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Stochastic Integrals with Respect to Tempered α-Stable Levy Process

Abstract

by

YUKUN SONG

As we know, there are many equalities and inequalities for stochastic integrals. Some

equalities and inequalities hold when the stochastic integrator has very nice charac-

teristics, like Brownian motion. What will happen to the equalities or inequalities

valid for the Brownian motion in the case of other stochastic process, as like proper

tempered α-stable Levy process? A proper tempered α-stable Levy process combines

both the α-stable and Gaussian trends. In a short time frame it is close to an α-stable

process while in a long time frame it approximates a Brownian motion. So, we can

find the keys that make analogs of these equalities and inequalities hold.

First I found two equalities and two inequalities that hold for the Brownian motion

integral. There are two aspects to prove them. First of all, we consider when the

integrand is predictable step process. Base on that it is a finite sum, we can get it

from normal random variable inequalities. On the other hand, we need to extend the

situation to where integrand is a general predictable process. It involves the problem

whether what we deal with is integrable. Secondly, I will research if these equalities

and inequalities hold for proper tempered α-stable Levy process. In this step, I will

find the space of functions which are integrable for proper tempered α-stable Levy

process at first. So that we can find the predictable process which is integrable for

proper tempered α-stable Levy process then. And I will research if these equalities

and inequalities still hold for integrals of predictable step integrands with respect

to proper tempered α-stable Levy processes. At last, I will extend the predictable

step condition to general predictable condition. Based on the research about proper

tempered α-stable Levy process, there are some tools that make these equalities and

inequalities hold. I will prove that a process X(t) which is a Levy process and mar-
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tingale with EX(t)2 = t satisfies these equalities and inequalities.

The results are based on the the book [1] by Kwapien and Woyczynski and paper [2]

by Rosinski.
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1. Introduction

In this thesis, there are two equalities and two inequalities for integrals of predictable

integrands with respect to stochastic process. We know these equalities and inequali-

ties hold when the process is Brownian motion. Then we thought what if the process

is like Brownian motion but not Brownian motion. For the proper tempered α-stable

Levy process, in a long time frame it approximates a Brownian motion. So we tested

the equalities and inequalities for a proper tempered α-stable Levy process X. To

do this, we need to find whether the predictable processes are X-integrable, where

X(t) is a proper tempered α-stable Levy process. Whether a predictable process is

X-integrable is determined by the space of regular functions which are X-integrable.

To get this space, we define a control measure and a space defined by the control mea-

sure. The space and the condition in equalities and inequalities make these predictable

processes X-integrable. We didn’t calculate the integral with general predictable pro-

cesses, we used the predictable step processes, and used the predictable step processes

to approximate the general predictable processes. For calculating with the predictable

step processes, we used some theorems about martingales and obtained the relevant

equalities and inequalities in the case of drift b = 0 and EX(t)2 = t. As a result, we

got these equalities and inequalities for the proper tempered α-stable Levy process.

Then we made an effort to extend these result to a Levy process and Martingale with

EX(t)2 = t.

In Chapter 2, we introduce some concepts we will use to get the equalities and in-
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CHAPTER 1. INTRODUCTION

equalities. We will introduce the the Levy Characteristics, and then use Levy Char-

acteristics to define control measure so that there is a space about control measure

which equals the space of integrable functions. And the concepts of predictable pro-

cess and proper tempered α-stable process are introduced. Also we will state the

basic equalities and inequalities need in further work.

In Chapter 3, we find the spaces of integrable functions with respect to proper tem-

pered α-stable Levy process.

In Chapter 4, we test equalities and inequalities for proper tempered α-stable process,

and find that when the proper tempered α-stable Levy process has some supplement

at characteristics, these equalities and inequalities hold. Next we consider just a pro-

cess just Levy process and martingale with EX(t)2 = t. Then we prove the relevant

equalities and inequalities hold.

In Chapter 5, we summarize our results, and we point out some future directions of

research.
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2. Background Information

2.1 Definitions

Here are some definitions we will use to research my topic:

2.1.1 Some Symbols

p∗ = max{p, p/(p− 1)}

S∗n = max1≤k≤n|Sk|

S∗ = sup1≤k<∞|Sk|

Σ∗ —– maximum or supremum of partial sums

|X|0 = E(min{1, |X|})

JXK = X if |X| ≤ 1, and = X/|X| if |X| > 1

Ldet(dX): the class of deterministic functions which are integrable with respect to

process X

. . . small. . . small: A is small if and only if B is small: For any ε > 0, there exist δ > 0,

such that if we have A < δ, then we get B < ε. And the converse is true.

