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Diagnostic Tools for Forecast Ensembles

Abstract

by

NANA AMA APPIAA BAFFOE

Forecasting is an important area in statistics and as a result it is important that our fore-

casts reflect our uncertainties. But most importantly, our forecasts should be as accurate

as possible. And how can forecasters tell whether their probabilistic forecast distribution

are the same or close to the true distribution, which is unknown most of time (if not all

time) to the forecaster. We need to come up with a diagnostic tool that helps us to know

how close our probabilistic forecasts distributions are to the true distribution. Verification

rank histograms and probability integral transforms (PIT) histograms are the most com-

mon diagnostic tools to determine if probabilistic forecast distributions and observations

are well calibrated in the univariate settings. Calibration in a nutshell means how statis-

tically compatible the probabilistic forecasts and observations are. The purpose of this

study is to compare the sensitivity of the following calibration metrics/multivariate rank-

ing methods - Multivariate ranking method, Minimum Spanning Tree, Band Depth and

Average ranking method to mispecifications. A simulation study and a case study of the

Orbiting Carbon Observatory 2 (OCO-2) are presented.

The general findings from our study is that, when comparing the four diagnostic tools for

forecast ensembles, the minimum spanning tree and the band depth methods are better
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at detecting misspecifications than the multivariate rank method. Also the average rank

method with the band depth method and/or minimum spanning tree method gives us

more information than band depth or minimum spanning tree alone.
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1 Introduction

1.1 Probabilistic Forecasting

Have you ever wondered how your local meteorologist or your weather app predicts the

weather for the next hour or day or even week? Or even how bankers give out their port-

folio values? These and many other predictions or forecasts are made possible with utter-

most precision because of probabilistic forecasting. Arguably, the most mature and suc-

cessful implementation of probabilistic forecasting methods is in weather predicition.1

Probability forecasting refers to the process of assigning numerical probabilities to an un-

certain event. One of the major purposes of statistical analysis is to make forecasts for

the future and therefore it would be important if these forecasts had our uncertainties

associated with them (Dawid 1983)2. There are two (2) types of probabilistic forecasting

commonly used. These are ensemble forecasts and density forecasts.

A forecast ensemble with m ensemble members has a discrete predicitive distribution

which usually assigns probability mass 1
m to each ensemble. Ensemble forecasts provide
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an ensemble or set of values or range of future possibilities, hence its name. Forecast en-

sembles are popularly used in weather and climate predictions. The ensembles are usually

obtained by running weather forecasting models using a range of initial conditions and

parameter values. These weather models are deterministic.

Ensemble forecasting which is a method commonly used in numerical weather predic-

tions is providing an ensemble (set) of values or range of future possibilities. Ensemble

forecasting allows us to incorporate our uncertainty which is why it is preferred to the

point (single) forecasts which has no form of uncertainty associated with it. Weather can

be very unpredictable that’s why it’s necessary for its forecast to have some level of uncer-

tainty. The less knowledgeable we are about a condition, the higher our uncertainty. In

weather forecasting, the shorter the range of the forecast is ,the better the forecast.

The density forecast on the other hand has a continuous predictive distribution. The den-

sity forecasts are popular in economic and financial applications. In this paper, we con-

centrate more on the ensemble forecasting.

1.2 Diagnostic Tools For Univariate Forecasts

Calibration is concerned with the statistical compatibility between the probabilistic fore-

casts and the realizations and is a joint property of predicive distributions and the vector-

valued events that materalize1. Essentially, the observations should be indistinguishable

from random draws from the predictive distributions for a probabilistic forecast to be well-

calibrated.



Introduction 4

Suppose at an instance or time t , nature chooses/follows a distribution which is unknown

to a forecaster (which is always the case in practice). Let’s call this distribution Gt . We

let xt be the observation drawn from natures true distribution Gt . At the same time t , a

forecaster makes a probabilistic forecast which is in the form of a predicitive cummula-

tive distribution function (cdf), call it Ft . The probabilistic forecasts chosen/given by the

forecaster, usually depends on the expertise and experience of the forecaster and it may or

may not be derived from a statistical algorithm. The forecasts made by the forecaster are

said to be ideal or perfect if3

Gt = Ft for all t (1.1)

where t = 1,2, ......

Suppose Ft and Gt are continuous and therefore strictly increasing. Because the true

distribution (Gt ), is not observed in practice, we perform any calculations that need to be

done on forecasts (Ft ) and the observation (xt ) only where xt is an observation from Gt .

In the univariate case, calibration can be assessed using the probability integral transform

(PIT). That is in order to evaluate the statistical compactibility between the probabilistic

forecast and the observation, Dawid(1984) and Diebold et al (1998)4 proposed the use of

the probability integral transform (PIT) value. The probability integral transform (PIT)

value is the value that a predictive cumulative distribution function (CDF) attains at the

observation. Mathematically is given as:
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pt = Ft (xt ) (1.2)

If the forecasts are ideal and the Ft is continuous, then the pt has a uniform distribution.

Hence the uniformity of the PIT is a necessary but not sufficient condition for a forecast

to be ideal in the univariate case. So there could be instances where the PIT histograms

generated are flat or uniform but the probabilistic forecast and the observation do not

follow the same distribution.

Probability integral transform (PIT) is suitable for situations in which forecast is presented

as a continuous probability distribution functions. Therefore we describe them with an

equation or formula and this equation is known as probability density function (pdf). The

probability integral transform says:

If x is a continuous random variable with a cdf FX (x) and if Y = FX (X ), then Y is a

uniform random variable on the interval [0,1]. . So simply put, the idea behind PIT is that

if one plugs a random variable into its own cdf, one gets a uniform distribution. And that

is why when an observation (xt ) has the same distribution the forecast distribution Ft ,the

PIT values tend to follow a uniform distribution.

Calibration is empirically tested by plotting histograms of PIT values and checking for uni-

formity (Dawid 1984; Diebold et al. 1998; Gneiting et al. 2007). These histograms gener-

ated by the PIT values are known as PIT histograms. These PIT histograms makes it vi-

sually easier for the forecaster to determine if the probabilistic forecasts are ideal. For an

ideal forecast, the PIT histograms are flat or uniform. When we do not have the analytical
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form of Ft but have samples from it, calibration can be assessed with a verification rank

histogram (Hamill 2000).

These rank histograms are generated by tallying the ranks of the verification (i.e. the obser-

vations) relative to values from an ensemble sorted from lowest to highest (Hamill 2000)5.

The rank histogram are equivalent to the PIT histograms in the sense that if the obser-

vations come from the same distribution as the m ensembles, the ranks are uniformly

distributed over the set 1,2, .....m. The rank histograms are used for ensemble forecasts

whiles the PIT histograms are for density forecasts.

The PIT histogram or the verification rank histograms can provide information as whether

a probabilistic forecast ensemble is well-calibrated or not. For example, a well-calibrated

probabilistic forecast ensemble has a flat/uniform histogram, a ∪-shaped PIT histogram

indicates that predicitive distributions are too narrow or underdispersed and ∩-shaped

PIT histogram indicates overdispersion or predicitive distributions are too wide on an av-

erage3. Furthermore, a skewed PIT histogram would suggest that the forecast distribution

is biased, i.e. has a different mean than the true distribution.

1.3 Diagnostic Tools for Multivariate Forecasts

The univariate tools do not generalize directly to the multivariate setting because there

is no universal way of ordering multivariate vectors, and this is true for both multivariate

density forecasts and ensemble forecasts. In the multivariate case, which is the case of

interest in this paper, in order to rank an observation, we first apply a pre-rank function
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(which differs from each diagnostic tool/calibration metric) to the observation and the

forecast ensembles in order to get quantities called pre-ranks. To obtain a verification

rank histogram, we find the rank of the pre-rank of the observation when pooled within

the ordered pre-ranks ensemble and plot of the histogram of those ranks.

In other words, multivariate properties are mapped to a single dimension through a pre-

rank function and the calibration is subsequently assessed through a histogram of the

ranks of the observation’s preranks6. We will explain in more details in chapter 2.

We discuss four ranking methods that have been proposed for assessing ensemble forecast

calibration in the multivariate setting in this paper. These ranking methods or calibration

metrics are - Multivariate rank, Minimum Spanning tree, Average rank and Band depth

ranking method.

In this Thesis, we investigate how well these calibration metrics detect misspecifications

in these probabilistic forecast ensembles and their strengths and the weaknesses. For ex-

ample, which of these methods detects misspecified mean or correlation structure of the

probabilistic forecast ensembles well. Which of these calibration metrics works better with

a bigger sample among others. These calibration metrics general follow the same proce-

dure, the only difference among them, are how their preranks are assigned.

