the now-defunct

Constellation program which was later folded into Orion. Reaction control systems for

spacecraft commonly use orthogonally mounted thruster quads like those highlighted

in Figure 2.2 to provide attitude control. The engines in the quad may be fired in

combination to generate a moment of force and thus reorient the spacecraft. In the

system proposed, each thruster quad would be replaced by a single Canfield joint

directing a single thruster, reducing weight and providing better fuel efficiency [14]

because it would eliminate the canceled thrust components produced by firing two

orthogonal thrusters. A prototype Canfield joint with a mounted thruster, controlled

by joystick, was constructed [15] to demonstrate this functionality.

2.5 Integrated Radio and Optical Communication Project

The goal of iROC is to implement deep space optical communication from Mars to

Earth, with proven radio communication protocols as a fallback. This is to be ac-

complished by a composite “teletenna” combining an RF reflector and Cassegrain

geometry telescope for RF and optical communications, respectively. A similar com-

bined design was proposed by Aviv. [16]

The pointing requirements for deep space optical communication are more onerous

than for radiofrequency communication. In the case of iROC, the laser dot projected

on the Earth is approximately the size of Texas. Per Table 2.1, an analysis found no



Background 10

Figure 2.2. Model of the Apollo-Soyuz union in the National Air and
Space Museum, with model of quad thruster highlighted. Thruster
quads such as this one could be replaced with a Canfield joint for im-
proved fuel efficiency.
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Figure 2.3. Schematic of iROC’s potential 32 GHz RF/optical teletenna.

Figure 2.4. Illustration of proposed iROC architecture.

available COTS gimbals that satisfy the iROC requirements, particularly the articu-

lated mass requirement. Further information on the project requirements is included

in Chapter 4.

A prototype Canfield joint for the iROC project has been successfully fabricated

and is currently under test, as shown in Figure 4.1.
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Table 2.1. Review of available gimbals qualified for deep space opera-
tion from Moog�versus preliminary iROC pointing requirements. [1] AZ
denotes azimuth, EL elevation, DS deep space, and LEO low earth
orbit.

Parameter Units Required
for iROC

Moog
Type 22

Moog
Type 33
MUSES

Moog
Type
33SHE

Moog
Type 55

Moog
EPGA

Coverage
AZ deg DS: 330 165 200 12.6 350 350
EL deg DS: 165 165 165 12.6 180 180

Pointing deg 0.0115 0.01 0.01 0.01 0.006 0.002
Step Size deg 0.057 0.02 0.009375 0.002 0.0075 0.002
Tracking
rate

deg/s DS:1 LEO:
0.02

0.02 0.1 0.02 0.0075 0.002

Slew rate deg/s 9 3 3 2.25 0.6
Running
torque

in-lbs
N-m

150
18

300
34

300
34

500
56

950
100

Gimbal
mass

kg 90 3.4 - 5 5.23 4.6 4.8 6.1

Power/axis W 10 17 17 12 10
Volume (in x in

x in)
7.22 x 7.22
x 14.1

6.36 x 6.36
x 9.8

6.97 x 6.62
x 8.89

16.25 x 9.1
x 9.3

5.8 x 6.6 x
11.9

Controller (kg) 1 1 1 1 1
Power W @ V 1.5 @ 30 1.5 @ 30 1.5 @ 30 1.5 @ 30 1.5 @ 30

2.6 Kinematics of Parallel Manipulators

As with serial mechanisms, two kinematics problems must be solved for a parallel

mechanism: The forward kinematics, which determines the position of the tool frame

based on the positions of the driven joints, and the inverse kinematics, which provides

the set of possible joint positions that lead to a given toolframe position. The set of

all positions that can be reached with the end effector is the workspace.

2.6.1 Enumeration of of Kinematic Chains

The following system of enumeration for parallel manipulators developed by Tsai [17]

is used in Chapter 3:
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C: Cylindric joint

Ck: Connectivity of limb k hich is defined as the degrees of freedom associated

with all the joints of limb k

F: degrees of freedom of a mechanism

P: prismatic joint

R: revolute joint

S: spherical joint

U: universal joint

m: number of limbs in a parallel manipulator

n: number of links in a mechanism

j: number of joints in a mechanism, assuming that all the joints are binary

fi: degrees of freedom associated with joint i

L: number of independent loops in a mechanism

λ: freedom of the space in which a mechanism is intended to function

A kinematic chain is labeled according to its joints, with driven joints underlined.

The kinematic chain of a single leg of the Canfield is RUR, so the linkage is denoted

3-RUR.3

2.6.2 Product of Exponentials Method

The product of exponentials (POE) method [18] is a robotics convention for mapping

the links of a spatial kinematic chain. It uses two frames of reference — the base and

tool frames — and, unlike Denavit-Hartenberg parameterization, does not require

that the tool frames be particularly selected in order to achieve specific cancellations.

3See Section 3.1.1.
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Define Zero Configuration. The first step is to select a “zero configuration” where

all the joint angles are defined as being zero. The 4x4 matrix gst(0) describes the

transformation from the base frame to the tool frame in this configuration. It is

an affine transform consisting of the 3x3 rotation matrix R and the 1x3 translation

vector p, augmented to create a 4x4 square matrix.

Define Origin and Axis of Action. For each joint of the kinematic chain, an

origin point q and an axis of action are selected for the zero configuration, using the

coordinate frame of the base. In the case of a prismatic joint, the axis of action v is

the vector along which the joint extends; in the case of a revolute joint, the axis of

action the vector normal to the rotation.

Find Twist for Each Joint. A 1x6 twist vector is composed to describe the move-

ment of each joint. For a revolute joint,

ξ =

 −ω × q
ω


For a prismatic joint,

ξ =

 vi

0


The resulting twist has two 1x3 vector components: Linear motion along an axis

(v) and rotational motion along the same axis (ω).

ξ =

 v

ω


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Calculate Rotation Matrix. The 1x3 vector ω is rewritten in cross product matrix

notation as the skew-symmetric matrix

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.1)

.

Per Rodrigues’ rotation formula, the rotation matrix is calculated from the rota-

tional component:

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ), (2.2)

Calculate Translation Vector. The 1x3 translation vector pi is calculated from

the components of the twist.

(I − eω̂θ)(ω × v + ωωTvθ) (2.3)

Compose Matrix Exponential. For each joint i, the matrix exponential eξ̂ijθij for

a given joint angle θ is calculated according to the formula:

eξ̂ijθij =

 eω̂θ pi

0 1

 , (2.4)

where I is the 3x3 identity matrix.

Compose Structure Equation. The matrix exponentials are multiplied to pro-

duce a 4x4 affine transform gd(θ1...θN) from the base frame to the tool frame of a

manipulator with N joints in a given configuration defined by joint positions θ1...θN .

gst = eξ̂1θ1 ...eξ̂NθNgst(0) (2.5)



Background 16

Structure Equation for Parallel Manipulators. In a parallel manipulator, the

structure equations for each of the legs are equal. For a parallel manipulator with

three legs, such as the Canfield:

gst = eξ̂11θ11 ...eξ̂1n1θ1n1gst(0) = eξ̂21θ21 ...eξ̂2n2θ2n2gst(0) = eξ̂31θ31 ...eξ̂3n3θ3n3gst(0). (2.6)

2.7 Summary

The Canfield joint offers advantages for a range of applications in space and industry.