3



CHAPTER 2. BACKGROUND INFORMATION

2.1.2 Levy Processes

A stochastic processX = {Xt: t ≥ 0} is said to be a Levy process if it satisfies the

following properties:

1. X0=0 almost surely,

2. Independence of Increments: For any of 0 ≤ t1 < t2 < · · · < tn < ∞, Xt2-Xt1 ,

Xt3-Xt2 ,. . . ,Xtn-Xtn−1 are independent,

3. Stationary increments: For any s < t, Xt-Xs is equal in distribution to Xt−s,

4. Continuity in probability: For any ε > 0 and t≥ 0, lim
h→0

P (|Xt+h −Xt| > ε) = 0.

2.1.3 Brownian Motion

A Brownian motion is a Levy process Xt such that Xt−Xs ∼ N (0, t− s) (for 0≤s≤t

).

2.1.4 Modulars

Let E be a linear space. A functional Φ : E→ [0,∞] will be called a modular if

• Φ(0) = 0;

• For each x ∈E, the function g(t) = Φ(tx) is continuous and even on R and is

nondecreasing on R+

2.1.5 Musielak-Orlicz spaces

Let (T,A, µ) be a complete, σ−finite, separable measure space and let ϕ : T ×R→

R+ be such that

1. For every t ∈ T , ϕ(t, .) is a symmetric, continuous function on R with ϕ(t, 0) =

0, and it is nondecreasing on R+;

4



CHAPTER 2. BACKGROUND INFORMATION

2. For every x ∈ R, ϕ(., x) is A-measurable;

3. ϕ is of moderate growth, i.e., there exist positive constants C,C1 such that

ϕ(t, Cx) ≤ C1ϕ(t, x),

for all x ∈ R and t ∈ T .

Then, for every A-measurable and µ-almost everywhere finite function f : T → R,

the superposition ϕ(t, f(t)) is A-measurable, and the formula

Φ(f) =
∫
T
ϕ(t, f(t))µ(dt)

defines a modular on the space

Lϕ(T,A, µ) = Lϕ := {f : Φ(f) <∞} ,

which is called the Musielak-Orlicz space.

2.1.6 Filtration

A filtration F is an indexed set Si of subobjects of a given algebraic structure S, with

the index i running over some index set I that is a totally ordered set, subject to the

condition that if i ≤ j in I, Si⊆ Sj.

2.1.7 F(t)-independent increments

A process X(t), t ∈ T , has F(t)-independent increments, if X(t) is F(t)-measurable

for every t ∈ T , and if for any 0 < t < s < t∞, the random variable X(s) −X(t) is

independent of F(t).

2.1.8 Adapted Process

Let

• (Ω,F , P ) be a probability space;

• I be an index set with a total order ≤;

5



CHAPTER 2. BACKGROUND INFORMATION

• F = (Fi)i∈I be a filtration of the sigma algebra F ;

• (S, Σ) be a measurable space;

• X : I×Ω → S be a stochastic process.

The process X is said to be adapted to the filtration (Fi)i∈I , if the random variable

Xi : Ω → S is a (Fi, Σ)-measurable function for each i ∈ I.

2.1.9 Predictable Process(Continuous-time)

Given a filtered probability space (Ω,F , (Ft)t≥0, P ), then a continuous-time stochastic

process (Xt)t≥0 is predictable, if X considered as mapping from Ω×R+ is measurable

with respect to the σ-algebra generated by all left-continuous adapted processes.

2.1.10 Predictable Step Process

F is a predictable step process if it is a finite sum of processes of the form ξI(s,r](t),

t ∈ T , where the random variable ξ is Fs-measurable.

Integral for such processes

If

F (t) =
n∑
k=1

ξkI(sk,rk](t)

then ∫
T
f(t)dX(t) :=

n∑
k=1

ξk[X(rk)−X(sk)].

2.1.11 Martingale

(1)A continuous-time Martingale is a stochastic process Xt with characteristics that

for all t

1. E(|Xt|) <∞,

2. E(Xt|{Xτ , τ ≤ s}) = Xs for any s ≤ t;

6



CHAPTER 2. BACKGROUND INFORMATION

(2)A discrete-time martingale is a discrete-time stochastic process X1, X2, X3 . . . that

satisfies for any time n,

1. E(|Xn|) <∞,

2. E(Xn+1|X1, . . . , Xn) = Xn.

2.1.12 (Fi)-martingale

Let (Ω,F , P ) be a probability space with filtration {∅, Ω} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂

F . A sequence M0,M1,M2, . . . of random variables with values in R is said to be an

(Fi)-martingale if M0 = 0, and E(Mi|Fi−1) = Mi−1 a.s., for i = 1, 2, . . . . And the

sequence ∆Mn := Mn −Mn−1, n = 1, 2, . . . , is its difference sequence.

2.1.13 (Proper) Tempered α-stable processes

A probability measure µ on R is called tempered α-stable if it is infinitely divisible

without Gaussian part and has Levy measure M that can be written as

M(du) = u−α−1q(|u|, sgn(u))σ(sgn(u))du

where α ∈ (0, 2) and σ is a finite measure on {1,−1}, and q : (0,∞) × {−1, 1} →

(0,∞) is a Borel function such that q(., sgn(u)) is completely monotone with q(∞, sgn(u)) =

0 for each sgn(u) ∈ {−1, 1}. µ is called a proper tempered α-stable distribution if,

in addition to the above, q(0+, sgn(u)) = 1 for each sgn(u) ∈ {−1, 1}.