The remainder of this Thesis is organized as follows. In Chapter 2, we look at four (4)

multivariate ranking methods - Multivariate rank, Minimum Spanning tree,average rank

and Band depth ranking method. In Chapter 3, we present a simulation study using these
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all ranking methods. We look at application of these calibration metrics to a real data set

in Chapter 4 and we conclude in Chapter 5.
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2 Ranking Methods

2.1 What are Ranking Methods/ Diagnostic Tools?

Ranking methods/diagnostic tools are methods used to order multivariate vectors and

check the calibration of multivariate ensemble forecasts. In order to plot these histograms,

we need to apply a ranking method on the forecast ensemble and the observation. The

Multivariate ranks, Minimum spanning tree, Band depth and Average ranks are the four

ranking methods we consider in this Thesis. The general set up for using the four ranking

methods for calibration metrics discussed here is the same. The main difference among

these are their pre-rank functions i.e. how multivariate vectors are ordered. In other words

how pre-ranks are assigned in a ranking method determines the method.

All these ranking methods assume the probabilistic forecasts are given by ensemble. We

define B = {x1, ...,xm} to denote a set of points in Rd or a d-dimensional subset with x j =

(x j 1, ...., x j d ). That is to say we assume B contains m elments of which, m − 1 are the

probabilistic forecast ensembles and the corresponding observation y = xm . This is the

general set-up for all four 4 ranking methods. In order to generate a verification rank

histogram(also called Talagram diagram), we first need to rank the observation xm when
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pooled within the ordered ensemble values and plot the histograms of the ranks. To rank

the observation (xm) in B, we follow these two main steps.7.

(1) Apply a prerank function ρB : Rd → R+ to calculate the prerank ρB (x), of every

x j ∈ B .

(2) Set the rank of the observation xm equal to the rank of ρB (xm) in ρB (x1),...,ρB (xm)

with ties resolved at random.

A visualization of the verification rank histograms generated by these ranking methods

provide information about whether our ensemble forecasts are well-calibrated or not.

The pre-rank functions have different properties and the rank histograms generated can-

not be interpreted in the same way. In this Chapter we go into details of each ranking

method/calibration metric. In the subsequent Section 2.2 we explain the concept of the

multivariate rank method and give an example. We similarly do that for the average rank

method in Section 2.3, the minimum spanning tree rank method in Section 2.4 and the

band depth rank method in Section 2.5.

2.2 Multivariate rank

The multivariate rank histogram was proposed as a diagnostic tool by Gneiting et. al

(2008)7 and is defined as follows: We consider ensemble forecasts for a vector-valued

quantity that takes values inRd . Given vectors x = (x1, x2, ...., xd )′ ∈Rd and y = (y1, y2, ...., yd )′ ∈

Rd , we write

x ≤ y if and only if x j ≤ y j for j = (1,2, ...,d) (2.1)
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For example, given the vectors x1 = {2,4,5}, x2 = {1,5,5} and x3 = {8,10,9}. Here we have

x1 < x3 because each element in x1 is lower than the corresponding element in x3.

Similarly, we have x2 < x3. The case of x2, although two elements in x1, (4,5), are less than

or equal to the corresponding elements in x2, it still does not make x1 < x2 so x1 ≮ x2. On

the other hand, x2 < x1 does not hold either, so we have x2 ≮ x1. In order to construct

a multivariate rank histograms, we would need to compute the multivariate rank by re-

peating over individual forecast cases. Simply put, the multivariate rank histogram is a

plot of the empirical frequency of the multivariate ranks7. For a given ensemble forecast

x j ∈ Rd : j = 0,1, .....,m and a verifying observation x0 ∈ Rd , where m is number of ensem-

ble members, we compute the multivariate ranks as follows. 1

(1) We assign the pre-ranks. The prerank function is defined as :

ρ j =
m∑

k=0
1(xk ≤ x j ) (2.2)

where 1 is the indicator function

1(xk ≤ x j ) =


1 if xk ≤ x j

0 otherwise

The pre-ranks are integers and they range between 1 and m +1. The pre-rank is

calculated for all j = 0,1, ....m

1Sometimes we standardize the ensemble member forecast and the verifying observation using a principal
component transform as suggested by 7 but we do not do that in the paper.
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(2) We compute the multivariate rank r next. The multivariate rank, is the rank of the

observation pre-ranks with ties resolved at random so the multivariate rank, r is

within s< + 1 and s< + s=, where

s< =
m∑

j=0
1(ρ j < ρ0) (2.3)

s= =
m∑

j=0
1(ρ j = ρ0) (2.4)

Let’s apply the multivariate rank method to a hypothetical example. Suppose we have 6

ensemble member forecast (m = 6), x j : j = 1,2,3,4,5,6 and an observation x0 with x0 =

{4,2,5}, x1 = {3,2,3}, x2 = {5,3,7}, x3 = {2,1,3}, x4 = {9,8,9}, x5 = {2,2,1} and x6 = {7,4,3}.

We begin by assigning the pre-ranks, each pre-rank ranges from 1 to 7. We have

ρ0 =
6∑

k=0
1(x j ≤ x0)

=1(x0 ≤ x0)+1(x1 ≤ x0)+1(x2 ≤ x0)+1(x3 ≤ x0)+1(x4 ≤ x0)+1(x5 ≤ x0)+1(x6 ≤ x0)

= 1 + 1+ 0+ 1+ 0+ 1+ 0

= 4

To compute the pre-rank for ensemble member 1 (ρ1), we go through similar procedure.
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ρ1 =
6∑

j=0
1(x j ≤ x1)

=1(x0 ≤ x1)+1(x1 ≤ x1)+1(x2 ≤ x1)+1(x3 ≤ x1)+1(x4 ≤ x1)+1(x5 ≤ x1)+1(x6 ≤ x1)

= 0 + 1+ 0+ 1+ 0+ 1+ 0

= 3

Note 1(xk ≤ xk ) = 1 is always going to be true. That’s why the smallest pre-rank for an

observation and or ensemble member forecast is always going to be at least 1.

From the above, we know the pre-ranks for the observation and ensemble member 1 are 4

and 3 respectively. The pre-ranks for the remaining 5 ensemble members were computed

in similar manner and are given in the table below. The pre-ranks for ensemble members

2 to 6 are given as ρ2,ρ3,ρ4,ρ5,ρ6 respectively.

Vector ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

Pre-rank 4 3 4 1 7 1 4
Table 2.1. Pre-ranks using multivariate ranking method for a hypothetical
example

We go ahead and find the multivariate rank r for the observation. We first find s<and s=.

s< =∑6
j=01(ρ j < ρ0)
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=1(ρ0 < ρ0)+1(ρ1 < ρ0)+1(ρ2 < ρ0)+1(ρ3 < ρ0)+1(ρ4 < ρ0)+1(ρ5 < ρ0)+1(ρ6 < ρ0)

=1(4 < 4)+1(3 < 4)+1(4 < 4)+1(1 < 4)+1(7 < 4)+1(1 < 4)+1(4 < 4)

= 0 +1 +0 +1 +0 +1 +0

= 3

s= =∑m
j=01(ρ j = ρ0)

s= =1(ρ0 = ρ0)+1(ρ1 = ρ0)+1(ρ2 = ρ0)+1(ρ3 = ρ0)+1(ρ4 = ρ0)+1(ρ5 = ρ0)+1(ρ6 = ρ0)

=1(4 = 4)+1(3 = 4)+1(4 = 4)+1(1 = 4)+1(7 = 4)+1(1 = 4)+1(4 = 4)

= 1 +0 +1 +0 +0 +0 +1

= 2

Therefore

r ∈ {s<+1, ...., s=+ s<} (2.5)

r ∈ {3+1, ...,2+3} (2.6)

r ∈ {4,5} (2.7)

Hence in this example,the multivariate rank r could either be 4 or 5. We choose r at ran-

dom say r = 5. We could avoid this random selection of r by using the construction pro-

posed by Czado et. el (2007)8 but we will not do that here. The multivariate rank reduces

to the univariate verification rank when the dimension d = 1.
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2.3 Average rank

The average rank method was introduced by Thorarinsdóttir et al (2016)6. The average

rank is simply average over the univariate ranks of each element of the observation vec-

tor6. Let r ankB (x j k ) denote the rank of the k th coordinate of x j in B , i.e.

r ankB (x j k ) =
m∑

i=0
1(xi k ≤ x j k ) (2.8)

The prerank function is given by

ρa
B (x j ) = 1

d

d∑
k=1

r ankB (x j k ) (2.9)

The average rank is reduced to the classical univariate rank when d = 1. The interpretation

of the average rank histogram is similar to univariate rank histogram. That is, if the fore-

cast are underdispersive the average rank for the observation is U-shaped, an overdisper-

sive ensemble results in ∩ - shaped histogram while a constant bias results in a triangular

shaped histogram. Both multivariate rank and average rank have their prerank functions

analogously to the univariate rank histogram. They both provide measures of "ascending

rank" of the observation vector x0 relative to the ensembles.

Let B be a set of m−1 ensemble and an observation vector. In order to compute the average

rank of an observation xm , we first rank each component of xm relative to its correspond-

ing components of the ensemble members. The ranks are assigned in an ascending order.

