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Wind Turbine Collective and Individual Pitch Control Using Quantitative Feedback 

Theory 

 

Abstract 

by 

LAURA WHEELER 

 

Individual pitch control is a new technique in the field of wind turbine control, 

used to reduce the asymmetric mechanical loads on the blades of multi-megawatt 

turbines. Therefore, the mechanical fatigue is reduced and the lifetime of the turbine is 

extended. In this work, an individual pitch controller is developed for the National 

Renewable Energy Laboratory’s (NREL) 5 MW reference wind turbine. The individual 

pitch controller works along with a collective pitch controller, designed using the 

Quantitative Feedback Theory Control Toolbox in Matlab.  

The individual and collective pitch controllers are simulated using NREL’s 

computer-aided engineering tool for horizontal axis wind turbines, FAST.  Simulations 

show that the addition of the individual pitch controller reduces the loads on the tilt and 

yaw turbine components (the nacelle and tower) at the 1p and 3p frequencies by half, and 

the loads on the blades at the 2p harmonic frequency, by almost half.  
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Chapter 1 – Introduction 

1.1 Motivation  

Wind energy continues to grow throughout the world. In 2015, more new capacity 

was added in the wind energy sector than in any other power generation sector [10]. This 

is due to the creation of more wind farms and the development of larger capacity 

turbines. In North America, the average size of wind turbines installed was more than 2 

MW in 2015, compared to 1.4 MW in 2005 [25]. The largest turbines in the world are 

now in the range of 5MW for commercial turbines, and in the range of 7 MW for 

prototype turbines [1]. 

As wind turbines increase in size, the loads on the different components of the 

turbine increase, which can reduce turbine lifetime [17, 28]. This is, in part, due to the 

unbalanced and changing loads on the wind turbine rotor caused by wind shear, 

gravitational force, and atmospheric turbulence [17]. However, most control methods 

assume that the wind is constant and uniform across the entire rotor. Collective pitch 

control (CPC), a commonly used method for regulating turbine speed, is based on this 

assumption [17].  

The objective of CPC is to regulate rotor speed in Region 3 of the power curve 

pictured in Figure 1 below. In this region, when the turbine is operating at its rated 

power, the goal is to maintain power and rotor speed while rejecting wind disturbances. 

While the torque is held constant, the pitch is changed uniformly following the demands 

of a closed-loop rotor speed controller that limits energy capture and follows wind-speed 

variations [29].  
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To address the unbalanced and changing loads, research is now being done in the 

area of individual pitch control (IPC). In IPC, each individual blade is adjusted 

separately. The IPC system works with the CPC to address the asymmetries the CPC 

does not take into account. This alleviates structural and fatigue loads, which reduces 

turbine cost. The turbine then requires less maintenance, has a longer lifetime, and is 

more reliable [27, 28].  

 

Figure 1.1: Wind Turbine Power Curve [6]  

1.2 Previous Work  

Over the past decade, researchers have used different approaches to design individual 

pitch controllers. Most of the proposed individual pitch controllers are based on optimal 

time-domain approaches such as linear quadratic Gaussian (LQG), linear quadratic 

regulators (LQR), multiblade coordinate (MBC), l1-optimal methods, and disturbance 

accommodating control [20, 21, 23, 24, 28]. However, the goal of individual pitch control 

is to reduce loads at specific frequencies, typically the 1p and 3p frequencies. It is 
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difficult to look at performance at certain frequencies when working in the time domain. 

Therefore, frequency domain control techniques are better suited to IPC than time 

domain control techniques.  

Both Lu et al. and Vali et al. have looked at IPC from the frequency domain 

perspective. Lu et al. use H∞ loop shaping to design an individual pitch controller, while 

Vali et al. formulate a mixed sensitivity H∞ optimization problem to design an optimal 

multivariable individual pitch controller. But there are several disadvantages to the H∞ 

control technique. This technique is mathematically complex, and difficult to implement 

in real-world situations [19]. Additionally, when using H∞ methods, the controller is 

typically very high order, which is not appropriate for practical implementation.  

The remainder of the thesis is organized as follows. Chapter 2 discusses the reference 

wind turbine used in simulation. Chapter 3 provides an overview of Quantitative 

Feedback Theory, which is used for collective pitch control design. This is followed by 

chapters on the model and controller design for the collective pitch controller and 

individual pitch controller, respectively. The simulation and its results are covered in 

Chapter 6. Chapter 7 discusses the conclusions and possible future work.  
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Chapter 2 – Reference Wind Turbine 

The reference wind turbine used in this thesis is the 5MW Reference Turbine for 

Offshore System Development created by the National Renewable Research Laboratory 

(NREL) in Golden, CO. The reference turbine is not based on any one real turbine, 

instead it is a reasonable approximation of a multi-megawatt turbine. It is based on 

multiple real-world turbines and conceptual models of similar sizes [12].  

The 5 MW turbine is a horizontal axis wind turbine with three blades. Both variable 

speed generator torque control and variable individual pitch control can be used to 

control the 5MW Reference Turbine [12]. Although the reference turbine has been 

designed for use in simulations of offshore applications, the model can easily be used in 

onshore applications as well.  

The reference turbine can be simulated in FAST, NREL’s primary Common 

Application Environment. FAST, short for Fatigue, Aerodynamics, Structure and 

Turbulence, simulates the dynamic response of wind turbines. It joins together models of 

the relevant aerodynamics, servo dynamics, and structural dynamics to carry out 

nonlinear wind turbine simulation in the time domain [13].  

The 5 MW turbine is used as a reference turbine in this study because information on 

the turbine is readily available. Many of the needed parameters can be obtained from 

technical reports from NREL. Also, simulations of the 5 MW turbine can be carried out 

easily in FAST. Lastly, it makes sense to use a multi-megawatt turbine as the model in 

this study, because the size of wind turbines installed around the world continues to grow.  

  



5 
 

Chapter 3 – Quantitative Feedback Theory 

Quantitative Feedback Theory (QFT) is a control design method that uses feedback 

to reduce the effects of uncertainty in the plant and meet performance specifications [8]. 

The plant and the performance specifications are specified in the frequency domain. The 

plant is represented by a set of linear time invariant transfer functions over the range of 

any parametric uncertainty. The performance specifications are represented by two linear 

time invariant transfer functions that form the upper and lower boundaries [8].  