The complete monotonicity of q(., sgn(u)) means that (−1)n ∂n

∂rn
q(u, sgn(u)) > 0 for

u ∈ R, sgn(u) ∈ {−1, 1}, and n = 0, 1, 2, 3 . . . .

A Levy process X(t) such that X(1) has a (proper) TαS distribution will be called a

(proper) TαS Levy process.

7



CHAPTER 2. BACKGROUND INFORMATION

2.2 Theorems about and Illustrations for the basic

concepts

(Background Information in this section is from [1], [2], [4] and [5].) Considering

stochastic integrals, we need an additive stochastic set function which is extendable

to σ−Additive stochastic set function. We have some properties which are equivalent

to the σ−Additive Extendability. About this, we have following theorems:

2.2.1 σ-Additive Extendability for Set Functions

Theorem 1 Let m : A0 → F be an additive set function, where F is a complete

metric linear space. Then the following two conditions are equivalent:

1. m can be extended to an F-valued measure m : A = σ(A0)→ F;

2. If An ∈ A0 and lim supn→∞An = ∅, then limn→∞m(An) = 0.

(From [1, Theorem 7.1.1])

2.2.2 σ-Additive Extendability for Stochastic Set Functions

Theorem 2 Let F = Lp(Ω,F , P ), 0 ≤ p < ∞, and let m : A0 → F be an additive

stochastic set function. We difine

ρm(f) := sup
v∈S,|v|≤1

|
∫
T
vfdm|,

Then the following two conditions are equivalent:

1. m can be extended to an F-valued stochastic measure m : A = σ(A0)→ F;

2. For each sequence of functions fn ∈ S with |fn| ≤ 1 and such that limn→∞ fn(t) =

0 for all t ∈ T , we have that limn→∞ ρm(fn) = 0, where S is the class of step

functions on T which are A0-measurable.

(From [1, Theorem 7.1.2])

8



CHAPTER 2. BACKGROUND INFORMATION

2.2.3 Levy Characteristics

(see [1, Section8.2])

Let a process X(t),t ∈ T = [0, t∞], t∞ < ∞, be a real stochastic process with

independent increments. And assume its sample paths are right continuous and have

left limits. Let πn = {(tnk : 0 < tn0 < · · · < tnkn = t∞}, n = 1, 2, . . . , be a normal

sequence of partition of T (i.e., maxk|tnk−tnk−1| → 0 as n→∞), which is also assumed

to be nested, i.e., πn ⊂ πn+1, n = 1, 2, . . . . For each n = 1, 2, . . . , the sequence of

increments

dnk := X(tnk)−X(tnk−1), k = 1, . . . , kn.

Let

Bn(t) :=
∑

k:tnk≤t
EJdnkK,

Un(t) :=
∑

k:tnk≤t
EJdnkK2,

Vn(t) :=
∑

k:tnk≤t
EJdnkK2 − (EJdnkK)2,

Pn(t) :=
∑

k:tnk≤t
Ef(dnk),

where f : R→ R is a fixed continuous function such that for some r, c > 0, |f(x)| ≤ c,

and |f(x)| = 0 for |x| ≤ r.The class of such functions is denoted by R0.

Assume that (πn) is a normal nested sequence of partition of T such that all the

points of stochastic discontinuity of X are contained in ∪∞n=1π
n.(A process Y is said

to be stochastically continuous at t ∈ T , if lims→t|Y (t)− Y (s)|0 = 0).

Then for each t ∈ T , the limits

B(t) := lim
n→∞

Bn(t),

U(t) := lim
n→∞

Un(t),

V (t) := lim
n→∞

Vn(t),

P (t) := lim
n→∞

Pn(t),

exist and the convergence is uniform on T .

This is proved in [1, Proposition 8.2.2 ].

9



CHAPTER 2. BACKGROUND INFORMATION

Now we consider that the the process is Levy process. Here gives a definition of the

Levy characteristics for Levy process.

The first Levy characteristic is the function

B(t) := lim
n→∞

∑
k:tnk

EJdnkK = EX(t) = bt, for some b.

The second Levy characteristic is a measure ν on (R\{0}) determined by the following

condition: For any t ∈ T and any f ∈ R0,

t
∫
R\{0} f(x)ν(dx) = lim

n→∞

∑
k:tnk<t

Ef(dnk)

Let fm(x) = JxK2Ix> 1
m

(x), then

t

∫
R\{0}

fm(x)ν(dx) = lim
n→∞

∑
k:tnk<t

Efm(dnk)

≤ lim
n→∞

∑
k:tnk<t

EJdnkK
2 = U(t)

So

t

∫
R\{0}

JxK2ν(dx) = lim
n→∞

t

∫
R\{0}

fm(x)ν(dx)

≤ lim
n→∞

U(t) = U(t)

Now define the third Levy characteristic C as follows:

C(t) := U(t)− t
∫
R\{0}JxK

2ν(dx) = ct for some c.

