
KNOWLEDGE TRANSFER FROM EXPERT

DEMONSTRATIONS IN CONTINUOUS

STATE-ACTION SPACES

by

GABRIEL EWING

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

January, 2018

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis of

Gabriel Ewing

candidate for the degree of Master of Science*.

Committee Chair

Dr. Soumya Ray

Committee Member

Dr. Michael Fu

Committee Member

Dr. Michael Lewicki

Committee Member

Dr. M. Cenk Cavusoglu

Date of Defense

December 5, 2017

*We also certify that written approval has been obtained

for any proprietary material contained therein.

Contents

List of Figures v

Abstract vi

1 Introduction 1

1.1 Task Challenges . 2

1.2 Algorithmic Solutions . 4

1.3 Overview . 5

2 Background and Related Work 7

2.1 Markov Decision Processes . 7

2.2 Value Functions . 9

2.2.1 Action-Value Function . 9

2.3 Basis Functions . 10

2.4 Reinforcement Learning . 12

2.4.1 Online RL . 12

2.4.2 Q-Learning . 13

2.4.3 Policy Gradient . 14

2.4.4 Offline RL . 15

2.4.5 LSPI . 15

2.4.6 Model-Based RL . 16

i

CONTENTS

2.5 Learning from Demonstration . 17

2.5.1 Inverse Reinforcement Learning 18

2.6 Supervised Learning . 18

2.6.1 Tree Models . 19

2.6.2 Tree Construction . 20

2.7 Related Work . 21

2.7.1 Deterministic Policy Gradient 21

2.7.2 Arm Prosthetic Work . 23

2.7.3 Policy Reuse . 23

2.7.4 Bayesian RL for the Multi-Task Setting 23

3 Overview of Contributions 25

3.1 Abstract Problem Space . 27

3.1.1 Knowledge Transfer Across Tasks 27

3.1.2 Learning From Demonstration 29

3.2 Structure of Multi-Task Learning . 30

3.3 Concrete Domains . 31

3.3.1 Application to Prosthetic Arm Control 31

3.3.2 Prior Work . 32

3.3.3 Arm Apparatus . 32

3.3.4 Data Preprocessing . 36

3.3.5 Arm Simulator . 37

3.3.6 Data Collected . 38

3.3.7 Other Domains . 38

3.4 Summary . 39

4 Learning Tree-Structured Rewards from Expert Trajectories with

Continuous Actions 40

ii

CONTENTS

4.1 A Cascaded Supervised Approach to Inverse Reinforcement Learning 41

4.1.1 Motivation for CSIRL . 41

4.1.2 Base CSIRL . 42

4.1.3 Discrete CSIRL . 43

4.2 Tree-Based CSIRL . 44

4.2.1 Motivation for T-CSIRL . 45

4.2.2 T-CSIRL . 45

4.3 Continuous Tree-Based CSIRL . 48

4.3.1 Setting Minimum Rewards . 49

4.3.2 Q-Score Classification . 50

4.4 Regressors . 51

4.4.1 Q-Score Regressor . 51

4.5 Empirical Evaluation . 54

4.5.1 Hypotheses . 54

4.5.2 Implementation . 56

4.5.3 Methodology . 56

4.5.4 Results and Discussion . 57

4.6 Summary . 61

5 Fitted Q-Iteration with Continuous Actions 62

5.1 Fitted Q-Iteration . 63

5.2 Fitted Q-Iteration with Continuous Actions 64

5.2.1 Maximizing the Q-Function 65

5.2.2 Action-Based Over-fitting . 66

5.2.3 Effective Sampling . 69

5.3 Experiments . 70

5.3.1 Hypotheses . 70

5.3.2 Methodology . 71

iii

CONTENTS

5.3.3 Results and Discussion . 72

5.4 Summary . 73

6 Model Reuse for MTRL 74

6.1 Algorithmic Pipeline for a New Environment 76

6.2 A Model Augmentation Step for General Policy Gradient Algorithms 77

6.2.1 Motivation for Policy Gradient Augmentation 77

6.2.2 Modified Target Function for Proximal Optimization 78

6.2.3 Gradient Biasing . 79

6.2.4 Biasing Rate . 80

6.3 Knowledge Structuring . 81

6.3.1 Matching . 81

6.3.2 Model Lists . 83

6.4 Optimizations for Fixed Reward Functions 84

6.5 Policy Compatibility . 85

6.6 Experiments . 86

6.6.1 Augmented Deterministic Policy Gradient 86

6.6.2 Hypotheses . 87

6.6.3 Methodology . 87

6.6.4 Results and Discussion . 88

7 Empirical Evaluation of Tree-Structured Continuous MTRL 93

7.1 Hypotheses . 93

7.2 Methodology . 94

7.3 Results and Discussion . 94

8 Conclusion 100

Bibliography 102

iv

List of Figures

3.1 Pipeline for Multi-Task RL . 26

3.2 Fitts’ Task . 32

3.3 System Objective . 33

3.4 Haptic Device . 34

4.1 T-CSIRL Results . 57

4.2 CT-CSIRL Results . 58

4.3 Learned Trajectories vs. Real . 60

6.1 Gradient Biasing Results . 91

7.1 MTRL Results, Close Transfer . 95

7.2 MTRL Results, Medium-Distance Transfer 96

7.3 MTRL Results, Far-Distance Transfer 97

7.4 Augmented Position and Velocity Comparison 99

v

Knowledge Transfer from Expert Demonstrations in Continuous

State-Action Spaces

Abstract

by

GABRIEL EWING

In this thesis, we address the task of reinforcement learning in continuous state and

action spaces. Specifically, we consider multi-task reinforcement learning, where a

sequence of reinforcement learning tasks have to be solved, and inverse reinforcement

learning, where a reward function has to be learned from expert demonstrations.

We also use trees to represent models, rewards, and value functions in our domains.

First, we design an algorithm to learn from demonstration in the presence of a non-

smooth reward function. Second, we design another algorithm to perform offline

reinforcement learning in the same scenario. This allows us to re-use experiences to

help with new tasks. Third, we introduce a method to incorporate weak knowledge

about policies with online learning in policy gradient algorithms. These contributions

allow us to create a pipeline that efficiently learns and transfers knowledge across a

sequence of tasks. We demonstrate our approaches on the task of learning control of

a prosthetic arm from expert demonstrations under various scenarios in simulation.

vi

Chapter 1

Introduction

Imagine that somebody has a prosthetic arm, and they are trying to get through their

day. What are the common things they might need to do? They could grab their

coffee cup and move it from point A to point B, open a car door, pick up their pen

and do some writing, shake hands with a new acquaintance, or a wide range of other

tasks.

In a non-prosthetic body part, natural movement is achieved through a combina-

tion of muscle memory and fine motor control commands that the brain sends. In a

basic prosthetic limb, muscle memory is non-existent and only coarse motor control

commands can be sent by the brain. An ideal prosthetic would be able to reproduce

the natural movement of an arm as closely as possible with only the coarse motor

commands and some limited personalization for each user. In this thesis, we make

advances toward such a solution by addressing a variety of challenges that will arise.

We now present those challenges, and then a non-technical overview of our attempts

to solve them.

1

CHAPTER 1. INTRODUCTION

1.1 Task Challenges

Consider the problem of just moving between two points in space. In addition to

simply moving to the point that the user wants, the arm should follow a natural tra-

jectory, rather than exhibiting the jerky motion often associated with robots. There

are several potential benefits to matching the user’s expectations as closely as possi-

ble: we could reduce the training time required to become comfortable with the new

arm, we could prevent the arm from bumping into foreign objects, and we could help

the user maintain their balance.

Over millions of years of biological evolution, the movement and perception capa-

bilities of modern animals have become incomprehensibly refined. They allow humans

to perform complicated tasks such as walking upright, picking up objects, typing, and

much more, without conscious thought. This level of complexity would make it dif-

ficult or impossible to define a fixed set of rules to cover all these cases, particularly

when compounded with the goal of retaining natural motion.

Another issue is that all of these skills must be transferable: we can apply the

same basic primitive movement commands to many different scenarios with little

additional effort. Walking at a slight gradient takes almost exactly the same directives

as walking on flat ground, but our leg and foot positioning changes, different muscles

are activated, and our balance must also compensate.

A further compounding challenge is that none of us innately knows how or why

we move the way that we do. We tell our bodies to move our hands in some ill-defined

flourish, and that command is translated down through various levels of abstraction,

none of which we have conscious access to, until it reaches the point of being an

actionable impulse for a group of muscle fibers. We could potentially capture these

message transactions with neural measuring instruments, but that would be expensive

in terms of both effort and money. It would also be vulnerable to the limitations

2

CHAPTER 1. INTRODUCTION

of modern instrumentation. While we avoid the neural recording issue by using less

technically-demanding data, our demonstrations still have to be collected from human

subjects. Performing demonstrations is time-consuming and boring, so we need to

make the best possible use of the trajectories that we are able to collect. This means

that all of our solutions must be data-efficient.

The real world also tends to feature complex, non-smooth decision boundaries:

walking safely on the sidewalk and being hit by a bus may be close to each other

in Euclidean space, but the quality of outcomes is dramatically different. We need

solutions that can adapt to these types of scenarios.

One more major issue is that we act every day in continuous time, space, and

actions. Continuous time means that there are no distinct points in time where we

are asked to make decisions, but can initiate or alter motions as quickly as our brains

can respond to new information. Continuous space denotes that we are not confined

to a fixed grid to describe our position. Finally, continuous actions are related to

continuous states but mean that we effectively have infinitely fine control over the

magnitude and direction of how we move within the constraints of the range of our

bodies. While we set aside the continuous-time problem in this thesis, continuous

states and actions are essential to a robust solution.

While we focus on the task of arm motion in this thesis, it is merely an instantiation

of a more general class of problems. For example, the question of the intention be-

hind movement could potentially be applied to the widely-studied problem of robotic

imitation of cockroach movement [1]. Another relevant scenario is the self-driving car

problem, which could incorporate multiple pieces of our work: reproducing human

intention in driving, transfer of knowledge between different driving conditions, and

choosing actions in continuous space. We have made an effort to ensure that our

algorithms are capable of generalizing to these other problems with only minimal

additional work.

3

CHAPTER 1. INTRODUCTION

Challenge Algorithmic approach/Contribution Chapter

Learning from
demonstration

Tree-structured inverse
reinforcement learning with

continuous actions
4

Synthesizing previous
knowledge into a

transferable component

Fitted Q-Iteration with continuous
actions

5

Identifying similarities
to previous tasks

Model Reuse 6

Combining transferred
knowledge with online

learning

Model-augmented deterministic
policy gradient

6

Table 1.1: Task challenges and associated responses

1.2 Algorithmic Solutions

All of these considerations suggest that explicitly programming movement commands

for a prosthetic might not be the most efficient approach. One alternative, a data-

driven methodology that we explore in this thesis, is to instead learn from recordings

that we make of people’s arm movements when they move between a given set of

points. Rather than just trying to perfectly reproduce these trajectories with a pros-

thetic, we use them to find, at one level of abstraction, why the arm follows the

trajectories.

It is important to note here that we are not incorporating any biological modeling

of the activated muscles and neurons. Instead, we are representing the arm as a

computational process and trying to recover an associated intention that would have

led to the arm following the paths that it did.

If we can find an accurate intention, then we can create our own process with

that same intention that gives rise to similar behavior. We are coming up with an

abstracted function that allows us to compute similar paths, without a physiological

4

CHAPTER 1. INTRODUCTION

explanation for why the arm demonstration followed a trajectory.

Once we have an answer for the intent behind the movements, we can build a

system that learns to match that intent. This offers several advantages: it generalizes

better than simple imitation would to motions that we didn’t record, it allows us

to better address the problem of transfer, and it could give us some insight into the

mechanics of a non-prosthetic arm.

Our approach to the transfer problem relies on model reuse. For our purposes,

this is the ability to recognize when a new situation is similar to one that we have

seen previously. If we can accurately identify similarities between tasks, then we can

use the knowledge that we gained during a previous task to jump-start learning for

the new one.

We address non-smooth feedback by using tree structures. Many machine learning

algorithms make the assumption that two points that are close to each other in space

should have similar outcomes. This is helpful in many scenarios, but for certain

situations it is not desirable, such as those with discontinuous utility boundaries.

Trees are able to handle both: they can generalize or create sharp distinctions as

appropriate.

The problem of continuous states and actions is a recurring theme in this thesis.

Since the most interesting existing algorithms in multiple stages of our pipeline deal

with discrete actions, we have to find suitably altered or new approaches.

1.3 Overview

The remainder of this thesis is structured as follows. Chapter 2 gives more information

about the data collection and prior work on related issues. Chapter 3 describes in

detail the machine learning pipeline that we build and how each piece fits together, as

well as the concrete environments that we use for our experiments. Chapter 4 covers

5

CHAPTER 1. INTRODUCTION

the first step of the process, learning the intentions of the movements we recorded.

Chapters 5 and 6 address how we use the movement intentions to generate our own

movements.

Chapters 4, 5, and 6 all have empirical evaluations of the contributions described in

those chapters. In Chapter 7, we present experiments on our full multi-task pipeline,

combining the pieces from each of the previous three chapters. Finally, Chapter 8

reviews our contributions and gives some avenues for possible future work.

6

Chapter 2

Background and Related Work

In this chapter, we first give a brief introduction to the problem space (Sections 2.1-

2.5), including some of the foundational algorithms in the reinforcement learning field.

Then, we present the more recent algorithms that we modify and build upon for our

contributions (Section 2.7).

2.1 Markov Decision Processes

In this thesis, we are concerned with sequential decision-making problems (SDMs),

where an agent is presented with a choice to make at multiple time points. The

standard way of modeling SDMs is in the framework of Markov Decision Processes

(MDPs). An MDP is defined by a tuple (S, S0, A, P,R, γ). S is the set of states that

the environment can be in at a point in time. Unless otherwise stated, we assume that

a full representation of the state is available to the agent in an MDP. That is, the agent

has access to all the state features that it needs to choose optimal actions. S0 ⊂ S is

the set of possible starting states for the MDP. A is the set of actions available to the

agent at each step. This can be a finite set such as {UP,DOWN,LEFT,RIGHT} or

an infinite set such as [−1, 1]. P : S×A×S → [0, 1] is the transition function, giving

the probability that action A chosen in a given state will lead to a specific outcome

7

CHAPTER 2. BACKGROUND AND RELATED WORK

state. R : S × A → R is the reward function, which is the value that the agent

tries to optimize through actions. Finally, γ ∈ [0, 1] is the discount factor, giving the

amount that the agent should prefer rewards received immediately to those received

at future time steps. With γ = 0, the agent only cares about immediate rewards, and

with γ = 1, it gives no preference to immediate rewards instead of later rewards. For

0 < γ < 1, it still considers future rewards but gives more weight to those received

immediately.

Given an MDP, we consider the notion of a policy, π : S×A→ [0, 1], where π(s, a)

represents the likelihood of taking action a in state s, and
∫
a
π(s, a) = 1 for any s.

A stochastic policy can have π(s, a) > 0 for multiple different a in state s, whereas a

deterministic policy has π(s, a) = 1 for some a in s. Generally, agents try to find an

optimal policy π∗.

Optimality is determined by the rewards received during execution of a policy,

weighted by the discount factor. We can define the cumulative discounted return, or

utility, of a trajectory T of length n. T consists of the states, actions, and rewards

seen during some execution of an MDP while following a policy π. The utility U(T)

is calculated as follows:

U(T) = r0 + γr1 + γ2r2 + ...+ γn−1rn−1 (2.1)

In a deterministic environment, it would be sufficient for the agent to try to max-

imize U(T) in an optimal policy. However, most interesting MDPs have stochastic

transitions, and can have multiple starting states. Therefore, we need to take into ac-

count the expectation of the discounted rewards over all trajectories. The cumulative

discounted expected reward function, J(π), is:

J(π) = E[U(T |π)] (2.2)

8

CHAPTER 2. BACKGROUND AND RELATED WORK

Our goal is to maximize J(π) by finding the optimal policy π∗:

π∗ = arg max
π

J(π)] = arg max
π

E

[
∞∑
t=t0

γtrt|π

]
(2.3)

2.2 Value Functions

We defined the optimal policy π∗ in the previous section using the notion of the

expected discounted reward received over the entire MDP. It is useful to define the

expected discounted reward received under some policy π at a single given state s. We

refer to this as the value function, V π(s). V π(s) takes into account not just the reward

received by following π at s, but the expected reward received under π at all future

states as well. We are able to calculate this using a form of the dynamic-programming

Bellman equation [2]:

V π(s) = R(s, π(s)) + γ
∑
s∈s′

P (s, π(s), s′)V π(s′) (2.4)

The Bellman equation shows us that the value function can be decomposed into

two pieces: the immediate reward received (R(s, π(s))), and the expected future dis-

counted reward (γ
∑
s∈s′

P (s, π(s), s′)V π(s′)). By encapsulating these two components

in the single term V π(s), we can reason about the utility effects of policy changes

without concerning ourselves with when the effects occur.

2.2.1 Action-Value Function

The value function V π(s) is a useful descriptive metric for the utility of a policy at

a given state. It is also useful to establish the idea of the utility of a given (state,

action) pair. We call this the action-value function, Q(s, a). We can calculate the

9

CHAPTER 2. BACKGROUND AND RELATED WORK

action-value function using a different form of the Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑
s∈s′

P (s, a, s′)Qπ(s′, π(s′)) (2.5)

Unlike the value function, the Q-function allows us to choose between different actions

at a state by telling us which has the best expected discounted utility. This is powerful

because it can go beyond a descriptive metric and inform the actual choices that we

make in an MDP. Ideally, the policy π that is followed in state s′ and beyond will

be the optimal policy, π∗. We can similarly define the optimal action-value function

with another form of the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑
s∈s′

P (s, a, s′) max
a′∈A

Q∗(s′, a′) (2.6)

If we knew Q∗(s, a) for all (s, a) pairs of an MDP, then most of the work in this thesis

would be irrelevant because we could trivially act to optimize the expected utility.

