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Automated Machine Learning Based Analysis of Intravascular Optical 

Coherence Tomography Images 

 
 

Abstract 
  
 

by 
 
 

RONNY SHALEV 
 
 

Coronary artery disease (CAD) is the leading cause of death in the world. Most acute 

coronary events (e.g. heart attacks) are due to the rupture of atherosclerotic plaques inside 

the arteries, however, calcified lesion is the most widely treatable, typically, by stent 

implantation via percutaneous coronary intervention (PCI). Intravascular Optical 

Coherence Tomography (IVOCT) imaging has the resolution, contrast, and penetration 

depth to characterize coronary artery plaques. Conventional manual evaluation of IVOCT 

images, based on qualitative interpretation of image features, is tedious and time 

consuming. The aim of this PhD dissertation was to develop advanced algorithms to fully 

automate the task of plaque characterization, thereby significantly reduce image analysis 

time, enable intervention planning, and increase IVOCT data usability. We based our 

algorithms on machine learning combined with advanced image processing techniques.  

We developed a processing pipeline on a 3D local region of support for 

estimation of optical properties of atherosclerotic plaques from coronary artery, IVOCT 

pullbacks. Performance was assessed in comparison with observer-defined standards 

using clinical pullback data. Values (calcium 3.58±1.74mm-1, lipid 9.93±2.44mm-1 and 
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fibrous 1.96±1.11mm-1) were consistent with previous measurements. We, then, created a 

method to automatically classify plaque tissues as fibrous, calcified, or lipid-rich. For this 

multi-class problem, we used one-versus-rest SVM classifiers for each of the three plaque 

types, rules to exclude many voxels called “other,” and both physics-inspired and local 

texture features to classify voxels. Experiments on the clinical training data yielded 5-

fold, voxel-wise accuracy of 87.7±8.6%, 96.7±4.9% and 97.3±2.4% for calcified, lipid-

rich and fibrotic tissues, respectively. Experiments on the independent validation data 

(ex-vivo image data accurately labeled using registered 3D microscopic cryo-imaging 

and was used as ground truth) yielded overall 87.1% accuracy indicating generalizability. 

This was followed by a development of a novel approach for real-time calcium 

segmentation. The trained algorithm was evaluated on the independent validation data. 

We achieved 5-fold cross validation calcium classification with F1 score of 93.7±2.7%, 

recall of ≥89%, precision of ≥97%, and running time of 2.6 seconds per frame suggesting 

possible on-line use.  

We conclude with an application whose purpose is to be a complementary to the 

cardiologist in data analysis, off-line and on-line.  
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Chapter 1 Background 

1.1 Coronary Artery Disease 

Cardiovascular diseases are the leading cause of death worldwide. About 610,000 

people die of heart disease in the US every year–that’s 1 in every 4 deaths [1] (note that 

the reference was released in 2015). The underlying disease process in the blood vessels 

that results in coronary heart disease and cerebrovascular disease (stroke) is known as 

atherosclerosis.  It is a complex pathological process where fatty material and cholesterol 

are deposited inside the lumen of medium and large-sized blood vessels (arteries). These 

deposits (plaques) cause the inner surface of the arteries to become irregular and the 

lumen to become narrow, making it harder for blood to flow through. Further, the plaque 

can rupture, triggering the formation of a blood clot, which may eventually lead to an 

obstruction of the blood vessel and an acute coronary event, a heart attack.    

CAD development can start at early age. Cholesterol plaque starts to deposit in 

the blood vessel walls. As the person gets older, the plaque burden builds up, inflaming 

the blood vessel walls and raising the risk of blood clots and heart attack [2]. The plaques 

release chemicals that promote the process of healing but make the inner walls of the 

blood vessel sticky. Then, other substances, such as inflammatory cells, lipoproteins, and 

calcium that travel in the bloodstream start sticking to the inside of the vessel walls [3]. 

Eventually, a narrowed coronary artery may develop new blood vessels that go around 

the blockage to get blood to the heart. However, during times of increased exertion or 

stress, the new arteries may not be able to supply enough oxygen-rich blood to the heart 
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muscle. In some cases, a blood clot may totally block the blood supply to the heart 

muscle, causing heart attack. 