Additional theorem: If X is a Levy process, then the Levy characteristics deter-

mine its characteristic function via the Levy-Khinchine formula:

EeiuX(t) = exp(t(ibu− cu2

2
+
∫
R\{0}(e

iux − 1− iuJxK)ν(dx))

This can be obtained from [1, Proposition 8.2.3]

10
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2.2.4 Deterministic Integrands

(see [1, Section8.3])

First, let us introduce the control measure ν for a Levy process by the formula

ν(ds) = |dB(s)|+ dC(s) +
∫
R
JxKν(dx)ds ,

where B,ν and C are Levy characteristics of X. Using Radon-Nikodym Theorem we

define b(s), c(s), so that

dB(s) = b(s)ν(ds), and dC(s) = c(s)ν(ds) ,

and the kernel µ̂ so that

ν(dx)ds = µ̂(dx)ν(ds)

We know b(s) and c(s) are constant, then we can replace them by b and c.

For s ∈ T and x ∈ R, let

k(x) =
∫
R
JxuK2µ̂(du) + cx2

l′(x) =
∫
R

(JxuK− xJuK)µ̂(du) + bx

l(x) = sup
|y|≤|x|

l′(y)

ϕ(x) = k(x) + l(x)

Let Lϕ(dν) = {f |ΦX(f) :=
∫
T
ϕ(f(s))ν(ds) <∞}

which is a Musielak-Orlicz space.(We have ϕ(2x) ≤ 5ϕ(x))

Let X be a Levy process. The additive stochastic set function m generated by

m((s, t]) := X(t)−X(s) ,

can be extended to a stochastic measure. Indeed we have for any step function f, the

modular ρm(f) is small if and only if ΦX(f) is small.(from [1, Theorem 8.3.1]) For

each sequence of step functions fn with |fn| ≤ 1 and such that limn→∞ fn(t) = 0 for

all t ∈ T , we have that

limn→∞ΦX(fn) = ΦX(limn→∞fn) = ΦX(0) = 0

so we have limn→∞ ρm(fn) = 0, which satisfies [Theorem 2, 2], so we have [Theorem

2, 1], meaning m can extend to a stochastic measure.

11



CHAPTER 2. BACKGROUND INFORMATION

And we have the following theorem:

Theorem A function f : T → R is X-integrable if and only if f ∈ Lϕ(dν)

(see [1, Theorem 8.3.1], [4, Theorem 3.3] and [5])

2.2.5 Predictable Integrands

(See [1, Section 9.1])

Let X(t), t ∈ T , be a Levy process . For a predictable step F, by definition, we know

it is X-integrable, and we define ρX(F ) := sup
V ∈P1

|
∫
T
V FdX|0, where P1 denotes the

class of all predictable processes V such that |V | ≤ 1. The Levy characteristic B has

bounded variation, so ρX(F ) is small if and only if |ΦX(F )|0 is small. Then we have

that the associated additive stochastic set function m can extends to a σ-additive

stochastic measure. The proof is the similar as the one in last subsection.

If for almost every ω ∈ Ω, process F (., ω) ∈ Ldet(dX), then predictable process F is

X-integrable. And in Lrnd(dX), the set of predictable step processes is dense with

respect to the metric given by the ρX(F ) or |ΦX(F )|0.

To research these equalities and inequalities, we calculate them for integrals of pre-

dictable step processes. In this way, we need the following theorems:

2.2.6 Martingale Inequalities

Theorem 3 (From [1, Theorem 5.3.1]) Let X1, . . . , Xn, and Y1, . . . , Yn be two (Fi)−martingale

difference sequences in R such that Xi is subordinated to Yi, i.e., |Xi| ≤ |Yi| a.s. for

i = 1, 2, . . . , n, with Mn =
∑n

k=1Xi and Nn =
∑n

k=1 Yi. Then , for any t > 0, and

for each p > 1,

1. tP (M∗
n > t) ≤ 2E|Nn|,

2. E|Mn|p ≤ (p∗ − 1)pE|Nn|p

12
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Theorem 4 (From [1, Theorem 5.6.1]) Let M1, . . .Mn be a (Fi)-martingale with

values in R, with increments (∆Mi) and the square function [Mn] =
∑n

i=1 |∆Mi|2.

Then, for any 1 < p <∞,

E[Mn]p/2 ≤ (p∗ − 1)pE|Mn|p

and

E|Mn|p ≤ (p∗ − 1)pE[Mn]p/2

Through the properties mentioned above, we can get the two equalities and two

inequalities hold for Brownian motion.

