
A HANDS-ON SECURITY COURSE

by

ANDREW HENNESSY

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

May 2017

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis of

Andrew Hennessy

candidate for the degree of Master of Science*.

Committee Chair

Dr. Kenneth Loparo

Committee Member

Dr. Francis Merat

Committee Member

Dr. Gregory Lee

Date of Defense

April 6, 2017

*We also certify that written approval has been obtained

for any proprietary material contained therein.

Contents

List of Tables v

List of Figures vi

Acknowledgments viii

Abstract x

1 Introduction 1

1.1 Other Courses at Different Universities 2

1.2 Organization of the Thesis . 3

2 Laboratory Environment 4

2.1 Equipment and Tools Needed . 5

2.2 Experimental Board . 6

2.2.1 Purpose-Designed Board . 6

2.2.2 Off-the-shelf Boards . 18

3 Syllabus 20

3.1 Prerequisites . 20

3.2 Credit Hours . 20

3.3 Course Description . 20

3.4 Key Concepts . 21

i

CONTENTS

3.5 Course Requirements . 21

3.6 Student Expectations . 21

3.7 Lecture Schedule . 22

3.8 Grading . 22

3.9 Student Conduct and Academic Integrity 23

3.10 Expected Outcomes . 23

4 Lab #1: Buffer Overflows 24

4.1 Objectives . 24

4.2 Assignment . 24

4.2.1 Introduction . 24

4.2.2 Instructions . 25

4.3 Assignment Files . 26

4.4 Solutions . 29

5 Lab #2: Diffie-Hellman Key Exchange 32

5.1 Objectives . 32

5.2 Assignment . 32

5.2.1 Extra Credit Opportunity #1 33

5.2.2 Extra Credit Opportunity #2 33

6 Lab #3: AES Encryption 34

6.1 Objectives . 34

6.2 Assignment . 34

6.2.1 Introduction . 34

6.2.2 Instructions . 35

6.3 Assignment Files . 36

6.4 Solution . 38

6.4.1 Caesar Cipher Exercise . 38

ii

CONTENTS

6.4.2 AES Exercise . 38

7 Lab #4: Bus Snooping 39

7.1 Objectives . 39

7.2 Assignment . 39

7.2.1 Introduction . 39

7.2.2 Instructions . 40

7.2.3 References and Further Reading 42

7.3 Solution . 42

8 Lab #5: Reverse Engineering 45

8.1 Objectives . 45

8.2 Assignment . 45

8.2.1 Introduction . 45

8.2.2 Instructions . 46

8.2.3 Deliverables . 47

8.3 Solution . 48

9 Lab #6: Physically Unclonable Functions 49

9.1 Objectives . 49

9.2 Assignment . 49

9.2.1 Introduction . 49

9.2.2 Instructions . 50

9.2.3 References . 51

10 Final Project & Paper 52

10.1 Objectives . 52

10.2 Final Paper . 52

10.3 Final Project . 53

iii

CONTENTS

10.3.1 Introduction . 53

10.3.2 Part 0: Project Proposal . 53

10.3.3 Part 1: Building the Project 54

10.3.4 Part 2: Attacking the Project 54

10.3.5 Part 3: Defending the Project 54

11 Results & Conclusion 55

11.1 Results . 55

11.1.1 Fall 2014 . 55

11.1.2 Fall 2015 . 58

11.2 Conclusion . 61

A Proposed SAGES Course 62

B Layout Files 66

Bibliography 75

iv

List of Tables

2.1 The Bill of Materials for the purpose-designed board. 8

2.2 Pin Mapping between the Custom Board, the Arduino Leonardo and

the native pin names. 15

2.3 Pin Mapping between the Custom Board and the native pin names for

the CPLD and microcontroller. 16

7.1 The contents of an I2C transaction between the microcontroller and

the accelerometer. 43

8.1 Example Bill of Materials for the assignment. 47

11.1 The sequence of assignments for the Fall 2014 version. 56

11.2 The sequence of assignments for the Fall 2015 version. 58

A.1 Tentative, proposed, schedule for the SAGES course. 63

B.1 The Pick-n-Place file for automated component placement. 74

v

List of Figures

2.1 The block diagram of the purpose-designed board. 7

2.2 The PCB layout of the purpose-designed board in Altium Designer. . 7

2.3 The Arduino IDE when it is first opened. 14

2.4 The data the default application sends to the computer. 16

4.1 The expected output of “simple buffer overflow.c” 30

4.2 The expected output of “pointer buffer overflow.c” 31

6.1 The output of “aes example.c” with three different length arguments. 38

7.1 Block diagram of the demo Printed Circuit Board (PCB). 40

7.2 The screen of an Agilent MSO 2002A configured to decode I2C data

and to trigger on a I2C start bit. It should be noted that the measured

frequency of Channel 1 is incorrect. The correct value is 400.0kHz. . . 43

8.1 Block diagram of the demo Printed Circuit Board (PCB). 46

B.1 The schematic of the purpose-built board. 67

B.2 The top silk screen graphic. 68

B.3 The top soldermask graphic. 69

B.4 The top copper graphic. 70

B.5 The bottom copper graphic. 71

B.6 The bottom soldermask graphic. 72

vi

LIST OF FIGURES

B.7 The drill locations. 73

vii

Acknowledgments

The first person that requires acknowledgment is Dr. Kenneth Loparo, without whom

this thesis would likely not exist. He was always willing to drop what he was doing

and offer an open chair to listen to and assist with my issue du jour as well as offering

a gentle nudge every once in a while to keep me on track. He also had enough faith in

me to allow me to teach an untested course to twenty-five undergraduate students over

two semesters. Secondly, without Dr. Francis Merat’s seemingly unending knowledge

of Case Western’s bureaucracy and history I would have been stuck multiple times.

Thirdly, Dr. Gregory Lee, whose guidance and experience enabled me to make my

course better than it otherwise would have been.

Additionally, I would like to thank one of my cohorts over at Cleveland State Uni-

versity, Chirayu Shah, for providing the basis of two of the software-based assignments

that I built upon.

I would also like to thank the innumerous people who let me bounce ideas off of

their shoulders during the brainstorming sessions for this course. Without their open

ears this course would have turned out very differently.

This material is based upon work supported by the National Science Foundation

under Grants No. 1603480 and 1520306. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Finally, without my family’s support and encouragement none of this would have

viii

ACKNOWLEDGMENTS

ever been possible.

ix

A Hands-On Security Course

Abstract

by

ANDREW HENNESSY

In today’s world almost every transaction, whether it’s monetary or the exchange

of information, passes through a computer system at some point it its journey. These

transactions are secured using numerous forms of encryption to both protect the

information as well as ensuring the integrity of the parties involved.

These security methods are currently taught in classrooms with chalkboards full of

equations without a thought to how the methods are practically implemented, leaving

students confused as to how these equations and concepts relate to the physical or

virtual worlds

This thesis provides the basis of a laboratory course that enables students to easily

learn about the modern implementations of security in a controlled environment using

common tools such as a digital multimeter and an oscilloscope, providing both a

theoretical and practical setting for student enrichment.

This course was piloted at Case Western Reserve and the student response was

overwhelmingly positive.

x

Chapter 1

Introduction

Almost everything we do on a computer has to be secured in one fashion or another.

Historically, communications between two parties were secured by a number of dif-

ferent methods, ranging from wax seals to padlocks and even to primitive cyphers.

The direct analogy to physical security in the digital world is encryption. However,

like wax seals — which can be opened without detection — and locks — which can

be pried open — encryption can be defeated in a number of different ways. This

thesis explores how encryption can be broken by attacking, “hacking,” with two dif-

ferent approaches: attacking the implementation of the encryption in software and

by attacking the hardware that the encryption algorithms run on.

As it stands now, encryption technologies and methods are rarely taught at the

undergraduate level, with often only one or two courses offered at the graduate level.

These courses are typically through the Mathematics Department instead of through

an engineering department. These courses are usually taught at the theoretical level,

ignoring and purposely leaving out implementation details. This leads to an oft-

repeated adage that states, “one should never implement their own encryption system,

they should let the professionals handle it.” This statement, however, implicitly

instructs users to treat an encryption algorithm as a black box, a statement which

1

CHAPTER 1. INTRODUCTION

runs orthogonal to that of an educational institutions’s philosophy.

1.1 Other Courses at Different Universities

While researching this class and creating the required coursework for students to

preform, a small handful of other courses at different universities were discovered

with the same goal as the course described in this thesis. It is difficult to find full

details on these courses due to the increasing trend of courses being locked behind a

password-protected Learning Management System, such as Blackboard, Moodle and

Canvas.

One such course that was found, and not locked behind such a system, was CSCI:

4974 and 6964: Hardware Reverse Engineering taught during the Fall 2014 semester at

the Rensselaer Polytechnic Institute (RPI) by Dr. Bülent Yener and his TA, Andrew

Zonenberg[11].

Their course focused entirely on attacking the hardware that an encryption algo-

rithm runs on and they were able to go more in-depth with equipment and methods

such as decapping an Integrated Circuit (IC), as well as invasive attacks on hardware

with tools such as a Focused Ion Beam (FIB) setup to modify IC’s and Scanning

Electron Microscope (SEM) to reverse engineer the schematics of an IC.

As it’s title suggests, this course focuses entirely on the hardware of a system

and how it can be attacked, with little regard to potential software vulnerabilities.

In addition, while Case Western Reserve has a facility that owns a SEM and FIB

machine, budgetary and course-sequence concerns precluded the use of these machines

in the way that the RPI course used them. One of the design criteria for the course

described in this thesis was that it should be available to the highest number of

students possible and not have external prerequisite dependencies. The consequence

of this decision is that the advanced labs that the RPI course was able to include,

2

CHAPTER 1. INTRODUCTION

such as the aforementioned IC reverse engineering lab, could not be included in this

course.

1.2 Organization of the Thesis

This thesis is divided into four broad parts. The first part contains the introductory

material — this introduction, Chapter 1 — as well as Chapter 2, which discusses the

equipment that is needed to do the experiments documented in this thesis.

The second part, Chapters 3–10 discuss in detail each of the six experiments that

compose the course on Integrated Security. It starts with Chapter 3, which provides

a sample syllabus for the class. Then, the chapters for the experiments are typically

further subdivided into two sections. The first section is a short description of what

the students are expected to have learned following the conclusion of the experiment.

The other section in each chapter is the assignment that is given to the students

to complete, along with any necessary support files. Solutions to questions that are

asked in the assignment are provided, however several assignments ask students to

write a program to accomplish the task. Due to the large variety of possible answers,

solutions to programming exercises are not provided.

The next part, Chapter 11 discusses the feedback received by students when this

course was offered twice, in the Fall of 2014 as well as the Fall of 2015 as well as

changes that were made as a consequence of that feedback.

The last part of this thesis is comprised of a two appendices. The first appendix

describes an alternate version of the course described in this thesis re-framed as a

freshman English class. The second appendix contains all of the necessary technical

documentation that is needed to construct more copies of the purpose built board

that is described in Chapter 2.

3

Chapter 2

Laboratory Environment

One aspect that sets this curriculum apart from others in the field is that all of the

experiments and laboratory exercises are done on an embedded device, as opposed to

using either a desktop computer or what is unfortunately becoming the norm, having

no hands-on labs at all. The advantages of this approach are numerous, students are

able to interact with hardware in situations that they might not otherwise be able to

as well as seeing how changes in the firmware affect the fundamental operation of the

hardware.

The drawback of this approach is that a certain amount of initial capital invest-

ment is needed to teach this course. This course was designed around using a general

purpose circuits laboratory without the need for specialized equipment outside of

what is needed for an introductory sophomore-level circuits course. For example, at

Case Western Reserve University sophomore engineering students take a course titled

ENGR 210: Introduction to Circuits and Instrumentation to satisfy part of

their engineering breadth requirement. This course has a mandatory weekly labora-

tory session in a purpose-build teaching laboratory, the Sears Undergraduate Circuits

Lab, that has the following equipment:

• HP 33120A Function Generator

4

CHAPTER 2. LABORATORY ENVIRONMENT

• HeTest 3005F Dual Rail Power Supply

• HP 34401A or Keithley 2000 Digital Multi Meter

• Agilent MSO 2002A Digital 2 Channel Mixed-Signal Oscilloscope

This is typical of the level of equipment that is available in most engineering

schools.

2.1 Equipment and Tools Needed

For the described security-centric class this array of expensive test equipment is not

necessarily needed. Since the security class is a predominantly digital class and not an

analog design class, the function generator and the power supply are not needed.The

digital multi meter is only needed for one experiment — the reverse engineering

experiment — and a generic multimeter is all that is required.

Of the laboratory experiments elaborated on in later chapters only the experi-

ments for snooping on a bus (Chapter 7) and reverse engineering (Chapter 8) require

an oscilloscope. The rest of the experiments only require an embedded software de-

velopment board, as discussed in the next section.