To begin controller design, points within the range of each parameter’s uncertainty, 

for each value of frequency ω=ωi, are plotted on the Nichols chart. For each ωi, a contour 

(known as a template) is drawn through the data points [8]. This represents the region of 

structured plant parametric uncertainty on the Nichols chart, or the region where the 

controlled system meets the performance specifications [8].    

QFT is well suited to design collective pitch controllers for several reasons. First of 

all, design specifications for collective pitch controllers are typically specified in the 

frequency domain [8], which fits with how specifications are represented in QFT. 

Additionally, because the models used to develop collective pitch controllers ignore some 

of the dynamics of an actual turbine, robust control techniques are preferred as they result 

in controllers not sensitive to unmodelled dynamics. This can be represented as 

uncertainty in QFT.  

The collective pitch controller in this thesis is designed using the Quantitative 

Feedback Theory Control Toolbox (QFTCT) developed by Garcia-Sanz. It is an 

interactive object-oriented Matlab toolbox for QFT robust control systems design [2]. 

QFTCT has been used in both industry and academic projects [2]. The user is able to 
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enter the system plant (with or without uncertainties) and specifications into the toolbox. 

Then the user is able to add and modify controllers, adjusting the controllers based on the 

built-in QFT principles.  
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Chapter 4 – Collective Pitch Control 

4.1 Model 

The plant used to design the collective pitch controller is a four-mass model of a 

variable speed direct drive (gearless) wind turbine. Although the NREL 5 MW turbine 

has a gearbox, values are provided for the equivalent shaft, not the high and low speed 

shafts separately [12]. Therefore, the best model for a collective pitch controller for the 

NREL 5 MW turbine is a direct drive model. The model used in this thesis is based on 

the model derived by Garcia-Sanz and Houpis in Wind Energy Systems.  

Garcia-Sanz and Houpis identify the parameters of the four-mass model as 

follows: the wind applies an aerodynamic torque Tr on the rotor. On the other end of the 

system, the electronic converter applies an antagonic electrical torque Tg on the 

shaft.  The rotor has a moment of inertia Ir, and the generator has a moment of inertia Ig. 

The shaft has a torsional stiffness coefficient Ks, and a viscous damping coefficient Bs 

[8].  The excitation current, Ix, is the current introduced into the rotor. Then the active and 

reactive powers (P and Q) are supplied to the grid. At the grid connection point, the 

frequency, voltage, and power factor of the grid are represented by f, U, and φ [8].    

There are four degrees of freedom in the system: rotor angle (ϴr), generator angle 

(ϴg), axial displacement of the nacelle (yt), and the angular displacement of the blades 

(pitch angle, or β).  Therefore, there are four generalized coordinates of the system, q.  

The generalized coordinates of the system, q: 

[ ]
T

i t r gq q y γ θ θ = =                                           (1) 

 

 



8 
 

The kinetic energy of the system: 

( )2'2 ' ' '2 '21 2

2 2 2 2
gr

k t b t r g

Im m IE y r yγ θ θ= + + + +                             (2) 

The potential energy of the system:   

( ) ( )222

2 2 2
t b s

p t b r g
K NK KE y r γ θ θ= + + −               (3) 

The dissipation function: 

( ) ( )2 2'2 ' ' '

2 2 2
t b s

n t b r g
B NB BD y r γ θ θ= + + −                                  (4) 

The Euler-Lagrange equation: 

'
N

i
i i i

Dd L L Q
dt q q q
  ∂∂ ∂

− + = ∂ ∂ ∂ 
     i=1,2,…number of degrees of freedom           (5) 

where L is the Lagrangian function L=Ek-Ep [8]. 

Then Garcia-Sanz and Houpis derive the Lagrange equation terms from equations (1)-(4), 

where  0p

i

E
q

∂
=

∂
 and 0k

i

E
q

∂
=

∂
. 

'

' ' ''
1 2 21 2 2

2' 2 ' ' ''
2 22 2

' '''

' ' ''

'

0 0( )
0 0

0 0 0
0 0 0

k

t

bt b tk

b bb b t

k rr r ri

r gg g g

k

g

E
y

m m m rm m y m r yE
m r m rm r m r yd L d d

E IIdt q dt dt
II

E

γ
γ γ γ

θ θ
θ θ θ

θ

∂ 
 ∂ 

+   + +  ∂ 
    ∂ + ∂     = = =      ∂∂      ∂         

 ∂
 ∂ 

''Mq

 =



    

(6) 
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2 2

0 0 0
0 0 0
0 0
0 0

p

t

p t t tt

b bp b b

p s r s g rs si i

s g s r gr s s

p

g

E
y
E K y yK

NK rE NK rL Kq
E K K K Kq q

K K K K
E

γ γγ
θ θ θ
θ θ θθ

θ

∂ 
 ∂ 
 ∂     
      ∂∂∂       − = = = = =     ∂ −  −∂ ∂       −∂ −         
 ∂ 
 ∂ 

           (7)

'

' '

' 22 ' '
'

' ' ''

' ' ' '

'

0 0 0
0 0 0
0 0
0 0

n

t

tt t tn

b bb bn

n s ss r s g ri

r s ss g s r g

n

g

D
y

BB y yD
NB rNB rD Cq

D B BB Bq
B BB B

D

γ γ γ
θ θ θ

θ θ θ θ

θ

∂ 
 ∂ 

   ∂   
      ∂∂       = = = =    ∂  −−∂
      ∂ −−         

 ∂
 ∂ 

             (8)

1 0 0
0 0

0 1 0
0 0 1

T
T

p T p
r

r
g

g

F
F

r F r
Q T Ru

T
T

T

   
    
    = = =    
      − −    

                (9) 

Using equations 6-9, equation 5 becomes ( )'' ' ' , , , tMq Cq Kq Q q q u+ + = . Rearranging the 

previous equation, equation 5 becomes 

'' 1 ' 1 1q M Cq M Kq M Ru− − −= − − +             (10) 

To describe the system in State Space form, Garcia-Sanz and Houpis define three vectors: 

State variables: ' ' ' ' T

t r g t r gx y yγ θ θ γ θ θ =            (11) 

Inputs: T

T r gu F T T =                 (12) 

Outputs: ' ' ' ' T

t r gy y γ θ θ =                (13) 

Following the standard State Space description (x’=Ax+By, y=Cx), they find: 
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.
4 44 4 4 3