2.2.7 Equalities and Inequalities for Brownian Integrals

(see [1, Section 9.2]) Let B be a process with F(t)-independent increments which is

also a Brownian motion process and let F be an F(t)-predictable process such that

E
∫
T
F 2(t)dt <∞. Then

E
∫
T
FdB = 0,

and

E(
∫
T
FdB)2 = E

∫
T
F 2dt.

For each a > 0,

P (
∫ ∗
T
F (t)dB(t) > a) ≤ 2

a
E|

∫
T
F (t)dB(t)|,

for each p > 1, and p∗ = p
∨
p′,

1
p∗−1(E|

∫
T
F (t)dB(t)|p)1/p

≤ (E(
∫
T
F 2(t)dt)p/2)1/p

(p∗ − 1)(E|
∫
T
F (t)dB(t)|p)1/p

The specific stochastic process we research is proper tempered α-stable Levy process.

The following illustration will introduce the properties of it:

13



CHAPTER 2. BACKGROUND INFORMATION

2.2.8 Example of (Proper) Tempered α-stable Distribution

(see [2]) The q in Levy measure of tempered α-stable distribution can be represented

as

q(|u|, sgn(u)) =
∫∞
0
e−|u|sQ(ds|sgn(u))

where Q(.|sgn(u)) is a Borel measures on (0,∞). Q(., sgn(x)) are probability mea-

sures in case of proper TαS distributions.

Define a measure Q on R by

Q(A) :=
∫
R
IA(u)Q(d|u||sgn(u))σ(sgn(u)), A ∈ B(R).

We also define a measre R by

R(A) :=
∫
R
IA( x

|x|2 )|x|αQ(dx).

Then we will have the theorem:(from [2, Theorem2.3])

Theorem The Levy measure M of a TαS distribution can be written in the form

M(A) :=
∫
R

∫∞
0
IA(tx)t−α−1e−tdtR(dx), A ∈ B(R)

where R is a unique measure on R such that

R({0}) = 0 and
∫
R

(min{|x|2, |x|α})R(dx) <∞.

If R is a measure satisfying R({0}) = 0 and
∫
R

(min{|x|2, |x|α})R(dx) <∞,

then M(A) :=
∫
R

∫∞
0
IA(tx)t−α−1e−tdtR(dx) defines the Levy measure of a TαS dis-

tribution.

M corresponds to a proper TαS distribution if and only in
∫
R
|x|αR(dx) <∞.

From this theorem, we can research the proper TαS process in terms of R(dx) satis-

fying these condition.
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3. Deterministic Integrands for Proper

Tempered α-Stable Levy Process

We research proper tempered α-stable Levy process instead of general Tempered

α-stable Levy process, because the proper one has properties which make it easier

to study. For example, based on Levy measure, the general one includes station-

ary α−stable processes, but the proper one doesn’t include any stationary α−stable

processes.

3.1 Step 1: Extending to a Stochastic Measure

We know proper tempered α-stable Levy process X(t) has stationary increments,

which means there exists fixed constant b such that E(X(t−s)) = E(X(t)−X(s)) =

b(t−s). So B(t) = bt. We get Levy characteristic B is a function of bounded variation.

By statement in [2.2.4] , we know the additive stochastic set function generated by

X(t) can extend to a stochastic measure.

3.2 Step 2: Characterization Modular ϕ

For the Levy characteristics, we have

B(t) = bt and a =
∫
R
JxK2ν(dx) <∞ and C(t) = ct

so
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ν(ds) = κds, where κ = |b|+ c+ a,

µ̂(dx) = κ−1ν(dx)

c(s) = κ−1c and b(s) = κ−1b

then

k(x) = κ−1(
∫
R
JxuK2ν(du) + cx2)

l′(x) = κ−1(
∫
R

(JxuK− xJuK)ν(du) + bx)

l(x) = sup
|y|≤|x|

l′(y)

ϕ(x) = k(x) + l(x)

For proper tempered α-stable process, we have c = 0.(From [2. Theorem2.9] to

get characteristic function and compared to Levy-Khintchine representation)(or just

from that Tαs distribution is without Gaussian part). And by statement in [2.2.11],

for any Levy measure ν of proper TαS Levy process, there exists a measure R on

R such that R({0}) = 0 and
∫
R
|x|αR(dx) < ∞, then the Levy measure ν(A) =∫

R

∫∞
0
IA(tx)t−α−1e−tdtR(dx), A ∈ B(R). And for any such measure R, ν(A) =∫

R

∫∞
0
IA(tx)t−α−1e−tdtR(dx) is a Levy measure of a proper TαS Levy process. So

we can continue the research using the measure R in place of the Levy measure ν.