Performing a rigorous engineering analysis for optical communication, the application

most constrained by pointing requirements, will open up its use for other applications

as well.



17

3 Kinematic Analysis

The Canfield joint is counterintuitive to control because the angular positions of

the base angles do not map directly to the orientation of the distal plate. Canfield’s

original work presents solutions for the forward and inverse kinematics of the linkage,

as well as an analysis of the singularities [6]. Herein, an overview of the original

work and alternative derivations are presented to simplify position control for future

engineering applications.

This chapter presents two approaches to kinematic analysis of the Canfield joint.

The first is a geometric analysis based on Canfield’s original work, as well as work

undertaken in collaboration at NASA Glenn with Robert Short [19] and Christian

Bueno [20]. This is followed by an analysis using the product of exponentials method [18].

3.1 Model

The Canfield joint’s geometry may be best understood in terms of the midplane

formed by the midjoints of the three legs, as shown in Figure 3.1. Only the joint

angles surrounding the base plate are driven, and the configuration of the entire

structure may be inferred from their states. The position of the distal plate (shown

in Figure 3.3) can be found by reflecting the base plate across the midplane. The
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Figure 3.1. Illustration of the midplane. The distal plate is at the top;
the base, at the bottom. Image credit: Christian Bueno.

geometric analysis uses a simplified model of the legs, where the three revolute joints

are considered as a single spherical joint.

3.1.1 A Note on Midjoint Variations

Original sources [6] and the geometric model used in this section rely on the assumption

that the legs of the Canfield joint are in-line; that is, that the base and distal plates,

when the joint is collapsed, are congruent. This is achieved in Canfield’s prototype

by means of a universal joint, which is singularity-free; its kinematic chain may be

written as 3-RUR. However, the prototype tested in Chapter 4 and the model shown

in Section 5.1.2 replace the central universal joint with three successive revolute joints,

resulting in a kinematic chain of 3-RRRRR, where the width of the central joint must

be considered as an additional link. As shown in Figure 3.2, the iROC prototype’s
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Figure 3.2. Leg of Canfield prototype.

legs are angled to preserve the congruence of the plates. The differences in the 3-

RRRRR version may complicate the manipulator kinematics to a degree which, for

the high-precision requirements of this application, should be addressed in future

work. Possible impacts of this design are addressed in Section 3.4.

3.1.2 Reference Frame

The reference frame for the joint is defined such that the origin lies at the center of

the base plate with the z-axis normal to the base plate and the x-axis aligned along

the first leg, as in Figure 3.4. Looking along the z-axis in the negative direction, the
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Figure 3.3. Illustration of the parts of the Canfield joint. Image credit:
Christian Bueno.
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Figure 3.4. Simplified model of the Canfield with coordinate frame,
approximating the revolute leg joints as a single spherical joint. On the
right, points are labeled and the midtriangle is highlighted.

legs are numbered counterclockwise, so that the vectors defining the direction of each

leg are:

b1 =

〈
b√
3
, 0, 0

〉
, (3.1)

b2 =

〈
− b

2
√

3
,
b

2
, 0

〉
, and (3.2)

b3 =

〈
− b

2
√

3
,− b

2
, 0

〉
, (3.3)

per standard right-hand convention.

3.2 Geometric Analysis

The following variables are used in the geometric analysis:
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θi: Base angle of leg i

Nm: Midplane normal vector

mi: Vector from base to midjoint of leg i

ci: Cosine of θi

si: Sine of θi

pd: Plunge distance

D: Distal plate origin

C: Center of Canfield joint

l: Leg length

b: Base length

3.2.1 Midplane Construction

The mi vectors, which define the positions of the three midjoints relative to the origin

at the center of the base plate, may be constructed by first rotating a length ` vector

around the correct hinge and then translating this to the correct hinge location. Let

ci = cos(θi) and si = sin(θi). Then,

m1 = ` 〈c1, 0, s1〉+ b1, (3.4)

m2 = `

〈
−c2

2
,
c2
√

3

2
, s2

〉
+ b2, and (3.5)

m3 = `

〈
−c3

2
,−c3

√
3

2
, s3

〉
+ b3. (3.6)
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Nm, the normal vector to the midplane, is by definition:

Nm = (m2 −m1)× (m3 −m1), or (3.7)

Nm = m1 ×m2 + m2 ×m3 + m3 ×m1. (3.8)

3.2.2 Plunge Distance

The center of the joint is defined as the point at which a vector normal to the base

plate intersects the midplane. For a plunge distance pd, the center is 〈0, 0, pd〉. In

this frame of reference, the line is parametrized by 〈0, 0, t〉, for t ∈ R, and the plane

is computed as Nm · 〈x, y, z〉 = Nm ·m1. Thus, Nm · 〈0, 0, t〉 = Nm ·m1. Given

the formula for Nm in Equation 3.7 in conjunction with the fact that t = pd for the

intersection (by definition of the center and the selected parameterization of the line),

pd(Nm · k̂) = m1 · (m1×m2 +m2×m3 +m3×m1) = m1 · (m2×m3). This yields

the following formula for the plunge distance:

pd =
m1 · (m2 ×m3)

Nm · k̂
. (3.9)

3.2.3 Distal Normal Vector

A formula may now be determined for the normal vector to the distal plate. Notice

that the normal vector to the base plate (the z-axis) intersects the midplane at C =

〈0, 0, pd〉. We can locate the center of the distal plate by reflecting the vector −C

over the midplane. The formula for reflecting a vector over a plane through the origin

with normal vector N is given by rN (v) = v − 2 v·N
||N ||2N . For our purposes, we

can first reflect −C over the plane through the origin with normal vector Nm, then

we translate up by C in order to locate the center of the distal plate D. That is,
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D = rNm(−C) + C. Substituting the values into the formula and solving yields the

following:

D = 2

(
pd(Nm · k̂)

||Nm||2

)
Nm = 2

(
m1 · (m2 ×m3)

||Nm||2

)
Nm (3.10)

where k̂ is the unit z axis for the base coordinate frame.

The normal vector to the distal plate is then given by D − C. In other words,

the normal vector to the distal plate is rNm(−C), the reflection vector given in the

formula.

3.2.4 Distal Frame (Forward Kinematics)

The 4x4 matrix encoding the transform from the base origin to the distal plate may

be expressed in terms of the functions described above. First, the position vector

p is drawn directly from the value of D above. Next, the 3x3 rotation matrix R is

obtained by reflecting the origin’s coordinate frame (the 3x3 identity matrix) over the

midplane.

The reflection of a vector v, where p̄d = (0, 0, pd)
T :

RM(v) = v − 2
(v − pd)Ṅm

NmṄm

Nm

This yields the 4x4 matrix

gst(θ) =

 R p

0 1

 (3.11)

where the rotation component is caluclated by applying the rotation above to the 3x3

identity matrix:

R = RM(I3),



Kinematic Analysis 25

and the translation is drawn from the distal normal vector in Equation 3.10:

p = [Dx, Dy, Dz]
T .

in terms of the joint angles.

3.2.5 Az/El Coordinates

The azimuth and elevation, relative to the base frame, are calculated from D. Az-

imuth is calculated from the X and Y components of D:

AZ = atan2(Dy, Dx). (3.12)

Elevation is the angle between the distal vector and the XY plane, which can be

calculated from the dot product of the distal vector and the Z axis:

EL = π/4− D · Z
|D||Z|

. (3.13)

3.3 Product of Exponentials Method

The following section outlines the calculation of the kinematic chain of the joint per

the product of exponentials (POE) method. [18] The variables in this analysis follow

the method outlined in Section 2.6.2. In the POE analysis, θij denotes the angle of

joint j in leg i.