1 1 18 1 8 1 3 1
4 4 4 4 4 4 4 4 4 34 4

0 0
xx x

x x x
x x x x xx

I
x x u

M K M C M R− − −

   
   = +
− −     

            (14) 

4 44 4 8 14 1
0

xx xx
y I x =  

              (15) 

The matrix M-1: 

1 1

1 2
2

1 1 21

1 1 0 0

1 0 0

10 0 0

10 0 0

b

b b

r

g

m m r
m m

m r m m r
M

I

I

−

− 
 
 

+− 
 
 =
 
 
 
 
 
 

            (16) 

The matrices of the State Space description: 

1 1 1 1

1 2 1 2

1 1 2 1 1 2

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0

( ) ( )0 0 0 0

0 0 0 0

0 0 0 0

t b b t b b

t b t b

b b

s s s s

r r r r

s s s s

g g g g

K NK r B NB r
m m m m

A
K m m NK B m m NB

m r m m m r m m
K K B B
I I I I
K K B B
I I I I

 
 
 
 
 
 
 − −
 
 =  − + − +
 
 
 − −
 
 
 − − 
  

        (17) 
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1

1 2

1 2

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

3
2 0 0
3

10 0

10 0

b

r

g

m
B

m m
m m r

I

I

 
 
 
 
 
 
 
 
 =  −
 
 
 
 
 
 − 
  

              (18) 

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

C

 
 
 =
 
 
 

             (19) 

Building on the work done by Garcia-Sanz and Houpis, Wheeler finds the transfer matrix 

T(s) between the input u(s) and the output y(s).  T(s) can be found from the State Space 

model calculated above, T(s)=C(sI-A)-1B.  

  T(s) = 

11

21

32 33

42 43

( ) 0 0
( ) 0 0

0 ( ) ( )
0 ( ) ( )

s
s

s s
s s

µ
µ

µ µ
µ µ

 
 
 
 
 
 

             (20) 

where 

( )
( )

( )
ij

ij
ij

n s
s

d s
µ

µ

µ = ,   i=1,2,3,4; j=1,2,3             (21) 

3 2
11 2( ) 3 3b bn s m s NB s NK sµ = + +              (22) 
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( ) ( )4 3 2
11 1 2 2 2 1 2 1 2( ) 3 3 3 3 3 3 3 3b t b t t b b bd s m m s NB m B m NB m s K m B NB NK m NK m sµ = + + + + + + +  

( )3 3 3t b b t b tB NK NB K s NK K+ + +  (23) 

( ) 3 2
21 1 2( ) 2 2 2t tn s m m s B s K sµ = − + +                             (24) 

21 11( ) ( )bd s r d sµ µ=                (25) 

2
32 ( ) g s sn s I s B s Kµ = + +               (26) 

( ) ( )3 2
32 ( ) r g r s g s r s g sd s I I s I B I B s I K I K sµ = + + + +            (27) 

( )33 ( ) s sn s B s Kµ = − +                            (28) 

33 32( ) ( )d s d sµ µ=               (29) 

42 ( ) s sn s B s Kµ = +                (30) 

42 32( ) ( )d s d sµ µ=                (31) 

( )2
43 ( ) r s sn s I s B s Kµ = − + +                                                                     (32) 

43 32( ) ( )d s d sµ µ=                                                                      (33) 

The aerodynamic equations show that FT and Tr, depend nonlinearly on v1, β, and Ω1.  

The aerodynamic equations: 

( )2 2
10.5 ,T b TF r C vρπ λ β=               (34) 

( )2 3
1,r b PT r C vρπ λ β=                             (35) 

In the equations above, CP is the power coefficient, the ratio of the mechanical 

power extracted by the wind turbine to the original power of the free-air stream that flows 

through the rotor cross-sectional area [8]. CT is the thrust coefficient. a represents the 

axial induction factor, a measure of how much of the air’s velocity is lost when it passes 
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through the wind turbine rotor. It can be written as 0.5(1-v2/v1), a function of the far 

upstream air velocity v1 and the downstream air velocity v2. The equations for the power 

and thrust coefficients are given below.  

( ), 4 (1 )TC a aλ β = −               (36) 

and 

( )
16.5116, 0.39 0.4 5 i

P
i

C e λλ β β
λ

− 
= − − 

 
            (37) 

where 

1

3

1 0.035
0.089 1iλ λ β β

−
 

= − + + 
               (38) 

λ is the tip speed ratio, or the ratio of the product of the rotor speed and the blade radius 

and the wind velocity. β is the pitch angle. ρ describes the air density [8].  

When the aerodynamics equations are linearized around a working point (v10, β0, 

Ωr0), and the bias components are ignored, the transfer matrix that describes the inputs FT 

and Tr is composed only of gain elements.  

1

( )
( )

( )
( )

( )

r
F FV FT

T TV Tr

s
K K KF s

v s
K K KT s

s

β

β β

Ω

Ω

Ω 
    =           

           (39) 

The gains can be calculated using the Cp curves and equations 40-45 below [8]. The Cp 

curves are shown in Appendix A.  

2 2
10

0 0

( ) 1
( ) 2

T T
F b

r r

F t CK r v
t

ρπΩ

∂ ∂
= =
∂Ω ∂Ω

            (40) 

2 2
10 10 0

1 0 0

( ) 1 2
( ) 2

T T
FV b r

r

F t CK r v v C
v t

ρπ
 ∂ ∂

= = + 
∂ ∂Ω  

          (41) 
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2 2
10

00

( ) 1
( ) 2

T T
F b

F t CK r v
tβ ρπ

β β
∂ ∂

= =
∂ ∂

            (42) 

2 3
0 102

0 00 0

( ) 1 1 1
( ) 2

r P
T b P

r r r r

T t CK r C v
t

ρπΩ

 ∂ ∂
= = − 
∂Ω ∂Ω Ω Ω  

          (43) 

2 3 2
10 0 10

1 0 10 0

( ) 1 1 3
( ) 2

r P
TV b P

r

T t CK r v C v
v t v

ρπ
 ∂ ∂

= = + 
∂ Ω ∂  

           (44) 

2 3
10

0 00

( ) 1 1
( ) 2

r P
T b

r

T t CK r v
tβ ρπ

β β
∂ ∂

= =
∂ Ω ∂

            (45) 

Combining the linearized description of the aerodynamics with the transfer matrix, 

Wheeler obtains the overall wind turbine transfer matrix.  