Then we compute the average rank by computing the average of all the ranks for each
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vector. Finally to determine the average rank of the observation xm , we rank(in an ascend-

ing order) the average ranks of all the vectors then determine the rank of the observation

vector.

For example,suppose we have a dimension d = 3 and m = 4,that is we have 3 ensemble

vectors and an observation vector. Note, ties are resolved at random. Let x4 be the obser-

vation.

B = [x1,x2,x3,x4] (2.10)

Suppose in this example our B is given as

B =


2 10 5 7

15 12 13 9

8 6 12 28


To rank x4, which is the observation vector,we first rank the first component of x4 (first

row) with respect to the ensemble members which is 7 in this case. So we rank 7 with

respect to the ensemble members which are 2 ,10 and 5. The rank of 7 is 3 as we can

see. Then we come to the second row, the rank of x42 i.e. (9) is 1, then last row, the rank

of the observation (28) is 1. This procedure is known as pre-ranking. We rank also the

ensemble vectors in similar manner. Below is the table of the pre-ranks of observation

and ensemble members in B .
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Pre-ranks of B =


1 4 2 3

4 2 3 1

2 1 3 4


From the table above, we see x4 has following ranks 3 ,1 and 1 likewise x1 has ranks

1 ,4 and 2. The ranks for x2 and x3 are given in the second and third columns respec-

tively. We then go ahead and compute averages of ranks for each vector and then rank

these averages in an ascending order. Ties are resolved at random. Below is the table for

the average of the ranks and their respective ranks. For example, the average of the ranks

in x4 is given by (3 + 1+ 4)/3 which is 2.667.

Vector Average of ranks Rank

x(1) 2.333 1
x(2) 2.333 2
x(3) 2.667 3
x(4) 2.667 4

Table 2.2. Pre-ranks using Average ranking method for a hypothetical example

From the table 2.2 above, we see that x4 has one of two smallest pre-ranks and we conclude

(after a random draw) that the average rank for the observation x4 is 4.

2.4 Minimum Spanning Tree

What is a spanning tree? Let G = (V ,E) undirected and connected graph where V are the

set of vertices and E are the set of edges.
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A spanning tree of the graph G is a tree that spans G in the sense that it includes every

vertex of G and is a subgraph of G (every edge in the tree belongs to G). The cost of the

spanning tree is the sum of the weights of all the edges in the tree. Minimum spanning

tree is therefore the spanning tree where the cost is minimum among all the spanning

trees. A graph can have many minimum spanning trees. Two famous algorithms for find-

ing a Minimum Spanning Tree- Kruskal(1956)9 and Prim(1957)10 are given below. Any of

these algorithms can be used is solely the choice of the experimenter. MSTs has many

applications including the network design, cluster analysis and among others.

Kruskal algorithm

(1) Label each vertex (v)

(2) List the edges in non decreasing order of weight,starting the shortest edge.

(3) Start with the smallest weighted and begin growing the minimum weighted span-

ning tree from this edge.

(4) Add the next available edge that does not form a cycle to the construction of the

minimum weighted spanning tree.

(5) Continue with step 4 until you have a spanning tree(.i.e until we have v−1 edges).

Prim algorithm

(1) Choose a starting vertex for your tree at random.

(2) Find the edge with the smallest weight that connects the tree to the vertex that is

not in the tree, and add it to the tree.
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(3) Continue this until all of the vertices are in the tree.

The basic difference between the Prim algorithm and the Kruskal algorithm is which edge

to choose to add to the next spanning tree in each step.In Prim’s, you always keep a con-

nected component (.i.e the graph must be a connected graph),starting with a single vertex

and then look for all the edges from the current component to other vertices and find the

smallest among them.In the Kruskal algorithm, you start by sorting the edges by length

and adding them to the tree in order, the shortest edge.Kruskal begins with a forest and

then merge into a tree whiles the Prim always remains as a tree.

Minimum Spanning Tree Rank Method

The minimum spanning tree(MST) rank was introduced as a multivariate calibration as-

sessment tool by Smith (2001)11. This rank method is used to assess the reliability of en-

semble forecast where the ensemble forecast have high dimensions and therefore the reg-

ular rank histogram(used for scalar ensemble forecast) cannot be used. In a nutshell, the

MST approach yields rank histogram that can evaluate ensembles in an m-dimensional

space.

This is how the MST rank method works. For a given n ensemble members and an obser-

vation(verification), the ranks range from 1 to n +1. First compute the MST length for the

ensemble members only call it say mens . Then take turns replacing one ensemble member

with the observation and compute the MST length for each.
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For example, we replace ensemble member A with the observation O,we then compute

the MST length, let’s call it ma . Then we replace ensemble member B with the observa-

tion and calculate the MST length and call it mb . We repeat this process for all n ensem-

ble members, the last MST length would be mn . In order to rank the ensemble member

mens , we rank the calculated MST lengths in an ascending order. In this is case, we rank

m f ,m1,m2, ....,mn in an ascending order. Ties are resolved randomly.

Let’s take an hypothetical example, if we have 9 ensemble members and an observation,which

implies rank of ensemble member ranges from 1 to 10). Below are the plots of minimum

spanning tree (MST) using Prim algorithm.
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Figure 2.1. Hypothetical example of Minimum spanning tree (MST) in d
= 2 dimensions. Left: The nens = 9 ensemble members labeled from A-I.
Right: We replace the ensemble member I with the observation O (which
is in blue). The edge weights do not represent the Euclidean distances be-
tween nodes. This MST was computed using the Jarnik-Prim algorithm.
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Figure 2.2. Left: We replace the ensemble member H with the corre-
sponding observation O (which is in blue).Right: We replace the ensemble
member G with the corresponding observation O (which is in blue). The
length/weights of the edges are indicated on the lines. This MST was com-
puted using the Jarnik-Prim algorithm.
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Figure 2.3. Left: We replace the ensemble member F with the correspond-
ing observation O (which is in blue). Right: We replace the ensemble
member E with the corresponding observation O (which is in blue). The
length/weights of the edges are indicated on the lines. This MST was com-
puted using the Jarnik-Prim algorithm.
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Figure 2.4. Left: We replace the ensemble member D with the correspond-
ing observation O (which is in blue). Right: We replace the ensemble
member C with the corresponding observation O (which is in blue). The
length/weights of the edges are indicated on the lines. This MST was com-
puted using the Jarnik-Prim algorithm.
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Figure 2.5. Left: We replace the ensemble member B with the observation
O (which is in blue). Right: We replace the ensemble member A with the
observation O (which is in blue). The length/weights of the edges are in-
dicated on the lines. This MST was computed using the Jarnik-Prim algo-
rithm.

In order to find the minimum spanning tree (MST) lengths, we sum the weights of each

minimum spanning tree. For example, the MST length for mi (see figure 2.1) is given as
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mi = 1.5+1.12+ ...+3+2.3 which gives 12.04. The rest of MST lengths were computed in

similar manner and they are shown below:

ma = 11.04

mb = 11.19

mc = 11.24

md = 12.82

me = 15.68

m f = 10.24

mg = 11.42

mh = 12.24

mi = 12.04

mens = 12.3

We then rank these MST lengths in an ascending order shown in table 2.3, and find the the

rank for the ensemble member is 8.

When the ensemble member forecast and observation follow the same distribution, the

MST rank histogram is going to be flat or uniform. Likewise if we have smaller ranks the

MST histogram is going to be skewed to the right and it would be skewed to the left when

we have bigger ranks. We note that MST ranks give an indication of how "central" the
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Names MST length Rank

m f 10.24 1
ma 11.04 2
mb 11.19 3
mc 11.24 4
mg 11.42 5
mi 12.04 6
mh 12.24 7

mens 12.30 8
md 12.82 9
me 15.68 10

Table 2.3. Ordered MST lengths for a hypothetical example

observation is with respect to ensemble members , mens will be smaller than most MST’s

that include the observation. Likewise, if the observation is centrally located the MST’s

that include it will tend to be smaller than mens .

2.5 Band depth and Modified Band depth

The band depth or the modified band depth rank method is another diagnostic tool in-

troduced by Thorarinsdóttir et al (2016)6 and it is based on the concept of band depth for

functional data Lopez-Pintado and Romo (2009)12, introduced a center-outward ordering

of curves, which they called band depth. Band depth of a multivariate vector x j in a set

of vectors B is defined as the proportion of elements of x j = (x j 1, ........,x j d ) that are inside

bands defined by subsets of n vectors. Usually n is set as equal to 2 and we follow that con-

vention here. Therefore, the band depth of x1 is the proportion of elements of x j that are

between the corresponding element of pairs of vectors in B . The proportion is taken over

all pairs
(m

2

)
and all elements d . The difference between the band depth and the modified
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band depth, is that the band depth rank method has an indicator function which makes

it harder to work with in practice but the modified band depth rank method doesn’t and

thus makes it easier to work with. The modified band depth takes the proportion of times

that a curve is in a band of two other curves into account and hence it avoids having too

many depth ties. The modified band depth is more convenient to obtain the most repre-

sentative curves in terms of magnitude, while the band depth rank on the other hand is

more dependent on the shape of the curves often yielding ties and thus it can be used to

obtain the most representative curves in terms of shape. If a curve r (t ) always lies inside

the band, the modified band depth degenerates to the band depth. A curve is contained

in a band even if this curve is on the border. The more centered the curve, the higher the

rank.

