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Exploring Alternative Routes Using Multipath TCP

Abstract

by

STEPHEN BRENNAN

Multipath TCP (MPTCP) is an extension to TCP which allows hosts to establish

connections consisting of multiple TCP “subflows” that travel across different Internet

paths. MPTCP it is based on the assumption that at least one communicating host

is multi-homed. Meanwhile, the Internet contains considerable path diversity, and

research has shown that routes chosen by the Internet’s routing infrastructure are

not always the most efficient. Although mechanisms have been proposed which are

designed to take advantage of detour routing, none can be applied to unmodified

applications. In this thesis, we leverage MPTCP to allow unmodified applications on

single-homed devices to use detour routes. We find that this mechanism is capable of

significant bandwidth aggregation under appropriate network conditions.
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Chapter 1

Introduction

This thesis proposes a mechanism for exploring and adding alternative paths to a Mul-

tipath TCP (MPTCP) connection, for the purpose of improving application through-

put and reliability. These alternative paths travel through “detour” hosts, ensuring

that the paths are distinct from the Internet routed path. The bandwidth of these

paths can be aggregated, allowing better throughput than any of the constituent

paths. The implementation allows this system to be entirely transparent to applica-

tions.

1.1 Internet Routing Inefficiencies

The Internet is made up of a vast number of Autonomous Systems (ASes), each con-

taining many routers. These routers forward packets along their outgoing interfaces

according to an internal forwarding table. This table is populated with routes learned

from the external Border Gateway Protocol (BGP) [1], as well as intra-AS protocols

such as Open Shortest Path First (OSPF) [2]. Administrators have considerable free-

dom to enforce local policy on which routes to advertise, and which routes to use.

Additionally, the metrics used in route selection include hop count and AS count,

which may not correlate well with important path characteristics such as loss rate or

1



1.2. ACCESS LINK UNDERUTILIZATION CHAPTER 1. INTRODUCTION

latency.

As a result, the default Internet path between hosts is not always the “best path”

with respect to link or path characteristics. In fact, AS operators frequently have

policies other than minimizing latency or loss [3]. Savage et al. [3] measured the

pairwise latency and packet loss rates among a group of hosts. From this dataset,

they searched for instances where path characteristics along a route via a “detour”

host were better than the default route. Savage et al. [3] find that half of all pairs

of hosts have a “detour” route with lower latency, and 15% of the pairs of hosts have

a path with at least 25% improvement in latency. For packet loss, 80% of the pairs

have a detour path with a lower packet loss rate, and in nearly half, the packet loss

rate improves by a factor of at least 6.

Overlay networks have been proposed as a way to overcome the deficiencies of

Internet paths, by enabling strategies such as detour routing. These techniques create

a second network on top of the existing Internet. Peers in these overlays are connected

by virtual links, which are simply routes in the underlying Internet. Packets are

tunneled from peer to peer until reaching their end destination. Overlay routers may

measure path characteristics and use these factors to construct routing tables. Thus,

overlay networks enable detour routes which focus on optimal path characteristics.

Overlay networks have been shown to improve on path metrics such as throughput

and loss rates [3, 4]. However, applications must be modified to make use of most

overlay networks, limiting their utility.

1.2 Access Link Underutilization

Since residential Internet access became commonplace, access link speeds have steadily

increased. Technologies such as broadband, cable, and most recently fiber-to-the-

home have enabled these continued increases. While conventional wisdom has been

2
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that access links are usually the bottleneck, this is not always the case [5]. While

access capacity has increased, studies have shown that residential link bandwidths

are not fully utilized, especially fiber connections [6]. There are many reasons why

this is the case. For one, short-lived TCP connections may never leave the slow start

phase. For another, small send buffers limit the rate at which a TCP connection may

send. However, sometimes the default Internet route may not be able to accommo-

date these higher speeds. With alternative routes available that may perform better,

it makes sense to explore these alternative routes. Rather than selecting a single path,

it also makes sense to use multiple paths simultaneously, aggregating their available

throughput.

1.3 Concept

client server

Internet

detour

Figure 1.1: Conceptual overview of the mechanism

While detour routing has been well established as a way to improve the quality

of network paths, it has proved to be something of a mirage. Finding a way to allow

everyday applications to leverage detours has been elusive. Similarly, data striping

3
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has been an appealing avenue for performance improvements, but applications must

be designed around the concept in order to use it. As a result, both of these concepts

have remained areas of research instead of being applied to our everyday applications.

With the advent of MPTCP, we have an opportunity to revisit detouring and

data-striping in a way that is transparent to the application. This thesis presents

a mechanism for applying detour routing to MPTCP connections. The mechanism,

illustrated in Figure 1.1, establishes subflows across detour paths. By leveraging

MPTCP, our mechanism is capable of striping data across the flows, aggregating

the bandwidth of available paths. Most importantly, since MPTCP presents the

same binary-compatible OS level API as TCP, unmodified applications may use this

mechanism simply by using our patched kernel.

We envision this system being best applied to a group of users which we refer

to as a “Detour Collective”. These users have high-bandwidth access links, and

seek to improve application performance. By joining the collective, they offer their

computer as a detour which other members may use. In return, they gain access to

the detouring services of the other members of the collective. In effect, the collective

forms an overlay network which unmodified TCP applications may use.

This thesis focuses only on the implementation of the mechanism for adding detour

paths to MPTCP connections. However, in Chapter 6, we will discuss implementation

issues and potential challenges for the “Detour Collective”, as future work for this

thesis.

1.4 Contributions

The contributions of this thesis are as follows:

• We propose a method for leveraging detour routing in a way that is transparent

to the application, by using MPTCP.

4
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• We present a prototype implementation of this method based on a system of

Linux kernel modifications and user-space tools.

• We evaluate this mechanism on emulated network topologies and on the Inter-

net.

The remainder of this thesis has the following structure. Background information

on MPTCP and the mechanisms used in the evaluation is covered in Chapter 2. Re-

lated work is discussed in Chapter 3. The implementation of our system is described

in Chapter 4. Experimental evaluation is presented in Chapter 5. Finally, future

work is discussed in Chapter 6 and we conclude in Chapter 7.

5



Chapter 2

Background

2.1 Multipath TCP

Recently, multi-homed devices have become increasingly common. The most obvious

example of these devices is the smartphone, which typically comes with at least two

network interfaces: one for cellular data, and one for Wi-Fi. While these devices have

become more common, protocols have not kept up. Most Internet traffic is carried on

TCP, which identifies a data stream by the 5-tuple of protocol, source address, source

port number, destination address, and destination port number. As a result, multi-

homed devices are forced to choose only one interface for a TCP session [7]. MPTCP

was designed as a protocol extension to TCP, which allows multiple interfaces (and

as a result, network paths) to be used in the same TCP stream.

2.1.1 Design Considerations

MPTCP has several design goals, outlined in [8]. At a high level, it aims to use the

existence of multiple paths to improve efficiency and resiliency of standard TCP. Other

transport protocols support similar high-level goals, such as SCTP with Concurrent

Multipath Transfer [9]. However, SCTP cannot easily be used as a replacement
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for TCP, because applications require modification to use SCTP, and some Network

Address Translation (NAT) boxes and firewalls do not support SCTP [10]. In contrast,

MPTCP aims to be compatible with unmodified applications and common Internet

middleboxes, so it can be deployed widely.

MPTCP’s design focuses on two types of compatibility, which motivate many of

its high-level design decisions. First, application compatibility: MPTCP must be

usable by existing TCP applications without modification. Second, network compat-

ibility: MPTCP must be usable across the Internet today, including across features

of the modern Internet such as NAT, firewalls, traffic normalizers, and performance-

enhancing proxies (collectively referred to as middleboxes). In the design of MPTCP,

consideration is made for the following types of disruption by middleboxes [8]:

• Home routers often perform NAT, and so addresses may not be the same on

either side of a connection [11].

• Some NAT boxes will additionally rewrite content of some protocols, such as

URLs in HTTP [8] and IP addresses and ports in FTP [7].

• Some middleboxes perform sequence number randomization [12, 13].

• Some middleboxes strip IP and TCP options from packets, although TCP op-

tions are more commonly respected [13].

• Some middleboxes (especially traffic normalizers) will not allow “holes” in TCP

sequence numbers [12]. That is, some middleboxes expect to see all data seg-

ments which have been acknowledged.

• TCP segments may be broken up or coalesced [12]. For example, TCP Segmen-

tation Offload is a feature supported by some NICs, which advertises a large

MSS value to the TCP stack, and then splits large segments into smaller ones

in hardware.

7
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Finally, an additional network compatibility requirement is that Multipath TCP

“do no harm” to existing TCP flows [8]. As a result, several congestion control

mechanisms are proposed, aiming to prevent MPTCP from using more resources

than a single TCP flow would across a shared bottleneck [14, 15, 16, 17].

These combined architectural guidelines not only make MPTCP suitable for de-

ployment, but they also make it more resilient to the mechanisms used in this thesis

(such as NAT) to extend it in new ways.

2.1.2 Architecture

Application

TCP

IP

Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

Figure 2.1: Comparison of Standard TCP and MPTCP Protocol Stacks. Originally
from [18]

To achieve the goals described in Section 2.1.1, MPTCP is located between TCP

and the application layer, as shown in Figure 2.1. TCP “subflows” are created along

every path. Each subflow looks like a normal TCP connection, but with some addi-

tional options, and slightly different semantics.