'

'

1

( )
( )( )

'( ) '( ) v ( )
( )( )

( )

t

gr

g

y s
ss

P s D s s
T ss

s

βγ
 
     = +  Ω   
Ω  

                         (46) 

where 

32 33
11 11

32 32

32 33
21 21

32 32

32 33
32 32

42
32

( )( ) ( )( ) ( )
1 ( ) 1 ( )

( )( ) ( )( ) ( )
1 ( ) 1 ( )

'(s)
1( ) ( )

1 ( ) 1 ( )

( )
1 ( )

F T F T F F

T T

F T F T F F

T T

T

T T

T

T

s K K K K K s Ks s
s K s K

s K K K K K s Ks s
s K s K

P
K

s s
s K s K

K
s

s K

β β β

β β β

β

β

µ µµ µ
µ µ

µ µµ µ
µ µ

µ µ
µ µ

µ
µ

Ω Ω Ω

Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω

Ω

− +

− −

− +

− −
=

− −

−
42 33 43 43 32

32

( ) ( ) ( ) ( ) ( )
1 ( )

T T

T

s s K s s s K
s K

µ µ µ µ µ
µ

Ω Ω

Ω

 
 
 
 
 
 
 
 
 
 + − 
 − 

      

(47) 
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32
11

32

32
21

32

32
32

42
32

( )( )( )
1 ( )

( )( )( )
1 ( )

'( )
( )

1 ( )

( )
1 ( )

F TV FV T FV

T

F TV FV T FV

T

TV

T

TV

T

s K K K K Ks
s K

s K K K K Ks
s K

D s
Ks

s K
Ks

s K

µµ
µ

µµ
µ

µ
µ

µ
µ

Ω Ω

Ω

Ω Ω

Ω

Ω

Ω

− + 
 − 
 − + 
 − =
 
 − 
 
 

− 

          (48) 

 

The transfer functions of the actuators are  

( ) ( ) ( )ds A s sββ β=                          (49) 

( ) ( ) ( )g T gdT s A s T s=               (50) 

In the equations above, βd is the demanded pitch angle and Tgd is the demanded 

electrical torque (both calculated by the control system). Aβ(s) and AT(s) are the transfer 

functions from the control signals βd and Tgd to the actual values of the actuators [8]. 

Combining these equations with the system above results in the following equation: 

'

'

1

( )
( )( )

( ) ( ) v ( )
( )( )

( )

t

d

gdr

g

y s
ss

P s D s s
T ss

s

βγ
 
     = +  Ω   
Ω  

           (51) 

32 33
11 11

32 32

32 33
21 21

32 32

32 33
32 32

( )( ) ( )( ) ( ) ( ) ( )
1 ( ) 1 ( )

( )( ) ( )( ) ( ) ( ) ( )
1 ( ) 1 ( )

(s)
1( ) ( ) ( )

1 ( ) 1 (

F T F T F F
T

T T

F T F T F F
T

T T

T

T

s K K K K K s Ks A s s A s
s K s K

s K K K K K s Ks A s s A s
s K s K

P
K

s A s s
s K s

β β β
β

β β β
β

β
β

µ µµ µ
µ µ

µ µµ µ
µ µ

µ µ
µ µ

Ω Ω Ω

Ω Ω

Ω Ω Ω

Ω Ω

Ω

− +
− −

− +
− −

=

− −

42 33 43 43 32
42

32 32

( )
)

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 ( ) 1 ( )

T
T

T T T
T

T T

A s
K

K s s K s s s Ks A s A s
s K s K
β

β
µ µ µ µ µµ

µ µ

Ω

Ω Ω

Ω Ω

 
 
 
 
 
 
 
 
 
 + − 
 − − 

       

(52) 
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32
11

32

32
21

32

32
32

42
32

( )( )( )
1 ( )

( )( )( )
1 ( )

( )
( )

1 ( )

( )
1 ( )

F TV FV T FV

T

F TV FV T FV

T

TV

T

TV

T

s K K K K Ks
s K

s K K K K Ks
s K

D s
Ks

s K
Ks

s K

µµ
µ

µµ
µ

µ
µ

µ
µ

Ω Ω

Ω

Ω Ω

Ω

Ω

Ω

− + 
 − 
 − + 
 − =
 
 − 
 
 

− 

          (53) 

where P(s) is the plant matrix and D(s) is the disturbance transfer matrix [28]. 

The above matrices describe the entire direct drive wind turbine.  

The model for collective pitch controller requires only the equation for the 

rotational speed, Ωr. The rotational speed depends on demanded control signals for the 

blade pitch angle and the wind speed [8]. This is shown in the equation below: 

{ }32 1 33
32

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ( )r T d TV T gd

T

s s K A s s K v s s A s T s
s K β βµ β µ

µ Ω

 Ω = + + −
      (54) 

This can be expressed as: 

1 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )r d gds F s v s F s s F s T sβΩ = + +            (55) 

where  

32
1

( )
( )

( )
TV

tf

K n s
F s

d s
µ=                    (56) 

32
2

( ) ( )
( )

( )
T

tf

K n s A s
F s

d s
β µ β=                         (57) 

33
3

( ) ( )
( )

( )
T

tf

n s A s
F s

d s
µ=                          (58) 

2
32 ( ) g s sn s I s B s Kµ = + +               (59) 

33( ) ( )s sn s B s Kµ = − +               (60) 
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3 2
32 32( ) ( ) ( ) ( ) ( )tf T r g r s g s g T s g r s s T s Td s d s n s K I I s I B I B I K s K I I K B K s K Kµ µ Ω Ω Ω Ω= − = + + − + + − −

 (61) 

The block diagram of the system is shown below: 

 

Figure 4.1: Detailed Block Diagram of the Collective Pitch Control Systems 

 

Figure 4.2: Reduced Block Diagram of the Collective Pitch Control Systems 

The values of the parameters used in the model for the collective pitch control  

system are given by Jonkman and Jonkman et al in NRELOffshrBsline5MW and 

Definition of a 5-MW Reference Wind Turbine for Offshore System Development and 

shown in Table 4.2 below. The only exceptions are the gains KTβ, KTΩ, and KTV. These 

gains are found using the Simulink model shown in Figure 4.3, where the lookup table 

contains the data for Cp/λ curves shown in Appendix A. First, the working points for 
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each wind speed from 14 to 20 m/s are found. The working point is the combination of 

wind speed and pitch angle that leads to the system running at the rated rotor speed of 

1.27 rad/s. The working points are shown in Table 4.1.  

