
THE ROBOT OPERATING SYSTEM IN TRANSITION:

EXPERIMENTS AND TUTORIALS

by

JAMES STARKMAN

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

May 2018

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis of

James Starkman

candidate for the degree of Master of Science*.

Committee Chair

Dr. Wyatt Newman

Committee Member

Dr. M. Cenk Çavuşoğlu

Committee Member

Dr. Greg Lee

Date of Defense

2018-01-18

*We also certify that written approval has been obtained

for any proprietary material contained therein.

Contents

List of Tables vi

List of Figures vii

Acknowledgments viii

Abstract ix

Introduction 1

I Experiments 4

1 Tiny targets 5

1.1 Introduction . 5

1.1.1 Explanation of tiny target comparison table 7

1.2 Experiments . 8

1.2.1 jasadc . 8

1.2.1.1 Link to source . 9

1.2.1.2 Link to pre-built ROS1 and ROS2 workspaces 10

1.2.2 Instrumentation . 10

1.2.2.1 Explanation of sinusoid plots 12

1.2.3 Methods . 12

i

CONTENTS

1.2.3.1 ROS1 . 12

1.2.3.2 ROS2 . 14

1.2.4 Observations . 14

1.2.4.1 Dropouts . 14

1.2.4.2 Publication rate . 15

1.3 Analysis . 16

1.3.1 Publication rate . 16

1.3.1.1 Explanation of histograms 18

1.3.2 Reconstructing input from samples 18

1.3.2.1 Explanation of frequency recovery table 21

1.4 Conclusion . 21

1.4.1 Once-off aspects: cost, setup, and installation 22

1.4.2 Performance . 22

1.4.3 Overall . 23

1.4.4 Future work . 23

2 Windows 24

2.1 Introduction . 24

2.1.1 Cygwin . 25

2.1.2 WSL . 25

2.2 Experiments . 26

2.2.1 Setup . 26

2.2.1.1 General . 26

2.2.1.2 ROS1 running via WSL 26

2.2.1.3 ROS2 running natively 27

2.2.2 Methods . 27

2.2.3 Observations . 28

2.2.3.1 ROS1 running via WSL 28

ii

CONTENTS

2.2.3.2 ROS2 running natively 30

3 Miscellaneous 32

3.1 Introduction . 32

3.2 Programming languages and libraries 32

3.2.1 Platform differences . 32

3.2.1.1 ROS1 . 32

3.2.1.2 ROS2 . 34

3.2.2 Language differences . 35

3.2.2.1 Python . 35

3.2.2.2 C++ . 36

3.3 Security and encryption . 39

3.3.1 Introduction . 39

3.3.2 Enabling security (involves partial rebuilding) 40

3.3.2.1 How to enable security 40

3.3.2.2 Authentication and key management 40

3.4 Conclusion . 42

II Tutorials 44

4 How to port an existing ROS1 C++ program to ROS2 45

4.1 Introduction . 45

4.2 Ancillary porting information . 46

4.2.1 Introduction . 46

4.2.2 Dependencies . 46

4.2.2.1 Transitive limitations 47

4.2.3 Installing ROS2 itself . 47

4.2.4 Preparing for the port . 49

iii

CONTENTS

4.2.4.1 Removing deprecated ROS1 features 49

4.2.4.2 Setup for porting . 51

4.2.5 List of useful statements to run on a command line 52

4.2.6 Toolchain . 53

4.3 Porting your package . 55

4.3.1 Introduction . 55

4.3.2 Architectural changes . 55

4.3.2.1 Launchers and parameters 55

4.3.2.2 Pointers . 56

4.3.2.3 CMakeLists.txt . 56

4.3.3 Programming changes . 57

4.3.3.1 Message and service files 57

4.3.3.2 C++ files . 58

4.3.4 Other changes . 61

4.3.4.1 Documentation . 61

4.4 Packages ported from learning ros2 61

5 Miscellaneous addenda 64

5.1 Introduction . 64

5.2 How to debug ROS2 programs with Visual Studio 64

5.2.1 Introduction . 64

5.2.2 Step-by-step instructions . 65

5.2.3 Explanation of Visual Studio debugging screenshot 67

5.3 How to run ROS1 or ROS2 on C.H.I.P. 69

Concluding thoughts for tutorials 71

iv

CONTENTS

Conclusion 74

III Appendices 76

A Abbreviations 77

A.1 Table of abbreviations . 77

B How to run ROS1 and ROS2 on C.H.I.P. 83

B.1 ROS1 . 84

B.2 ROS2 . 84

B.2.1 Debian Jessie (8) versus Debian Stretch (9) 84

B.2.2 Dependencies . 85

B.2.3 Cross-compiling . 85

C Patch for jasadc from ROS1 to ROS2 87

References 98

v

List of Tables

1.1 A comparison of tiny targets. See subsection 1.1.1 for details. 8

1.2 Frequency recovery estimates and errors. See subsubsection 1.3.2.1 for

details. 21

vi

List of Figures

1.1 Plots of 1 Hz and 10 Hz sinusoids captured with ROS1 running on

C.H.I.P.. See subsubsection 1.2.2.1 for details. 13

1.2 Histogram, short abscissa. See subsubsection 1.3.1.1 for explanation. . 19

1.3 Histogram, long abscissa. See subsubsection 1.3.1.1 for explanation. . 20

2.1 The standard ROS1 introductory programs running unmodified on

Windows via WSL. 29

2.2 A minimal subscriber in ROS2. See the miscellaneous addenda in the

tutorials for an explanation of how to debug a ROS2 program in Visual

Studio. 31

3.1 Comparison of captured packets displayed in Wireshark. Above: un-

secured communication, clearly visible in plain text at the end of the

packet. Below: same information, but encrypted. 43

5.1 Debugging the minimal subscriber. See subsection 5.2.3 for an expla-

nation of what the red annotations mean. 68

vii

Acknowledgments

The author would like to thank all of the people who have contributed to ROS over

the years for the ecosystem that they have collectively created. The author would also

like to thank his advisor, Professor Newman, for his suggestions during the planning,

development, and writing of this thesis, as well as all of the other faculty members

whose classes provided relevant background.

viii

The Robot Operating System in Transition: Experiments and

Tutorials

Abstract

by

JAMES STARKMAN

ROS, the Robot Operating System, was first made available in 2007. Since then,

usage has grown considerably, along with the number of potential applications and

use cases. Unfortunately, design decisions made when ROS was in its infancy still

apply today and have begun to show their age. These decisions include: only being

supported on the Ubuntu Linux distribution, assuming the use of powerful worksta-

tions, adhering to older versions of libraries and programming languages, and the lack

of encrypted communications. Rather than addressing the limitations of ROS within

the confines of the existing development framework, the Open Source Robotics Foun-

dation decided in 2014 to develop an entirely new project, ROS2, which is backwards-

incompatible with ROS1. This new project aims to address all of the above limitations

and more. This thesis explores the trade-offs between ROS1 and ROS2.

ix

Introduction

ROS, the Robot Operating System [1], was first made available in 2007 [2]. It was

developed by a company called Willow Garage which was founded by an early de-

veloper at Google. They found that anyone working in research robotics “spent 90

percent of their time re-writing code others had written before and building a proto-

type test-bed”, leaving only the remaining ten percent for innovation [3]. ROS was

their solution to eliminate that wasted time. Three years later, in 2010, the first

major version of ROS, Box Turtle, was released. Since then, usage and popularity

have grown considerably1, along with the number of potential applications and use

cases. Unfortunately, design decisions made when ROS was in its infancy still apply

today and have begun to show their age. These decisions include: only being officially

supported on the Ubuntu Linux distribution (as of Lunar, the 2017 long-term support

(LTS) release), assuming the use of powerful workstations, adhering to older versions

of libraries and programming languages, and the lack of encrypted communications.

Rather than addressing the limitations of ROS within the confines of the existing de-

velopment framework, the Open Source Robotics Foundation (OSRF; a 2012 spinoff

from Willow Garage that has since assumed the mantle of ROS maintenance) decided

in 2014 to develop an entirely new project, ROS2, which is backwards-incompatible

with the original project (which will hereafter be referred to as “ROS1”). For the

purposes of this thesis, the two projects will collectively be referred to as “ROSn”.

1As of this writing, [1] has 3866 citations on Google Scholar.

1

Abstract

ROS2 aims to address all of the above limitations and more. The first alpha release of

ROS2 was in August of 2015 and the first full, supported release was in December of

2017. Design goals of ROS2 include support for small embedded platforms, non-ideal

networks, and a general shift from being focused on research applications to produc-

tion enterprise environments. Furthermore, ROS1 included a significant amount of

“middleware”, software that implements the underlying data transfers, while ROS2

seeks to use a variety of new technologies that have been developed since the release

of ROS1 [4]. Still, ROS2 is in its initial experimental stages, so the current state of

affairs that is explored in this thesis will not necessarily be indicative of the future.

This thesis is not the first academic publication to explore ROS2. While this

thesis is largely based on publically-available information from the OSRF employees

who work on ROS2, it is in part based on prior academic works. For example, in 2016

a paper was published that explored the performance of ROS2 [5]. This paper found

that, as of the third alpha of ROS2 (as declared in Table 2), ROS1 was substantially

better at transporting a wide variety of data sizes than ROS2 with either the Connext

or OpenSplice middlewares (as reported in Table 4). As such, this thesis only uses

Fast-RTPS, the free and open-source middleware that is included with a default

ROS2 installation (as of the beta and full releases). The paper also makes use of

the ros bridge (later renamed to ros1 bridge) program to connect the ROS1 topic

space with its ROS2 equivalent. This program is also used in this thesis, albeit for

capturing and analyzing network traffic in order to compute statistics about ROS2’s

performance on tiny targets.

Another paper implemented a proof-of-concept network module for ROS2 based

on the specific type of network that they were studying [6]. They ran ROS2 on “low-

end IoT communications modules”, specifically the Atmel SAMR21 board, and did

not mention any difficulties in their paper.

Another way to run ROS2 in an embedded system is to use NuttX, a real-time

2

Abstract

operating system (RTOS) that can run on a variety of hardware, including microcon-

trollers with a word size of only eight bits. A repository prototyping ROS2 for NuttX

is available under the ROS2 GitHub organization. Its last update was in 2014 [7].

This thesis is structured as follows. The first part empirically explores various

aspects of the new ROS2 project, including tiny targets, Windows support, newer

versions of programming languages and libraries, and security and encryption. The

second part contains empirically-backed tutorials about developing various ROS2-

related topics, including a detailed guide on how to port an existing ROS1 package

to ROS2, how to use Visual Studio to debug a ROS2 program running on Windows,

and how to run either ROS1 or ROS2 on the NTC C.H.I.P., a US$9 credit-card-sized

computer that is similar to the perhaps more well-known Raspberry Pi. The next

part concludes the thesis, and the final part contains the appendices and references.

A particularly useful appendix is the glossary-like Abbreviations appendix, which

contains within it a table of every abbreviation used in this thesis.

3

Part I

Experiments

4

Chapter 1

Tiny targets

1.1 Introduction

One of the claims of ROS2 is that it works better on smaller target computers than the

“workstation-class” machines that ROS1 requires [8]. While the definitions of “tiny

target” may vary, some traits remain constant; important considerations include size,

price, and processing power. On robots running ROS1, there is generally one central

computer running roscore and its attendant nodes1. This machine is sometimes

referred to as the “brain” of the robot, and is generally constructed from laptop

or desktop computer parts with prices and processing power availabilities to match.

Even if the computer is only a small netbook, as in the case of Turtlebots [9], it is

still orders of magnitude more expensive and powerful than some tiny targets are.

For instance, the target that was explored in [8] costs about US$10, uses an ARM

Cortex-M7, and can still communicate over Ethernet. At a similar price point, the

C.H.I.P. computer [10] costs US$9 and uses an Allwinner R8 system-on-a-chip (SoC)

[11]; this provides significantly more processing power and memory than the machine

from [8]. Indeed, C.H.I.P. can even boot Debian Linux, albeit with modifications.

1In both ROSn, a node is the basic abstraction of a process. One can also write “nodelets”,
which can be run in the same process and thus can use more efficient techniques to move data (such
as passing a pointer to the data instead of copying everything).

5

CHAPTER 1. TINY TARGETS

(For example, using UBIFS2 instead of ext43 since C.H.I.P. is backed by NAND flash

storage instead of a physical disk. Note that solid-state drives (SSDs) use different

kinds of flash than C.H.I.P. and can handle disk-oriented file systems.) To see how

the specifications of C.H.I.P. and other kinds of targets compare, see table 1.1. The

rest of this chapter will explore C.H.I.P. in particular.

Why does ROS2 claim to work better on smaller targets? In part, this is due to

its usage of DDS [13], which does not require the same support systems as ROS1. In

particular, DDS does not necessarily need the full TCP/IP stack (only UDP), nor does

it necessarily need to use dynamic memory allocation; that is, all of the memory that it

needs can be statically allocated. Since memory allocation is often non-deterministic

(due to the other processes on the system consuming unknown amounts and regions of

memory), this can help a real-time system better meet its desired sample rate, as well

as potentially speeding up normal operations and reducing the risk of a segfault. In

other words, by no longer depending on these systems, one can target a broader array

of operating systems and RTOSes4, and even contemplate running on bare metal — a

concept that might seem rather far-fetched under ROS1. This is the idealized future

of ROS2: since all sensors, computers, and actuators would speak the same protocol,

more processing would be able to happen closer to the sensor level, thus reducing the

load on the central computer and providing for a more distributed system [8].

The default DDS used in ROS2 is Fast-RTPS5, although others can be used as

2The Unsorted Block Image File System is intended for use with flash storage and has to: track
“bad blocks” (regions of flash that have degraded beyond the point of usefulness), offer wear levelling
(flash is not infinitely re-writeable), and work nicely with the Linux kernel (merged since version
2.6.27, in the year 2008 [12]).

3The fourth extended file system (for Linux). This is the default file system for numerous Linux
distributions, including Debian and Debian-derivatives like Ubuntu.

4A real-time operating system is distinguished from more mainstream consumer operating systems
by allowing more stringent deadlines to be set and consistently achieved. One common usage of
RTOSes is for sampling signals.

5RTPS is an abbreviation for “Real-Time Publish-Subscribe”. Like TCP, it is a standard proto-
col, although with much greater flexibility; for example, one can tune the quality of service (QoS)
to match the application, e.g., by not requiring guaranteed delivery of packets for sensor data.

6

CHAPTER 1. TINY TARGETS

well. Fast-RTPS started out as an independent DDS implementation by eProsima6,

a Spanish company. Recently [14], eProsima agreed to work with the Open-Source

Robotics Foundation (OSRF), the developers of ROS2. The Fast-RTPS developers’

willingness to work with OSRF and implement requested features, along with Fast-

RTPS being open-source, is a contributing factor to why Fast-RTPS is the default

DDS for ROS2. However, Fast-RTPS is not the only supported DDS; other supported

DDSes include RTI7 Connext (which is proprietary and not free, although a free trial is

available) and Vortex8 OpenSplice (which is open source and available under multiple

licenses). Despite the availability of these alternatives, the author of this thesis could

find no compelling reason to use them; accordingly, this thesis only uses Fast-RTPS.

1.1.1 Explanation of tiny target comparison table

All values are approximations of orders of magnitude. Speed is in megahertz, RAM

in megabytes, power in watts, and cost in United States dollars. Baxter cost is an

estimate of only the computer (excluding the rest of Baxter). The OnePlus One was

chosen as a representative of “modern” flagship-grade smartphones; additionally, it is

what this author uses. The first iPhone is provided for historical interest. “CCC” is

an abbreviation for “credit-card-sized computers”, such as the Raspberry Pi family,

C.H.I.P., and the Intel Edison family, which all use the ARM architecture (usually

armv7l(hf), which is 32-bit). The last two columns use values from the ROSCON

2015 presentation. Note that ROS2 does not yet work on Arduino-class systems. All

targets use the ARM instruction set unless otherwise specified.

6eProsima is an abbreviation for “e-PROyectos y SIstemas de MAntenimiento”.
7RTI is the name of the company and is an abbreviation for “Real-Time Innovations”.
8The company used to be named “PrismTech” and is now named “ADLINK Technology”. The

brand is “Vortex”.

7

CHAPTER 1. TINY TARGETS

Table 1.1: A comparison of tiny targets. See subsection 1.1.1 for details.

Class Desktop Phone, 2014 Phone, 2007 CCC MCU 8-bit

Example Baxter OnePlus One First iPhone C.H.I.P. PX4 Arduino

Speed 1000 i7 1000 100 1000 100 10 AVR
RAM 1000 1000 100 512 < 1

4
1
32

Power 100 10 5 < 1
2

0.1 0.01
Cost 1000 250 600 9 10 2
Tiny? No Not really Yes Yes Yes Yes

1.2 Experiments

1.2.1 jasadc

All of the experiments run on C.H.I.P. were run with a custom program called “jasadc”

(JAS’s Analog-to-Digital Converter), available for both ROS1 and ROS2. This pro-

gram reads values from the C.H.I.P.’s ADC via the sysfs interface. The ADC is part

of the C.H.I.P. board and is electrically connected via an internal I2C bus. Values

from the ADC are sent out to ROSn via int32 messages (defined in the std msgs

package). Besides that package and the general ROSn C++ API package, jasadc

has no other ROS dependencies.

The node included in the package publishes on two topics, adc and microvolts.

The former publishes the raw ADC reading as an integer from zero to 4095 inclusive,

while the latter is computed from the former via the following formula, which is

defined in the function convert adc to microvolts() in src/main.cpp.