First, the zero-configuration transform from the base frame to the distal frame is

found by inspection. The zero configuration is taken to be the legs extended straight

up. No rotation is applied between the base and distal frames, so the rotation matrix



Kinematic Analysis 26

Figure 3.5. Kinematic chain of a single leg. The points denoted are
specific to the leg oriented along the x-axis.

is merely a 3x3 identity matrix. The only translation component is the total length

of the legs along the z-axis. Thus:

gst(0) =

 R p

0 1

 =



1 0 0 0

0 1 0 0

0 0 1 2l

0 0 0 1


(3.14)

Next, the kinematic chain for each leg must be calculated. The screws for each

joint can be expressed in terms of the base hinges found in Equation 3.4 and the
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Figure 3.6. Zero configuration.
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leg length l. The configuration of each leg is expressed in terms of 5 revolute joints,

where the screw ξij is calculated from the joint origin qij and the axis of action ωij.

For a revolute joint:

ξ =

 −ω × q
ω

 =

 v

ω

 .

Notably, the parameterization of the joint angles in this method is different from

that in the geometric method, so that the zero configuration (Figure 3.5) used in the

product of exponentials method is physically realizable. Where the parameterization

shifts, the required shift from the respective geometric joint angle θ to the product of

exponentials joint angle θ′ is summarized in the table.

Table 3.1. Table of twists for the first kinematic chain, accounting for
revolute joint width d.

Joint qTN (Origin) ωTN (Vector) ξTN (Twist) θ Difference
1 [b, 0, 0] [0, 1, 0] [0 0 b 0 1 0] θ′1 = θ1 − π/2
2 [b, 0, l1] [0, 0, 1] [0 −b 0 0 0 1]
3 [b, 0, l1] [0, -1, 0] [−l1 0 b 0 1 0] θ′3 = θ3
4 [b, d, l1] [0, 0, 1] [d− b 0 0 0 1]
5 [b, d, l1 + l2] [0, 1, 0] [(l1 + l2) 0 b 0 1 0] θ′5 = θ5 − π/2

For each screw, the matrix exponential eξ̂ijθij for a given joint angle θ is calculated

per the procedure outlined in Section 2.6.2.

From Table 3.1, the twists for Leg 1 are obtained based on two assumptions about

the dimensions of the joint: First, that the leg lengths are equal (l1 = l2 = l); second,

that the width d of the midjoint is zero, per the discussion in Section 3.1.1.

The twists for the other two kinematic chains are found by rotating ω and q

around the z axis with the following rigid body transform:
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Rz(α) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 .
The value of α is π/3 for the second leg, and 2π/3 for the third.

3.3.1 Forward Kinematics

The forward kinematics for a single leg may be found directly from the structure

equation, which is the product of the matrix exponentials for each of the joints.

gst = eξ̂11θ11 ...eξ̂1n1θ1n1gst(0) = eξ̂21θ21 ...eξ̂2n2θ2n2gst(0) = eξ̂31θ31 ...eξ̂3n3θ3n3gst(0). (3.15)

3.3.2 Inverse Kinematics: Paden-Kahan Subproblems

The inverse kinematics for the Canfield joint are complicated by the fact that the

desired output - distal plate orientation - requires only two degrees of freedom, while

the mechanism itself has three. The inverse kinematics may be solved by considering

the inverse problem for each open-chain mechanism, i.e., each leg. These are solved

with the Paden-Kahan subproblem method. [18]

Structure Equation. The subproblem begins with the structure equation of a single

leg. To simplify notation, the matrix exponential eξ̂iθi will be written as ei. For a

desired transform gd, the joint angles θ1...θ6 may be obtained through this method.

The structure equation for a single leg is written:

gd = e1e2e3e4e5gst(0). (3.16)

The zero configuration transform gst(0) is known, so the twists are isolated on one

side of the equation:



Kinematic Analysis 30

e1e2e3e4e5 = gdg
−1
st (0) =: g1. (3.17)

For a given twist ξi, the product of the matrix exponential ei and a point p on

the axis of the twist is equal to p. This allows for the selective elimination of some

twists from the structure equation in order to solve for others.

Solve for θ3. Both sides of Equation 3.17 are applied to the point p1 = [b, 0, l1 + l2],

which is at the intersection of the fourth and fifth axes. This allows the latter two

twists to be eliminated from the equation.

g1p1 = e1e2e3e4e5p1 = e1e2e3p1. (3.18)

The point p2 = [b, 0, 0], which lies at the intersection of the first two axes, is

subtracted from Equation 3.18:

g1(p1 − p2) = e1e2(e3(p1 − p2)) = e3(p1 − p2). (3.19)

Taking the magnitude of both sides of Equation 3.19:

||g1(p1 − p2)|| = ||e3(p1 − p2)||. (3.20)

This puts the equation in the proper format to solve for θ3 using Subproblem 5.

Solve for θ1, θ2. With the value of e3 known, the point p3 defined as e3p1. From

Equation 3.18:

e1e2p3 = g1p1. (3.21)

This equation is in the correct form to solve for θ1 and θ2 using Subproblem 2.
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Solve for θ4, θ5. Now that e1, e2 and e3 are known, the remaining matrices may be

isolated.

e4e5 = e−13 e−12 e−11 g1 =: g2. (3.22)

This equation may be applied to any point p4 not on axes 4 and 5; p4 = [0, 0, 0]

should suffice:

e4e5p4 = g2p4. (3.23)

θ4 and θ5 may now be solved using Subproblem 2.

Number of Solutions. Subproblem 2 returns zero, one, or two possible pairs of

real solutions, and Subproblem 5 returns one real solution. The procedure outlined

here, therefore, may return up to four possible solutions for the inverse kinematics of

a single leg at a given configuration. A correct solution for the inverse kinematics of

the entire parallel linkage requires that the solutions for all three legs be congruent.

3.4 Singularity Analysis

A singularity is a configuration in which a robot loses a degree of freedom, and

instantaneous movement in a certain direction is not possible. For example, in the

case of an outstretched arm, where two rotational axes become collinear, the capacity

to rotate around one axis is lost. Gimbal lock is another example of a singular

configuration. Generally, these configurations are acceptable in trajectory planning:

they may even be advantageous, as when an outstretched leg provides a strong load

path. The robot can often move out of the singular configuration and regain the degree

of freedom lost. However, the Canfield appears to be a kinematotropic linkage [21], i.e.,
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a linkage for which a variation of position parameters can change its mobility. An

example of this is shown in Figure 3.8: if the three midjoints become collinear and the

joint topples as shown, it can no longer be controlled by the driven joints. It becomes,

in a word, stuck. When the three midjoints becomes colocated, as in Figure 3.7, the

Canfield loses its three original degrees of freedom, but gains two new ones that

cannot be controlled. This behavior is indicative of a kinematotropic linkage. This

configuration (which has been obtained on the prototype in Chapter 4) and others

like it are obviously very undesirable, since they can destroy the robot’s functionality.

Therefore, these singularities should be identified and avoided1 by the robot’s control

system.