Rotor speed 
Ω (rad/s) 

Wind speed 
v (m/s) 

Pitch angle 
β (degrees) 

Electrical torque  
Tg (Nm) 

1.27 14 8.4 43094 

1.27 15 10.2 43094 

1.27 16 11.8 43094 

1.27 17 13.3 43094 

1.27 18 14.7 43094 

1.27 19 16.0 43094 

1.27 20 17.3 43094 

Table 4.1: Working Points for Collective Pitch Control Model 

 

 

Figure 4.3: Simulink Model Used to Find Working Points   
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Then, based on perturbations around the working point, the relationship between 

the rotor speed and wind speed, pitch angle, and electrical torque can be found. This 

relationship is shown in equation 62. Combining that relationship with the steady state 

values of equations 55-61, the gains KTβ, KTΩ, and KTV can be found. 

1 2 3K v K K TβΩ = + +                (62) 

1
TV

T

KK
K Ω

−
=                 (63) 

2
T

T

K
K

K
β

Ω

−
=                                         (64) 

3
1

T

K
K Ω

=                 (65) 

The table below shows the values used in this thesis for the parameters [12, 15]. 

Power to the grid 5.0 MW rb  63 m 

Density of air 1.225 kg/m3 Ks 8.67*108 Nm 

N  3 Bs 6.22*106 Nms 

Ir 3.54*107 kg m2 Ig 5.03*106 kg m2 

Ωr_nom 1.27 rad/s KTβ nominal -4.78*107 Nm/(rad) 

KTΩ nominal -1.11*107 Nm/(rad/s) KTV nominal 1.72*106 Nm/(m/s) 

KTβ minimum -5.73*107 Nm/(rad) KTβ maximum -3.05*107 Nm/(rad) 

KTΩ minimum -1.67*107 Nm/(rad/s) KTΩ maximum -4.67*106 Nm/(rad/s) 

KTV minimum 1.04*106 Nm/(m/s) KTV maximum 2.13*106 Nm/(m/s) 

AT(s) 1.0 Aβ(s) 1.0 

Table 4.2: Wind Turbine Parameters for Collective Pitch Control Model 
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Note: The parameters above are calculated for the range of wind velocities from 14 to 20 

m/s. The nominal values represent a wind speed of 17 m/s.  

Using the values above, 

6 2 6 8
32 ( ) 5.03*10 6.22*10 8.67*10n s s sµ = + +            (66) 

6 8
33 ( ) 6.22*10 8.67*10n s sµ = − −              (67) 

14 3 14 6 2 16 6 8( ) 1.78*10 (2.51*10 5.03*10 ) (3.51*10 6.22*10 ) 8.67*10tf T T Td s s K s K s KΩ Ω Ω= + − + − −      

(68) 

The final transfer functions are calculated and given below.  

6 2 6 8

1 14 3 14 6 2 16 6 8

5.03*10 6.22*10 8.67*10( )
1.78*10 (2.51*10 5.03*10 ) (3.51*10 6.22*10 ) 8.67*10

TV TV TV

T T T

K s K s KF s
s K s K s KΩ Ω Ω

+ +
=

+ − + − −
 

(69) 

6 2 6 8

2 14 3 14 6 2 16 6 8

5.03*10 6.22*10 8.67*10
( )

1.78*10 (2.51*10 5.03*10 ) (3.51*10 6.22*10 ) 8.67*10
T T T

T T T

K s K s K
F s

s K s K s K
β β β

Ω Ω Ω

+ +
=

+ − + − −
 

(70) 

6 8

3 14 3 14 6 2 16 6 8

6.22*10 8.67*10( )
1.78*10 (2.51*10 5.03*10 ) (3.51*10 6.22*10 ) 8.67*10T T T

sF s
s K s K s KΩ Ω Ω

− −
=

+ − + − −
 

(71) 

4.2 Controller Design 

 The controller design for the collective pitch controller is performed using 

QFTCT in Matlab. After the three system plants F1(s), F2(s), and F3(s) are entered into the 

plant definition window, the frequencies of interest are found from the Bode plots of the 

nominal plant. The Bode plots are given in Appendix B. The selected frequency vector is: 

ω=[0.001 0.005 0.01 0.05 0.1 0.2 0.25 0.3 0.4 0.5 1 5 10 50 100 500 1000] rad/s.  
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Figure 4.4: Plant Template Window  

Next, the design specifications are entered into the specification window. The 

stability specification selected is WS=1.21, which translates to a gain margin of 5.23 dB 

and a phase margin of 48.8°. The user-defined disturbance rejection specification is given 

in equation 72 below.  

( ) ( )
1( ) 0.43

1 0.43 1
F j j

P j C j j
ω ω

ω ω ω
≤

+ +
             (72) 

The specification bounds window from QFTCT for collective pitch controller design is 

given in Figure 4.5.  
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Figure 4.5: Intersection Bounds Window 

 A PI controller is selected as the form of the collective pitch controller. The 

equation of the selected controller is given below, and the controller design window from 

QFTCT is shown in Figure 4.6.  

0.401 0.172( ) sC s
s

− −
=                               (73) 

 

Figure 4.6: Controller Design Window  
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This controller is based on the gain-scheduled PI controller given by NREL for the 5MW 

reference turbine [15]. It meets all QFT bound requirements at the specified frequencies 

as seen in the QFTCT analysis windows below.   

 

Figure 4.7: Stability Analysis Window  

 

Figure 4.8: Disturbance Rejection Analysis Window 
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Figure 4.9: Step Response (Secondary Analysis Window) 
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Chapter 5 – Individual Pitch Control 

5.1 Model 

There are several models for individual pitch control presented in the literature. 

An overwhelming majority of these models use the Coleman transformation. The 

Coleman transformation (also called the multi-blade coordinate blade transformation) 

comes from the field of helicopter control [17]. The use of the Coleman transformation 

simplifies the design process by decoupling the symmetric and asymmetric parts of the 

blade’s equation of motion. It transforms the equations of motion from the rotating 

coordinate frame to fixed coordinate frames [17, 27]. The fixed coordinate frames are 

often referred to as the tilt and yaw coordinate frames.  This decoupling allows the loads 

on the non-rotating parts of the turbine to be examined and then reduced with the 

individual pitch controller.  

The forward Coleman transformation is given in equation 74, and the inverse 

transformation is given in equation 75. 