1.2 Atherosclerotic Plaques 

The most common cause of coronary thrombosis is plaque rupture followed by plaque 

erosion [4].  However, current practice is to treat mainly occlusions using percutaneous 

coronary intervention (PCI, commonly known as balloon angioplasty), aiming at 

improving survival and relieving patient symptoms [5].  With intervention success, there 

has been a trend to treat ever-more complex lesions, including chronic total occlusions 

[6]. Success of these complex procedures will depend upon intravascular imaging.  

There are three major plaque components of atherosclerotic plaques associated 

with CAD: fibrous tissue, lipid pool and calcified plaques (Figure 1). Once an 

atherosclerotic plaque has formed, it shows the highly characteristic architecture of a 

fibrous cap covering a central core of extracellular lipids and debris (‘atheroma'). Fibrous 

tissue provides the structural integrity of a plaque. On the other hand, the atheroma is soft, 

weak and may rapture easily.  Any combination of cap thickness and atheroma size may 

occur. However, the extremes at both ends of the spectrum appear to have a totally 

different clinical outcome. Essentially clinically stable are fibrous plaques, composed of 

solid fibrous tissue and only small amounts of extracellular lipid or no lipid at all. In 

coronary arteries most of these lesions remain clinically silent [7]. On the other hand, 

typically vulnerable plaques are characterized by large lipid pools and have a thin 

(<65μm) or virtually absent fibrous cap (often referred to as TCFA, Thin Cap 

Fibroatheroma).  
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Figure 1: Comparison of healthy coronary artery (left) and coronary artery with plaque buildup (right.) 
(Source: http://www.pharmaceutical-networking.com/merck-mk-0524b-treatment-of-atherosclerosis/) 

Calcified plaque is an important marker of atherosclerosis, and can provide an 

estimate of total coronary plaque burden for a patient [8-12]. However, there is no clear 

relationship between calcification and plaque vulnerability [13]. Calcified plaques are 

mechanically stiff and heavily calcified lesions can result in under-expansion of coronary 

stents where current treatment of occlusions (PCI) highlight the need for Intravascular 

Optical Coherence Tomography (IVOCT). First, there is a need to guide plaque 

modification. The presence of calcium is the strongest factor affecting “stent expansion,” 

a well-documented metric for clinical outcome [14, 15]. IVOCT provides the location, 

circumferential extent, and thickness of calcium. Angiography gives no such details. 

IVUS detects calcium but gives no information about thickness, as the signal reflects 

from the front surface. As interventional cardiologists tackle ever-more complex vascular 

lesions and use bioresorbable stents, there is a recent growing interest in using 

atherectomy devices for lesion “preparation” (i.e. grinding away hardened plaque 

narrowing the lumen). Since there is a substantial economic cost and risk of 

complications with atherectomy [16], we should un-blind physicians with IVOCT and 

provide them with improved assessment of the need for atherectomy and with angular 
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location for “directed” atherectomy. Second, there can be a geographic miss, where the 

stent either misses the lesion along its length or is improperly expanded, affecting its 

ability to stabilize the lesion and/or provide appropriate drug dosage. There is well-

documented impact on restenosis [17] . Plaque dissections at the edge of a stent clearly 

visible in IVOCT were detected by angiography in only 16% of cases [18]. Plaque 

dissection at the edge of the stent happens almost exclusively in areas with eccentric 

calcium/lipid [18], characteristics only available with intravascular imaging. Under 

IVOCT guidance, one can use a longer stent or apply a second stent to reduce effects of 

geographic miss. Third, plaque sealing is the treatment of a remote lesion that is 

insignificant (<50% stenosis) but that may appear vulnerable under intravascular imaging. 

Because approximately 50% of coronary events after stenting happen at remote, non-

stented sites, plaque sealing is an attractive concept under investigation in trials. 

IVOCT’s high sensitivity for lipid plaque will be advantageous for guidance of plaque 

sealing. 