The pre-rank function for the band depth is given as:

ρbd
B = 1

d

d∑
k=1

[m − r ankB (xk )][r ankB (xk )−1]+ (m +1) (2.11)

where r ankB (xk ) =
m∑

i=1
1{xi k ≤ xk } is the rank of the k th element of k among the k th ele-

ment of the forecast ensembles.

0 ≤ ρbd
B ≤ 1 ∀x

The closer the band depth is to 1, the deeper or the more centered the observation curve

is. Likewise the closer the band depth is to 0 the more the observation curve is among the

outlying curves. In the band depth ranking method, we consider the probabilistic forecast

ensembles and observation as curves. In a nutshell, the more centered the observation
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curve (in red) is in the forecast ensembles, the higher the ranks likewise the more outlying

the observation curve (in red) is, the lower its rank. For example, observation curve in

figure 2.6, a would have a higher rank than observation curve in b.

Figure 2.6. An example of band depth for forecast ensembles and observa-
tion(in red). The grey area is the band delimited by y2 and y1. Left: Figure
(a) right: Figure (b)

Although Lopez-Pinatado and Romo (2009) proposed the computation of a bandepth and

modifoed rank, the method proposed by Sun et al (2012)13 is faster and also easier to im-

plement.

For a curve of interest say j , in order to implement the exact method by Sun et al (2012),

we must first determine the number of curves that that are completely above the curve

of interest, call it na , and the number of curves that are completely below the curve of

interest, call it also nb . Note, a curve is also defined as "contained in a band", if it is on

the border of the band13. Then to compute the band depth of j , the formula by Sun et al

(2012) is given by:

(na ×nb +n −1)/

(
n

j

)
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We apply the Sun et al method to a hypothetical example. Suppose we have 3 forecast

ensemble curves (y1, y2 and y3) and an observation curve (yobs),which implies that n = 4.

This is shown in figure 2.6 below. From figure 10, the band is delimited by y1 and y2 and

therefore, j = 2. The possible number of bands is 6, that is
(4

2

)
.

Figure 2.7. An example of the band depth and modified band computation:
the grey area is the band delimited by y2 and y1. The curve y3 completely
belongs to the band, but yobs only partly does.

To compute the band depth (BD) for y3, the number of curves that are completely above it

(na) is 1 (as shown in figure 2.7) and the curves completely above (nb) is 2. Using the Sun

et al method,

BD(y3) = na ×nb +n −1

= 1×2+4−1

= 5
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Therefore BD(y3) is 5
6 (0.83). Because y3 is completely in the band, the modified band

depth of y3 is same as the band depth. The band depth for yobs , is given as

BD(yobs) = na ×nb +n −1

= 3×0+4−1

= 3

Hence BD(yobs) is 3
6 (0.5).

The computation for modified band depth (MBD) for yobs is little different. For yobs , the

curve is partly in the band. Approximately 80% of yobs belongs the band thus MBD(yobs) is

(3+0.8+0.8)/6 = 4.6
6 = 0.77. The band depth and modified band depths for y1 and y2 were

computed inn similar manner. BD(y1) = MBD(y1) = 3
6 and BD(y2) = MBD(y2) = 3

6 .

The closer the value of the band depth/modified band depth is to 1, the more centered the

curve is in the band and this has been verified by the example above.
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3 Simulation Study

3.1 General Simulation setup

The general setup for this simulation study is to, generate a multivariate observation from

a distribution say G and a multivariate ensemble from a forecasting distribution, say F.

The forecasting distribution (F) is usually different from that of the distribution of the ob-

servation G in some way, such as misspecified means and/or covariances. We calculate the

rank of the observation in the forecasting ensembles, using one of the four ranking meth-

ods. This procedure is repeated many times and then histograms are generated using the

ranks.

If G = F, the histograms will be approximately uniform for all four ranking methods. If F

is misspecified in some way the histograms of ranks may deviate from uniformity in some

way. The goal of this simulation study is to investigate if and how the four ranking methods

are able to identify misspecification of the forecasting distribution.

In this simulation study the forecast ensembles Y = (Y1, ...,Yd ) follows a Gaussian autore-

gressive (AR) process with a correlation function given as:
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cov(Yi ,Y j ) = exp(−|i − j |/τ), τ> 0 i , j = 1, ..,d (3.1)

or a standard multivariate Gaussian N (0, I ). The parameter τ controls how fast correla-

tions decay with time lag. τ is set to 3 for the forecast throughout the simulations. We

assume that the forecast ensemble consists of 19 members and has a dimension, d = 16.

The mean of the forecast will either be a vector of zero or shifted in some way to mimic a

biased forecast.

We consider five true distributions (Gs) for the observations in this simulation study. We

can think of these observations in terms of weather forecasting as five weather observa-

tions from five different locations. All these five observations were simulated from a mul-

tivariate normal distribution with mean 0 and variance of 1. The main difference in the

observations are their correlation structures which in effect gives them different variance-

covariance matrices. We now go into details on how the variance-covariance matrices

were formed for each observation. We will examine several cases of forecast misspecifica-

tion (F) by varying the mean vector and variances. Furthermore, the forecasting distribu-

tion will have the same correlation structure as one of the true distributions (observation

4) although we also consider a diagonal covariance matrix.

The variance-covariance matrices (Σ) for the forecast and the observations are formed

by correlation functions and therefore all the five observations have different variance-

covariance matrices (Σs).
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The correlation functions for the observations are given in equations 3.2−3.6 below. The

plots of the correlation functions of the observations (1 to 4) and the forecast against the

lags are shown in figures 3.1 and 3.2.

obs1 : cov(Yi ,Y j ) = exp(−|i − j |/4.5)(0.75+0.25cos(π|i − j |/2)) (3.2)

obs2 : cov(Yi ,Y j ) = (1+|i − j |/2.5)−1 (3.3)

obs3 : cov(Yi ,Y j ) =1‖|i− j |≤5|/(1−|i − j |/5) (3.4)

obs4 : cov(Yi ,Y j ) = exp(−|i − j |/τ), τ> 0 (3.5)

obs5 : cov(Yi ,Y j ) = 0 ∀i 6= j (3.6)

Figure 3.1. Plots of four observation (4) correlation structure/function. Ob-
servation 5 has no correlation structure and therefore it is not represented
here.
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Figure 3.2. Plots of the correlation structure/function against lags. Individ-
ual plots of the correlation structure. Observation 4 has the same correla-
tion structure as the forecast. Observation 5 has no correlation structure
and therefore it is not represented here.

The elements of the 16 × 16 dimensional covariance matrices are calculated using these

the equations (above) with i = 1,2, ........16 and j = 1,2, .......,16.

The correlation structure for observation 1 is a damped cosine that oscillates around the

exponential model. The correlation function for observation 2 is an exponential of lags (a

distance matrix). This exponential model has a much stronger correlations at larger time

lags. The correlation function for observation 3 is also an exponential. The difference

between that of observation 2 and 3 is that, the correlation structure for observation 3 is

a piecewise function. The exponential model for observation 3 has zero correlations for

larger time lags6. The correlation function/structure for observation 4 is an exponential
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of lags (a distance matrix) divided by τ and the Observation 5, on the hand has no cor-

relation structure/function and therefore its variance-covariance matrix is the identity of

size 16 (I16). The variances, i.e. the diagonal of the variance-covariance matrices are ones

(1) in all the five (5) distributions(observations). The distributions of the five observations

remain unchanged throughout these simulations. The forecast distribution (F) consid-

ered in this simulation study, either has the covariance structure same as observation 4 or

are independent correlation function as observation 5. There are times, when we change

the mean and/or the variance of the forecast, while the observations remain unchanged.

Intuitively we think about the difference in correlation functions between forecast and

observation this way:

(1) Forecast has a weaker correlation (shorter correlation length) than observation 2.

(2) Forecast has a slightly stronger correlation (longer correlation length) than obser-

vation 3.

(3) Forecast has a similar correlation length as observation 1 but has a monotone

correlation function while observation 1 has an oscillating correlation function.

(4) Forecast has much stronger correlation structure than observation 5.

For each observation (vector), 19 ensemble member forecasts (vectors) are generated from

F. That is we apply the four diagnostic tools discussed in Chapter 2 to a 19-member en-

semble forecast generated from forecast distribution such as N ∼ (µ,Σ4), paired with each

of the 5 observation vectors generated from the distribution of the observation respec-

tively. This implies the pre-ranks for each observation is between 1 and 20.
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3.2 Cases of forecast misspecifications

We now apply all these four ranking methods/diagnostic tool to several hypothetical cases

and see how each one behaves. We also wanted to know the sensitivity of these ranking

methods to misspecifications better. These cases are misspecifications of various forms

to the ensemble member forecast distribution, the ensemble size and the dimension size.