1

2

3

1 cos ( ) sin ( )
( ) ( )

2 2( ) 1 cos ( ) sin ( ) ( )
3 3

( ) ( )
4 41 cos ( ) sin ( )
3 3

tilt

yaw

t t
t t
t t t t
t t

t t

φ φ
θ θ

π πθ φ φ θ
θ θ

π πφ φ

−

 
 

            = + +                     + +    
    

         (74)  

1

2

3

1 1 1
3 3 3M( ) ( )

2 2 2 2 4( ) cos ( ) cos ( ) cos ( ) ( )
3 3 3 3 3

( ) ( )
2 2 2 2 4sin ( ) sin ( ) sin ( )
3 3 3 3 3

tilt

yaw

t M t
M t t t t M t
M t M t

t t t

π πφ φ φ

π πφ φ φ

−

 
 

               = + +                       + +    
    

       (75) 
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In the equations above, θi(t) and Mi(t) represent the total pitch angle demands and the 

total blade root flap-wise bending moments for blades 1, 2, and 3. θtilt,yaw(t) and Mtilt,yaw(t) 

are the total pitch angles and blade root flap-wise bending moments in the tilt and yaw 

coordinate frames, respectively. ( )tθ
−

 and M( )t
−

represent the averaged blade-pitch angle 

demand and the averaged flap-wise bending moment.  

The total pitch angle for each blade is the sum of the averaged pitch angle and the 

perturbations in each blade’s pitch angle demand. The total blade root flap-wise bending 

moment for each blade is the sum of the averaged bending moment and the perturbations 

in each blade’s bending moment. ϕ(t) is the rotor azimuth angle, which is calculated as 

the product of the rotor speed and time. These relations are expressed below.  

_ ~

1
1 _ ~

2 2
_ ~

3
3

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

t tt
t t t
t t t

θ θθ
θ θ θ
θ θ θ

 +  
   = +  
     +
 

             (76) 

_ ~

1
1 _ ~

2 2
_ ~

3
3

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

M t M tM t
M t M t M t
M t M t M t

 +  
   = +  
     +
 

             (77) 

( ) *rt tφ = Ω                (78)  

Using the Coleman transformation, the root flapwise bending moments can be 

transformed into bending moments in the tilt and yaw coordinate system, respectively. 

These two bending moments are the input into the individual pitch controller, and the tilt 

and yaw referred pitch angles are the individual pitch controller output. Then, the inverse 
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Coleman transformation is used to transform the pitch angles in the tilt and yaw 

coordinate systems into the commanded pitch angles for each blade.  

As shown above using the Coleman transformation, the individual pitch controller 

input is the bending moments on the blades, which comes from the wind turbine. The 

output from the controller to the turbine is the demanded pitch angle. Therefore, the 

individual pitch controller requires both sensors to record controller input and actuators to 

implement the controller output. In the individual pitch controller system, the actuators 

are clearly the three independent motors used to change the pitch angle of each blade.  

For sensors, there are at least two options to record the bending moments on the 

blades. A strain gauge to measure the deformation of the blade can be located in the root 

of each blade. This type of sensor is easy to implement, but may not be accurate enough. 

Alternatively, a distributed fiber optic sensor can be integrated throughout the entire 

length of the blade to record the displacements that occur along the blade. While the fiber 

optic sensors are able to gather more information on the loads on the blades than the 

strain gauge sensors, they are much more difficult to implement. This is because the fiber 

optic sensors must be built in the blades during the manufacturing process. In either case, 

the system will have three independent actuators and three independent sensors.  

Additionally, the relationship between the tilt and yaw bending moments and the 

tilt and yaw referred pitch angles is required for the individual pitch controller design. 

Many of the models used in the existing research on individual pitch control are time 

domain models. These models are not ideal as the goal of individual pitch control is to 

reduce loads on the wind turbine at specific frequencies, a specification that is much 

more easily specified in the frequency domain than in the time domain. Lu et al. and Vali 
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et al. both present frequency domain models based on the frequency domain 

representation of the Coleman transformation and the transfer function that relates the 

change in root flapwise bending moment to the change in blade pitch angle demands.  

Both of these models were considered as potential plants for the individual pitch 

controller. However, both models were rejected as simulation results showed neither 

model accurately reflected the behavior of the 5 MW reference turbine in FAST. 

Therefore, the relationship between the bending moments and pitch angles in the tilt and 

yaw coordinate frames was determined experimentally. The model for this determination 

is shown in Figures 5.1 and 5.2. 

 

Figure 5.1: Step Simulation to Find Individual Pitch Control Model 

To find the plant for the individual pitch controller, the simulation was run with a 

constant wind speed of 17 m/s. In the first ten seconds of the simulation, the collective 

pitch controller and a simple torque controller run to ensure the wind turbine is operating 

at the working point. At 10 seconds the individual pitch control begins, and a step input is 

applied to θtilt, while a zero input is applied to θyaw. This isolates the impact of a change in 
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θtilt on Mtilt and Myaw. Then the simulation experiment is repeated with a step input at θyaw 

and zero input at θtilt, which isolates the relationship between θyaw and Myaw, and the 

relationship between θyaw and Mtilt.  

 

Figure 5.2: Pitch Control Block for Step Simulation   

The simulation experiment showed that the relationship between bending 

moments and demanded pitch angles in the tilt and yaw coordinate frames is best 

described by a gain. This is shown in the equation below.  
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            (79) 

5.2 Controller Design 

A single input single output (SISO) controller is designed based on the plant 

relationships shown in equation 81 below and the desired controller performance in the 

frequency domain. The goal of the individual pitch controller is to reduce the loads on the 

non-rotating components of the turbine at the 1p and 3p frequencies. The 1p frequency is 

the same as the rotational speed of the wind turbine, or 0.2 Hz. The 3p frequency is three 

times the 1p frequency, or 0.6 Hz. The form of the individual pitch controller is shown in 

equation 81 below.  
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 First, a bandpass filter is designed to isolate the dynamics around the 1p and 3p 

frequencies. The form of the bandpass filter is shown in equation 82. To emphasize the 

1p and 3p frequencies of the 5 MW reference turbine, fl is selected to be 0.2 Hz, and fh is 

selected to be 2 Hz. k is selected to be the sum of fh and fl divided by fl, which reduces to 

11.  