This course was designed to use a Keysight MSO 2002A oscilloscope, which is one

step above the base model 2000 series oscilloscope. It has a bandwidth of 70 MHz,

a maximum sample rate of 2 GS/s, a memory depth of one million points and two

analog channels with eight digital channels, with a MSRP of $2,059[15]. Additional

to the oscilloscope itself the course is designed to take advantage of the segmented

memory upgrade ($307) as well as the I2C and SPI hardware decoders ($500). For

an institution gearing up to offer an electronics lab for the first time, outfitting a

number of workstations with oscilloscopes and PC’s might not be possible for some

budgets.

A less expensive alternative that has been verified to work with all of the assign-

5

CHAPTER 2. LABORATORY ENVIRONMENT

ments is the Saleae Logic 8. This is a more basic option than a full-blown oscilloscope,

yet it has all of the features needed for this class. The bandwidth of the Saleae is 25

MHz with a maximum sample rate of 100 MS/s and a memory depth that is solely

based on the attached computer amount of RAM, since the Logic 8 has no display or

storage of its own and entirely relies on an attached computer. The Logic 8 has eight

dual-purpose digital or analog inputs and the device’s software automatically handles

the decoding of I2C and SPI bus signals, all for a MSRP of $219, not that much

more than a modern collegiate level textbook (and in some cases less)[21]. It would

be resaonable to require students to purchase their own pocket-sized oscilloscope for

this class instead of requiring an actual laboratory oscilloscope.

2.2 Experimental Board

The majority of the hardware experiments for this course are designed to run on a

development board with a cross-compilation environment set up on a computer. For

this class, a Printed Circuit Board (PCB) has been custom-designed for ease-of-use

and completeness. Alternatively, an off-the-shelf board, such as an Arduino Uno R3,

can be used although not all experiments, as they currently exist, will be able to be

completed on an off-the-shelf board.

2.2.1 Purpose-Designed Board

Once the experiments were sketched out and preliminary designs were finished it

became apparent that no currently existing off-the-shelf development board would be

suited to the tasks necessary for this course. A new development board would have

to be designed and manufactured.

6

CHAPTER 2. LABORATORY ENVIRONMENT

Figure 2.1: The block diagram of the purpose-designed board.

Figure 2.2: The PCB layout of the purpose-designed board in Altium Designer.

7

CHAPTER 2. LABORATORY ENVIRONMENT

R
e
fD

e
s

M
a
n
u
fa

ct
u
re

r
M

o
d
e
l

D
e
sc

ri
p

ti
o
n

C
1,

C
2,

C
3,

C
4

K
em

et
C

08
05

C
10

5Z
4V

A
C

T
U

C
er

am
ic

08
05

1u
F

C
ap

ac
it

or
,

Y
5V

,
16

V
C

5,
C

6,
C

7,
C

8,
C

9,
C

10
,

C
11

K
em

et
C

08
05

C
10

4Z
4V

A
C

T
U

C
er

am
ic

08
05

0.
11

u
F

C
ap

ac
it

or
,

Y
5V

,
16

V
D

1,
D

2,
D

3,
D

4
O

S
R

A
M

L
G

R
97

1-
K

N
-1

08
05

G
re

en
L

E
D

F
1

B
el

F
u
se

0Z
C

G
00

50
A

F
2

50
0m

A
P

T
C

F
u
se

J
1

K
y
co

n
K

U
S
B

X
H

T
-B

S
1N

-O
-H

R
F

U
S
B

T
y
p

e
B

P
lu

g
J
2

3M
30

30
6-

60
02

H
B

2x
3

0.
1”

H
ea

d
er

(I
S
C

P
)

J
3

3M
30

31
0-

60
02

H
B

2x
5

0.
1”

H
ea

d
er

(J
T

A
G

)
P

1,
P

2
T

E
C

on
n
ec

ti
v
it

y
9-

14
62

85
-0

-1
4

1x
14

0.
1”

H
ea

d
er

(D
eb

u
g)

R
1,

R
2

V
is

h
ay

D
al

e
C

R
C

W
08

05
22

R
0F

K
E

A
22

O
h
m

R
es

is
to

r,
1/

8W
,

1%
,

08
05

R
3,

R
4

V
is

h
ay

D
al

e
C

R
C

W
08

05
10

K
0F

K
E

A
10

k
O

h
m

R
es

is
to

r,
1/

8W
,

1%
,

08
05

R
5,

R
6,

R
7,

R
8,

R
9

V
is

h
ay

D
al

e
C

R
C

W
08

05
22

0R
F

K
E

A
22

0
O

h
m

R
es

is
to

r,
1/

8W
,

1%
,

08
05

R
10

,
R

11
V

is
h
ay

D
al

e
C

R
C

W
08

05
4K

70
F

K
E

A
4.

7
O

h
m

R
es

is
to

r,
1/

8W
,

1%
,

08
05

R
S
1,

R
S
2,

R
S
3

O
h
m

it
e

L
V

K
12

R
10

0D
E

R
0.

1
O

h
m

R
es

is
to

r,
1/

2W
,

0.
5%

,
12

06
S
W

1
N

K
K

G
W

12
R

H
H

S
P

D
T

S
w

it
ch

U
1

T
ex

as
In

st
ru

m
en

ts
L

P
39

90
M

F
-1

.8
/N

O
P

B
1.

8V
L

D
O

V
ol

ta
ge

R
eg

u
la

to
r

U
2

A
tm

el
A

T
M

E
G

A
16

U
4-

A
U

R
8-

B
it

M
ic

ro
co

n
tr

ol
le

r
U

3
A

lt
er

a
5M

16
0Z

E
64

C
5N

16
0

E
le

m
en

t
C

P
L

D
U

4
T

ex
as

In
st

ru
m

en
ts

L
P

39
90

M
F

-3
.3

/N
O

P
B

3.
3V

L
D

O
V

ol
ta

ge
R

eg
u
la

to
r

U
5

M
em

si
c

M
X

C
62

32
0E

P
2

A
x
is

A
cc

el
er

om
et

er
Y

1
A

b
ra

co
n

A
W

S
C

R
-1

6.
00

C
V

-T
16

M
H

z
R

es
on

at
or

T
ab

le
2.

1:
T

h
e

B
il
l

of
M

at
er

ia
ls

fo
r

th
e

p
u
rp

os
e-

d
es

ig
n
ed

b
oa

rd
.

8

CHAPTER 2. LABORATORY ENVIRONMENT

Design of the Board

A block diagram of this board can be seen in Fig. 2.1. The overall architecture of the

board includes a master microcontroller (MCU) which receives data from a sensor (an

accelerometer in this case) and can perform off-chip Digital Signal Processing (DSP)

on a Complex Programmable Logic Device (CPLD) that is attached to the MCU. This

design was chosen to be as flexible as possible in order to emulate emerging Internet

of Things (IoT) devices. The only element missing from this board is a means of

wireless communication, although this can be added later by using the debugging

extension headers.

A completed version of the purpose-designed board can be seen in Fig. 2.2. In

the figure the layer colors are as follows: Red is Top Copper, Blue is bottom Copper,

Yellow is Top Silkscreen and Green/Grey are Holes. The Bill of Materials for the

board can be seen in Table 2.1.

The Atmel ATMEGA16U4 was chosen for this board. It is eight bit microcon-

troller that uses a modified Harvard architecture RISC core. That is to say user

and program data are treated as the same by the core, which carries the designation

‘AVR’ by its manufacturer. The ATMEGA16U4 has 16 KB of flash available to store

code as well as 1.25 KB SRAM to store program state during execution. The chip

also has 512 bytes of Electrically Erasable Programmable Read-Only Memory, which

while not used in any of the experiments for this course, is able to store data across

a power cycle. The ATMEGA32U4 is a drop in replacement for the ATMEGA16U4

which doubles the amount of flash to 32 KB, the SRAM to 2.5 KB and the EEPROM

to 1 KB. The ATMEGA16U4 was chosen for this board over the ATMEGA32U4 pri-

marily due to availability restrictions on the ATMEGA32U4 when the PCB was sent

out for fabrication and assembly, but also to save approximately 40% in parts cost[4].

The AVR Core is well supported by several different compilers and, as we will

discuss later in this section, is the foundation for the popular Arduino software suite

9

CHAPTER 2. LABORATORY ENVIRONMENT

and development board. In fact, this board can easily emulate the popular Arduino

Leonardo development board, which makes programming it by students even easier.

One standout feature of the Atmel ATMEGA16U4 is that it has integrated support

for the Universal Serial Bus (USB) standard. The microcontroller supports creating

a number of virtual USB endpoints, one of which can be used to emulate a standard

serial port. If the ATMEGA16U4 did not support this feature, communication with a

host computer would have to go through a more complex translation between the mi-

crocontroller’s serial port and an external Integrated Circuit that supports translating

between both standards.

The other half of this board, so to speak, is the CPLD. The CPLD that was

chosen for this board was the Altera MAX V 5M160ZE64C5N. The 5M160ZE64C5N

has a hundred and sixty Logic Elements that can be configured to emulate any basic

hardware device, including basic DSP functions[2].

As mentioned previously, many embedded devices collect data with an array of

sensors then process that data using a separate DSP chip, all controlled by a micro-

controller. A standalone DSP chip was not chosen for this board primarily due to cost

and complexity. The Altera 5M160ZE64C5N is $3.51[7] in quantities and a simple

DSP chip starts at $30[10]. Furthermore, a standalone DSP chip requires multiple

power rails and potentially off-chip DRAM and assorted other interfaces. Adding

support for those would have exponentially increased the cost to manufacture and

assemble this simple board. Furthermore, DSP software stacks are heinously com-

plicated, not to mention expensive and proprietary, causing the core focus of this

course — how hardware and software interact to learn about embedded security —

to become shifted towards labs in “how to set up the DSP software”.

A similar rationale can be given for why a simpler CPLD was used instead of a

more expensive, complex, and powerful Field Programmable Gate Array (FPGA).

While a FPGA can be used for more extensive emulation of DSP tasks than a CPLD

10

CHAPTER 2. LABORATORY ENVIRONMENT

can, it carries drawbacks, such as increased power and physical space.

After this board went into production and before this thesis was written, Altera

announced the MAX 10 FPGA series which does away with the complicated power

trees that FPGAs are known for and replaces it with a single power supply rail[1]. A

revision to this board could be made that replaces the MAX V CPLD in favor of the

newer MAX 10 FPGA, leaving students able to implement more realistic emulation

DSP filters.

One downside to using Altera products is the required expensive, external, pro-

grammer, which Altera trademarks as the USB-Blaster series. The official USB-

Blaster is $300[9], while licensed clones are $50[8]. A counterfeit programmer can be

had for $3 on E-Bay[12], although using a known counterfeit device carries ethical

concerns, which would be amplified by the irony of doing so in a security class. It is

possible to license the USB-Blaster technology from Altera for a cost of $5,000 per

design[20], although in our case it would require an additional microcontroller and

FPGA that are more powerful than the ones on our board, further driving up the

cost of the board for the students.

The board has programming connections for both Atmel’s In-Circuit Serial Pro-

gramming (ICSP) interface (Connector J2 in Fig. 2.2) as well as the standard Joint

Test Action Group IEEE 1149.1 testing and debug interface (Connector J3 in Fig.

2.2). The Atmel ATMEGA16U4 can be programed by both interfaces but the Altera

5M160ZE64C5N can only be programmed through the JTAG interface. The JTAG

chain in this board is set so that the first device on the chain is the microcontroller

than the second and final device on the chain is the CPLD.

To provide feedback to the user visually there are four green LEDs situated on

the right-hand side of the board, as can be seen in Fig. 2.2. The top-most LED,

D1, lights up any time that there is 5 Volts applied to the USB socket. The second

LED down, D2, is illuminated whenever the power switch (SW1) is turned on and

11

CHAPTER 2. LABORATORY ENVIRONMENT

the voltage regulators are providing 3.3V for the rest of the board. The next LED

in the stack, D4, is connected to the CPLD to provide user-configurable notification.

The final LED, D3, is connected to the microcontroller to serve a similar purpose.

By default the two programmable LEDs are designed to light up whenever there is

motion in the X- or Y-direction, as sensed by the accelerometer.

The Memsic MXC62320EP accelerometer was chosen for several different reasons.

One of the biggest reasons is that the I2C communication protocol to read the sensor’s

data is extremely simple — there are not dozens of registers that need to be precisely

programmed to ensure proper operation. This chip simply outputs the current ac-

celeration on two axes when asked[17]. This makes the assignments for bus snooping

(Chapter 7) and reverse engineering (Chapter 8) simpler than they would otherwise

be while still teaching students valuable lessons. Secondly the physical package of

the device is big enough and the pin spacing is large enough not to require special

(i.e. expensive) handling for automated assembly. An additional benefit is that the

PCB can be finished in a cheaper HASL (Hot Air Solder Leveling) instead of more

expensive process, such as ENIG (Electroless Nickel Immersion Gold), which would

have been needed if an accelerometer in a QFN package was selected.

One note is that between the production of this board several years ago and the

writing of this thesis is that the Memsic MXC62320EP has been discontinued in favor

of a replacement that has a higher range and a lower noise floor[18]. Physically and

electrically the newer version appears to be a drop in replacement so future revisions

of the board could easily switch to the newer product.

The PCB was designed to be as small as possible to minimize manufacturing costs.