We have

∫
R

JxuK2ν(du) =

∫
|u|<| 1

x
|
JxuK2ν(du) +

∫
|u|≥| 1

x
|
JxuK2ν(du)

= x2
∫
R

u2
∫ 1
|ux|

0

t1−αe−tdtR(du) +

∫
R

∫ ∞
1
|ux|

t−1−αe−tdtR(du)

=: I1 + I2
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And for |x| > 1,

∫
R

(JxuK− xJuK)ν(du) =

∫
| 1
x
|<|u|<1

ν(du)− x
∫
| 1
x
|<|u|<1

uν(du) +

∫
|u|≥1

ν(du)− x
∫
|u|≥1

ν(du)

=

∫
R

∫ 1
|u|

1
|ux|

t−1−αe−tdtR(du)− x
∫
R

u

∫ 1
|u|

1
|ux|

t−αe−tdtR(du)

+

∫
R

∫ ∞
1
|u|

t−1−αe−tdtR(du)− x
∫
R

∫ ∞
1
|u|

t−1−αe−tdtR(du)

=: I3 − I4 + I5 − I6

For I1, we have the following theorem:

Theorem 3.2 Let R satisfy that R({0}) = 0 and
∫
R
|x|αR(dx) <∞, then

x2
∫
R
u2

∫ 1
|ux|
0 t1−αe−tdtR(du) ∼ β1|x|α

for large |x| and constant β1(β1 can be zero).

Proof:

We have

∫
R

u2
∫ 1
|ux|

0

t1−αe−tdtR(du) ≤
∫
R

u2
∫ 1
|ux|

0

t1−αdtR(du)

=

∫
R

u2
|u|α−2|x|α−2

2− α
R(du)

=
|x|α−2

2− α

∫
R

|u|αR(du)
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We know
∫
R
|x|αR(dx) <∞, so

∂(
∫
R
u2

∫ 1
|ux|
0 t1−αe−tdtR(du))

∂|x|
=

∫
R

∂(u2
∫ 1
|ux|
0 t1−αe−tdt)

∂|x|
R(du)

=

∫
R

u2
1

|ux|

1−α
e−

1
|ux| (−1)

1

|u|
1

x2
R(du)

= −|x|α−3
∫
R

|u|αe−
1
|ux|R(du)

∼ β0|x|α−3 for large |x| and constant β0

Then by L’Hopital’s rule, we have

∫
R

u2
∫ 1
|ux|

0

t1−αe−tdtR(du) ∼ β1|x|α−2 for large |x| and constant β1

So

x2
∫
R

u2
∫ 1
|ux|

0

t1−αe−tdtR(du) ∼ β1|x|α for large |x| and constant β1

If R(du) = 0, then β1 = 0 obviously.

The same way, we have Ii ∼ βi|x|α for large |x|(βi can be zero), and i=2,3. And

when α 6= 1, we have |I4| ∼ β4|x|α for large |x| (β4 can be zero). When α = 1,

|I4| ∼ β4|x|log|x| for large |x| and some β4(βi can be zero).

And we have

I5 ≤
∫
R

∫ ∞
1
|u|

t−1−αdtR(du) =
1

α

∫
R

|u|αR(du) <∞

and I6 = I5x. And Ii(x) = Ii(−x) for i = 1, 2, 3 and Ii(x) = −Ii(−x) for i = 4, 6.
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3.3 Step 3: Characterization spaces of Integrable

Functions

If I1 + I2 = 0, then we have R(du) = 0, so ϕ(x) = b
κ
x. If b = 0, then X(t) = 0. This

is a trivial situation, where Ldet = L0(dt). For b 6= 0, Ldet = L1(dt).

For I1 + I2 > 0:

when α > 1, we know lim|x|→∞ϕ(x)/|x|α <∞.

And we know

|I1 + I2 + I3 − I4| ∼ β|x|α for some β 6= 0 when x→ +∞

or

|I1 + I2 + I3 − I4| ∼ β|x|α for some β 6= 0 when x→ −∞.

So Ldet = Lα(dt);

when α = 1, we know

|I1 + I2 + I3 − I6 + bx| ∼ β|x| for some β 6= 0 when x→ +∞

or

|I1 + I2 + I3 − I6 + bx| ∼ β|x| for some β 6= 0 when x→ −∞.

So if |I4| = 0

then Ldet = L1(dt), else Ldet = LlogL(dt) := {f :
∫
T
|f |log+|f |dt <∞};

when α < 1, if I6 = b,

then Ldet = Lα(dt), else Ldet = L1(dt).
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Conclusion

1. Let α > 1 , or α < 1 and I6 = b, or α = 1 and |I4| = 0. In these cases

ϕ(x) ∼ β|x|α

for large |x| and some constant β 6= 0, so Ldet(dX) = Lα(dt)

2. Let α = 1 and |I4| = 0, or α < 1 and I6 6= b, or R(du) = 0 and b 6= 0,. In these

cases

ϕ(x) ∼ β|x|

for large |x| and some constant β 6= 0, so Ldet(dX) = L1(dt)

3. Let α = 1 and |I4| 6= 0. In this case,

ϕ(x) ∼ β|x|log|x|

for large |x| and some constant β, so Ldet(dX) = LlogL(dt)

4. Let R(du) = 0 and b = 0,In this case

ϕ(x) is constant

so Ldet(dX) = L0(dt)
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4. Predictable Integrands for Tem-

pered α-stable Process

In this section we extend the results of Chapter 3 to predictable stochastic integrands.