An MPTCP connection begins with a three-way handshake, similar to a regular

TCP connection. If both hosts are capable and willing to use MPTCP, they include

a TCP option with bype MP CAPABLE on all packets of the handshake. Additional

TCP connections may be created between the two hosts once the initial connection

is established, using the MPTCP option type MP JOIN. To authenticate this process,

keys are exchanged via the MP CAPABLE option, and a token is verified using these

keys for each new subflow via the MP JOIN option.

8
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Either side of an MPTCP connection may establish a new subflow with its peer at

any time according to local policy. However, sometimes this may not be possible, due

to the presence of a firewall. MPTCP allows for a peer to advertise the existence of

an IP address, without creating a subflow. This is achieved via the option ADD ADDR.

Advertised addresses may be removed with the REMOVE ADDR option. Neither option

is acknowledged, so delivery of the option is not guaranteed.

Data has sequence numbers at both the subflow level and at the connection level.

Each subflow has a Data Sequence Signal (DSS) transmitted via the MPTCP option

type DSS, which maps subflow sequence numbers to data sequence numbers. These

mappings are valid for only a certain amount of bytes, and thus new mappings must

be transmitted periodically. As a result, the DSS is one persistent form of overhead

in the protocol header. Data is acknowledged both at the subflow level (via the

acknowledgment flag and field), and at the data level (via a flag and field within the

DSS).

2.1.3 Implementation

MPTCP is implemented in the Linux kernel, as well as within the XNU kernel used

by Mac OS and iOS. In this thesis, we focus on version 0.91 of the Linux kernel imple-

mentation [19]. This implementation has three key features which enable flexibility

and custom policy: data schedulers, congestion control, and path managers.

As a result of MPTCP’s flexibility in labeling data with sequence numbers, data

may be split up across multiple subflows, or even transmitted redundantly. A data

scheduler is a modular component which determines which subflow to send application

data on. The default scheduler implementation, Lowest Round Trip Time (RTT)

First, selects the subflow with the smallest RTT and fills up its congestion window.

Other implementations include a naive round-robin scheduler and one which sends

data redundantly across each subflow. Additional schedulers have been proposed, to

9
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mitigate problems such as head-of-line blocking and bufferbloat [20]. In this thesis,

we consider only the Lowest RTT First scheduler.

As with regular TCP congestion control [21], MPTCP congestion control is im-

plemented as a modular component of the Linux kernel. While normal TCP con-

gestion control algorithms (such as the Linux default, CUBIC [22]) may be used on

each subflow, several MPTCP specific implementations are provided: Linked Increase

Algorithm (LIA) [14], Opportunistic Linked Increase Algorithm (OLIA) [15], Delay-

based Congestion Control (wVegas) [17], and Balanced Linked Adaptation Algorithm

(BALIA) [16]. In this thesis, we only consider LIA congestion control, as it is the

default implementation, and currently is the recommended safe congestion control in

the MPTCP specification [18].

In order to decide when to create and destroy new subflows, as well as adver-

tise alternative addresses, the Linux implementation uses another modular compo-

nent called a “path manager” [19]. The default implementation does nothing (ex-

cept accepting incoming connections). The Linux implementation also includes an

ndiffports path manager, which initiates up to N subflows with a server, from dif-

ferent TCP source ports, and the same IP address. N is a configurable parameter set

to 2 by default. This path manager can be useful for Equal Cost Multi-Path Rout-

ing (ECMP), as we discuss in Section 3.2.3. A fullmesh path manager establishes

subflows between every pair of client addresses and advertised server addresses. A

major part of the implementation of this thesis is a path manager for the Linux kernel

MPTCP implementation.

2.2 Mininet

In the evaluation of our mechanism, we use the Mininet [23] framework to emulate a

network topology and evaluate performance across the emulated network. Although

10
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this framework is not new in the literature of MPTCP measurement studies [24, 20],

we use this section to give a brief overview of its operation.

Mininet is a software-defined networking tool that allows the creation of virtual

networks. Networks created within Mininet use the native OS network stack, and can

run applications unmodified using the virtual network. However, they do not require

the full overhead of virtual machines, which emulate an entire guest operating system

and any virtual hardware used by the guest. Instead, Mininet nodes are simply

process groups using the host operating system to access either real network devices,

or virtual ones.

Mininet works by leveraging the lightweight virtualization mechanisms that the

Linux kernel provides. Within the kernel, namespaces are used to organize and par-

tition the resources a process (or group of processes) can see and use. For instance,

mount namespaces limit an application’s view of the file system. PID namespaces

give a group of applications a new set of process identifiers, starting from 1. Similarly,

network namespaces group the resources of the operating system network stack. In

particular, network namespaces group network interfaces, as well as routing tables

and firewall rules. Kernel namespaces are the foundation of modern lightweight vir-

tualization tools such as Docker [25].

Network namespaces may be connected by virtual Ethernet pairs, such that traffic

sent on a virtual interface on within one namespace can be received on a virtual

interface within another. Furthermore, these virtual Ethernet links may be configured

using the Linux Traffic Control framework, to emulate packet loss, latency, jitter,

reordering, packet duplication, and control link bandwidth.

Mininet creates virtual networks via the following mechanism [26]. Each host is a

shell process running within a separate network namespace. Hosts share a pipe to the

Mininet parent process, over which commands and output are exchanged. Links are

virtual Ethernet pairs. Switches may be emulated using userspace or kernel OpenFlow

11
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switch implementations, although we did not use switches in our experiments.

As a network emulation framework, Mininet presents several attractive qualities.

It is more lightweight than virtual machines, enabling practical experimentation on

single machines. It provides an easy-to-use Python API, reducing manual interac-

tion in the experimentation process. By providing complete virtual machine images

with Mininet and experiments pre-installed, experiments may be made completely

reproducible, and distributed easily online 1. Finally, as compared to larger, hard-

ware based emulation frameworks such as EmuLab[27], the development time and

debugging time can be dramatically reduced when constructing experiments.

1Virtual machine images and data for our experiments will be made available at: https://

brennan.io/thesis
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Chapter 3

Related Work

The mechanism in this thesis involves adding alternative routes to a connection, in

order to improve connection performance. This can be seen as related to several

concepts in the body of networking research: multipath routing, overlay routing,

source routing, channel bonding, and proxying. In this chapter, we will examine

related work at each relevant level of Internet.

3.1 Link Layer

At the link layer, aggregating multiple low-capacity links to create a single, virtual link

with higher capacity is called inverse multiplexing, or sometimes channel bonding [28].

Linux provides a bonding driver which allows this to be done in software, presenting a

single virtual interface to the host machine. Unfortunately, this mechanism typically

requires identical links and configuration on either side of them, limiting the use of

these setups [29].

Another interesting approach to bandwidth aggregation, falling somewhere be-

tween the link layer and the network layer, is the “Beyond One’s Bandwidth (BOB)”

system [30]. This system, designed for use on residential wireless access points, allows

neighboring residential access points to share bandwidth. Each router negotiates a

13
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connection with its neighboring access points, and uses round-robin scheduling to

assign packet flows to different gateways. Streams, like TCP, must remain on the

gateway that their initial packet used, so the system does not truly aggregate band-

width for streams, but instead load-balances. The authors considered implementing

a MPTCP proxy with subflows over each gateway, but rejected this strategy since it

required an egress point on the wide area Internet [30].

In the case of link layer approaches to bandwidth aggregation, most mechanisms

are highly localized. Channel bonding approaches are limited to multiple links be-

tween the same endpoints, and these links require identical hardware [29]. Beyond

One’s Bandwidth is only applicable to wireless access points within range of each

other. Our mechanism allows bandwidth aggregation across entire paths, not simply

nearby links.

3.2 Network Layer

Improved Internet routing has been a goal for researchers for a long time, and the

network layer has been a natural place to begin. Related work includes source routing,

overlay routing schemes, and several improved routing approaches, many of which

involve multipath routing.

3.2.1 Source Routing

A major part of this thesis (and many other studies) involves specifying “waypoints”

or detour hosts that a packet must traverse before it continues on to its final desti-

nation. Although packets are normally routed on the Internet hop-by-hop, there are

mechanisms for specifying the path that a packet should take. In IPv4, these mecha-

nisms are the options Loose Source and Record Route (LSRR) and Strict Source and

Record Route (SSRR) [31]. These IP options allow the source of a packet to specify a

14



3.2. NETWORK LAYER CHAPTER 3. RELATED WORK

partial (Loose) or complete (Strict) route consisting of a list of addresses. The route

taken is recorded within the packet, and reply packets must follow the same route.

In IPv6, a similar mechanism called Segment Routing is being proposed by the IPv6

Maintenance Working Group of the IETF [32].

Source routing options are considered insecure. If source routing options were

respected, an attacker could send a packet with a complete route specified, while

spoofing the source address. Reply packets would follow the recorded route in reverse

back to the attacker [33]. This behavior would allow complete spoofing of source

addresses, including receiving reply packets. Furthermore, maliciously crafted source

routes can be used to create bandwidth exhaustion attacks and evade firewalls [34].

As a result, it is recommended that routers and firewalls drop packets bearing these

options, and many routers on the Internet do [34].

Detour routing is simply one-hop source routing. If source routing options were

widely supported on the Internet, our mechanism might be able to use them to route

subflows across detours. Such an implementation would require no modification of

a detour host. However, the security implications of source routing on the Inter-

net heavily outweigh their potential benefits. As a result, we must resort to other

mechanisms to perform the same function as source routing, such as tunneling and

NAT.

3.2.2 Overlay Routing

An alternative to designing and deploying a full new network layer protocol is ex-

perimenting on overlay networks. Overlay networks are networks constructed on top

of an existing “substrate” network. Nodes route traffic among each other using the

substrate network rather than direct links. Traffic is routed through a sequence of

overlay nodes before reaching the final destination, rather than being directly routed

through the substrate. In the case of the Internet, these networks can be advantageous

15
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because they can add functionality that is not widely deployed (such as multicasting)

and they can make routing decisions based on more information than the Internet.