2 2 2 2

2 4.4( )
2 ( ) 4 4.4 1.6

l
bp

h l h l

kf s sT s
s f f s f f s s

π π
π π π π

= =
+ + + + +

          (82) 

Then g11(s) and g22(s) are selected to best meet the above specification while maintaining 

system stability. In this case, g11(s) and g22(s) are both selected to be a gain of  

-3.0715*10-8.  

8

8

3.0715*10 0
G( )

0 3.0715*10
s

−

−

 −
=  − 

            (83) 

 Finally, the individual pitch controller is implemented into the FAST simulation 

model. The bandpass filter filters the tilt and yaw bending moments. Then the filter 

output is input into the SISO individual pitch controller. A saturation is implemented to 

limit the perturbation due to the individual pitch control to plus or minus one degree of 

the pitch angle demanded by the collective pitch controller. Also, initialization switches 

are included in the pitch control implementation to switch on the individual pitch control 

at 10 seconds. This gives time for the collective pitch controller to drive the wind turbine 

into the rated power region of the power curve.  
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 Relative gain analysis of the plant matrix is performed to determine the likelihood 

of improvements in system performance when using multi-input multi-output (MIMO) 

control in place of the SISO controller used above [8].  The equation for the relative gain 

calculation and the results of the calculation are shown below. 

( )1 0.999 0.001
(j )* (j )

0.001 0.999
T

RGA P Pω ω−  
= =  

 
             (84) 

As the off diagonal terms of the RGA matrix are less than 0.2, switching from a SISO 

controller to a MIMO controller would not have a significant effect on systems 

performance.  
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Chapter 6 – Simulation and Results  

6.1 Description of Simulator 

 The entire wind turbine and pitch control system is simulated using Matlab’s 

Simulink. The FAST subroutines are connected to Simulink using the S-Function block, 

which integrates custom Fortran routines containing FAST’s equations of motion into the 

Simulink platform [14]. This setup allows different control modules (including pitch 

control) to be designed and simulated in Simulink, while also using the complete 

nonlinear aeroelastic wind turbine model implemented in FAST [14].  

 As described above, the 5 MW reference wind turbine is the model used in FAST. 

The collective pitch controller used in the simulation is given in section 4.2, and the 

individual pitch controller is given in section 5.2. Two different simulations are run: 

collective pitch control alone and the combined collective and individual control. The 

block diagrams for the simulations are shown below. 

 

Figure 6.1: Simulation for Collective Pitch Control Only 
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Figure 6.2: Block Diagram of Collective Pitch Controller 

 

Figure 6.3: Simulation for Collective and Individual Pitch Control 

 

Figure 6.4: Block Diagram of Collective and Individual Pitch Control  
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Simple variable speed torque control is used in the simulations along with the pitch 

controllers designed above. The simulations are run for 300 s (5 minutes). The input wind 

is a turbulent wind field with a mean wind speed of 17 m/s. 

6.2 Results 

The selected results of the simulations are given below. First, the pitch angles of 

each blade are shown for the duration of the simulation. Then, the pitch angles of each 

blade are shown for a period of approximately 20 seconds.  

 

Figure 6.5: Pitch Angles Results from Simulation 

It can be seen from Figure 6.6 that, with the individual pitch control, the pitch of 

each blade oscillates around the pitch angle given by the collective pitch control. The 

peak of each oscillation occurs at different times for each blade, and the period of 

oscillation is roughly 1.7 s. This is the inverse of the 3p frequency of 0.6 Hz.  
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Figure 6.6: Sample of Pitch Angles Results from Simulation   

 Next, the generator power, generator torque and rotor speed for both the collective 

pitch control, and the combination of collective and individual pitch control, are shown.  

 

Figure 6.7: Generator Power Simulation Results  
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Figure 6.8: Generator Torque Simulation Results  

 

Figure 6.9: Rotor Speed Simulation Results  

The plots above show that the generator power, generator torque and rotor speed do not 
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Mtilt and Myaw are shown. Figures 6.10 through 6.13 show that the use of the individual 

pitch controller reduces both the tilt and yaw bending moments.  

 

Figure 6.10: Mtilt Simulation Results  

 

Figure 6.11: Sample of Mtilt Simulation Results 
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Figure 6.12: Myaw Simulation Results  

 

Figure 6.13: Sample of Myaw Simulation Results  

The reduction in Mtilt and Myaw can also be seen in the absolute value of the 

magnitude plots of the Fast Fourier Transforms of the tilt and yaw bending moments, 
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time of 0.001. Two different selections of data are used for the Fast Fourier Transform. 

The first selection is the data from 50 to 250 seconds, while the second selection is from 

100 to 130 seconds.  

 

Figure 6.14: Magnitude of Fast Fourier Transform of Mtilt with a window of 200 

 

Figure 6.15: Magnitude of Fast Fourier Transform of Mtilt with a window of 30 
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These different selections are used to show changes in loads with the use of the 

individual pitch controller are not due to the portion of the results selected. The 

frequencies of interest are 1p and 3p frequencies.  

 

Figure 6.16: Magnitude of Fast Fourier Transform of Myaw with window of 200 

 

Figure 6.17: Magnitude of Fast Fourier Transform of Myaw with window of 30 
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The 1p frequency represents the increase in loads on the tower and nacelle that occur 

once a rotation due to the imbalances in the rotor. Therefore, the 1p frequency is equal to 

the rated rotor speed of 1.27 rad/s, or 0.2 Hz. The 3p frequency of 0.6 Hz represents the 

increase in loads on the tower and nacelle that occurs each time a blade is directly in line 

with the tower. This occurs three times per revolution.  

Analysis of the magnitude plot of the Fast Fourier Transform of Mtilt with a 

window of 200 seconds shows that the use of the individual pitch controller results in a 

28.1% reduction in bending moment at the 1p frequency and a 20.1% reduction at the 3p 

frequency. Similar analysis of the magnitude plot of the Fast Fourier Transform of Myaw 

reveals a 46% reduction in bending moment at the 1p frequency and a 63.2% reduction in 

bending moment at the 3p frequency with the use of the individual pitch controller. When 

the 30 second window is used, the reductions in the tilt coordinate frame are 45.6% and 

50.3% at the 1p and 3p respectively. In the yaw coordinate frame, a 34.6% reduction is 

found at the 1p frequency while a 42.7% reduction is shown at the 3p frequency. These 

results are also presented in Table 6.1.  

 

Table 6.1: Bending Moment Reduction at Key Frequencies  

The magnitude plots of the Fast Fourier Transforms of the root flapwise bending 

moment of each blade (given in Figures 6.18-6.23) show reductions at the 1p and 2p 

frequencies.  