 The goal of this work is to develop automated algorithms for plaque 

characterization from intravascular OCT (IVOCT), for the purpose of creating a powerful 

tool for live-time treatment planning of coronary artery interventions and for off-line 

assessment of drug and biologic therapeutics. We do it in three ways: (i) reduce the effort 

involved, (ii) improve the accuracy of high-risk plaque identification and (iii) make the 

diagnosis available as early in the process as possible. The prevalence of atherosclerosis 

means achieving these goals can have a major impact on health worldwide. 
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1.3 Imaging Technologies for Assessing CAD 

The complex atherosclerotic disease process is frequently not reflected in the luminal 

silhouette generated by modalities, which are commonly referred to as non-invasive 

modalities, such as CT that reliably distinguishes calcified plaque; MRI, which assesses 

plaque in larger vessels; and radionuclide imaging, which uses various imaging agents to 

image vascular inflammation. However, most intravascular lesions silently develop over 

a long time before they obstruct the lumen and direct imaging of the vessel wall has 

become a new goal in the assessment of CAD progression and prevention. Intravascular 

ultrasound (IVUS) represents the first clinical imaging technique enabling routine 

tomographic imaging of coronary arteries [19]. Unfortunately, the microscopic features 

that characterize vulnerable plaque are not reliably identified by IVUS [20-22].   

Several other technologies were tested [23], however no method to date has been 

shown to reliably identify all of the characteristic features of the intravascular lesions. 

There are research-only, emerging intravascular imaging techniques including 

photoacoustic [24], fluorescence lifetime [25], and combined systems: IVOCT-NIR [26], 

IVOCT-IVUS [27], etc. Of all of the methods, IVOCT is the best clinically available 

candidate for plaque characterization at the time of intervention. 

1.4 Optical Coherence Tomography (OCT) 

OCT is a minimally invasive, high-resolution (<10µm axial; 20-40µm lateral resolution) 

imaging modality that has been developed for the identification of vulnerable plaque [28-

30]. It generates cross-sectional images of tissue microstructure to penetration depths 

approaching 2mm [31]. Among a number of imaging modalities that have been 
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investigated for studies of cardiovascular diseases, only OCT provides sufficient 

resolution to visualize the majority of clinically important microstructures of 

atherosclerotic plaques [32]. OCT acquires cross-sectional images of tissue reflectance 

and, since it may be implemented through an optical fiber probe, it is readily adaptable to 

coronary catheters [33] for insertion into coronary arteries and circumferential imaging of 

arterial pathology creating the idea of Intravascular OCT (IVOCT). IVOCT is an optical 

analog of intravascular ultrasound (IVUS) that can be used to examine the coronary 

arteries and has 10-fold higher resolution than IVUS; by measuring the delay time of 

optical echoes reflected from subsurface structures in biological tissues, structural 

information can be obtained. Because of the high speed of light propagation in tissue, the 

time delay of the returning light is measured using low-coherence interferometry where 

light reflected or backscattered from inside the specimen is measured by correlating with 

light that has traveled a known reference path. Consequently, IVOCT can differentiate 

tissue characteristics (fibrous, calcified, or lipid-rich plaque).  

There are two types of OCT (Figure 2), the first generation, called time domain 

(TD)-OCT [31, 34], and second-generation frequency domain (FD)-OCT [35-38], also 

known as optical frequency domain imaging (OFDI) [37, 39], which has advantages that 

currently make it the preferred technique in interventional cardiology.  

In TD-OCT systems, a broadband light source is split into a reference arm, 

directed onto a mirror, and a sample arm that directs the light into the artery wall. When 

the distance travelled by the light in each arm of the interferometer is within the 

coherence length of the source, the returning light, once recombined, will form an 

interference pattern. The amplitude of the detected interference pattern is subsequently 
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mapped to a pixel intensity value corresponding to the discrete axial location, or depth, 

within the tissue. To generate image information for an entire axial (i.e. along the A-line 

direction) depth profile, the reference mirror is translated, altering the optical path length 

of the reference arm, and hence the imaging depth inside the sample. Systematic scanning 

of the imaging beam across the tissue can be performed to build 2-dimensional and 3-

dimensional images. Because of the strong attenuation of light by blood, OCT systems 

require the removal of blood during OCT examinations.  