Several overlay network approaches have been proposed and deployed. An early

example, the M-Bone, connected networks capable of multicasting via tunnels [35].

This allowed multicasting even though the Internet as a whole did not support it.

Later approaches, such as Overcast [36], apply the concept of overlay networking at

the application level to achieve similar results.

Andersen et al. [4] describe Resilient Overlay Networks (RON), a framework for

creating overlay networks and routing traffic along them. Applications link to a

user-space library, and access the network via a send function and a recv callback.

Applications may choose to send via the default Internet routed path, or via the

overlay. Routing is performed at each node, rather than at the source. The routing

algorithm takes into account several virtual link characteristics, as well as application-

specified metrics, which are stored in a database.

The design goal of RON is to improve reliability by using overlays. The result

also showed that latency and throughput could be improved via overlays. However,

as an application-level approach, RON cannot be applied to unmodified applications.

Andersen et al. later described a redundant routing scheme in which redundant copies

of packets are sent along multiple paths [37]. They compared this approach with a

more traditional approach that reacts to link failures and routes around them, similar

to the RON framework’s original routing system. However, they did not attempt to

use multiple paths without redundancy, since their study focused on loss rates rather

than throughput.

Another extension of the RON framework attempted to use a biologically inspired

approach to multi-path routing [38]. Their mechanism discovers routes via an iterative

broadcasting method, not unlike the construction of a shortest path tree. When a

selection of routes is ready, the mechanism moves into a route maintenance mode.
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A main route is selected, with alternative routes being used as backups. Packets

are transmitted along the main route with a high probability, and along the backup

routes with low probability. Based on changes in link state, as well as some degree of

randomness, the main route may become backup, while a different route is selected

as the main route. The authors do not measure bandwidth aggregation, as their main

focus is resilience against link failures.

Gummadi et al. [39] demonstrated a simpler approach to detour routing. Rather

than creating a full overlay network in which each node monitors links and main-

tains routing tables, they applied source routing. They designed Scalable One-hop

Source Routing (SOSR), a system which tunnels traffic to an intermediary, which

then forwards the traffic on to the destination. The intermediary performs NAT, so

that reply traffic is forwarded back to the destination. Using SOSR and randomly

selected PlanetLab intermediaries, they were able to recover from 56% of failures on

the paths to popular web servers. However, they did not report the throughput of

SOSR paths. In this thesis, we use an approach similar to Gummadi et al. in simply

tunneling traffic across a chosen intermediary, rather than constructing a complete

overlay network.

As far as we could find, there are no overlay routing systems which attempt to cor-

rect Internet routing inefficiencies by combining multiple paths without redundancy.

However, transport-layer systems based on overlay networks have been created which

do so (see Section 3.3.1).

3.2.3 Equal Cost Multi-path Routing

The MPTCP protocol specification allows for subflows to be established between the

same two IP addresses as a pre-existing subflow in a connection, using a different

TCP source port [18]. One reason this is allowed is to enable path diversity via Equal

Cost Multi-Path Routing (ECMP). In large data center networks, highly redundant
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network topologies have been deployed, so that there are several routes between hosts.

Routers in these topologies use ECMP to choose between paths that have the same

cost, by hashing the connection 5-tuple [40]. While normally, ECMP provides load-

balancing, it can be combined with MPTCP to provide bandwidth aggregation, since

a subflow’s different 5-tuple may result in a different route. Raiciu et al. [40] describe

in detail a simulation study that evaluates the performance of MPTCP on several

data center topologies and congestion controls. They also describe a validation on an

Amazon EC2 data center with a highly redundant topology, in which using MPTCP

with four subflows achieved a 3x throughput improvement.

Similar to source routing, ECMP offers the capability for the source of a packet

to alter the route its packet takes. Unlike source routing, ECMP gives only very

loose control: by altering the source port (and thus the connection 5-tuple), a second

TCP flow (or subflow) may take a new route, but it may not. Using several subflows

improves the probability of alternative routes being used. If ECMP were common

outside of datacenter networks, it would be possible to use separate source ports and

obtain different routes for subflows, replacing our detour mechanisms. However, this

is not currently possible on the Internet.

3.2.4 Binder

Another application of MPTCP to bandwidth aggregation is Binder, a system for

aggregating the bandwidth of several Internet gateways [41]. This mechanism was

developed in an area of rural Scotland, containing several low-bandwidth gateways.

Rather than use one gateway primarily and others as backup, Binder allows aggrega-

tion of all of the gateways.

This is achieved by routing all outgoing traffic through an OpenVPN connection.

Binder leverages the capability of OpenVPN to run over MPTCP. One subflow is

dedicated to each gateway (using IP source routing options). The OpenVPN server,
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located outside of the local network, terminates the MPTCP connection and performs

NAT, routing all packets to their final destinations.

We consider this to be a network layer mechanism since it forwards IP datagrams

over the OpenVPN connection. As pointed out in their paper, Binder strikingly

parallels channel-bonding techniques such as the ones described in Section 3.1.

Our mechanism also uses OpenVPN, as one of the two implementation alternatives

for the detour. However, a key difference is that while Binder uses OpenVPN over

MPTCP, we only put a single subflow of an MPTCP connection through OpenVPN,

essentially leveraging OpenVPN for tunneling. Furthermore, while Binder enables

bandwidth aggregation, it does not leverage detour routing, as our system does.

Finally, Binder is a system which operates at a network gateway, while ours operates

on a client host itself.

3.3 Transport Layer

3.3.1 mTCP

MPTCP, the heart of our mechanism, is at the transport layer. It is built on several

years of research and development, and the literature is full of work related to the

development of multipath transport algorithms. Overviews of these prior works can

be found in [10, 7]. Most of these works are based on multi-homed devices, and thus

not directly related to this thesis.

However, one prior transport-layer approach is very relevant. In [42], Zhang et al.

describe the implementation of mTCP, an early multipath variation of TCP. Rather

than using a TCP connection per-subflow, mTCP simply routes TCP segments across

different paths. Congestion control is performed separately on each “subflow”, while

the receive window is global. Acknowledgements are transmitted on only one return

path. Paths are dynamically added based on a heuristic that involves an estimated
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path disjointness metric based on the measured route and path latency. Paths are

suppressed when shared congestion is detected, and removed if they are detected to

have failed.

The mTCP mechanism is based on a user-space TCP implementation, and it uses

RON [4] as a network layer capable of providing multiple routes. By using RON,

single-homed devices are just as capable of using mTCP for bandwidth aggregation

as multi-homed devices. However, due to the nature of mTCP as a fully user-space

library, the mechanism cannot be made compatible with unmodified applications.

Additionally, its design choices contradict many of the network compatibility con-

siderations made in the design of MPTCP. In the years since mTCP was designed,

MPTCP has been standardized, with the benefits of improved network and applica-

tion compatibility. We view this thesis as a more compatible and standards-based

take on the concepts of mTCP. Our mechanism has the benefit of transparency to

the application, and no dependence on RON.

3.3.2 MPTCP Proxying

A recent MPTCP IETF working group draft proposes a set of proxying mechanisms

that allow ISPs to improve client TCP and MPTCP connection throughput [43].

Based on observations that MPTCP server deployment has not been strong, these

mechanisms expect a server and optionally a client which do not support MPTCP.

They proxy traffic through Multipath Conversion Points (MCPs), devices which ISPs

deploy throughout the network. There are two possible deployment scenarios: one

MCP and two MCP.

In the one MCP scenario, an MPTCP-enabled client would like to use MPTCP

to connect to a server which does not support it. It establishes a connection to a

MCP, specifying the final destination within the SYN segment. It may then establish

additional subflows to the MCP using its other interfaces. The MCP proxies the
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connection data to the final destination via a plain TCP connection.

In the two MCP scenario, both the client and server are not MPTCP enabled.

Instead, a TCP connection bearing an MP CONVERT TCP option is routed through the

ISP, to an MCP. The MCP establishes a MPTCP connection to another MCP, which

will then connect to the final destination over TCP.

There is some overlap in the goals of this IETF proxy mechanism, when compared

to our detouring mechanism. Both aim to bring the benefits of MPTCP to devices

which otherwise may not be able to use them. The proxy mechanism focuses on

servers, and possibly clients, which do not support MPTCP. Our detouring mecha-

nism instead focuses on single-homed devices which support MPTCP, but have no

additional addresses to create new paths along. These approaches are not mutually

exclusive. In fact, the one MCP scenario could be used in conjunction with our mech-

anism to allow single-homed devices to gain the benefits of multiple paths, even when

a server does not support MPTCP.

3.4 Application Layer

The application layer is well suited to allow experimentation, and is an excellent

breeding ground for building new concepts. Applications may be modified and up-

dated at a much quicker pace than the development of network and transport layer

protocols can occur. As a result, the application layer demonstrates a diverse set of

mechanisms for using multiple paths and aggregating bandwidth. We describe some

of these mechanisms in this section.

3.4.1 Peer to Peer File Sharing

Peer to peer file sharing systems are typically distributed in their nature. Centralized

systems require communication with a single server, and thus communication along
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only one path. An the other hand, peer to peer systems frequently involve communi-

cating with several peers simultaneously, each one along a different path. As a result,

peer to peer systems can enable bandwidth aggregation very naturally.