Unfortunately, this is not the case, and there is a significant amount of prior work on

various ways to calculate or approximate the Q-function. We will revisit this topic in

Section 2.4.2.

2.3 Basis Functions

In smaller MDPs, we can represent a policy or Q-function by enumerating each state

or (state, action) pair and storing the corresponding action or Q-value in a table. This

is clearly an optimal representation if it is feasible: we would have the exact value of

each entry without any signal loss. However, creating and storing a full enumeration

is often expensive or impossible. An MDP with 100,000 states and 1,000 actions per

state would take 100,000,000 table entries to represent the Q-function, which would

be possible to store with modern hardware. The problem would be in learning those

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Q-values: we would need to experience each of those 100,000,000 transitions at least

once to learn a reasonable value, and, as we will see in Section 2.4.2, potentially

many more times than that. Furthermore, in a continuous-state or continuous-action

MDP, there are infinite possible (state, action) pairs and tabular representations are

impossible.

Therefore, for most MDPs, we employ alternative representations using basis func-

tions. A state-action basis function φ performs the following mapping (it is also

possible to parameterize φ with only a state):

φ(s, a) =

φ0(s, a)

φ1(s, a)

...

φn(s, a)

(2.7)

where each element φi of the output vector is a different numerical value, correspond-

ing to some information extracted from the state and action variables. The simplest

basis functions are just a direct correspondence to the variables observed by the

agent. In a game of soccer, the state features might be the positions and velocities of

all players and the ball, and the actions features the direction and force with which

a dribbling player could kick the ball.

The basis function can also extract useful information from the observations and

include that as well: in the same soccer example, one such piece of information might

be the number of defending players between the ball and the goal.

Additionally, in some MDPs, it is useful to consider a discretized, tiled represen-

tation of the state space. In a tiled representation, a continuous state variable is

assigned to a number of tiles, or bins. A bin is responsible for a continuous subset of

the possible values of that variable, and the disjoint union of the subsets of all bins

covers all of the possible values of the variable. Each bin corresponds to a different

11

CHAPTER 2. BACKGROUND AND RELATED WORK

basis entry φi. This means that for a given variable value, the entries of the basis

vector for that variable’s bins will have one value of 1 and the rest 0. We can also

make bins out of combinations of variables: a single bin corresponding to a range of

one variable and a range of another. Taken to the extreme, we might combine all

state variables into bins, so that only a single entry in the entire basis vector is 1 and

the rest 0.

Basis functions alone are insufficient to represent a policy or Q-value, because

they only encode information about the state and actions, not their quality. To make

use of them, we need a corresponding vector of weights, w. Each weight wi maps to

a different entry in the basis vector, φi. Given w, we could calculate the Q-value of

an (s, a) pair by the dot product Q(s, a) = w · φ(s, a). Learning appropriate values

for the wi is the central problem in learning a good policy or value function.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is the field of machine learning dedicated to autonomously

learning optimal policies for MDPs. Most RL algorithms fall into one of two cate-

gories: online, or offline. Our contributions in this thesis concern both online and

offline RL, and our main RL strategy is a modified online algorithm that incorporates

offline learning algorithms.

2.4.1 Online RL

Online RL has the agent learn a policy while taking actions in the environment. While

the policy is usually bad at first, achieving a low cumulative return, standard online

RL algorithms improve the policy through updates from the rewards received and are

generally able to converge to good policies on a wide variety of problems.

A standard conflict in online RL is the trade-off between exploration and exploita-

12

CHAPTER 2. BACKGROUND AND RELATED WORK

tion. Exploration is the need for the agent to learn new things about the environment

by seeing new states and trying new actions. If the agent acted according to its cur-

rent notion of the best policy at all times, it may never discover better possibilities.

Exploitation is the desire to act to make use of the knowledge that the agent already

has and optimize the expected utility of its actions. A successful online RL algorithm

and policy must balance these two aspects.

One common, näıve form of exploration is ε-greedy exploration, where the agent

chooses the action that it currently thinks is best most of the time, but with some

probability ε chooses uniformly from the other possible actions. Another is to struc-

ture the policy as a probability distribution. With a Gaussian policy, the agent

would update the mean of the distribution but actions would be chosen according

to a Gaussian distribution around that mean. The variance can be either fixed or

another parameter to be learned.

Most RL algorithms maintain some policy π parameterized by a vector of weights,

w, and update w based on their experiences. The learning rate, α, is the amount that

each update is allowed to alter the policy at one time. This prevents past updates

from having their contributions entirely overwritten from more recent inputs.

2.4.2 Q-Learning

In Section 2.2.1, we introduced the notion of the action-value function, Q(s, a). One

of the most common approaches to the RL problem is to learn a good approximation

of the Q-function, and then create a policy by selecting the action with the highest

Q-value in each state. This is known as Q-learning.

As discussed in Section 2.3, to perform Q-learning with a basis φ(s, a), we maintain

and update a weight vector w. The Q-value for an (s, a) pair is calculated by Q(s, a) =

w · φ(s, a). At the beginning of learning, we generally have no knowledge as to what

good values for w are, so we initialize w to the zero vector or some small random

13

CHAPTER 2. BACKGROUND AND RELATED WORK

weights.

To update w, we return to the Bellman equation from Section 2.2.1. For some

(s, a, s′, r) transition, we calculate the new Q-value:

Qn+1(s, a)← r + γmax
a∈A

Qn(s′, a) (2.8)

and then move w in the direction necessary to produce that new Q-value. We discount

our update by the learning rate α so that the policy does not change too suddenly.

Q-learning works well on many MDPs, assuming that it has access to a good basis

function φ. Its large drawback from our perspective is that it has to iterate through

all possible actions to find the best Q-value in the next state. This makes Q-learning

slow for MDPs with a large number of discrete actions, and impossible for MDPs with

continuous actions unless we restrict the policy to a finite subset of those actions.

2.4.3 Policy Gradient

Policy gradient algorithms [3] take a different approach. As their name suggests, they

rely on the differentiability of the expected discounted cumulative reward J(θ) with

respect to the policy parameters θ. The main idea is to move the policy parameters

in the direction of that gradient to improve J(θ).

Sugiyama [4] gives the gradient update for the policy parameters θ, given a se-

quence of trajectories N , each trajectory consisting of T (s, a, r) transitions, as:

∇θĴ(θ) =
1

N

N∑
n=1

T∑
t=1

∇θ log π(at,n|st,n, θ)rt,n (2.9)

At each step, this gradient is multiplied by the learning rate and added to the policy

parameters. The calculation of the gradient of π depends on the specific form of

π. For a Gaussian policy, for example, that draws actions a from a distribution

parameterized by state s, mean µ, and standard deviation σ, the update for θ is split

14

CHAPTER 2. BACKGROUND AND RELATED WORK

into the updates for µ and σ. The equation for the µ update is (from [4]):

∇µ log π(a|s, µ, σ) =
a− µᵀφ(s)

σ2
φ(s) (2.10)

Intuitively, policy gradient on a stochastic policy works by evaluating which of the

available actions lead to the highest expected discounted cumulative reward, and then

altering the policy to perform those actions more. We will re-visit this topic to discuss

policy gradients with a deterministic policy in Section 2.7.1.

2.4.4 Offline RL

In offline RL, there is no direct interaction with the environment. Instead, the learner

is given a set of transitions sampled from the environment via some other policy and

tries to find the best policy using that knowledge. This has some important advan-

tages and disadvantages versus online RL. One advantage is that taking actions in the

environment is often costly, and offline RL requires no further sampling expenditure

once the samples have been collected. One disadvantage is that offline RL usually

cannot choose to explore certain regions of the state and action space further, while

online RL agents can. We now briefly give an overview of one popular family of offline

RL algorithms that is foundational to our offline RL work.

2.4.5 LSPI

Policy iteration starts with an arbitrary policy and gradually shifts it toward opti-

mality. It does this by interleaving steps of policy improvement with steps of policy

evaluation.

Lagoudakis and Parr [5] introduced the Least-Squares Policy Iteration (LSPI)

algorithm for MDPs with large or continuous factorizable state spaces and discrete

action spaces. Algorithm 2.1 is an instantiation of LSPI.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

The main loop of the algorithm has three steps. First, for each (s, a, s′, r) transi-

tion, it updates the Q-value of the pre-transition (s, a) pair using the Bellman equa-

tion on r and Qπ(s′), which is our current estimate of the best Q-value that can be

achieved in state s′. This is the policy evaluation step. Then it does a least-squares

regression from the basis function φ and weights w to the updated Q-values. This

gives us a generalized, functional form for Q as opposed to the table generated by the

first step. Finally, it updates the Qπ(s′) using the new w. This is the policy improve-

ment step. LSPI’s generalization capability is limited by the use of a linear function

Algorithm 2.1 LSPI

Input: Samples (s, a, s′, r)1..n, Basis function φ(s, a), Number of iterations j, Dis-
count factor γ

Output: Policy π(s)
1: Qπ

0 (s′)1..n ← 0
2: for all k ∈ 1..j do
3: Qk(s, a)1..n ← r1..n + γQπ

k−1(s′) // Policy evaluation

4: wk ← arg min
w

n∑
i=1

(w · φ(si, ai)−Qk(si, ai))
2 // Least-squares regression

5: Qπ
k(s′)1..n ← max

a′∈A
wk · φ(s′, a′) // Policy improvement

6: end for
7: π(s)1..n ← arg max

a∈A
wk · φ(s, a)

8: return π(s)1..n

for the Q-values. It still can find good policies on many MDPs given a friendly basis

function φ. However, creating such a basis function can be challenging and requires

human intervention. We would like to be able to do policy iteration with a simple

basis function and still be confident of learning good policies. This leads us to the

Fitted Q-Iteration algorithm, which we will discuss in Section 5.1.

2.4.6 Model-Based RL

In reinforcement learning, a model is any additional information about the environ-

ment (either learned or given a priori) apart from the policy or value functions.

16

CHAPTER 2. BACKGROUND AND RELATED WORK

Usually, models attempt to represent either the transition dynamics or reward func-

tion of the environment. If the agent had access to a perfect model of the transition

dynamics and reward function, it should be able to find an optimal policy for the

environment. One way to do this would be to generate a large number of transition

samples, covering the entire state and action space, and run an offline RL algorithm

on those samples. In practice, models are usually imperfect and other methods must

be used.

Model-based algorithms have the advantage of generally being able to derive more

information—and therefore better policies—from fewer experiences than model-free

algorithms, at the cost of computational time and storage space. All of the RL

algorithms that we have seen so far in this thesis have been model-free algorithms.

In Chapter 6, we will present a novel RL algorithm that incorporates the use of

models into the normally model-free family of policy gradient algorithms.

2.5 Learning from Demonstration

The problem setup of learning from demonstration is as follows: we are given a

number of trajectories (“demonstrations”) of some agent (the “expert”) performing

a task. We want to learn to perform the task from the trajectories. There are

two general approaches to the learning from demonstration: imitation learning, and

inverse reinforcement learning (IRL). In imitation learning, the idea is that we should

match as closely as possible the expert’s policy; that is, faced with a decision between

multiple actions, we should choose the action that we think the expert would have

chosen. While imitation learning is good at mimicking the expert, it does not give us

as much insight into the problem and is less robust to changes in the environment or

task than IRL.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

2.5.1 Inverse Reinforcement Learning

IRL, rather than immediately trying to recover the expert’s policy, first focuses on

learning the reward function that the expert was implicitly exploiting when perform-

ing the demonstration. After we have the reward function, we can do forward RL in

either the real environment or a simulator, using the IRL reward output to generate

synthetic reward values, until we have a policy to optimize the IRL reward. IRL is

attractive because the reward function is useful in transfer to problems with altered

dynamics, and because having a numerical approximation of the reward function can

tell us more about the problem domain itself and why the expert chose its policy.

One challenge in IRL is the indistinguishability of the true reward function. Even

with very extensive expert demonstrations, there are still an infinity of reward func-

tions on which the expert’s actions are optimal. Foremost among these is the null

reward: if the expert simply receives a reward of zero in every state, then any policy

is optimal. While this is an interesting issue that is open to further exploration, we

acknowledge its existence but set it aside for the most part in this thesis.

2.6 Supervised Learning

The broad focus of this thesis is on RL, which can be briefly summarized as learning

to perform tasks that require decisions to be made in a sequential manner. Many RL

algorithms, though, including ours, incorporate algorithms from another branch of

machine learning: supervised learning. In supervised learning, the goal is to learn to

predict labels from some set of features. For example, a supervised learning algorithm

could be trained to predict a person’s preferred operating system based on their

occupation, age, income, and other factors.

Supervised learning can further by divided into two different categories: classifica-

tion, and regression. In classification, the labels generally belong to a small finite set

18

CHAPTER 2. BACKGROUND AND RELATED WORK

of possible values. The operating system example above would fit in this category:

the set of labels would be Windows, MacOS, GNU/Linux, various BSDs, etc.

In regression, the labels belong to a continuous range of values. An example would

be the task of predicting a dog’s weight in kilograms based on its breed and age. In

this thesis, we focus more on regressors, due to the continuous-action nature of our

work and the continuous nature of reinforcement learning concepts such as Q-values.

2.6.1 Tree Models

One way to partition the output space in both classification and regression is through

tree-structured models.

Decision trees are classifiers, with each leaf corresponding to a class label. The

internal nodes of the tree are tests on the input features, and the children of a node

correspond to the outcome of that test. To classify a new example, the test at the root

node is applied, the appropriate child is selected, and so on, until a leaf is reached.

The output is the label of that leaf.

Each node has a single feature that it uses to make a decision about an example.

Based on the value of that feature, the node will decide which of its children it should

choose to send the example to. Each child corresponds to a subset of the range of

possible values that the node’s feature can have.

The leaf nodes (nodes that have no children) do not have single-feature tests.

Instead, they make the final decision about what the example’s predicted label should

be. The simplest way to do this is to have a fixed prediction of the most common

value of all labels of the examples that created the leaf when the tree was trained.

Regression trees are similar to decision trees, but perform regression rather than

classification. This can be achieved through a variety of different changes to decision

trees, including the CART algorithm [6]. In this thesis we primarily use model trees,

introduced by Quinlan in 1992 [7].

19

CHAPTER 2. BACKGROUND AND RELATED WORK

2.6.2 Tree Construction

Once a tree exists, using it to make predictions is easy. Most of the complexity and

difficulty with tree models comes in creating the tree.

Algorithm 2.2 shows the generic tree creation process. We start with some training

set consisting of examples and labels. Each example has some set of features. At each

level of the tree, we need to choose one feature (Step 4), and one particular value of

that feature (Step 5), upon which to make the node split. Once we choose a feature

and value, we partition the training data on that test and train each child node with

the appropriate subset of the data. We repeat this process until the criteria we have

established for stopping the splits and creating a leaf becomes true (Step 1).

The primary question for any training algorithm is how it selects the feature and

value to split on. Ideally, the split decision should be consistent in some way with

the method of labeling a leaf, to produce the best leaves possible.

Algorithm 2.2 CONSTRUCT-TREE

Input: Examples Xf1..fk
1..n , labels Y1..n

Output: Root node of final tree
1: if SHOULD-MAKE-LEAF(X, Y) then
2: return MAKE-LEAF(X, Y)
3: end if
4: for all f ∈ f1..fk do
5: for all i ∈ 1..n do
6: P f

i ← SPLIT-QUALITY(Xf
i , X, Y)

7: end for
8: end for
9: f ∗, v∗ ← arg max

f
arg max

x
P f
x // feature and value of the best split

10: (X, Y)1..m ← PARTITION(X, Y, f ∗, v∗) // partition the examples and labels
based on the best split

11: children← ∅
12: for all Xj, Yj ∈ 1..m do
13: children← children ∪ CONSTRUCT-TREE(Xj, Yj)
14: end for
15: root← NODE(f ∗, v∗, children)
16: return root

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Three functions called in Algorithm 2.2 require non-trivial implementations: SPLIT-

QUALITY, SHOULD-MAKE-LEAF, and MAKE-LEAF. We will return to these

functions for our various tree implementations in later chapters.

Note that the call to PARTITION may result in either a binary or multi-way split,

depending on the other implementation details.

In this thesis, we frequently make ternary splits, so there is one child that is

assigned samples less than the split value, one child with samples equal to the split

value, and one greater. If the split value is at one extreme end of the value range,

there is no data to create either the < or > child, so for tree induction we assign any

such samples to also go to the equal child.

2.7 Related Work

The previous sections in this chapter gave basic background about the problem spaces

that we are addressing. In this section, we present the algorithms most closely related

to our work. In some cases, we directly alter or build upon them in later chapters to

make them applicable for our goals.

2.7.1 Deterministic Policy Gradient

We discussed the family of policy gradient algorithms in Section 2.4.3. Prior to 2014,

all published policy gradient algorithms only worked for stochastic policies. That

changed with Silver et. al’s “Deterministic Policy Gradient Algorithms” [8].