In FD-OCT/OFDI, rather than utilizing a broadband light source and a 

mechanically translating reference arm, interference is generated using a rapidly tuned 

wavelength swept source and a stationary reference arm [37]. Each frequency component 

of the detected interference signal is associated with a discrete depth location within the 

tissue. To generate an A-line, Fourier transform is used to convert the interference 

information to depth resolved reflectance [37]. FD-OCT system has a faster frame rate 

and pullback speed, making the OCT procedure more user-friendly and not requiring 

proximal balloon occlusion. 

As for most catheter-based optical imaging modalities, it is necessary to clear 

blood from the imaging field of view to obtain information on the artery wall because 

blood scatters and attenuates light. IVOCT has been successfully demonstrated in vivo 

using either a flush with an optically transparent media such as saline or radiocontrast, or 

combined flushing with proximal balloon occlusion. While effective for displacing blood, 

the nonocclusive method only provides a limited view of the vessel, containing few 

images, and balloon occlusion may be associated with myocardial ischemia and chest 

pain during the procedure [40, 41]. 
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The second-generation OCT, FD-OCT, has, to a large part, solved the blood 

limitations of TD-OCT. In 2003, FD-OCT/OFDI [35, 36, 38] was shown to have a 

sensitivity advantage over TD-OCT. This realization led to the development of second-

generation intracoronary OCT systems that perform OCT imaging at significantly higher 

frame rates than TD-OCT, and with superior image quality [37]. When used in 

conjunction with a saline/radiocontrast flush and rapid helical pullback scanning of the 

catheter, FD-OCT/OFDI makes it practical to conduct 3-dimensional (3D) OCT imaging 

of long coronary artery segments without balloon occlusion [39, 42]. The fast pullback 

rate (10 to 20mm per second) allows the injection of only a small amount of contrast 

media to clear the artery, therefore greatly reducing the risk of ischemia. Intracoronary 

OFDI is now poised to become a widely used imaging modality in interventional 

cardiology. In fact, intracoronary TD-OCT has been performed on thousands of coronary 

patients at several hundred sites around the world and, with the recent FDA approval of 

intracoronary FD-OCT systems in the United States, it is anticipated that these numbers 

will greatly increase. In addition, due to its relatively slow image acquisition speed, the 

TD-OCT allows visualization of only a short segment of the vessel following proximal 

balloon occlusion or nonocclusive saline or contrast agent flush. Taking advantage of the 

high detection sensitivity of FD-OCT, comprehensive imaging of a long coronary 

segment in vivo was demonstrated with a short and nonocclusive flush [39]. Three-

dimensional (3D) visualization of coronary microstructures reconstructed from 

comprehensive intracoronary imaging became possible and has been utilized as a useful 

complementary tool to the 2D cross-sectional OCT images. 

 



27 
 

 

Figure 2: Diagrams of the two types of OCT machine. (A) Time domain OCT, TD-OCT and (B) swept-
source OCT FD-OCT. TD-OCT scans different depths by physically moving a reference arm. FD-OCT 
measures interference by sweeping the optical frequency. Interference is obtained as a function of 
frequency and image is reconstructed by taking the Fourier Transform of the detected signal. (Source: 
http://archive.nrc-cnrc.gc.ca/eng/projects/ibd/oct.html) 

IVOCT has demonstrated that it can provide images of superior resolution when 

compared to IVUS and allowed visualization of features not seen by ultrasound [43], 

such as the intima, including intimal flaps and defects, disruptions in the media, and stent 

strut apposition. Generally, the three systems (TD-OCT, FD-OCT and IVUS) differ in 

several respects, as described by Bezerra et al. [44] (summary shown in Table 1). The 

resolution of OCT (10-20 µm) is about 10-fold higher than that of IVUS (to 100-150 µm), 

but the maximum depth of tissue penetration, when no plaque is present, is lower with 