An early peer to peer system, Gnutella [44], resembles an application-layer overlay

network. Peers join the network by connecting to several well-known peers, and

receiving information about other peers. They may then broadcast queries to peers,

which are forwarded throughout the overlay network. Replies are forwarded along

the reverse path, and contain information for peers to establish a direct connection,

in order to exchange files. The actual file exchange is made directly between peers

over Hypertext Transfer Protocol (HTTP), and thus is only a single-path exchange.

Later systems, such as BitTorrent [45], allow data to be exchanged via the overlay

network itself, leveraging bandwidth aggregation. In BitTorrent, files are broken into

small chunks which may be requested from any peer which has the chunk. Peers are

incentivized to upload portions of the file which they possess because other peers will

“choke” them (stop uploading to them) if the exchanges are not mutually beneficial.

By communicating with multiple peers at a time, BitTorrent is capable of aggregating

the bandwidth of several Internet paths.

Both of these technologies, and many other peer to peer systems, enable powerful

content distribution mechanisms, but are not ultimately applicable to other unmod-

ified applications. Live streaming versions of BitTorrent exist, both in research [46]

and in commercial applications [47]. However, BitTorrent is not applicable to com-

munications which do not involve swarms of users, such as video calling. In general,

while peer to peer solutions can be very powerful, their application layer design limits

the scope of their utility.

3.4.2 HTTP Range Requests

HTTP is a ubiquitous application layer protocol for accessing web pages. HTTP 1.1
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[48], contains an optional feature known as range requests [49] which allow a client

to request a byte range of a file. This allows clients to resume interrupted transfers

or to retrieve partial contents, such as a page from a larger document.

Kaspar et al. [50] describe the use of HTTP range requests to download large

files over multiple wireless interfaces. Their mechanism requests separate ranges on

each wireless interface and reassembles them locally. Their mechanism focuses on

live media playback, and so it seeks to minimize start-up time while aggregating

throughput. However, their mechanism is applicable to regular HTTP downloads as

well.

Similar to peer to peer networks, this approach cannot be generalized to other

applications. However, HTTP is a very common protocol, and a bandwidth aggrega-

tion approach for HTTP could be very widely applicable. Unfortunately, Kaspar et

al.’s approach only makes use of multiple network interfaces as sources of alternative

routes, similar to plain MPTCP. Their mechanism could be extended to use detour

routes, provided that detours run HTTP proxies which support range requests. How-

ever, our mechanism is also capable of using detour routing to provide alternative

routes. Being based on TCP, it is directly applicable to HTTP. By operating at the

transport layer, our mechanism is capable of much more fine-grained data striping.

Further, our mechanism could be applied to pipelined sessions containing small files,

while Kaspar et al.’s approach is limited to large files.
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Implementation

In this project, we implement a system which allows one host to dynamically add new

overlay routes to a Multipath TCP connection. Each overlay route is a new subflow,

which is tunneled across a third-party host. The system involves at least three hosts:

• The client is the active opener of the MPTCP connection. In our system, the

client actively requests all detours and initiates all subflows.

• The server is the passive opener of the MPTCP connection.

• The detour is a host which acts as a waypoint along the overlay route from the

client to the server. There may be more than one detour at a time, and there

are multiple ways to implement the detour service.

We assume that the server supports Multipath TCP, and require no additional

customization for our system to work. In our current implementation, the detour host

must run some version of Linux, and the client must run a version of the Linux kernel

that is built with support for MPTCP and our path manager patch. Additionally,

the detour must run one of two user-space daemons, and the client must also run a

user-space daemon.

The system is implemented via a number of interacting components. First, a
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path manager extension for version 0.91 of the Linux MPTCP implementation [19],

which allows the client’s kernel to request new detour paths, receive them, and create

subflows across them. Second, a user-space utility which receives messages from the

kernel and creates the necessary detour paths. Finally, we implement two different

types of detour daemons, which run on the detour host. These components are

illustrated in Figure 4.1.

Kernel Space

Path Manager

User Space

Client Daemon

Detour Daemon

Server

B C

D E

F

A

Figure 4.1: The components and their communications. In A, the initial subflow
across the default route is created. In B, the path manager requests an overlay route.
In C, the client daemon reports overlay routes back to the path managers. In D
and E, the client and detour daemons negotiate an overlay route. In F, a subflow is
created through the detour.

The typical interaction of these components is as follows. First, a process on the

client creates a MPTCP connection to the server. The first subflow uses the Internet

routed path. Once this connection is fully established, the path manager requests

overlay routes on which it may create subflows. The client detour daemon receives

this request, and attempts to set up detours. The detours are currently selected from

a static configuration file. The client and detour daemons negotiate a tunnel, which
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may be implemented in two different ways. The client reports this back to the kernel,

which creates subflows for the MPTCP connection across every available detour, until

a predefined limit is reached. In our implementation, this limit is two, but it may be

set by an administrator using the sysctl tool.

In the remainder of this chapter, we will discuss each of these components at

length.

4.1 Detour Daemon

We have implemented two different mechanisms for tunneling MPTCP subflows across

a detour. In both cases, the detour host must run a daemon that assists in tunneling

traffic from the client to the server.

4.1.1 OpenVPN Tunneling

The first mechanism involves the open-source tool OpenVPN [51]. OpenVPN is a

program which provides virtual networking between two computers. It comes with

two operating modes. The first provides a simple virtual link between two hosts, with

no other capabilities. The second uses this virtual link to create a virtual network.

One host is the server, which provides IP addresses and routes traffic among clients

and the rest of the Internet. OpenVPN also provides encryption and PKI-based

authentication services. Our detour runs OpenVPN as a server in the second mode

of operation, configured as follows:

• The connection is over UDP, to avoid the so-called “TCP Meltdown” effect

caused by two sets of TCP timers and congestion control algorithms interfering

with each other when TCP is tunneled through TCP [52].

• The initial connection negotiation requires the client and server to exchange

certificates. This mutual authentication process could be used to protect both
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the client and detour from working with a peer that is not a member of their

“Detour Collective”. Further, the certificate can be used to provide account-

ability for the origin of detoured traffic, lowering the risk to a detour server.

These applications of certificate verification are discussed further in Chapter 6.

• Subsequent messages are not protected by encryption or signatures, to reduce

per-packet space and time overhead. In the case of a malicious detour, these

cannot provide any additional security, because traffic would be decrypted at

the detour before forwarding.

Clients connect to this VPN, creating a virtual network interface. The client

receives a routing rule from the detour advertising that it can reach all hosts on the

Internet with a high cost. As a result, the client operating system will prefer other

routes instead of the VPN. However, the route is available for the path manager to

route subflows along.

One important aspect of VPN configuration is that the detour must create a

private IP subnet. It provides a DHCP service [53] to assign IP addresses to clients

as they connect to the VPN. Clients are expected to be able to connect to multiple

detours simultaneously. To do this without conflict, each detour must use a distinct

private IP subnet, so that there is no chance of the client addresses overlapping, and

also so that the gateway address of the VPN is unique on the client.

In a large-scale implementation of this technology, these subnet allocations could

be handled by a centralized detour management server, or an appropriate distributed

protocol among the detours. The 10.0.0.0/8 subnet is reserved for private networks,

and if each detour were to establish its own /24 subnet, there would be capacity

for 65,536 non-conflicting subnets. A random subnet and IP allocation may also be

sufficient. Collisions in IP namespaces would render a detour unusable for a particular

client. However, in a situation with enough detours to make collisions likely, many
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alternative detours would exist for a client to fall back on. In our testing, subnets

were manually allocated to avoid conflicts.

Finally, in order to forward VPN traffic to the Internet, the detour must be config-

ured (via Netfilter) to perform network address translation (NAT) on outgoing packets

(this functionality is not provided by OpenVPN itself). This process is typical for a

home router and for VPNs which provide Internet access [11, 51]. As discussed earlier,

MPTCP is designed with this behavior in mind, and so it is capable of functioning

through NAT, so long as the middleboxes do not remove TCP options in transit, or

modify data contents [8].

The OpenVPN implementation has several attractive qualities. First, it relies on a

well-used protocol for forwarding traffic. Second, an established OpenVPN connection

may be used as a detour for any server address and port number, without any addi-

tional setup. The NAT mechanism discussed in Section 4.1.2 requires communication

with the detour server for every new server address and port number combination. A

final benefit of the OpenVPN mechanism is that it provides a built-in mechanism for

mutually authenticating the client and detour. However, there are some drawbacks.

Since packets are tunneled, at least 28 bytes of overhead (IP and UDP headers) are

required. To avoid fragmentation, the connection’s maximum segment size (MSS)

may need to be manually adjusted. In our testing, the maximum segment size was

automatically adjusted by OpenVPN without need for manual modification.

4.1.2 NAT Tunneling

The second approach directly modifies packet source and destination addresses, with-

out actually using a protocol (like OpenVPN) for tunneling. Rather than encapsulate

packets and send them to the detour, the client daemon instead informs the detour of

the intended destination, and requests that it perform NAT on its packets. Then, the

kernel addresses packets directly to the detour, on an agreed upon port. The detour
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Figure 4.2: Types of NAT provided by Netfilter. Top: SNAT only. Middle: DNAT
only. Bottom: Both SNAT and DNAT, as used in the NAT tunnel.

forwards these to the final destination, and forwards reply packets to the client. On

packets destined to the server, the detour rewrites the destination address and port

number to be the server’s, and rewrites the source address and port number to be its

own. For reply packets, the detour rewrites the destination address and port number

to be the client’s, and rewrites the source address and port number to be its own. In

order to arrange these NAT mappings, clients use a simple signaling protocol based

on UDP.