The end result is a two-layer PCB that is 3” wide and 2” tall with components only

on the top. Passive components, such as resistors and capacitors, were arranged in

long lines all facing the same direction to make potential hand assembly faster, easier,

and the potential for mistakes less. For such a simple design two layers is all that is

12

CHAPTER 2. LABORATORY ENVIRONMENT

needed. A four layer board, adding in a layer for ground and a layer for the power

supply, would be completely unnecessary. Additionally, having two layers helps make

the reverse engineering assignment (Chapter 8) not a cruelly complicated endeavor.

The most difficult to solder package on the board is the Altera 5M160ZE64C5N CPLD

which has a pin pitch of 0.4 mm and an exposed pad on the bottom of the device.

To solder this package either a reflow oven would need to be used or a hole could be

placed to allow a soldering iron to access the exposed pad.

To keep the board from potentially shorting out on a table top four ANSI 4-40

holes were put on the extreme corners of the board to attach metal standoffs that

elevate the board off of the surface it is resting on. The holes (and thus standoffs)

are grounded to allow the board to be easily grounded, potentially alleviating any

Electrostatic Discharge (ESD) issues.

The board was designed to allow easy access to all signals, for both the reverse

engineering assignment (Chapter 8) and the bus snooping assignment (Chapter 7).

To that end every signal between the microcontroller, the CPLD, the accelerometer

as well as both of the programming interfaces were broken out to two standard 0.1”

pitch headers for easy connection to an oscilloscope or logic analyzer.

The final feature of this board was put in for a homework assignment that ended

up not being implemented in this course. Three 0.1 Ω sense resistors are located in

series with the supply lines for the microcontroller and both of the CPLD’s power

rails. These resistors are located after any bulk bypass capacitance and as such can

be used to perform dynamic power analysis on the microcontroller and CPLD.

13

CHAPTER 2. LABORATORY ENVIRONMENT

Software Development Experience

Figure 2.3: The Arduino IDE when it is first opened.

As mentioned previously the purpose-built board by default can easily emulate an

Arduino Leonardo and is indistinguishable from other Arduinos to the Arduino IDE.

When the board is plugged into a computer the USB-to-Serial Port drivers install

automatically and transparently for recent versions of Windows and the board can

then be programmed through the Arduino IDE to accomplish the end goal of the

user.

One note is that the Arduino Leonardo does not use the pin numbering that the

purpose-built board uses. Table 2.2 serves as a map between the two pin numbering

schemes as well as the name of the pins that the ATMEGA16U4 uses internally.

There is an eleven bit bidirectional bus that connects the microcontroller to the

CPLD along with a dedicated clock line. The bus was designed to allow for an

eight bit data bus as well as three out-of-band general purpose signaling lines. The

clock line is attached to one of the microcontroller’s Pulse Width Modulation (PWM)

14

CHAPTER 2. LABORATORY ENVIRONMENT

ATMEGA16U4 Arduino Custom Board
PB4 Pin # 8 Pin # 3
PB5 Pin # 9 Pin # 2
PB6 Pin # 10 Pin # CLK
PC6 Pin # 11 Pin # 1
N/A N/A CPLD LED
PC7 Pin # 13 AVR LED
PD0 Pin # 3 I2C SCL
PD1 Pin # 2 I2C SDA
PD2 Pin # 0 Pin # 9
PD3 Pin # 1 Pin # 10
PD4 Pin # 4 Pin # 6
PD5 TXLED Pin # 11
PD6 Pin # 12 Pin # 5
PD7 Pin # 6 Pin # 4
PF0 Pin # A5 Pin # 8
PF1 Pin # A4 Pin # 7

Table 2.2: Pin Mapping between the Custom Board, the Arduino Leonardo and the
native pin names.

outputs, which allows for an easy adjustable clock frequency for the CPLD.

One of the aforementioned disadvantages is that the Altera 5M160ZE64C5N CPLD

does not have a plug-and-play programming experience. A separate external pro-

gramming adapter is required, although once attached the programmer has no issues

programming the CPLD with the user’s custom application like any other FPGA or

CPLD programmed through Altera’s Quartus II software. Table 2.3 serves as a guide

for which pins on the microcontroller are connected to which pins on the CPLD.

Default Application

For the laboratory experiments in this course, with special regard to the bus snooping

(Chapter 7) assignment, a default application is run on the custom board.

This default application performs the following actions in a loop:

1. Query the accelerometer for the current X- and Y-axis acceleration.

2. Send the data to the CPLD to be filtered through a FIR filter.

15

CHAPTER 2. LABORATORY ENVIRONMENT

ATMEGA16U4 Custom Board CPLD Bank CPLD Pin Number
PB4 Pin # 3 1 20
PB5 Pin # 2 1 19
PB6 Pin # CLK 1 9
PC6 Pin # 1 1 18
N/A CPLD LED 1 33
PC7 AVR LED N/A N/A
PD0 I2C SCL N/A N/A
PD1 I2C SDA N/A N/A
PD2 Pin # 9 1 29
PD3 Pin # 10 1 30
PD4 Pin # 6 1 26
PD5 Pin # 11 1 31
PD6 Pin # 5 1 25
PD7 Pin # 4 1 27
PF0 Pin # 8 1 28
PF1 Pin # 7 1 27

Table 2.3: Pin Mapping between the Custom Board and the native pin names for the
CPLD and microcontroller.

Figure 2.4: The data the default application sends to the computer.

16

CHAPTER 2. LABORATORY ENVIRONMENT

3. Read back the filtered data from the CPLD.

4. Send the filtered accelerometer data to the attached PC.

The data that the application sends to the computer can be seen in Fig. 2.4. This

application enumerates as a generic USB Serial Port to the computer. A connection

can be made to it with the following settings: 9600 baud, 8 Data Bits, No Parity and

1 Stop Bit.

The format that the data is sent is in the following format:

X: (0x88A --> 0x88 (136)) 0x88 (136);

Y: (0x88D --> 0x88 (136)) 0x86 (134)

Both the X- and Y-axis have three hexadecimal output values per iteration. The

first value is the raw, unsigned twelve bit output from the accelerometer. The second

value is the first value converted to an eight bit unsigned value, simply by throwing

away the four least significant bits. In this example, for the X axis the raw value is

0x88A and the truncated value is 0x88. The final value for each axis is the result

after the CPLD applied its algorithm. For ease of reading, the truncated and filtered

values are repeated in decimal after the hexadecimal value is displayed.

The CPLD smooths the data coming from the accelerometer using a FIR filter,

where y(n) is the output, x(n) is the current input and x(n− {1, 2, 3}) are the three

most recent inputs to the CPLD:

y(n) =
x(n) + x(n− 1) + x(n− 2) + x(n− 3))

4
(2.1)

This application ensures that there is always activity between the microcontroller,

the CPLD, the accelerometer and the serial port.

17

CHAPTER 2. LABORATORY ENVIRONMENT

Revisions

If this board were to go through another revision while still keeping things basic (i.e.

not upgrading to a MAX 10 FPGA), several things would be changed. As discussed

previously, the accelerometer would be updated to the newer model.

The two rows of 0.1” headers allow easy access to every signal on the board except

for the two power rails. This mistake would be rectified by changing the two twelve

pin headers into two thirteen pin headers, with the 1.8V rail going to one header and

the 3.3V rail going to the other header.

The ICSP header would be removed to save space and money as it is not strictly

necessary. The JTAG header provides a programming interface for both ICs.

The 0.1 Ω sense resistors would be increased to a value of 0.5 Ω or even 1 Ω, as

the current draw of the board was lower than expected, causing their voltage drop to

be barely noticeable on an oscilloscope.

Finally, the ATMEGA16U4 would be replaced with the ATMEGA32U4 and the

main resonator would be replaced with an 8 MHz model from the same line. Both

items would be done to enhance compatibility and interchangeability with that of

other Arduino models.

2.2.2 Off-the-shelf Boards

This course is designed to use the purpose-built board. However, with some care

and modification of the assignments an off-the-shelf development board, such as the

Arduino Uno R3, can be used.

The Arduino Uno R3 lacks the co-processor in the form of the CPLD and it lacks

the integrated sensor, the accelerometer. A variety of sensors can be easily added in

the form of ‘shields’, daughter boards that easily plug in to the expansion headers on

the Uno. It would be possible to make a shield that contains a CPLD (or a FPGA).

Such a shield would be just as big as the purpose-built board, if not bulkier, with

18

CHAPTER 2. LABORATORY ENVIRONMENT

insignificant cost-savings.

19

Chapter 3

Syllabus

3.1 Prerequisites

EECS 281: Digital Logic Design is recommended but not required

3.2 Credit Hours

This course is three credit hours.

3.3 Course Description

This course focuses on the hands-on learning of computer hardware security. The

course will follow a distinctive hands-on teaching approach using a well-designed set

of experiments as the learning tool. Students will be able to “hack” a system at

different levels and analyze existing countermeasures.

20

CHAPTER 3. SYLLABUS

3.4 Key Concepts

Introduction to comprehensive coverage on security issues — information, network,

software, and hardware security. Understand information security through data en-

cryption and decryption to protect data and systems. Learn buffer overflow attacks:

stack overflow, heap overflow, and array indexing errors. Learn bus snooping attacks

and protection schemes through different kinds of encryption. Be able to reverse

engineer a closed system to figure out how the hardware components functions.

3.5 Course Requirements

There is no required textbook. The following books serve as a useful, but optional,

references for concepts explored in this course:

• Erickson, Jon. “Hacking: The Art of Exploitation.” No Starch Press, San

Francisco, 2008. ISBN: 978-1593271442.[14]

• Huang, Andrew. “Hacking the Xbox: An Introduction to Reverse Engineering.”

No Starch Press, San Francisco, 2008. ISBN: 1-59327-029-1[3].

• Petzold, Charles. “Code: The Hidden Language of Computer Hardware and

Software.” Microsoft Press, Redmond, 2000. ISBN: 0-7356-1131-9[5].

3.6 Student Expectations

The following criteria are essential for your success in this course.

Six group lab assignments will be given throughout the semester. Each assignment

will have two weeks to complete. A final project will be assigned concurrent to the

other assignments. There will be a research paper that is due on the last day of

class. All lab assignment write-ups are to be completed on a computer; handwritten

write-ups will not be accepted.

21

CHAPTER 3. SYLLABUS

Late assignment write-ups will receive a penalty of ten percent per day unless a

valid excuse was given to the instructor and accepted before the assignment was due.

No late submissions will be accepted beyond one week after the original due date.

3.7 Lecture Schedule

This course meets twice a week for an hour and a half each time. The first day of

every two week cycle will be spent in the classroom, with a lecture introducing the

concept that the assignment revolves around. The second, third and fourth times the

class meet during the cycle will be in the laboratory space for students to work on

their assignments with the instructor and TA present to answer questions as needed.

As time permits and as needed, additional lectures will be given by either the

instructor or an invited outside guest.

3.8 Grading

Your course grade is based upon your overall performance throughout the entire

semester. The relative weights for your grade are as follows:

• Lab Assignments: 60%. (10% per lab.)

• Final Paper: 10%.

• Final Project: 30%. (10% per phase of the project)

This class uses the standard grading scale of:

• Less than a 60% is an F.

• Between 60% and 69.9% is a D.

• Between 70% and 79.9% is a C.

• Between 80% and 89.9% is a B.

• Above a 90% is an A.

22

CHAPTER 3. SYLLABUS

3.9 Student Conduct and Academic Integrity

All forms of academic dishonesty including cheating, plagiarism, misrepresentation,

and obstruction are violations of academic integrity standards. Cheating includes

copying from another’s work, falsifying problem solutions or laboratory reports, or

using unauthorized sources, notes or computer programs. Plagiarism includes the

presentation, without proper attribution, of another’s words or ideas from printed or

electronic sources. It is also plagiarism to submit, without the instructor’s consent,

an assignment in one class previously submitted in another. Misrepresentation in-

cludes forgery of official academic documents, the presentation of altered or falsified

documents or testimony to a university office or official, taking an exam for another

student, or lying about personal circumstances to postpone tests or assignments.

Obstruction occurs when a student engages in unreasonable conduct that interferes

with another’s ability to conduct scholarly activity. Destroying a student’s computer

file, stealing a student’s notebook, and stealing a book on reserve in the library are

examples of obstruction.

3.10 Expected Outcomes

Upon the successful completion of this course, a student will be able to:

• Understand the basic concepts of computer system security, including: network,

information, software, and hardware security.

• Design new solutions to protect against existing attacks

• Learn how to hack into a system and then come up with a new threat model

and the defense mechanisms against it.

• Analyze and validate computer systems for security, build new secure computer

systems.

23

Chapter 4

Lab #1: Buffer Overflows

4.1 Objectives

• To become familiar with buffer overflows in the C programming language.

• To become familiar with identifying fixing buffer overflows.

4.2 Assignment

4.2.1 Introduction

Buffer Overflows are a serious problem in modern systems. A typical buffer overflow is

when a segment of memory that is assigned to one variable is erroneously overwritten

by another variable’s contents, corrupting the original variable. The consequences

range from simply crashing the program with a segmentation fault error to potentially

executing unwanted, arbitrary and malicious instructions.