3.4.1 Midplane Inspection

Since the position of the distal plate is defined by that of the midplane relative to the

base, as discussed in Section 3.1, it follows that, if the midplane is underdefined (that

is, if the midjoints are collinear or colocated, reducing the area of the midtriangle to

zero), the number of possible solutions for the position of the distal plate becomes

infinite, resulting in a singular configuration. Two singular configurations of this

type are discoverable by inspection.2 The first is the collinear configuration, where

one of the legs bends inward so that the three midjoints become collinear, reducing

the midplane to a line. The second is the “tipi” configuration, shown in Figure 3.7,

where the three midjoints meet under the distal plate. In the first case, the range of

1Topologically, a kinematotropic singularity represents a “wormhole” to another configuration space.
In engineering application, it is sufficient to consider it as something the robot should not be allowed
to do.
2Readers are advised to make use of the 3D models discussed in Section 5.1.
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possible locations for the distal center describes an arc around the line; in the second,

it describes a hemisphere around the center point.

3.4.2 Single Chain Singularities

Two singular configurations affecting the Canfield joint are discoverable by examining

the kinematic chain of a single leg. In both cases shown here (Figures 3.9 and 3.10),

the axes ω2 and ω4 are aligned parallel to one another and orthogonal to axis ω3, and

rotation about the axis coming out of the page is impeded. These singularities may

be specific to the 3-RRRRR kinematic chain, as dicussed in Section 3.1.1.

Starfish Singularity. In the starfish singularity, shown in Figure 3.9, the joint

collapses so that the base and distal plates are approximately congruent. The driven

joints can move the midjoints up and down, but no torque is exerted on the distal

plate. This singularity is discernible for individual legs, as well. Canfield’s original

prototype [22] has a mechanical stop to keep the midjoint from reaching this position.

This is a known issue on the iROC prototype.

Leg Lock Singularity. The leg lock singularity, shown in Figure 3.4.2, is specific

to the all-revolute kinematic chain. It occurs only when the distal plate is at its

maximum distance from the base plate. If the midjoint of a leg is rotated to be

orthogonal to the base and distal joints as shown, the leg cannot collapse. If the

midjoint is compliant, slight torque in one direction or another can cause it to rotate

and pull it out of the singular configuration. It’s unknown whether this is an issue

on the iROC prototype.
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Figure 3.7. The “tipi” configuration. The midtriangle is reduced to a
point. The range of possible solutions for the position of the distal plate
forms a sphere around the point where the midjoints meet.
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Figure 3.8. A collinear configuration, known colloquially as Alan’s Sin-
gularity. In the virtual model, the midtriangle is reduced to a line.
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Figure 3.9. The “Starfish” singularity.

Figure 3.10. The leg-lock singularity.

3.5 Control Methods

Robotic position control may be achieved through two general methods: joint space

and configuration space.

3.5.1 Joint Space Control

In joint space control, the positions for each degree of freedom are calculated based on

kinematic equations. This can be achieved with the forward and inverse kinematics

methods from the geometric and product of exponentials methods presented above.
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3.5.2 Configuration Space Navigation

In the configuration space method, the range of possible positions for N degrees of

freedom are parameterized as an N-dimensional space, and solved numerically. The

configuration space for a robot of arbitrary dimension may be calculated a priori,

and navigated using any of a number of path planning algorithms [23] [24]. Since the

Canfield has three degrees of freedom, its configuration space may be rendered as

a cube with opposing faces identified, as shown in Figure 3.11. Some parts of the

cube must be eliminated to account for self-intersection: for example, the joint angles

cannot wrap all the way around without the legs colliding with the distal plate. The

singularities found in Section 3.4 should be treated as obstacles to be avoided.

3.6 2 DoF Operation

Orientation requires only two degrees of freedom. The Canfield has three, so infinite

solutions exist for a given orientation. This may be illustrated with the trivial example

of the plunge test undertaken in Section 4.5: the height of the distal plate is changed

with plunge distance, but the orientation remains the same. One way to restrict the

inverse kinematics problem to two degrees of freedom is to maintain a constant plunge

distance. This “plunge sphere” forms a surface in the configuration space, and may

be selected to minimize singularities.

A likely failure mode for the Canfield is a scenario in which one leg is frozen. The

configuration space in this case becomes a two-dimensional slice of the cube in Figure

3.11.
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Figure 3.11. 3D map of the configuration space, with midplane singu-
larities highlighted. Image credit: Christian Bueno.

3.7 Base/Leg Ratio

Canfield defines [6] the ratio Rb = b/l, where b is the length of the base and l the length

of one leg member, and notes its effect on the size of the workspace. The following

analysis, however, demonstrates that this ratio exists in three regimes, discoverable

by an analysis of how the midpoints of each joint relate to the center of the linkage,

based on the tipi configuration shown in Figure 3.7.

In order to have the midpoint and center align, the triangle formed by the center

of the joint, center of the base, and the base hinge must be such that hypoteneuse



Kinematic Analysis 39

has length l. The distance from the base center to base hinge is b√
3
, returning the

angle π − θi = arccos(b/`
√

3) =⇒ θi = π − arccos(b/`
√

3).

This yields three regimes. When ` < b/
√

3, this angle is undefined, implying

that the tipi configuration cannot be achieved. This forms the “Short Regime”. The

transition appears when ` = b/
√

3, and θi = π − arccos(1) = π, where the arms

touch at the center of the base plate; the “critical regime.” When ` > b/
√

3, the

tipi configuration becomes achievable. This is termed the “Dragon Regime,” which

exhibits significantly more singularities3 in its configuration space. The joint ratios

are illustrated in Figure 3.12.

Table 3.2. Table of base/length ratio regimes.

Ratio Regime

l < b/
√

(3) Short Leg

l = b/
√

(3) Critical

l > b/
√

(3) Dragon

There is a tradeoff between the regimes: Although the long-legged dragon regime

has many singular configurations, it also boasts the largest workspace. The prototype

joint in Chapter 4, as shown in the dimensioned drawing in Figure 3.13, has a base

length of 10 and a leg length of 18, placing it firmly in the dragon regime.

Canfield’s original prototype [22] has a ratio on the order of Rb = 0.75 [6], which

enables its large hemispherical workspace.

The tradeoff between singularities and workspace may be illustrated through the

reductio ad absurdum example of a Canfield joint with very large plates and short

legs: It cannot become singular, but its workspace is extremely restricted.

3“Here there be dragons.”
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Figure 3.12. Illustration of regimes. Image credit: Robert Short.

Figure 3.13. Dimensioned drawing of prototype joint. Image credit: Balcones.

3.8 Future Work

This chapter represents the current state of kinematic analysis of the Canfield joint.

Much theoretical work remains to be done, especially from a topological robotics

perspective. Further analysis of the Canfield joint as a kinematotropic linkage (Section
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3.4) is currently underway. The same is true of the base/leg length regimes and

their respective workspaces and load capacities, which may recommend the different

regimes for specific purposes. For applied use, it is imperative to ensure that the

set of singularities is complete — or, at least, that the configuration space map is

sufficient to ensure singularity-free operation. Some singularities, such as the leg

lock, require further examination. Software control may be sufficient to keep the

joint from entering singular configurations, but it may be worthwhile to examine the

option of adding mechanical stops for this purpose. Once the safe paths through

the configuration space are known, it will be necessary to implement controls for

the prototype, likely using the techniques developed in Section 3.5. Verification of

a complete singularity-free tracking trajectory (e.g., Mars to Earth for an extended

period, per the existing simulated trajectory [25]), both for a fully functional joint and

for a damaged joint with a frozen leg at various angles, is a logical next step.
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4 Validation of Prototype Canfield
Joint

4.1 Prototype

A prototype version of the Canfield joint for the iROC project, shown in Figure 4.1,

was custom fabricated by Balcones Technologies of Austin, Texas. A labeled rendering

of this prototype is shown in Figure 4.2, and a screenshot of its control interface is

shown in Figure 4.3. The primary experimental component of this work is comprised

of optical metrology and inertial measurement used to validate this prototype for the

project specifications.