⌊
adc× 1 000 000

211

⌋
+ (OFFSET × 700 000)

where adc is the value from the ADC and OFFSET is #defined9 to be zero. If it

is set to one (and the program re-built), then the ADC will measure over the interval

0.7 V to 2.7 V instead of 0.0 V to 2.0 V.

9Defined with the C #define macro.

8

CHAPTER 1. TINY TARGETS

Both of these topics appear under the same namespace, /chip adc MAC address10,

where “MAC address” is the address of C.H.I.P.’s wlan011 interface12. This is the

interface used for general device WiFi, and should also appear in the administrator

page of the router to which C.H.I.P. is connected. Other C.H.I.P.s will be different.

Note that these topics can be renamed or remapped like any other ROSn topic13. The

end user can also directly modify main.cpp, the only source file. This naming scheme

was chosen to ensure that multiple C.H.I.P.s could run in the same ROS namespace

(i.e., on the same robot) and not collide with each other. Additionally, the MAC

address does not change when the system is rebooted, so one can manually map each

C.H.I.P. to the physical place on the robot where it is mounted and then not have to

change the mapping later.

With regard to sampling, by default jasadc samples as fast as it can. However,

one can uncomment a line in the main loop of main.cpp to introduce a sampling rate

and allow it to be set via a command-line argument.

1.2.1.1 Link to source

https://github.com/jstarkman/jasadc

This link points to a Git repository of the code for jasadc. Note that ROS1-

compatible code is on a branch14 called “ros1”, while ROS2-compatible code is on a

branch called “master”. By default, the above link will show the “master” version.

10For example, the C.H.I.P. used to develop this package publishes under the topics named
/chip adc cc 79 cf 23 bf 71/adc and /chip adc cc 79 cf 23 bf 71/microvolts.

11This changed in Debian Stretch. However, devices dist-upgraded from Jessie retain their
original interface names. Accordingly, if one day the producer of C.H.I.P., NTC, releases a build of
Stretch for C.H.I.P., then the program will have to be updated to accodomate.

12In this context, an interface is a structure in the Linux kernel through which networking packets
can travel. Usually, one interface is created per physical connection to a network (e.g., per Ethernet
port, per WiFi radio, &c.) as well as a few others (e.g., the local loopback interface where 127.0.0.0/8
packets are routed).

13Topic remapping is not yet implemented in ROS2 as of the third beta.
14In Git, a branch is an easily-updated pointer to a commit. A commit represents a snapshot of

the state of the repository at the given time, and is analogous to a “revision” in other version-control
tools, including Subversion (svn).

9

https://github.com/jstarkman/jasadc

CHAPTER 1. TINY TARGETS

The ROS1 version can be accessed through the “branches” section of the page; alter-

natively, append /tree/ros1 to the base repository URL above. One can also clone15

the repository to one’s local machine and check out the branch directly.

1.2.1.2 Link to pre-built ROS1 and ROS2 workspaces

https://github.com/jstarkman/jasadc/releases

To further facilitate usage, under the “releases” section (linked above) one can

find tarballs16 of pre-built ROS1 and ROS2 workspaces. As of this writing, the ROS1

tarball uses the “bare bones” install of Kinetic (2016 LTS), while the ROS2 tarball

uses the third beta (September 2017). ROS1 is available for both Debian Jessie and

Stretch, while ROS2 is only provided for Stretch.

The “releases” section also contains pre-configured overlay workspaces for each

ROSn. The overlay workspaces each contain an appropriate branch of jasadc and

nothing else. If one chooses to use a pre-built overlay, then it is recommended that one

update the version of jasadc present in the tarball to the latest release via running

git pull. After doing so, one will then need to build the newest version with catkin

or ament.

1.2.2 Instrumentation

The function generator used in these experiments is a 33120A 15 MHz function gen-

erator from HP17 [15]. It was set to produce sinusoids with a +500 mV DC offset and

peak-to-peak voltage (VPP) of 1.000 V. Due to the load of the C.H.I.P., these values

are doubled, giving a sinusoid spanning the full two-volt range of C.H.I.P.’s ADC.

15In Git, cloning a repository means creating a full local copy of it, complete with full history.
Since Git is decentralized, this copy is identical to the one on the server. This is analogous to a
checkout in Subversion.

16A tarball is a single file containing all of the files of a directory and its child directories. It
usually has the file extension .tar, often followed by .gz or .bz2 (tar does not compress files, only
hold them together). It is analogous to a .zip file, which is more commonly found on Windows.

17Also branded as “Agilent” and “Keysight”, two HP spinoffs.

10

https://github.com/jstarkman/jasadc/releases

CHAPTER 1. TINY TARGETS

To move the data off of C.H.I.P., both C.H.I.P. and a laptop (representing the

robot) were connected to the same WiFi network. For ROS1, this was the univer-

sity’s public WiFi network, CaseGuest. For ROS2, this was a private router with

only C.H.I.P. and the laptop connected (no other devices nor Internet access). This

discrepancy is due to CWRU’s policy of blocking multicast18 traffic on their network.

While Fast-RTPS has an option to use unicast instead of multicast, that option was

not found to work when using the XML configuration provided both in a presentation

from ROSCON 2017 [16] and on eProsima’s website [17]; Wireshark19 always showed

at least one multicast packet. For ROS1, it is not known how much load CaseGuest

was under, or whether that had an influence on the data gathering. For ROS2, since

only two devices were connected to the router, the network was clearly not under

load.

The laptop captured the published messages to bagfiles20 on its hard drive for

future processing. Each bagfile is approximately ten seconds long and consists of a

single frequency from the function generator. The following frequencies were sam-

pled: 1 Hz, 3 Hz, 5 Hz, 10 Hz, 30 Hz, 50 Hz, 100 Hz, 200 Hz, 300 Hz, and 400 Hz. Plots

created with rqt plot of two of these frequencies can be seen in figure 1.1. Addition-

ally, 90 Hz was captured for ROS2. The bagfiles were named “only-1Hz.bag”, where

“1” is the frequency from the generator in hertz. For each frequency, the ADC on

C.H.I.P. always sampled at 200 Hz. The main loop of the program that sampled the

ADC was allowed to run freely, meaning that there were no calls to nanosleep() nor

18Multicast is a feature that allows packets sent to certain IP addresses to be broadcast to all
devices on the same network (with different addresses for different definitions of “same”, e.g., local,
universal, &c.); this is in contrast to unicast, where the packet is only sent to a single recipient.
Multicast is commonly used by NTP, the Network Time Protocol, to disseminate timing information
more efficiently. Large corporate networks tend to block multicast traffic to avoid being flooded by
spurious packets, although they can selectively allow NTP.

19Wireshark is a popular tool for sniffing and analyzing packets. It works on all major operating
systems. It needs superuser/administrator rights to sniff but does not need them to analyze.

20A bagfile is a file containing a log of all of the traffic on a given set of ROS topics. Here, the
only topic that was captured was the one that carried the reading from the ADC. This file is named
after the rosbag program that generates it. This program gives the filename of the bagfile a .bag

extension.

11

CHAPTER 1. TINY TARGETS

related functions. The only other programs running on C.H.I.P. were system defaults

and the shell from which jasadc was run. In a deployment environment, this could

be relegated to a startup script, negating the need for a terminal.

1.2.2.1 Explanation of sinusoid plots

Figure 1.1 shows plots of 1 Hz and 10 Hz sinusoids captured with ROS1 running on

C.H.I.P.. The plots were created by playing the recorded bagfiles such that rqt plot

could plot their contents. Note the jaggedness from the irregular sampling. Plots and

bagfiles from ROS2 were no better in this regard.

1.2.3 Methods

1.2.3.1 ROS1

Only one command was issued on C.H.I.P.:

ROS REMOTE URI=<IP address of laptop> rosrun jasadc main

This was allowed to run continuously. Separately, these commands were all run-

ning concurrently on the laptop:

$ roscore

$ rqt plot (set to show incoming data from C.H.I.P.) (not necessary)

$ rosbag record <C.H.I.P. ADC topic> -O only-1Hz.bag

Each rosbag command was allowed to run for about ten seconds (the exact value

is unimportant; the purpose is to record enough samples that future processing will

not be adversely impacted). It was then interrupted (by pressing ^C (control-C)), the

frequency on the function generator changed, and restarted with a different output

name (e.g., “only-3Hz.bag”) corresponding to the new frequency from the function

generator.

12

CHAPTER 1. TINY TARGETS

Figure 1.1: Plots of 1 Hz and 10 Hz sinusoids captured with ROS1 running on C.H.I.P..
See subsubsection 1.2.2.1 for details.

13

CHAPTER 1. TINY TARGETS

1.2.3.2 ROS2

Only one command was issued on C.H.I.P.:

root@chip# nice -n -10 ros2 run jasadc main

This was allowed to run mostly continuously, although it was restarted occasion-

ally when traffic seemed to slow (see observations below). Separately, these commands

were all running concurrently on the laptop:

• The other commands from ROS1

$ ros2 run ros1 bridge dynamic bridge -- --bridge-all-topics

The bridge was required because, as of this writing and experimenting, ROS2 does

not have an equivalent to rosbag. Apart from the bridge and the different program

on C.H.I.P., everything else was the same as for ROS1. Note that, since Fast-RTPS

uses multicast by default, one does not need to specify the IP address of the master

computer (laptop) like one does with ROS1. This would allow for easier deployment

and might be a reason to use ROS2 over ROS1.

1.2.4 Observations

1.2.4.1 Dropouts

The values displayed in rqt plot showed a nontrivial amount of dropouts, jaggedness,

and other sampling issues, as can be seen in figure 1.1. This motivated the “missed

updates” component of the analysis.

Setting the function generator to produce a sinusoid at 200 Hz (the sampling rate

of the ADC) would ideally have resulted in a flat line since the ADC would sample

the same point on each cycle of the sinusoid. However, the curve that appeared on

rqt plot (with C.H.I.P. under ROS1) looked like the 1 Hz signal (the signal under

14

CHAPTER 1. TINY TARGETS

ROS2 was less coherent; see next subsubsection). Other multiples of the Nyquist

rate21 behaved similarly. This is why those values are in table 1.2.

1.2.4.2 Publication rate

Under ROS1, the ADC was sampled at a rate of about 780 Hz, as measured by

rostopic hz. This is less than the 1000 Hz that one might want out of a real time

system, but still shows well under an order of magnitude22 difference.

Under ROS2 with Fast-RTPS, measuring the rate of publication to the ADC topic

in the same way as with ROS1 produced a significantly smaller value, often in the

range of 100 Hz to 200 Hz. This value was also subject to much larger variations:

values as high as 350 Hz and as low as 50 Hz could sometimes be seen. When the rate

was too low for too long, the sampling process was restarted, which seemed to speed

up publication temporarily. Since at no point during the experiment were the laptop’s

eight CPU cores fully utilized (according to htop, which was running simultaneously

in another window), the performance of the program that bridged ROS2 to ROS1

should not be a major factor. Since the ADC samples at 200 Hz, the ROS2 sampling

rate may be low enough to cause nontrivial problems.

The poor publication rate of ROS2 — specifically the error term associated with

sampling the 100 Hz sinusoid, as compared to ROS1 — is what motivated the sample

at 90 Hz, in an attempt to see how bad reconstruction was near but below the Nyquist

rate. See the reconstruction table in the next section for numeric values.

21The Nyquist rate of a signal is twice the highest frequency present in that signal (all signals can
be represented as a summation of sinusoids; to convert, one uses the (inverse) Fourier transform).
The Nyquist rate is the minimum frequency at which one must sample the signal in order to fully
reconstruct it without error. Accordingly, if one always samples at a given frequency (e.g., 200 Hz),
then reconstructions of signals that contain sinusoids whose frequencies are above half of the sampling
frequency will have errors while lower-frequency signals will be fine; following the previous example,
under ideal conditions, a 99 Hz sine wave would be recovered properly while a 101 Hz sine wave
would be an error-laden mess.

22log10(780) ≈ 2.9, which is close to log10(1000) = 3.

15

CHAPTER 1. TINY TARGETS

1.3 Analysis

The full analysis for this chapter was carried out in an IPython notebook23 via

Jupyter24. This notebook file, only-foo-analysis.ipynb, is available with all of

the other source code used in this thesis. The only difference in the analysis between

ROS1 and ROS2 is in the path to the bagfiles in one of the earlier cells25, and even

that could be avoided by restarting the IPython kernel from different working direc-

tories (since the path is relative); no changes are needed to any other part of the file,

although all cells will still need to be re-run with the new data since they do not

automatically update.

1.3.1 Publication rate

The ADC on C.H.I.P. samples at 200 Hz, meaning that five milliseconds pass between

each update. Thus, any dropout in the data publications of over five milliseconds is

at risk of missing an update. To determine this, we can take the difference between

the timestamps of the samples and count how many are over the threshold. Since

C.H.I.P. was running more-or-less continuously through all cases, there is no reason to

segregate the different frequencies from one another. Doing this showed that for ROS1

about 5.81% of updates happened more than five milliseconds after their predecessors,

while for ROS2 about 31.23% of updates were at least as late.

However, five milliseconds is a rather arbitrary choice, as it was chosen because of

the particular ADC used on C.H.I.P., not because of anything ROS-specific. Accord-

ingly, a “1% line” was added to each plot to show the gap size that encompasses 99%

of all updates. That is, 1% of all updates for a given ROS version are to the right of

23IPython is an abbreviation for “Interactive Python”. It is a program that can run Python code
in snippets, much like the Mathematica kernel. It is sometimes referred to as the IPython kernel.

24Jupyter is a suite of programs that provide graphical user interfaces to kernels of various lan-
guages, such as the IPython kernel for the Python language.

25In these notebooks, a cell is a snippet of code that is treated as a unit. It is analogous to a cell
in Mathematica.

16

CHAPTER 1. TINY TARGETS

each 1% line, while 99% are to the left.

The distributions of timestamp separation times for both ROSn can be seen in

figure 1.2. Note the long tails on the distributions, as well as the logarithmic vertical

axes and the deliberately-matched scales. The full axes for both ROSn can be seen in

figure 1.3. Note the even longer tail on ROS2, as well as the complete lack of dropout

delays for ROS1 after about 260 ms.

Why the disparity? After all, ROS2 was seemingly given every advantage: ROS2

packets ran over a dedicated network instead of a (potentially) crowded public guest

network; the ros2 run process was given a lower niceness (-10), thus having a higher

priority to the Linux kernel than what the ROS1 process had (0); and ROS2 is said

to work better on smaller targets. Why did the ROS2 program only publish new

messages at less than half of the rate of the ROS1 program?

In part, this is due to running full ROS2 in user space26 on a slightly-modified

Debian installation. This means that numerous non-critical programs were running

concurrently with each sampling program. If a more pared-down real-time system

were used, then perhaps publication would happen at a more consistent rate. As

shown in [8], if one uses Fast-RTPS directly from such an environment, then one can

achieve higher publication rates than ROS1 achieved in the experiments presented

earlier.

However, some potential impacts are less likely. For example, the only difference

between the two programs running on the laptop was the addition of the bridge for

ROS2. Since the laptop’s CPU never ran near full capacity during the experiments,

the bridge is unlikely to have caused the deterioration in publication rate.

26User space refers to the part of memory where user programs run. It is in contrast to kernel
space, where protected operating-system-critical processes run. To exemplify, drivers run in kernel
space, while shell commands run in user space.

17

CHAPTER 1. TINY TARGETS

1.3.1.1 Explanation of histograms

This subsubsection applies to both figures 1.2 and 1.3. These histograms show times

between updates for ROS1 and ROS2 on C.H.I.P.. The percentages near the vertical

lines show how many values are to the right of the respective line. The left line is

set to five milliseconds. The right line was chosen such that 1% of samples are to the

right of it. It is at fifteen milliseconds for both histograms.

For the first figure, note that the horizontal axis of the histogram for ROS2 has

been cropped to make it use the same scale as the histogram for ROS1. The second

figure uses the same histograms as in figure 1.2, but with the horizontal axis changed

to show all of ROS2.

1.3.2 Reconstructing input from samples

In spite of the above issues with sampling, the signal can still be recovered from the

samples.

First, the input values are resampled to force them to occur at five-millisecond

intervals. Gaps in coverage can then be recovered via a variety of interpolation

methods. Linear interpolation was chosen as it is cheap to compute, makes conceptual

sense for low-frequency sinusoids, and appears to work well (for ROS1, at least).

After cleaning the input, the absolute value of a real-value FFT can be found.

The largest element of the transformed data corresponds to the strongest frequency

present in the input signal. Since the signal has a DC component (one volt) that we

are not interested in, we deliberately avoid checking the value of the FFT at 0 Hz

when searching for the peak.

After finding the peak, we can compare it against the known value from the

function generator and compute an error term. The results of these calculations are

in table 1.2.

18

CHAPTER 1. TINY TARGETS

Figure 1.2: Histogram, short abscissa. See subsubsection 1.3.1.1 for explanation.

19

CHAPTER 1. TINY TARGETS

Figure 1.3: Histogram, long abscissa. See subsubsection 1.3.1.1 for explanation.