In other words, the misspecifications were only made for the ensemble member forecast,

leaving the mean, variance-covariance matrices and the correlation functions of all five(5)

observations unchanged. The misspecifications of the ensemble member forecasts in-

cluded but were not limited to the mean, variance-covariance matrix and the correlation

structure.

Six (6) cases were considered in this chapter, and these cases are as follows :

In case 1, the correlation structure/function for the ensemble member forecast was mis-

specified, the forecast distribution had a correlated correlation function or an indepen-

dent correlation function. That is the correlation function for observation 4 and observa-

tion 5 was used for the ensemble member forecast respectively. For Case 2, the variance-

covariance matrix of the forecast distribution was specified. The mean (positive) of the

ensemble member forecast distribution was misspecified in Case 3. In Case 4, the mean

of the forecast was also misspecified. This time the mean of forecast distribution has a

negative mean. We considered smaller ensemble size and smaller dimension for Cases 5

and 6 respectively.
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3.2.1 Case 1: Misspecified correlation structure/function

Case 1.1: Forecast has correlated correlation structure/function

In case 1.1, the forecast distribution has a correlation structure, that is the forecast distri-

bution has the same correlation structure as observation 4. The distributions of forecast

and observations are shown in the table 3.1.

Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ) [0,0,0,...,0] [1,1,1,...1]
Obs1 N ∼ (µ1,Σ1) [0,0,0,...,0] [1,1,1,...1]
Obs2 N ∼ (µ2,Σ2) [0,0,0,...,0] [1,1,1,...1]
Obs3 N ∼ (µ3,Σ3) [0,0,0,...,0] [1,1,1,...1]
Obs4 N ∼ (µ4,Σ4) [0,0,0,...,0] [1,1,1,...1]
Obs5 N ∼ (µ5,Σ5) [0,0,0,...,0] [1,1,1,...1]

Table 3.1. Setup for Case 1.1. Forecast distribution has the same mean vec-
tor and variances as the five observations and the same covariance function
as observation 4.
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Figure 3.3. Rank histogram for case 1. The means for both forecast and ob-
servations are 0s and all have a variance of 1. The first row shows the rank
histogram for minimum spanning tree,the second shows the multivariate
rank, the third average rank and last row show the band depth rank. The five
columns show the 5 observations. Note that here the forecast has the same
distribution as observation 4. (a) Observation 1 has similar but oscillation
correlation. (b)Observation 2 has a stronger correlation than forecast. (c)
Observation 3 has a weaker correlation than forecast. (d)Observation 5 has
a weaker correlation than forecast. The results are based on 10,000 repeti-
tions.

As expected, in figure 3.3, the rank histograms of observation 4 is uniform for all of the

four (4) calibration metrics and this is because both the ensemble member forecast and
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observation 4 follow the same distribution. Since the means of the forecast distribution

are all zeros 0 and variances are all 1s we are not seeing the effects of bias or under/over

dispersion in the rank histogram, only the effect of misspecified correlation function. Al-

though observation 1 doesn’t follow the same distribution as the forecast, the multivariate

rank and average rank of observation 1 have their verification rank histograms to be uni-

form/flat. This is an example of the fact that a flat/uniform verification rank histograms

do not necessarily mean the observation and the forecast distribution are well calibrated.

Likewise the flatness of rank histogram for observation 3 by the multivariate rank may be

illusory, this is because observation 3 doesn’t follow the same distribution as the ensemble

member forecast.

It is interesting how all the four calibration metrics rank histograms interpret observation

5. Observation 5’s variance-covariance matrix has no correlation structure. The rank his-

togram of the minimum spanning tree (MST) rank method for observation 5 is skewed to

the right, indicating more outlying observations than inlying as so a lack of correlation in

the forecast gives similar results biased or underdispered in the forecast. That of the mul-

tivariate rank appears to be somewhat skewed to the right which is also what we would

expect from biased forecast ensembles. The rank histograms of average rank method on

the other hand shows a pattern consistent with overdispersed, i.e. ∩-shape. The verifica-

tion rank histograms of observation 5 by the average rank and band depth rank method

may appear similar but they have different interpretations. The band depth pre-ranks as-

sess the centrality of the observation vector. The more centered the observation vector is

in the ensembles, the higher the rank. The ∩-shaped histogram by the band depth rank
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method indicates that there are less inlying and less outlying observations than would be

expected from an forecast.

Overall the mismatch of correlation functions between the forecast and observations 1,2 and 3

does not result in rank histograms that are strikingly different from uniform. However

there are a few noteworthy patterns that emerge. First, for the MST rank method, the

slightly triangular shaped histogram for observation 2 means more low ranks was gener-

ated by this correlation function than high ranks.

We now take a look at the rank histograms generated by the multivariate rank method.

There is a slight increase in high ranks for observation 2, the histogram skewed slightly to

the left, this is as a result of the forecast having a weak correlation function. In the case

of observation 5, there appears to be more low ranks (histogram skewed to the right) than

high ranks and therefore we can conclude that the forecast has a very strong correlation.

As for observation 1 and 3, they both did not detect more subtle mismatch. Next we take

a look at the rank histogram by the average rank method. From figure 3.3, the slightly ∪-

shaped histogram for observation 2 is by virtue that the forecast has a weak correlation

as compared to that of the correlation of observation 2. On the other hand, the slightly

∩-shaped histogram for observation 3 is an indication the forecast has a somewhat strong

correlation structure. In observation 5, the forecast has a very strong correlation and this

is shown by a ∩-shaped histogram. Lastly, the slightly ∪-shaped histogram by the band

depth method for observation 3 and the ∩-shape histogram for observation 5, have a sim-

ilar kind of response as the average rank method.
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Case 1.2: Forecast has independent correlation structure/function

Case 1.2 is similar to case 1.1 expect that the forecast distribution in this case, has an inde-

pendent correlation structure, that is, the correlation structure of the forecast is the iden-

tity matrix. The correlation structure of the forecast ensemble is the same as observation

5, that is the variance-covariance matrix is an identity matrix of size 16. The distribution

of the forecast is shown in the table 3.2 below:

Observation Distribution Mean Variance

Forecast N ∼ (µ, I16) [0,0,0,...,0] [1,1,1,...1]
Table 3.2. Setup for Case 1.2. Forecast distribution has the same mean vec-
tor and variances as the five observations and the same covariance function
as observation 5.
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Figure 3.4. Rank histogram for case 1.2. The forecast has a misspecified
correlation structure. The first row shows the rank histogram for minimum
spanning tree,the second show the multivariate rank, the third average rank
and last row show the band depth rank. The five columns show the 5 obser-
vations. Note that here the forecast has the same distribution as observa-
tion 5. So observation 1−4 all have stronger correlation structure than the
forecast. The results are based on 10,000 repetitions

Observation 5 in figure 3.4 has the forecast ensemble at each sample point to be reliable,

in other words, observation 5 has the same distribution as the forecast ensemble that’s

why the resulting rank histogram is uniform and this was captured by all four ranking

methods. The rank histograms for observation 1−4 in figure 3.4 are extreme versions of

what we saw for observation 2 in figure 3.3, which was also a case of forecast having too

weak correlation structure. That is, average rank and band depth exhibit a strong ∪-shape
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and it turns out that MST does as well (not so clear in figure 3.3. Furthermore, multivariate

rank shows this peculiar pattern of basically even number of ranks, except it has a spike in

th enumber of highest rank.

In conclusion, it can be difficult to distinguish between a misspecified correlation function

and bias and over/under dispersion of forecasts. However, it seems that a ∪ shaped MST

and band depth histogram may be an indicator that forecast lacks correlation structure

and perhaps a side-ways L shape of multivariate rank can as well.

Case 2: Forecast has a misspecified variance-covariance matrix

In this case, we assume the variance-covariance matrix of the forecast ensemble member

was misspecified. The misspecified (wrong) variance-covariance matrix was computed

this way. Let’s assume the vector S has the same length as the variance-covaraince ma-

trix of the forecast ensemble member which 16 in this cases and contains the variance we

want to impose on the 16 elements of a forecast member. However, we also want to main-

tain the same correlation function. Let’s assume the current variance-covariance matrix

of size 16 × 16 is D . In order to change the variance-covariance of the forecast ensem-

ble without changing the correlation structure, we form a new variance-covariance matrix

(NV ). We represent mathematically below how the new variance-covariance matrix was

formed:
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Let S = (s1, ...., s16) be a vector of 16 variance values and D be the current variance-covariance

of the forecast distribution, then the new variance-covariance matrix NV is given by:

NV = (di ag (
p

S))T ∗D ∗di ag (
p

S)

where di ag (
p

S) is a diagonal matrix with the values
p

s1, ...,
p

s16 on the diagonal. NV has

a dimension of 16×16.