Window of 200 M_tilt M_yaw
1p 28.9% 46.0%
3p 20.1% 63.2%
Window of 30
1p 45.6% 34.6%
3p 50.3% 42.7%
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Figure 6.18: Magnitude of Fast Fourier Transform of Bending Moment of Blade 1 with a 

window of 200 

 

Figure 6.19: Magnitude of Fast Fourier Transform of Bending Moment of Blade 1 with a 

window of 30 
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Figure 6.20: Magnitude of Fast Fourier Transform of Bending Moment of Blade 2 with a 

window of 200 

 

Figure 6.21: Magnitude of Fast Fourier Transform of Bending Moment of Blade 2 with a 

window of 30 
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Figure 6.22: Magnitude of Fast Fourier Transform of Bending Moment of Blade 3 with a 

window of 200 

 

Figure 6.23: Magnitude of Fast Fourier Transform of Bending Moment of Blade 3 with a 

window of 30 
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The 1p frequency of 0.2 Hz represents the increased loads on the blade when it passes by 

the tower, which occurs once per revolution. The 2p frequency of 0.4 Hz is the second 

harmonic of the 1p effect.  

The reductions at the 1p frequency are minimal, at 0.9%, 1.6%, and 0.4% for 

blades 1, 2, and 3, respectively, with a window of 200 seconds. When a window of 30 

seconds is used, the reductions at the 1p frequency are 0.6%, 0.5% and 0.3% for blades 1, 

2, and 3. At the 2p frequency, with a window of 200 seconds, the reductions are larger: 

50.7% for blade 1, 40.6% for blade 2, and 50.3% for blade 3. When a window of 30 

seconds is used, the reductions at the 2p frequency are 73.3%, 39.5% and 56.7% for 

blades 1, 2, and 3 respectively. These results are shown in Table 6.2.  

 

Table 6.2: Root Flapwise Bending Moment Reduction at Key Frequencies  

The variance in percentage reduction at the key frequencies is expected because of the 

turbulent wind input. The results presented in Tables 6.1 and 6.2 show that the selection 

of data for the Fast Fourier Transform does not change the order of magnitude of the 

percentage reduction in bending moment.  

 Next, additional analysis is performed based on the Fast Fourier Transform. The 

magnitude response of the Fast Fourier Transform is squared. The plots of the magnitude 

response of the Fast Fourier Transform squared are similar in shape to the plots of the 

absolute magnitude response of the Fast Fourier Transform. The percentage reduction of 

the bending moments at the key frequencies is calculated by examining the area under the 

Window of 200 M1 M2 M3
1p 0.9% 1.6% 0.4%
2p 50.7% 40.6% 50.3%
Window of 30
1p 0.6% 0.5% 0.3%
2p 73.3% 39.5% 56.7%
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curve around the frequencies of interest. The results of these calculations are shown in 

Tables 6.3 and 6.4 below.  

 

Table 6.3: Bending Moment Reduction at Key Frequencies using Energy Measurement  

 

Table 6.4: Root Flapwise Bending Moment Reduction at Key Frequencies using Energy 

Measurement 

The tables above show that, even when using a different kind of analysis based on the 

Fast Fourier Transform, there are still reduction in bending moment at the key 

frequencies when the individual pitch control is used.  

 

  

Window of 200 M_tilit M_yaw
1p 62.4% 71.2%
3p 71.8% 68.8%
Window of 30 M_tilit M_yaw
1p 70.7% 46.4%
3p 68.7% 61.9%

Window of 200 M1 M2 M3
1p 0.74% 3.20% 1.38%
2p 71.3% 76.6% 74.1%
Window of 30 M1 M2 M3
1p 0.76% 0.90% 1.22%
2p 68.6% 72.6% 72.5%
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Chapter 7 – Conclusions and Future Work 

The results above show that the individual pitch controller reduces the tilt and 

yaw loads on the non-rotating components of the turbine (the nacelle, tower and 

foundation) at the 1p and 3p frequencies and the blade loads at the 1p and 2p frequencies 

without compromising power generation. Therefore, turbines that utilize individual pitch 

control will require less maintenance, have a longer lifetime, and be more reliable. This 

will decrease the costs of operating wind turbines, and consequently the cost of wind 

energy.  

As shown in the results section above, the addition of the individual pitch 

controller to the collective pitch controller results in reductions in tilt bending moments 

and yaw bending moments. In terms of the loads on the blades, a small reduction in loads 

at the 1p frequency is achieved with the combination of collective and individual pitch 

control, compared to the collective pitch controller alone. At the 2p resonant frequency, 

the use of the individual pitch controller results in a much larger reduction of loads on the 

blades. These reductions are shown using different types of anaylsis based on the Fast 

Fourier Transform. The variation in percentage reduction of the root flapwise bending 

moment on each of the three blades occurs because of the turbulence in the input wind 

profile. Additionally, there is an increase in some moments at the 6p frequency. 

Reductions of these moments is left for further investigation.  

The performance of the controller above cannot be compared to the results found 

by Lu et al. and Vali et al. because of the differences in the reference wind turbines used 

in each study. However, the complexity of the controllers can be compared. The 

individual pitch controller above is second order, which is much lower order than the 
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controllers of at least tenth order designed by Lu et al. and Vali et al. using H∞ methods.  

Therefore, the individual pitch controller in this thesis is much simpler to design and 

implement. 

The simulation and validation in FAST verify that the simple individual pitch 

controller designed in this thesis is an attractive option for application in real world 

turbines. This is due to the similarities between the 5 MW reference turbine and real- 

world turbines and the complexity of the simulation in FAST. The next step in this area 

of research is to develop a model-size wind turbine with individual pitch control 

capabilities. This would allow testing of individual pitch controllers in a wind tunnel. 

Testing individual pitch control in a wind tunnel would be the next logical step toward 

implementation of individual pitch control in life-sized, real-world wind turbines.  
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Appendix A: CP Curves 

 

Figure A.1: CP/λ Curve for the NREL 5 MW Reference Turbine  
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Appendix B: Bode Plots of CPC Nominal Plants 

 

Figure B.1: Bode Plot of Nominal Plant F1(s) 

 

Figure B.2: Bode Plot of Nominal Plant F2(s) 
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Figure B.3: Bode Plot of Nominal Plant F3(s) 
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