20

CHAPTER 1. TINY TARGETS

Table 1.2: Frequency recovery estimates and errors. See subsubsection 1.3.2.1 for
details.

ft f1 e1 f2 e2

1 0.953 4.71% 0.955 4.46%
3 2.983 0.55% 3.022 0.74%
5 4.960 0.79% 4.952 0.97%

10 9.989 0.11% 10.021 0.21%
30 30.042 0.14% 30.000 0.00%
50 50.000 0.00% 50.025 0.05%

100 97.152 2.85% 5.508 94.49%
200 2.929 98.54% 3.376 98.31%
300 94.396 68.53% 9.766 96.74%
400 5.514 98.62% 6.794 98.30%

1.3.2.1 Explanation of frequency recovery table

All frequencies are in hertz. ft is the theoretical frequency of the sinusoid supplied

by the signal generator. fn is the empirical frequency for ROSn as determined by the

ADC on C.H.I.P. and subsequent processing. en is the corresponding error term. The

horizontal line represents the Nyquist rate, after which sampling becomes unreliable.

The estimate and error for ROS2 at 90 Hz are 23.177 and 74.2%, respectively.

1.4 Conclusion

As can be seen from the preceding experiments and analyses, if one tries to use ROS2

like ROS1 on a tiny target then one will not get the same results. This can be seen

throughout the work; for example, building the ROS2 workspace took much longer

than building the ROS1 “bare bones” workspace did, and provides different features.

Once installed, ROS2 had markedly worse performance in terms of publication rate,

although performance was minimally different after acausal signal recovery. Both of

these points are addressed in the subsections below.

For those who wish to experiment with both versions of ROS, the full patch needed

21

CHAPTER 1. TINY TARGETS

to convert jasadc from ROS1 to ROS2 can be found in Appendix C27. Note that in

main.cpp only fourteen lines changed, all in straightforward ways. More information

about porting can be found in the second part of this thesis.

1.4.1 Once-off aspects: cost, setup, and installation

Neither ROSn was particularly difficult to install on C.H.I.P.; furthermore, since

tarballs of the workspaces that were built are provided freely on the Internet to

anyone who wishes to use them, installation difficulties should not be a deciding

factor when choosing the version of ROS that one wants to run on one’s C.H.I.P.,

nor should it be a factor when weighing the US$9 C.H.I.P. against other small ARM

Linux targets, such as members of the US$20–40 Raspberry Pi family. As for cost,

one’s budget will determine whether or not that is relevant to the decision.

1.4.2 Performance

When running ROSn on C.H.I.P. in user space, ROS1 performs better than ROS2.

As seen in table 1.2, for many cases below the Nyquist rate ROS1 has a lower error

rate than ROS2, although most of the error terms are so low that the difference

can probably be neglected. Perhaps a better deciding factor would be from the

observations of the publication rate, where it was noted that the ROS1 version of

jasadc sent packets at a more consistent rate than did the ROS2 version, as can be

seen in the histograms referenced in subsubsection 1.3.1.1. That being said, in spite

of these issues the sinusoids could still be reconstructed about equally well under both

ROSn; as such, for any real system where one wants to use the ADC on C.H.I.P. at

a low sample rate, one should use the version of ROS that is most compatible with

the rest of the robot.

27Also available online at https://github.com/jstarkman/jasadc/commit/8b85326.

22

https://github.com/jstarkman/jasadc/commit/8b85326

CHAPTER 1. TINY TARGETS

1.4.3 Overall

Overall, if one wants to sample an ADC and send the values to ROS, jasadc on

C.H.I.P. is not a bad choice. It can easily be added to a robot’s existing WiFi

network and one can use pre-made workspaces to set up a new device fairly quickly.

While the sampling may involve non-trivial dropouts, it should still be good enough

for some applications.

1.4.4 Future work

One possible avenue to explore in future iterations on this subject might include

changing the niceness of sampling process; for ROS1, this analysis only used the de-

fault value of 0 (resulting in a priority of 20). By lowering the niceness, the ADC could

be read more often and fewer updates might be missed. Another area of exploration

is the signal processing done to the sampled values. In this analysis, missing values

were filled in with linear interpolation since the signal was known to be sinusoidal;

how would other strategies fare under different circumstances? Futhermore, the in-

terpolation was done offline and used future values to predict missing ones, resulting

in an acausal system. This is clearly not feasible for a real system, but might be

acceptable for after-the-fact reporting.

23

Chapter 2

Windows

2.1 Introduction

Microsoft Windows is a highly widespread desktop operating system. Its usage is

no less prevalent among large corporations, including those that are interested in

robotics. However, ROS1 does not run natively — i.e., being compiled into .exe and

.dll files — on Windows; rather, it only runs on Unix-like operating systems, and

while it can be made to work (to an extent) via various make-Windows-act-like-Unix

schemes (such as Cygwin and WSL; see below), these approaches are not free of issues,

particularly with lower-level hardware acceleration such as GPU access. Furthermore,

as of the 2016 release of ROS1, Kinetic, ROS1 is only supported on Ubuntu and

Debian, although there are experimental builds for other Linux distributions (such

as Gentoo and Yocto) and even operating systems created by Apple Inc. (both

desktop and mobile). Clearly, this is not an optimal situation, as limited operating

system support deters adoption and usage. ROS2 attempts to address this by running

natively on Windows, which means that one can compile packages with the Visual

Studio x64 (or x86) Native Tools command prompt.

There are two existing methods for running ROS1 on Windows. Both of them

24

CHAPTER 2. WINDOWS

amount to using Windows to mimic Unix-like operating systems and letting ROS1

think that it is being run on a Unix-like machine. The following subsections will also

provide an example of the difference between the two.

2.1.1 Cygwin

Cygwin is a system for running Unix-dependent programs (e.g., Bash and Git1) on

Windows [18]. One of the major components of Cygwin is a dynamically-linked library

(.dll file) that provides a Unix-like interface. This interface is implemented with the

corresponding Windows equivalents from the Win32 API. For example, the system-

level Unix function sched yield() is implemented with the public Win32 function

SwitchToThread() from kernel32.dll [19].

2.1.2 WSL

The Windows Subsystem for Linux (WSL) is another system for running Unix-

dependent programs on Windows. WSL can be installed on any machine running

Windows 10.1607 or later; there are no minimum system specifications beyond what

is needed to run Windows itself. In particular, as of Windows 10.1709 WSL cannot

access the GPU; as such, it does not matter what GPU(s) the system has installed.

WSL is implemented via a kernel driver and works by translating system-level

functions from the Linux kernel into their Windows kernel equivalents. For exam-

ple, the sched yield() function is implemented with ZwYieldExecution() from

ntdll.dll [20]. Note that this function is identical in functionality to the aforemen-

tioned SwitchToThread() function.

1Git for Windows version 2.x is implemented with MSYS2, a stripped-down version of Cygwin.

25

CHAPTER 2. WINDOWS

2.2 Experiments

The headings in this section are structured as follows: “general” means both ROSn,

while the other two subsubsections are for specific changes for the given version of

ROS.

2.2.1 Setup

2.2.1.1 General

All experiments for this chapter were run on the same desktop computer. The host-

name2 of this machine is “THESEUS”, as can be seen in the various screenshots that

follow. The machine has 16 GiB of RAM, a modern Intel processor, and a mechanical

disk drive. The machine boots into Windows 10.1703.

2.2.1.2 ROS1 running via WSL

This subsubsection contains instructions for installing ROS1 2017 (Lunar) in Windows

via WSL. The instructions are taken from [21].

First, enable WSL with Ubuntu 16.04 (Xenial). The details on doing this vary with

the different versions of Windows 10; for best results, consult the official Microsoft

documentation [22]. Note that this requires Windows 10.1703 Creators Update or

later.

Then, install ROS1 Lunar from Ubuntu Xenial binaries (.deb files). Details on

how to do this can be found on the ROS wiki [23]. The procedure works the same

way as installing ROS1 Lunar on an Ubuntu machine.

Historically, after installing the binaries one had to update the “ros comm” pack-

age by checking out the latest revision on the “master” branch and re-running the

2A hostname is the name a computer uses on its local network. For reference, the typical command
prompt on Unix-like systems is of the form username@hostname.

26

CHAPTER 2. WINDOWS

build tool, catkin make. However, as of this writing the latest official ROS1 Lunar

releases contain these changes, thus rendering this step obsolete.

2.2.1.3 ROS2 running natively

ROS2 was installed as per the wiki on the ros2/ros2 GitHub repository. This in-

volved manual installation of various programs (e.g., OpenSSL3, Visual Studio4, and

OpenCV 25), as well as automated installation via Chocolatey [24]. Chocolatey is a

package manager for Windows that works similarly to the more Linux-friendly apt,

yum, pacman, and others, allowing one to install multiple software packages entirely

from the command line with no Web browser, GUI, or monitor required. It is based

on NuGet, specifically Nuget.Core.dll. Chocolatey packages can contain arbitrary

Windows installers (e.g., MSI files, zipped archives, and self-extracting executables;

since “Windows has over 20 different installer formats” [25], this is not an exhaustive

list). These installers can be run completely from the command line without the use

of a GUI nor human interaction of any kind.

2.2.2 Methods

Each applicable feature was tested under both ROS1 and ROS2. Lists of what works

and what does not work were made. Screenshots depicting these features were taken

to provide evidence to support their respective existences (or non-existences). The

following lists itemize the subset of these features that are (or should be) present in

both ROSn, as well as the ones that only apply to a single ROSn and the ones that

do not work in either ROSn under Windows:

• Features present in both ROS1 and ROS2 and working on Windows

3For building features related to security and encryption.
4For the build tools for Windows Native, including a C++ compiler, API bindings, and the

integrated development environment itself.
5For building features related to cameras and image processing. Note that, as of Ardent, the

default publish-subscribe middleware, Free-RTPS, does not yet handle large payloads efficiently.

27

CHAPTER 2. WINDOWS

– Minimal working examples:

∗ Publish/subscribe

∗ Services and parameters6

– RViz

– learning ros [26]

• ROS1-only features (working on Windows via WSL)

– Action servers

– rosbag

• ROS2-only features (working on Windows natively)

– Multicast

– No need to install WSL

• ROS1-only features that do not work on Windows

– Gazebo

2.2.3 Observations

2.2.3.1 ROS1 running via WSL

See figure 2.1. It shows an example of ROS1 Lunar running on Windows 10.1703

via the Windows Subsystem for Linux. The following programs are depicted run-

ning concurrently (clockwise from top-right): roscore, turtlesim/turtlesim node,

turtlesim/turtle teleop key, and Xming (showing the turtle simulator). This

demonstrates Publishers, Subscribers, and running X programs on Windows.

6In ROS2, parameters are quite clearly a special case of a service.

28

C
H
A
P
T
E
R

2.
W

IN
D
O
W

S

Figure 2.1: The standard ROS1 introductory programs running unmodified on Windows via WSL.

29

CHAPTER 2. WINDOWS

2.2.3.2 ROS2 running natively

See figure 2.2. It shows an example of ROS2 beta one running on Windows 10.1703

natively. The subscriber in the image is being debugged in Visual Studio; see the

miscellaneous addenda in the tutorials for an explanation of how to debug a ROS2

program in Visual Studio. This demonstrates Publishers and Subscribers working in

Windows.

30

C
H
A
P
T
E
R

2.
W

IN
D
O
W

SFigure 2.2: A minimal subscriber in ROS2. See the miscellaneous addenda in the tutorials for an explanation of how to debug
a ROS2 program in Visual Studio.

31

Chapter 3

Miscellaneous

3.1 Introduction

There are many differences between ROS1 and ROS2. This chapter looks at two major

additional considerations beyond those explored in previous chapters. One of these

considerations is differences in available programming languages and libraries. ROS2,

being a newer platform, has correspondingly greater platform availability, although

language availability is reduced due to the relatively young age of the project as many

user-contributed language bindings have not yet been ported. Another consideration

is the availability of security and encryption features, which are largely non-existant

in ROS1.

3.2 Programming languages and libraries

3.2.1 Platform differences

3.2.1.1 ROS1

ROS1 started in the year 2007 [2] with the first major releases (Box Turtle and C

Turtle) in 2010 [27]. Then as now, the dominant approach to writing performance-

32

CHAPTER 3. MISCELLANEOUS

sensitive programs and libraries was and is to use C++. At the time, the latest version

of C++ was C++03 (ISO/IEC 14882:2003), and to this day that is the most recent

version of C++ that all supported distributions of ROS11 are able to use [27]. Note

that while as of Kinetic C++11 may be used, packages that wish to support older

versions of ROS1 must either restrict themselves to C++03 or provide macros2 to

make the code work if C++11 features are not available3. As such, the new features

available in C++11 and later are of limited availability in ROS1.

For programs, libraries, and tools that are not sensitive to performance, ROS1

originally decided to use two interpreted languages: Python and Common Lisp, specif-

ically CPython4 and Steel Bank Common Lisp (SBCL). Python is used for many core

ROS1 tools, including rosmaster and roslaunch, while Lisp “is currently being used for

the development of planning libraries” [28]. Since Python 3 would not be released un-

til 2008, and would not be in popular use until somewhat later, ROS1 uses Python 2.

Furthermore, since Python 3 is not completely backwards compatible with Python 25,

ROS1 still uses the older version, although since ROS1 Indigo (2014 LTS) there has

been a standing recommendation that users test against the latest minor version of

Python 3 (e.g., Python 3.3 for Indigo and Python 3.5 for Lunar) [27]. With regard

to Lisp, ROS1 tracks a single, stable version of a single implementation of Common

Lisp and nothing else. This compiler is included in ROS as “roslisp” and is not a

system dependency like Python and C++ are.

1As of late 2017, the supported distributions are Indigo, Kinetic, and Lunar.
2A macro is a feature found in various programming languages (including C++) that allows code

generation (also called “expansion”) based on lexical rules. Macros are expanded by a preprocessor,
which processes the source code before giving the result to the compiler. Since the expansion
happens based on the text of the program (without checking types, syntax, or even what language
the program is in), one can cause the code to do anything, from creating functions to conditionally
including entire blocks of code.

3e.g., by checking the language version and only including code that uses newer features if the
language version is high enough to provide them. If not, code that is compatible with lower versions
would be included instead.

4The reference implementation of Python, available at https://www.python.org/.
5While some programs can be written that function correctly with both versions of the interpreter,

this cannot be expected of an arbitrary, unmodified program.

33

https://www.python.org/

CHAPTER 3. MISCELLANEOUS

In addition to the three main client libraries, there also exist numerous “experi-

mental” client libraries of varying stability for many other programming languages,

including Java (with Android support), Lua, and Haskell [28], along with not-as-well-

supported (but still functional) clients for other languages, including JavaScript in a

web browser [29] (Node.js is experimental) and Rust [30].

3.2.1.2 ROS2

In constrast, ROS2 started in the mid-2010s with the first major release near the

end of 2017. At this point in time, support for Python 3 was much more prevalent6,

and the official end-of-life (EOL) date7 for Python 2 — sometime in the year 2020

[33] — was much closer. Accordingly, ROS2 uses Python 3 for all scripting purposes;

notably, Common Lisp support is absent. With regard to performance-critical code,

ROS2 still uses C++ like its predecessor. However, since C++11 was several years old

when work began on ROS2, ROS2 can be designed and written with new features like

lambdas8, auto, and improved multithreading and asynchronous code throughout, as

well as expecting client code (i.e., what end users write) to take full advantage of

these same features. Furthermore, ROS2 works with newer versions of C++ (e.g.,

C++14 and C++17) than 11. Thus, not only does ROS2 start with more recent

language versions, it provides a more clear upgrade path than was the case under

ROS1 (which still uses Python 2) [34].

6For example, NumPy (Numeric Python) was ported to Python 3 in 2010 [31]. This is revelant
because, among code publically-available on GitHub, NumPy “might be the single most-imported
non-stdlib [i.e., third-party] module in the entire Pythonverse”, more so than even the django and
lxml modules [32].

7The end-of-life date is the date on which a given product is no longer supported. EOL’ed
software will no longer received bug fixes, security patches, or other changes of any kind.

8A lambda expression is an anonymous function, meaning that it has no identifier. While lambdas
are sometimes assigned to local variables, the important distinction is that a newly-constructed
lambda can access the same scope (scope refers to the variables to which a given expression has
access) as was available where it was defined, while a standard, named function has no scope beyond
global values and, if the function is a non-static method of a class, the object to which it is attached.
See following subsubsections for reasons why one might use this construct.

34

CHAPTER 3. MISCELLANEOUS

3.2.2 Language differences

3.2.2.1 Python

While Python 2 and Python 3 have much in common, they are not compatible.

While the languages themselves are quite similar, their internals are quite different

and many major libraries (e.g., NumPy9) were not immediately ported when Python 3

first became available in 2008 [36] (NumPy was ported to Python 3 in 2010 [31]). The

new version of Python broke compatibility in order to permit more extensive design

changes, so that the BDFL10 and maintainers could “clean up Python 2.x properly”

[37]. Due to this backwards incompatibility with the older version of Python, ROS1

still uses Python 2 and as of Lunar (2017 LTS) has not fully transitioned to Python 3

yet. Since ROS2 is a new project, it does not have legacy code to port and can start

requiring Python 3 directly from the initial pre-alpha releases11 [34]. In terms of what

the cleanup entailed, besides internal speed improvements and bug fixes, some of the

major ROS-relevant changes that occured are as follows:

• Strings are now all in Unicode (UTF-812) and byte arrays are their own type.

In Python 2, strings and byte arrays were of the same type, and there was

another type for Unicode. This change in typing may reduce confusion when

dealing with binary data in ROS messages, as well as being more accomodating

of non-English languages.