4.2 Mission Description

The pointing requirements used for validation are based on a use case of a Mars

orbiter communicating optically with a Deep Space Network (DSN) receiver on Earth,

as shown in Figure 4.4. The orbiter circles Mars with a downward-facing camera, and

its coordinate frame is defined as shown in Figure 4.5. The pointing requirements

used in this validation were found by simulation [25].
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Figure 4.1. Prototype Canfield joint, with metrology tower in back-
ground. Photo credit: Daniel Raible.

4.3 Validation and Benchmarking Objectives

Several tests were devised to assess the prototype’s performance according to the

mission requirements. These are summarized in Table 4.2.
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Figure 4.2. Parts of prototype joint. For the purposes of these tests,
the distal plate assembly support was removed. Image credit: Balcones.

4.3.1 Field of Regard

Disambiguation. A distinction is emphasized between the field of view of the quad

detector in the optical metrology system described in Section 4.4.3, and the field of re-

gard (angular coverage) of the robot itself. The latter was verified by inspection to fit

the project requirements of 330 degrees in azimuth and ±83 degrees in elevation. [25]1

The former was found in Section 4.6.

1Per simulation, the azimuth range is 14.55◦ to 345.45◦, and the elevation range is -82.41◦ to 82.48◦.
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Figure 4.3. Control interface for prototype joint.

Figure 4.4. Mission illustration.
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Figure 4.5. Illustration of reference frame for spacecraft, teletenna.

4.3.2 Resolution (Step Size)

The term “resolution” is used here to describe the smallest commanded move the

prototype is capable of executing. This appears to be chiefly subject to stiction



Validation of Prototype Canfield Joint 47

effects, and was assessed by the stiction test described in Section 4.7. The resolution

is determined by the receiver: As shown in Figure 4.6, the width of an acceptably

attenuated (3dB) beam projected toward Earth is traced to a subtended angle in the

coordinate frame of the spacecraft. In the iROC link budget, a step size of 0.0025◦

(25 µradians) is required. [1]

4.3.3 Slew Rate

The slew rate — the rate of angular movement projected onto a horizontal plane —

is considered here in the sense in which it is defined in astronomy. This must be

measured in azimuth and elevation, and both short and long duration moves. Since

the prototype is driven by stepper motors, long-duration moves are limited by its

velocity characteristics, while short-duration moves are limited by its acceleration

characteristics. A maximum slew rate of 0.5 degrees per second is required [1] when

the orbiter passes in the shadown of the planet and the teletenna must be returned

to its starting position for the next pass, as shown in Figure 4.4. During the main

part of the orbit, when the teletenna is pointed toward Earth, a slower slew rate is

required.

4.3.4 Repeatability

As with angular slew rate, the repeatability is affected by the length of moves: small

moves are subject to stiction effects, and longer moves may accumulate errors from lost

steps. Accumulated errors, left uncorrected, could compromise tracking capability.

The short range repeatability was examined in the field of view test described in

Section 4.6, and the long range repeatability test is described in Section 4.8. Per
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Figure 4.6. Illustration of attenuated beam width. The blue angle rep-
resents the absolute pointing precision of 100 µradians.
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the subtended angle analysis described in Section 4.3.2, absolute pointing precision

of 0.006 degrees (100 µradians) is required. [1]

4.3.5 Disturbance Characteristics

Exploration of the prototype’s vibration characteristics is outside the main scope of

this work, but the data collection system outlined in Section 4.4.2 does pick up small

disturbances. Vibration data is of interest for future testing. The MEMS sensors

used to collect position data may have too high a noise floor to collect a meaningful

estimate of the power spectral density, so adding piezoelectric accelerometers to collect

low frequency data is advisable in future work.

4.4 Metrology Apparatus

The movement of the distal plate was characterized by optical metrology, as well as

by the position feedback of the robot’s servos.

4.4.1 Mounting System

The quad detector and inertial measurement apparatus were mounted to the distal

plate of the prototype, using a laser-cut adapter plate, as shown in Figure 4.8. The

adapter plate was designed from the dimensioned drawing shown in Figure 4.7, with

holes spaced according to imperial optical table convention.

The laser was mounted to a tower built from 80/20 mounting rail on the far side

of the optical table, shown in Figure 4.1.



Validation of Prototype Canfield Joint 50

Figure 4.7. Dimensioned drawing of distal plate. Image credit: Balcones.

4.4.2 Inertial Measurement

Due to equipment availability constraints, a Motorola Droid Razr HD cellular phone

was used in place of an inertial measurement unit. In each test, the outputs of its

accelerometers were recorded as .csv files, as shown in Figure 4.9. The phone uses

three InvenSense MPU6050 accelerometers.

4.4.3 Optical Metrology

The parts of the optical metrology apparatus are listed in Table 4.1.
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Figure 4.8. Photograph of cell phone and quad detector (circled)
mounted parallel to distal plate.

The optical data was collected from a PDQ80 quad detector using a KPA101

interface control, which was connected to a computer via the KCH601 USB hub.2

Data was recorded using the ActiveX controls in MATLAB, included in Appendix A.

2A HIROSE extension cable, not listed in Table 4.1, was fabricated to connect the detector to the
USB hub.
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Figure 4.9. An example screenshot from the application [3] used to
record position and orientation data.
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Table 4.1. Bill of materials for optical metrology apparatus.

ThorLabs Part Part Descrip-
tion

Price Notes

PDQ80A Quadrant Detec-
tor Sensor Head

$490.00 400-1050 nm

TLS001-635 T-Cube Laser
Source

$1135.00 635 nm, 4.0 mW
max

KCH601 USB Controller
Hub and Power
Supply

$587.00

KAP102 Adapter Plate
for 120 mm
T-Cubes

$61.25

KPA101 K-Cube Position
Sensing Detec-
tor Auto-Aligner

$789.00

P1-630A-FC-2 Single Mode
Fiber Patch
Cable

$69.75 2 m, 633-780
nm, FC/PC

CFC-11X-A Adjustable
FC/PC Collima-
tor

$258.00 f=11.0 mm,
ARC 350-700
nm

KST101 K-Cube Step-
per Motor
Controller

$626.00

4.5 Plunge Distance Test

In the plunge test, the distal plate was moved up and down along the robot’s vertical

axis, with no variation in azimuth. This test, illustrated in Figure 4.10, provided

a simple first pass for running the instrumentation, and a qualitative initial test of

repeatability.

4.5.1 Methodology

The quad detector was mounted perpendicular to the plate for this particular test.

The distal plate was held level while the plunge distance was varied from -10''to
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Figure 4.10. Illustration of plunge test.

+2''and back. The laser dot crossed the surface of the quad detector from top to

bottom.