We consider 3 subcases of misspecified variances: For case 2.1, forecast has (mostly) larger

variance than observations. In case 2.2, forecast has (mostly) smaller variance than the

observations and lastly in case 2.3, half of the forecast vector has larger variance than the

observation and the other half has smaller variances.

Case 2.1: Forecast has misspecified variance (big)

In this case our forest is overdispersed. In the univariate setting this would lead to a verifi-

cation rank histogram with a ∩-shape. Since multivariate and average ranks are extension

a of univariate orderings we would expect to see a ∩-shape in those histograms. Minimum

spanning tree and band depth histograms show the effect of overdispersion much clearer

(comparing to figure 3.5). They show a left skewed histogram for observations 1−4 as we

would expect. But observation 5 is different, both MST and Band depth show a (skewed)

∩-shape. Comparing these to the corresponding histograms in figure 3.5 we see that the

overdispersion is represented, it just doesn’t completely overwrite the effect the effect of

misspecified correlation structure(forecast is correlated, observation is not). In the cases
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of big variances, because the minimum spanning tree and the band depth methods mea-

sure the centrality or the outlyingness of the observation curve, we expect the observation

curve in this case to be among the inlying curves most of the time. This suggest high ranks

are going to be generated and therefore the rank histograms have to skewed to the left.

The distribution of the forecast ensemble is given in the table 3.3 below and the verifica-

tion rank histograms are given in figure 3.5.

We generated the members of vector S randomly from an exponential distribution with a

rate of 0.5 (mean 2). Most of the variances are bigger than that of the observation (1) but a

few were smaller (5 out of 16) than that of the observation curve.

The minimum spanning tree and the band depth rank histograms are more skewed to the

left because the observation curves was most of the time more centered, which generated

high ranks most of the time and very few ranks.

As a result of most of the variances in this case are bigger as compared to the observation

variances, we expect the ensemble members of the forecast to be overdispersed .i.e. the

rank histograms should have ∩-shaped rank histograms in the case of the average rank

and multivariate rank methods.

From figure 3.5, we observe that the rank histograms produced by the average rank method

for all the observations aside from observation 2 have a ∩-shaped histograms which sig-

nifies overdispersion among the forecast ensembles. The slightly ∪-shaped histogram for

observation 2 might be taken as a sign of underdipersion but recall this histogram in figure

3.3. Observation 2 has stronger correlations than the forecast and that tends to result in
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a ∪ shape. Here we added overdispersion to the forecast distribution but its effect on the

rank histogram is overshadowed by the wrong correlation function. The multivariate rank

histograms are very similar to those in 3.5.

Taking these into account, the minimum spanning tree and the band depth methods are

the best methods to detect the misspecification of variance (big) in forecast ensembles.

Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ) [0,0,.......,0]
[1.520, 2.204, 1.608, 0.352, 3.574, 0.349, 2.561, 0.119,
2.768, 4.492, 2.229, 1.165, 0.744, 1.830, 3.171, 0.286]

Table 3.3. Setup for Case 2.1 is a subset of Case 2. Forecast distribution has
the same mean vector but bigger variances. The mean vector and variances
of the five observations remains unaltered.
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Figure 3.5. Rank histogram for case 2.1. The forecast distribution has mis-
specified variance (big). The first row shows the rank histogram for mini-
mum spanning tree,the second show the multivariate rank, the third aver-
age rank and last row show the band depth rank. The five columns show the
5 observations. The results are based on 10,000 repetitions

Case 2.2: Forecast has misspecified variance(small)

The small variances in case 2.2 were generated randomly from an exponential distribution

with a rate of 1.5 (mean 0.667). All the variances smaller than 1, variance of the observa-

tion, except for 2 variances which are bigger see table 3.4.

Because the variances are small, we expect the rank histograms generated by the average

rank and the multivariate rank method to have ∪-shaped histograms and the ones by the
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band depth rank and minimum spanning tree rank method to be right-skewed since we

would get more outlying observation (low rank) than inlying (high ranks). All these rank

histograms are indication of lack of variability or spread of the ensemble members of the

forecast that is the ensemble members of the forecast are underdispered.

Let’s take a look at figure 3.6 (seen below), we see that this misspecification was perfectly

detected by the minimum spanning tree rank and the band depth rank methods for all

5 observations including observation 5 (has no correlation structure). The average rank

method was able to determine this misspecification for just observations 1 to 4. For ob-

servation 5, the average rank method interprets this misspecification as an overdispersion

but this also happened in case 1, that is, using correlated forecast for uncorrelated obser-

vations gives a ∩-shaped histogram in this case and the amount of underdispersion in case

2.2 is not enough to counter act that. The multivariate rank method again, cannot detect

this misspecification. We can conclude from here that, when our forecast ensembles have

misspecified variances (small variances) the band depth rank and the minimum spanning

tree rank methods are the best calibration metrics/ranking methods to detect that.

Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ) [0,0,.......,0]
[0.507, 0.735, 0.536, 0.117, 1.191, 0.116, 0.854, 0.040,
0.923, 1.497, 0.743, 0.388, 0.248, 0.610, 1.057, 0.095]

Table 3.4. Setup for Case 2.1 is a subset of Case 2. Forecast distribution has
the same mean vector but smaller variances. The mean vector and vari-
ances of the five observations remains unaltered.
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Figure 3.6. Rank histogram for case 2.2. The forecast distribution has mis-
specified variance (small). The first row shows the rank histogram for min-
imum spanning tree,the second show the multivariate rank, the third aver-
age rank and last row show the band depth rank. The five columns show
the 5 observations. Note that here the forecast has the same distribution as
observation 4. The results are based on 10,000 repetitions

Case 2.3: Forecast has misspecified variance(half and half)

We randomly generated from an exponential distribution with a rate of 0.5 for the first half

of S and the remaining eight 8 values were randomly generated from an exponential distri-

bution with a rate of 1.5. The forecast ensemble with a misspecified variance-covaraince

matrix is given in table 3.5 below. The new variance-covariance matrix has equal number

of big variances as well as small variances.
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Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ) [0,0,.......,0]
[1.520, 2.204, 1.606, 0.352, 3.574, 0.349, 2.561, 0.119,
0.923,1.497, 0.743, 0.388, 0.248, 0.610, 1.057, 0.095]

Table 3.5. Setup for Case 2. Forecast distribution has the same mean vector
but different variances. The mean vector and variances of the five observa-
tions remains unaltered

Figure 3.7. Rank histogram for case 2.3. The forecast distribution has mis-
specified variance (half are bigger and half are smaller). The first row shows
the rank histogram for minimum spanning tree,the second show the multi-
variate rank, the third average rank and last row show the band depth rank.
The five columns show the 5 observations. The results are based on 10,000
repetitions
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The rank histograms generated by the minimum spanning tree and band depth rank meth-

ods for all five (5) observations, as shown figure 3.7, are skewed to the right which indi-

cates the forecast ensembles have too low ranks which means the forecast ensembles are

underdispersed. Even though the rank histogram is predominantly skewed to the right

we can still tell that there was quite a number of high ranks here too. The multivariate

rank histograms especially for observations 1 to 4 appears to be somewhat flat or al-

most uniform. The average rank histograms for observation 2 indicates underdispersion

(∪-shaped rank histogram) in the forecast ensemble and for observation 5, the forecast

ensemble members are overdispersed (∩-shaped histogram). The rank histograms for ob-

servations 1, 3, and 4 appears to be almost flat or uniform.

Case 3: Forecast with misspecified mean (positive)

The forecast ensemble in this case, has a misspecified mean positive of 1 which is a posi-

tive bias. The variance-covariance matrix remains unchanged, same as observation 4 (this

variance-covariance matrix is assumed to be the original one in this study). The distribu-

tion of the forecast is shown in the table 3.6 below.

Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ4) [1,1,1,...,1] [1,1,1,...,1]
Table 3.6. Setup for Case 3. Forecast distribution has negative mean vector
and has variance-covariance matrix as observation 4. The mean vector and
variances of the five observations remains unaltered.
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From figure (3.9), we observe that the verification rank histograms of all the calibration

metrics are skewed to the right. Let’s go into details of how each ranking method dealt

with the misspecified mean.

In the cases of the band depth and minimum spanning tree method, we considered the

ensemble member forecast and observation as curves, with the mean of the observation

being 0 and that of the ensemble member forecast being 1’s, then as shown the figure 3.8

below the observation curve is below the the ensemble member curves all the time.

Figure 3.8. The means of the observations are in black and that of the fore-
cast ensemble is in red

This implies the observation curve would be most of time be among the outlying curves

and because both the band depth and minimum spanning tree rank methods are about

the centrality of the observation curve, in this case, the ranks generated by these ranking

methods are going to be low and hence the rank histograms generated by them are ex-

pected to be skewed to the right. And this is what can be seen in the figure 3.9. Thus we
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conclude that, the band depth and the minimum spanning tree rank methods are able to

detect when the forecast distribution has a misspecified mean.