• Integer division now requires an explicitly-doubled solidus, //. A single solidus

will return a floating-point number. In Python 2, a single solidus would only

9Numeric Python (NumPy) is a Python package for controlling large-scale computations with
Python. By “controlling”, it is meant that most of the actual element-by-element matrix operations
are written in C and Python is only used to wrap the code to present a Python API. This is
similar to the approach taken by MATLAB R©, Julia, and other higher-levelled languages, albeit
with marginally faster results [35].

10The Benevolent Dictator for Life (i.e., the person in charge) of the Python project is Guido van
Rossum.

11Specifically, ROS2 started using Python 3.4 (according to the initial revision of [34]) and has
since upgraded to Python 3.5 for the first major release.

12A particularly popular and comparatively space-efficient encoding of Unicode.

35

CHAPTER 3. MISCELLANEOUS

return a float if at least one of the inputs was a float. Since programs for

controlling robots may require the use of division or averages, this may be a

potential source of bugs when porting a Python library from ROS1 to ROS2.

• The xrange function has been renamed range. This function works by gener-

ating a list of sequential values from the given start value (defaulting to zero)

up to the given stop value (required argument) (does not return the stop value

itself), differing by the increment or decrement (defaulting to an increment of

one) each time. This is also called “lazy evaluation”. The old range function

from Python 2 is no longer present in Python 3. Since these functions are the

idiomatic way to iterate over a loop a given number of times, existing ROS1

code that depends on them will break when porting.

• As of Python 3.5 (the minimum requirement for ROS2 [34]), there is now a ded-

icated infix operator for matrix multiplication: A @ B13 [32]. This is supported

by NumPy version 1.10 and higher when installed in Python 3.5 or higher

[38] and may allow for simplified notation in ROS programs that use matrix

operations, thus making it easier to develop and prototype matrix-dependent

algorithms in Python.

(Citation for above itemized list: [39].)

3.2.2.2 C++

Unlike with Python, the newer version of C++ that is used by ROS2 is backwards

compatible with its predecessor. This means that existing C++ executables and

libraries should still build correctly under a newer compiler, although since some

libraries depend on ROS1 they cannot be used without being ported. A notable

13This operator can be overridden by defining these methods: matmul , rmatmul , and, for
the in-place (@=) case, imatmul . This follows the same pattern that other operators in Python
use for overriding.

36

CHAPTER 3. MISCELLANEOUS

example is the library “tf”: it was deprecated in ROS1 Indigo (2014 LTS), and while

it is still available in ROS1 Lunar (2017 LTS) it is not available in ROS2. Instead,

ROS2 code must use the library “tf2”, which has been ported to ROS2. Since this

library is also available for ROS1, one should port one’s existing “tf” code to use

“tf2” before contemplating porting from ROS1 to ROS2. Alternatively, one could

port “tf”.

With regard to the C++ language itself, the new features in C++11 (and newer)

are generally designed to allow one to write code at a higher level of abstraction while

preserving run-time performance (also called “zero-cost abstractions”14). Here are a

few that would be particularly useful for ROSn programs:

• Many parts of the Boost library have been incorporated and improved upon as

part of the standard library, including:

– Foreach loops (removes need for explicit indexing of loop iterations)

– Lambda expressions (defining a function locally; used to use 1, now uses

dedicated syntax. Good for callbacks15)

– Regular expressions (defaulting to ECMAScript-style, which is broadly

similar to PCRE. These terms refer to the syntax used in constructing the

expressions; a full explanation is beyond the scope of this thesis)

– Function binding (also called partial application of a function, wherein a

new function is created with fewer arguments than the old function; the

other arguments are “baked in” to the new definition)

14For example, one kind of zero-cost abstraction is inlining, where a function’s body is safely
inserted where the function call appears. This allows one to avoid the overhead of calling a function
while retaining the benefit of separating out that block of code.

15A callback is a function that is not run immediately, but rather to handle some other event when
it occurs. The event is said to “call [the function] back”, hence the name. For example, when a new
message is received by a ROSn Subscriber, this event causes the Subscriber to execute the callback
function with which it was initialized.

37

CHAPTER 3. MISCELLANEOUS

• One can now use the auto keyword to automatically set the type of a variable to

the type of the right-hand side of the equals sign. This is particularly useful for

long type names with nested namespaces, a common occurrence in both ROSn.

For example, one can simplify the first of the following two lines into auto msg

=

– std::shared ptr<std msgs::msg::String> msg =

– std::make shared<std msgs::msg::String>();

• One can now use lambda expressions to capture code locally. This is ideal for

writing function callbacks, as one can spatially locate the implementation near

the function call that consumes the callback. For example, one could use a

class to define a logger and capture a pointer to an instance of that class for use

inside the lambda, which itself could be attached to a Subscriber. This entire

pipeline could happen inside the same function body, possibly even in the class

constructor. See listing 1 for what this looks like in code. That example is

taken from the official ROS2 examples repository (as of Ardent).

(Citation for above itemized list: [40].)

// i n s i d e the c o n s t r u c t o r o f a s u b c l a s s o f r c l c p p : : Node
auto sub = this−>c r e a t e s u b s c r i p t i o n <std msgs : : msg : : Str ing >(

” t op i c ” ,
[this] (std msgs : : msg : : S t r ing : : UniquePtr msg) {

RCLCPP INFO(this−>g e t l o g g e r () ,
” I heard : ’%s ’ ” , msg−>data . c s t r ())

}) ;
// Reference : h t t p s :// g i t h u b . com/ ros2 / examples / b l o b /
// e2ab494 / r c l c p p / m i n i m a l p u b l i s h e r / lambda . cpp

Listing 1: Example of a C++11 lambda expression being used as a Subscriber call-
back. The lambda is the part beginning with [this] and includes the following
arguments and code block.

38

CHAPTER 3. MISCELLANEOUS

3.3 Security and encryption

3.3.1 Introduction

In ROS1, security and encryption16 are largely nonexistant. Most communications

are transmitted in cleartext17 over unencrypted TCP sockets18. While there do exist

some efforts towards securing communications in ROS1, they are still experimental

and are not suitable for production code [41].

In ROS2, security is dependent on the middleware via DDS-Security. DDS-

Security is defined by OMG, the same group that defined DDS itself. If correctly

implemented, DDS-Security will prevent third-party attackers19 from reading and

modifying the contents of the RTPS transmissions. See figure 3.1 for a visual com-

parison of what a packet sniffer would see with and without encryption.

Security in ROS2 is provided by the SROS2 package [42]. The next few subsections

will summarize the installation and usage of SROS2 as of ROS2 beta three. Note that

this will require OpenSSL to be installed. Ubuntu users can acquire this by installing

libssl-dev through their package managers, while (as of this writing) Windows

users must download an installer from a web page and manually set the necessary

environment variables. Note that the version of OpenSSL in Chocolatey20 is not the

version that is recommended by the ROS2 installation guide.

16Encryption is a subset of security. However, as of the first release of ROS2 (Ardent), the only
forms of security that work with the default middleware, Fast-RTPS, are encryption and authenti-
cation (access control is available for another middleware, Connext). As such, encryption will be
the focus of this section.

17Cleartext is raw data that has not been obfuscated, encoded, encrypted, or otherwise hidden in
any way.

18A TCP socket is similar to a shell pipe in that data are transferred directly and without changes.
A primitive chat program can be implemented by connecting two terminals together with a TCP
socket and sending keystrokes over the protocol. A simple way to do this with a pair of almost any
Unix-like systems is to run netcat on each one and point them at each other.

19Such as packet sniffers, programs that read network traffic of all kinds. They usually dump this
traffic to a file for future analysis, although some tools allow for live viewing. Sniffers will require
root/superuser/Administrator privileges to run since they will capture every packet on the targeted
network bus.

20Chocolatey is a package manager for Windows. See the Windows chapter for details.

39

CHAPTER 3. MISCELLANEOUS

3.3.2 Enabling security (involves partial rebuilding)

3.3.2.1 How to enable security

For Fast-RTPS, the default middleware that ships with ROS2, security can be enabled

by setting the CMake flag21 -DSECURITY=ON when building ROS2. This can be passed

to ament as follows:

$ ament build --only fastrtps --cmake-args -DSECURITY=ON --

Other ament-related flags (e.g., --symlink-install) must be positioned after the

build argument and before the --cmake-args argument.

Once security is enabled in the DDS provider of choice (here, Fast-RTPS), one

must then rebuild the corresponding rmw foo package (where “foo” is replaced with

the name of the middleware). One can also include this directly into the above

command, thus building, e.g., --only fastrtps rmw fastrtps. These are the only

packages that need rebuilding as empirically determined on a stock Ubuntu source

installation of ROS2 beta three.

3.3.2.2 Authentication and key management

Upon enabling security, one must have the appropriate keys in a single directory

(“keystore”) where the middleware will know to look for them. These can be gen-

erated via the ros2 security subcommand (which internally uses OpenSSL). The

middleware can then be informed via shell environment variables.

Note that the name of the key must match the name of the node, not the name

of the executable. This allows clients to authenticate with completely different pro-

grams and not be aware of the difference, as can be seen by switching between the

21For readers unfamiliar with how CMake interacts with C macros, this acts as as though one
had placed #define SECURITY ON in the beginning of each compilation unit. A compilation unit
roughly corresponds to a C source file with all of the macros expanded, including #include and
#ifdef.

40

CHAPTER 3. MISCELLANEOUS

“demo nodes cpp” and “demo nodes py” packages (which use the same node and

topic names).

If one executable provides multiple nodes, then all nodes need their own keys. For

example, the executable ros1 bridge has a single ROS2 node named ros bridge,

so (as of ROS2 beta three) the command to generate a key for that node would look

like this:

$ ros2 security create key keystore foo ros bridge

Once the keys have been generated, the following shell variables should be set to

enforce usage of the keys:

• ROS SECURITY ROOT DIRECTORY=/path/to/keystore

• ROS SECURITY ENABLE=true

• ROS SECURITY STRATEGY=Enforce

Linux users will want to export these values in their shell run commands files

(e.g., ~/.bashrc for Bash or ~/.zshrc for Zsh), while Windows users will want to

define them as global environment variables via the Control Panel22. Alternatively23,

Windows users can also define the variables locally in each shell (via set), but that

could quickly become tiresome unless one modifies one’s registry to automatically

run a batch file when starting the command processor. The relevant registry key

is a String Value under HKCU\Software\Microsoft\Command Processor\AutoRun

containing the absolute path to your custom definitions file24. This file is also a good

place to put doskey aliases.

22Control Panel → System → Advanced system settings → Advanced tab → Environment Vari-
ables → either User or System (if your account is the only user, there is little practical difference)
→ New. . .→ (define the variable).

23Less-advanced users may freely skip the rest of this paragraph.
24e.g., %USERPROFILE%\autorun.cmd. Note that environment variables are allowed in registry key

paths; that is, this is not a metasyntactic variable, but rather the literal text that one might use for
the key.

41

CHAPTER 3. MISCELLANEOUS

At this point, all of the nodes for which keys exist can be run. If the system

default middleware implementation does not match the middleware implementation

for which security was enabled, then the RMW IMPLEMENTATION environment variable

must be set so as to override the system default.

3.4 Conclusion

As can be seen from the preceding discussions, the many differences between ROS1

and ROS2 that are looked at in this chapter show that developing for ROS2 will

not be the same as developing for ROS1. The availability of newer languages and

libraries allows for new, different, and possibly more efficient programming styles,

which in turn can allow for improved legibility, maintainability, efficiency in writing.

Meanwhile, the ease with which the new security and encryption features can be used

to secure any communication channel could make ROS2 more suitable for production

environments.

42

CHAPTER 3. MISCELLANEOUS

Figure 3.1: Comparison of captured packets displayed in Wireshark. Above: unse-
cured communication, clearly visible in plain text at the end of the packet. Below:
same information, but encrypted.

43

Part II

Tutorials

44

Chapter 4

How to port an existing ROS1

C++ program to ROS2

4.1 Introduction

Suppose that, after much consideration, you decide that you want to use ROS2 for

your existing system. However, your existing system has a non-trivial amount of

ROS1 client code and you neither wish to throw it all away nor incur the runtime

cost of bridging all of the old nodes to the new nodes and vice versa. The only

remaining option at that point is to port each existing package to ROS2 and have the

entire system run ROS2. This chapter contains information regarding how you can

port your own packages.

The content below is based on the first and second betas of ROS2. Many of

the lessons were learned empirically from porting the “learning ros” repository1 that

accompanies this author’s thesis advisor’s recent book [26]. The differences against

that repository can be found in this author’s fork, available here:

https://github.com/jstarkman/learning_ros2

1Link: https://github.com/wsnewman/learning_ros

45

https://github.com/jstarkman/learning_ros2
https://github.com/wsnewman/learning_ros

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

Slightly more detailed explanations can be found inlined with the code by switch-

ing to the “pedant” branch.

4.2 Ancillary porting information

4.2.1 Introduction

Porting a package to ROS2 is not terribly different from general ROS2 development.

Both rely on similar knowedge and similar setup steps and only differ in that when

porting a package one has an existing codebase on which to base one’s new work.

Accordingly, the common elements have been placed in this section while the porting-

specific elements have been placed in the next section.

This section is based on empirical lessons learned when porting learning ros2.

The porting effort was primarily done on Linux, specifically Ubuntu 16.04 Xenial.

However, in order to better accommodate the Windows users who are reading this,

instructions for Windows have been approximated and are mentioned next to their

Linux counterparts.

Note that not every directory in a given repository is necessarily a package, and

not every package has any ROS-specific dependencies. If a given package can be

reworked to remove any dependence on ROS, then it will not need porting and will

work equally well with both ROS1 and ROS2. This was the case with several packages

in learning ros2 that related to forwards and inverse kinematics.

4.2.2 Dependencies

Ensure that all necessary dependencies are available under ROS2. If this is not

the case, port the dependency first and ensure that it works so as to avoid having

problems when building your original package. Note that there is no limit to how

many dependencies through which one may have to recurse. One might benefit from

46

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

fully discovering the entire dependency DAG2 and checking every unique package for

ROS2 availibility. Only if they are all available in ROS2 might porting be feasible.

4.2.2.1 Transitive limitations

Some dependencies are not currently available in ROS2 (as of the first ROS2 release)

but are planned for future releases. These limitations are thus transitory: if they

prevent one’s existing package from being ported then, after a waiting period, one

could revisit the state of the ROS2 ecosystem to see if the problems have been resolved.

If so, then the limitation would no longer apply and porting could proceed as normal.

As of Ardent, the first ROS2 release, limitations include:

• No action servers

• No Gazebo (although ros1 bridge allows partial usage).

• FastRTPS performance for large payloads

4.2.3 Installing ROS2 itself

Check if your platform is supported by ROS2. In general, the latest versions of the

Microsoft Windows, Apple OS, and Ubuntu Linux operating systems will likely be

supported, while support for older versions is dependent on the release of ROS2. If

your platform is not supported, consider using a virtual machine or container3. Note

that an Ubuntu VM will tend to require less disk space than the Windows equivalent4.

2Directed Acyclic Graph; a graph (as in graph theory, not as in plotting) where each edge has
a direction associated with it and where, if one starts from any node/vertex and travels along the
edges in their directions, one can never return to the node where one started.

3A container is a means of specifying the environment in which a program will be deployed.
One popular containerization tool is Docker, and since ROS1 builds are already available as Docker
containers, it would not be unreasonable to expect ROS2 equivalents to be made available eventually.
One can also build one’s own.

4A Windows installation seems to need about 30 GiB to 40 GiB of space while Ubuntu should
need maybe half of that. These numbers are by no means exact and are provided for estimation
purposes only.

47

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

Also note that running a Linux Docker container on a bare-metal Linux system will

not be a true virtual machine but rather a special process, not unlike a chroot jail5.

A Linux Docker container on a Linux host will run with the same kernel as normal

userspace programs (e.g., a web browser) use and will be visible in any system process

explorer (such as htop6). When the same container runs under a not-Linux host, then

the Docker engine will run it as a virtual machine.

Install ROS2 in your chosen environment, optionally doing so from source. In-

structions for how to do this vary by platform; see the official instructions7 for details.

Continue all the way through running the C++ demo nodes.

If you have decided to build ROS2 from source, then you may find that the build

might occasionally crash. When this happens, one possible cause is a missing system

dependency. If this is indeed the case, find the missing package and install it. While

this is not terribly likely for the base ROS2 installation (due to the official installation

guide spelling out its dependencies) it is somewhat more likely for those who choose

to install OpenCV from source. Depending on what packages have already been

installed on your system, the exact list of new packages to install may vary.

5A chroot jail is a way of running a process such that it thinks that the root directory of
its filesystem is not the system root (/) but rather somewhere else in the file system tree (e.g.,
/home/me/fakeRoot/). The name is an abbreviation of “changed root” This directory would have
the usual Unix directories inside (e.g., usr, bin, var, &c.) with the subset of their usual contents
that the process will need (since if a given file will never be opened then it does not need to exist).
Conceptually, since the process will think of the fake root as the real one, attempts to escape the
jail via the “..” file should fail because, on a regular, bare-metal Unix system, “/..” means the same
thing as “/”. However, processes run as root can easily escape the jail, so this is not a universal
solution.

6htop is a terminal-based tool that shows various statistics about running processes, as well as
overall system resource utilization. It can be thought of as a Unix-like equivalent to the Windows
Task Manager.

7Link: https://github.com/ros2/ros2/wiki

48

https://github.com/ros2/ros2/wiki

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

4.2.4 Preparing for the port

4.2.4.1 Removing deprecated ROS1 features

Some existing ROS1 packages use deprecated features that were never made available

for ROS2. As such, to minimize the difficulty of porting, existing packages should

replace deprecated features with forwards-compatible features.