In this assignment students will become familiar with finding potential buffer

overflows and through executing injected code they will gain insight into exactly how

dangerous buffer overflows can be.

24

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

4.2.2 Instructions

Part 1: Three Simple Examples.

Students should write code, in C, to demonstrate the concepts of three different kinds

of buffer overflows: the heap overflow, the integer overflow, and the stack overflow.

Part 2: Two Specific Exploits

This section of the assignment will demonstrate how a buffer overflow can grant

access to a secure system even if an incorrect password is given. This experiment is

a perfect example of incorrect programming practices and how they can be exploited

by an attacker. Anyone who knows that a program is susceptible to a buffer overflow

can then exploit it and this assignment demonstrates how that is possible.

Please note that these programs have only been tested on a 32-Bit Linux instal-

lation and may or may not work on Mac OS X and Windows systems.

To compile the program on your system, first locate the archive you downloaded

for the previous section and extract the simple buffer overflow.c file. Run the

following command to compile the program:

gcc simple buffer overflow.c -o simple buffer overflow.

Run your compiled program with the following command:

./simple buffer overflow.

Try running the program under the following conditions and report the results?

1. What is the output when the correct password is entered? Note that the correct

password is cleveland.

2. What is the output when an incorrect password that is between ten and twelve

characters long?

3. What is the output when an incorrect password that is more than sixteen char-

acters long?

25

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

In your writeup, please answer the following question: What is the error in the

code that allows this to happen and how can it be fixed?

The next program will demonstrate how a buffer can overflow and how malicious

code could be injected into a running program.

From the same archive used for the previous two examples locate the bo test.c

file as well as the run.pl file. Run the following command to compile the program:

gcc pointer buffer overflow.c -o pointer buffer overflow.

Run the newly compiled program with no options:

./pointer buffer overflow.

The program will output two addresses of functions on the call stack: a good

function and a bad function. Copy the address of the bad function into the perl script

using a text editor. Finally, run the perl code with the command perl exploit.pl

A buffer overflow attack should take place and the computer should attempt

to shutdown. Take a screenshot of this and write a short conclusion about what

happened and how it could be fixed.

4.3 Assignment Files

Listing 4.1: simple buffer overflow.c

1 /∗

2 ∗ A simple bu f f e r over f l ow example that could

3 ∗ a l low acc e s s i n to a secure system .

4 ∗ Written by Andrew Hennessy

5 ∗ Based o f f o f an example provided by Chirayu Shah at CSU

6 ∗/

7

8 #inc lude <s t d i o . h>

9 #inc lude <s t r i n g . h>

10

26

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

11 i n t main (void) {

12 char password [1 0] ;

13 i n t author i zed = 0 ;

14

15 p r i n t f (”Enter the password to gain ac c e s s to the system :\ r \n”) ;

16 ge t s (password) ;

17

18 i f (strcmp (password , ” c l ev e l and ”)) {

19 p r i n t f (”You entered the wrong password : (\ r \n”) ;

20 } e l s e {

21 p r i n t f (”You entered the c o r r e c t password !\ r \n”) ;

22 author i zed = 1 ;

23 }

24

25 i f (author i zed){

26 p r i n t f (”Access Granted !\ r \n”) ;

27 }

28

29 return 0 ;

30 }

Listing 4.2: pointer buffer overflow.c

1 /∗

2 ∗ A more compl icated example o f a bu f f e r over f l ow

3 ∗ that could a l low acc e s s i n to a se cure system .

4 ∗ Written by Andrew Hennessy

5 ∗ Based o f f o f an example provided by Chirayu Shah at CSU

6 ∗/

7

8 #pragma check s tack (o f f)

9

10 #inc lude <s t r i n g . h>

27

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

11 #inc lude <s t d i o . h>

12

13 void good funct i on (){

14 p r i n t f (” good funct i on ()\n”) ;

15 }

16

17 void bad funct ion (){

18 p r i n t f (” bad funct ion ()\n”) ;

19 system (”shutdown −P now”) ;

20 }

21

22 i n t main (i n t argc , char ∗ argv []) {

23 char data [1 0] ;

24

25 p r i n t f (”Address o f good funct i on () : %p\n” , good funct i on) ;

26 p r i n t f (”Address o f bad funct ion () : %p\n” , bad funct ion) ;

27

28 void (∗ f u n c t i o n po i n t e r) () ;

29 f un c t i o n po i n t e r = &good funct i on ;

30

31 p r i n t f (”SIZE : %d\n” , s i z e o f (f un c t i o n po i n t e r)) ;

32

33 // Try to over load the po in t e r here by coping data from argv [1]

34 s t r cpy (data , argv [1]) ;

35

36 p r i n t f (”Address o f the func t i on po in t e r : %p\n” , f un c t i o n po i n t e r) ;

37

38 f un c t i o n po i n t e r () ;

39

40 p r i n t f (”The program stack l ooks l i k e :\n%p\n%p\n%p\n%p\n%p\n% p\n\n”) ;

41 }

28

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

Listing 4.3: expolit.pl

1 # A more compl icated example o f a bu f f e r over f l ow

2 # that could a l low acc e s s i n to a se cure system .

3 # Written by Andrew Hennessy

4 # Based o f f o f an example provided by Chirayu Shah at CSU

5

6 $argument = ”AAAAAAAAAA” . ”\xC1\x84\x04\x08” ;

7 $command = ” . / p o i n t e r bu f f e r o v e r f l ow ” . $argument ;

8

9 system ($command) ;

4.4 Solutions

1. The output when the correct key is entered is: “You entered the correct pass-

word! Access Granted!”

2. The output when a short, incorrect key is entered is: “You entered wrong

password :(”

3. The output when a long, incorrect key is entered is: “You entered wrong pass-

word :(Access Granted!”

It is fairly obvious that a buffer overflow occurred. When too many characters

were put into the password variable, it overflowed into the “authorized” variable,

making it non-zero (e.g. true) and access was erroneously granted to the user. One

possible way of fixing this issue is to use the function fgets instead of the deprecated

function gets. Another was of fixing this issue is to explicitly check the password

variable for the correct value of one instead of checking if it isn’t zero.

The perl script is written so that once the address of the malicious function is

inputed into the script correctly, the script will try to overwrite a function pointer to

change the execution path of the program from the correct function to the incorrect

29

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

Figure 4.1: The expected output of “simple buffer overflow.c”

function. This is possible because the function pointer is directly after the user input

in the stack frame of the program. If the program was not run as the root user than

the shutdown command failed to execute, however if the program was run as the root

user then the computer would have successfully shut down.

30

CHAPTER 4. LAB #1: BUFFER OVERFLOWS

Figure 4.2: The expected output of “pointer buffer overflow.c”

31

Chapter 5

Lab #2: Diffie-Hellman Key

Exchange

5.1 Objectives

• To gain a basic understanding of public-key cryptography

• To become familiar with the process of key exchange and why it is needed.

5.2 Assignment

As discussed in class it is possible for two parties to communicate over an insecure

channel and exchange enough information to generate a key known to only themselves.

The purpose of this assignment is to implement the Diffie-Hellman Key Exchange

protocol in a programming language of your choice. Please note that this is a group

homework — your group will only turn in one assignment. Groups are not allowed

to work together.

As discussed in class, this is the Diffie-Hellman Key Exchange Protocol, as de-

scribed in [13]:

1. Alice and Bob agree on two numbers, p, the modulus (a prime number), and

32

CHAPTER 5. LAB #2: DIFFIE-HELLMAN KEY EXCHANGE

g, the base. These are public and should be communicated by one party to the

other.

2. Alice generates a secret number, a, and sends Bob A, which is ga (mod p).

3. Bob generates a secret number, b, and sends Alice B, which is gb (mod p).

4. Alice computes the shared secret, s, by computing Ba (mod p).

5. Bob computes the shared secret, s, by computing Ab (mod p).

Your group will implement this protocol in your programming language of choice.

You should allow one user to choose p and g as well as a and let the other user

choose b. The program should output the shared secret s. Your program should use

thirty-two bit unsigned integers.

5.2.1 Extra Credit Opportunity #1

One of the mathematical subtleties involved with this exchange that was not men-

tioned in class is that g should be a “primitive root modulo p”. Implement a check

in the beginning of the program that makes sure that g is in fact a primitive root

modulo p.

5.2.2 Extra Credit Opportunity #2

Split your program into two parts that communicate over an insecure protocol. For ex-

ample, make a client program and a server program that communicate over TCP/IP,

Remote Procedure Calls, or use two microcontrollers that communicate over I2C.

33

Chapter 6

Lab #3: AES Encryption

6.1 Objectives

• To gain a basic understanding of private-key cryptography.

• To become familiar with the basic Caesar Cipher.

• To become familiar with the AES standard.

6.2 Assignment

6.2.1 Introduction

In this assignment students learn how to encrypt and decrypt data with two standard

encryption algorithms. The focus of this assignment is to use cryptography to protect

sensitive data with a key that is kept secret. This is in opposition to the previous

week’s assignment, where part of the key is kept public for anyone to use and see.

In private key cryptography one way to make the data harder to decrypt without

knowledge of the key is to make the bit length of the key longer.

This assignment deals with two different kinds of block ciphers, the Caesar Cipher

and the Advanced Encryption Standard (AES). A block cipher takes in a certain

34

CHAPTER 6. LAB #3: AES ENCRYPTION

amount of data at a time, the “block”, and applies a mathematical algorithm involving

the data and the key as inputs and outputs the ciphertext. Contrary to this, a stream

cipher takes each bit of data, a bit at a time, and applies the algorithm bit-by-bit.

6.2.2 Instructions

Like the first week’s assignment, download the archive from Blackboard and extract

the files in it to a known location.

Caesar Cipher Exercise

Before continuing on this assignment, you and your partner should research terms and

concepts such as: the difference between block ciphers and stream ciphers, the differ-

ence between a cryptosystem, cryptography and encryption as well as the difference

between asymmetric encryption and symmetric encryption.

You should write a short program in a language of your choice to demonstrate

the operation of a Caesar Cipher. At the top of your submission please write a short

paragraph on any improvements possible to the Caesar Cipher.

AES Exercise

Locate the aes example.c, TI aes.c, and TI aes.h files from the archive and run

the following command to compile the code:

gcc aes example.c TI aes.c -o aes example

Run the compiled code with the following command:

./aes example 16charargument

Take a screen shot of the output. In your report answer the following question:

What is the difference between the plain text input and the decrypted cipher text

output?

35

CHAPTER 6. LAB #3: AES ENCRYPTION

Next, run the program again, except this time put in an argument that is less

than sixteen characters long. Take a screenshot of the output. What changed?

After that, run the program a final time, except put in an argument that is at

least twenty characters in length. Take a screenshot of the output. What changed?

Finally, can you modify the program to have a key length of either 192 bits or 256

bits? (Hint: the number of rounds of encryption will need to be changed)

6.3 Assignment Files

The files TI aes.c and TI aes.h are from an open-source implementation of the AES

standard and can be found on GitHub[23].

Listing 6.1: aes example.c

1 /∗

2 ∗ A simple program that runs text through the AES algor i thm

3 ∗ Written by Andrew Hennessy

4 ∗ Based o f f o f an example provided by Chirayu Shah at CSU

5 ∗/

6 #inc lude <s t d i o . h>

7 #inc lude <s t d l i b . h>

8 #inc lude <s t r i n g . h>

9 #inc lude ”TI aes . h”

10 #de f i n e LENGTH 16

11

12 void pr in t hex (unsigned char ∗ message) {

13 unsigned shor t i = 0 ;

14

15 f o r (; i < LENGTH; i++) {

16 p r i n t f (”0x%02X” , message [i]) ;

17 i f (i != (LENGTH − 1)) {

18 p r i n t f (” , ”) ;

36

CHAPTER 6. LAB #3: AES ENCRYPTION

19 }

20 }

21 p r i n t f (”\ r \n”) ;

22 }

23

24 void main (i n t argc , char ∗argv []) {

25 const unsigned char aes key [] = {0xA1 , 0xA2 , 0xA3 , 0xB4 , 0xA5 , 0xA6 ,

26 0xA7 , 0xA8 , 0xB1 , 0xB2 , 0xB3 , 0xB4 , 0xB5 , 0xB6 , 0xB7 , 0xB8 } ;

27

28 unsigned char message [LENGTH] ;

29 s t r cpy (message , argv [1]) ;

30

31 char c i ph e r t e x t [2 ∗ LENGTH] ;

32

33 p r i n t f (”ASCII message be f o r e enc rytpt i on : ’%s ’\ r \n” , message) ;

34 p r i n t f (”Hex message be f o r e encrypt ion : ”) ;

35 pr in t hex (message) ;

36

37 ae s enc rypt (message , aes key) ;

38 memcpy(c i phe r t ex t , message , LENGTH) ;

39 c i ph e r t e x t [1 7] = ’ \0 ’ ;

40

41 p r i n t f (”ASCII message a f t e r encrypt ion : ’%s ’\ r \n” , c i ph e r t e x t) ;

42 p r i n t f (”Hex message a f t e r encrypt ion : ”) ;

43 pr in t hex (c i ph e r t e x t) ;

44

45 ae s dec rypt (c i phe r t ex t , ae s key) ;

46 c i ph e r t e x t [1 7] = ’ \0 ’ ;

47

48 p r i n t f (”ASCII message a f t e r decrypt ion : ’%s ’\ r \n” , c i ph e r t e x t) ;

49 p r i n t f (”Hex message adter decrypt ion : ”) ;

50 pr in t hex (c i ph e r t e x t) ;

51 }

37

CHAPTER 6. LAB #3: AES ENCRYPTION

Figure 6.1: The output of “aes example.c” with three different length arguments.