The average rank and the multivariate rank methods were also able to notice this mis-

specification. Even though the multivariate rank detected this misspecification, its rank

histograms did not show it as vividly as the other three (3) ranking methods. This may be

because of the high dimensionality (d = 16) of the ensemble member forecasts and the

observation. The multivariate rank was introduced originally for smaller dimensions (d)

and thus it works when the dimension of the ensemble member forecast is small say 2.

For the average rank and multivariate rank methods when the forecast distribution has a

misspecified mean(positive), the rank histograms are skewed to the right which indicates

positive bias. In conclusion, all four (4) ranking methods were able to detect that the fore-

cast distribution had a misspecified mean even if the forecast distribution doesn’t have a

correlation structure (as evident in observation 5).
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Figure 3.9. Rank histogram for case 3. The forecast distribution has mis-
specified mean (1). The first row shows the rank histogram for minimum
spanning tree,the second show the multivariate rank, the third average rank
and last row show the band depth rank. The five columns show the 5 obser-
vations. Note that here the forecast has the same distribution as observa-
tion 4. The results are based on 10,000 repetitions

Case 4: Forecast with misspecified mean(negative)

The forecast distribution in Case 4 has a negative mean (−0.5), which is a negative bias.

The variance-covariance matrix here has a correlated correlation structure/function i.e.

it has the same correlation function as observation 4. The distribution of the forecast is

given in the table 3.7 below.
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Observation Distribution Mean Variance

Forecast N ∼ (µ,Σ4) [-0.5,-0.5,-0.5,...,-0.5] [1,1,1,...,1]
Table 3.7. Setup for Case 4. Forecast distribution has positive mean vector
and has variance-covariance matrix as observation 4. The mean vector and
variances of the five observations remains unaltered.

Figure 3.10. Rank histogram for case 4. The forecast distribution has mis-
specified mean (−0.5). The first row shows the rank histogram for minimum
spanning tree,the second show the multivariate rank, the third average rank
and last row show the band depth rank. The five columns show the 5 obser-
vations. The results are based on 10,000 repetitions

The rank histograms in figure 3.10 are interesting but not surprising. The minimum span-

ning tree rank and band depth rank have most of their rank histograms similar as in, they
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are both skewed to the right. This is not surprising because the band depth rank and mini-

mum spanning tree rank methods provide a center-outward ordering of the curves. When

the forecast ensemble member has a negative mean, i.e. a negative bias, we expect the

rank histograms generated by the average rank and the multivariate rank methods to be

skewed to the left. The average rank method detected this misspecification very well in

all five observations. The multivariate rank histogram was able to identify this misspecifi-

cations for observations 1 ,2 and 3. As for observations 4 and 5, the rank histograms

appear almost flat/uniform which is usually occurs when the forecast ensemble members

and observation follows the same distribution. In this situation, we know that is illusory.

The band depth and the minimum spanning tree rank methods on the other hand inter-

prets a misspecified mean (negative) of ensemble member forecast differently. We expect

the ranks generated by the band depth and minimum spanning tree ranking methods in

this case to be low and therefore their histograms should be skewed to the right. The figure

3.11 (below) gives a visual representation of what’s going on.

We assume the ensemble member forecast and the observation are curves. From the figure

3.11 above, we see that the observation curve is an outlying curve at all times. We therefore

expect the ranks produced in this case to be low and thus the rank histograms should be

skewed to the right.

The minimum spanning tree rank method also detected this misspecification for obser-

vations 1 and 4 but not so well for other observations. The rank histogram for observation

2 is almost flat which would imply both the observation and ensemble member forecast

follow the same distribution which obviously is false. The ∪-shaped rank histogram for
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Figure 3.11. The means of the observations are in black and that of the fore-
cast ensemble is in red

observation 3 generated by the minimum spanning tree ranking method implies the fore-

cast ensemble has no correlation structure which is untrue.

The band depth rank method also was able to detect this misspecification for all the obser-

vations expect for observation 5. In observation 5, the rank histogram of band depth rank

method is skewed to the left which indicates higher ranks, showing an interesting effect of

observation 5 having no correlation structure and forecast being biased.

Overall, in conclusion, the average rank was the best ranking method to detect this mis-

specification even if the forecast ensemble has no correlation structure.

Case 5: Small ensemble size

It is said that miscalibration is generally easier to detect when we have large number of

forecast ensemble than fewer forecast ensembles. We put the theory to test in case 6.
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We reduce the number of forecast ensemble members from 19 to 5. We test this on the

original case. From figure 3.12 we see all the rank histograms generated by all four ranking

methods appears to be flat/follows a uniform distribution irrespective of the distributions

of the observations. We conclude misspecification by a ranking method is hard to detect

when the number of ensembles are small.

Figure 3.12. Rank histogram for case 6. The number of ensembles is now
5. The forecast has same distribution as case in 1. The first row shows the
rank histogram for minimum spanning tree,the second show the multivari-
ate rank, the third average rank and last row show the band depth rank. The
five columns show the 5 observations. Note that here the forecast has the
same distribution as observation 4. The results are based on 10,000 repeti-
tions
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Case 6: Small dimension

In case 6, we would like to know if the dimension has an effect on the calibration metrics.

That is we would like to know if miscalibration is easier to detect with bigger or smaller

dimensions. We reduce the dimension from 16 to 3 in case 6. These changes were done to

the case of misspecified mean (case 4).

Figure 3.13. Rank histogram for case 7. The forecast has same distribution
as in case 4. The first row shows the rank histogram for minimum spanning
tree,the second show the multivariate rank, the third average rank and last
row show the band depth rank. The five columns show the 5 observations.
The dimension is now 5 instead of 16. The results are based on 10,000 rep-
etitions
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From figure 3.13, we observe that dimension has no significant effect on the ranking method.

The only difference here (compared to figure 3.11 ) is the multivariate rank method was

able to detect this misspecification much better when the dimension was smaller.

We have confirmed that the multivariate rank method works better when the dimension is

small. Also, reducing the dimension does not have a strong effect on a calibration metrics

ability to detect a misspecification.

Ranking Methods Response to Forecast Misspecification

In the following experiments, we summarize the response of the ranking methods to mis-

pecifications in the forecast distribution. The experiments consist of the following setups:

(1) Ensemble forecast has the same distribution as observation 4, but different cor-

relation functions from observations 1,2,3 and 5. (same as case 1.1

(2) Ensemble forecast has a bigger mean (µ= 1.5∗ [1,1, . . . ,1]), but same covariance

function as observation 4,

(3) Ensemble forecast has same mean (µ= 0) as observation 4 but bigger (1.5 times)

variance-covariance values than observation 4,

(4) Ensemble forecast has same distribution as observation 5,

(5) Forecast has negative mean (µ= [−1,−1, . . . ,−1]) but has same variance-covariance

as observation 4.
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In the figures below (Figures 3.14 - 3.17), the row 1 corresponds to Experiment 1 above,

row 2 to Experiment 2, and so on. The columns correspond to rank histogram for the

observations 1 through 5.

We see from rows 2 and 3 that the MVR is able to accurately capture the mispecificaiton

in the forecast (from observation 4) when the mean of the forecast is µ = 1.5∗ [1,1, . . . ,1],

or variance-covariance is increased, and observation 4 has mean µ = 0. Also, when the

mean of the forecast is changed to µ= [−1,−1, . . . ,−1] (row 5), there is a dramatic change

in the shape of the histogram, meaning the MVR is able to detect the mispecification with

respect to mean.
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Figure 3.14. This figure shows experiments using the Multivariate Ranking
(MVR). Columns 1− 5 show rank histograms for observations 1− 5 as be-
fore. First row: Forecast has same distribution as observation 4. Second
and last row: Forecast has a positive and negative bias, respectively. Third
row: Forecast is overdispersed. Fourth row: Forecast has no correlation.

We see from row 2 that the change in forecast specification not only affects histogram for

observation 4, but also the other observations (causing them to have the same shapes.

The BDR detects mispecifications in mean and covariance with the similar rank histograms

(rows 2, 3, and 5).
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Figure 3.15. This figure shows experiments with Average Ranking (AVR).
Columns 1−5 show rank histograms for observations 1−5 as before. First
row: Forecast has same distribution as observation 4. Second and last row:
Forecast has a positive and negative bias, respectively. Third row: Forecast
is overdispersed. Fourth row: Forecast has no correlation.

Just like the BDR, the MSTR detects mispecifications in means and covariance with similar

shaped rank histograms (rows 2,3, and 5).
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Figure 3.16. This figure shows the Band Depth Rank (BDR) histograms for
the five experiments. Columns 1−5 show rank histograms for observations
1−5 as before. First row: Forecast has same distribution as observation 4.
Second and last row: Forecast has a positive and negative bias, respectively.
Third row: Forecast is overdispersed. Fourth row: Forecast has no correla-
tion.