Deterministic Policy Gradient is based on an actor-critic algorithm. Actor-critic

algorithms exploit the connection between the gradient of cumulative discounted ex-

pected return, ∇θJ(θ) and Q-values. The “actor” uses an estimate of the Q-values

to compute an approximation of ∇θJ(θ) and correspondingly update the policy pa-

rameters θ, and the “critic” updates the estimate of the Q-values. However, finding

21

CHAPTER 2. BACKGROUND AND RELATED WORK

∇θJ(θ) requires the ability to take ∇θ log πθ(a|s), which is impossible for determin-

istic policies because most of the support of πθ(a|s) is zero, and undefined under

logs. This means that most policy gradient algorithms, and by extension actor-critic

algorithms, use stochastic policies.

Deterministic Policy Gradient is enabled by using an alternate formulation of

the gradient update, avoiding logs. They give multiple variations of algorithms that

implement this formulation, including both on-policy and off-policy algorithms. The

one that we use follows an off-policy algorithm for exploration: that is, the policy used

to collect samples during the learning procedure is not the same one as is returned

for evaluation purposes.

First, we calculate the Bellman difference for the critic weights w:

δk ← rk + γQw(sk+1, µθ(sk+1))−Qw(sk, ak) (2.11)

Then, we use the Bellman difference to update the critic weights:

wk+1 ← wk + αwδkφ(sk, ak) (2.12)

Finally, the critic weights are used to approximate the policy gradient:

θk+1 ← θk + αθ∇θµθ(sk)(∇θµθ(sk)
>wk) (2.13)

The learning rates, αw and αθ, can be configured separately from each other.

While our algorithms are not directly tied to Deterministic Policy Gradient, we

use it for many experiments and present a modified version in Section 6.6.1.

22

CHAPTER 2. BACKGROUND AND RELATED WORK

2.7.2 Arm Prosthetic Work

Machine learning with arm prostheses has been explored in the past before. Not

included in this section is the prior prosthetic work that we directly build on, which

we will instead discuss in Section 3.3.

Thomas, in [9], applied a continuous-time actor-critic algorithm to forward RL

for a prosthetic. However, they did not investigate the problem of learning from

demonstration or the problem of knowledge transfer.

2.7.3 Policy Reuse

Policy reuse, explored in [10] and [11], among others, involves using past policies to

improve exploration or the rate of learning on new domains. In [10], they assumed

that a library of past policies was provided and used them to bias exploration. They

did this by creating a similarity metric between the past policies and the current

environment, calculated from the performance of the past policies when run on the

current environment. Our approach, by contrast, involves creating models of previous

environments. This allows us to define our own similarity score, which we can compute

without altering the exploratory policy. We discuss this further in Chapter 6.

2.7.4 Bayesian RL for the Multi-Task Setting

Multi-task reinforcement learning (MTRL), the main paradigm that we address, has

been extensively explored in the literature.

Dearden et al. [12] used a Bayesian posterior distribution over environment model

parameters to guide exploration. They used the parameter uncertainties to create

distributions over Q-values.

Wilson et al. [13] built on this work to create and update a distribution on past

MDPs with a hierarchical Bayesian model. This allowed them to quickly learn about

23

CHAPTER 2. BACKGROUND AND RELATED WORK

new environments if they were similar to a past environment, or avoid using past

knowledge if it was not suitable.

Our approach in Chpater 6 can be viewed as a weaker version of the Bayesian

approach.

24

Chapter 3

Overview of Contributions

In this chapter, we first present the general structure of the problems that we are

trying to solve. Then we give a high-level description of how the various parts of

our contributions fit together. The third section contains the concrete details of the

domains that we evaluate our algorithms on.

25

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

Demonstrations, D

States, Actions,
Transition Function

Models from past
experience

Ch4: Learn
reward function

Act in sim-
ulated MDP

Ch6: Select most
similar models

Ch5: Solve
for model

policy offline

Update policy

Ch6: Augment
learning with
model policy

Learning a New Task

Figure 3.1: Pipeline for Multi-Task RL

26

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

3.1 Abstract Problem Space

In Chapter 2, we introduced a number of the smaller building blocks that we use.

This section details how they fit into the overall problems that we address.

3.1.1 Knowledge Transfer Across Tasks

We are interested in solving a sequence of tasks generated from some underlying

distribution ζ. These tasks are instantiated by a sequence of MDPs and can have

varying transition or reward functions.

As an illustrative example of the generative MDP distribution ζ, imagine a simple

grid world where the agent can occupy any ofN2 possible squares in someN×N region

of a 2-dimensional plane. The agent has available actions {UP,DOWN,LEFT,RIGHT}.

One possibility for ζ would be with a fixed reward of 0 at all squares except one

fixed goal square with a reward of 1, and fixed transition dynamics: each action moves

the agent one square in the given direction, unless the agent is the edge of the grid in

the chosen direction, in which case it does not move. In this case, ζ would produce

the same MDP every time a new task was drawn, since the distribution is fixed in

both the rewards and transitions.

A slightly more complex version of ζ could have the same fixed reward, but add

noise to the transitions. ζ could choose uniformly from a noise constant κ ∈ [0, 0.5].

The agent would, rather than moving in a direction entirely determined by the action,

instead move in a random direction with probability κ. In this case, ζ would have

infinite potential outputs, each corresponding to values of κ.

Adding further complexity, ζ could still have the fixed reward, but choose source

and sink squares for teleportation. When the agent’s action would have placed it in

the source square, it would be instead placed in the sink square. The source and sink

could be chosen uniformly from the N2 squares, so ζ would have N4 possible outputs.

27

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

We could also combine the previous two distributions: ζ could first choose whether

this environment would have transition noise or teleportation, and then from among

the free parameters for the chosen structure.

We could continue on this track, twisting the possible structures of the transition

function and the parameters that ζ is responsible for, and also incorporating variations

on the reward function, such as the goal square changing or adding multiple goal

squares. The intent of this example is to show the power of ζ, and the scope of the

functions that we potentially need to account for in our policies and models.

Our goal is to learn policies to accomplish these tasks by optimizing the expected

discounted cumulative reward. When the reward functions differ, the policies clearly

must be different to act optimally on each task. Even when the reward functions

are shared, though, a one-size-fits-all policy is untenable in a sequence of tasks with

different transition functions, because different transition outcome states can have

different Q-values under the Bellman equation. We have to learn different policies for

each different task.

Each individual task, though, bears some similarity to those that have come before

it. Humans are very good at transferring the knowledge gained in previous similar

scenarios to new ones. Ideally, our RL agents would be able to determine the most

relevant aspects of all previous tasks and approach each new task with a strong

knowledge base. In this thesis, we make advances towards such a robust transfer

system by creating algorithms to

1. Build models of tasks after they are experienced

2. Given a new task, identify the most similar models

3. Given models, find a good policy for the model-task

4. Incorporate the policy into learning for the new task

28

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

This is in addition to the problem of learning from demonstration, which we will

discuss further in Section 3.1.2.

3.1.2 Learning From Demonstration

We introduced the problems of learning from demonstration, imitation learning, and

inverse reinforcement learning (IRL) in Section 2.5. To summarize that section, imita-

tion learning produces an estimate of the expert’s value function or policy, while IRL

produces an estimate of the expert’s reward function. We chose to address learning

from demonstration for this problem domain through IRL. This is not an indictment

of imitation learning; it has been successfully applied to complex tasks, including

the helicopter domain [14]. It also has some potential advantages over IRL: it can

sometimes be applied directly to a real-world problem without an intermediate step

of forward RL, and it is less likely to deviate from the expert’s policy in states that

the expert visited during demonstrations. This makes imitation learning more likely

to produce natural-feeling trajectories.

We decided to use IRL because it seems to be a better fit for our specific problem.

One strong reason for this is that the reward function produced does not necessarily

depend on the transition dynamics for the specific task, while the value function or

policy from imitation learning does. This would make re-using the result of imitation

learning difficult across different MDPs drawn from ζ, and it would be more dependent

on the specific settings present when the data was collected. Since we are trying to

re-use knowledge between tasks, IRL is more attractive.

We discuss some of the challenges we faced when using IRL for this problem,

primarily concerning the adaptation of CSIRL to MDPs with continuous actions, and

the solutions that we found to address them, in Chapter 4.

29

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

3.2 Structure of Multi-Task Learning

Algorithm 3.1 shows the high-level flow that we follow for multi-task learning. We

begin with learning from expert demonstration for each task (Step 1). This gives us

the reward function for the task, which we use to create a simulated MDP (Step 4).

We maintain two arrays of models, one for transition functions and one for reward

functions, that persist across all tasks (Step 2).

During a task, we take some number of steps in the MDP following policy π,

interleaved with updates to π. When an update to π occurs, it starts by selecting the

models that most closely match the transitions seen so far (Step 8). Next, we use the

transitions stored with those models to solve an offline RL algorithm (Step 9). This

gives us a policy πM . To finish the update, we use πM to bias policy gradient learning

on π, in Step 10.

Finally, once a task is complete, we update our model arrays using the transitions

that we saw during task execution (Step 12).

Algorithm 3.1 Pipeline for a Sequence of Tasks

Input: Expert demonstrations DE,i for each task i
Output: Policies πi
1: RE,i ← CSIRL(DE,i) // Chapter 4. This could happen for each individual task

instead.
2: Models M ← ∅
3: for all tasks i do
4: MDP ← (S, S0, A, P,RE,i, γ) // Simulated MDP
5: π ← INITIALIZE-POLICY // Begin with random or 0 policy parameter

weights
6: while task is not yet finished do
7: Act in MDP , following π, to collect experiences T
8: MT ← SELECT -MODELS(M,T) // Algorithm 6.3
9: πM ← CONTINUOUS-FQI(MT , π.basis, γ) // Algorithm 5.4
10: π ← GRADIENT -BIASING(T, π, πM) // Algorithm 6.2
11: end while
12: M ← UPDATE-MODELS(M,T) // Algorithm 6.4
13: end for

30

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

3.3 Concrete Domains

We test our algorithms on a variety of problems to verify their effectiveness. In this

section, we give the details of those problems.

3.3.1 Application to Prosthetic Arm Control

Let us consider the application of ζ on the problem of prosthetic arm motion intro-

duced in Chapter 1. For a generalized prosthetic, a vast number of potential reward

and transition functions would have to be accounted for.

A simple distribution of reward functions might be over goal points in space around

the body. A more complex one might be to draw some figure on a piece of paper,

selected from a library of figures.

Distributions over transition functions could involve the weight of objects held in

the hand or attached to the arm, such as shirt sleeves. While most of us can move

our arms without any additional effort whether we have bare arms or a heavy jacket

on, the transition dynamics between those two scenarios could be different enough to

warrant entirely different policies.

A diagram of the specific task that we consider, known as the Fitts’ Task [15], is

shown in Figure 3.2. The agent’s objective is to move the pen from the region on the

right to the target region on the left. Our setup is slightly different than the pictured

one, because the goal regions are shown on a screen and the pen moves through free

space rather than on a flat surface.

We would like to use knowledge from some trajectories to improve learning on

other trajectories. Imagine that we are given the blue trajectory in Figure 3.3. How

can we use that to output a controller that creates the red trajectory? The tasks are

similar, but the same controller would not be able to produce both trajectories. This

is what our system does.

31

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

Figure 3.2: Fitts’ Task [15]. The objective is to move the pen from the region on the
right to the region on the left.

3.3.2 Prior Work

Our work directly builds on work by Fu [16], who set up the physical device that we

used for recording. Their related contributions were variability and dynamics models

for the arm and hand holding the pen. They also investigated the application of

minimum-jerk models to the arm motion task that we use here, but found that they

were unstable and could not form trajectories.

3.3.3 Arm Apparatus

We collected arm motion trajectories using the apparatus described in [16] and shown

in Figure 3.4.

The physical interface presented to the human subject was a pen (attached to a

haptic device) and a computer monitor displaying the pen’s position as a cursor and

the goal position as a region on the screen. As the pen moved, so did the cursor.

There was no perceptual delay between the pen motion and the cursor motion. The

human’s task was to make the cursor reach the goal region and stop moving, and then

32

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

Figure 3.3: Illustration of our system goal. We would like to use knowledge from the
blue trajectory to help learn to create the red trajectory.

33

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

Figure 3.4: Sensable Technologies, Inc. Phantom Premium 1.5 haptic device, taken
from [16]

34

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

to press a button to signal the end of the trajectory. After the goal was reached, the

human moved the cursor back to the home position at the center of the screen and

pressed the button again.

The pen attaches to the device arm, which itself is attached to three angular sen-

sors at the device base. Each of the sensors detects movement by observing a number

of slots, spaced at regular angles around the range of possible motion. There are sepa-

rate measurements for angular position and angular velocity. Angular velocity, which

is the signal that we derive our data from, is measured by counting the amount of

travel time between slots. Angular velocity readings occur at a clock rate of 80MHz.

Since the angular sensors do not directly measure the motion of the pen, but

rather the motion of the device arm caused by the pen, we need to convert them to

find the values for the pen motion. Those equations are given in [17]. Note that while

the pen was not attached to the device in the equations in that paper, they are still

applicable because we model the pen as a point mass attached to the furthest point

on the device arm.

The most recent angular velocity is read from a data collection card at a rate of

1kHz, so the output recordings have 1000 data points per second. Most trajectories

were finished in 2-3 seconds, leaving us with 2000-3000 data points per trajectory.

The device also has motors, capable of moving the device arm, which we used to

cancel the downward gravitational force produced by the device components. This

meant that the pen was the only mass that the subject had to keep aloft. We also

used the motors to create “walls”, forcing the pen to stay within certain boundaries

in the y and z dimensions. This mostly confined movement to the x direction, which

was the dimension where distance to the goal was measured.

The trajectories varied in terms of both the transition and reward function. The

reward function changed by the goal moving: five different goals were used, at varying

offsets from the home position. The transition function changed by introducing a re-

35

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

sistance through the haptic motor device. The resistance meant the pen moved with

some velocity, the motors pushed in the opposite direction with a negative force pro-

portional to the velocity. Trajectories were collected with a variety of proportionality

constants, including zero (no resistance).

3.3.4 Data Preprocessing

While the measurements were taken in terms of angular velocity, our experiments

required Euclidean positions and velocities. The angular values were converted to

Euclidean coordinates via trigonometric transformations, and then the Euclidean ve-

locities were numerically integrated to obtain positions.

We structured the arm task MDP as having state features of position and velocity,

and actions of force. To obtain the force applied at each time step, we numerically

differentiated the velocity to get an acceleration, and then multiplied by the mass of

the pen (0.0843kg).

To smooth out a small amount of remaining recording error, we applied a moving

average with a window size of 10.

While having data at a granularity of 1kHz could be helpful for other applications,

it is unlikely that such fine measurements are necessary to capture the intention

of human arm movement. Much of the data sampled at 1kHz is redundant. We

down-sampled to 200Hz, which is more than sufficient to maintain the shape of the

trajectories.

The human subject takes some time to respond at the start of each episode. This

produced a period where no actions were being taken. We removed the first 30

steps from each trajectory to keep only the most relevant information. The resulting

trajectories had around 200 time points each with a time step of 0.005 seconds.

36

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

3.3.5 Arm Simulator

The arm data collection apparatus is a core component of our experiments, primarily

because it is a required part of the base CSIRL algorithm. Additionally, it would

be difficult to achieve sufficient coverage of the state and action space through real

movement since there are many possible states and actions and a human would have

to perform each one. Instead of real data, we used a simulator to generate similar

transitions with randomly-selected actions.

The simulator modeled the task using kinematics equations: resistance was applied

by reducing the force action by an amount proportional to the velocity, ẋ:

fr,t ← fapplied,t − resistance(ẋt) (3.1)

The resisted force was then divided by the pen mass of 0.0843kg to find an accelera-

tion, ẍ:

ẍt ←
fr,t
mpen

(3.2)

The velocity, ẋ was updated as

ẋt+1 ← ẋt + ẍt(step) (3.3)

where step was the time interval that the force is applied over, in this case 0.005s.

The position, x, was then

xt+1 ←
ẍ(step2)

2.0
+ ẋt+1(step) + xt (3.4)

It is important to note that the simulator does not require a button to be pressed to

signal the end of an episode, as is the case in the real data. It ends the episode when

the position is within a small tolerance of the goal position and the velocity is within

37

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

a small tolerance of 0.

Forward RL for the arm task is run on this simulator, and any random samples

are generated by it. Except where otherwise noted, all simulator trajectories ended

either when the goal was reached or after 500 steps.

The goal was considered reached if the agent was within 0.0054 meters of the

target, and the velocity was within [−0.01, 0.01]m
s

.

3.3.6 Data Collected

There were 5 different resistances applied and 5 different goals used. Each individual

combination was collected, for a total of 25 scenarios. For each scenario, we collected

10 trajectories.

The resistance constants were {0.0, 0.5, 1.5, 2.5, 3.0}, and the targets were at dis-

tances of {0.0528, 0.0726, 0.0792, 0.1017, 0.1081} meters from the starting position.

3.3.7 Other Domains

In addition to the arm, we evaluate our algorithms on a simulated toy domain that

is commonly used for RL experiments.

Cart Pole has the agent control a cart which has a pole attached to it. The

objective is to keep the pole upright for as long as possible. The action available

to the agent is the cart’s acceleration along its one-dimensional track. The state

variables that the agent has access to are the angle and angular velocity of the pole.

An episode ends when the pole falls outside the boundaries of
[
− π

15
, π

15

]
radians,

where a vertical pole is at 0 radians. The reward is 0 for the step where the pole

falls past the boundaries and 1 otherwise. The discount factor is 0.9. Episodes are

terminated if they reach 200 steps.

The actions are bounded in [−1, 1]. In some of our experiments, we impose the

constraint of discrete actions, in which case the available actions are {−1, 1}.

38

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

The initial conditions are chosen uniformly at random from [−0.05, 0.05] for both

the angle (θ) and angular velocity (θ̇).