The Linux kernel’s Netfilter framework allows for two types of NAT, illustrated

in Figure 4.2 [54]. The first kind, source NAT (SNAT), rewrites the source address

of the packet. This is the typical form of NAT used by home routers: the source

address of each outgoing packet is rewritten to be the router’s external IP address,

but the destination is unchanged [11]. This type of rule is applied after routing has

taken place. The second kind of NAT supported by Netfilter is destination NAT

(or DNAT) which rewrites the destination of the packet. This rule is applied before

routing, so that a proper interface can be selected for the new address.

The detour takes advantage of both forms of NAT offered by the kernel. First,
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Figure 4.3: UDP NAT tunnel request structure

it applies DNAT, setting the destination address to be the final server’s IP address

(signaled ahead of time). Then, it applies SNAT, setting the source address to be its

own external IP. The Netfilter framework remembers these connections so that reply

packets are properly forwarded back to the client. Thanks to Netfilter, this NAT

mapping can be arranged with two iptables commands, with no custom kernel or

user-space code required for packet forwarding.

As mentioned earlier, the server address must be communicated to the detour

ahead of time in order to use this scheme. To that end, we have designed a simple

UDP-based protocol for clients to request NAT mappings from a detour. The detour

listens for requests on UDP port 45672. The request format is shown in Figure 4.3.

The ver field is a protocol version, currently set to 1. The op field contains the

operation of this message: request (0) or response (1). The reserved field is unused,

providing padding for the request. In the future, this field could be used for flags that

enable IPv6 support. Since there are several IP addresses and ports involved in the

tunneling setup, we will define them each before defining the remaining fields of the

message.

• Client IP address, port number: the IP address of the client, and the client-side

port number, which is usually ephemeral.

• Detour IP address, port number (client side): the IP address and port number

that the client will address its communication to.

• Detour IP address, port number (remote side): the IP address and port number
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which are used when the detour opens its corresponding connection on the

remote.

• Remote IP address, port number: the IP address and port number of the server.

The fields rip (short for “remote IP address”) and rpt correspond to remote IP

address and port number. The dpt field corresponds to the detour port number,

client side. In a request, the client proposes a dpt (usually the same as the rpt).

In the response, the detour specifies the port number which will actually be used.

Semantically, the detour creates a mapping from the pair (client IP address, dpt) to

the pair (rip, rpt). The detour may alter the proposed dpt field for several reasons:

• A tunnel to the (rip, rpt) pair is already open for that client IP address, using

a different dpt. Rather than create a new (client IP address, dpt) pair which

maps to the same (rip, rpt) pair, the detour may wish to return the dpt of the

existing mapping.

• The (client IP address, dpt) pair already maps to a different (rip, rpt) pair.

A new dpt is returned to avoid a conflict.

• The detour may have a socket listening for connections on the proposed dpt

(such as an HTTP server on port 80), and so it may wish to avoid creating a

tunnel which would prevent the client from accessing that service.

The client port number is not used in the mapping, to allow the client to cre-

ate several subflows to the same server through the detour (potentially on separate

MPTCP connections). This also avoids race conditions in which a client port number

is proposed, but then used by the operating system while waiting for the detour’s

response.

In order to create the tunnels, the detour runs two IPTables commands, which

create NAT rules. The first performs DNAT:
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iptables -t nat -A PREROUTING \

-s ClientAddress \

-d DetourAddress \

-p tcp --dport DetourPort \

-j DNAT --to RemoteAddress :RemotePort

In this command, we add a rule to the nat table, on the PREROUTING chain. Incom-

ing packets from the client, addressed to the detour on the agreed upon DetourPort

are sent to the DNAT chain, which rewrites the destination address to be the agreed

upon remote address and port. This must occur before the kernel routes the packet.

Once the kernel has routed the packet, the SNAT rule can be applied:

iptables -t nat -A POSTROUTING \

-s ClientAddress \

-d RemoteAddress \

-p tcp --dport RemotePort \

-j SNAT --to DetourAddress

Since the destination address and port have already been modified, this rule looks

for packets addressed to the remote address and port, but still using the client address

as the source. It jumps these packets to the SNAT chain, where their source address

will be rewritten as the detour’s address.

It is important to understand that these rules are generally only applied to the

initial SYN segment of the TCP flows. Once these rules are applied, the connection

tracking mechanism of the kernel takes over, ensuring that these rules are applied in

reverse to response packets.

The detour daemon is implemented as a Python script. It listens for tunnel

requests, executes the correct commands to create them, and then sends responses.

It ensures that detour ports do not conflict with each other, or with ports that are

open on the daemon machine. It also ensures that on termination of the detour

daemon, all tunnels are torn down.
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This mechanism has the advantage that it requires zero space overhead within the

packet. Since no headers are added, the full amount of data may be transmitted in

these segments. However, the disadvantage is that tunnels must be configured each

time a new MPTCP connection is created on the client. In the case of OpenVPN, a

new subflow may be tunneled through an existing OpenVPN connection without any

additional signaling with the detour. However, with the NAT approach, each time

a subflow is initiated with a new server, a tunnel must first be negotiated with the

detour server, incurring an RTT delay.

The protocol described here is rather näıve. Similar to DNS, this protocol is

vulnerable to spoofing attacks for replies. Additionally, malicious clients may use

this protocol to create large amounts of detours, exhausting resources on the detour

machine. The protocol here is not intended to be secure against these types of attacks.

Rather, the protocol is designed to assess the efficacy of a NAT based approach. It

is the subject of future work to design a more secure protocol or create a new NAT

signalling mechanism. These issues are discussed in Section 6.5.

4.2 Path Manager

As previously described, the path manager is a module which dictates local policy

for creating new subflows and announcing local addresses to the MPTCP peer. To

enable subflows to use the detours created by the above mechanisms, we implement

a custom MPTCP path manager within the Linux kernel.

The path manager receives space within the MPTCP control buffer to track state,

and it registers a set of callbacks with the protocol, so that it can be notified of events

as they occur. Global state, such as the list of available detours, must be stored on

a per-network namespace basis. This is required not only to satisfy the demands of

a modern kernel which supports namespacing and containerization, but also so that
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Figure 4.4: Simplified view of Path Manager data structures

experiments using Mininet, which relies on namespaces, run successfully. A simplified

view of the data structures maintained by the path manager is presented in Figure 4.4.

The path manager consists of two main components. First, a subflow worker which

selects and adds detour subflows to an MPTCP connection. Second, a Generic Netlink

communication interface so that information and commands can be exchanged with

user-space components.

4.2.1 Subflow Worker

The subflow worker runs in two situations, in the context of a particular MPTCP

socket: (i) when a MPTCP connection becomes fully established (i.e. after the three-

way handshake completes), and (ii) when a new detour has been made available to a

connection’s network namespace, and the detour could be used for that connection.

When an MPTCP connection becomes fully established, the subflow worker starts

for the first time. At this point, it uses the Generic Netlink communication interface

(described in Section 4.2.2) to request a detour from the client daemon. It does this
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even if detours are already available, so that the client daemon may create and report

new ones. Then, the path manager looks through the internal lists of detours in the

network namespace of the socket. The path manager maintains two lists of potential

detours per network namespace. The first is a list of OpenVPN detours. These detour

entries are not specific to a server, and they simply indicate the name of a network

interface to use. The second list contains NAT detours. These consist of a detour

address and port, and a server address and port. The worker may only select NAT

entries which match the destination address and port of the current connection.

The subflow worker then attempts to add up to N subflows, where N is a config-

urable limit. The worker may terminate in one of two ways. Either it has exhaused

all of the available detours, but not yet created all N subflows. Otherwise, if it creates

N subflows successfully, it stops looking through the list, even if more detours are

available. When the number of available detours exceeds N , the first N detours, or-

dered from oldest to newest, are chosen. If OpenVPN detours are available, then they

take precedence over the NAT detours, because they are available immediately. NAT

detours are only available after the successful exchange described in Section 4.1.2.

4.2.2 Generic Netlink

In order to request and receive detour entries from userspace, the path manager relies

on a communication interface based on Generic Netlink. Netlink is an address family

for the socket interface (AF NETLINK, similar to AF INET), which allows communication

between kernel and userspace. Many existing Linux network configuration utilities

communicate with the kernel over the Netlink address family, such as route and

firewall configuration. Each of the subsystems being configured has a corresponding

protocol family, such as NETLINK NETFILTER for Netfilter firewall configuration. These

protocol families take the same place in the socket() system call as protocol families

such as IPPROTO TCP in the AF INET and AF INET6 address families.
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Creating a new Netlink protocol involves allocating a new Netlink protocol family.

To make this process easier, the Generic Netlink protocol family was created. It allows

custom protocols (“Generic Netlink families”) to be created, dynamically allocated,

and discovered. It also provides a common format for sending several data types, and

creates a framework for defining message types. Further, Generic Netlink provides a

multicast capability, allowing kernel and user sockets to broadcast messages to any

socket which has joined a particular multicast group. Finally, Generic Netlink comes

with a kernel and userspace library which allows for a consistent API and a level of

abstraction when defining Generic Netlink families.

We implement a Generic Netlink family, with the following operations imple-

mented:

• DETOUR C REQ: An announcement message sent from the kernel to a multicast

group, which the client daemon subscribes to. Specifies a remote address and

port which the kernel would like to create a detour to.

• DETOUR C ADD: A command sent from userspace to the kernel that adds a detour

(of type NAT or VPN) to the kernel’s internal list of detours. When a new,

unique detour is received, each connection in the namespace is informed of the

new detour. This gives every connection the opportunity to create a subflow

along new detours.

• DETOUR C DEL: A command sent from userspace to the kernel that removes a de-

tour from the kernel’s internal list. This does not cancel any subflows currently

using the detour.