OCT (1-2 mm) than with IVUS (4-8 mm). Another important difference is related to the 

strong attenuation of light by blood, which originates from two sources: absorption by 

hemoglobin and scattering by red blood cells. As described before, to examine coronary 

arteries, blood must first be removed during an OCT examination to eliminate massive 

scattering of light by red blood cells. 
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Specifications  IVUS TD-OCT FD-OCT 
Axial resolution, μm 100-150 15 10-15 
Lateral resolution, μm 150-300 90 20-40 
Frame rate, fps 30 15-20 200 
Pullback speed, mm/sec 0.5-2.0 3 20 
Scan diameter (FOV), mm 8-10 6.8 6-11 
Tissue penetration, mm 4-8 1-3 2-3.5 

Table 1: Comparison of IVUS and first-generation time-domain (see below) OCT (sources: [44, 45]) 

Since its initial demonstration, IVOCT has been used extensively by a number of 

investigators in the clinical realm for assessing coronary plaque features [46-50], stent 

placement  [51-53]), apposition [50, 51, 54], stent strut coverage [55-59] (Figure 3)  and 

thrombus [60]. It has been used to image microstructural features of the artery wall in a 

number of post-mortem studies where the image data can be directly correlated to 

histopathology, the gold standard [23, 32, 61-65]. These studies document the 

development and validation of image criteria for detecting features that correspond to 

tissue microstructures with high sensitivity and specificity. The detected microstructural 

features  include macrophages [62, 65], cholesterol crystals [23, 64], red and white 

thrombus [43, 61], calcium deposits [32, 63], fibrous plaques [32, 63], and lipid-rich 

plaques [32, 61, 63]. These studies have provided the foundation necessary for the 

interpretation of intracoronary OCT images. 
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Figure 3: Stent classification using IVOCT images: (a) Well-apposed with neointimal coverage (arrows). 
(b) Well-apposed without neointimal coverage (arrows). (c) Malapposed without neointimal coverage 
(arrows) 

 “The use of intravascular IVOCT to date has been primarily investigational, and 

therefore its clinical use warrants further exploration” [66]. Despite the greatly improved 

resolution compared to IVUS, the penetration depth of OCT is limited in lipid-containing 

plaque, and therefore, the full thickness of the artery wall may, in some cases, not be 

visible. As a result, certain measurements that require visualization of the external elastic 

membrane, such as plaque burden (a measure of the stenosis severity), cannot be reliably 

performed with OCT. Despite this limitation, it is expected that OCT use will increase 

and will complement or even replace IVUS for many clinical applications, including 

thrombus and superficial plaque characterization, evaluating the results of stent 

placement, lesion coverage, apposition of stent struts to the vessel wall, and edge 

dissections. 

1.5 IVOCT in Intravascular Imaging 

IVOCT has been used in research and clinical application solving numerous analysis 

problems. IVOCT has been shown to discriminate fibrous, lipid-rich, and calcified 

plaques [32, 42, 43]. It has been validated against histology for accurate measurement of 

cap thickness and tissue composition (fibrous, calcific, lipid-rich/necrotic) [23, 32, 67-69].  
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Validation of TCFA by OCT against histology has shown excellent sensitivity (100%) 

and specificity (97%) but limited positive predictive value (41%) [70]. It can also detect 

macrophage accumulations, plaque rupture, micro-calcifications, neovascularization, and 

thrombus [71]. Macrophage accumulations can be visualized by OCT as signal-intense 

punctuate regions with strong signal attenuation [71]; quantification of macrophage 

accumulations within fibroatheroma caps has shown good correlation with human 

histology [65]. The specificity of detecting macrophages defined as ‘bright spots’ (not 

necessarily with shadowing) at any location in the artery wall is lower due to components 

seen elsewhere in the intima that also appear as bright spots in OCT (e.g. cellular fibrous 

tissue, calcium-fibrous tissue interfaces, micro-calcifications, cholesterol crystals) [72]. 

Optical coherence tomography can also detect micro vessels that have been correlated 

with plaque progression and vulnerability [73]. This may enable better treatment 

decisions to be made based on detailed morphologic information, which may result in 

better interventional outcomes [74, 75].  