4.5.2 Results

The optical data from this test is plotted in Figure 4.11. This test served to gather

data on the plunge rate, as well as to provide some qualitative preliminary data on
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Figure 4.11. Optical results from plunge test. This plot shows the
output of the detector as the laser dot moves past the detector from
top to bottom, bottom to top, and back again over 10,000 samples.

repeatability and resolution. Once the data from both sensors was integrated and

parity between these data sets was confirmed, it was possible to develop and execute

the more complicated tests that follow.

4.6 Field of View Test

This test was used to gather data on slew rate via the optical metrology system.

4.6.1 Field of View Calibration

In order to relate the data collected by the optical system to the movement of the

distal plate, it was necessary to assess the field of view of the optical system, i.e., the

angular range eclipsed by the surface of the quad detector, relative to the position

feedback from the robot’s servo system.
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Since the longest path possible across the surface of the detector is the diagonal

path, the joint was positioned such that the laser aligned with the lower left corner of

the quad detector. This point (azimuth of 170◦, elevation of 72◦) was recorded. The

point where the laser dot aligned with the upper right corner of the detector (azimuth

of 170◦, elevation of 75◦) was also recorded. The test procedure is illustrated in Figure

4.12.

The PDQ80 has an active area of 8 mm x 8 mm. By the distance formula, the

length of the diagonal is
√

(82 + 82) = 11.3 mm, which, as tested above, maps to

2.5◦ of the joint’s field of view. The resolution of the optical system, therefore, is .22

degrees per mm on the detector, a relation which holds as long as the plunge sphere

remains constant.

4.6.2 Slew Rate Measurement

The joint was given a trajectory from one point to the other, and optical data was

collected. To check for short-range repeatability, it was sent back to the original

position, and then repeated several times with a trajectory of a constant 170◦ in

azimuth and 73 to 74.25◦ in elevation. The trace of the laser dot on the quad detector

is shown in Figure 4.13. The slew rate may be calculated from this test by taking

the derivative of the distance traveled along the trajectory, according to the optical

system, with respect to time. This returns maximum values of 15-20 mm/s, indicating

a slew rate of approximately 3 degrees per second, comfortably above the 0.5 degrees

per second required.
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Figure 4.12. Illustration of field of view test. The object of the test is
to measure the width of the cone with respect to the laser source.

4.7 Stiction Test

This test was used to determine the minimum step size and the effects of stiction on

short-range repeatability.

4.7.1 Methodology

In this test, the joint was pointed such that the laser dot was centered on the detector,

as shown in Figure 4.15. The robot was then commanded to move one step forward

in a direction (azimuth or elevation), then back to the original position, then two

steps forward, then back, then three steps forward, and so on. The optical and



Validation of Prototype Canfield Joint 58

Figure 4.13. Optical metrology data from the field of view test. The
area of the plot corresponds to the 8 mm x 8 mm area of the quad
detector. Several passes across the detector over time are represented.

accelerometer data were retained in order to measure the actual movement of the

robot. This test is illustrated in Figure 4.14.

4.7.2 Results

The test was performed twice: once in azimuth, once in elevation. Results are shown

in Figures 4.16 and 4.17. A horizontal line on each plot indicates the initial value, to

which the output should, ideally, return. However, accumulated drift on the scale of

millimeters (and therefore degrees) is shown. Slew rate for these short duration moves,

calculated using the same method described in Section 4.6.1, is on the order of 0.5
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Figure 4.14. Illustration of stiction test.

degrees/second. The resolution was also verified in this test: a single step, as defined

by the control interface, affects the position of the joint, and is not overwhelmed by

stiction effects.
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Figure 4.15. Joint orientation to align laser dot with detector, as used
in the stiction and field of view tests.

4.8 Long-Range Repeatability Test

4.8.1 Methodology

To test long-range repeatability, the joint was positioned to center the laser dot on

the detector. Commands were then sent to move the joint an arbitrary distance away
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Figure 4.16. IMU results from azimuthal stiction test. The horizontal
axes are the number of samples, and the vertical axes are in degrees.

Figure 4.17. IMU results from elevation stiction test. The horizontal
axes are the number of samples, and the vertical axes are in degrees.
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Figure 4.18. Optical results from long range repeatability test. Each
dot represents the position of the laser on the quad detector after a
long trajectory.

and back again. The position of the dot on the detector was recorded manually after

each trajectory.

4.8.2 Results

The resulting data points are shown in Figure 4.18. The two dots for this test farthest

from one another, at (-3.6, -.56) and (2.84, 2.72), have a distance of 7.2 mm between

them on the detector, which, by the field of view calibration performed in Section

4.6.1, indicates a significant drift of 1.6◦. This demonstrates that accumulated errors

may compromise long-range repeatability.
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Table 4.2. Review of pointing requirements and relevant validation pro-
cedures for Mars orbiter use case.

Specification Requirement Test Result
Field of Regard (Angular Coverage) 330◦ AZ, ±83◦ EL By inspection X
Resolution (Step Size) 0.0025◦ Stiction test X
Slew Rate 0.5◦/sec Field of view test X
Pointing Precision 0.006◦ Repeatability test X

4.9 Mechanical Failure

Data collection was interrupted during the long range repeatability test by a me-

chanical failure: the gearbox on one of the legs underwent a sudden shear fracture,

stripping one of the gears. This was likely a result of backlash produced by the robot

entering and leaving the leg lock singularity described in Section 3.4.2.

4.10 Conclusion

The prototype Canfield joint met the requirements for field of regard, step resolution

and slew rate, but has not been validated with regard to short or long range repeata-

bility. The considerable drift which appeared in the repeatability tests precludes

validation of the pointing precision requirement at this stage.

Because of the failed gearbox, it is necessary to undertake these tests again after

the prototype is repaired. Possible improvements to the experimental apparatus

at that time include implementing synchronized data collection between the optical

and inertial sensors and automating the tests on the robot’s controller. The long-

range repeatability test should be performed with a larger number of data points,

and the stiction test should be performed with both incrementing and decrementing

parameters in order to examine the effect of sag. Ultimately, the backlash which
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caused the failure of the gearbox should be quantified and addressed by the control

system.
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5 Physical and Virtual Models

The kinematic analysis work discussed in Chapter 3 was largely performed through

discussions in a collaborative environment. The utility of a desktop physical model

quickly became apparent. Three physical models were constructed in the course of

this research: a 3D-printed replica of the original prototype and two LEGO models.

For the reader, details of each model are provided herein for future use.

5.0.1 Additive Prototype

A 3D-printed replica of the original prototype used by Canfield [6] was fabricated on

a Makerbot Replicator at CWRU’s think[box] facility and a Fortus 250mc 3D printer

at NASA Glenn, as shown in Figure 5.2. The model was reconstructed from the

drawings of Anthony Ganino [22], and printed in PLA and ABS plastic. The 3D-printed

structure is shown in Figure 5.1. The parts were printed separately and assembled;

an example of printed parts is shown in Figure 5.2. The parts are held together

with metal fasteners, but the relatively poor tolerances in the print make the model

difficult to actuate. In future revisions, the fasteners may be integrated into the design

through the use of a dissolvable support material, enabling the constructed linkage

to be produced in a single print. This would make the robot scaleable, and would
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represent a first step toward producing Canfield joints in operational environments

through additive manufacturing.

Figure 5.1. 3D printed replica of original prototype, printed in PLA at think[box].