• DETOUR C ECHO: A command sent from userspace to the kernel, requesting that

the kernel write out its list of detours to the kernel log. This is a useful command

for development and debugging.
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Generic Netlink provides mechanisms for giving permissions to each operation, and

allows the kernel to work only within the network namespace of the calling program.

As a result, the client daemon may only add or remove detours or receive requests

from its own namespace.

4.3 Client Daemon

The client daemon has two main responsibilities. First, it must create OpenVPN

connections and report them to the kernel. Second, it must respond to detour requests

from the kernel by creating NAT detours and reporting them back.

The daemon has a configuration file which allows the user to specify the IP ad-

dresses of hosts to use for both types of detours. On startup, the daemon executes

an instance of the OpenVPN client for each configured VPN detour, and waits for

them to fully initialize. The OpenVPN software creates a virtual network interface

which connects to the detour. A new thread is used to monitor each OpenVPN client

process, logging any important messages.

Next the daemon creates a UDP socket corresponding to each NAT detour in its

configuration file. A separate thread is launched, which calls select() on the set of

detour sockets, waiting for incoming responses from any detour.

Finally, the detour creates a Netlink socket, subscribes to the path manager’s

multicast group, and begins waiting for requests. For each request from the path

manager, the client daemon sends a UDP request to every NAT contained in the

configuration file. When the receiving thread receives a response, it sends the final

NAT detour information back over the Netlink socket to the path manager. The path

manager may then apply the NAT detour to any MPTCP connections which may use

it.

The client daemon may also send DETOUR C DEL requests to the kernel in order to
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clean up older detours. The path manager itself only cleans up detours when their

corresponding network namespace is closed.

4.4 Security Considerations

There are several considerations that must be made for security in this system. Since

detours are along the route of a second subflow, they are able to observe the destina-

tions of all MPTCP connections which a client wishes to detour through them. There

is no way to prevent this leak of information, since detours must know the destination

to perform forwarding.

Another serious concern is that detours may record, modify, or forge traffic be-

tween the client and server. This risk exists with routers and middleboxes on the path

of any TCP connection. However, with our system, the detour may be controlled by

an arbitrary user on the network edge, rather than having a privileged location within

the network core.

An application may use TLS on the connection in order to mitigate some of

this risk. The TLS handshake information will be exchanged on the first subflow,

before detour subflows are established. As a result, a detour subflow that carries TLS

will already be fully encrypted, protecting both the privacy of the connection, and

preventing modification.

Applications which do not use TLS are still at risk of attack by a malicious de-

tour. Small detour collectives made up of individuals with mutual trust could use the

certificate verification features of OpenVPN to protect themselves. These collectives

might create a single root certificate and use that to sign each member’s key. Clients

and detours could then authenticate each other as members of the same collective.

However, larger collectives would have to deal with the same systemic issues that

other large-scale Public Key Infrastructures (PKIs) face: over-privileged intermedi-
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ates, poor identity verification practices, aging cryptography, etc [55]. An alternative

could be a more distributed web-of-trust model [56], but this would require new au-

thentication mechanisms outside of OpenVPN. In any case, the security of a detour

in a “Detour Collective” is still an area requiring future work.
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Chapter 5

Evaluation

The literature has already established that one-hop overlay routes can improve con-

nection latency, loss rate, and throughput [3, 4, 39]. Therefore, when designing exper-

iments to evaluate our system, we did not attempt to replicate these results. Instead,

we demonstrate that our system performs as expected, by using proof-of-concept

tests. Specifically, we attempt to answer the following questions:

• Given a network where an alternative path with better connection properties

exists, can this mechanism achieve the throughput of the better path?

• Given a network where the core is the bottleneck, rather than access links, can

this method aggregate the throughput of alternative paths?

• What overhead exists in this mechanism compared to standard TCP across the

default route or standard TCP across a detour?

• What is the difference in the performance of the NAT and VPN detours?

• Can this mechanism be used across the Internet at higher throughput?

We design two types of experiments to answer each of these questions. The first is

based on network emulation, and is designed to answer the first four questions. The
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second experiment deploys this mechanism across geographically distributed hosts,

as a proof-of-concept of the mechanism operating on the Internet.

5.1 Mininet Experiments

Our first set of experiments is based on the Mininet tool [23]. As discussed in Sec-

tion 2.2, Mininet is a software-defined networking tool that allows emulation of large

networks on a single machine using the native operating system networking stack.

5.1.1 Fidelity Considerations

One criticism of the Mininet framework is that in situations with high load, its timing

fidelity (i.e., the accuracy of the performance results) can suffer [26]. Later work has

addressed this by allowing users to limit the CPU utilization of each emulated host,

as well as restricting the bandwidth of links using the Linux traffic control features

[57].

We observed that our test systems could emulate networks with throughput up

to 24 Gbps. To ensure that our experiments did not approach the limits of Mininet’s

performance fidelity, we limited the bandwidth of each link to no more than 20Mbps,

and used relatively few hosts and links. Each host is CPU limited, so that it may use

no more than a tenth of the available processor time. Finally, we used experiment

output provided by IPerf to verify that CPU utilization remained low during each

experiment. In all cases, CPU utilization was no higher than 5% over the course of

an experiment.

5.1.2 Topology

Our network topology is illustrated in Figure 5.1. The routers, client, server, and

detour are Linux hosts, as described in Section 2.2. They are statically configured with
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Figure 5.1: Experimental network topology. Core links are highlighted in red. Access
links are highlighted in blue.
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routes, so that the default route from client to server traverses Link 2. Routing is

enabled within the Linux kernel.

While configuring routing tables, we encountered issues where Linux kernel routing

rejected incoming packets as “Martians.” That is, packets which originated from an

interface which is not the default route for their source address. To avoid these issues,

we disabled Martian filtering in the Linux kernel. This appears to be an artifact of

our test environment, unrelated to the mechanism.

5.1.3 Methodology

To evaluate the performance of this mechanism, we vary the traffic control configu-

rations of the links in the topology. There are two main traffic control configurations

tested.

• Symmetric. The first configuration gives each link the same traffic control

properties: 10Mbps bandwidth and 5ms delay.

• Core-limited. The second configuration gives each link within the network

“core” (i.e. links 2, 4, and 5) 10Mbps of bandwidth and a 5ms delay. Meanwhile,

the access links (i.e. links 1, 3, and 6) are assigned 20Mbps, with the same 5ms

delay. This aims to simulate a situation in which the access link can support

more bandwidth than the default Internet path can support.

We chose 10Mbps links for two reasons. First, lower capacity links emulate the

scenario where the network core can only provide a fraction of capacity to one con-

nection. Second, lower capacity links keep the total throughput of the system well

under the limitations of our test system, ensuring accurate emulation. For each traffic

control configuration, we also create two modifications.

• Lossy. Link 2 is configured to drop packets independently and randomly with

probability 0.01. This is within the range of packet loss rates Savage et al.
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observe over “bad” paths in their Detour study [3]. We ran smaller experiments

with loss rates of 0.5%, 2%, and 5%, with similar results to the ones presented

here.

• Delayed. Link 2 is configured to have a high (100ms) latency. We also tested

latencies of 20ms and 50ms, although 100ms was the first to show observable

differences in throughput.

This results in a total of six traffic control configurations. For each traffic con-

trol configuration, we use the standard IPerf 3 tool to measure MPTCP or TCP

throughput between client and server. We test the following procedures:

• 1-Subflow. MPTCP is enabled, but no detours are configured on the client.

The connection uses only one subflow, across the Internet routed path.

• NAT. In addition to a subflow on the Internet routed path, a second subflow

is through a NAT detour.

• OpenVPN. In addition to a subflow on the Internet routed path, a second

subflow is through a OpenVPN detour.

• TCP. MPTCP is disabled. A regular TCP flow is used, across the default

Internet routed path. The default Linux congestion control (CUBIC) is used.

• NAT TCP. A regular TCP flow is used, but it is directed through the NAT

detour.

• OpenVPN TCP. A regular TCP flow is used, but it is directed through the

VPN detour.

Throughput is measured with a 10 second IPerf session, which involves transmit-

ting as much data as possible over a TCP (or MPTCP) connection. 10 seconds is the
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default interval for an IPerf session. In our experiments, the TCP flows reached their

peak throughput within less than a second. Since MPTCP has a slower mechanism for

closing a connection than standard TCP, MPTCP IPerf sessions lasted a few seconds

longer than the TCP sessions. During these final time intervals, the data throughput

slowed down significantly, contributing significant variation to our results. In order

to control for these factors, we filter out the first second and any time intervals after

10 seconds. Thus, for each trial, we measure the throughput as the number of bytes

transmitted during these 9 seconds, divided by 9 seconds. We ran 60 trials for each

combination of parameters.

5.1.4 Results
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Figure 5.2: Throughput Comparison: Symmetric

Figure 5.2 shows a performance comparison of the mechanism on the Symmetric

network without loss or latency. In this figure, each distribution is represented by a

box outlining the first and third quartiles of the data, with a line through the center
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representing the median. The whiskers show the spread of the data, and points

outside of 1.5 times the interquartile range are marked with circles as outliers. The

data shown in this and all subsequent box-and-whisker plots of this section are also

given in tabular form in Table 1 in the Appendix.

In this configuration, we can see four important pieces of information. First,

we observe the overhead of single-subflow MPTCP compared to TCP to be around

140kbps in this scenario. This amounts to a 1.5% loss in throughput. This overhead

is due to the presence of the DSS option in each segment. In packet captures, we

observed that the Linux MPTCP implementation tends to send a DSS option with

every data packet, and that these options are usually 20 bytes. On TCP segments

with MSS of 1460, this amounts to 1.37% of the MSS. So, the observed MPTCP

overhead is in line with expectations.