 IVOCT has been widely used in clinical trials to assess the efficacy and safety of 

stent designs [76, 77]. With superior resolution, sensitivity and imaging speed, IVOCT 

has enabled visualizing delicate vessel structures and arterial healing after stent 

implantation [43, 78, 79]. Our group has developed advanced computational approaches 

for analyzing stents using IVOCT images [80-82]. Lu et al. [80, 83], applied bagged 

decision trees as the classifier on initial screen of candidate struts, and achieved 

promising results in the a small number of validation set. Such classification-based 

methods can take advantage of human expert knowledge, and can easily combine 

multiple features for decision making.  Later on, Lu et al. [81] employed a more 
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advanced approach by using feature extraction and classification techniques to facilitate 

stent detection robustly. In a follow up study, Wang et al. [84] used a Bayesian network 

based upon physical principles of OCT imaging and computed a probability of stent strut 

appearance in an A-line. Second, they exploited stent wire continuity from adjacent 

frames and proposed a novel method based on graph algorithms to detect the stent strut 

locations in an en-face view. Further, they considered the physical stent model and 

localized the depths of all the stent struts in a pullback simultaneously using a graph cut 

algorithm. By doing so, Wang et al. took into consideration the continuity of stent wires 

or the 3-D cylindrical shape of stents and created a more robust technique. The success 

level of the evaluation of these studies (algorithm evaluation was done with >20,000 

images) where results has shown to be as good as, or better than, experts on very tough 

problems in IVOCT stent analysis, caused us to approach machine plaque 

characterization with confidence.   

In this PhD dissertation, however, since some of the above analyses are subjective 

and probably unimportant for intervention decision-making, we do not focus on them. 

The focus of this PhD dissertation is on the aspect of IVOCT image analysis as a means 

to support treatment decision making via automatic plaque characterization of the three 

main plaque types (calcium, lipid, and fiber). 

1.6 Plaque Characterization Using IVOCT 

IVOCT has a significant opportunity to improve percutaneous interventions. 

Physicians perform these procedures under x-ray angiography and fluoroscopy, which 

show the vessel lumen and maybe a hint of potential calcifications, but nothing more. As 
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a result, cardiologists are treating vessels blind to the actual location, extent, and 

constituents of vascular lesions, especially when there is remodeling. Significant lipid or 

calcium deposits can affect the treatment plan. If initial balloon inflation does not expand 

a calcified artery, the physician applies high pressure, performs atherectomy, or aborts, 

all tough decisions needing imaging support. In the case of lipid, a physician can extend a 

stent to seal off the affected area or at least avoid placing the stent edge in a lipid region, 

an occurrence that raises the risk of vascular dissection. Successful live-time IVOCT 

plaque characterization/visualization software would greatly aid treatment planning. Two 

reports document that IVOCT before stenting changes perception and strategy of 

treatment in a majority of cases for experienced users [85, 86]. First, in a 60-day study 

with 150 patients at our site, we found a remarkable 82% of angiography-based strategies 

were altered following consideration of IVOCT [86]. Over 9% of cases had a TCFA at 

the edge of a lesion, where one would extend a stent to limit additional injury. Second, in 

the 418-patient, multicenter ILUMIEN I trial, pre-PCI IVOCT altered the procedure plan 

in 57% of stenoses [85]. 

The main approaches to perform quantitative studies of coronary atherosclerosis 

are: manual analysis, semi-automatic analysis where an interaction with the clinician is 

required to achieve the desired results, and fully automatic analysis.  

Manual analysis suffers from three main disadvantages. First, while a number of 

studies demonstrate that experienced observers can identify plaque and wall borders in 

IVOCT images that agree with histology and angiography [87], the utility of analysis 

approaches relying upon manual border identification is limited by the need for observers 

with substantial experience and by the tedious nature of manual tracing. Second, the 
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manual analysis approach suffers from another disadvantage, accuracy. Third, the 

significant inter-observer variability is a limiting factor in accuracy.  

The manual analysis’ shortcoming has been shown to be very significant at times. 