The angle becomes:

θt+1 ← θt + τ θ̇t (3.5)

where τ is the length of the time step, 0.02 seconds. The angular velocity is updated

as follows:

θ̇t+1 ← θ̇t + τG sin(θt)− cos(θt)
(10a+ 2mplθ̇

2
t sin(θt))

l(mc +mp)
(

4
3
− mpcos(θt)

2

mc+mp

) (3.6)

where G is the gravitational constant 9.8; a is the acceleration action chosen; mc is

the mass of the cart, 1.0; mp is the mass of the pole, which varies; and l is the length

of the pole, 0.5.

As mentioned in the previous paragraph, the mass of the pole varies between 0.1

and 2.0. This is how we introduce different transition functions over ζ.

3.4 Summary

In this chapter, we began with an abstract overview of the problems that we are try-

ing to solve, including multi-task transfer learning and learning from demonstration.

Then, in Algorithm 3.1, we showed how these components fit together in a pipeline

for learning. Finally, we discussed the concrete domains that we will use to evaluate

our algorithms.

Over the next three chapters we will present our specific algorithmic contributions

and their evaluations. We begin with learning from demonstration.

39

Chapter 4

Learning Tree-Structured Rewards

from Expert Trajectories with

Continuous Actions

In the previous chapter, we discussed how we want to learn a reward function from

expert demonstration using inverse reinforcement learning (IRL). Our situation is

further complicated both by needing to be able to learn complex non-linear reward

functions and the presence of continuous actions. In this chapter, we describe our

approach and contributions for both of those issues: for the reward functions, we use

model trees, which are regressors capable of learning complex decision boundaries.

For the continuous actions, we alter an existing discrete-action IRL algorithm, CSIRL,

to also cover the continuous case.

40

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.1 A Cascaded Supervised Approach to Inverse

Reinforcement Learning

We will first present the standard CSIRL algorithm, and then return to our contri-

butions later in the chapter.

4.1.1 Motivation for CSIRL

An initially tempting approach to the IRL problem, given a set of trajectories with

state features and discrete actions, might be to train a predictive model with the

state features as examples and the actions as labels. Then we could use the model’s

score function to determine how strongly it estimates that the action it chooses in a

state is correct, and use that as the reward output. This would assign the highest

rewards to those actions which the model was very confident the expert would take in

a given state. It would assign modest rewards to actions where the choice was more

ambiguous, and low rewards to actions unlikely to be chosen.

Unfortunately, the simple model-based approach has a fatal flaw. When the expert

chooses actions, they have to take into account discounted future rewards as well as

the immediate reward. That means the model would be unable to distinguish when

the expert chose an action because it had a large immediate reward, versus when the

expert chose an action because it led to high rewards in the future. We have seen

this concept before in the value function. As it turns out, the S → A model can be

re-purposed as part of a slightly more complex algorithm that is an effective strategy

for the IRL problem.

41

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.1.2 Base CSIRL

The Cascaded Supervised Approach to Inverse Reinforcement Learning (CSIRL) algo-

rithm [18], presented in an abstract form here in Algorithm 4.1, uses the S → A model

as an intermediate step before computing the reward function (Step 2). Specifically,

it uses the score output of this model as an approximation of Q(s, a), and the output

class as a decision rule (policy) πC(s). With these two outputs, we can rearrange

Equation (2.5) to find the reward function:

R(s, a) = Q(s, a)− γ
∑
s∈s′

P (s, a, s′)Q(s′, πC(s′)) (4.1)

Since we are using demonstrated trajectories, we approximate the transition proba-

bilities from the samples we have access to, and the previous equation becomes

R(s, a) = Q(s, a)− γQ(s′, πC(s′)) (4.2)

This is applied to all the transitions that we have available in Step 3. Once we have a

reward label for each transition, we can do a further regression operation, with state

features and actions as examples, and rewards as labels (Step 5). This regressor is

then output as the reward function.

One issue with this formulation is that we need to produce a reward function that

has appropriate values for every state and action in the MDP. The expert transitions,

though, are likely to concentrate on the states and actions with highest Q-scores, since

the expert will quickly move there even from a random starting state. This means

that we have poor coverage of the environment from just the expert demonstrations.

This in turn has the potential to bias the reward regressor, since it will have no reason

to think that un-visited states and actions are worse than those it has for examples.

The remedy proposed in [18] is to also incorporate transitions sampled with ran-

42

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Algorithm 4.1 Base CSIRL (adapted from Klein et. al [18])

Input: Expert data-set DE = (sk, ak = πE(ak), s
′
k)k, random data-set DR = (sk, ak =

πrandom(ak), s
′
k)k

Output: Reward function R : S × A→ R
1: Construct the data-set DC ← {(si = sk, ai = πE(si)) = ak}
2: CONSTRUCT-SCORE-FUNCTION(DC), obtaining decision rule πQ and Q-score

function Q : S × A→ R // Choice of score function is left to the instantiation
3: Construct the data-set DR ← {((sj = sk, aj = ak), r̂j)j} with r̂j ← Q(sj, aj) −
γQ(s′j = s′k, πC(s′j = s′k))

4: HEURISTIC-EXPERT-PREFERENCE(DR, DE) // Optionally, add in this step
to further distinguish expert actions from non-expert actions

5: R ←CONSTRUCT-REWARD-FUNCTION(DR) // Learn the reward function
from the training set. Again, the functional form is left to the instantiation.

dom actions. Clearly, these random samples should not be included in the Q-score

classification step, or the Q-score classifier would inappropriately assign higher Q-

scores to the randomly-chosen actions. Instead, they incorporate the random tran-

sitions into the inverse Bellman step. This takes full advantage of the transition

information, while not deriving any action preference from them.

The theoretical results in [18] show that the expert policy, πE, is close to optimal

for the output reward function R. While this does not mean that R is guaranteed to

be close to the function that the expert was intending to optimize, it does serve as a

useful sanity check. Further details and proofs can be found in [18].

4.1.3 Discrete CSIRL

The implementation in [18], which we will refer to as D-CSIRL, covers the case of

smooth reward functions and discrete actions.

The discrete actions are handled by the choice for CONSTRUCT-SCORE-FUNCTION

(Step 2 of Algorithm 4.1), which is to train a classifier on the expert training set DC .

This classifier predicts what the action chosen by the expert would be in a given state,

which is the decision rule πQ. It also is able to give the probability that the expert

would choose a given action in a state, which is the Q-score function Q : S ×A→ R.

43

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

D-CSIRL uses a support vector machine (SVM) and a support vector regres-

sor (SVR) for CONSTRUCT-SCORE-FUNCTION and CONSTRUCT-REWARD-

FUNCTION, respectively.

There are two places in D-CSIRL where actions that the expert took in demon-

stration samples are given preference over other actions. The first is in the Q-score

classifier: actions with higher probability of being taken by the expert in a state are

given higher Q-scores.

The second place where expert actions are privileged is in Algorithm 4.2, the

heuristic expert preference choice of D-CSIRL. Step 1 finds a value some fixed amount

lower than the minimum existing reward over all (s, a) pairs in the expert and random

data-sets. Step 2 sets that minimum value as the reward for all (s, an) pairs where

there was at least one expert transition starting in state s and there was no expert

transition where action an was chosen in state s.

Algorithm 4.2 Heuristic Expert Preference

Input: Bellman-based reward values DR, Expert transitions DE

1: Set rmin ← min
j
r̂j − 1

2: Construct the training set DR ← {((sj = sk, aj = ak), r̂j)j} ∪ {((sj =
sk, a), rmin)j;∀a6=πE(sj)=ak}

4.2 Tree-Based CSIRL

As we mentioned previously, D-CSIRL handles smooth reward functions. A smooth

reward function is one where an (s, a) pair having some reward value r means that

nearby (s, a) pairs have a reward close to r. We want to be able to learn non-smooth

reward functions, which potentially have discontinuities. We will first give reasons

why this would be desirable, and then describe how we implement our solution.

44

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.2.1 Motivation for T-CSIRL

Some environments have reward functions that are difficult or impossible to represent

by a linear function on their state features and actions.

An example of an environment for which we know a complete reward function

is Mountain Car. The standard Mountain Car environment has state features of

position, p ∈ [−1.2, 0.6] and velocity, v ∈ [−0.7, 0.7]. The action is acceleration,

acc ∈ [−1, 1]. The reward is 0 if 0.5 ≤ p ≤ 0.6, and −1 otherwise. Clearly, there

are no weights by which we could multiply a vector consisting of only the position,

velocity, and acceleration to represent this reward function. Our goal is to be able to

represent arbitrary reward functions.

4.2.2 T-CSIRL

One natural approach to modeling complex functions is to use trees. Trees are able

to learn a wide variety of decision boundaries because of how they quickly separate

the feature space as they grow deeper.

With discrete actions, decision trees suffice for the CONSTRUCT-SCORE-FUNCTION

step. Standard decision trees provide label predictions and can output probabilities

of labels given features, satisfying the requirements for the Q-score function.

The CONSTRUCT-REWARD-FUNCTION step requires a regressor. The ap-

proach that we take is to use regression trees, which we previously discussed in Sec-

tion 2.6.1. In particular, we use model trees [7], which allow a choice of label functions

to use at the leaves of the tree. The most simple of these is a constant label, but

more powerful functions exist. We have chosen to use linear regressors at the leaves.

This allows extremely complex functions to be learned over the output space, since

there are many linear regressors, each corresponding to a small portion of the state

space.

45

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Additionally, we allow the model trees to perform ternary splits, separating the

examples that are less than, equal to, and greater than the feature value. This

allows the trees to immediately isolate values with anomalous rewards, and increases

the complexity of function they can learn with a given depth. We could learn, for

example, that there is a large spike in the reward function at a single leaf, and

negligible reward elsewhere. Alternatively, we could learn a dense reward with each

leaf having a different and interesting regression.

Since the function learned in the CONSTRUCT-REWARD-FUNCTION step maps

(s, a) pairs to rewards, the splits can happen on either states or actions.

Recall from Algorithm 2.2 that there are three interesting functions that any

tree model construction algorithm must implement: SPLIT-QUALITY, SHOULD-

MAKE-LEAF, and MAKE-LEAF.

We have already covered our choice for MAKE-LEAF: we use linear regressors.

When a leaf node is reached, we fit a linear regressor on the remaining examples and

labels, and store it in the leaf object.

SHOULD-MAKE-LEAF is similarly fairly simple. We stop either because of node

depth or because of too few samples remaining at a node. Both of these conditions are

intended to help to avoid over-fitting the tree. Additionally, we stop if there is only

one unique label value remaining, as remaining splits would not be able to improve

the fit.

Algorithm 4.3 Should Make Leaf (Reward Trees)

Input: Node N , Samples S, Max depth D, Minimum sample number M
1: depth-reached← N.depth ≥ D
2: too-few-samples← |S| < M
3: return depth-reached or too-few-samples

SPLIT-QUALITY is more complex. Since we are creating trees with linear re-

gressors at the leaves, we make the splits based on the coefficient of determination r2

of each split.

46

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

In general, r2 represents the improvement in explanatory power on a data set of

a linear fit on the labels over just using the average label for each sample. Predictive

power is measured as the squared distance from the true label for a sample to the

predicted label for that sample. Maximizing r2 leads to the common ordinary least

squares (OLS) algorithm for finding a linear regression. For a single set of features

{x1, ..., xn} with corresponding true labels {y1, ..., yn} and predicted labels {p1, ..., pn},

r2 = 1−

n∑
i=1

(yi − pi)2

n∑
i=1

(yi − ȳ)2
, (4.3)

where ȳ is the average label over all y. In our case, we would like to measure the

coefficient of determination of a split. Each child c of the split will have its own linear

predictive fit for the {y1, ..., ync} labels of the {x1, .., xnc} samples in its partition, as

well as its own average label ȳc. This leads to a new formulation for r2:

r2
split = 1−

∑
c

nc∑
i=1

(yi − pi)2

∑
c

nc∑
i=1

(yi − ȳc)2
(4.4)

To find the value that we actually choose for the split, we have to calculate r2
split for

each possible split value in the data set.

Note that while each child can have a different number of samples assigned to

its partition, we do not need to weight each child’s contribution to the sums by its

number of samples. This is because the weighting is already implicitly performed by

larger children having more samples contributing to the total.

47

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.3 Continuous Tree-Based CSIRL

The CSIRL algorithm, which we discussed in the Section 4.1.3, is theoretically well-

founded and works in environments with discrete actions. However, we are primarily

interested in environments with continuous actions: our motivating problem, motion

of the arm, clearly has continuous actions.

It is possible to use discrete approaches to continuous data—for example, by

discretizing the action space into a finite number of bins. One problem with this

is the curse of dimensionality : if we break a single continuous variable into n bins,

we now have n binary variables to deal with rather than one. This exponentially

increases computational cost.

Additionally, discretization approaches encounter sampling issues. Some bins will

contain many samples and some will contain few. This affects the learning problem.

It also removes the ability to generalize across bin boundaries: two data points that

are close together in feature space but fall into different bins will be treated entirely

differently. With continuous approaches, it is possible to generalize from the strongly-

sampled regions to the weakly-sampled regions. Clearly, continuous approaches at

least merit investigation.

In this section, we discuss the steps that we took to convert the D-CSIRL algorithm

to a version that can cover continuous actions (which we will refer to as CT-CSIRL,

Algorithm 4.4).

There are two points at which the out-of-the-box D-CSIRL algorithm is not appro-

priate for use in an environment with continuous states and actions: in the heuristic

expert preference and in creating and using the Q-score classifier.

48

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Algorithm 4.4 CT-CSIRL

Input: Expert data-set DE = (sk, ak = πE(ak), s
′
k)k, random data-set DR = (sk, ak =

πrandom(ak), s
′
k)k

Output: Reward function R : S × A→ R
1: Construct the data-set DC ← {(si = sk, ai = πE(si)) = ak}
2: Train a score function-based regressor on DC , obtaining decision rule πQ and

Q-score function Q : S × A→ [0, 1]
3: Construct the data-set DR ← {((sj = sk, aj = ak), r̂j)j} with r̂j ← Q(sj, aj) −
γQ(s′j = s′k, πC(s′j = s′k))

4: Learn a reward function R from the training set DR

4.3.1 Setting Minimum Rewards

Algorithm 4.2 shows one way that D-CSIRL privileges the actions taken by the expert

over those that the expert never took. The intention of this operation is to shape the

output reward regression function even further toward preferring those actions chosen

by the expert. This is a good goal, particularly in view of the inherent IRL problem

discussed in Section 2.5.1 that there are multiple reward functions compatible with

the expert trajectories.

Unfortunately, Steps 1 and 2 are hard to translate to environments with contin-

uous states and actions. Continuous states mean that transitions will rarely start

from exactly the same state. Continuous actions make it impossible to create new

transitions for all actions that an expert did not take in a state, since there are in-

finite actions. Additionally, since actions can be arbitrarily close to each other in a

continuous space, this would lead to punishing actions that were effectively the same

as those that the expert took.

Therefore, our approach skips the heuristic expert preference operation in CT-

CSIRL.

49

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.3.2 Q-Score Classification

The primary incompatibility of D-CSIRL with continuous-action environments is the

Q-score classification choice for CONSTRUCT-SCORE-FUNCTION, which takes a

set of (S → A) pairs and produces a classifier πC . This classifier serves two purposes

in the next step of Algorithm 4.1, which is the inverse Bellman operation (Step 3).

First, it gives the probability that the expert would choose action a in state s. A fun-

damental point in the CSIRL algorithm is that this probability is used as a proxy for

the Q-function. That is, Q(s, a)← PπC (a|s). Most common multi-class classifiers are

able to give reasonable values for these probabilities without significant modifications.

The second use of the classifier in the inverse Bellman step is to find the best

Q-score that can be achieved from a given state, Q(s, a∗). Conveniently, a∗ is just the

action with the highest probability of being chosen by the expert in state s, so it is

found by simply querying the classifier for its classification output from an input of

state s. This means that the best Q-score is found by taking Q(s, πC(s)). The entire

inverse Bellman equation in this context then, given a transition tuple (s, a, s′), is

r(s, a) = Q(s, a)− γQ(s′, πC(s′))

= PπC (a|s)− γPπC (πC(s′)|s′)
(4.5)

In the case of continuous actions, a classifier is clearly inapplicable because there are

infinitely many action outputs. This suggests that we should instead use a regressor.

However, while all regressors are fully capable of creating a decision rule πR : S → A,

we also need them to be able to produce a probability PπR(a|s). Foster and Domingos

explored probability estimation techniques for classification trees in [19], but we need

a regressor.

This led to us creating our own regressor for this use case, which we will describe

in the next section.

50

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

4.4 Regressors

There are two steps in CT-CSIRL where we need to train a regression function on a

data-set: for CONSTRUCT-SCORE-FUNCTION and for CONSTRUCT-REWARD-

FUNCTION. The Q-score function maps states, parameterized by the state features,

to actions. The reward function maps (s, a) pairs to real-valued rewards.

We use the reward regressor from T-CSIRL for CONSTRUCT-REWARD-FUNCTION.

As we saw with the IRL reward trees, the reward regressor can learn the non-smooth

reward functions in which we are interested. It is already compatible with continuous

actions because the actions are features rather than labels. The splits for actions are

different than in T-CSIRL because they are now a continuous feature rather than

discrete, so we can do ternary splits rather than making a child for every member of

the class.

We have already discussed some necessary and unusual abilities that the Q-score

regressor requires in Section 4.3.2. In this section, we give the details and reasoning

behind our implementation of a Q-score regressor.