Second, by comparing the TCP and TCP (NAT) throughputs, we can observe the

overhead inherent in the NAT mechanism when compared to TCP over the default

route. This overhead will of course vary depending on topology, but the added pro-

cessing incurred by the NAT detour mechanism must be less than this overhead. We

see about 200kbps overhead, or around 2%.

Third, by comparing the TCP and TCP (VPN) throughputs, we can observe the

overhead inherent in the VPN mechanism when compared to TCP over the default

route. We see a much greater overhead of 630kbps, or 6.6%. In packet captures, we

observed that the MSS of normal TCP segments was 1428, while the MSS of TCP

segments transmitted through OpenVPN was 1337, leaving 91 bytes of overhead.

This amounts to 6.4% of the segment size. So, again, the observed in OpenVPN is in

line with expectations.

Fourth, we can see that MPTCP with the NAT detour performs identically to

1-Subflow MPTCP, even though the two subflows of this mechanism must compete

for the access link capacity. Due to the increased overhead of the VPN approach,
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MPTCP with the VPN detour does not perform as well. However, the difference is

smaller than the difference between TCP and TCP (VPN), since the subflow on the

default path makes up for some of the overhead.
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Figure 5.3: Throughput Comparison: Symmetric, with Loss

In Figure 5.3, we see the effect of adding a 1% loss rate to a link that is present

only on the default path. Regular TCP and MPTCP with one subflow show signif-

icant losses in throughput, and much more variable throughput as well. Under loss,

MPTCP performs worse relative to TCP because its LIA congestion control is more

conservative than the CUBIC congestion control used by regular TCP.

MPTCP with NAT very slightly outperforms TCP (NAT), and MPTCP with

VPN very slightly outperforms TCP (VPN). In both cases, the difference is not

statistically significant. In fact, MPTCP with detours shows much more variability

(standard deviations of 0.08 and 0.17 for NAT and VPN respectively). This is because

the variability of the subflow along the default route adds variability to the overall

connection.
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Figure 5.4: Throughput Comparison: Symmetric, with Latency

In Figure 5.4, we see the impact of the high latency link along the default route.

The performance of 1-Subflow MPTCP and standard TCP suffers due to the increased

round trip time. MPTCP with the NAT detour is able to achieve a similar throughput

to TCP (NAT), since the Lowest RTT first scheduler routes 82.3% of the data across

the detour subflow. MPTCP with the VPN detour demonstrates unusual behavior.

Despite the increased latency of the default route, only 48.0% of data is scheduled

across the VPN detour, suggesting that the VPN adds a significant amount of latency.

The results for the core-limited network are much different. Figure 5.5 shows

a comparison of throughput on the core-limited network, with no loss or latency.

Since the detour path traverses different core links than the default path, there is

no competition. Thus there is the potential to aggregate the capacity of both paths.

The NAT detour achieves 98.5% of the sum of the throughputs of TCP and TCP

(NAT). The VPN detour obtains a 98.1% of the sum of the throughputs of TCP and

TCP (VPN). Again, the NAT detour performs better than the VPN detour due to
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Figure 5.5: Throughput Comparison: Core-limited

the packet overhead of OpenVPN.

When loss is introduced, Figure 5.6 shows that the NAT and VPN methods out-

perform their pure TCP variants, since they are able to aggregate the throughput

of both paths. Even though the default path is lossy, it is able to contribute some

throughput to the MPTCP connection.

Similarly, when latency is introduced, Figure 5.7 shows that the NAT detour

continues to aggregate throughput, although with slightly more variability. The VPN

detour again demonstrates unusual behavior. In some trials, the VPN had a very

high round trip time, resulting in a long slow-start period and very low connection

throughput. We believe this could be due to an artifact of our testing framework.

5.1.5 Summary

By emulating a network with varying conditions, we were able to verify that the

mechanism works as expected. By directing subflows across detour routes, MPTCP
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Figure 5.6: Throughput Comparison: Core-limited, with Loss

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput Comparison: Core-limited with High Latency

Figure 5.7: Throughput Comparison: Core-limited, with Latency
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is able to achieve path bandwidth aggregation in some cases. In situations where no

benefit can be achieved by bandwidth aggregation, the mechanism incurs at least a

1.5% overhead due to MPTCP signaling. This overhead quickly is overcome when

loss or latency is added to one of the paths. When path bandwidth aggregation

is possible, the mechanisms are capable of aggregating over 98% of the sum of the

throughputs achieved by TCP across both paths.

Across all the connections, the NAT approach performs slightly better than the

VPN, due to the additional overhead of the IP and UDP encapsulation, along with

OpenVPN protocol overhead and latency.

5.2 AWS Experiment

The Mininet experiments demonstrate that this method can indeed circumvent lower

quality paths, and also aggregate the capacity of different paths through the net-

work. However, these experiments run on a single platform: client, server, detour,

and routers all share the same network stack. The real Internet is much more hetero-

geneous. To demonstrate the feasibility of this mechanism on the wide area Internet,

we designed a full-scale experiment.

Using Amazon Web Services’ Elastic Cloud Compute service (AWS EC2), we

deployed three instances of type m4.large, each in a different region. The client

is located in the us-west-1 region (Northern California), the detour in us-east-2

(Ohio), and the server in us-east-1 (Northern Virginia). We then ran the IPerf 3

tool for 100 trials in each of the same configurations as the previous experiments.

Figure 5.8 shows a throughput comparison. The connections were able to achieve

a much higher throughput than in the emulated networks. None of the MPTCP based

configurations were able to outperform standard TCP, because the detour was not

able to provide bandwidth aggregation. The most important result of this experiment
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Figure 5.8: Throughput Comparison: AWS

is that standard TCP across the VPN detour is not capable of achieving more than

about 60Mbps, due to the increased processing overhead of OpenVPN. As a result, in

terms of capability to enable high throughput transfers, the NAT detour is a better

choice.
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Chapter 6

Future Work

The mechanisms described in this thesis are the foundation for a much larger system,

with many problems that must be solved before it can be generally deployable. In

this chapter, we discuss these problems and other potential extensions to our work.

6.1 Detour Collective

One fundamental question regarding the deployment of this mechanism has not yet

been addressed: where are detour hosts found, and what is their motivation for

forwarding traffic? One possibility is that a group of users could form a group that

aims to help each other improve their connection quality. Some form of protocol,

either centralized or decentralized, could allow users to join, offering their computer

as a detour, in return for the use of other detour hosts.

Ultimately, this group would be very similar to the overlay networks described

previously. However, unlike most of these, the overlay network would be restricted to

single hop source routing of MPTCP connections.

The VPN detouring mechanism would be particularly conducive to such a collec-

tive. The OpenVPN protocol uses a PKI for authentication of client and server. So,

a centralized collective could use this PKI to enforce membership cryptographically.
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When a user joins, they generate a private key and request that the central authority

sign it. By using the central authority’s certificate as a PKI root, they may ensure

that only members of the collective could use their detouring services. By having

their private key signed, users could gain access to the detouring services of other

members.

Another possibility for deployment could be through ISPs. While the inefficien-

cies created by policy routing on the Internet motivate this work, ISPs must also

continue differentiating themselves to remain competitive to consumers. For exam-

ple, Korea Telecom has launched an MPTCP-based proxy system to provide gigabit

Internet speeds to smartphone users, and the IETF is currently discussing a draft

about MPTCP proxying by ISPs [43]. As a result, ISPs may also be interested in

improving customer experience by implementing a detour system. An ISP could place

detour points at several places in its network, and distribute detour information to

customers via a centralized protocol. In this case, clients would not need to provide

detouring services to each other, because the ISP provides them. Further, compet-

ing ISPs could federate detour systems (similar to peering agreements) so that their

customers could gain access to better-situated detour points.

6.2 Detour Traffic Attribution

Similar to exit nodes in Tor [58], detours act as exit points for unknown traffic. In

both cases, traffic bound for the Internet must undergo NAT, with the source address

being replaced with the exit point’s address. Thus, traffic emerging from a Tor exit

or a detour can be wrongly attributed as originating from that host. Depending on

the nature of the traffic, this can be dangerous for the exit node, as they could be

held responsible for illegal activity. As a result, running a detour represents some

risk.

54



6.3. DYNAMIC SOURCE ROUTING CHAPTER 6. FUTURE WORK

One potential mitigating factor could be the use of client certificates in the Open-

VPN detour authentication process. By authenticating each other, a Detour can have

cryptographically verified information about the client which will be using its services,

assuming that this information is included in the certificate. Combined with detailed

logging of outgoing connections, a Detour may accurately attribute connections to

their source, providing strong evidence of innocence in the event of an investigation.

Furthermore, while the goal of Tor is providing anonymity, the goal of our detour

mechanism is improving performance and reliability. The anonymity provided by Tor

is a lucrative resource to those using the Internet for illegal activity, and our service

provides no such guarantee. As a result, the risks associated with running a detour

are much lower than running a Tor exit node. However, these arguments do not fully

address the traffic attribution problem, and future consideration is necessary for a

full deployment of our mechanism.

6.3 Dynamic Source Routing

In the RON system, overlay routing is performed at each node [4]. Similarly, the

Detour study describes a system in which routing is performed at each overlay node

[3]. In our system, we apply source routing. While overlay routing mechanisms

have been described for systems like RON and Detour, we are aware of few detour

selection strategies. One strategy, employed in voice calling applications, makes use

of historical data regarding connection performance [59]. Selecting detours without

prior knowledge of connection quality, or network topology, is a difficult problem.