In [88] it is shown that when three analysts independently assessed the minimum cap 

thickness of the same 14 lesions, at least one of them gave a different call on TCFA in 10 

out of 14 lesions. In this experiment, three expert analysts where given the same 323 

cross-sectional images from the same 14 lipid-rich lesions. Each analyst independently 

selected the image frame where they suspected the FC was thinnest and determined the 

FC thickness by a single measurement. Subsequently, all 323 cross-sectional images from 

the same 14 lipid-rich lesions were manually segmented by analyst 1 and by the computer 

algorithm. The accuracy of the computer algorithm was evaluated by comparison with 

the manual segmentation. In order to assess intra-observer variability, all images were re-

analyzed by operator 1 two weeks later. To assess inter-observer variability of manual 

segmentation of FC boundaries, 50 randomly selected cross-sections were analyzed by 

operators 2 and 3. At all times, each analyst was blinded to the analysis results performed 

by the other analysts and the computer algorithm. Only the common region of FC 

selected by all three analysts was used for comparison. If the FC was blocked by the 

guide wire shadow, only the shadowed region was excluded for validation.  

Development of methods for automated identification of lumen and plaque 

structures has been limited by the relatively poor quality of intravascular ultrasound 

images [89]. Even with the recent substantial improvements in imaging catheters and 

signal processing hardware, accurate and robust segmentation of IVOCT images presents 

a very challenging problem, partly due to artifacts such as residual blood etc. Studies 
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correlating in-vitro and in-vivo IVOCT measurements with histology and angiography 

[32, 47] suggest that experienced observers can identify important luminal and mural 

structures. These studies suggest that when combined with appropriate a priori 

knowledge, the information necessary to perform such identification is present in the 

image data. This observation together with our accumulated experience developing 

robust numerical analysis and machine learning methods approaches to medical images 

forms the impetus for the current work.  

1.7 Machine Learning 

1.7.1 Overview 

Machine learning is the study of algorithms that that improve their performance as they 

are given more data [90]. It plays an emerging role in the medical imaging field, 

including computer-aided diagnosis (CAD), image segmentation, image registration, 

image fusion, image-guided therapy, image annotation, and image database retrieval. 

Machine learning tasks are typically classified into three broad categories: supervised, 

unsupervised and reinforcement learning. In supervised machine learning the computer is 

presented with example inputs and their desired outputs, given by a "teacher" or an expert, 

and the goal is to learn a general rule that maps inputs to outputs. In unsupervised 

machine learning, no labels are given to the learning algorithm, leaving it on its own to 

discover the hidden patterns in the data. In reinforcement learning, a computer program 

interacts with a dynamic environment in which it must perform a certain goal (such 

as driving a vehicle), without a teacher explicitly telling it whether it has come close to its 

goal [91].  



35 
 

In this thesis, the vast amount of data calls for automated methods of data analysis, 

which is what machine learning provides. In particular, we make specific use of 

supervised and unsupervised machine learning algorithms depending on the task at hand. 

We define machine learning as a set of methods that can automatically detect patterns in 

data, and then use the uncovered patterns to estimate novel data, or to perform other 

kinds of decision making under uncertainty. We refer to a machine learning algorithm as 

an “classifier”. We adopt the view that the best way to solve the challenges we face is to 

use the tools of probability. In our specific application, uncertainty comes in the form of 

what is the best model to explain the data? In this thesis we will describe the machine 

learning approach used for the specific task within each of the individual chapters.  

1.7.2 Feature Selection 

Given a very large number of features which exist in medical images, it is customary to 

reduce dimensionality and remove noisy (i.e. irrelevant) and redundant features. 

Dimensionality reduction techniques can be categorized mainly into feature extraction 

and feature selection. Feature extraction approaches project features into a new feature 

space with lower dimensionality and the new constructed features are usually 

combinations of original features. Examples of feature extraction techniques include 

Principal Component Analysis (PCA) [92], Linear Discriminant Analysis (LDA) [93] and 

Canonical Correlation Analysis (CCA) [94]. On the other hand, the feature selection 

approaches aim to select a small subset of features that minimize redundancy and 

maximize relevance to the target such as the class labels in classification. Representative 

feature selection techniques include Information Gain [95], Relief [96], Fisher Score [97] 

and Lasso [98]. Both Feature extraction and feature selection are capable of improving 
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learning performance, lowering computational complexity, building better generalizable 

models, and decreasing required storage. Feature extraction maps the original feature 

space to a new feature space with lower dimensions by combining the original feature 

space. It is difficult to link the features from original feature space to new features. 