One such feature is the library “tf”: it was deprecated around ROS1 Indigo (2014

LTS), and while it is still available in ROS1 Lunar (2017 LTS) it is not available

in ROS2. Instead, ROS2 code must use the library “tf2”, which has been ported to

ROS2. Since this library is also available for ROS1, one should port one’s existing “tf”

code to use “tf2” before contemplating porting from ROS1 to ROS2. Alternatively,

one could port “tf” itself.

Another difference is in the format of the “package.xml” file in the root of the

package: while the original format of this file is still valid even under ROS1 Lunar,

since at least ROS1 Groovy [43] there have been recommendations to migrate to

a newer format defined in REP 140 [44]. This newer format is supported by both

ROS1’s catkin and ROS2’s ament. Since the original format is not supported by

ROS2’s ament, if your existing package still uses the original format it should be

updated to the newer format before the package source code itself is ported. In this

way, you eliminate a possible source of bugs and confusion before they happen. A

guide for migrating the file can be found at the link in this citation: [43]. This guide

also exists for newer versions of ROS1; to find them, replace the word “groovy” in

the URL with the desired version of ROS1 (e.g., “lunar”). Note that there are no

significant differences between various versions of this file. To provide a concrete

example of how to implement the changes from this guide, the approach taken here

was to copy the “package.xml” file from a working package into the editor for the

target package’s “package.xml” file (such that the one editor window contained the

49

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

contents of both files, one after another) and modify the copied file as needed, using

the old contents as reference and deleting them when they were no longer needed.

Working in this way allows one to avoid duplicating minor changes8. Note that with

the newer format of this file, the <build depend/> tag and the <exec depend/>

tag can be merged into a single <depend/> tag, further reducing duplication.

Another difference relates to the image processing library OpenCV: ROS1 uses

OpenCV version 2, while ROS2 uses version 3. The two are not perfectly compatible.

Guides on how to port between the two (for arbitrary C++ programs, not just ROS-

related ones) are widely available on the public Internet. Note that OpenCV 3 has

been available since ROS1 Indigo.

Yet another possible improvement relates to the numerical library Eigen. This

difference is dependent on how one initially wrote the package. Some existing ROS1

packages (like “learning ros”) depended upon a package called “Eigen3”. Since this

package is not available in ROS2 (as of the second beta), one should include Eigen in

the usual C++ way:

set(EIGEN3 INCLUDE DIR "$ENV{EIGEN3 INCLUDE DIR}")

if(NOT EIGEN3 INCLUDE DIR)

message(FATAL ERROR "Point environment variable EIGEN3 INCLUDE DIR to the

include directory of your Eigen3 installation.")

endif()

include directories("${EIGEN3 INCLUDE DIR}")

(Reference: https://stackoverflow.com/a/12258855)

Note that on a stock installation of Ubuntu, “the include directory of your Eigen3

installation” is /usr/include/eigen3/. If Eigen3 is missing, then it can be installed

via Apt9. Other distributions may vary.

8e.g., including <build type>ament cmake</build type> inside of the <export/> tag or
making the dependencies on the build tools point to ament instead of catkin.

9i.e., $ sudo apt install libeigen3-dev

50

https://stackoverflow.com/a/12258855

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

4.2.4.2 Setup for porting

Make the source of your package (the examples will use the various packages under

learning ros2) available under a directory that is not under the ROS2 workspace.

Create parent directories name of overlay/src/ between your package and the cho-

sen resting site. For example, if your ROS2 workspace is ~/ros2 ws/, then you might

want to check your package out from version control under your home directory10.

If your ROS2 workspace is under %USERPROFILE%\ros2 ws, then there might be a

folder on your Windows desktop named “ros2 overlay”, a folder inside that named

“src”, and inside of that is where you would put your package. Once the directory has

been copied (or moved), create an ament overlay pointing to your ROS2 installation.

You can do this by sourcing the setup script (or calling the batch file) of the base

ROS2 workspace installation and then running ament in the overlay workspace root.

Since the relevant environment variables were last modified by the setup script, the

workspace from which that script was run (i.e., ros2 ws) will be used as the base

layer over which this new directory is an overlay. Thus, future invocations of the

build tool from the overlay workspace will only try to build the packages present in

the overlay, and will not try to re-build ROS2 itself.

What if you have a package in your ROS2 workspace but do not want to build it?

Maybe it is being more troublesome than expected (e.g., by depending on a third-

party package that has not been ported yet) and you do not want to deal with it

right now. This may also occur if you have multiple packages under your version

control root, as is the case for learning ros2. In any case, to cause ament to ignore

a set of packages, you should create an empty file named “AMENT IGNORE” next

to each package.xml file in each unwanted package. To make ament pay attention to

that package again, simply delete the file. Users of Unix-like systems (e.g., Linux)

can create these files next to all package.xml files under the present working directory

10i.e., ~/ros2 overlay/src/your package/

51

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

with a single command:

$ find . -name "package.xml" -execdir touch AMENT IGNORE \;

This command assumes that it is being run from your package root directory. If

not, either change into that directory or replace the dot with the path to the package

root directory11. Due to the lack of a simple equivalent in Windows, Windows users

might wish to consider any of: doing it manually (best for small numbers of packages);

working out the corresponding PowerShell command; installing Cygwin or WSL; or

finding a Linux system (or a friend with a Linux system), running the command

there, putting the new files under version control, and making them appear on the

Windows system by synchronizing the repositories.

4.2.5 List of useful statements to run on a command line

Each invocation of the build tool has the potential to be much more complicated than

a simple ament build. Here are several options, each with an explanation. Note that

these are the exact commands (quoted verbatim with particular values replaced with

metasyntactic equivalents) used when porting learning ros2.

$ ament build -s

Meaning: The last flag means “install with ln -s, not cp”12. This is useful for files

that are directly copied including Python source files and data files as they

will always be up to date without needing to re-run the build tool.

$ ament build -s --only package name

11This includes the directory itself, e.g., ~/ros2 overlay/src/your package/
12On a Unix-like system, ln -s means “make a symbolic link” (commonly abbreviated to “sym-

link” and used as both a noun and a transitive verb), while cp means “copy”. A symlink is stub of
a file that points to another file in the file system. It allows the file to appear to exist in both places
at once while really only existing in one place. It can also be thought of as a copy that is always up
to date. As such, a symlink is very similar to a pointer in C or C++.

52

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

Meaning: This flag only builds the one package, “package name”. It is useful for

debugging builds because it allows one to skip every other package in the

workspace, including packages that depend on the package being built.

Note that this may lead to misleading behavior in the dependent packages.

Since multiple packages can be specified after the --only argument, if

dependent packages are a concern then they should be included in the

above statement.

$ VERBOSE=1 ament build -s --only package name

Meaning: Setting this environment variable will cause the build process and its child

processes to produce more verbose output. This can be an excellent tool

to use when debugging a stubborn package.

4.2.6 Toolchain

This subsection lists the primary toolchain used for porting learning ros2. Other

toolchains would also work; this subsection is provided for completeness.

• Ubuntu 16.04 (Xenial) for an operating system installed on bare metal (i.e., not

in a VM). This was done purely for speed purposes.

• Git for version control.

• VS Code13 with plugins for C/C++, Python, XML files, and CMake files. If one

opens the ROS2 workspace directory instead of the project directory then one

can easily see (and navigate to) built-in ROS2 classes, commands, and macros.

Usefulness of this feature is why an overlay was not used for this particular

porting effort.

13Visual Studio Code; the executable is named code. It is an open-source “editor with a debugger”
from Microsoft. It is not related to Visual Studio itself; only the branding is shared.

53

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

• Emacs, Vi, Vim, and an sh-compatible shell (here, bash) for miscellaneous

editing and file system operations.

• Apt for package management; ROS2 itself was built from source, although bi-

nary Debian releases exist and should work.

A toolchain popular with Windows users might be:

• The latest version of Windows 10.

• Any version control system with Tortoise support. This list includes Git, Mer-

curial, Bazaar, Subversion, and CVS. Note that regardless of which version

control tool is used one still needs Git installed in order to clone other pack-

ages, including the ROS2 source code itself (if building from source).

• Visual Studio for C++ and Windows Native development. Note that regardless

of which editor is used one still needs to install VS in order to compile and build

code. One can also use VSCode, as on Linux.

• Notepad++ and cmd.exe (or PowerShell) for miscellaneous editing and file sys-

tem operations.

• Chocolatey for package management for dependencies; ROS2 itself is not avail-

able in the default Chocolatey repository as of this writing, although some of

its dependencies are only available through .nupkg files.

For learning ros2, Windows work was done with all of the above. The only

exceptions are the use of command-line Git instead of TortoiseGit for version control

and using Notepad++ for all editing. Visual Studio was only used as a command-line

build tool and occasionally as a debugger.

54

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

4.3 Porting your package

4.3.1 Introduction

The Open Source Robotics Foundation has released an official reference guide [45].

To summarize this guide, every ROS-related line of code must be changed. Also,

due to the transition to C++11 dependencies on Boost can largely be removed and

replaced with their equivalents from the standard C++ library.

Note that many packages are not (yet) available for ROS2, so some existing pack-

ages cannot easily be ported. Although programs like Gazebo may function via

ros1 bridge, performance will not be improved, particularly since Fast-RTPS can-

not yet efficiently handle large messages like images and pointclouds.

4.3.2 Architectural changes

4.3.2.1 Launchers and parameters

One particularly large change is the decision for launchers to move from being XML

files to Python scripts. While this offers more flexibility in terms of what can be done

at launch time, it also imposes a higher cost on simple launchers. A relatively simple

example of launching a parameter server with several parameters from a YAML file

can be found under learning ros214. This file also includes the original, three-line

launch file in a comment, as well as several spurious imports15 that might be of use

to people who might want to modify the file in the future.

One common use case for launch files is to insert certain values into the parameter

server (and that is what the example file in the above paragraph does). Since ROS2

does not have an equivalent to roscore, there is no standard system-wide parameter

server; instead, the user must create a node that will act as one. The parameter

14Path: Part 1/example parameter server/launch/launch example param server.py
15import is the Python equivalent to #include C++.

55

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

server node used by the above ROS2 launch file is about as simple of a parameter

node as one could write.

4.3.2.2 Pointers

Another major change is that in ROS1 messages and service components were copied

by value while in ROS2 they are shared by pointer. This reduces the overhead associ-

ated with composing nodes (as each node in the process can point to the same struct

instead of each having their own copy), as well as allowing ROS2 system functions

to control memory allocation in order to better support custom allocators. From the

perspective of writing a client program, this amounts to making heavier usage of the

C++ pointer templates in the standard library and remembering to use an arrow

instead of a dot to access the fields in the struct.

4.3.2.3 CMakeLists.txt

Yet another large difference in ROS2 is that CMakeLists.txt has to be largely rewrit-

ten since, as of the second beta release of ROS2, catkin simple is no longer available

and there does not yet exist an “ament simple” to replace it16. Fortunately, most of

this file is boilerplate and can be copied from an existing working project with min-

imal changes. If one copies the file that is associated with the example parameter

server in Part 1 of learning ros2, then the following aspects of the file would need

to be changed. They are itemized in order of the line number on which they appear.

• The name of the project should match your package name.

• One should call find package() for each build dependency in package.xml.

• The custom executable function definition should list all of these build depen-

dencies. Alternatively, the body of the function could be copied once for each

16Packages that do not use catkin simple should thus be much simpler to port as they would
already have much of the below.

56

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

executable. This would allow one to only make each executable depend on the

appropriate packages and nothing more.

Other changes require a better understanding of CMake. They are summarized

below.

• Calls to include directories() should be added if the old package uses such

a directory. This is perhaps most prominently used for Eigen, which exists

entirely in header files. This is also used for including the headers used by one’s

own package.

• If the package uses its own library then a call to add library() should be added

since the executables will not be automatically linked.

4.3.3 Programming changes

4.3.3.1 Message and service files

This subsubsection concerns the text files under msg/ and srv/ in the package base

directory. They are largely unchanged in ROS2. If they are used by one’s package,

note that all fields must be named in “snake case”17; as of the second beta of ROS2,

the presence of any capital letters anywhere in any field name will crash the build

tool.

Projects that include both a library18 and custom messages will find that the

building process will be simplified by moving the messages to their own package. This

will have the side-effect of making the messages more re-usable by other packages.

All of these changes are back-portable to ROS1 code. However, they have not (as of

Lunar) been deprecated by ROS1, which is why this information appears here instead

of in the above subsubsection about removing deprecated features.

17i.e., with all lowercase letters and words separate with underscores. This is in contrast to
“camelCase”, which uses initial capital letters to separate one word from the next.

18i.e., that produce their own libpackage name.so or package name.dll file.

57

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

Packages baxter/baxter core msgs and object manipulation * in Part 5 of

learning ros2 can be seen for more concrete examples.

4.3.3.2 C++ files

This subsubsection will detail various ROS2-related C++ code changes. It will pro-

cede in the order that one might encounter the changes in a typical small C++

program of the type that is prevalent in learning ros2.

Formatting: All ROS2 code should be formatted according to the ROS2 Developer

Guide19 One way to automatically comply with these guidelines is to install and

configure clang-format20 to use a configuration file. One can then configure one’s

editor or IDE to automatically run this tool upon saving the file. This feature is

variously called “Run on Save” (VS Code), “Save Action” (Eclipse), and “before-

save-hook” (Emacs). The config file that was used for porting learning ros2 came

from a Linux binary installation of ROS2. Visual Studio Code was configured to run

it automatically upon saving any C++ files. This practice is recommended to avoid

inconsistencies. It is also not inconceivable that this will be required of any official

ROS2 packages.

#include: In ROS1, header files for code generated from “msg” and “srv” files

resided in the same namespace as the package itself. For example, in the case of

the built-in “geometry msgs” package, the “PoseStamped.msg” file would produce a

header file named “geometry msgs/PoseStamped.h”. If the package had a file under

“src” that was also named “PoseStamped”, then there would be a conflict. By way

of contrast, in ROS2 not only is the generated file nested under an intermediate

“msg” directory (to avoid the aforementioned namespace conflicts with user-defined

19Link: https://github.com/ros2/ros2/wiki/Developer-Guide.
20Ubuntu users may run sudo apt install clang-format to install this tool.

58

https://github.com/ros2/ros2/wiki/Developer-Guide

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

code), the file name is also converted to snake case, a format that is generally used

by client code for file names (at least within the ROS2 codebase)21. For example, in

the case of the built-in “geometry msgs” package, the “PoseStamped.msg” file would

produce a header file named “geometry msgs/msg/pose stamped.hpp” that would

contain a class called geometry msgs::msg::PoseStamped. Similarly, for services in

ROS2 both the request and the response objects (which are now separate entities,

again to allow ROS2 code to control allocation) are included via the same header

file, thus maintaining the one-to-one mapping between definition files and resulting

header files.

ROS-specific objects: In ROS1, ROS-specific objects (e.g., Nodes, Publishers,

and Services) are generally manipulated directly. One calls the constructors oneself,

chooses where and how to store the objects (or pointers to them), and generally

treats them like any other C++ objects. In contrast, in ROS2, one generally does

not instantiate library objects directly, but rather through smart pointers22. As of

the second beta of ROS2, the predominant form of smart pointer in client code is the

shared pointer. Shared pointers are implemented with reference counting23 and are

used to help avoid memory leaks and lessen other difficulties sometimes experienced

with pointers. Most library objects are returned wrapped in a smart pointer, including

Nodes, Publishers, Subscribers, Services, and more.

ROS-specific objects: Publishers, Subscribers, and messages: In ROS1, it

was common to instantiate messages directly. For each publication, the message con-

21In general, class names in C++ are written in CamelCase like in Java, Python, and other similar
languages, and file names match the classes that they contain (but may be written in snake case).
This can be seen in, e.g., the standard ROS2 classes, which follow this pattern.

22Specifically, by calling std::make shared and by receiving them from API calls.
23If one uses reference counting to track the life cycle of a pointer, then a counter inside the struct

that contains the pointer is incremented whenever a new reference to the contents is made. This
counter is then decremented when each reference is dropped. When it reaches zero, the object is
destroyed.

59

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

tents would be copied by ROS1 before being available to other nodes. Contrarily, in

ROS2, instantiation of messages is handled through smart pointers like other objects

in ROS2 are, although (as of the second beta of ROS2) the API still accepts message

objects that were allocated on the stack. Despite this, subscriber callbacks must take

a smart pointer. For example:

$ void sub cb(const std msgs::msg::Float32::SharedPtr msg) { ...}

(Note that as of Ardent, the initial ROS2 release, this appears to have changed

to a UniquePtr, which is another kind of smart pointer.) Using smart pointers auto-

matically allocates memory and may result in less copying than was the case under

ROS1. This also allows one to use custom allocators instead of malloc()24, or to

avoid allocations at all and thus be more suitable for real-time code.

ROS-specific objects: Services: In ROS1 Services, the request and the response

were two parts of the same data structure. In ROS2, they are not. Instead, each

is a separate class nested under the general namespace that comes from the service

definition file. Furthermore, callback methods no longer return anything; instead,

they fill out the provided ServiceName::Response object with the data to be sent

back to the client. For example, here is what that callback would look like for a

service that used Triggers from the standard services package:

void serviceCallback(

const std::shared ptr<rmw request id t> request header,

const std::shared ptr<std srvs::srv::Trigger::Request> request,

std::shared ptr<std srvs::srv::Trigger::Response> response) { ...}

The first argument can usually be ignored. The second argument points to the

Request issued by the client. The ROS2 library will handle instantiating the object

24For typical C programs, malloc() is the function that is used to allocate memory. It is im-
plemented by standard C libraries. On a Linux system, the specific implementation that is used is
probably the GNU C Library.