5.1 LEGO Models

The utility of LEGO bricks has long been recognized in the robotics community:

LEGO models are straightforward, cost-effective, and easily modified to vary propor-

tions. They translate naturally to the educational sphere, helping students develop
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Figure 5.2. Parts for 3D-printed replica, printed in ABS at NASA Glenn.

an understanding of modularity, part numbering, and the construction of a bill of

materials.

5.1.1 Basic LEGO Model

The first revision of the LEGO model, shown in Figure 5.3, whose bill of materials is

listed below, can be purchased from the LEGO replacement brick service for about

$10. Instructions for its construction are appended. This model uses two ball joints

to approximate the hinges at each elbow and the revolute joints between the elbows

and legs; as such, it has a greater range of freedom than the actual joint, but can be

used to illustrate poses.

5.1.2 LEGO Technics Model

LEGO Technics are a series of LEGO parts, compatible with standard bricks, that

are intended to model realistic technical functions. This model, shown in Figure 5.4,

has the correct arrangement of joints for each leg, although the plate joints’ range is
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Table 5.1. Bill of materials for basic LEGO model.

LEGO Part # Part Description Quantity
3795 2x6 Flat 18
11476 Hinge A 6
48336 Hinge B 6
14704 Ball Joint A 18
14417 Ball Joint B 18

Figure 5.3. The design of the basic LEGO joint model.

limited. It has smoother movement and more nearly resembles the prototype tested

in Chapter 4.
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Figure 5.4. LEGO Technics model.

Table 5.2. Bill of materials for LEGO Technics model.

LEGO Part # Part Description Quantity
3666 1x6 Flat 6
43093 Connector Bushing with Friction

Cross Axle
6

3706 6 cm Cross Axle 6
15100 Single Bushing - 2 cm, .49 cm di-

ameter
6

19954 1x2 Hinge Plate 6
6538 Ribbed Cross Axle Extension 6
32062 2 cm Cross Axle With Groove 12
32013 Technic 0◦ Angle Element 6
41678 Technic Cross Block/Fork, 2x2 6
29219 Tube with Double .485 cm Hole 6

5.2 Virtual Model in Geogebra

Geogebra, an open-source program for geometric modeling, was used to produce a 3D

model of the analysis in Section 3.2. The model is shown in Figure 5.5, and was used to

generate several of the figures herein. It may be accessed at https://www.geogebra.org/m/jZq4byKJ.
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Figure 5.5. Geogebra model of the Canfield joint, with minimal labeling.

5.3 Virtual Model in Gazebo

To facilitate future work, a model of the Canfield joint was created in Simulation

Description Format [26] and controlled in Gazebo, [27] a physics simulator, using Robot

Operating System [28], a set of open-source libraries for robotics simulation and control.
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Figure 5.6. Canfield joint model, shown in the Gazebo physics engine.

The model was created in the .sdf format, rather than the .urdf format traditionally

used for ROS, because .sdf allows for parallel linkages while .urdf does not. This

model, shown in Figure 5.6, may be adapted for specific implementations of the

Canfield joint and used as a basis for controlling a physical robot.
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5.3.1 Motivation

Robot Operating System (ROS) provides an open-source framework for robotics soft-

ware development [29]. It is increasing in popularity, and provides a format for stan-

dardization such that code from one robotics platform may be adapted freely to

others. This allows for modularity in design, since one model may be added onto an-

other. ROS tools include Gazebo, the physics simulator in which the model is tested,

and RViz, a 3D visualizer for sensor data. These tools are maintained by the Open

Source Robotics Foundation.

5.3.2 Execution

The following instructions may be executed on a computer where ROS Kinetic or

Lunar has been installed. The files are available on Github. [30] The SDF model is

included in Appendix B.

First, Gazebo is launched with this terminal command;

roslaunch gazebo_ros empty_world.launch

Gravity may be changed to zero in the left sidebar in Gazebo, or by running the

following terminal command:

rosservice call /gazebo/set_physics_properties 0.001 1000.0 ’

[0.0, 0.0, 0.0]’ ’[False , 0, 50, 1.3, 0.0, 0.001, 100.0,

0.0, 0.2, 20]’

This terminal command restores gravity to normal:

rosservice call /gazebo/set_physics_properties 0.001 1000.0 ’

[0.0, 0.0, -9.8]’ ’[False , 0, 50, 1.3, 0.0, 0.001, 100.0,

0.0, 0.2, 20]’

A model can be spawned in Gazebo using the following code. The final string is

the label of the model in Gazebo.
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cd ~/ catkin_ws/src

rosrun gazebo_ros spawn_model -file canfield.sdf -sdf -x 0 -y

0 -z 1 -model Canfield

To perturb the model from the command line, run a variant on the line:

rosservice call /gazebo/apply_joint_effort joint1 -- 10000 0

1000000

Controller. The controller may be run with a variant on the following line of code:

rosrun canfield_joint_controller {,} &
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6 Conclusions and Future Research

6.1 Achievements

This thesis describes the development and implementation of a metrology platform for

the validation of a system for optical pointing, and the partial validation of an existing

prototype Canfield joint using that system. It also encompasses a kinematic analysis

of the Canfield joint, including previously unknown singularities, and the design and

construction of several models for future use. This represents a promising step towards

a pointing system suitable for Mars/Earth optical communications tracking.

6.2 Continued Integration Work

The test procedures described in Chapter 4 may be repeated for this prototype and

subsequent revisions. The mathematical work discussed in Chapter 3 is far from

exhausted, and may be extended to a more complete joint control system. The ROS

models developed herein are very basic. However, they may be iterated upon and

used as the basis for more realistic models in applied settings. The next step will be

to create a ROS node to calculate the forward kinematics and generate joint impulses

along some trajectory.
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6.3 Proposed Derivative Constructions

During the course of this research, several derivative linkages based on the Canfield

have been proposed.

6.3.1 Asymmetric Linkages

One possible derivative construction is an asymmetric Canfield joint, with different

lengths of base and distal legs. Varying the base sizes and symmetry also yields

new linkages; preliminary observations indicate that increasing the relative size of the

distal plate may avoid the “starfish” actuator singularity. Changing these lengths

would require significant adjustments to the kinematic analysis.

6.3.2 Compound Linkage

Another possibility currently under review is connecting two or more Canfield joints

with the distal plate of one mated to the base plate of another, perhaps using cable-

based actuators. This may lead to a larger workspace, or provide a basis for a mobile

robot.

6.4 Education and Outreach

The LEGO models developed in Section 5.1 are well-suited to outreach and edu-

cational purposes. They have been used with success at an outreach event at the

Cleveland Museum of Natural History. The Canfield joint provides a strong motivat-

ing example for several basic engineering and robotics concepts, including composing

a bill of materials, constructing subassemblies, adding an end effector to a robot

manipulator, and the pointing component of optical communication. Further, the
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geometric analysis in Section 3.2 can be used at the secondary level as a motivating

example for geometric concepts including the construction of a plane and the reflec-

tion of points across that plane, while optical communications serve as a motivating

example for the trigonometry required to calculate subtended angles. The Geogebra

model, being freely accessible online, may also be deployed in educational context to

provide a quantitative and interactive model with which students may experiment.

These models are presented for educational use in a recent NASA publication.1

1FS-2018-08-054-GRC, appended.
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Appendix A

Validation Code

The following code was used in MATLAB to interface with the KPA101 position

aligner using ActiveX controls:

actxcontrolselect

fpos = get(0,’DefaultFigurePosition ’); % figure default

position

fpos (3) = 650; % figure window size;Width

fpos (4) = 450; % Height

f = figure(’Position ’, fpos ,...