6.4 Solution

6.4.1 Caesar Cipher Exercise

The Caesar Cipher is taught as one of the most basic and easily broken ciphers used.

The cipher is inherently vulnerable to frequency analysis attacks and using any other

cipher would be an improvement.

6.4.2 AES Exercise

The major difference between the plain text and the decrypted cipher text is that the

cipher text is always only sixteen characters long. When the input is exactly sixteen

characters long this isn’t noticeable. However, with a shorter input the output has

random data inserted to pad the length up to sixteen characters and when the input

is longer than sixteen characters the output is cutoff after the sixteen character mark.

The number of rounds required for a 192 bit key is 12 and for a 256 bit key is 14.

38

Chapter 7

Lab #4: Bus Snooping

7.1 Objectives

• To be able to approach an unknown system and derive information about its

functionality

• To be able to decode an unknown I2C bus’s data.

• To gain proficiency with using oscilloscopes and logic analyzers.

7.2 Assignment

7.2.1 Introduction

Many times in an embedded system all the effort to secure the system is focused

on the software end of the spectrum. After all, the best attacks against any system

are ones that attack the biggest vector: the software stack. That being said, one

of the oldest adages relating to security is: “If an attacker has physical access to

the system all bets are off.[22]” If there is no effort taken to secure the physical link

between components in the system, such as the link between the main processor and

its memory, then the data transferred between the two components is susceptible to

39

CHAPTER 7. LAB #4: BUS SNOOPING

being eavesdropped upon, or even worse, modification. As we discussed in class, this

is how the original Microsoft Xbox was hacked, the link between the Southbridge

IC and an EEPROM on the Xbox was observed during bootup and subsequently

modified to allow the hackers access to the protected region of the Xbox’s hard drive.

7.2.2 Instructions

In this experiment we will be looking at how the various components of the demo

board communicate with each over and how the system as a whole communicates

with an attached computer. To do this you will need the demo board given to you at

the start of the class, a USB A to B cable and two sets of oscilloscope probes (and

the corresponding oscilloscope!).

Figure 7.1: Block diagram of the demo Printed Circuit Board (PCB).

To start with, make sure that the USB-B end of the cable is unplugged from

the PCB while the USB-A end of the cable is plugged into a power source (e.g. a

computer or the oscilloscope’s USB port). Clip the oscilloscope probes to the pins

labeled “SCL” and “SDA” on the top-left of the PCB while connecting both ground

leads of the probes to the pin labeled “GND”.

40

CHAPTER 7. LAB #4: BUS SNOOPING

Plug the USB-B end of the cable into the board and observe the pattern of traffic

on the two lines. You will need to adjust the trigger mode and levels on the oscillo-

scope to get the best results. Tilt the PCB around and see how the traffic changes

as well. Answer the following questions based upon your observations:

1. Which probe would you say is the attached to the clock line?

(a) How fast is the clock running?

2. Which probe would you say is the attached to the data line?

3. It is possible to set up the Agilent MSO 2000 series scope to both trigger and

decode this specific bus. Please submit a screenshot of the scope triggering on

a start condition and successfully decoding the transmitted data.

4. Can you describe the general data packet format? What is the purpose of each

bit in the transaction?

(a) If you tilt the PCB in one direction how does the data packet change?

How does it stay the same?

5. If you didn’t have conveniently labeled traces to probe how would you figure

out which traces to probe if you needed to understand how the bus worked?

6. How would you prevent attacks such as this? If the data transmitted over this

bus was critically important and could not be intercepted how would you secure

the communications?

(a) How would you then debug any issues that arose because of the proposed

fix(es)?

Optional Followup (Extra Credit)

The previous bus isn’t the only data communication line on the PCB. There is an-

other, much larger bus that enables the Atmel IC and the Altera IC to communicate

with each other. Using the HP/Agilent logic analyzer cable attach the probe ends to

all of the pins at the bottom of the PCB as well as the pin labeled GND at the top.

41

CHAPTER 7. LAB #4: BUS SNOOPING

Repeating the same process as above (moving the board around and observing

the data) answer the following questions:

1. How does this data differ from that of the other bus?

2. How is this bus laid out? What is the data packet like?

3. What is the advantage of a faster, smaller bus over a larger, slower bus? Are

there any disadvantages? Provide a real-world example of this difference.

7.2.3 References and Further Reading

• Huang, A. “Hacking the Xbox: An Introduction to Reverse Engineering,” No

Starch Press, 2003.

• Steil, M. “17 Mistakes Microsoft Made in the Xbox Security System,” presented

at the 22nd Chaos Communication Congress, Berlin, 2005.

• NXP Semiconductors, “I2C-bus specification and user manual,” 4 April 2014.

7.3 Solution

1. SCL is the clock line and it has a frequency of 400kHz.

2. SDA is the data line.

3. See Fig. 7.2

4. The format of the data can be seen in Table 7.1.

5. The first step would be to find the clock line. Almost every digital signal has a

repeating clock at a constant frequency. You’d probe around on the board until

you find a square wave at a constant frequency. Once the clock is found other

pins would be probed one at a time until a more complete picture is formed.

6. One way to passively prevent probing is to hide the signals in an inner-layer of

the board and use IC packages such as a Ball Grid Array (BGA) that allow a

direct connection to the inner-layer so no probe points are available. Of course

42

CHAPTER 7. LAB #4: BUS SNOOPING

Figure 7.2: The screen of an Agilent MSO 2002A configured to decode I2C data and
to trigger on a I2C start bit. It should be noted that the measured frequency of
Channel 1 is incorrect. The correct value is 400.0kHz.

Description Value
Start Bit

Write Address 0b00100000 (0x10 + Write)
Register Address 0x00
Register Contents 0x00

Start Bit
Read Address 0b00100001 (0x10 + Read)

Register Contents X Axis Upper Byte

ACK
Register Contents X Axis Lower Byte

ACK
Register Contents Y Axis Upper Byte

ACK
Register Contents Y Axis Lower Byte

NACK
Stop Bit

Table 7.1: The contents of an I2C transaction between the microcontroller and the
accelerometer.

43

CHAPTER 7. LAB #4: BUS SNOOPING

this also prevents easy debugging of the product so test points are often brought

to the surface. It is a constant battle — products that are easy to debug are

also easier to hack into.

44

Chapter 8

Lab #5: Reverse Engineering

8.1 Objectives

• To be able to approach an unknown system and derive information about its

functionality.

• To be able to create a schematic of a board from visual analysis and continuity

probing.

• To be able to create a Bill of Materials of a board from visual analysis.

• To be able to create a software interface with a board with zero provided doc-

umentation.

8.2 Assignment

8.2.1 Introduction

One of the fundamental issues in digital content protection is known as the “Analog

Hole”. Simply stated it means that if a person can view content than they can make

a copy of it. This is true for almost all aspects of life: from making mix tapes by

recording radio stations to copying a movie by pointing a camcorder at a television

45

CHAPTER 8. LAB #5: REVERSE ENGINEERING

screen. Another important area of life that is subject to this hole is in Intellectual

Property (IP) Protection. You can have all the IP Protection you want but if your

adversary has physical access to the protected IP then you cannot guarantee that

they will not be able to copy it. For example, an IC can be decapped and a transistor

level schematic can be easily made with a microscope.

8.2.2 Instructions

In order to copy IP well one first needs to understand how it works. One way of doing

this is to build up a schematic and a Bill of Materials. Most of this can be done by

either visual inspection of probing points on the board with a Digital Multi-Meter set

to Continuity Mode. This will cause a loud beeping sound whenever the probes are

making electrical contact together.

Figure 8.1: Block diagram of the demo Printed Circuit Board (PCB).

For a simple two-layer PCB (which our demo board is), this is typically all that

is needed. One step that might be helpful is to look up datasheets for all known

components to see how the component needs to be connected with other components

on the board. Where are the known power pins: where are the known ground pins?

46

CHAPTER 8. LAB #5: REVERSE ENGINEERING

Are there any pins that have one specific functionality? Does the IC implement any

known functionality (e.g. industry standards) that have to be attached a certain way?

(Hint: Remember I2C from last week?)

The final part of this assignment is to write a computer program that reads the

data the boards sends and graphs it. This will involve learning how to open and read

information from a serial port in a programming language of your choice. Remember

that the serial port on this device is configured as a 9600 baud port with “8-N-1”

settings. Once the program can read the data being transmitted, it should graph all

six values the board continuously transmits.

8.2.3 Deliverables

For the hardware-based reverse engineering part of this assignment you are required

to turn in two things for this experiment. One of them is a Bill of Materials. It should

be structured as such:

RefDes(s) Mfg. Model Description Qty
U2 Atmel MEGA16U4-AU 8 Bit Mircocontroller 1
U3 Altera 5M160ZE64C5N 160 Logic Element CPLD 1

D1, D2, D3, D4 ??? ??? Green LED 4
J1 ??? ??? Bright Orange USB-B 1

Table 8.1: Example Bill of Materials for the assignment.

Please note that every element on the PCB will require a line-item in the Bill

of Materials. Some components show up more than once; others will only show up

once. Every component that you see should show up on the Bill of Materials at least

once. Some components that look identical at first glance might be subtly different

in some aspect, for example, the color of the component or a single digit in the part

number. Color is important, for example gold plating looks different than tin plating

and the difference is relevant to electronics. You will be expected to figure out the

values of all components with the exception of the capacitors. There are two different

47

CHAPTER 8. LAB #5: REVERSE ENGINEERING

value capacitors used. It is not important to figure out the values (which can be

surprisingly difficult; however, you should be able to differentiate between them.

The second thing that you need to turn in is as complete of a schematic as your

group can generate.

For the graphing software, you should turn in your complete source code (over

email) and answer the following questions:

• What do each of the three values reported for each axis represent?

• What is the mathematical relationship between the three values? (Hint: FIR

or IIR?)

• Using the figure you turned in for the bus snooping assignment as reference

which values were you observing on the I2C bus?

There is no extra credit for this experiment. Please note that physical modi-

fication of the PCB is strictly prohibited! Any group found to have modified

their PCB in any way will have points taken off.

8.3 Solution

The solution to this assignment is the Bill of Materials in Table 2.1 and the schematic

depicted in Fig. B.1.

48

Chapter 9

Lab #6: Physically Unclonable

Functions

9.1 Objectives

• To become familiar with Physically Unclonable Functions (PUF) in theory and

practice.

• To write a SRAM-based PUF for a microcontroller.

• To be able to reliably distinguish between two different Arduino’s running the

same firmware using a PUF.

9.2 Assignment

9.2.1 Introduction

One of the biggest issues in any supply chain management situation is being able to

verify that the product ordered is actually the product being received. The electronics

industry makes great strides to verify the integrity of their product lines. For example,

the distributor that your group likely used to complete the Bill of Materials for the

49

CHAPTER 9. LAB #6: PHYSICALLY UNCLONABLE FUNCTIONS

reverse engineering assignment, Digi-Key, is a member of the trade association, the

Electronic Component Industry Association, or ECIA, which strives to ensure that

no counterfeit devices enter the supply chain.

However, one cannot always order from verified suppliers. In this case it is neces-

sary to order components from unauthorized resellers, increasing the risk of acquiring

counterfeit goods. One emerging research area to counteract this problem is in the

area of Physically Unclonable Functions, or PUFs. The gist of the idea of a PUF is

that the manufacture of the goods will use some sort of intrinsic process variation

to generate a unique signature for every device they make. This signature is then

entered into a database so that the end user can, using the same signature generation

process, generate and verify the signature of their device.

9.2.2 Instructions

There have been several different kinds of PUFs created for use on different kinds

of integrated circuits. The type of PUF we will focus on in this experiment is the

so-called SRAM PUF. Using the distributed Arduino UNO R3 boards, write a small

program to run the SRAM PUF algorithm on the built-in two kilobytes of SRAM on

the Arduino’s Atmel ATMEGA328P microcontroller.

Finally, using a MATLAB (or similar) script, generate the actual signature using

a method of your choice as well as the inter- and intra-Hamming distances for the

generated signatures. The goal of this experiment is to run the exact same code on

each of the two Arduino UNO’s and receive the same result when ran on the same

board but a different result when run on a different board.

Please turn in all the code that you have written for this experiment. Please note

that this process does not have to be automated (that is to say that your MATLAB

script does not need to directly communicate with the Arduinos). In order to have

good statistical significance for this experiment run the PUF on the Arduino multiple

50

CHAPTER 9. LAB #6: PHYSICALLY UNCLONABLE FUNCTIONS

times with a full power off cycle between runs.