Simulation Study 63

Figure 3.17. This figure shows the five experiments using the Minimum
Spanning Tree Rank method. Columns 1−5 show rank histograms for ob-
servations 1−5 as before. First row: Forecast has same distribution as ob-
servation 4. Second and last row: Forecast has a positive and negative bias,
respectively. Third row: Forecast is overdispersed. Fourth row: Forecast has
no correlation.



64

4 Case Study: CO2 Retrievals By OCO-
2

4.1 Background on the OCO-2 Instrument and Data used

This case study is a smaller fraction of the work done by Brynjarsdóttir et al, (2018)14.

The data set and models used in this case study were all from the paper. For the purpose

of this study, certain technical details which were not relevant to this thesis such as the

background of the OCO-2, how the posterior variances were formed among others have

been omitted from this thesis. For more information about these exempted details, look

at the paper.

The Orbiting Carbon Observatory-2 (OCO-2) is an instrument on a satellite that collects

infrared spectra from which atmospheric properties are retrieved. It measures radiances

(i.e. reflected sunlight) in a range of wave-lengths that are known to be affected by CO2

and O2 absorption. Let’s call the vector of radiances Y. The OCO-2 instrument collects

24 observations every second. Each observation consists of 1016 radiances from three

band wavelength and the 3048 dimensional observed vector Y is called sounding. This
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vector of radiances, Y, is inverted to an estimate of a state vector X that represents the

atmospheric conditions at that time and conditions. The concept of inversion is similar

to inverse problems where we know the results and we want to deduce the causes. In this

case, the vector of radiances Y by the OCO-2 is modeled as model:

Y = F(X,b)+ε (4.1)

where F is the forward model called the full physics model and b is a vector of known con-

stants and ε is the error. We derive the state vector, let’s call it X from the model above.

The state vector X contains CO2 concentrations at 20 pressure levels of the atmospheric

column and about 40 other elements such as surface pressure, albedo and aerosol infor-

mation. For more information about OCO-2, see Eldering et al (2017)15.

The operational retrievals, i.e. estimation of the state vector X, is performed with an algo-

rithm called the Optimal Estimation (OE). The OE algorithm finds the posterior mode of

X and give an estimate of the whole posterior distribution of X. Brynjarsdóttir et al (2018)

performed an extensive simulation study and compared results obtained by OE to esti-

mates of the said posterior distributions of X obtained via Markov Chain Monte Carlo

(MCMC) methods. In this chapter we expand on multivariate diagnostics of MCMC en-

sembles done in the paper.

Brynjarsdóttir et al (2018) used a surrogate model, Fsur r instead of F because it is compu-

tationally faster than the full physics model. Therefore our model becomes:

Y = Fsur r (X,b)+ε (4.2)
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Furthermore, X is a 39-dimensional vector which contains the 20 layers of CO2 concentra-

tion, surface pressure, coefficients of 4 different species of aerosals and albedo for three

spectral bands. 600 true sate vectors, Xtr ue , were simulated in such a way that they rep-

resent the variability of physical conditions encountered by OCO-2 between November

2014 and January 2016. Then the radiance vectors were simulated according to equation

4.2 with X = Xtr ue and ε∼ N (0,Σε), where Σε is a diagonal matrix.

Samples from the posterior [X|Y] were obtained by using the adaptive Metropolis algo-

rithm of Haario et. al (2001)16. The adaptive MCMC works like the basic metroplis algo-

rithm, the only difference is that the adaptive metropolis updates the covariance matrix

of the proposal distribution along time by employing the information learned. For 600

soundings, four (4) independent chains were ran starting with different initial values of

250000 iterations per chain, making a total of 2400 chains (600× 4). Some of the chains,

had to terminated due to unsuccessful cholesky factorization and other numerical issues.

Out of the 600 MCMC retrievals (soundings), only 457 were regarded to have converged.

For each chain, 100,000 iterations out of the 250,000 iterations, were set in as burn-in. Ac-

ceptance rates ranged from under 0.5% to 14.5% with a median of 37.2%. The chains were

then thinned leaving 6000 MCMC samples (i.e. 1500 for each chain) for inference. For

more details about the CO2 retrievals by the OCO-2, see Brynjarsdóttir et al (2018).

In this simulation study of Brynjarsdóttir et al (2018), the true state of the atmosphere

Xtr ue , is known and we treat them as observations in order to apply the calibration di-

agnostic tools. We are interested in the estimation of the multivariate state vector X (39

dimensional) and the CO2 profile vector Xp (20 dimensional). The retrievals of the CO2
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by the Markov chain Monte Carlo (MCMC) method are considered as the probabilistic

forecast ensembles. In order to determine how well the posteriors by the MCMC method

capture the true state vector, we use the minimum spanning tree and the multivariate rank

methods as diagnostic tools to determine that. The other two calibration metrics - band

depth and average rank methods have already been used in Brynjarsdóttir et al (2018)and

are shown in the figure 4.1.

Figure 4.1. Forecasting diagnostics for the full state vector X (top row) and
the CO2 profile vector (bottom row). Left: Average rank histograms (MCMC
retrieval), Right: Band Depth rank histograms

From figure 4.1, we notice that the rank histograms generated by the band depth method

for the full state vector, X, (top right) is slightly ∪-shaped or right skewed and that of the

profile vector, CO2 element of interest, has its rank histogram (bottom right) to be skewed

to the left, with much more high ranks than expected. Getting more high ranks than low
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is as a results of our observations (true values of parameters) most of the time being in the

center of bands defined by the forecast ensembles (MCMC samples from the posterior).

This indicates that our forecast ensembles are overdispersed for the profile vector. That

of the rank histograms generated by the average rank for both the full state vector, X, and

CO2 profile vector, indicates bias in the forecast ensembles.

4.2 Results

Using all 457 converged retrievals, we now consider the retrievals of the 20-dimensional

CO2 profile vector (Xp ) and the 39-dimensional full state vector (X). The verification rank

histograms generated by the multivariate rank and the minimum spanning tree rank method

for the MCMC retrieval are shown in the figure 4.2. Calculating the minimum spanning

tree ranks for this example is computationally intensive (≈ 10 hours per sample). We uti-

lized high performance computing cluster at both JPL and CWRU to perform these calcu-

lations in parallel.

From figure 4.2, we notice that, the rank histograms generated by the minimum spanning

tree for both full vector X (top left) and that of CO2, element of interest, Xp , (bottom left) are

somewhat similar. They both show more high ranks, i.e. their rank histograms are skewed

to the left. This means our forecast ensembles are overdispersed, too much variance.

The rank histograms by the multivariate method for the full vector X (top right) and that of

CO2, element of interest, Xp , (bottom right)on the other hand, does not tell us much about

the forecast ensembles.
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Figure 4.2. Forecasting diagnostics for the full state vector (top row) and the
CO2 profile vector. Left: minimum spanning tree rank histograms (MCMC
retrieval) and Right: the multivariate rank histograms (MCMC retrieval).

We conclude based on the rank histograms by the average rank method, band depth method

and the minimum spanning tree rank method that our forecast ensembles are slightly bi-

ased and overdispersed. This means that, the multivariate cases for the marginal posterior

distribution of the CO2 profile vector, [Xp |Y] and the posterior distribution of the full vec-

tor, [X|Y] the true state of the atmospheric (Xtr ue ) are not perfectly calibrated with.
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5 Conclusions

Based on the simulation study and the case study, we can conclude given a verification

rank histograms by minimum spanning tree, multivariate, band depth and the average

rank methods, we can easily tell the misspecifications. Each method has its own way of

indicating misspecification (through the rank histograms). For example, a ∩-shaped his-

tograms generated by the average rank method would be mean our ensemble forecasts

are overdispersive that is to say our probabilistic ensemble forecast are too wide on an av-

erage. This same ∩-shaped histograms by the band depth rank method, would indicate

our probabilistic forecast ensembles have too high correlation. The left-skewed rank his-

togram by the band depth rank and the minimum spanning tree methods would rather

indicate overdipersion of the probabilistic ensemble forecast. A skewed rank histogram

generated by an average rank method would indicate a bias in our forecast ensembles.

Also ∪-shaped rank histogram by the minimum spanning tree and the band depth rank

method would suggest a lack of correlation in forecast ensembles whiles the ∪-shaped

rank histogram by the average rank method would suggest underdispersion among the

forecast ensembles.
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In conclusion, the multivariate rank method does not seem to detect any of the misspec-

ifications so far. This could be as the result of the high dimensionality of the forecast en-

semble members used in this thesis, this is because the multivariate rank method was

designed for smaller dimensions. The band depth rank and the minimum spanning tree

rank methods are better at detecting misspecification. Also relying on just one calibration

metric is not going to be helpful. The best way to assess multivariate forecast ensembles,

is to use the average rank method with the band depth rank method and/or minimum

spanning tree method simultaneously.

For future work, the forecast ensembles could be generated from other distributions other

than a Gaussian.
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