4.4.1 Q-Score Regressor

The Q-score regressor has a strong influence on the reward regressor because it in-

termediates all the information that the reward regressor receives about the environ-

ment, except for the transition dynamics. Since our subsequent goal is to produce a

tree-structured reward function, we would like to have a similar form for the Q-score

function. If we used a simple regressor such as a linear least-squares approximation,

we would lose the ability to discover much of the structural complexity of the reward

tree.

It would be nice to be able to simply re-purpose the reward trees from Sec-

tion 4.2.2, but this would be insufficient for the requirements of the Q-score function.

51

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

As introduced in Section 4.3.2, we need the ability to, given an input and an output,

calculate P (output|input). This led to us creating a new formulation for the leaves

of the trees as well as switching splitting criteria for the construction.

The linear regressions at the leaf nodes are very useful because they give us the

ability to approximate complex Q-score and reward functions. However, they are

incomplete for the Q-score function because there is no way to get a probability from

a standard linear regression.

Our solution here is to use linear Gaussian models at the leaves. For a given

state-action (s, asample) pair, we find the action areg that a linear regression predicts

given the state. Then, treating areg as the mean µ of the Gaussian distribution and

the variance of the leaf as σ2, we can find a score of asample from the increase in the

cumulative density function in a small interval around it:

fCDF (asample;µ, σ
2) = CDF (asample + δ|µ, σ2)− CDF (asample − δ|µ, σ2) (4.6)

To obtain the average score over the 2δ interval, we would then have to divide fCDF

by 2δ. However, since δ is a fixed value for a given tree, the division is not necessary

for the purposes of comparing two output values. fCDF is still guaranteed to give

values P̃ (asample|µ, σ2) ∈ [0, 1], which works nicely for our use case.

To avoid numerical problems, we set a lower bound on the output of fCDF of

10−20.

A seemingly more natural approach to find such a score might be to use the

probability density function of the normal distribution:

fPDF (asample;µ, σ
2) =

1√
2σ2π

e−
(asample−µ)2

2σ2 (4.7)

In practice, we discovered that this could lead to a wide range of output values

because at leaves with a small number of samples, the variance can give very confident

52

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

estimates of the underlying function. The definition of the PDF guarantees that the

integral over the support will equal 1, but it can still give outputs much larger than

1 if the variance is small. Since we want to be able to link Q-scores together via

the inverse Bellman step, having such a wide distribution because of mostly-arbitrary

split differences at the leaves is not desirable behavior.

As an illustrative example, consider leaf A and leaf B for an environment with a

single continuous state feature, a single continuous action, and a discount factor of

γ = 0.9. The linear regression for leaf A produces an action value of 5 at state s, and

the linear regression for leaf B produces an action value of 5 at state s′. However,

leaf A has a standard deviation of 0.1 and leaf B has a standard deviation of 0.001.

The PDF of the mean value, 5, would be 3.99 for leaf A and 398.94 for leaf B. If s′ is

the state produced by taking action 5 in state s and we used the PDF values for the

Q-scores, then the reward for the (s, 5) pair at A would be:

R(s, 5) = Q(s, 5)− γQ(s′, 5) = 3.99− 0.9(398.94) = −355.06 (4.8)

The reward for (s, 5) would be terrible, despite the fact that the expert clearly pre-

ferred actions close to 5 at s and similar states. Because it can give unbounded

outputs, the PDF formula is very sensitive to small changes in the input data. The

CDF approach does not suffer from these drawbacks.

The leaves still need to be able to find the best action given a state. For this,

we have made no changes from the model trees, as the best action is still the action

predicted by the fit line. MAKE-LEAF here is similar to what we described in

Section 4.2.2, in that we fit a linear regressor to the examples and labels. Additionally,

we then compute the covariance matrix for the distance from the true labels to the

regressor predictions in order to later perform the score estimation.

SHOULD-MAKE-LEAF is unchanged: the recursive construction can be halted

53

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

by the depth of the tree, the number of remaining examples, or the lack of uniqueness

of the remaining labels.

SPLIT-QUALITY is different. Since we changed the responsibilities of a leaf, we

made corresponding changes to the method for selecting a split. We now have the

ability to generate scores similar to probabilities:

Quality(split) =
∑
node∈

split.children

∑
s∈node.samples

log fCDF (as;µnode, σ
2
node) (4.9)

fCDF is given in Equation 4.6, and node.children is the child nodes created by the

split in question. This allows us to find maximally effective splits based on our leaf

models.

Note that further weighting each split quality by the number of samples per child

is unnecessary, since the inner summation means that we are doing a product over

all the fCDF , and each fCDF will be multiplied k times if there are k samples at the

child. In this way, the quality measure adjusts for the sample size of each child.

4.5 Empirical Evaluation

In this section, we test that our algorithms can solve the problems that we designed

them to address.

4.5.1 Hypotheses

We introduced two new algorithms in this chapter: T-CSIRL, and CT-CSIRL.

T-CSIRL is interesting because it tries to improve on an existing algorithm, D-

CSIRL, by expanding the kinds of reward functions that it can learn effectively.

D-CSIRL is still able to run on environments with those reward functions. We can

therefore directly compare the performance of T-CSIRL and D-CSIRL on various

54

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

environments.

CT-CSIRL is interesting because it expands the kinds of environments that CSIRL-

like approaches can handle at all. To our knowledge, there is no way to run D-CSIRL

on an environment with continuous actions short of discretizing those actions. This

means that we cannot directly compare the performance of CT-CSIRL to other algo-

rithms.

The standard way to evaluate an IRL algorithm on an MDP with a known reward

function RM is the following:

1. Train an expert policy πE on the MDP using some forward RL algorithm A

2. Generate expert and random samples on the MDP

3. RI ← IRL(expert samples, random samples)

4. Train a new policy πI on the MDP using A, with A receiving RI rather than

RM

5. Compare the performance of πI to the performance of πE on the MDP, when

both receive RM

Since T-CSIRL can be directly compared to other algorithms, we can make stronger

hypotheses about its efficacy. We hypothesize that on discrete-action environments,

agents trained using a reward from T-CSIRL will achieve a higher average cumula-

tive reward—calculated from the environment’s true reward function—than agents

trained using a reward from D-CSIRL.

Our hypothesis for CT-CSIRL is that an agent trained using a reward from CT-

CSIRL will achieve similar average cumulative reward—calculated from the environ-

ment’s true reward function—as the expert policy that generated the samples used

for CT-CSIRL.

55

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

We also predict that when the agent starts from the same location as the real

data trajectories, it will be able to reach the goal in a timely manner. It should also

exhibit a similar trajectory shape, in terms of position and velocity, to the real data.

4.5.2 Implementation

For T-CSIRL, we used our regression trees for the reward function and decision trees

from scikit-learn [20] for the Q-score function. For D-CSIRL, we used a linear regres-

sion for the reward function and a logistic regression for the Q-score function, both

from scikit-learn.

4.5.3 Methodology

We used Cart Pole for the discrete-action environments for T-CSIRL evaluation, and

the arm problem as a continuous-action environment for CT-CSIRL evaluation.

Cart Pole IRL was run on the three pole masses 0.1, 1.0, and 2.0. For each

environment, we trained an expert policy using Deterministic Policy Gradient with a

basis of 4 bins for pole angle and 20 bins for angular velocity. We ran D-CSIRL and

T-CSIRL for each with 3000 expert samples and 3000 random samples.

For the arm simulator, we do not have access to the expert’s complete reward

function: reaching the goal region is a part of it, but it also includes information

about natural motion. We instead evaluate against a sparse reward function that has

a single reward upon reaching the goal state.

Arm IRL was run on each combination of resistances and targets described in 3.3.6.

The input data for each combination was 3000 random sample transitions from the

arm simulator and all available real arm transitions for the expert. This was 10

trajectories per combination, which totaled about 1500-2000 transitions.

The score and reward tree max depths were set to 20.

56

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Figure 4.1: Cart Pole discrete action forward RL performance when using IRL reward
function

For the arm, forward Deterministic Policy Gradient was run with the actor, critic,

and baseline learning rates all being 0.001. The bases for each were tabular repre-

sentations, with 12 bins for position and 12 bins for velocity, for a total of 144 bins.

These parameters were obtained by manual tuning until good policies were achieved

in a reasonable amount of time.

4.5.4 Results and Discussion

Figure 4.1 shows our results for T-CSIRL.

We ran 20 learners for 20 cycles each, interleaving a single learning episode with

10 evaluation episodes.

57

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Figure 4.2: Arm improvement curve from (a) random starting configurations and (b)
same starting locations as real data. (b) was only run with 3.0 resistance and the
0.1017 goal.

The results show that T-CSIRL quickly improves and approaches the maximum

possible reward of 200. D-CSIRL improves slightly, but its performance is significantly

worse than T-CSIRL.

This shows that our hypothesis was correct in that on environments with non-

smooth reward functions, it is possible for agents trained by T-CSIRL to outperform

agents trained by D-CSIRL.

Figure 4.2 shows our results for CT-CSIRL.

On the left, we ran the arm simulator using the IRL reward for training and the

goal-based reward for evaluation on each combination of environment parameters.

This experiment had random starting states. We ran learning for 500 cycles, with

each cycle interleaving a single learning episode with 10 evaluation episodes.

On the right, we ran experiment with the evaluation starting state fixed at the

same position as the real data trajectories. We ran this experiment over 2 learners

for 1000 cycles each, interleaving a single learning episode with 3 evaluation episodes.

This experiment used only the case of 3.0 resistance and the 0.1017 goal.

58

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

From random starting positions, the agent learns to reach the goal and stop. It

also learns to do so quickly. This implies that the basic intent from the expert is

indeed recovered.

From a fixed starting position, the agent also learns to reach the goal. This is

a harder task than the random case, because the starting position was close to the

opposite end of the state space from the goal region. The agent actually manages to

reach the goal slightly faster than in the real data. This may be because the simulator

does not require any sort of button press to denote the end of the episode, as was

required in the real data.

To evaluate the shape of the trajectories, we trained a single learner with 0 re-

sistance and a target of 0.0528 for 300 learning episodes. We trained and evaluated

policies starting from the same state as the real data: position and velocity of 0.

The policies we ran were: the policy after one learning episode, the policy the first

time that the goal was reached from the zero state, and the best policy over the 300

learning episodes. We recorded the trajectories. Results are shown in Figure 4.3.

The results show that initially, the learner is unable to stop at the target position.

Instead, it moves forward at a fairly constant rate until it gets close to the maximum

position limit of the simulator, then slows down slightly before remaining at the

maximum position for as many steps as the simulator allows.

After 139 learning episodes, the learner is able to reach the goal, but does so

more slowly than the real trajectories. While the results shown in Figure 4.2 show

that the learner reaches the goal on average in fewer steps than this after so many

learning episodes, the current evaluation scenario (starting from the zero state) is

more difficult than most starting positions. It takes more time to find a good policy.

Finally, in the best policy, the learner is able to reach the goal and stop in fewer

steps than the real data. The velocity profile appears non-smooth because the actions

taken are produced by the tabular basis. Since there are a limited number of bins,

59

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

Figure 4.3: Arm trajectories, with 0 resistance and target of 0.0528.

60

CHAPTER 4. LEARNING TREE-STRUCTURED REWARDS FROM EXPERT
TRAJECTORIES WITH CONTINUOUS ACTIONS

this gives the appearance of discretized actions. However, the agent still has the full

continuous range of actions available to it during learning and evaluation.

There are some interesting performance considerations for our regression tree im-

plementations. Recall from Equation 4.4 our r2
split metric for evaluating a given split,

and that this metric needs to be calculated for every possible split value in the data

set to find the best candidate. Thus, finding the best split has at least n2 complexity,

as for each feature and each candidate split of that feature we must do an operation

over the entire data set remaining at that node (which, at the first node, is the entire

overall data set).

For the linear Gaussian trees, the complexity is still n2, but the constant and

scalar costs are higher, as the covariance matrix must be computed for the full data

set and two different CDF values evaluated for each sample.

It remains an interesting question whether or not there is a way to group the

labels to eliminate some split values from consideration, as is possible with decision

trees. We did not find such a way. To speed up computation, we implemented the

relevant calculations using NumPy linear algebra operations, but tree creation is still

a performance bottleneck in our experiments.

4.6 Summary

In this chapter, we covered how we find the reward function from expert demonstra-

tions. Our contributions were a comprehensive integration of the case of continuous

actions with the existing state of the art in the field, and improved ability to handle

complex reward functions via tree models. In the subsequent chapters, we will talk

about how we use the information available, including the reward function that we

just learned, to learn to solve new tasks.

61

Chapter 5

Fitted Q-Iteration with Continuous

Actions

In this chapter we design an algorithm to address step 9 of Algorithm 3.1. We have

access to a number of transition samples for environments similar to the current one

and we want to use them to create a policy. This will allow us to speed up learning

on the current environment.

Assume that the samples come from an MDP that has continuous actions and a

non-smooth optimal value function, as is the case in our motivating arm problem.

How can we find the optimal policy for the MDP?

The standard approach to offline RL is to use Least-Squares Policy Iteration

(LSPI) [5], which we discussed previously in Section 2.4.5. Unfortunately, LSPI relies

on the ability to iterate through each possible action to improve its policy. This is

impossible with continuous actions.

A more recent algorithm, Fitted Q-Iteration (FQI) [21], extends LSPI to use non-

linear regressors to model the value function. However, the standard FQI algorithm

also relies on discrete actions, and to our knowledge there is no existing FQI extension

that would be applicable to our situation.

62

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

Our contribution in this chapter is a continuous-action version of FQI that can

learn non-linear value functions through the use of model trees. Before we present our

algorithm, though, it is important to first understand the standard FQI algorithm,

which we discuss in Section 5.1.

5.1 Fitted Q-Iteration

In Section 2.4.5, we discussed the LSPI algorithm for finding optimal policy param-

eters during offline RL. LSPI is useful, but its representation of the Q-function is by

definition limited to a least-squares regressor parameterized by the basis function.

Since we want to be able to learn good policies in environments with complex reward

functions, we need regressors capable of fitting more complex functions on the state

variables.

Ernst et al.’s Fitted Q-Iteration (FQI) [21] algorithm allows us to use such regres-

sors. The standard FQI implementation (Algorithm 5.1) is very similar to LSPI. It

takes a set of (s, a, s′, r) samples and returns an optimal policy for the environment.

In Step 1, the Q-values for all states are initialized to 0, since no information

about them is known yet. The main loop, starting with Step 2, then runs for a fixed

number of iterations or until some convergence test is met. On each loop iteration,

the Q-values of the prior states are updated via the Bellman equation (Step 3). Next,

in Step 4, some regression function is fitted from the states and actions to the new

Q-values. Finally, in Step 5, the Q-values of the post-states are updated by iterating

over each action and choosing the Q-value of the maximizing action. Once the loop

ends, the policy is found by a similar procedure, choosing the action that produces

the best Q-value for each state.

The FQI algorithm in Algorithm 5.1 is incompatible with continuous actions for

one primary reason: it is impossible to iterate over all values in a continuous interval.

63

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

Algorithm 5.1 FQI

Input: Samples (s, a, s′, r)1..n, Number of iterations j, Discount factor γ
Output: Actions aπ1..n
1: Qπ

0 (s′)1..n ← 0
2: for all k ∈ 1..j do
3: Qk(s, a)1..n ← r1..n + γQπ

k−1(s′)
4: REGk ← CREATE-REGRESSOR((s, a)1..n, Qk(s, a)1..n)
5: Qπ

k(s′)1..n ← max
a′∈A

QUERY -REGRESSORk(s
′, a′)1..n

6: end for
7: aπ1..n ← arg max

a∈A
QUERY -REGRESSORj(s, a)1..n

8: return aπ1..n

Therefore, finding the best Q-value and the best action in a continuous action space

necessarily requires a different or altered approach.

The implementations presented in [21] only allow for MDPs with discrete actions.

Versions of FQI capable of handling continuous-action MDPs do exist, such as Antos

et al.’s work in [22], which relies on a search over a candidate policy set. However,

that algorithm makes restrictive assumptions about the state variables, and their

theoretical results are based on linear regressors. Additionally Busoniu et al. [23]

presented a continuous-action version of LSPI. This is different from what we are

looking for because we use tree representations. Since no existing implementations

fit our needs, we designed our own modifications to the FQI algorithm that allow it

to handle continuous actions. We cover them in the remainder of this chapter.

5.2 Fitted Q-Iteration with Continuous Actions

In this section, we present the alterations that we made to create a continuous version

of FQI, as well as a novel addition to the FQI Bellman backup operation that serves

as both a performance improvement and a stopping criterion. The full Continuous

FQI algorithm is detailed in Algorithm 5.4.

64

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

5.2.1 Maximizing the Q-Function

There are two points in the standard FQI algorithm where application to continu-

ous actions is non-trivial. First, we need max
a∈A

Q(s, a) to use in the Bellman update

expression. Second, we need arg max
a∈A

Q(s, a) to find πN+1(s).

With discrete actions, the values above are easy to find because for a given state

s, we can calculate Q(s, a) for each a ∈ A and take the maximizing a and Q(s, a).

With continuous actions, such an exhaustive search is not possible.

The solution we use was first suggested by Ernst et. al [21], but to our knowledge

it had never been implemented before now.

The solution brings us once again to the idea of regression trees, with features of

state variables and action components and labels of Q-values. However, instead of us-

ing model trees with linear regressions at their leaves as we discussed in Section 4.2.2,

we use single scalar values for the label of each leaf. The trees use ternary splits as

described in Section 2.6.2, so the value tests can be <,>,=,≤, and ≥.