9.2.3 References

This assignment is based upon the masters thesis of a student in the Department of

Computer Science at the Czech Technical University in Prague[19].

51

Chapter 10

Final Project & Paper

10.1 Objectives

• To research and write about a security incident in the real world involving a

hardware hack.

• To build a small embedded system.

• To see how a small embedded system can be hacked.

• To see if modifications to an embedded system can be detected.

10.2 Final Paper

This class has discussed both software and hardware attacks and how to make systems

more secure by defending against a broad range of attacks. However, in the wild there

are so many systems with so many different kinds of vulnerabilities getting attacked

it is hard to keep track of all of the attacks.

While there are many examples of software-only attacks, attacks that use a com-

bination of hardware and software (or of hardware-only) are much more rare and

interesting. You are to find an example of a system that has been compromised by

attacking a component of hardware means sometime in the past twenty years and

52

CHAPTER 10. FINAL PROJECT & PAPER

write a paper with the following sections:

• A general overview of the system

• How the maker of the system tried to prevent attacks.

• How the attacker attacked the system.

• The effects of the system being compromised.

Your paper will be submitted as both a PDF to Blackboard as well as a physical

copy on the due date. It must adhere to the IEEE Conference Proceedings template.

It should be at least four pages long and no longer than six pages. Please note that

this length includes the references section — which must be in IEEE format.

This paper will be due on the last day of class.

Please note that this is an individual assignment, not a group assignment. Sub-

mitted papers will be checked using automated software to detect plagiarism.

10.3 Final Project

10.3.1 Introduction

Today’s world contains many, many of embedded systems. These systems are designed

for one specific task and only execute that task. Often security is an afterthought

after the design phase, if it thought about at all. For this experiment your group

will design an embedded system and then see if it can be hacked. This experiment is

divided into three parts.

10.3.2 Part 0: Project Proposal

The class should split into as many groups of three as possible and each group should

have experience with both hardware and software development. From here the group

should come up with a simple embedded system that can be developed over the course

of a month and submit their proposal to the instructor.

53

CHAPTER 10. FINAL PROJECT & PAPER

This part of the project should happen as quickly as possible once the semester

starts in order to give students enough time to build their project.

10.3.3 Part 1: Building the Project

Once the instructor approves the project and gives a budget for parts, the group has

most of the semester to develop the hardware and write the software for the project.

Examples of projects done in this class include a wireless motor controller, a wireless

authentication module, a small robot and a small keypad.

This part of the project should have a due date roughly a month before the

semester ends in order to give enough time for Parts 2 and 3.

10.3.4 Part 2: Attacking the Project

Once the projects are completed, groups will swap embedded systems as well as

exchange source code repositories. Your group will have two weeks to modify the

other group’s embedded system to insert malicious functionality and try to keep it

undetected.

This part of the project should have a due date roughly two weeks before the

semester ends in order to give enough time for the final part.

10.3.5 Part 3: Defending the Project

Once the hacks are completed, groups will swap embedded systems back; however,

they will keep their “hacks” secret. Your group will have two weeks to figure out

what malicious functionality was inserted into the system by the other group.

This part of the project should be due on the last day of class and students should

demonstrate how they discovered the hack(s) done on their project and how they

could possibly be fixed.

54

Chapter 11

Results & Conclusion

11.1 Results

This course was taught twice at Case Western Reserve University: in the Fall 2014

semester with twelve students and in the Fall 2015 semester with thirteen students.

Both times the class was taught in the Electrical Engineering and Computer Science

department with class designation of EECS 397: Special Topics in Hardware

Security. The course was not substantially changed between iterations, although

student feedback was taken into account between the offerings and modifications

were made.

11.1.1 Fall 2014

The first time the course was offered was during the Fall 2014 semester. It was

offered as a three credit hour upperclassman special topics elective. Courses in the

department that are only going to be taught once, or in our case, being taught for

the first time, are given the class number of 397.

Of the twelve students enrolled in the class, ten of them had declared engineer-

ing majors. Five of the students were declared as Computer Science majors, three

55

CHAPTER 11. RESULTS & CONCLUSION

Assignment Assigned Due Date % of Grade
Lab #1: Buffer Overflows 8/27/2014 9/3/2014 10%

Lab #2: Encryption (AES) 9/3/2014 9/17/2014 10%
Lab #3: Bus Snooping 9/17/2014 10/1/2014 10%

Lab #4: Hardware Trojans 10/1/2014 10/15/2014 10%
Lab #5: Reverse Engineering 10/15/2014 10/29/2014 10%

Lab #6: PUFs 10/29/2014 11/10/2014 10%
Lab #7: Final Project Part #1 11/10/2014 11/17/2014 10%
Lab #7: Final Project Part #2 11/17/2014 11/24/2014 10%
Lab #7: Final Project Part #3 11/24/2014 12/3/2014 10%

Final Paper 11/10/2014 12/3/2014 10%

Table 11.1: The sequence of assignments for the Fall 2014 version.

as Computer Engineering majors and two as Electrical Engineering majors. Two

students were enrolled in the School of Arts & Sciences, with one in the Economics

department and the final student’s major being International Studies.

Initially the syllabus for the course had two quizzes scheduled instead of a final

paper, however it was decided that a paper was a more appropriate use of time and

resources.

Towards the end of the semester the students were solicited for in-person feed-

back separately from the system that Case Western Reserve uses for official course

evaluations.

The two groups for the final project were randomly assigned, for a total of six

students in each. This had the side effect that one group had more Computer Science

students in it than Electrical Engineering students. Some students stated that it

would be better if the groups were systematically assigned by the instructor so that

there would be equal numbers of all majors per group. This way the group could play

better to the individual strengths of each of the members.

Students also said that while they appreciated the lack of guidelines for the final

project they stated that a small number of guidelines, such as recommended projects

or an example project would make the project experience work better. Another

56

CHAPTER 11. RESULTS & CONCLUSION

common theme was that everyone wanted more time to work on their final project,

as well as accountability checkpoints throughout the project. Finally students asked

that the final project be integrated somehow into the experiments during the earlier

parts of the semester.

Students also wished that the lab assignments had more of a background section

in them for those who are unfamiliar with the subject area and are learning about

the topic(s) for the first time.

One topic that was lacking in the class is that when students wrote code, it was

almost always in C. One student expressed interest in the possibility of adding a

Hardware Descriptor Language (HDL) such as Verilog or VHDL to the course. Other

students disagreed with this and were glad there was no HDL requirement for the

class.

As mentioned previously, Case Western Reserve conducts official course evalua-

tions at the end of the semester. Out of the twelve students enrolled in the class, six

responded.

When asked how this course fit into their academic program, 100% responded by

saying that this was an optional or technical elective in their major. 50% of the class

were Juniors and 50% of the class were Seniors when they took it.

When asked about the pace of the course, 17% said that it was rather fast while

83% said that it was moderate. Likewise, when asked about the workload of the

course 67% said that it had a moderate workload while 33% said that it had a rather

light workload.

Next, students were asked to rate the class on a scale of 1–5, where a score

of one indicates that the student “strongly disagrees” with the statement while a

score of five indicates that the student “strongly agrees” with the statement. When

asked if the instructor has an effective command of the subject, the average response

was a 4.83. When asked if the instructor speaks and writes clearly the average

57

CHAPTER 11. RESULTS & CONCLUSION

Assignment Assigned Due Date % of Grade
Lab #1: Encryption (DH Key) 8/26/2015 9/9/2015 10%

Lab #2: Buffer Overflows 9/9/2015 9/30/2015 10%
Lab #3: Bus Snooping 9/30/2015 10/21/2015 10%

Lab #4: Hardware Trojans 10/21/2015 11/04/2015 10%
Lab #5: Reverse Engineering 11/04/2015 11/11/2014 10%

Lab #6: Final Project Part #1 10/7/2015 11/16/2015 10%
Lab #6: Final Project Part #2 11/16/2015 11/30/2014 10%
Lab #6: Final Project Part #3 11/30/2015 12/7/2015 10%

Final Paper 10/7/2015 12/7/2015 20%

Table 11.2: The sequence of assignments for the Fall 2015 version.

response was a 4.33. When asked if the instructor’s expectations of what the students

should be learning were clear the average response was a 4.5. When asked if course

procedures were clearly explained the average response was a 4.0. When asked if the

instructor was able to motivate students’ learning of the subject the average response

was a 4.50. When asked if the instructor encouraged questions and/or appropriate

discussions about the subject the average response was a 4.67. When asked if the

course stimulated critical thinking the average response was a 4.83. When asked if

the course was conducted in an atmosphere of mutual tolerance, courtesy and respect

the average response was a 4.67. When asked if they thought they were informed

of their progress in a timely manner the average response was a 4.83. When asked

if grading was done fairly the average response was a 4.33. When asked if adequate

assistance was available outside of class time the average response was a 4.50.

When asked to rate the course overall the average response was a 4.50. When

asked to rate the instructor overall the average response was a 4.67. When asked to

rate the labs overall the average response was a 4.75.

11.1.2 Fall 2015

In the Fall 2015 semester the course was again offered under the title of EECS 397:

Hardware Security as a three-credit hour upperclassman technical elective. The

58

CHAPTER 11. RESULTS & CONCLUSION

feedback mentioned in Section 11.1.1 was taken into account and some small mod-

ifications were made. Both the final project and the final paper were earlier in the

course calendar relative to when they were assigned in the Fall of 2014, resulting in

approximately an additional month to work on the assignments.

Of the thirteen students enrolled in the class, twelve had declared engineering ma-

jors. Six of those students were declared with Computer Science as their major, with

the other six being split equally as Computer Engineering and Electrical Engineering

majors. The last student was enrolled in the School of Arts & Sciences as a Music

major.

The order of the first two labs was reversed and the encryption lab was changed

from covering AES to covering Diffie-Hellman Key Exchange. The Physically Un-

cloneable Function lab was slated to be assigned as Lab #6 but was cut when the

course progressed slower than expected and there was not enough time to cover all

of the labs while having an expanded final project, which was deemed to be more

important than the canceled assignment.

As with before, towards the end of the semester in-person feedback was solicited

from the students. Overall students wanted more lectures about security and fewer

class periods dedicated to completing projects and lab assignments. They also yearned

for more hardware hacks, due to their novelty and consequently wanted less time

dedicated to software hacks.

Students expressed an appreciation for the variety of skills and experiments that

the class exposed them to, although several students wanted more focus on how

to “package” hacks for delivery and exploitation — this class is setup for teaching

students how to hack into devices and why hacks are possible, not necessarily the

best way to actually exploit a device.

The second time the class was taught deadlines were more flexible and students

responded by requesting more fixed deadlines so they could plan their schedules a bit

59

CHAPTER 11. RESULTS & CONCLUSION

better. One consequence of this flexibility was that the aforementioned PUF project

was canceled in favor of expanding the time available to work on the final project.

Two students expressed regret they were not able to work on the PUF project.

One oddity in the scheduling of this class was due to how Thanksgiving Break

broke up the penultimate week of class, which resulted in Phase #2 of the final project

being concurrent with the Thanksgiving holiday, robbing students of possible time

spent in the lab hacking into their opponents’ project.

Even though the second time the course was offered the Final Project was given

an additional month of time and checkpoints were implemented, several students

expressed the regret that there were not enough checkpoints to keep them accountable

during the additional month of time.

One overall consensus that the class reached is that even though the real-world ex-

amples were great, they were not “current topics” and students wanted more exposure

to current trends in security.

There were two administrative issues that different students expressed. The first

was that there was no official budget for the final project. Students were expected

to pay for the projects themselves or through various other sources offered by Case

Western Reserve. The second is that the class time slot conflicted with two labs for

the introductory circuits course, which resulted in a lack of available lab space when

the security class was scheduled to work in the lab.

A final note is that several students not in the class expressed regret at not knowing

the class existed and wished that the class was more heavily advertised so that they

could have taken it

For an unknown reason a detailed course evaluation was not performed for the

Fall 2015 semester of this course. However, two students (out of thirteen enrolled)

did respond and both of them rated the course as Very Good, or a 4.0 on the 1–5

scale used earlier.

60

CHAPTER 11. RESULTS & CONCLUSION

11.2 Conclusion

As elaborated on earlier, the two times the class ran it was a phenomenal success. The

students were responsive, engaging and provided invaluable feedback towards the end

of the semesters. As it stands the class is inexpensive to teach and is flexible enough to

include in any engineering program. The unconventional mix of Electrical Engineering

and Computer Science concepts together in a single class was well received and would

make it possible to cross-list the class between departments for advanced technical

elective credit.

This course slots well into the emerging Institute for Smart, Secure and Connected

Systems (ISSACS) at Case Western Reserve University and can be expanded on with

additional experiments to further integrate Internet of Things (IoT) concepts into the

course’s labs.

Further work with the concept could include a follow-up study with the twenty-

five students who took the class to assess the amount of knowledge retained years

after the semester concluded.