Theorem 4.1 If F(t)−predictable process F is that E
∫
T
F 2(t)dt < ∞, then for

almost every ω ∈ Ω, process F (., ω) ∈ L2(dt).

Proof:

Supposed not for almost every ω ∈ Ω, process F (., ω) ∈ L2(dt). Then let W = {ω ∈

Ω : F (., ω) /∈ L2(dt)}, we will have P (W ) = ε > 0. So

E

∫
T

F 2(t)dt =

∫
Ω

∫
T

F 2(t, ω)dtP (dω)

≥
∫
W

∫
T

F 2(t, ω)dtP (dω) =∞

which is contradictary to E
∫
T
F 2(t)dt < ∞. So For almost every ω ∈ Ω, process

F (., ω) ∈ L2(dt).

By the space Ldet(dX) discussed before, where X is proper tempered α−stable Levy

process. we know L2(dt) ⊂ Ldet(dX). So we know for almost every ω ∈ Ω, process

F (., ω) ∈ L2(dt) ⊂ Ldet(dX). By statement in [2.2.5], we know this predictable pro-

cess F is X-integrable.
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To discuss what additional conditions we need, the following theorems will be useful:

Theorem 4.2 Let a F(t)-predictable step process Fs satisfy E
∫
T
F 2
s (t)dt < ∞, and

let X be a proper TαS Levy process with F(t)-independent increments, Then

E
∫
T
FsdX = 0 and E(

∫
T
FdX)2 = E

∫
T
F 2
s dt.

if and only if

Levy characteristic b = 0 and E(X(t))2 = t.

Proof:

We have

E

∫
T

FsdX = E(
n∑
k=1

ξk(X(rk)−X(sk)))

=
n∑
k=1

E(ξk(X(rk)−X(sk)))

=
n∑
k=1

E(ξk)E(X(rk)−X(sk))

= b
n∑
k=1

E(ξk)(rk − sk)

So E
∫
T
FsdX = 0 if and only if b = 0. When b = 0, for any predictable step process

Fs satisfying E
∫
T
F 2
s (t)dt <∞, we have E

∫
T
FsdX = 0.
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For a predictable step process Fs satisfying E
∫
T
F 2
s (t)dt <∞,

E(

∫
T

FsdX)2 = E(
n∑
k=1

ξk(X(rk)−X(sk)))
2

= E(
n∑
k=1

ξ2k(X(rk)−X(sk))
2)

+ E(
∑

1≤i<j≤n

2ξiξj[X(ri)−X(si)][X(rj)−X(sj)])

= E(
n∑
k=1

ξ2k(X(rk)−X(sk))
2)(for b = 0)

=
n∑
k=1

{Eξ2kE[X(rk)−X(sk)]
2}

and

E

∫
T

F 2
s dt = E(

n∑
k=1

(ξ2k[rk − sk]))

=
n∑
k=1

{Eξ2k[rk − sk]}

By comparing, the equalities holds if and only if E(X(r) − X(s))2 = r − s for any

r > s ∈ T ,.i.e. E(X(t))2 = t.

So we have

E
∫
T
FsdX = 0 and E(

∫
T
FsdX)2 = E

∫
T
F 2
s dt.

if and only if

Levy characteristic b = 0 and E(X(t))2 = t.

Theorem 4.3 For a predictable step process Fs and process X(t) as mentioned in

[Theorem 4.2] satisfying Levy characteristic b = 0 and E(X(t))2 = t.

We have for each a > 0,
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P (
∫ ∗
T
Fs(t)dX(t) > a) ≤ 2

a
E|

∫
T
Fs(t)dX(t)|, (1)

and for each p > 1, and p∗ = p
∨
p′,

1
p∗−1(E|

∫
T
Fs(t)dX(t)|p)1/p

≤ (E(
∫
T
F 2
s (t)dt)p/2)1/p

≤ (p∗ − 1)(E|
∫
T
Fs(t)dX(t)|p)1/p, (2)

Proof:

When b = 0, X is a martingale. By Theorem 3, we have aP (M∗
n > a) ≤ 2E|Mn|,

so we have

aP (
n∑
k=1

∗(ξk[X(rk)−X(sk)]) > a) ≤ 2E|
n∑
k=1

ξk[X(rk)−X(sk)]|

which means

P (
∫ ∗
T
Fs(t)dX(t) > a) ≤ 2

a
E|

∫
T
Fs(t)dX(t)|.