The idea proposed by Ernst et. al is to note that given s, such a tree gives us

a piece-wise functional description of Q(s, a) over the values of a. Furthermore, the

number of distinct regions of the support of that function is finite, limited by the

depth of the tree and the degree of fan-out. Given the root node of such a tree and

a state s, we can find max
a∈A

Q(s, a) by following the recursive procedure on the nodes

of the tree given in Algorithm 5.2.

The base case, in Step 2, is simple: at a leaf, the best Q-value that can be achieved

is the Q-value label of that leaf.

Otherwise, there are two cases. If the current node splits on a state feature

(Step 5), then there is only one child that we can reach because the input state is

fixed.

If, instead, the current node splits on an action (Step 12), then we make a recursive

65

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

call to each of the children, since any action available as a child could turn out to be

the action with the highest Q-value.

Algorithm 5.2 Q-MAX

Input: Root node r, State s
Output: max

a∈A
Q(s, a)

1: if r.leaf then
2: return r.label
3: end if
4: FEATURE-TYPE ← TYPE(r.feature) // Does this node split on states, or

actions?
5: if FEATURE-TYPE is STATE-VARIABLE then
6: for all child ∈ r.children do
7: // Iterate over the children, looking for the one that the state belongs to
8: if child.membershiptest(s) then
9: return Q-MAX(child, s)
10: end if
11: end for
12: else
13: // The current node splits on actions
14: return max

child∈r.children
Q-MAX(child, s)

15: end if

Finding arg max
a∈A

Q(s, a) requires only a small modification to Algorithm 5.2. As we

move down the tree, we track the action constraints that have appeared so far. When

an action split occurs, we copy the existing constraints for each branch and modify

them to take into account the new split. At a leaf, rather than just returning the leaf’s

Q-value label, we return both the Q-value and the action constraints. Finally, given

the action constraints returned by the root node, we create an action that conforms to

those constraints by either sampling uniformly at random from the given remaining

range for each action component or by selecting the value at the middle of the range.

5.2.2 Action-Based Over-fitting

The tree-structured continuous FQI algorithm in the previous sections has a problem:

over-fitting can occur during tree construction. This in turn leads to the Q-MAX

66

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

function (Algorithm 5.2) allowing high Q-values to be assigned to states that should

in fact have low Q-values.

To illustrate the problem, consider a toy MDP with two state variables, position

and velocity, and one action, acceleration. The position, (x) is bounded between

−1.0m and 1.0m, the velocity (ẋ) between −0.1m
s

and 0.1m
s

, the acceleration (ẍ)

between −0.01m
s2

and 0.01m
s2

, and a time step of one second. The reward function

gives 1 if −0.9 < x < 0.9 and 0 otherwise. The episode ends if the 0 reward is

received. The discount factor is γ = 0.9.

After several iterations of tree creation and Q-value updates, we arrive at an

internal node with the following conditions above it in the tree: x < −0.2, ẋ <

−0.04, x < −0.5. The data points remaining at the node are:

Row x ẋ ẍ Q
0 −0.85 −0.06 −0.001 0.03
1 −0.52 −0.098 0.002 3.1
2 −0.82 −0.042 −0.0075 2.54
3 −0.65 −0.091 −0.0032 2.54
4 −0.55 −0.053 0.0086 7.12
5 −0.59 −0.045 0.0095 7.12

There are clearly two outliers among the Q-value labels: rows 4 and 5. They have

a combination of relatively high position and relatively high velocity that allows them

to move back towards the center of the state space rather than having the episode

inevitably end. These points are not immediately separable by the state features,

x and ẋ, because rows 4 and 5 do not have the extreme values for either feature.

Instead, the best split in this situation uses ẍ to separate the last two rows from the

rest of the points, creating two child nodes: one with ẍ < 0.0086 and further splits

below it, and a leaf with ẍ ≥ 0.0086 and Q = 7.12.

While this is the best immediate split, it creates a problem. On the next iteration

of the algorithm, any (s, a) pairs satisfying the conditions above this node (x <

−0.2, ẋ < −0.04, x < −0.5) will reach this node. Then they will be able to choose an

67

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

action ẍ ≥ 0.0086 and achieve a good Q-value of 7.12. However, many of those (s, a)

pairs should in fact have low Q-values, as the other points that created the split do.

For example, a state with x = −0.88 and ẋ = −0.07 will be able to take an action

ẍ ≥ 0.0086 and receive a Q-value of 7.12, when it should have a Q-value of 0.

The effect of this is that the good Q-values become spread farther across the state

space than they should. Once this situation is reached, it is difficult to recover because

we are performing offline learning, not online, and new samples are not introduced to

correct the problem. The best actions may not be given preference over other actions,

and a good policy may not be achieved.

Our solution to this issue is to initialize the Q-tree with the Q-values of the policy

that generated the samples. We do this by first performing a number of iterations

with actions excluded so that the Q-function is only parameterized by the states. This

means that a maximization cannot be performed over the actions, since all actions

will lead to the same leaf.

Algorithm 5.3 Initialize Q-Function of Sampling Policy

Input: Samples (s, a, s′, r)1..n, Discount factor γ, Number of iterations m
Output: Regression Q-tree S → R
1: Q0(s′)← 01..n

2: for k ∈ 1..m do
3: Qk(s)1..n ← r1..n + γQk−1(s′)
4: Tk ← BUILD-TREE(s,Qk

5: Qk(s
′)← QUERY -TREE(Tk.root, s

′)
6: end for
7: return Qm(s′)

The idea is that the Q-function of the generative policy will be much closer to

the Q-function of the optimal policy than an initial Q-function of 0 for all samples.

Once we have the Q-function of the generative policy, we perform the full Continuous

FQI algorithm as described previously, incorporating actions. The advantage of this

approach is that fewer iterations of the full algorithm are required, lessening both the

chances for action-based over-fitting to occur and the impact if it does occur.

68

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

5.2.3 Effective Sampling

Training on samples generated by a purely random policy can reduce the chances of

convergence on some environments.

One problem with random sampling in the ‘connectedness’ of the samples: if the

optimal policy must follow some path to reach a goal state and a step along that path

is not present in the training samples, then the optimal policy will be impossible to

find.

For example, consider a simple environment with states {1, 2, 3} and a terminal

goal reward at state 3. The agent can move to state 2 from state 1, and to states

1 or 3 from state 2. Suppose that the samples provided contain no transitions from

state 2 to 3. State 3 would have a good Q-value, since the samples that start there

immediately receive the goal reward and terminate. However, states 1 and 2 would

never make a Bellman update with the state 3 reward, so their Q-values would remain

low. An offline algorithm would not discover the optimal Q-function.

Under a random sampling policy, this is most likely to occur in ‘bottleneck’ areas

of the state space where it is difficult to pass from one region to another by chance

alone. If these key transitions are not present in the training samples, then the

trees will keep the regions separated and the necessary Bellman updates will not

occur. Bottlenecks are a problem even in discrete state and action spaces, and with

continuous states and actions the issue is compounded further.

While this could potentially be mitigated by using a very large number of train-

ing samples, training the Q-trees was already a significant performance issue in our

experiments and it would have become even worse.

Our approach was to add in samples generated by an expert policy. The samples

could be reused from an expert demonstration such as the one in Chapter 4, or

from a previous task where we learned a good policy. The samples effectively guide

69

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

the exploration of the algorithm, improving the chances that the most important

transitions are available to it.

Algorithm 5.4 Base Continuous FQI

Input: Samples (s, a, s′, r)1..n, Target basis φ(s), Discount factor γ, Number of iter-
ations Nterminate

Output: Actions aπ1..n
1: Q0(s, a)1..n ← INITIALIZE-Q-FUNCTION((s, a, s′, r)1..n, γ) // Algo-

rithm 5.3
2: for k ∈ 0..Nterminate do
3: Tk ← BUILD-TREE(s, a,Qk−1)
4: Qθ

k(s
′)1..n ← Q-MAX(Tk.root, s

′)
5: Qk(s, a)1..n ← r1..n +Qθ

k−1(s′1..n)
6: end for
7: aπ1..n ← arg max

a∈A
QUERY -TREE(s, a)1..n // Find the actions for each state

8: return aπ1..n

5.3 Experiments

The Continuous FQI algorithm creates a tree-structured Q-function. We can use that

Q-function as a tree-structured policy πtree through the Q-MAX algorithm presented

in this chapter.

We are also able to generate a number of (s, πtree(s)) pairs. This lets us run a

regression with examples of some other basis φ(s) and labels of πtree(s)). The output

of that regression is a policy of the form πφ(s). In Chapter 6, we will see that we need

to perform this operation to obtain a policy in the same tabular basis as the policy

we use for forward RL.

In this section, we evaluate both πtree and πtabular.

5.3.1 Hypotheses

We expect πtree to show improvement over our baseline, which is the random policy.

This improvement should increase with more iterations of the Continuous FQI algo-

70

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

rithm, and eventually should approach the performance of the forward RL results in

Section 4.5.4.

πtabular should also show improvement over the random policy.

A direct comparison between πtree and πtabular is an interesting question. πtree

benefits from having a much more fine-grained representation of the state space when

the tree depth is large. πtabular, however, could potentially eliminate over-fitting in the

πtree Q-value regressor. Additionally, while the output policy of πtabular is compact, it

still benefits from the richness of the tree-structured Q-functions used at intermediate

stages of the Continuous FQI algorithm. We expect πtree and πtabular to be close in

performance.

5.3.2 Methodology

The basic experimental structure for evaluating an offline RL algorithm is straight-

forward: we give the algorithm some number of samples to find a policy and then

evaluate that policy on the target environment.

For the arm simulator, we used the IRL reward from Section 4.5 to generate the

training samples and evaluated on the simple goal-based reward.

Continuous FQI was run with max tree depth of 30. This was intended to be

effectively unlimited depth, since we observed that the trees only ever reached depth

of approximately 22.

Random samples were generated by running uniform random policies over the

environment with uniform random starting states and episodes of maximum 10 steps.

Expert samples were generated by using the best policies from the experiments in

Section 4.5 for each environment configuration.

The tabular basis for the arm simulator, similarly to Section 4.5.3, had 12 bins

for position and 12 bins for velocity, for a total of 144 bins.

71

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

5.3.3 Results and Discussion

The parameters that varied for each arm experiment were the environment parameters

(resistance res and goal location goal); the number of random samples, sr; number

of expert samples, se; number of initialization iterations for Algorithm 5.3, Ninit; and

number of full Continuous FQI iterations for Algorithm 5.4, NFQI . Results are given

in Table 5.1.

Row res goal sr se Ninit NFQI πtree πtabular πrandom

0 0.5 0.1081 10000 5000 100 5 -137.1 -495.0 -394.9

1 1.5 0.1017 5000 5000 50 20 -430.9 -418.2 -486.0

2 3.0 0.0726 5000 5000 50 20 -306.3 -267.8 -493.4

Table 5.1: Arm Simulator Continuous FQI results. πtree is the policy from the Q-tree.
πtabular is the policy obtained by linear regression from πtree to a tabular basis.

In Row 0, πtree significantly outperformed the random policy and came close to

the best results from Section 4.5.4. This matched our hypotheses. πtabular did worse.

This did not match our hypotheses. The discrepancy could be due to an inopportune

bin boundary, where an averaging of high actions and low actions causes the agent

to stop just short of the goal region.

In Rows 1 and 2, πtree and πtabular both outperformed the random policy. This

matched our hypotheses. They did not perform as well as the best policies from Sec-

tion 4.5.4. Since πtree did much better with more random samples and more initial-

ization iterations in Row 0, those are the best candidates to explain the discrepancy

and an opportunity for further exploration.

πtabular did perform better than πtree in Rows 1 and 2, but they were fairly close

as we hypothesized. These results suggest that it is possible for the policy to improve

from being forced into a more compact representation.

In Table 5.2, we show the results for running Continuous FQI on Cart Pole with

72

CHAPTER 5. FITTED Q-ITERATION WITH CONTINUOUS ACTIONS

various pole masses. The tabular basis had 4 bins for the pole angle and 20 bins for

the angular velocity.

Row mass sr se Ninit NFQI πtree πtabular πrandom

0 0.1 2000 1000 20 5 180.046 200.0 26.238

1 1.0 2000 1000 20 5 61.374 183.754 26.608

2 2.0 2000 1000 20 5 137.334 187.736 26.524

Table 5.2: Cart Pole Continuous FQI results. πtree is the policy from the Q-tree.
πtabular is the policy obtained by linear regression from πtree to a tabular basis. Max-
imum possible reward is 200.

The results show that both πtree and πtabular outperform the random policy by a

large margin on all scenarios. πtabular does better than πtree in all scenarios. This

supports the notion that the results can potentially be improved by forcing the policy

into a more compact representation.

5.4 Summary

This chapter covered how we use previous knowledge to find good policies for an

environment. Our contributions included an extension of existing discrete offline RL

algorithms to the continuous case. In the next chapter we will discuss how we match

the current environment to our prior knowledge and how we use the policy output of

the offline RL algorithm to improve learning on the current environment.

73

Chapter 6

Model Reuse for MTRL

Let us return to the motivating problem of learning natural arm motion. We would

like to observe human demonstrations and be able to reproduce their intent, or reward

function (covered in Chapter 4). For example, this could correspond to the task of

moving the arm between points A and B. With the reward function in hand, we can

use an online RL algorithm to find a policy πA,B that moves the arm according to the

human intent.

When we want to perform a new task (say, moving between points C and D), we

could just repeat the same online RL procedure and find a new policy πC,D. πA,B and

πC,D would be markedly different, since they have different goals.

However, this would be inefficient. When a human learns to move their limbs,

they do not have to learn a new policy from scratch for each new pair of points they

want to traverse. Rather, they transfer knowledge from the tasks they have performed

previously to the new one.

This applies to the case of the prosthetic arm. Imagine that a person has figured

out how to use their prosthetic to move between points C and D, holding a pen.

What happens when the weight of the pen changes? Clearly, they should not have

to start anew. They should be able to use what they had learned previously to guide

74

CHAPTER 6. MODEL REUSE FOR MTRL

improvement on the new, similar task.

In this chapter, we present a strategy for performing knowledge transfer (i.e.,

multi-task reinforcement learning) via model reuse. We construct models of the en-

vironments we have seen previously and then re-use them in future environments to

speed up learning. Between tasks, we update two different arrays of models: one for

the transition functions we have seen previously and one for the reward functions.

Algorithm 6.1 details our entire approach. Imagine that we come to a new envi-

ronment and we can immediately identify an equivalent environment that we saw in

the past. Since we acted on the equivalent environment previously, we had found a

good policy πM for it. In that case, we could just use πM as the final output policy

for the new environment. We discussed prior work on policy reuse in Section 2.7.3.

Unfortunately, policy reuse is impractical for the problems we address because of two

unrealistic conditions.

The first issue is that we may not have seen an identical environment previously.

Even if the most similar previous environment is very close to the current one, with

only slight changes in the transition or reward functions, πM is unlikely to be optimal.

This means that to find an optimal policy for the new environment, we will need to

perform some amount of online learning to make specific adaptations. We have found

a way to do the online learning, while still incorporating the knowledge that we get

from πM . To our knowledge, there are no existing online RL algorithms that can

make use of models in the manner that we have constructed them. We will describe

our procedure, which we refer to as gradient biasing, in Section 6.2.

The second issue is that we cannot immediately identify the best environment

that we have previously seen. This is true for humans as well: we do not have much

information about a task before we have tried it. We have to collect some experience

in the new environment before we can make any sort of comparisons. As we gain

more experience, our accuracy and confidence about the best previous environment

75

CHAPTER 6. MODEL REUSE FOR MTRL

increases.

One question that naturally arises is how we select the best model given the

arbitrarily large possible range of different underlying transition and reward functions

for MDPs. It would be insufficient to try to identify individual parameters that

vary between tasks. Our approach is to use tree models to perform an implicit

discretization on the MDP functions. This leads to the problem of matching, which we

will explore further in Section 6.3.1. Additionally, we need a long-term management

strategy for the different models that we create. This is described in Section 6.3.2.

The output of the matching procedure is an environment with associated transition

samples. The input to the gradient biasing procedure is a policy. That gap is bridged

by an offline learning algorithm finding the best policy for the matched environment.

We presented such an algorithm in Chapter 5.

As we gain more experience in the new environment, the output of the matching

procedure improves and πM becomes better suited to the new environment. Therefore,

we run the entire procedure (matching, FQI, and gradient biasing) at multiple steps.

We expand our notation to πM,k to denote the policy found at the k-th step.

6.1 Algorithmic Pipeline for a New Environment

Algorithm 6.1 details how we find the best policy parameters for the model worlds.

For most environment execution steps k, we simply perform a standard policy gradient

update (Step 13).

When we decide to do a full update, we begin by using the models from previous

knowledge to create transition and reward samples that are similar to the current

environment (Step 8). Next, we use those transitions to find a good policy for those

samples (Step 9) and transform that policy to be compatible with our current policy

(Step 10).

76

CHAPTER 6. MODEL REUSE FOR MTRL

After finding the best compatible policy parameters, we use them to bias our

current policy (Step 11).