61

Appendix A

Proposed SAGES Course

It was thought that at one point, instead of teaching a second round of the class, a

revamped and modified version of the class would be taught as a freshman SAGES

class. The Seminar Approach to General Education and Scholarship (SAGES) pro-

gram at Case Western Reserve replaced the stereotypical composition and writing

classes that other universities offer with “themed” classes, pairing an instructor who

is passionate about a subject with a skilled English instructor who provides a scaffold

around which to promote discussion as well as compose essays and a final research

papers. All students at Case Western Reserve are required to take three SAGES

classes, starting with the first semester of their freshman year.

A recent push from the school’s administration has been to promote engineering-

related SAGES classes, especially for first semester freshman in order to attract them

to various engineering programs. A modified version of the class, tentatively titled

“FSNA: Cybersecurity”, was proposed as an “engineering” themed freshman SAGES

class. The freshman class was ultimately not offered and was abandoned in favor of

teaching a slightly revised upperclassman technical elective a second time.

The freshman class would have dropped most of the detailed technical discussion

and laboratory exercises in favor of looking at historical cybersecurity incidents and

62

APPENDIX A. PROPOSED SAGES COURSE

Week Topic
Week #1 Definition of Terms
Week #2 Buffer Overflows
Week #3 Wiretapping
Week #4 Social Engineering
Week #5 Class Presentations on Essay #1
Week #6 American Airlines Flight 587 and Uranium Processing
Week #7 Denial-of-Service Attacks
Week #8 Spoofing and Tampering
Week #9 Privilege Escalation
Week #10 Diffie-Hellman, RSA and Dual EC DRBG
Week #11 Original Xbox Issues
Week #12 Class Presentations on Essay #2

Table A.1: Tentative, proposed, schedule for the SAGES course.

their impacts on both the technology and the political landscapes. The class would

have been split into thirds, with each third of a semester focusing on a different kind

of attack.

The class would have started the semester off by taking a look at how an attack

could be executed against a piece of software installed across tens of thousands, if not

millions of systems. These kind of attacks can be disastrous due to their potential to

affect software packages with huge install bases, therefore these attacks can generate

hundreds of thousands of dollars in profit for their attackers. The text that would

have underpinned this segment of the semester was The Cuckoo’s Egg: Tracking a Spy

Through the Maze of Computer Espionage by Clifford Stoll[6], the fascinating story of

how an astronomer-turned-system-administrator uncovered a KGB spy ring running

rampant across America through a seventy five cent internal accounting error.

After software-only attacks were discussed, attacks that focus on the interplay

between software and hardware were going to be discussed. Ultimately the software

running on a system controls the underlying hardware. If there is an issue in the

control software then it is entirely possible to destroy the system, either inadvertently

through mistakes made by the operator or on purpose, in the case of espionage. By

63

APPENDIX A. PROPOSED SAGES COURSE

leveraging mistakes made in the design of the software it is possible to destroy the

underlying hardware invisibly and undetectably until it is too late. The text that

would have underpinned this segment of the semester was Countdown to Zero Day:

Stuxnet and the Launch of the World’s First Digital Weapon by Kim Zetter[16], the

story of how part of the Islamic Republic of Iran’s nuclear program was damaged

and delayed through a computer virus that caused uranium purification centrifuges

to self-destruct .

Finally, for the last third of the semester, the hardest kind of attacks would have

been discussed: attacks attacking the hardware of a device, without touching the

software running on that device. Modern days secure systems are constructed using

a principle of a chain of trust: every link on the chain verifies the integrity of the

next chain. If the verification fails then the system halts the process. However, if the

authenticity of the underlying hardware can’t be guaranteed than the entire chain is

broken from the beginning. An attacker can modify parts of the hardware so that the

chain will execute their code instead of the legitimate code transparently. The results

of these attacks can have implications running into the millions of dollars. The text

that would have underpinned this segment of the semester was Hacking the Xbox: An

Introduction to Reverse Engineering by Andrew Huang[3], the story of how an MIT

student cracked open the original Xbox’s security system through reverse engineering

part of the motherboard.

The goal of this course would have been to have students apply critical thinking

skills to the modern day network of computers, and to explore how the systems

normally work together to archive legitimate goals, but how along the way they can

be hijacked to preform illicit actions. Each section of the course would have an

overarching reading that drives the weekly readings, which describe different types

of cybersecurity attacks in greater detail, along with a unit essay that wraps up the

themes discussed in class during that section with each student researching an attack

64

APPENDIX A. PROPOSED SAGES COURSE

that fits that particular theme.

Each attack discussed would have been demonstrated to the class through journal

articles that describe how the attack works on a technical level, as well as examples

taken from the media of the attacks being used outside of a laboratory setting with

production systems. Selected attacks would have been demonstrated to the students

in a live setting, which would have been designed to reinforce the readings by showing

how exploits actually attack a system in practice.

65

Appendix B

Layout Files

This section contains all of the files needed to reproduce the custom-built board for

this class, along with the Bill of Materials located in Table 2.1 in Chapter 2. As

mentioned previously this is a two-layer Printed Circuit Board with soldermask on

both sides and silk screen only on the top side.

The copper and silk screen images are positives — that is to say a black line

represents where the copper should be left on the board or the silk screen applied.

This is in contrast to the soldermask image which is a negative — that is to say a

black line represents where there should not be soldermask applied.

66

APPENDIX B. LAYOUT FILES

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze Le

tte
r

D
at

e:
10

/2
8/

20
16

Sh
ee

t
 o

f
Fi

le
:

Z:
\D

ro
pb

ox
\..

\S
ch

em
at

ic
.S

ch
D

oc
D

ra
w

n
By

:

1μ
F

C2
1μ

F
C3

1μ
F

C1

V
U

SB
+3

V
3

+1
V

8

(IN
T.

6/
A

IN
0)

 P
E6

1

U
V

C
C

2
D

-
3

D
+

4

U
G

nd
5

U
Ca

p
6

V
Bu

s
7

(S
S/

PC
IN

T0
) P

B0
8

(P
CI

N
T1

/S
CL

K
) P

B1
9

(P
D

I/P
CI

N
T2

/M
O

SI
) P

B2
10

(P
D

O
/P

CI
N

T3
/M

IS
O

) P
B3

11

(P
CI

N
T7

/O
C0

A
/O

C1
C/

RT
S)

 P
B7

12

RE
SE

T
13

V
C

C
14

G
N

D
15

X
TA

L2
16

X
TA

L1
17

(O
C0

B/
SC

L/
IN

T0
) P

D
0

18
(S

D
A

/IN
T1

) P
D

1
19

(R
X

D
1/

IN
T2

) P
D

2
20

(T
X

D
1/

IN
T3

) P
D

3
21

(X
CK

1/
CT

S)
 P

D
5

22

G
N

D
23

AV
C

C
24

(IC
P1

/A
D

C8
) P

D
4

25

(T
1/

O
C4

D
/A

D
C9

) P
D

6
26

(T
0/

O
C4

D
/A

D
C1

0)
 P

D
7

27

(P
CI

N
T4

/A
D

C1
1)

 P
B4

28
(P

CI
N

T5
/O

C1
A

/O
C4

B/
A

D
C1

2)
 P

B5
29

(P
CI

N
T6

/O
C1

B/
O

C4
B/

A
D

C1
3)

 P
B6

30

(O
C3

A
/O

C4
A

) P
C6

31

(IC
P3

/C
LK

0/
O

C4
A

) P
C7

32

(H
W

B)
 P

E2
33

V
C

C
34

G
N

D
35

(A
D

C7
/T

D
I)

PF
7

36
(A

D
C6

/T
D

O
) P

F6
37

(A
D

C5
/T

M
S)

 P
F5

38
(A

D
C4

/T
CK

) P
F4

39
(A

D
C1

) P
F1

40
(A

D
C0

) P
F0

41

A
RE

F
42

G
N

D
43

AV
C

C
44

U
2

A
tm

el
 A

TM
EG

A
16

U
4-

A
U

R

G
N

D

X
IN

1
G

N
D

2
X

O
U

T
3

Y
1

A
br

ac
on

 A
W

SC
R-

16
.0

0C
V

-T

G
N

D
M

H
3

M
H

4

M
H

1

M
H

2

F1 Fu
se

 2

22
Ω

R1
22
Ω

R2
1μ

F
C4

V
U

SB

G
N

D

M
IS

O
1

SC
K

3

RE
SE

T
5

V
C

C
2

M
O

SI
4

G
N

D
6

J2 IC
SP

G
N

D

SCK
MOSI
MISO

RE
SE

T

RE
SE

T

10
kΩ

R3

+3
V

3

PI
N

4
PI

N
5

PI
N

6

PI
N

7

10
kΩ

R4

G
N

D

H
W

B

JT
A

G
_T

CK
JT

A
G

_T
M

S
AV

R_
TD

O
AV

R_
TD

I

PI
N

1

PI
N

2
PI

N
3

PI
N

8

PI
N

9
SD

A
SC

L

0.
1μ

F
C5

0.
1μ

F
C6

+3
V

3

G
N

D

22
0Ω

R5

G
N

D

22
0Ω

R6

G
N

D

+3
V

3
V

U
SB

D
1

D
2

AV
R_

PW
M

AVR_PWM

G
N

D22
0Ω

R7

D
3

CPLD_PWM

G
N

D22
0Ω

R8

D
4

TC
K

1

G
N

D
2

TD
O

3
V

RE
F

4
TM

S
5

nS
RS

T
6

V
C

C
7

nT
RS

T
8

TD
I

9

G
N

D
10

J3 JT
A

G
+3

V
3

G
N

D

JT
A

G
_T

CK
JT

A
G

_T
M

S

AV
R_

TD
O

AV
R_

TD
I

RE
SE

T

D
N

P
R0

TD
I

15
TD

O
17

TC
K

16
TM

S
14

U
3C

5M
40

ZE
64

C5
N

V
CC

IO
1

6
V

CC
IO

1
23

V
CC

IO
2

39
V

CC
IO

2
57

V
CC

IN
T

8

V
CC

IN
T

41

G
N

D
65

U
3D

5M
40

ZE
64

C5
N

G
N

D
0.

1μ
F

C8
0.

1μ
F

C7
0.

1μ
F

C9

+1
V

8
+3

V
3

G
N

D
G

N
D

G
N

D

D1, D2, D3, D4 are OSRAM LG R971-KN-1

CP
LD

_T
D

O

JT
A

G
-B

as
ed

 P
hy

sic
al

ly
 U

nc
lo

na
bl

e
Fu

nc
tio

n
Pr

oo
f-O

f-C
on

ce
pt A
nd

re
w

 H
en

ne
ss

y
1

1

Sc
he

m
at

ic
: 2

.0
 (C

)
PC

B:
 2

.0
 (C

)

U
SB

_N
U

SB
_P

AV
R_

N
AV

R_
P

CL
K

0

22
0Ω

R9

BANK 1

IO
, D

IF
FI

O
_L

1p
64

IO
, D

IF
FI

O
_L

1n
1

IO
2

IO
, D

IF
FI

O
_L

2p
3

IO
, D

IF
FI

O
_L

2n
4

IO
5

IO
, C

LK
0

7
IO

, C
LK

1
9

IO
10

IO
, D

IF
FI

O
_L

3p
11

IO
, D

IF
FI

O
_L

3n
12

IO
13

IO
, D

IF
FI

O
_B

1p
18

IO
, D

IF
FI

O
_B

1n
19

IO
, D

IF
FI

O
_B

2p
20

IO
, D

IF
FI

O
_B

2n
21

IO
, D

IF
FI

O
_B

3p
22

IO
, D

IF
FI

O
_B

3n
24

IO
25

IO
, D

IF
FI

O
_B

4p
26

IO
, D

IF
FI

O
_B

4n
27

IO
, D

EV
_O

E,
 D

IF
FI

O
_B

5p
28

IO
, D

EV
_C

LR
n,

 D
IF

FI
O

_B
5n

29

IO
, D

IF
FI

O
_B

6p
30

IO
, D

IF
FI

O
_B

6n
31

IO
, D

IF
FI

O
_B

7p
32

IO
, D

IF
FI

O
_B

7n
33

U
3A

5M
40

ZE
64

C5
N

CL
K

0

PI
N

2
PI

N
3

PI
N

4

PI
N

5
PI

N
6

PI
N

7
PI

N
8

CP
LD

_P
W

M

PI
N

9
PI

N
10

PI
N

11

PI
N

1

RS
1

O
hm

ite
 L

V
K

12
R1

00
D

ER

RS
2

O
hm

ite
 L

V
K

12
R1

00
D

ER

+1
V

8

TP
1

TP
3

TP
2

TP
4

IN
1

O
U

T
5

2

EN
3

N
C

4

G
N

D

U
1

LP
39

90
M

F-
1.

8/
N

O
PB

IN
1

O
U

T
5

2

EN
3

N
C

4

G
N

D

U
4

LP
39

90
M

F-
3.