’Menu’,’None’ ,...

’Name’,’APT GUI’);

h = actxcontrol(’APTQUAD.APTQuadCtrl .1’, [20 20 600 400 ],

f)

%%

h.StartCtrl;

%%

SN = 69250441; %serial number

set(h,’HWSerialNum ’, SN);

%h.Identify

%%

data=zeros (10000 , 4); %preallocation

tic; %timing

for i=1: length(data)

%pause (.01)

[a, SumDiff , XDiff , YDiff ]=h.ReadSumDiffSignals (0,0,0)

;

%foo=XDiff

data(i, 1)=toc; %timing

data(i, 2)= XDiff;

data(i, 3)= YDiff;

data(i, 4)= SumDiff;

i

end

%%
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figure , plot(data(:, 2)), hold on , plot(data(:, 3)), plot(

data(:, 4)), legend(’Xdiff’, ’Ydiff ’, ’Sum’)

figure , plot(data(:, 2), ’LineWidth ’, 2), hold on, plot(

data(:, 3), ’LineWidth ’, 2), plot(data(:, 4), ’

LineWidth ’, 2), legend(’Xdiff’, ’Ydiff’, ’Sum’)



Appendix 81

Appendix B

SDF File

The following code comprises the SDF model of the Canfield joint, written in

XML.

<sdf version=’1.6’>

<model name=’canfield ’>

<self_collide >1</ self_collide >

<link name=’pedestal ’>

<pose frame=’’>0 0 0 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0 0 -0 0</pose >

<mass >2</mass >

<inertia >

<ixx >6.65125 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >6.65125 </iyy >

<iyz >4.44089e-16</iyz >

<izz >2</izz >

</inertia >

</inertial >

<collision name=’arm_collision ’>

<pose frame=’’ >0.25 0.433 3 0 -0 0</pose >

<geometry >

<cylinder >

<length >6</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<collision name=’

arm_fixed_joint_lump__base_plate_collision_1 ’>

<pose frame=’’ >0.25 0.433 6.05 0 -0 0</pose >

<geometry >

<cylinder >

<length >0.1 </ length >

<radius >0.5 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’arm_visual ’>

<pose frame=’’ >0.25 0.433 3 0 -0 0</pose >
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<geometry >

<cylinder >

<length >6</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

<visual name=’arm_fixed_joint_lump__base_plate_visual_1 ’

>

<pose frame=’’ >0.25 0.433 6.05 0 -0 0</pose >

<geometry >

<cylinder >

<length >0.1 </ length >

<radius >0.5 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<joint name=’glue_robot_to_world ’ type=’revolute ’>

<child >pedestal </child >

<parent >world </parent >

<axis >

<limit >

<lower >0</lower >

<upper >0</upper >

</limit >

<dynamics >

<damping >0</damping >

<friction >0</friction >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

<xyz >0 0 1</xyz >

</axis >

</joint >

<link name=’base_leg_1 ’>

<pose frame=’’>0 0 6.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >
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<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >

<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’base_leg_1_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’base_leg_1_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

<material >

<ambient >1 0 0 1</ambient >

<diffuse >1 0 0 1</diffuse >

<specular >0.1 0.1 0.1 1</specular >

<emissive >0 0 0 0</emissive >

</material >

</visual >

</link >

<joint name=’joint1 ’ type=’revolute ’>

<child >base_leg_1 </child >

<parent >pedestal </parent >

<axis >

<xyz >-1 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >
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<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<link name=’distal_leg_1 ’>

<pose frame=’’>0 0 7.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >

<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’distal_leg_1_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’distal_leg_1_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

</link >
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<joint name=’midjoint1 ’ type=’ball’>

<child >distal_leg_1 </child >

<parent >base_leg_1 </parent >

<axis >

<xyz >0 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<link name=’base_leg_2 ’>

<pose frame=’’>0 1 6.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >

<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’base_leg_2_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’base_leg_2_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >
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<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<joint name=’joint2 ’ type=’revolute ’>

<child >base_leg_2 </child >

<parent >pedestal </parent >

<axis >

<xyz >1 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<link name=’distal_leg_2 ’>

<pose frame=’’>0 1 7.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >

<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’distal_leg_2_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >
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<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’distal_leg_2_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<joint name=’midjoint2 ’ type=’ball’>

<child >distal_leg_2 </child >

<parent >base_leg_2 </parent >

<axis >

<xyz >0 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<link name=’distal_plate ’>

<pose frame=’’>0 1 8.1 0 -0 0</pose >

<inertial >

<pose frame=’’ >0.3 -0.55 0.05 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >1</ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >1</iyy >
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<iyz >0</iyz >

<izz >1</izz >

</inertia >

</inertial >

<collision name=’distal_plate_collision ’>

<pose frame=’’ >0.3 -0.55 0.05 0 -0 0</pose >

<geometry >

<cylinder >

<length >0.1 </ length >

<radius >0.5 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’distal_plate_visual ’>

<pose frame=’’ >0.3 -0.55 0.05 0 -0 0</pose >

<geometry >

<cylinder >

<length >0.1 </ length >

<radius >0.5 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<link name=’base_leg_3 ’>

<pose frame=’’ >0.866 0.5 6.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >

<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’base_leg_3_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >
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<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’base_leg_3_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<joint name=’joint3 ’ type=’revolute ’>

<child >base_leg_3 </child >

<parent >pedestal </parent >

<axis >

<xyz >0 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<link name=’distal_leg_3 ’>

<pose frame=’’ >0.866 0.5 7.1 0 -0 0</pose >

<inertial >

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<mass >1</mass >

<inertia >

<ixx >0.1 </ixx >

<ixy >0</ixy >

<ixz >0</ixz >

<iyy >0.1 </iyy >
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<iyz >0</iyz >

<izz >0.005 </izz >

</inertia >

</inertial >

<collision name=’distal_leg_3_collision ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</collision >

<visual name=’distal_leg_3_visual ’>

<pose frame=’’>0 0 0.5 0 -0 0</pose >

<geometry >

<cylinder >

<length >1</length >

<radius >0.1 </ radius >

</cylinder >

</geometry >

</visual >

</link >

<joint name=’midjoint3 ’ type=’ball’>

<child >distal_leg_3 </child >

<parent >base_leg_3 </parent >

<axis >

<xyz >0 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<joint name=’distal_joint2 ’ type=’revolute ’>

<child >distal_plate </child >
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<parent >distal_leg_2 </parent >

<axis >

<xyz >1 1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<joint name=’distal_joint1 ’ type=’revolute ’>

<child >distal_plate </child >

<parent >distal_leg_1 </parent >

<axis >

<xyz >0 -1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >

<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

<joint name=’distal_joint3 ’ type=’revolute ’>

<child >distal_plate </child >

<parent >distal_leg_3 </parent >

<axis >

<xyz >1 -1 0</xyz >

<limit >

<lower >-1e+16</lower >

<upper >1e+16</upper >

</limit >

<dynamics >
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<spring_reference >0</ spring_reference >

<spring_stiffness >0</ spring_stiffness >

</dynamics >

<use_parent_model_frame >1</ use_parent_model_frame >

</axis >

</joint >

</model >

</sdf >
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