Algorithm 6.1 Model-Augmented Learning for New Environment

Input: Models M , Basis function φ, Learning rate α
Output: Updated policy parameters, θk+1

1: T ← ∅ // Set of recorded transitions for the environment
2: π0 ← INIT -POLICY (φ) // Initialize the policy somehow
3: λ0 ← INIT -BIASING-RATE // Section 6.2.4
4: for Step k ∈ Environment Execution do
5: T ← T ∪ {transitionk}
6: λk ← UPDATE-BIASING-RATE(λk−1) // Section 6.2.4
7: if SHOULD-RUN -PROCEDURE(k) then
8: MT ← SELECT -MODEL(T,M) // Algorithm 6.3
9: sk, aπ,k ← CONTINUOUS-FQI(T,MT) // Algorithm 5.4
10: θ∗M,k ← LINEARIZE-POLICY (φ, sk, aπ,k) // Algorithm 6.5
11: πk+1 ← GRADIENT -BIASING(T, πk, θ

∗
M,k, λk, α) // Algorithm 6.2

12: else
13: πk+1 ← V ANILLA-POLICY -GRADIENT (T, πk, α)
14: end if
15: end for

6.2 A Model Augmentation Step for General Pol-

icy Gradient Algorithms

Imagine that we have selected models similar to the current environment, and we

have used FQI to find a policy πM,k that achieves a good expected return on the

environment created by those models. How can leverage πM,k to help find a good

policy for the current environment?

6.2.1 Motivation for Policy Gradient Augmentation

One tempting approach might be to just use πM,k as the final output policy for the

new environment. If this was possible, we would not even need to obtain any more

samples from the current environment. Unfortunately, this is not a good idea.

77

CHAPTER 6. MODEL REUSE FOR MTRL

Recall that the solved policy was created from samples of previous transition

and reward functions. Those previous functions were selected from the model lists

by the matching procedure in Algorithm 6.3. As we observe more transition and

reward samples from the current environment, the matching procedure may decide

that a different model is better suited to the current environment than one that it

previously chose. When a low number of samples have been recorded, the matching

procedure is particularly inaccurate and volatile. If we stopped collecting samples

after we had created a solved policy, then that policy would potentially be from a

world that was not as close as possible to the current environment.

Clearly, we need to at least collect samples until we are confident about which

models are the best match. Why, though, do we need to do further learning after

the matching procedure has converged? The answer is that even the best models

may not exactly match the current environment; they are merely similar. The policy

obtained by the offline learning algorithm, then, is not necessarily optimal for the

current environment, and we should do further online learning to adapt the current

policy to the current environment.

6.2.2 Modified Target Function for Proximal Optimization

Policy gradient algorithms, which we discussed in Section 2.4.3, optimize their target

function, the cumulative discounted expected return J(θ), by moving the policy in

the direction of the gradient ∇θJ(θ).

Most optimization algorithms aim to find the global maximum of some function

over its support. Proximal optimization algorithms [24] find the maximal point of a

function within the vicinity of some fixed point. That is, the best solution that is

close to some fixed other solution.

Our contribution here is an application of proximal optimization to policy gradi-

ents. By modifying J(θ), we are able to find the best policy within the vicinity of the

78

CHAPTER 6. MODEL REUSE FOR MTRL

solved policy. J(θ) becomes:

J(θ)+|θ=θk = J(θ)|θ=θk −
λk
2

(θ∗M,k − θk)
2 (6.1)

J(θ) is the standard policy gradient target. λk is the biasing rate, controlling

how much the model input bias is weighted compared to the input from J(θ), and

it can be tuned and enhanced in various ways (see Section 6.2.4). The real infor-

mational content is in (θ∗M,k − θk)
2. This represents the difference between the best

policy parameters found from the input models, θ∗M,k, and the current policy, θk. By

including this in the target function, we incentivize the update procedure to decrease

the distance between θk and θ∗M,k.

Interestingly, this modified target includes the current policy parameters, and

means that by following ∇θJ(θ)+, the expected discounted cumulative return of π

will converge to a value different from J(θ), influenced by the chosen model. However,

by decaying λk as we will discuss in Section 6.2.4, we can make that difference shrink

as more experiences are collected from the environment.

Note that the solved policy parameters need to only be a small amount better than

the random initial parameters to show benefit, since better parameters will allow the

agent to immediately achieve a better reward.

6.2.3 Gradient Biasing

To incorporate the modified target J(θ)+ in the policy gradient algorithm, we need

to find the modified gradient:

∇θJ(θ)+|θ=θk = ∇θJ(θ)|θ=θk + λk(θ
∗
M,k − θk) (6.2)

The full modified policy gradient algorithm is given in Algorithm 6.2. Step 1 finds

the gradient update that the base policy gradient algorithm would apply given the

79

CHAPTER 6. MODEL REUSE FOR MTRL

experiences. V ANILLA-POLICY -GRADIENT (θk, T) is a stand-in for the base

algorithm’s method of computing the gradient. We will give our implementation-

specific equations for this in Section 6.6.1. Step 2 is where the biasing takes place. We

augment the standard gradient value to incorporate the model information. Finally

in Step 3 we calculate new weights by adding the augmented gradient, scaled down

by the learning rate α, to the current policy parameters.

Algorithm 6.2 Gradient Biasing

Input: Transitions T , Current policy parameters θk, Solved policy parameters θ∗M,k,
Biasing rate λk, Learning rate α

Output: Updated policy parameters θk+1

1: ∇θJ(θ)|θ=θk ← V ANILLA-POLICY -GRADIENT (θk, T)
2: ∇θJ(θ)+|θ=θk ← ∇θJ(θ)|θ=θk + λk(θ

∗
M,k − θk) // Biasing step

3: θk+1 ← θk + α∇θJ(θ)+|θ=θk
4: Return θk+1

To our knowledge, this is the first algorithm capable of directly incorporating

model knowledge in policy gradient updates for general MDPs. Wang and Diet-

terich [25] published a policy gradient algorithm based on partial transition and re-

ward models, but they were limited to MDPs where all policies are proper, so every

episode terminates.

6.2.4 Biasing Rate

As we mentioned in the Section 6.2.2, the biasing rate λk is a free parameter in this

algorithm. λk represents how much weight we give the past experience models as

opposed to the observations we have seen in the current MDP. If λk is high, then we

rely more heavily on the models, and if λk is low, then we rely more heavily on the

current observations. Our approach to setting λk is to initialize λ0 to a high value

and then decay it as an exponential function of k:

λk ← winpute
−(k−1)wdecay (6.3)

80

CHAPTER 6. MODEL REUSE FOR MTRL

winput and wdecay are tuneable constants. winput represents the maximum weight that

the biasing policy parameters are given relative to the vanilla policy gradient. wdecay

represents the rate that the decay occurs. This formulation lets us quickly move to

the optimal model policy at the start of the task, but then steadily give more weight

to what we have observed in the current environment.

Decaying λk is important because our models are not perfect and the model that

we select may not match the current environment very well. In that case, once the

current observations become the dominant factor in the parameter update, we will

still be able to find a good policy.

One disadvantage to this strategy is that as we gain more experience in the current

environment, we are more likely to make a good choice among the available models.

We have therefore decided to reset λk to λ0 every time the choice of models changes.

6.3 Knowledge Structuring

An interesting question from the point of view of long-lived RL agents is how they

manage their knowledge. This knowledge needs to be structured at two different

levels: within individual domains and across all domains. These two aspects inform

our approach: we use tree-structured models within a domain and keep track of a

fixed number of different domains at a time. We covered the tree-structured models

in Section 6.3.1 and the different domains in 6.3.2. Our approach can be viewed as a

weaker version of the Bayesian modeling that we discussed in Section 2.7.4.

6.3.1 Matching

Recall the underlying distribution ζ from Chapter 3. ζ can select the transition

and reward parameters independently from each other. This implies that we need

de-coupled transition and reward models. The transition models need to map (s, a)

81

CHAPTER 6. MODEL REUSE FOR MTRL

pairs to s′ outcome states, and the reward models need to map (s, a) pairs to r reward

values.

We also previously mentioned the need for the models to be able to fit arbitrary

decision functions. This brings us back to the concept of model trees and, specifi-

cally, the linear Gaussian trees from Section 4.4.1. As we saw in that section, linear

Gaussian trees allow us to find the probability of an output given an input. We can

then find the probability of an s′ given an (s, a) pair for a transition tree and an r

given an (s, a) pair for a reward tree. To find the best trees for the transitions T1..n

of the current environment, we can calculate a probability score ε for each transition

tree:

εtree =
n∑
i=1

logP (s′i|si, ai) (6.4)

and similarly for each reward tree, using ri rather than s′i. We create the best model

world W by selecting the transition tree with the highest score and the reward tree

with the highest score.

Algorithm 6.3 gives the full matching procedure. The agent selects the most

similar transition and reward models (Steps 1 and 2) to the current environment. The

combination of the two models creates a model-world W . It then takes the samples

associated with the chosen transition model (Step 3) and passes them through the

reward models to generate predictions r for each of the (s, a) pairs (Step 4). The r

predictions, along with the s′ outcome states, create (s, a, s′, r) full transitions from

W . One assumption that we have made here is that the closest W is a reasonable

approximation of the current MDP, and the optimal policy parameters for W will

usually be a good initial guide for the current policy parameters. An alternative

would be to not select any model, if no model was close enough to the transitions

observed so far, and simply run a non-augmented forward policy gradient algorithm.

However, this introduces an additional necessary free parameter: the threshold value

82

CHAPTER 6. MODEL REUSE FOR MTRL

Algorithm 6.3 Matching

Input: Transitions (s, a, s′, r)1..n, Transition Models M∆, Samples array A, Reward
Models MR

Output: (s, a, s′, r) samples, from best models for transitions
1: best-transition-index← arg max

tree∈M∆

εtree((s, a, s
′)1..n)

2: best-reward-tree← arg max
tree∈MR

εtree((s, a, r)1..n)

3: best-transitions← A[best-transition-index]
4: transition-rewards← best-reward-tree(best-transitions)
5: Return best-transitions × transition-rewards // Join the saved samples with

rewards from the reward model

for ε that creates the boundary between using a model and not using a model. Our

approach eliminates the need for this parameter. If the distributions ζ that we use

in our experiments produced many MDPs with sufficiently different optimal policies,

it might be desirable to establish a cutoff threshold, instead. Fortunately, even if

counter-productive policy parameters are returned by the models, our forward RL

strategy should be able to eventually recover due to the decay in the biasing rate λk,

discussed in Section 6.2.4.

6.3.2 Model Lists

We have mentioned that we keep a list of transition models, samples associated with

them, and a list of reward models. The update process for the lists is given in

Algorithm 6.4. We take as a parameter the maximum number of models per list to

avoid unbounded memory usage. During execution on an environment, we do not

make any changes to the list or samples. After environment execution we create new

transition and reward trees from the (s, a, s′, r) transitions seen from the environment

(Step 1). If the lists are not yet full, we add them to the lists along with the transitions

(Step 3). If the lists are full, we rank the existing trees by similarity to the new

environment as in Equation (6.4) (Step 5). Then we evict the most similar transition

and reward trees and put the new trees in their place along with the new transitions

83

CHAPTER 6. MODEL REUSE FOR MTRL

(Step 6).

Algorithm 6.4 Update Model Lists

Input: Transition or reward model list ML, new transitions or reward samples S,
max list size Lmax

1: Mnew ← CREATE-MODEL(S)
2: if ML.size < Lmax then
3: ML.append(Mnew)
4: else
5: best-index ← best-model-index(ML, S) // Either Step 1 or Step 2 of Algo-

rithm 6.3
6: ML[best-index]←Mnew // Evict the closest model
7: end if

Removing the most similar tree encourages diversity of the models. Even if some

regions of ζ are observed less frequently, we would like to keep their models available.

For the more dense regions, a small number of models representing that region should

suffice, since the optimal policies in a region should be similar. This method of

updating the lists maintains that balance.

Each model can be thought of as representing a region of the distribution ζ. ζ

can be a continuous function and the number of models is finite, which means that

the models perform some implicit discretization over ζ. However, unlike most dis-

cretization methods which require either human intervention to define bin boundaries

or a uniform grid that ignores the specifics of the MDP, the model creation process

makes the break points at natural boundaries based on the actual environments en-

countered.

6.4 Optimizations for Fixed Reward Functions

When the reward function does not change, the model updates and usage can be

simplified. There is no longer a need for a list of reward models. In fact, there

is no need for any reward models. After termination of an environment, we create

a tree model for its (s, a, s′) transitions. Then we take the best policy parameters

84

CHAPTER 6. MODEL REUSE FOR MTRL

found during the environment execution and store them along with the transition

model. During execution of an environment, when the agent requests the best policy

parameters, the transitions for the environment are again scored on each tree as

in Equation (6.4). The most likely tree is identified and its stored solved policy

parameters are passed to the agent.

These simplifications result in reduced memory footprint (because samples no

longer need to be stored) and speed improvements (because reward trees no longer

need to be created and scored). It does, though, come at the cost of flexibility on the

reward functions.

6.5 Policy Compatibility

We now know how to use our models to find a good policy for the current environment.

In Section 6.2, we described how we use those policies to improve the current policy

through gradient biasing. However, there is one intermediate step that must be taken

between FQI and gradient biasing. The output of FQI as presented in Algorithm 5.4

is a set of (s, a) pairs representing the policy. In order for the biasing to work, we

need a policy with the same basis φ as the policy that our online learner uses.

Algorithm 6.5 details how we get a set of policy parameters θ that match those

of the target policy. In Step 1, we take all the states that we know of (the pre- and

post-transition states from the input samples) and find their values under φ(s). Then

in Step 2 we do a linear regression from those values to the actions. This produces

the closest compatible θ approximation of the optimal FQI policy parameterizable by

φ(s).

85

CHAPTER 6. MODEL REUSE FOR MTRL

Algorithm 6.5 Linearize Policy

Input: Basis function φ, Sample states s1..n with actions a1..n according to the FQI
policy

Output: Policy parameters θ
1: sφ,1..n ← φ(s1..n) // Convert the states to the basis form
2: θ ← LINREGRESS(sφ,1..n, a1..n) // Find the weights that best linearize the FQI

policy under the basis
3: return θ

6.6 Experiments

6.6.1 Augmented Deterministic Policy Gradient

The model incorporation method works for any policy gradient algorithms. In order

to be able to run experiments with it, though, we need to choose an algorithm to which

we can actually apply it. We have chosen to do this with Silver et. al’s Deterministic

Policy Gradient algorithm family [8], which we described in Section 2.7.1, because it

seems to have excellent performance on a wide variety of MDPs. The equations are

unchanged, except for the update for the actor basis weights, which was:

θk+1 ← θk + αθ∇θµθ(sk)(∇θµθ(sk)
>wk) (6.5)

The new update equation is:

θk+1 ← θk + αθ∇θµθ(sk)(∇θµθ(sk)
>wk) + λk(θ

∗
M,k − θk) (6.6)

Applying the gradient augmentation is easy. This can be repeated for other policy

gradient algorithms as well.

86

CHAPTER 6. MODEL REUSE FOR MTRL

6.6.2 Hypotheses

There are two different tracks to investigate for this chapter: matching and gradient

biasing.

For matching, we hypothesize that our tree models will be able to distinguish

environments with different transition and reward functions. As the models become

weaker, with lower tree depth and fewer parameters available to them, the ability to

distinguish between environments will degrade.

For gradient biasing, we hypothesize that biasing will improve learning if the

biasing policy was trained on an environment similar to the current one. In the case

where it was trained on an environment dissimilar from the current one, our forward

learners will eventually be able to recover due to the decay of λ.

6.6.3 Methodology

Simpler models have a tendency to consistently report higher probabilities than oth-

ers. We accounted for this by performing baseline adjustment, which means that

when a model is trained we record the average log odds that it reports on its training

examples. When new samples are tested for matching, we subtract the average score

from the output. All of our matching results are reported as baseline-adjusted average

log odds per sample.

Sometimes, our weak models are restricted to fewer variables than the number of

inputs (the number of state features plus action variables). In this case we choose a

combination of inputs by testing all possible combinations of the allowed number of

variables and choosing the combination with the best performance.

For gradient biasing, we used Deterministic Policy Gradient with the same param-

eters as given in Section 4.5.3. Additionally, we used model input rate parameters

(from Section 6.2.4) of winput = 0.001 and wdecay = 0.001.

87

CHAPTER 6. MODEL REUSE FOR MTRL

6.6.4 Results and Discussion

We ran arm reward matching with 5000 samples to train the models and 2000 samples

to match with. We used samples from three different IRL rewards, with the targets

at distances 0.1017, 0.1081, and 0.0726 meters from the starting position. The trees

were allowed to grow to depth 3. Table 6.1 shows the results of this experiment.

0.1017-Goal
Tree

0.1081-Goal
Tree

0.0726-Goal Tree

0.1017-Goal
Samples

0.1257 0.0163 0.1225

0.1081-Goal
Samples

-0.2483 0.1482 -0.1651

0.0726-Goal
Samples

0.0236 0.0406 0.2123

Table 6.1: Matching results for arm reward trees with depth 3. Table entries are
baseline-adjusted average log odds per sample.

The reward matching works well. In all three cases, the trees are able to match

the correct reward function.

We ran arm transition matching with 2000 samples to train the models and 2000

samples to match with. We used samples from environments with three different

resistance values: 0.0, 1.5, and 3.0. We ran experiments with three different model

strengths: trees with depth 3, in Table 6.2; linear Gaussians with all three parameters

(position, velocity, and force) available, in Table 6.3; and linear Gaussians with only

two parameters available, in Table 6.4. In the last scenario, the model was forced to

choose only the two most predictive parameters to use.

The transition matching also works well, for the first two model strengths. When

we move from linear Gaussians with 3 parameters to linear Gaussians with 2 parame-

ters, though, the matching results are almost meaningless. This suggests that a linear

Gaussian model is sufficient, but the transition function relies on all parameters to

88

CHAPTER 6. MODEL REUSE FOR MTRL

0-Resistance
Tree

1.5-Resistance
Tree

3.0-Resistance Tree

0-Resistance
Samples

0.10 -40.53 -41.64

1.5-Resistance
Samples

-41.06 0.13 -41.76

3.0-Resistance
Samples

-42.01 -42.35 0.03

Table 6.2: Matching results for arm transition trees with depth 3. Table entries are
baseline-adjusted average log odds per sample.