60

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

and ensuring that the correct data have been loaded into it (if applicable; Trigger

messages have no request component so there would not be any fields in this case).

The third argument points to an empty Response object that the body of the function

will set.

ROS-specific objects: Action servers: In ROS1, action servers are a special

kind of server that can track a goal and report when this goal has been reached.

Unfortunately, as of Ardent, this feature is not currently available in ROS2. As such,

code relying on action servers is currently unportable, although there are plans for

action server availability in the future.

4.3.4 Other changes

4.3.4.1 Documentation

A newly-created ROS1 package starts out with a largely-empty file in its base directory

named “README.md”. Over the life of the package, this file likely received multiple

updates, some of which may pertain to implementation details. If this is the case, then

this file will need to be updated to reflect any changes made as a result of switching

to ROS2. At the very least, one should mention that the package has been ported so

that systems that depend on it will know that they can now be ported, too.

4.4 Packages ported from learning ros2

For completeness, here is the full list of learning ros2 packages that were ported

for this chapter:

• Part 1/creating a ros library

• Part 1/custom msgs

61

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

• Part 1/example parameter server

• Part 1/example ros class

• Part 1/example ros msg

• Part 1/example ros service

• Part 1/minimal nodes

• Part 1/minimal nodes py

• Part 1/using a ros library

• Part 2/example eigen

• Part 2/example rviz marker

• Part 2/example tf listener

• Part 2/lidar alarm

• Part 2/sine commander

• Part 2/stdr control

• Part 2/xform utils

• Part 4/localization w gps

• Part 4/mobot drifty odom

• Part 4/mobot nl steering

• Part 4/mobot pub des state

• Part 4/odom tf

• Part 4/traj builder

62

CHAPTER 4. HOW TO PORT AN EXISTING ROS1 C++ PROGRAM TO
ROS2

• Part 5/arm7dof/arm7dof fk ik

• Part 5/arm7dof/arm7dof nac controller

• Part 5/arm7dof/nested loop control

• Part 5/baxter/baxter core msgs

• Part 5/baxter/baxter fk ik

• Part 5/baxter/baxter head pan

• Part 5/baxter/simple baxter gripper interface

• Part 5/example controllers

• Part 5/generic gripper services

• Part 5/joint space planner

• Part 5/object manipulation msgs

• Part 5/object manipulation properties

63

Chapter 5

Miscellaneous addenda

5.1 Introduction

This chapter groups together sections that are closely associated with a particular

chapter in Part I. However, since the content of Part I largely pertains to experiments

and their results, the more tutorial-like nature of these sections would be out of place

if they were to be interleaved with their corresponding chapters. As such, like the

other “miscellaneous” chapter in Part I, the sections below are in no particular order

and can be thought about independently of each other.

5.2 How to debug ROS2 programs with Visual

Studio

5.2.1 Introduction

Print statements are not necessarily the best debugging tool for every situation. Some-

times, one wants to be able to insert breakpoints and pause the program to inspect

the state of the stack at the time that they are reached. While one could use a

command-line debugger such as gdb (GNU Debugger), some IDEs offer a more inte-

64

CHAPTER 5. MISCELLANEOUS ADDENDA

grated approach. In the case of Microsoft Visual Studio debugging a ROS2 program,

one does not simply open a .cpp file and click the relevant line number to set a

breakpoint. Rather, there are additional steps that one must follow in order for Vi-

sual Studio to build the project and be able to understand the breakpoints. The rest

of this section details those steps and their results. These were tested with the first

beta release of ROS2, but should work equally well for future releases.

5.2.2 Step-by-step instructions

See figure 5.1 for the final result.

1. Run as administrator a VS native tools x64 prompt. In it, enter the following

to run a debug build with ament. Note that this might take a long time to

finish since it has to rebuild every package in the workspace. This can be

alleviated with either overlay workspaces (which function as under ROS1) or

with the --only package name argument to ament. The last line opens the

development environment, Visual Studio (devenv.exe is the name of the VS

executable). This should be run from the prompt in order to inherit all of the

environment variables.

admin> cd ...\ros2 ws

admin> call install\setup.bat

admin> ament build --cmake-args -DCMAKE BUILD TYPE=Debug

admin> devenv

2. In the resulting Visual Studio window, open an existing solution1 from your

package’s build directory2. This solution file is generated by ament from calling

1Shortcut: Ctrl+Shift+O
2Location: ...\ros2 ws\build\your package\your package.sln where “your package” is the

name of your package

65

CHAPTER 5. MISCELLANEOUS ADDENDA

CMake, which it turn reads from CMakeLists.txt. The Solution Explorer should

have a list of your executables as defined by your CMakeLists.txt file.

3. Ensure that the configuration dropdowns at top of the Visual Studio window

read “Debug” and “x64” (assuming that the host computer runs 64-bit Win-

dows).

4. Optionally, edit the source files as needed. Note that, despite the solution file

being located in the build directory, edits will be made to the original source

files in the “src” directory; ros2 ws\build does not have copies of the source,

only pointers.

5. Set breakpoints3 where desired. This even works inside lambda expressions, as

can be seen in figure 5.1.

6. In Solution Explorer, right-click on the executable that you would like to debug,

and in the resulting context menu click “Debug”→ “Start new instance”. Note

that pressing the usual Run button 4 will (by default) run the first entry in

this list, which is probably “ALL BUILD”; while this can be configued, if one

switches executables often and rarely restarts the program then the configura-

tion may not be worth the time. Note also that restarting5 while the program

is running will do the same thing.

7. If a popup asks to rebuild anything because something is out of date, say yes.

This most commonly happens when code has changed in the Visual Studio

editor.

8. The program should now run in Visual Studio debug mode. You may wish

to run other programs to trigger callbacks, parse publications, or otherwise

3Shortcut: F9. Alternatively, click the line number in the margin.
4Shortcut: F5
5Shortcut: Ctrl+Shift+F5

66

CHAPTER 5. MISCELLANEOUS ADDENDA

interact with the process that is being debugged. For example, figure 5.1 uses

“minimal publisher” to help debug “minimal subscriber lambda”.

(Reference: [46].)

5.2.3 Explanation of Visual Studio debugging screenshot

Figure 5.1 shows a simple ROS2 program being debugged. It has been littered with

print statements to help clarify what has been executed so far. Current execution

is paused on an invocation of a Subscriber callback; earlier breakpoints have already

been caught and resumed from. The output of this program appears in the separate

window on the right. This window was moved to this location for screenshot purposes

only; normally, one would want it to be somewhere else so as to avoid losing sight of it

when clicking back in to Visual Studio. Each of the red annotations can be explained

as follows:

• The two connected regions at the top are to show that this is all the same

program, “minimal subscriber lambda”.

• The center-height line on the left shows the active breakpoint on which the

program is paused.

• The big arrow in the middle shows that the line on which the active breakpoint

is stopped has not been executed yet (since the associated text is missing from

the output).

• The box in the lower-left shows the current local variables. Note that only

“msg” (the argument of the callback) is visible since “node” and “sub” were

not captured by the lambda. If one wanted to reference “node”, then one

would have to enclose the name in the square brackets that start the lambda

expression.

67

C
H
A
P
T
E
R

5.
M
IS
C
E
L
L
A
N
E
O
U
S
A
D
D
E
N
D
A

Figure 5.1: Debugging the minimal subscriber. See subsection 5.2.3 for an explanation of what the red annotations mean.

68

CHAPTER 5. MISCELLANEOUS ADDENDA

5.3 How to run ROS1 or ROS2 on C.H.I.P.

Steps that should run even when you log out (e.g., build commands) should be run

with the following command:

nohup long running command &

This will prevent the shell from killing the long-running command. It is especially

useful for steps that will likely need to run overnight.

1. Decide on whether to use ROS1 or ROS2.

2. Decide on whether to use Debian Jessie or Stretch. Note that a pre-built ROS2

workspace tarball is only available for Stretch.

3. Decide on whether to build your own workspaces or to use the workspace tarballs

mentioned in subsubsection 1.2.1.2.

4. Acquire as many C.H.I.P. computers as you wish to use. The following steps

will need to be repeated for each one, although each C.H.I.P. can be done in

parallel to the others. Note that the experiments and analyses presented earlier

only used a single C.H.I.P..

5. Go to http://flash.getchip.com/ from a Chromium-family browser and flash

the 4.4 headless image by following the instructions on the page. Confirm that

the flash worked by logging in to C.H.I.P..

6. If the usage of Debian Stretch is desired, perform a distribution upgrade by fol-

lowing the instructions at this source: [47]. Do not disable the Jessie repository

that contains the packages listed at this source: [48]. This will likely need to

run overnight. This would be a good place to use nohup.

7. If you decided to install ROSn from a pre-built tarball, go to https://github.

com/jstarkman/jasadc/releases and follow the instructions on that page.

69

http://flash.getchip.com/
https://github.com/jstarkman/jasadc/releases
https://github.com/jstarkman/jasadc/releases

CHAPTER 5. MISCELLANEOUS ADDENDA

This will download the file (wget) and extract it (tar) into the appropriate

directory (e.g., ~/ros ws/).

8. If you decided to install ROSn by building it from source, follow either http://

wiki.ros.org/kinetic/Installation/Debian for ROS1 or https://github.

com/ros2/ros2/wiki/Linux-Development-Setup for ROS2.

• ROS1 users are recommended to install the “bare bones” package set due

to C.H.I.P.’s limited storage capacity and the lack of display-related soft-

ware in the headless image. If one were to flash a non-headless image in-

stead, then the C.H.I.P. would still have poor graphics, which here means a

640×480 analog signal sent through a TRRS (Tip-Ring-Ring-Sleeve) con-

nector. One can also purchase a “D.I.P.” to extend the video capabilities

of C.H.I.P., but if one intends to use C.H.I.P. as a simple signal sampling

system (as explored in this thesis) then such a purchase would not provide

any benefit.

• ROS2 users are recommended to modify the list of packages to be installed

to change libpocofoundation9v5 to libpocofoundation9 in the relevant

call to apt install. Alternatively, wait for the “v5” package to become

available for Stretch, or port it yourself. Instructions for doing that are

beyond the scope of this thesis.

• Note that each call to catkin or ament can take a while to complete. For

the major build steps of each ROSn, this will likely need to run overnight.

This would be a good place to use nohup.

9. Reboot C.H.I.P. and fix the WiFi if needed and desired.

10. Run a test program for your chosen version of ROS.

70

http://wiki.ros.org/kinetic/Installation/Debian
http://wiki.ros.org/kinetic/Installation/Debian
https://github.com/ros2/ros2/wiki/Linux-Development-Setup
https://github.com/ros2/ros2/wiki/Linux-Development-Setup

Concluding thoughts for tutorials

Porting an existing ROS1 package to ROS2 can involve varying levels of difficulty.

Fortunately, the most difficult aspects are either due to a simple lack of functionality in

ROS2 (in which case a port should not be attempted) or due to reliance on deprecated

features that were dropped in the switch to ROS2 (in which case the deprecated

dependencies can be eliminated in ROS1 before attempting the port). Assuming that

neither of these is an issue, there still remains the issue that every line of code that

touches the ROS1 API will need to be modified, though usually in predictable ways.

While the official guide is a good outline, it can be rather short on details; as such, this

chapter and the associated repository (learning ros2) may be helpful. Assuming

that these issues are accepted, the set of changes that one would need to make can

broadly be broken down into two main categories: architectural and programmatical.

Architectural changes impact launchers, parameters, and (for C++ code) the

usage of pointers and “CMakeLists.txt”. Specifically, as of the second beta of ROS2

one can no longer specify the programs that one wants to run in an XML file; rather,

one must write a Python file that spawns the requested processes. While in ROS1 one

could store parameters in roscore, with ROS2 one must manage one’s own parameter

server. For C++ code, no longer does one instantiate ROS-specific objects oneself;

instead, one creates them behind smart pointers, a new feature in C++11. One

can also specify a custom memory allocator, which may be a more valuable feature

for embedded and real-time applications. Also for C++ code, the structure of the

71

CONCLUDING THOUGHTS FOR TUTORIALS

“CMakeLists.txt” file is drastically different from what one might have used with

catkin simple, and might require one to gain familiarity with the CMake language.

Programming changes include how one uses messages and service objects, as well

as specific conventions associated with C++ files and the ROS API accesses inside

them. One should also update the documentation associated with the package to

reflect its new internals and interfaces. While the files that define messages and

services may not need much modification6, the way that one accesses them from

C++ code has changed and now does not necessarily involve allocating them oneself.

Most parts of the ROS2 API reflect this, using smart pointers (new in C++11) to

help hide the details of memory allocation and object lifecycle management. Overall,

the net line count of a given package may not change significantly.

In summary, porting an existing ROS1 package to ROS2 is not likely to be a

terribly difficult endeavor for a competent programmer, although some of the work

will be tedious. The porting process will be simplified by dropping dependencies

on deprecated ROS1 features like the “tf” library and the original format of the

“package.xml” file. Aside from removing these unsupported features, most of the work

involved in the port will not require major re-engineering of the original application.

6Any changes needed to these files can also be made under ROS1, thus happening before the
port and being less of an issue within the port.

72

Conclusion

73

CONCLUSION

Since first being made available, usage of ROS has grown considerably, and with

it the number of potential applications and use cases. Unfortunately, early decisions

continue to apply and over time begin to show their age. These decisions include

high processing power requirements, limited official platform support, and no security

features. Rather than addressing these limitations within the existing project, OSRF

decided to break backwards-compatibility and start a new project, ROS2, which

aims to address some of these limitations. However, the project is missing important

functionality and sometimes performs worse than ROS1; as such, it cannot quite

replace its predecessor yet.

One of the claims of ROS2 is that it works better on smaller target computers than

the “workstation-class” machines that ROS1 uses. This was evaluated against a “tiny

target” (specifically, the US$9 C.H.I.P. computer) and found not to be the case for a

full installation of ROS2. Not only did ROS1 have two to eight times the publication

rate of ROS2 in the experiments, ROS1 performance was also substantially more

predictable. While it may remain theoretically possible that ROS2 could operate

on sensor-level hardware (e.g., devices costing less than US$1), there has not been

much exploration on that front. Finally, given how well ROS1 runs on cheap modern

hardware, the benefits for ROS2 for low-volume production may be marginal.

Another argued benefit of ROS2 is its support for Windows. This is true, as ROS2

works about as well on Windows as on Linux. However, since Microsoft released the

Windows Subsystem for Linux (WSL) in 2016, ROS1 is quite usable on Windows as

long as one does not need hardware-accelerated graphics for, e.g., Gazebo. If one

does need Gazebo, then for neither ROSn will Windows suffice, since WSL cannot

access system GPUs and ROS2 does not yet support Gazebo on any platform.

The second part of this thesis explored what kind of effort porting a package from

ROS1 to ROS2 would entail, backed empirically by this author porting the repository

associated with [26]. Missing functionality and dependencies on deprecated ROS1

74

CONCLUSION

functionality (which can be eliminated without switching to ROS2) will both have

significant impact for many applications. However, after those are overcome, the

remaining effort will be somewhat tedious but not particularly challenging.

Overall, ROS2 has not yet achieved significant benefit over ROS1. Furthermore,

functionality is incomplete, thus limiting the scope of ROS2 applications. Perfor-

mance is no better — and in the tiny target that was studied, worse. Porting is

a significant effort. The promised benefit of running on sensor-level hardware has

yet to be demonstrated, and with the cost of hardware that can run ROS1 falling

significantly, the case for ROS2 seems very limited at this time.

75

Part III

Appendices

76

Appendix A

Abbreviations

Most of the domain-specific proper nouns here should be defined when they are

first used. However, for both reference and for the sake of those who skip around

when reading, all abbreviations are also collected here. This list also includes other

computer-related abbreviations with which the reader may be unfamiliar. Metric

units (such as “MHz” for megahertz) are not included.

A.1 Table of abbreviations

Note that “Abbrev.” means “Abbreviation” and “PN” means “proper noun”. The

entry “N/A” under the Proper Noun column means that a given abbreviation is never

expanded and that the words in the Meaning column are of historical interest only.

This is the case for, e.g., file extensions, directory names, words that are not really

abbreviations (but are stylized as such), and words whose origins are abbreviations

but who are not usually thought of as abbreviations, such as “laser”, “scuba”, and

“Emacs” (which is still a proper noun).

The table is sorted in case-insensitive ASCII order, meaning that file extensions

come first, followed by directory names, followed by more typical initialisms and

acronyms.

77

APPENDIX A. ABBREVIATIONS

Abbrev. Meaning PN?

&c. et cetera; “and the rest” N/A

.bag ROS1 bag file N/A

.ipynb IPython Notebook file N/A

/bin Binary files (Unix) N/A

/dev Device files (Unix) N/A

/etc et cetera; (modern) Edit To Configure N/A

/lib Library files (Unix) N/A

/tmp Temporary files (Unix) N/A

ADC Analogue-to-Digital Converter No

AND “AND” logic gate Yes

ANSI American National Standards Institute Yes

API Application Programming Interface No

ARM Advanced RISC Machines Yes

ASCII American Std. Code for Info. Interchange Yes

AVR Nothing; processor from Atmel N/A

BDFL Benevolent Dictator For Life Yes

C++ Nothing; programming language N/A

CCC Credit-Card Computer (e.g., C.H.I.P.) No

CHIP Nothing; a CCC from NTC N/A

chroot Change root N/A

Co. Company No

CPU Central Processing Unit Yes

CVS Concurrent Versions System Yes

CWRU Case Western Reserve University Yes

DAG Directed Acyclic Graph No

78

APPENDIX A. ABBREVIATIONS

Abbrev. Meaning PN?