By Theorem 4, we have

E|Mn|p ≤ (p∗ − 1)pE[Mn]p/2

so we have

E|
n∑
k=1

(ξk[X(rk)−X(sk)])|p ≤ (p∗ − 1)pE(
n∑
i=1

|ξk[X(rk)−X(sk)]|2)p/2

so E|
∫
T
Fs(t)dX(t)|p ≤ (p∗ − 1)pE(

n∑
i=1

ξ2k|X(rk)−X(sk)|2)p/2

so 1
p∗−1(E|

∫
T
Fs(t)dX(t)|p)1/p ≤ (E(

∫
T
F 2
s (t)dt)p/2)1/p

Then we will prove these properties hold when F is a general predictable process:

Theorem 4.4 For a general F(t)-predictable process F , we have

E
∫
T
FdX = 0,

if for any predictable step process F , we have

E
∫
T
FsdX = 0.

Proof:

For a general predictable process F, we know in Lrnd(dX), the set of predictable step

processes is dense with respect to the metric given by ρX(F ).(From [1, Theorem

9.1.1])

So we have there exist step predictable processes Fn such that
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lim
n→∞

ρX(Fn − F ) = 0

then we have following consequences:

lim
n→∞

sup
V ∈P1

|
∫
T
V (Fn − F )dX|0 = 0

lim
n→∞

sup
V ∈P1

E|
∫
T
V (Fn − F )dX| = 0

lim
n→∞

E|
∫
T

(Fn − F )dX| = 0

lim
n→∞

E|
∫
T

(Fn)dX −
∫
T

(Fn)dX| = 0

So for a general F(t)-predictable process F , we have

E
∫
T
FdX = 0,

and

E(
∫
T
FdX)2 = E

∫
T
F 2dt.

By the similar way, we can prove the other equalities and the two inequalities hold

when F is a general predictable process.

We also have the following theorem providing an easy way to check condition for

integrability of predictable processes with respect to general Levy processes:

Theorem 4.5 Let X(t) be a Levy process and F be a predictable process satisfying

E
∫
T
F 2(t)dt <∞, then this predictable process F is X-integrable.

Proof:

Because

| JxuK−xJuK
x2JuK2 | ≤ 1, for |x| > 1

and because for each u,

lim
|x|→∞

JxuK−xJuK
x2JuK2 = 0 .

we have

lim
|x|→∞

1
x2

∫
R

(JxuK− xJuK)ν(du) = lim
|x|→∞

∫
R

JxuK−xJuK
x2JuK2 JuK2ν(du) = 0,

So lim|x|→∞l
′(x)/x2 = 0,

then lim|x|→∞l(x)/x2 = 0.
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Because

| JxuK2

x2JuK2 | ≤ 1, for |x| > 1

and becasuse for each u,

lim
|x|→∞

JxuK2

x2JuK2 = 0 .

we have

lim
|x|→∞

1
x2

∫
R
JxuK2ν(du) = lim

|x|→∞

∫
R

JxuK2

x2JuK2 JuK
2ν(du) = 0

So

lim|x|→∞k(x)/x2 <∞.

We can get

lim|x|→∞ ϕ(x)/x2 <∞,

which means L2(dt) ⊂ Ldet(dX).

Base on Theorem 4.1, when E
∫
T
F 2(t)dt < ∞, we have for almost every ω ∈ Ω,

process F (., ω) ∈ L2(dt) ⊂ Ldet(dX). Based on statement in [2.2.5], we know this

predictable process F is X-integrable.
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5. Conclusions

Including Brownian motion, we used three steps to approach to the properties of

the equalities and the inequalities. The processes that can get the properties show

the very good characteristics. In fact, we use only Levy process. Levy process is

very special and good for integrals aspect. Stationary increments can make the drift

keep the same direction, which gives monotone Levy characteristic B(t). So the B(t)

has bounded variation. This is the key of stochastic integrals, because it makes the

stochastic measure σ-additive. The characteristics are important, like drift b, when

b = 0, it is so different from ones when b 6= 0. We found that the equalities and

inequalities hold when the integrator X(t) is a process which is Levy process with

no drift and EX(t)2 = t. If it is a Levy process, then we can find the other two

characteristics. But if it has these two charatceristics, does the process need to be

Levy process? If not, what characteristics should it have? We calculated the spaces of

integrable functions with respect to the proper Tempered α-stable Levy process. We

find it is not easy to characterize the spaces. The measure R is restricted a little, and

this makes characterizing difficult. We can try another way to characterize instead of

control measure way. we know the process defined by R,b,and α. And the complexity

of the condition often comes from R. If the conditions about R are more simple,

this condition probably by can be easier to understand. We did the calculations for

proper TαS Levy processes. When we calculated the functionϕ, proper TαS Levy

processes can guarantee some integrals are well defined, but general ones don’t work.
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CHAPTER 5. CONCLUSIONS

In the future I would like to extend my results to general TαS Levy process as well

as to semimartingale on manifold.(see [3])
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