An extension to this work would be to extend it with such an algorithm. This

algorithm would maintain several MPTCP subflows, and every so often it would

decide to close one in favor of a new route. This decision would have to take into

account at least the following factors:
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• RTT and observed loss rate of the subflow considered for eviction.

• Change in RTT and observed loss rate of the other subflows since this one was

added.

• Potentially outside observations, such as statistics from other subflows, or statis-

tics generated from userspace monitoring programs.

Together with a Detour Collective, this could almost completely automate the

process of using this framework for an end user.

6.4 Data Scheduling

The kernel modifications of this framework currently only consist of a path manager.

We have no control of the scheduling of data across the subflows we’ve created, beyond

selecting an appropriate scheduler. An extension of this work could be to implement

a data scheduler for the framework. A custom scheduler could send data redundantly

across new subflows just after they are added, so that there is no loss in reliability

when assessing the performance of a new subflow. Further, a scheduler could detect

whether a particular flow is application limited or network limited, and schedule

differently based on this. For instance, redundantly sending data across each subflow

could improve overall latency and loss rates, but it would only make sense when the

connection is application limited. A network limited connection would be best served

by a less wasteful strategy, such as the default Lowest RTT First scheduler.

6.5 0-RTT NAT Establishment

Currently, the NAT forwarding mechanism uses a UDP-based protocol for request-

ing tunnels. This protocol is rather naive and vulnerable to many obvious exploits.
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While future work is required to harden this protocol, there are other possibilities

which could eliminate the 1-RTT required to establish a NAT mapping. Since the

NAT detouring mechanism has less space overhead, and therefore a measurable im-

provement over the VPN detour, eliminating this 1-RTT delay would remove the

tradeoff between startup speed and overall throughput.

One possibility may be to embed the final destination of the initial SYN packet

into an IP option. This would eliminate the need for a signaling protocol. This

would require implementing a Netfilter module for the detour host’s kernel. However,

Medina et al. [13] measure that 70% of TCP SYN packets carrying an unknown IP

option are dropped. Additionally, Fonseca et al. [60] measure that half of packets

containing IP options are dropped. While it is possible that these 2005 findings are no

longer accurate, further investigation is required before investing in a solution based

on IP options.

Another possibility is to create a TCP option containing the destination address,

and add it to the initial SYN. MPTCP requires TCP options in order to function,

so TCP options would not incur the same compatibility concerns that IP options do.

Yet another possibility is including the final destination within a data element of the

TCP SYN packet. This strategy is used in the IETF’s MPTCP proxying draft [43]

as a way to communicate the final destination of a SYN packet. In either of these

cases, it is likely that kernel modifications would be necessary for the detour host.
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Chapter 7

Conclusion

In this thesis, we have described the implementation and evaluation of a system for

adding non-default paths to MPTCP connections. We implemented this as a path

manager in the 0.91 version of the Multipath TCP Linux kernel, along with several

user-space utilities which complete the system.

The implementation is structured so that two different mechanisms for tunneling

subflows are allowed. We have seen that the NAT approach has slightly better per-

formance due to its lower space and processing overhead. However, that increased

performance comes at the expense of an extra RTT for setting up a tunnel, and the

extra complexity of a dynamic client which creates them. The VPN approach is

simpler, but has higher overhead.

When compared to standard TCP over the best available path, this mechanism

incurs a modest overhead when the same bottleneck link is present on both paths.

However, when the paths have separate bottlenecks, this mechanism is capable of

aggregating the bandwidth of both paths, achieving better performance than standard

TCP across the best path.

This mechanism is compatible with unmodified applications on the wide area

Internet today. We believe that as high-bandwidth access links become more common,
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CHAPTER 7. CONCLUSION

the collaborative bandwidth sharing systems this enables will become more relevant.

In the meantime, there are several opportunities for extending this work and using it

to study problems like detour routing.
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Data

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

(*)Core-limited 9.41 (0.01) 18.81 (0.02) 18.30 (0.18) 9.55 (0.00) 9.55 (0.01) 9.11 (0.01)

Core-limited, 0.5% Loss 9.42 (0.00) 18.83 (0.01) 18.27 (0.34) 9.54 (0.01) 9.55 (0.01) 9.12 (0.01)

(*)Core-limited, 1% Loss 4.21 (0.34) 13.76 (0.38) 13.05 (0.48) 6.16 (0.61) 9.55 (0.00) 9.11 (0.01)

Core-limited, 2% Loss 2.89 (0.25) 12.36 (0.29) 11.60 (0.38) 4.17 (0.42) 9.54 (0.01) 9.10 (0.01)

Core-limited, 5% Loss 1.50 (0.14) 11.01 (0.14) 10.42 (0.12) 2.13 (0.19) 9.55 (0.01) 9.11 (0.01)

Core-limited, 20ms Delay 9.42 (0.00) 18.83 (0.01) 18.28 (0.33) 9.55 (0.01) 9.54 (0.01) 9.11 (0.01)

Core-limited, 50ms Delay 9.42 (0.01) 18.63 (0.16) 17.99 (0.21) 9.55 (0.00) 9.55 (0.01) 9.11 (0.01)

(*)Core-limited, 100ms Delay 9.09 (0.01) 17.73 (0.28) 15.41 (2.24) 9.22 (0.01) 9.55 (0.01) 9.11 (0.01)

(*)Symmetric 9.41 (0.01) 9.41 (0.01) 9.14 (0.03) 9.54 (0.03) 9.35 (0.01) 8.91 (0.00)

Symmetric, 0.5% Loss 9.42 (0.00) 9.41 (0.02) 9.15 (0.04) 9.55 (0.01) 9.35 (0.01) 8.90 (0.01)

(*)Symmetric, 1% Loss 4.36 (0.44) 9.39 (0.08) 8.93 (0.17) 6.45 (0.68) 9.35 (0.01) 8.91 (0.01)

Symmetric, 2% Loss 2.89 (0.26) 9.30 (0.17) 8.85 (0.24) 3.92 (0.49) 9.35 (0.01) 8.92 (0.01)

Symmetric, 5% Loss 1.47 (0.17) 9.24 (0.20) 8.78 (0.25) 2.10 (0.26) 9.35 (0.01) 8.90 (0.02)

Symmetric, 20ms Delay 9.42 (0.00) 9.42 (0.00) 9.13 (0.04) 9.55 (0.00) 9.36 (0.00) 8.92 (0.00)

Symmetric, 50ms Delay 9.42 (0.00) 9.41 (0.01) 9.23 (0.04) 9.55 (0.01) 9.36 (0.01) 8.92 (0.00)

(*)Symmetric, 100ms Delay 9.10 (0.01) 9.37 (0.02) 9.03 (0.09) 9.22 (0.01) 9.35 (0.01) 8.90 (0.03)

Table 1: Full Mininet throughput data. All units are Mbps (mega bits per second).

Standard deviation in parentheses. Rows marked with (*) have 60 trials, other rows

have 20 trials. Values are in the form “mean (standard deviation)”.
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Configuration Bytes, Default Bytes, Detour Percent, Default Percent, Detour

Core-limited, NAT 12833473 12784884 50.09% 49.91%

Core-limited, VPN 12752000 9446808 57.44% 42.56%

Core-limited, Lossy, NAT 5881969 12039468 32.82% 67.18%

Core-limited, Lossy, VPN 5607324 8957956 38.50% 61.50%

Core-limited, Delayed, NAT 12572613 11800992 51.58% 48.42%

Core-limited, Delayed, VPN 12558642 10273609 55.00% 45.00%

Symmetric, NAT 6997237 6083280 53.49% 46.51%

Symmetric, VPN 10655479 2638377 80.15% 19.85%

Symmetric, Lossy, NAT 859693 11737856 6.82% 93.18%

Symmetric, Lossy, VPN 1885375 8912407 17.46% 82.54%

Symmetric, Delayed, NAT 2380513 11062716 17.71% 82.29%

Symmetric, Delayed, VPN 6502281 5990180 52.05% 47.95%

Table 2: Bytes transmitted across subflows. Measured from 1 trial in each of the

configurations, via packet captures.

61



Bibliography

[1] Y. Rekhter, S. Hares, and D. T. Li, “A Border Gateway Protocol 4 (BGP-4).”

RFC 4271, Jan. 2006.

[2] J. Moy, “OSPF Version 2.” RFC 2328, Apr. 1998.

[3] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoff-

man, J. Snell, A. Vahdat, G. Voelker, et al., “Detour: Informed internet routing

and transport,” Ieee Micro, vol. 19, no. 1, pp. 50–59, 1999.

[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient overlay

networks, vol. 35. ACM, 2001.

[5] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-area

internet bottlenecks,” in Proceedings of the 3rd ACM SIGCOMM conference on

Internet measurement, pp. 101–114, ACM, 2003.

[6] M. Sargent and M. Allman, “Performance within a fiber-to-the-home network,”

ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 22–30,

2014.

[7] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,

and M. Handley, “How hard can it be? designing and implementing a deploy-

able multipath tcp,” in Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation, pp. 29–29, USENIX Association, 2012.

62



BIBLIOGRAPHY BIBLIOGRAPHY

[8] J. Iyengar, C. Raiciu, S. Barre, M. J. Handley, and A. Ford, “Architectural

Guidelines for Multipath TCP Development.” RFC 6182, Mar. 2011.

[9] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer using

sctp multihoming over independent end-to-end paths,” IEEE/ACM Transactions

on networking, vol. 14, no. 5, pp. 951–964, 2006.
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