DC Direct Current No

DDS Data Distribution Service Yes

e.g. exempli gratia; “example given” N/A

ECMA European Computer Manufacturer’s Association Yes

EECS Electrical Engineering and Computer Science Yes

Emacs Editor MACroS N/A

EOL End-Of-Life No

EP Enhancement Proposal No

ES ECMAScript (similar to JS) Yes

ext4 Fourth Extended FS (for Linux) N/A

FFT Fast discrete Fourier Transform Yes

FS File System No

GCC GNU C Compiler (also written “gcc”) Yes

gdb GNU DeBugger N/A

glibc GNU C Library Yes

GNU GNU’s Not Unix Yes

GPU Graphics Processing Unit No

GUI Graphical User Interface No

HKCU HKEY CURRENT USER (registry hive in Windows) N/A

HP Hewlett-Packard Yes

i.e. id est ; “that is” N/A

I2C Inter-Integrated Circuit (type of comm. bus) N/A

IDE Integrated Development Environment No

IEC Int’l Electrotechnical Commission Yes

Inc. Incorporated No

79

APPENDIX A. ABBREVIATIONS

Abbrev. Meaning PN?

Info. Information No

Int’l International No

IP Internet Protocol Yes

ISO Int’l Organization for Standardization Yes

JAS James Starkman (me) Yes

JS JavaScript Yes

lib Library No

LTS Long-Term Support No

MAC Media Access Control (Address) No

MATLAB MATrix LABoratory R© Yes

MCU MicroController Unit No

MS MicroSoft Yes

MSI MS Installer (file format) No

NAND Not AND logic gate No

NTC Next Thing Co. Yes

NTP Network Time Protocol Yes

OMG Object Management Group Yes

OS Operating System No

OSRF Open-Source Robotics Foundation Yes

PCL Point-Cloud Library Yes

PCRE Perl-Compatible Regular Expressions Yes

PEP Python EP Yes

PID Process IDentifier No

Qt Nothing; graphical framework N/A

RAM Random Access Memory No

80

APPENDIX A. ABBREVIATIONS

Abbrev. Meaning PN?

rc Run Commands; config. file (as suffix) Yes

RMW ROS MiddleWare Yes

ROS Robot OS (not really an OS) Yes

ROS1 Robot OS, first major version Yes

ROS2 Robot OS, second major version Yes

ROSn Robot OS, either/both major version(s) Yes

ROSCON ROS Convention Yes

rqt ROS Qt Yes

REP ROS EP Yes

RTI Real-Time Innovations (company name) Yes

RTOS Real-Time OS No

RTPS Real-Time Publish-Subscribe Yes

RViz ROS Visualization tool Yes

SBCL Steel Bank Common Lisp Yes

SoC System-on-a-Chip No

SROS Secure ROS Yes

SSD Solid-State Drive No

SSH Secure SHell Yes

SSL Secure Sockets Layer Yes

Std. Standard No

TCP Transmission Control Protocol Yes

TCP/IP TCP over IP Yes

TRRS Tip-Ring-Ring-Sleeve No

UBIFS Unsorted Block Image FS Yes

UDP User Datagram Protocol Yes

81

APPENDIX A. ABBREVIATIONS

Abbrev. Meaning PN?

URI Uniform Resource Identifier Yes

URL Uniform Resource Locator Yes

UTF Unicode Transformation Format Yes

VM Virtual Machine No

VS (MS) Visual Studio (IDE) Yes

WiFi Nothing; wireless networking system N/A

Win32 Traditional Windows API No

WSL Windows Subsystem for Linux Yes

XML eXtensible Markup Language Yes

YA Yet Another No

YAML YA Markup Language Yes

82

Appendix B

How to run ROS1 and ROS2 on

C.H.I.P.

The work in the Tiny targets chapter was dependent on running both versions of

ROSn on C.H.I.P.. This appendix documents how that was accomplished.

Both versions of ROSn (specifically, ROS1 Kinetic and ROS2 beta three) were

built from source on C.H.I.P. without any major difficulties beyond multi-hour build

times (see below for details and minor difficulties). As such, if one wishes to replicate

these builds, one may wish to power C.H.I.P. via a wall socket or a desktop computer

instead of via a laptop, as the laptop might cut off power to external devices when

it goes to sleep1. To keep the build running when one disconnects from the shell

session that was used to run the build command, one can use nohup2 along with an

ampersand (&) to run the process in the background3:

$ nohup long running command &

$ echo $! > meaningful-name.pid

1This lesson was learned empirically.
2Abbreviation for “do not hang up”, i.e., do not kill the process when the shell disconnects.
3“Running a command in the background” is analogous to clicking out of a window, thus freeing

the shell to allow other commands to be issued instead of being stuck waiting for the command that
was run in the background to finish.

83

APPENDIX B. HOW TO RUN ROS1 AND ROS2 ON C.H.I.P.

The second command above will write the PID4 of the long-running command

to a file for future reference. Alternatively, one can watch for when the process has

completed by using a process monitor such as htop.

B.1 ROS1

C.H.I.P. runs Debian, so one should follow the build instructions for Debian on the

ROS wiki [49]. The “ROS-Comm (Bare Bones)” installation was used for these ex-

periments. The CPU on C.H.I.P. only has a single core, so when building ROS one

should use -j1 instead of the default eight. This CPU uses the armv7lhf architecture,

although that is not relevant unless one cross-compiles. Cross-compilation is beyond

the scope of this thesis.

B.2 ROS2

B.2.1 Debian Jessie (8) versus Debian Stretch (9)

As of this writing, the latest published pre-built headless5 image for C.H.I.P. that

is available from the manufacturer6 is based on Debian 8 (Jessie), which uses ver-

sion 4.4 of the Linux kernel. Since Jessie is rather old and does not have the

latest version of glibc7, before ROS2 was installed the C.H.I.P. that was used for

the experiments below was upgraded to Debian 9 (Stretch) via the usual Debian

dist-upgrade mechanic [47]. After this finished and C.H.I.P. was rebooted, WiFi

4A process identifier (PID) is a not-inherently-meaningful (usually sequential) number used by
other processes on the operating system to uniquely identify a process.

5A headless system has no graphical components and is commonly used for servers.
6http://flash.getchip.com/ The image is called “Headless 4.4”. Their image flashing tool

requires a Chromium-family browser (such as Chromium, Google Chrome, Opera version 14 or later,
or Vivaldi) to use, although one can also download the image directly and flash it via the command
line (requires Ubuntu; an Ubuntu VM should suffice for those using other operating systems).

7The GNU C Library.

84

http://flash.getchip.com/

APPENDIX B. HOW TO RUN ROS1 AND ROS2 ON C.H.I.P.

was found not to work. WiFi was restored by appending the following two lines to

/etc/NetworkManager/NetworkManager.conf:

[device]

wifi.scan-rand-mac-address=no

and then restarting NetworkManager by running:

$ sudo service NetworkManager restart

After the service came back up (replace “restart” with “status” in the above

command to check), Internet access on C.H.I.P. worked as well as it did before the

upgrade. Accordingly, all of the experiments in this thesis that involve ROS2 on

C.H.I.P. use Stretch.

B.2.2 Dependencies

C.H.I.P. runs Debian. ROS2 beta three is not supported on Debian. However, ROS2

beta three is supported on Ubuntu 16.04, and Ubuntu is derived from Debian, mean-

ing that there is a chance of the build not being overly complicated. As it turns out,

ROS2 beta three depends on a package called libpocofoundation9v5, as well as

a related one called libpocofoundation9v5-dbg. This package can be found in the

Ubuntu Universe repository [50], but not in the Debian default repositories [48]. How-

ever, a slightly older version of this package (libpocofoundation9) is available for

Debian, and as it turns out that package suffices for the build to proceed successfully.

B.2.3 Cross-compiling

If one does not want to wait for the build to finish on C.H.I.P., one might wish to

consider cross-compiling for C.H.I.P. on a more powerful machine. One of the devel-

opers of ROS and ROS2 has published a build system that uses a Docker8 instance to

8Docker is a containerization tool, which means that it can run processes as though they were
running under particular environments (operating system, installed packages, environment variables,

85

APPENDIX B. HOW TO RUN ROS1 AND ROS2 ON C.H.I.P.

host ament, the ROS2 build tool [51]. The developer uses this to build ROS2 for the

Raspberry Pi. However, when the exact directions on the cited page were followed,

working ROS2 binaries were not created. Instead, the Docker engine indicated that

the file system produced by the script on the cited page was unacceptable. Various

attempts at tweaking the cited source failed to change matters.

file system contents, &c.), similarly to what a virtual machine would do. However, since the processes
use the same kernel as the host system, a container is much more lightweight that a virtual machine,
at the cost of less isolation. A Docker “container” is a running instance. An “image” is a static blob
on the hard drive. The “engine” is the program that manages containers.

86

Appendix C

Patch for jasadc from ROS1 to

ROS2

87

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

From 8 b85326b3851e5a73e2c321b49777beed3fbb0dc Mon Sep 17 00 : 00 : 00 2001

From : James Starkman <−1@case . edu>

Date : Mon, 30 Oct 2017 0 9 : 4 0 : 48 −0400

Subject : [PATCH] Updated to ROS2 .

−−−

CMakeLists . txt | 50 ++++++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

package . xml | 20 ++++++++−−−−−−−−−−−−

s r c /main . cpp | 30 ++++++++++++++++−−−−−−−−−−−−−−

3 f i l e s changed , 38 i n s e r t i o n s (+) , 62 d e l e t i o n s (−)

d i f f −−g i t a/CMakeLists . txt b/CMakeLists . txt

index e5 f765c . . 0 a560ab 100644

−−− a/CMakeLists . txt

+++ b/CMakeLists . txt

@@ −1,42 +1 ,20 @@

−cmake minimum required (VERSION 2 . 8 . 3)

+cmake minimum required (VERSION 3 . 5)

88

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

p r o j e c t (j a sadc)

−f i nd package (ca tk in REQUIRED COMPONENTS

− roscpp

− std msgs

−)

+f ind package (ament cmake REQUIRED)

+f ind package (r c l cpp REQUIRED)

+f ind package (rmw REQUIRED)

+f ind package (std msgs REQUIRED)

− i n c l u d e d i r e c t o r i e s (${catkin INCLUDE DIRS})

+s e t (CMAKE CXX FLAGS ”${CMAKE CXX FLAGS} −std=c++14 −Wall −Wextra −Wpedantic ”)

−catk in package (

−# INCLUDE DIRS inc lude

−# LIBRARIES jasadc

−# CATKIN DEPENDS roscpp std msgs

89

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

−# DEPENDS s y s t e m l i b

−)

+s e t (t a r g e t main)

−add executab le (${PROJECT NAME} node s r c /main . cpp)

+add executab le (${ t a r g e t } s r c /${ t a r g e t } . cpp)

+ament targe t dependenc i e s (${ t a r g e t }

+ ” rc l cpp ”

+ ” std msgs ”)

+i n s t a l l (TARGETS ${ t a r g e t }

+ DESTINATION l i b /${PROJECT NAME})

−s e t t a r g e t p r o p e r t i e s (${PROJECT NAME} node PROPERTIES OUTPUT NAME main PREFIX ””)

−

− t a r g e t l i n k l i b r a r i e s (${PROJECT NAME} node ${catkin LIBRARIES })

−

− i n s t a l l (TARGETS ${PROJECT NAME} node

− ARCHIVE DESTINATION ${CATKIN PACKAGE LIB DESTINATION}

90

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

− LIBRARY DESTINATION ${CATKIN PACKAGE LIB DESTINATION}

− RUNTIME DESTINATION ${CATKIN PACKAGE BIN DESTINATION}

−)

−

−## Mark cpp header f i l e s f o r i n s t a l l a t i o n

−# i n s t a l l (DIRECTORY inc lude /${PROJECT NAME}/

−# DESTINATION ${CATKIN PACKAGE INCLUDE DESTINATION}

−# FILES MATCHING PATTERN ”∗ . h”

−# PATTERN ” . svn” EXCLUDE

−#)

−

−## Mark other f i l e s f o r i n s t a l l a t i o n (e . g . launch and bag f i l e s , e t c .)

−# i n s t a l l (FILES

−# # myf i l e1

−# # myf i l e2

−# DESTINATION ${CATKIN PACKAGE SHARE DESTINATION}

−#)

+ament package ()

91

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

d i f f −−g i t a/ package . xml b/ package . xml

index 5cb3261 . . f19452b 100644

−−− a/ package . xml

+++ b/ package . xml

@@ −1,25 +1 ,21 @@

<?xml v e r s i o n =”1.0”?>

−<package>

+<?xml−model h r e f=”http :// download . ro s . org /schema/ package format2 . xsd” schematypens=”http ://www. w3 . org /2001/XMLSchema”?>

+<package format=”2”>

<name>jasadc </name>

− <vers ion >0.0.1</ vers ion>

+ <vers ion >1.0.0</ vers ion>

<d e s c r i p t i o n>The ja sadc package</d e s c r i p t i o n>

−

<mainta iner emai l=”−1@case . edu”>JAS</maintainer>

−

< l i c e n s e >GPLv3</ l i c e n s e >

−

92

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

<u r l type=”webs i te”>https : // github . com/ jstarkman / jasadc </ur l>

−

<author emai l=”−1@case . edu”>JAS</author>

− <bui ldtoo l depend>catkin </bu i ldtoo l depend>

−

− <bui ld depend>roscpp</bui ld depend>

− <bui ld depend>std msgs</bui ld depend>

+ <bui ldtoo l depend>ament cmake</bu i ldtoo l depend>

− <run depend>roscpp</run depend>

− <run depend>std msgs</run depend>

+ <depend>rc lcpp </depend>

+ <depend>rmw implementation</depend>

+ <depend>std msgs</depend>

<export>

+ <bu i ld type>ament cmake</bu i ld type>

93

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

</export>

</package>

d i f f −−g i t a/ s r c /main . cpp b/ s r c /main . cpp

index 3 f 9 f 3 9 9 . . 1 1 c6b7e 100644

−−− a/ s r c /main . cpp

+++ b/ s r c /main . cpp

@@ −10,8 +10 ,8 @@

#inc lude <l i nux / i2c−dev . h>

−#inc lude <ro s / ro s . h>

−#inc lude <std msgs / Int32 . h>

+#inc lude ” r c l cpp / rc l cpp . hpp”

+#inc lude ” std msgs /msg/ in t32 . hpp”

#d e f i n e OFFSET 0 /∗ use 1 f o r 0 . 7V−−2.7V) ∗/

@@ −116 ,14 +116 ,16 @@ i n t main (i n t argc , char ∗∗ argv) {

94

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

s t r c a t (buf , ” ch ip adc ”) ;

s t r c a t (buf , mac) ;

− ro s : : i n i t (argc , argv , buf) ;

− ro s : : NodeHandle n (” ˜ ”) ;

− ro s : : Pub l i she r pub muv = n . adve r t i s e<std msgs : : Int32 >(” mic rovo l t s ” , 1) ;

− ro s : : Pub l i she r pub adc = n . adve r t i s e<std msgs : : Int32 >(”adc ” , 1) ;

− std msgs : : Int32 muv output ;

− std msgs : : Int32 adc output ;

− muv output . data = 0 ;

− adc output . data = 0 ;

+ rc l cpp : : i n i t (argc , argv) ;

+ auto node = rc l cpp : : node : : Node : : make shared (buf) ;

+ auto pub muv = node−>c r e a t e p u b l i s h e r <std msgs : : msg : : Int32 >(” mic rovo l t s ” , r m w q o s p r o f i l e d e f a u l t) ;

+ auto pub adc = node−>c r e a t e p u b l i s h e r <std msgs : : msg : : Int32 >(”adc ” , r m w q o s p r o f i l e d e f a u l t) ;

+

+

+ auto muv output = std : : make shared<std msgs : : msg : : Int32 >() ;

95

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

+ auto adc output = std : : make shared<std msgs : : msg : : Int32 >() ;

+ muv output−>data = 0 ;

+ adc output−>data = 0 ;

open adc (0 x34) ;

enab le adc () ;

@@ −131 ,10 +133 ,10 @@ i n t main (i n t argc , char ∗∗ argv) {

adc raw = read adc () ;

m i c rovo l t s = c o n v e r t a d c t o m i c r o v o l t s (adc raw) ;

− muv output . data = mic rovo l t s ;

− pub muv . pub l i sh (muv output) ;

− adc output . data = adc raw ;

− pub adc . pub l i sh (adc output) ;

+ muv output−>data = mic rovo l t s ;

+ pub muv−>pub l i sh (muv output) ;

+ adc output−>data = adc raw ;

+ pub adc−>pub l i sh (adc output) ;

96

A
P
P
E
N
D
IX

C
.
P
A
T
C
H

F
O
R
J
A
S
A
D
C
F
R
O
M

R
O
S
1
T
O

R
O
S
2

nanos leep(&sample per iod , NULL) ;

}

97

References

[1] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In:

ICRA workshop on open source software. Vol. 3. 3.2. Kobe. 2009, p. 5.

[2] Brian Gerkey, Morgan Quigley, and Ken Conley. Robot Operating System repos-

itory. 2007. url: https://sourceforge.net/p/ros/code/10/log/?path=.