0-Resistance LG
1.5-Resistance

LG
3.0-Resistance LG

0-Resistance
Samples

-0.24 -40.63 -41.65

1.5-Resistance
Samples

-39.49 0.00 -41.76

3.0-Resistance
Samples

-40.48 -42.46 0.01

Table 6.3: Matching results for arm transition weak model linear Gaussians, with
number of input variables restricted to 3. Table entries are baseline-adjusted average
log odds per sample.

update the state. This is in line with the equations that we gave for the arm simulator

in Section 3.3.5.

For gradient biasing, we ran three learners on the arm simulator with 3.0 resistance

and target of 0.0792 meters from the starting state. Each of them was biased with a

policy trained on 3.0 resistance and one of the available targets: 0.0726 (close to the

current environment); 0.0528 (medium distance from the current environment); and

0.1017 (far from the current environment). This is intended to test the performance

of the algorithm both when it has information that should be helpful and when it has

to recover from being biased with a policy that does not perform well on the current

environment.

89

CHAPTER 6. MODEL REUSE FOR MTRL

0-Resistance LG
1.5-Resistance

LG
3.0-Resistance LG

0-Resistance
Samples

0.04 -0.47 -0.76

1.5-Resistance
Samples

0.33 0.09 -0.08

3.0-Resistance
Samples

0.48 0.13 0.21

Table 6.4: Matching results for arm transition weak model linear Gaussians, with
number of input variables restricted to 2. Table entries are baseline-adjusted average
log odds per sample.

We also ran a non-biased learner for comparison.

We ran each of the scenarios three different times and averaged the results. Each

run went for 200 cycles, interspersing a single learning episode with 10 evaluation

episodes from random starting states. Results are shown in Figure 6.1.

The results in Figure 6.1 show that biasing with a policy from a similar environ-

ment (the 0.0726 target) starts out about as well as the no-biasing case and then

improves much more quickly. Since the biasing policy in this case is not perfect,

and influences the agent to move to a position that is close to the goal but not close

enough to end the episode, it makes sense that the initial reward is low. In subse-

quent episodes, it is able to learn to move to the 0.0792 target rather than the 0.0792

target, as well as taking advantage of the previous knowledge in the rest of the state

space that allows it to efficiently move towards the correct region. This shows that

we can significantly improve learning when we have a policy available from a similar

environment.

Biasing with a policy a medium distance from the current environment (the 0.0528

target) starts worse than the no-biasing policy but then quickly catches up. In the

first few episodes, the agent rarely reaches the goal because the 0.0528 target is not

close to the 0.0792 target. Once the agent does learn to move to the correct target,

90

CHAPTER 6. MODEL REUSE FOR MTRL

Figure 6.1: Improvement on arm forward RL with gradient biasing, goal of 0.0792

91

CHAPTER 6. MODEL REUSE FOR MTRL

learning proceeds unhindered.

Finally, biasing with a policy a far distance from the current environment (the

0.1017 target) starts worse than the no-biasing policy and remains so for many

episodes. Eventually, it is able to reach parity with the no-biasing policy. This shows

the effectiveness of our decay parameters. It also highlights the danger of negative

transfer: if we are using a policy that is not well suited to the current environment,

then it can have a negative impact on learning.

92

Chapter 7

Empirical Evaluation of

Tree-Structured Continuous

MTRL

This chapter presents results for the combined pipeline created in the previous three

chapters.

7.1 Hypotheses

We hypothesize that using our pipeline will improve the sample efficiency of a sequence

of tasks. That is, when we encounter a new task and already have an established

knowledge base, we will be able to find a good policy more quickly when measured by

the number of samples and episodes required. If the prior environments do not include

an appropriate policy then the learner will either choose not to perform biasing or

recover quickly from the biasing.

We additionally hypothesize that using our pipeline will improve the ability of the

learner to perform the task with the same starting state as the expert demonstrations,

rather than random starting states.

93

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

7.2 Methodology

As we saw in Chapter 6, using policies from environments that are too dissimilar from

the current one can reduce performance.

We added a mechanism to avoid biasing if none of the previous environments are a

good enough match. When the model is created, we sort the log probabilities across

all input values. Then we select a value, preject, that is Nreject percent of the way

through the sorted array. Nreject is a tuneable parameter. When a new set of samples

is tested on the model, we do not bias if the median log probability on the new set

of samples is lower than preject. For these experiments, Nreject was set to 30%.

Our choice for the SHOULD-RUN -PROCEDURE(k) function from Algorithm 6.1

is to run the matching procedure if the step number k is a power of 2. This allows us

to initially run the matching often as we gain more experience about the environment,

and then spend less time on it later as our estimates of the best models stabilize.

We tested on several different environment configurations. We ran each one learner

on each environment for 100 cycles, interleaving one learning cycle with 10 evaluation

cycles.

7.3 Results and Discussion

Our first experiment, in Figure 7.1, tests the combined matching and biasing proce-

dures when previous knowledge from a similar environment is available. We ran a

learner on resistance 3.0 and target 0.0792 for 500 cycles. We saved the best policy

and a reward model with tree depth 3, trained on 1000 samples. Then we used that

information for a new set of 5 learners with resistance 3.0 and target 0.0726 for 100

cycles. We allowed the new learners to accept or reject biasing based on the match-

ing results. For comparison, we ran 5 learners in the same scenario with no previous

94

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

Figure 7.1: Learners with a target of 0.0726 were given the option to bias with
knowledge from an environment with target 0.0792.

knowledge available. The agent chose to perform biasing at most steps where it was

available. The results show improvement when biasing is available, except for the

very first episode. This is because the biasing influences the agent to move to the

0.0792 target and then stop, so it does not reach the 0.0726 region. Subsequently, it

learns that this strategy does not produce good rewards, and is able to take advantage

of the other, more useful knowledge that it is given. This shows that the full pipeline

can be very useful when relevant knowledge is available.

The second case had the same experimental setup, but the knowledge came from

an environment with a target of 0.0528. Results are shown in Figure 7.2.

The agent chose to perform biasing at approximately half the steps where it was

95

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

Figure 7.2: Learners with a target of 0.0726 were given the option to bias with
knowledge from an environment with target 0.0528.

96

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

Figure 7.3: Learners with a target of 0.0528 were given the option to bias with
knowledge from an environment with target 0.1017.

available. The results show that initially, as in the previous experiment, the biased

learner underperforms the non-biased learner. After a few episodes, it is able to catch

up and does equally well through the rest of the learning. This shows that even when

the available knowledge is from an environment that is not similar to the current one,

our system does not see a significant negative impact.

In the third case, we obtained models and policies from an environment with a

target of 0.1017, and then used those on an environment with target 0.0528. Results

are shown in Figure 7.3.

The biased learner chooses to reject biasing most of the time. However, the non-

biased learner still generally does better than the biased learner. This is because even

when the biased learner rejects biasing most of the time, it still chooses to bias on a

few steps. Because we reset the decay λ when the chosen biasing policy changes, the

97

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

most impactful biasing steps are applied on the rare occasions that it does choose to

bias. This negatively impacts the policy. However, it is still able to mostly recover

from the negative transfer and shows clear improvement over time.

Our final experiment was to run two learners with resistance 0 and target 0.1017.

The first learner had model and policy knowledge from a previous learner that was

trained with resistance 0 and target 0.1081. The second learner had no prior knowl-

edge. For these learners, similarly to the last set of experiments in Chapter 4, we

started both the learning and evaluation episodes at the zero state (position 0, ve-

locity 0). This is the same configuration as the real data was obtained with. This is

different from the random starting state that we used previously, which could have

started at any combination of legal positions and velocities.

Results are shown in Figure 7.4. We ran the learners for 300 learning episodes

each, and saved the policies which reached the goal fastest during evaluation.

The augmented learner first reached the goal after 13 learning episodes. The non-

augmented learner first reached the goal after 113 learning episodes. The augmented

learner also reaches the goal more quickly than the non-augmented learner in the best

policies.

This shows that our method of knowledge transfer improves learning on the task

which we originally set out to perform. It lets us learn about one environment and

then use that knowledge to learn more quickly on a new, similar environment.

98

CHAPTER 7. EMPIRICAL EVALUATION OF TREE-STRUCTURED
CONTINUOUS MTRL

Figure 7.4: Position and velocity trajectories for the best learner over 300 episodes
starting from the zero state. The two graphs in the top row are augmented, and the
two graphs in the bottom row are not. The red curves are the simulated learner and
the blue curves are the real data.

99

Chapter 8

Conclusion

We started this thesis with the problem of prosthetic arm motion. We wanted to learn

how arms usually move by observing demonstrations. We then used that information

to find policies that could reproduce the movement intention. Since the scenarios

under which we collected data varied, we could not learn a single policy that worked

well for all of them. Rather than learning in each scenario individually, we addressed

the problem of knowledge transfer. Each previous scenario taught us something about

the arm domain in general, and we wanted to use that prior knowledge to speed up

learning on future tasks.

Our contributions covered three main areas: IRL and offline RL with continuous

actions, non-smooth reward functions, and learning with weak models on a sequence

of tasks.

We addressed continuous actions in every chapter. We explained why it is useful

for our policies, Q-functions, and reward representations to process actions over a

continuous space rather than discretizing them. We developed continuous-action

versions of two existing discrete-action algorithms, CSIRL and FQI. This is directly

applicable to our motivating problem of prosthetic arm motion since we move in

continuous spaces with continuous actions and prostheses should reflect that.

100

CHAPTER 8. CONCLUSION

Our approach to non-smooth reward functions was to use trees. Again, trees

appeared in every chapter. We presented a tree-based version of CSIRL that was

able to reproduce the goal-oriented behavior of the arm problem. Our Continuous

FQI algorithm used trees in order to handle continuous actions, but this also had a

great benefit to the representation quality of the intermediate Q-functions.

We developed a novel addition to any policy gradient algorithm that can take ad-

vantage of information from known policies as well as adapting to a new environment.

This gave us a mechanism to incorporate transferred knowledge from previous tasks

into a new task. Additionally, we designed an algorithm that could identify similar-

ities between the transition and reward functions for environments. It was able to

use representations of arbitrary compactness that improved as more information was

available.

We ran our experiments on interesting domains, but they were low-dimensional.

We would like to explore how our algorithms scale to higher dimensions with more

state variables and potentially more actions. This could require finding opportunities

for performance improvements, particularly in tree construction.

Weak models are another point of interest. We showed that we could do matching

with a limited amount of information. We would also like to find a way to eliminate

the requirement of storing large numbers of samples or large tabular policy represen-

tations. This could bring us closer to a knowledge transfer mode that approximates

on one level how the human brain works.

We noted in Section 4.5.4 that testing each unique possible split value is the

main computational cost in creating regression trees. For decision trees, there are

established techniques to reduce the number of splits that need to be considered, but

we did not find an analogous optimization when the label space is continuous. This

would be an interesting direction for future exploration.

101

Bibliography

[1] G. M. Nelson, R. D. Quinn, R. J. Bachmann, W. Flannigan, R. E. Ritzmann,

and J. T. Watson, “Design and simulation of a cockroach-like hexapod robot,”

in Robotics and Automation, 1997. Proceedings., 1997 IEEE International Con-

ference on, vol. 2. IEEE, 1997, pp. 1106–1111.

[2] R. Bellman, “Dynamic programming and lagrange multipliers,” Proceedings of

the National Academy of Sciences, vol. 42, no. 10, pp. 767–769, 1956.

[3] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[4] M. Sugiyama, Statistical Reinforcement Learning: Modern Machine Learning

Approaches. CRC Press, 2015.

[5] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of ma-

chine learning research, vol. 4, no. Dec, pp. 1107–1149, 2003.

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and

regression trees. CRC press, 1984.

[7] J. R. Quinlan et al., “Learning with continuous classes,” in 5th Australian joint

conference on artificial intelligence, vol. 92. Singapore, 1992, pp. 343–348.

[8] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-

terministic policy gradient algorithms,” in ICML, 2014.

102

BIBLIOGRAPHY

[9] P. S. Thomas, “A reinforcement learning controller for functional electrical stim-

ulation of a human arm,” Ph.D. dissertation, Case Western Reserve University,

2009.

[10] F. Fernández and M. Veloso, “Exploration and policy reuse,” CARNEGIE-

MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE,

Tech. Rep., 2005.

[11] F. Fernández and M. M. Veloso, “Reusing and building a policy library.” in

ICAPS, 2006, pp. 378–381.

[12] R. Dearden, N. Friedman, and D. Andre, “Model based bayesian exploration,” in

Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc., 1999, pp. 150–159.

[13] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task reinforcement learn-

ing: a hierarchical bayesian approach,” in Proceedings of the 24th international

conference on Machine learning. ACM, 2007, pp. 1015–1022.

[14] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics

through apprenticeship learning,” The International Journal of Robotics Re-

search, vol. 29, no. 13, pp. 1608–1639, 2010.

[15] I. S. MacKenzie, “Fitts’ law as a research and design tool in human-computer

interaction,” Human-computer interaction, vol. 7, no. 1, pp. 91–139, 1992.

[16] M. J. Fu, “Computational models and analyses of human motor performance

in haptic manipulation,” Ph.D. dissertation, Case Western Reserve University,

2011.

103

BIBLIOGRAPHY

[17] M. C. Cavusoglu and D. Feygin, “Kinematics and dynamics of phantom (tm)

model 1.5 haptic interface,” University of California at Berkeley, Electronics

Research Laboratory memo M, vol. 1, 2001.

[18] E. Klein, B. Piot, M. Geist, and O. Pietquin, “A cascaded supervised learning

approach to inverse reinforcement learning,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 2013, pp.

1–16.

[19] F. Provost and P. Domingos, “Well-trained pets: Improving probability estima-

tion trees,” 2000.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

[21] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement

learning,” Journal of Machine Learning Research, vol. 6, no. Apr, pp. 503–556,

2005.

[22] A. Antos, C. Szepesvári, and R. Munos, “Fitted q-iteration in continuous action-

space mdps,” in Advances in neural information processing systems, 2008, pp.

9–16.

[23] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning

and dynamic programming using function approximators. CRC press, 2010,

vol. 39.

[24] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and Trends® in

Optimization, vol. 1, no. 3, pp. 127–239, 2014.

104

BIBLIOGRAPHY

[25] X. Wang and T. G. Dietterich, “Model-based policy gradient reinforcement learn-

ing,” in ICML, 2003, pp. 776–783.

[26] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy gradi-

ent methods for reinforcement learning with function approximation.” in NIPS,

vol. 99, 1999, pp. 1057–1063.

[27] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools

for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[28] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforcement learning

in continuous state spaces with path integrals,” in Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 1561–

1566.

[29] M. J. Fu and M. C. Cavusoglu, “Human-arm-and-hand-dynamic model with

variability analyses for a stylus-based haptic interface,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 6, pp. 1633–

1644, 2012.

[30] M. J. Fu and M. C. Æavuşoğlu, “Three-dimensional human arm and hand dy-

namics and variability model for a stylus-based haptic interface,” in Robotics and

Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.

1339–1346.

105

http://www.scipy.org/

	List of Figures
	Abstract
	Introduction
	Task Challenges
	Algorithmic Solutions
	Overview

	Background and Related Work
	Markov Decision Processes
	Value Functions
	Action-Value Function

	Basis Functions
	Reinforcement Learning
	Online RL
	Q-Learning
	Policy Gradient
	Offline RL
	LSPI
	Model-Based RL

	Learning from Demonstration
	Inverse Reinforcement Learning

	Supervised Learning
	Tree Models
	Tree Construction

	Related Work
	Deterministic Policy Gradient
	Arm Prosthetic Work
	Policy Reuse
	Bayesian RL for the Multi-Task Setting

	Overview of Contributions
	Abstract Problem Space
	Knowledge Transfer Across Tasks
	Learning From Demonstration

	Structure of Multi-Task Learning
	Concrete Domains
	Application to Prosthetic Arm Control
	Prior Work
	Arm Apparatus
	Data Preprocessing
	Arm Simulator
	Data Collected
	Other Domains

	Summary

	Learning Tree-Structured Rewards from Expert Trajectories with Continuous Actions
	A Cascaded Supervised Approach to Inverse Reinforcement Learning
	Motivation for CSIRL
	Base CSIRL
	Discrete CSIRL

	Tree-Based CSIRL
	Motivation for T-CSIRL
	T-CSIRL

	Continuous Tree-Based CSIRL
	Setting Minimum Rewards
	Q-Score Classification

	Regressors
	Q-Score Regressor

	Empirical Evaluation
	Hypotheses
	Implementation
	Methodology
	Results and Discussion

	Summary

	Fitted Q-Iteration with Continuous Actions
	Fitted Q-Iteration
	Fitted Q-Iteration with Continuous Actions
	Maximizing the Q-Function
	Action-Based Over-fitting
	Effective Sampling

	Experiments
	Hypotheses
	Methodology
	Results and Discussion

	Summary

	Model Reuse for MTRL
	Algorithmic Pipeline for a New Environment
	A Model Augmentation Step for General Policy Gradient Algorithms
	Motivation for Policy Gradient Augmentation
	Modified Target Function for Proximal Optimization
	Gradient Biasing
	Biasing Rate

	Knowledge Structuring
	Matching
	Model Lists

	Optimizations for Fixed Reward Functions
	Policy Compatibility
	Experiments
	Augmented Deterministic Policy Gradient
	Hypotheses
	Methodology
	Results and Discussion

	Empirical Evaluation of Tree-Structured Continuous MTRL
	Hypotheses
	Methodology
	Results and Discussion

	Conclusion
	Bibliography