3/
N

O
PB

G
N

D

V
U

SB

PI
N

10

PI
N

11

PI
N

2
PI

N
3

PI
N

4
PI

N
5

PI
N

7

PI
N

1

PI
N

6G
N

D

RE
SE

T

JT
A

G
_T

CK

JT
A

G
_T

M
S

AV
R_

TD
I

AV
R_

TD
O

CP
LD

_T
D

O

PI
N

8
PI

N
9

PI
N

10
PI

N
11

CL
K

0

1 2 3 4 5 6 7 8 9 10 11 12

P1 Bu
s1 2 3 4 5 6 7 8 9 10 11 12

P2 Pr
og

+3
V

3

SD
A

SC
L

4.
7k
Ω

R1
0

4.
7k
Ω

R1
1

+3
V

3

0.
1μ

F
C1

0
0.

1μ
F

C1
1

V
U

SB
1

D
-

2
D

+
3

G
N

D
4

M
H

2
M

H
1

J1 TE
 2

92
30

4-
1

SC
K

M
IS

O
M

O
SI

SC
L

SD
A

+3
V

3_
C

S

+1
V

8_
C

S

G
N

D

RS
3

O
hm

ite
 L

V
K

12
R1

00
D

ER
TP

6
TP

5+3
V

3

U
p

Ce
nt

er
D

ow
n

M
H

1
M

H
2

SW
1

N
K

K
 G

W
12

RH
H

G
N

D

RU
SB

V
U

SB

RU
SB

N
/C

1

CO
M

2
G

N
D

3

TE
ST

4

V
D

D
2

5

SC
L

6
SD

A
7

V
D

D
8

U
5

M
em

sic
 M

X
C6

23
20

EP

G
N

D

+3
V

3

Figure B.1: The schematic of the purpose-built board.

67

APPENDIX B. LAYOUT FILES

Figure B.2: The top silk screen graphic.

68

APPENDIX B. LAYOUT FILES

Figure B.3: The top soldermask graphic.

69

APPENDIX B. LAYOUT FILES

Figure B.4: The top copper graphic.

70

APPENDIX B. LAYOUT FILES

Figure B.5: The bottom copper graphic.

71

APPENDIX B. LAYOUT FILES

Figure B.6: The bottom soldermask graphic.

72

APPENDIX B. LAYOUT FILES

Figure B.7: The drill locations.

73

APPENDIX B. LAYOUT FILES

Designator Mid & Ref X Mid & Ref Y Pad X Pad Y Rotation
C1 2600mil 4100mil 2600mil 4129.528mil 270
C2 2500mil 4100mil 2500mil 4129.528mil 270
C3 2700mil 4100mil 2700mil 4129.528mil 270
C4 3000mil 4100mil 3000mil 4070.472mil 90
C5 3600mil 4200mil 3629.528mil 4200mil 180
C6 3800mil 3700mil 3770.472mil 3700mil 0
C7 1150mil 4100mil 1179.527mil 4100mil 180
C8 1150mil 4000mil 1179.527mil 4000mil 180
C9 1400mil 4000mil 1370.473mil 4000mil 0
C8 1150mil 4000mil 1179.527mil 4000mil 180
C9 1400mil 4000mil 1370.473mil 4000mil 0
C10 1150mil 4500mil 1120.473mil 4500mil 0
C11 1150mil 4400mil 1120.473mil 4400mil 0
D1 3800mil 4100mil 3841.339mil 4100mil 180
D2 3800mil 4000mil 3841.339mil 4000mil 180
D3 3800mil 3800mil 3841.339mil 3800mil 180
D4 3800mil 3900mil 3841.339mil 3900mil 180
F1 3400mil 4100mil 3400mil 4025.197mil 90
R1 3200mil 4100mil 3200mil 4129.528mil 270
R2 3100mil 4100mil 3100mil 4129.528mil 270
R3 2900mil 4100mil 2900mil 4129.528mil 270
R4 3600mil 3700mil 3629.528mil 3700mil 180
R5 3600mil 4100mil 3570.472mil 4100mil 0
R6 3600mil 4000mil 3570.472mil 4000mil 0
R7 3600mil 3800mil 3570.472mil 3800mil 0
R8 3600mil 3900mil 3570.472mil 3900mil 0
R9 3800mil 4200mil 3770.472mil 4200mil 0
R10 1150mil 4200mil 1179.527mil 4200mil 180
R11 1150mil 4300mil 1179.527mil 4300mil 180
RS1 1200mil 3650mil 1227.559mil 3704.134mil 270
RS2 1400mil 3650mil 1427.559mil 3704.134mil 270
RS3 3690mil 3560mil 3744.134mil 3532.441mil 180
U1 2400mil 3900mil 2447.244mil 3862.598mil 180
U2 3150mil 3500mil 3307.48mil3 724.409mil 270
U3 1800mil 3700mil 1637.599mil 3818.11mil 0
U4 2800mil 3900mil 2752.756mil 3937.402mil 0
U5 1520mil 4240mil 1443.622mil 4290mil 0
Y1 2600mil 3700mil 2600mil 3640.945mil 90

Table B.1: The Pick-n-Place file for automated component placement.

74

Bibliography

[1] Altera Corporration. MAX 10 Device Handbook. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_

handbook.pdf. Accessed: 2016-10-28.

[2] Altera Corporration. MAX V Device Handbook. https://www.altera.com/en_

US/pdfs/literature/hb/max-v/max5_handbook.pdf. Accessed: 2016-10-28.

[3] Andrew Huang. Hacking the Xbox: An Introduction to Reverse Engineering. No

Starch Press, 2003.

[4] Atmel Corporation. ATmega16U4/ATmega32U4: 8-bit Microcontroller with

16/32K bytes of ISP Flash and USB Controller: Datasheet. http://www.atmel.

com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf. Ac-

cessed: 2016-10-28.

[5] Charles Petzold. Code: The Hidden Language of Computer Hardware and Soft-

ware. Microsoft Press, 2000.

[6] Clifford Stoll. The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer

Espionage. Doubleday, 1989.

[7] Digi-Key Electronics. 5M160ZE64C5N Altera — Integrated Circuits

(ICs) — DigiKey. http://www.digikey.com/product-search/en?keywords=

5M160ZE64C5N. Accessed: 2016-10-28.

75

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-v/max5_handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-v/max5_handbook.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.digikey.com/product-search/en?keywords=5M160ZE64C5N
http://www.digikey.com/product-search/en?keywords=5M160ZE64C5N

APPENDIX B. BIBLIOGRAPHY

[8] Digi-Key Electronics. P0302 Terasic Inc. — Programmers, Development Systems

— DigiKey. http://www.digikey.com/product-detail/en/terasic-inc/

P0302/P0302-ND/2003484. Accessed: 2016-10-28.

[9] Digi-Key Electronics. PPL-USB-BLASTER-RCN Altera — Programmers, De-

velopment Systems — DigiKey. http://www.digikey.com/product-detail/

en/altera/PL-USB-BLASTER-RCN/544-1775-ND/1212940. Accessed: 2016-10-

28.

[10] Digi-Key Electronics. TMS320VC5509AZHHR Texas Instruments — Integrated

Circuits (ICs) — DigiKey. http://www.digikey.com/product-search/en?

keywords=296-42647-1-ND. Accessed: 2016-10-28.

[11] Dr. Bulent Yener and Andrew Zonenberg. CSCI 4974 / 6974 Hardware Reverse

Engineering. http://security.cs.rpi.edu/courses/hwre-spring2014/. Ac-

cessed: 2017-03-04.

[12] ebay Inc. Altera Mini Usb Blaster Cable For CPLD FPGA NIOS JTAG Altera

Programmer — eBay. http://www.ebay.com/itm/200943750380. Accessed:

2016-10-28.

[13] Jeffrey Hoffstein and Jill Pipher and Joseph H. Silverman. An Introduction to

Mathematical Cryptography (Undergraduate Texts in Mathematics). Springer,

2014.

[14] Jon Erickson. Hacking: The Art of Exploitation: The Art of Exploitation. No

Starch Press, 2008.

[15] Keysight Technologies. MSOX2002A Mixed Signal Oscilloscope: 70

MHz, 2 Analog Plus 8 Digital Channels. http://www.keysight.com/en/

pdx-x201828-pn-MSOX2002A/. Accessed: 2016-10-28.

76

http://www.digikey.com/product-detail/en/terasic-inc/P0302/P0302-ND/2003484
http://www.digikey.com/product-detail/en/terasic-inc/P0302/P0302-ND/2003484
http://www.digikey.com/product-detail/en/altera/PL-USB-BLASTER-RCN/544-1775-ND/1212940
http://www.digikey.com/product-detail/en/altera/PL-USB-BLASTER-RCN/544-1775-ND/1212940
http://www.digikey.com/product-search/en?keywords=296-42647-1-ND
http://www.digikey.com/product-search/en?keywords=296-42647-1-ND
http://security.cs.rpi.edu/courses/hwre-spring2014/
http://www.ebay.com/itm/200943750380
http://www.keysight.com/en/pdx-x201828-pn-MSOX2002A/
http://www.keysight.com/en/pdx-x201828-pn-MSOX2002A/

APPENDIX B. BIBLIOGRAPHY

[16] Kim Zetter. Countdown to Zero Day: Stuxnet and the Launch of the World’s

First Digital Weapon. Broadway Books, 2015.

[17] MEMSIC Inc. Low Power, Low Profile ± 1.5g Dual Axis Accelerometer with

I2C InterfacE: MXC6232xE/F. http://www.memsic.com/userfiles/files/

Datasheets/Accelerometer-Datasheets/MXC6232xEF_Rev_A.pdf. Accessed:

2016-10-28.

[18] MEMSIC Inc. Low Power, Low Profile ± 2g Dual Axis Accelerometer with

I2C InterfacE: MXC6232xM. http://www.memsic.com/userfiles/files/

Datasheets/Accelerometer-Datasheets/MXC6232xMP_Rev_B.pdf. Accessed:

2016-10-28.

[19] Mikhail Platonov. SRAM-Based Physical Unclonable Function on an Atmel

ATmega Microcontroller, 2013.

[20] Mouser Electronics. IP-USB2S Altera — Mouser. http://www.mouser.com/

ProductDetail/Altera/IP-USB2S. Accessed: 2016-10-28.

[21] Saleae Inc. Saleae Logic. The logic analyzer you’ll love to use. https://www.

saleae.com/#DatasheetTile. Accessed: 2016-10-28.

[22] Scott Culp. Ten Immutable Laws Of Security (Version 2.0). https://technet.

microsoft.com/en-us/library/hh278941.aspx. Accessed: 20176-04-03.

[23] Uli Kretzschmar. AES software support for encryption and decryption. https://

github.com/errordeveloper/mist/blob/master/apps/aes/aes.c. Accessed:

2017-03-31.

77

http://www.memsic.com/userfiles/files/Datasheets/Accelerometer-Datasheets/MXC6232xEF_Rev_A.pdf
http://www.memsic.com/userfiles/files/Datasheets/Accelerometer-Datasheets/MXC6232xEF_Rev_A.pdf
http://www.memsic.com/userfiles/files/Datasheets/Accelerometer-Datasheets/MXC6232xMP_Rev_B.pdf
http://www.memsic.com/userfiles/files/Datasheets/Accelerometer-Datasheets/MXC6232xMP_Rev_B.pdf
http://www.mouser.com/ProductDetail/Altera/IP-USB2S
http://www.mouser.com/ProductDetail/Altera/IP-USB2S
https://www.saleae.com/#DatasheetTile
https://www.saleae.com/#DatasheetTile
https://technet.microsoft.com/en-us/library/hh278941.aspx
https://technet.microsoft.com/en-us/library/hh278941.aspx
https://github.com/errordeveloper/mist/blob/master/apps/aes/aes.c
https://github.com/errordeveloper/mist/blob/master/apps/aes/aes.c

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Other Courses at Different Universities
	Organization of the Thesis

	Laboratory Environment
	Equipment and Tools Needed
	Experimental Board
	Purpose-Designed Board
	Off-the-shelf Boards

	Syllabus
	Prerequisites
	Credit Hours
	Course Description
	Key Concepts
	Course Requirements
	Student Expectations
	Lecture Schedule
	Grading
	Student Conduct and Academic Integrity
	Expected Outcomes

	Lab #1: Buffer Overflows
	Objectives
	Assignment
	Introduction
	Instructions

	Assignment Files
	Solutions

	Lab #2: Diffie-Hellman Key Exchange
	Objectives
	Assignment
	Extra Credit Opportunity #1
	Extra Credit Opportunity #2

	Lab #3: AES Encryption
	Objectives
	Assignment
	Introduction
	Instructions

	Assignment Files
	Solution
	Caesar Cipher Exercise
	AES Exercise

	Lab #4: Bus Snooping
	Objectives
	Assignment
	Introduction
	Instructions
	References and Further Reading

	Solution

	Lab #5: Reverse Engineering
	Objectives
	Assignment
	Introduction
	Instructions
	Deliverables

	Solution

	Lab #6: Physically Unclonable Functions
	Objectives
	Assignment
	Introduction
	Instructions
	References

	Final Project & Paper
	Objectives
	Final Paper
	Final Project
	Introduction
	Part 0: Project Proposal
	Part 1: Building the Project
	Part 2: Attacking the Project
	Part 3: Defending the Project

	Results & Conclusion
	Results
	Fall 2014
	Fall 2015

	Conclusion

	Proposed SAGES Course
	Layout Files
	Bibliography