[3] Keenan Wyrobek. The Origin Story of ROS, the Linux of Robotics. 2017. url:

https://spectrum.ieee.org/automaton/robotics/robotics-software/

the-origin-story-of-ros-the-linux-of-robotics.

[4] Brian Gerkey. Why ROS 2.0? 2015–2017. url: http://design.ros2.org/

articles/why_ros2.html.

[5] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the Perfor-

mance of ROS2”. In: Proceedings of the 13th International Conference on Em-

bedded Software. ACM. 2016, p. 5.

[6] Löıc Dauphin et al. “NDN-based IoT robotics”. In: Proceedings of the 4th ACM

Conference on Information-Centric Networking. ACM. 2017, pp. 212–213.

[7] Victor Mayoral and nuttx. GitHub - ros2/ros2 embedded nuttx. 2014. url: https:

//github.com/ros2/ros2_embedded_nuttx.

[8] Morgan Quigley. ROS2 on “small” embedded systems. 2015. url: https://

roscon.ros.org/2015/presentations/ros2_on_small_embedded_systems.

pdf.

98

https://sourceforge.net/p/ros/code/10/log/?path=
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-story-of-ros-the-linux-of-robotics
http://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/why_ros2.html
https://github.com/ros2/ros2_embedded_nuttx
https://github.com/ros2/ros2_embedded_nuttx
https://roscon.ros.org/2015/presentations/ros2_on_small_embedded_systems.pdf
https://roscon.ros.org/2015/presentations/ros2_on_small_embedded_systems.pdf
https://roscon.ros.org/2015/presentations/ros2_on_small_embedded_systems.pdf

REFERENCES

[9] Open Source Robotics Foundation. TurtleBot2. 2017. url: http://www.turtlebot.

com/turtlebot2/.

[10] Next Thing Co. Get C.H.I.P. and C.H.I.P. Pro — The Smarter Way to Build

Smart Things. 2017. url: https://getchip.com/pages/chip.

[11] A13. A13 — linux-sunxi.org. 2017. url: http://linux-sunxi.org/index.

php?title=A13&oldid=19534.

[12] Artem Bityutskiy. UBIFS — new flash file system. 2008. url: https://lwn.

net/Articles/275706/.

[13] Gerardo Pardo-Castellote. “OMG data-distribution service: Architectural overview”.

In: Distributed Computing Systems Workshops, 2003. Proceedings. 23rd Inter-

national Conference on. IEEE. 2003, pp. 200–206.

[14] eProsima. News. 2017. url: http://www.eprosima.com/index.php/company-

all/news.

[15] Keysight Technologies. 33120A Function / Arbitrary Waveform Generator. 2014.

url: http://literature.cdn.keysight.com/litweb/pdf/5968-0125EN.

pdf?id=1000032746:epsg:dow.

[16] Jaime Martin Losa. ROS2 Fine Tuning. 2017. url: https://roscon.ros.org/

2017/presentations/ROSCon%202017%20ROS2%20Fine%20Tuning.pdf.

[17] eProsima. Publisher-Subscriber Layer. 2017. url: http://docs.eprosima.

com/en/latest/pubsub.html.

[18] Cygwin. Cygwin. 2017. url: https://cygwin.com/.

[19] Robert Collins. cygwin.com Git - newlib-cygwin.git/blob - winsup/cygwin/sched.cc.

2016. url: https://cygwin.com/git/gitweb.cgi?p=newlib-cygwin.git;a=

blob;f=winsup/cygwin/sched.cc;hb=08d77e5154b58d0d153e99d270f7d1907f7e160d#

l407.

99

http://www.turtlebot.com/turtlebot2/
http://www.turtlebot.com/turtlebot2/
https://getchip.com/pages/chip
http://linux-sunxi.org/index.php?title=A13&oldid=19534
http://linux-sunxi.org/index.php?title=A13&oldid=19534
https://lwn.net/Articles/275706/
https://lwn.net/Articles/275706/
http://www.eprosima.com/index.php/company-all/news
http://www.eprosima.com/index.php/company-all/news
http://literature.cdn.keysight.com/litweb/pdf/5968-0125EN.pdf?id=1000032746:epsg:dow
http://literature.cdn.keysight.com/litweb/pdf/5968-0125EN.pdf?id=1000032746:epsg:dow
https://roscon.ros.org/2017/presentations/ROSCon%202017%20ROS2%20Fine%20Tuning.pdf
https://roscon.ros.org/2017/presentations/ROSCon%202017%20ROS2%20Fine%20Tuning.pdf
http://docs.eprosima.com/en/latest/pubsub.html
http://docs.eprosima.com/en/latest/pubsub.html
https://cygwin.com/
https://cygwin.com/git/gitweb.cgi?p=newlib-cygwin.git;a=blob;f=winsup/cygwin/sched.cc;hb=08d77e5154b58d0d153e99d270f7d1907f7e160d#l407
https://cygwin.com/git/gitweb.cgi?p=newlib-cygwin.git;a=blob;f=winsup/cygwin/sched.cc;hb=08d77e5154b58d0d153e99d270f7d1907f7e160d#l407
https://cygwin.com/git/gitweb.cgi?p=newlib-cygwin.git;a=blob;f=winsup/cygwin/sched.cc;hb=08d77e5154b58d0d153e99d270f7d1907f7e160d#l407

REFERENCES

[20] Jack Hammons. WSL System Calls. 2016. url: https://blogs.msdn.microsoft.

com/wsl/2016/06/08/wsl-system-calls/.

[21] Jan Bernlöhr. Running ROS on Windows 10. 2017. url: https://janbernloehr.

de/2017/06/10/ros-windows.

[22] Sarah Cooley and Aleksandar Nikolić. Windows 10 Installation Guide. 2017.

url: https://docs.microsoft.com/en-us/windows/wsl/install-win10.

[23] Mikael Arguedas and D. Hood. lunar/Installation/Ubuntu. 2017. url: http:

//wiki.ros.org/action/recall/lunar/Installation/Ubuntu?action=

recall&rev=6.

[24] Chocolatey Software, Inc. Chocolatey — The package manager for Windows.

2017. url: https://chocolatey.org/.

[25] Rob Reynolds et al. GettingStarted — chocolatey/choco Wiki — GitHub. 2017.

url: https : / / github . com / chocolatey / choco / wiki / GettingStarted /

19885416c5913ecffd430c2a69b36ddeff928dfc.

[26] Wyatt Newman. A Systematic Approach to Learning Robot Programming with

ROS. CRC Press, 2017.

[27] Tully Foote and Ken Conley. Target Platforms. 2017. url: http://www.ros.

org/reps/rep-0003.html.

[28] Client Libraries. Client Libraries. 2016. url: http://wiki.ros.org/action/

recall/Client%20Libraries?action=recall&rev=48.

[29] Russell Toris and Brandon Alexander. roslibjs. 2015. url: http://wiki.ros.

org/action/recall/roslibjs?action=recall&rev=14.

[30] Adnan Ademovic. GitHub — adnanademovic/rosrust: Pure Rust implementa-

tion of a ROS client library. 2017. url: https://github.com/adnanademovic/

rosrust.

100

https://blogs.msdn.microsoft.com/wsl/2016/06/08/wsl-system-calls/
https://blogs.msdn.microsoft.com/wsl/2016/06/08/wsl-system-calls/
https://janbernloehr.de/2017/06/10/ros-windows
https://janbernloehr.de/2017/06/10/ros-windows
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://wiki.ros.org/action/recall/lunar/Installation/Ubuntu?action=recall&rev=6
http://wiki.ros.org/action/recall/lunar/Installation/Ubuntu?action=recall&rev=6
http://wiki.ros.org/action/recall/lunar/Installation/Ubuntu?action=recall&rev=6
https://chocolatey.org/
https://github.com/chocolatey/choco/wiki/GettingStarted/19885416c5913ecffd430c2a69b36ddeff928dfc
https://github.com/chocolatey/choco/wiki/GettingStarted/19885416c5913ecffd430c2a69b36ddeff928dfc
http://www.ros.org/reps/rep-0003.html
http://www.ros.org/reps/rep-0003.html
http://wiki.ros.org/action/recall/Client%20Libraries?action=recall&rev=48
http://wiki.ros.org/action/recall/Client%20Libraries?action=recall&rev=48
http://wiki.ros.org/action/recall/roslibjs?action=recall&rev=14
http://wiki.ros.org/action/recall/roslibjs?action=recall&rev=14
https://github.com/adnanademovic/rosrust
https://github.com/adnanademovic/rosrust

REFERENCES

[31] Pauli Virtanen and Charles R. Harris. Developer notes on the transition to

Python 3. 2010. url: https://github.com/numpy/numpy/blob/master/doc/

Py3K.rst.txt.

[32] Nathaniel Smith. PEP 465 – A dedicated infix operator for matrix multiplica-

tion. 2014–2016. url: https://raw.githubusercontent.com/python/peps/

04a6af2ab1b19a56db74d5ae85a96656cc04bfa6/pep-0465.txt.

[33] Benjamin Peterson. PEP 373 — Python 2.7 Release Schedule. 2008–2017. url:

https://raw.githubusercontent.com/python/peps/647e1bbe39f5e056bbcd4535992fa8a3553d01c7/

pep-0373.txt.

[34] Dirk Thomas. Changes between ROS 1 and ROS 2. 2015–2017. url: http:

//design.ros2.org/articles/changes.html.

[35] Jules Kouatchou. Basic Comparison of Python, Julia, R, Matlab and IDL.

2017. url: https : / / modelingguru . nasa . gov / docs / DOC - 2625 / diff ?

secondVersionNumber=19.

[36] Python Software Foundation. Python 3.0 Release. 2008. url: https://www.

python.org/download/releases/3.0/.

[37] Python2orPython3. Python2orPython3 - Python Wiki. 2017. url: https://

wiki.python.org/moin/Python2orPython3?action=recall&rev=92.

[38] Scipy community. Release Notes — NumPy v1.10 Manual. 2015. url: https:

//docs.scipy.org/doc/numpy-1.10.1/release.html.

[39] Sebastian Raschka. The key differences between Python 2.7.x and Python 3.x

with examples. 2014. url: http://sebastianraschka.com/Articles/2014_

python_2_3_key_diff.html.

[40] Bjarne Stroustrup. C++11 FAQ. 2016. url: http://www.stroustrup.com/C+

+11FAQ.html.

101

https://github.com/numpy/numpy/blob/master/doc/Py3K.rst.txt
https://github.com/numpy/numpy/blob/master/doc/Py3K.rst.txt
https://raw.githubusercontent.com/python/peps/04a6af2ab1b19a56db74d5ae85a96656cc04bfa6/pep-0465.txt
https://raw.githubusercontent.com/python/peps/04a6af2ab1b19a56db74d5ae85a96656cc04bfa6/pep-0465.txt
https://raw.githubusercontent.com/python/peps/647e1bbe39f5e056bbcd4535992fa8a3553d01c7/pep-0373.txt
https://raw.githubusercontent.com/python/peps/647e1bbe39f5e056bbcd4535992fa8a3553d01c7/pep-0373.txt
http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
https://modelingguru.nasa.gov/docs/DOC-2625/diff?secondVersionNumber=19
https://modelingguru.nasa.gov/docs/DOC-2625/diff?secondVersionNumber=19
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/3.0/
https://wiki.python.org/moin/Python2orPython3?action=recall&rev=92
https://wiki.python.org/moin/Python2orPython3?action=recall&rev=92
https://docs.scipy.org/doc/numpy-1.10.1/release.html
https://docs.scipy.org/doc/numpy-1.10.1/release.html
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html
http://www.stroustrup.com/C++11FAQ.html
http://www.stroustrup.com/C++11FAQ.html

REFERENCES

[41] Brian Gerkey, Morgan Quigley, and Ruffin White. SROS — ROS Wiki. 2016.

url: http://wiki.ros.org/action/recall/SROS?action=recall&rev=33.

[42] Mikael Arguedas. GitHub - ros2/sros2: tools to generate and distribute keys for

SROS 2. 2017. url: https://github.com/ros2/sros2.

[43] Open Source Robotics Foundation. Migrating from format 1 to format 2. 2014.

url: http://docs.ros.org/groovy/api/catkin/html/howto/format2/

migrating_from_format_1.html.

[44] Dirk Thomas and Jack O’Quin. Package Manifest Format Two Specification.

2013–2017. url: http://www.ros.org/reps/rep-0140.html.

[45] Brian Gerkey et al. Migration Guide. 2016–2018. url: https://github.com/

ros2/ros2/wiki/Migration-Guide.

[46] Jackie Kay. Debugging ROS2 in Visual Studio. 2016. url: https://groups.

google.com/d/msg/ros-sig-ng-ros/bhAMgFCIOnE/GNMM105iCgAJ.

[47] Joonas Tuomi. Is NTC ready for the move from Debian Jessie to Stretch? 2017.

url: https://bbs.nextthing.co/t/is-ntc-ready-for-the-move-from-

debian-jessie-to-stretch/14706/9.

[48] Debian Webmaster. Debian — Package Search Results — libpocofoundation.

2017. url: https : / / packages . debian . org / search ? suite = default &

section=all&arch=any&searchon=names&keywords=libpocofoundation.

[49] Jackie Kay, Tully Foote, and D. Hood. kinetic/Installation/Debian. 2016. url:

http://wiki.ros.org/action/recall/kinetic/Installation/Debian?

action=recall&rev=12.

[50] Gerfried Fuchs. Ubuntu — Package Search Results — libpocofoundation. 2017.

url: https://packages.ubuntu.com/search?keywords=libpocofoundation&

searchon=names.

102

http://wiki.ros.org/action/recall/SROS?action=recall&rev=33
https://github.com/ros2/sros2
http://docs.ros.org/groovy/api/catkin/html/howto/format2/migrating_from_format_1.html
http://docs.ros.org/groovy/api/catkin/html/howto/format2/migrating_from_format_1.html
http://www.ros.org/reps/rep-0140.html
https://github.com/ros2/ros2/wiki/Migration-Guide
https://github.com/ros2/ros2/wiki/Migration-Guide
https://groups.google.com/d/msg/ros-sig-ng-ros/bhAMgFCIOnE/GNMM105iCgAJ
https://groups.google.com/d/msg/ros-sig-ng-ros/bhAMgFCIOnE/GNMM105iCgAJ
https://bbs.nextthing.co/t/is-ntc-ready-for-the-move-from-debian-jessie-to-stretch/14706/9
https://bbs.nextthing.co/t/is-ntc-ready-for-the-move-from-debian-jessie-to-stretch/14706/9
https://packages.debian.org/search?suite=default§ion=all&arch=any&searchon=names&keywords=libpocofoundation
https://packages.debian.org/search?suite=default§ion=all&arch=any&searchon=names&keywords=libpocofoundation
http://wiki.ros.org/action/recall/kinetic/Installation/Debian?action=recall&rev=12
http://wiki.ros.org/action/recall/kinetic/Installation/Debian?action=recall&rev=12
https://packages.ubuntu.com/search?keywords=libpocofoundation&searchon=names
https://packages.ubuntu.com/search?keywords=libpocofoundation&searchon=names

REFERENCES

[51] Esteve Fernandez. Tools for crosscompiling ROS2 for the Raspberry Pi. 2017.

url: https://github.com/esteve/ros2_raspbian_tools.

103

https://github.com/esteve/ros2_raspbian_tools

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	I Experiments
	Tiny targets
	Introduction
	Explanation of tiny target comparison table

	Experiments
	jasadc
	Link to source
	Link to pre-built ROS1 and ROS2 workspaces

	Instrumentation
	Explanation of sinusoid plots

	Methods
	ROS1
	ROS2

	Observations
	Dropouts
	Publication rate

	Analysis
	Publication rate
	Explanation of histograms

	Reconstructing input from samples
	Explanation of frequency recovery table

	Conclusion
	Once-off aspects: cost, setup, and installation
	Performance
	Overall
	Future work

	Windows
	Introduction
	Cygwin
	WSL

	Experiments
	Setup
	General
	ROS1 running via WSL
	ROS2 running natively

	Methods
	Observations
	ROS1 running via WSL
	ROS2 running natively

	Miscellaneous
	Introduction
	Programming languages and libraries
	Platform differences
	ROS1
	ROS2

	Language differences
	Python
	C++

	Security and encryption
	Introduction
	Enabling security (involves partial rebuilding)
	How to enable security
	Authentication and key management

	Conclusion

	II Tutorials
	How to port an existing ROS1 C++ program to ROS2
	Introduction
	Ancillary porting information
	Introduction
	Dependencies
	Transitive limitations

	Installing ROS2 itself
	Preparing for the port
	Removing deprecated ROS1 features
	Setup for porting

	List of useful statements to run on a command line
	Toolchain

	Porting your package
	Introduction
	Architectural changes
	Launchers and parameters
	Pointers
	CMakeLists.txt

	Programming changes
	Message and service files
	C++ files

	Other changes
	Documentation

	Packages ported from learning_ros2

	Miscellaneous addenda
	Introduction
	How to debug ROS2 programs with Visual Studio
	Introduction
	Step-by-step instructions
	Explanation of Visual Studio debugging screenshot

	How to run ROS1 or ROS2 on C.H.I.P.

	Concluding thoughts for tutorials

	Conclusion
	III Appendices
	Abbreviations
	Table of abbreviations

	How to run ROS1 and ROS2 on C.H.I.P.
	ROS1
	ROS2
	Debian Jessie (8) versus Debian Stretch (9)
	Dependencies
	Cross-compiling

	Patch for jasadc from ROS1 to ROS2
	References