Therefore further analysis of new features is problematic since there is no physical 

meaning for the transformed features obtained from feature extraction techniques. While 

feature selection selects a subset of features from the original feature set without any 

transformation, and maintains the physical meanings of the original features. In this sense, 

feature selection is superior in terms of better readability and interpretability. In this 

thesis, depending on the task, we apply the concept of feature selection where we employ 

both the physics of IVOCT image formation and image analysis to compute features from 

3D regions within the IVOCT pullback volume.  

1.7.3 Evaluating classifier performance 

Learning the parameters of a prediction function and testing it on the same data is a 

methodological mistake: a model that would just repeat the labels of the samples that it 

has just seen would have a perfect score but would fail to predict anything useful on 

novel (yet-unseen) data. This situation is called overfitting. To avoid it, it is common 

practice when performing a (supervised) machine learning experiment to hold out part of 

the available data as a test set. Note that the word “experiment” is not intended to denote 

academic use only, because even in commercial settings machine learning usually starts 

out experimentally.  

When evaluating different settings (“hyperparameters”) for classifiers, there is 

still a risk of overfitting on the test set because the parameters can be tweaked until the 
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classifier performs optimally. This way, knowledge about the test set can “leak” into the 

model and evaluation metrics no longer report on generalization performance. To solve 

this problem, yet another part of the dataset can be held out as a so-called “validation set”: 

training proceeds on the training set, after which evaluation is done on the validation set, 

and when the experiment seems to be successful, final evaluation can be done on the test 

set. However, by partitioning the available data into three sets, we drastically reduce the 

number of samples which can be used for learning the model, and the results can depend 

on a particular random choice for the pair of (train, validation) sets. A solution to this 

problem is a procedure called cross-validation (CV for short). A test set should still be 

held out for final evaluation, but the validation set is no longer needed when doing CV. In 

the basic approach, called k-fold CV, the training set is split into k smaller sets. The 

following procedure is followed for each of the k “folds”: 

• A model is trained using (k – 1) of the folds as training data; 

• The resulting model is validated on the remaining part of the data (i.e., it is used 

as a test set to compute a performance measure such as accuracy). 

The performance measure reported by k-fold cross-validation is then the average 

of the values computed in the loop. This approach can be computationally expensive, but 

does not waste too much data (as it is the case when fixing an arbitrary test set), which is 

a major advantage in problem such as inverse inference where the number of samples is 

very small. We further improve on the regular CV approach and perform leave-one-

pullback-out (LOPO) validation.  Although this approach repeats the same logic as the 

CV approach described above, there is one important difference: the left out set is not 

randomly selected from the dataset but is chosen such that all samples belong to the same 

http://en.wikipedia.org/wiki/Cross-validation_(statistics)
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pullback are held out.  This represents a much more realistic condition in our application, 

thus is a better indication of the classifier’s ability to generalize. The above two 

approaches are summarized in the following table. 

k-fold CV Randomly split training set, D, into K folds (K disjoint sets)  
Initialize the error, Ecv to some high value 
for k=1:K 

1. hold the fold k as the validation set, Dcv and the others as 
the training set, Dt 

2. train using Dt 
3. predict error on Dcv, Ecv and record it. 
4. Save model corresponding to average Ecv  

end 

LOPO For n=1:N 

1. Use sample n as the validation set (making sure all points 
belong to the same pullback), Dcv, and the other N-1 as 
training set, Dt 

2. train using Dt 
3. predict error on Dcv, Ecv 

end 

Table 2: CV and LOO validation algorithms.  The LOO approach has significant advantage since it 
represents a much more realistic condition. 

1.7.4 Learning Curve and Performance Measures 

Every machine learning classifier has its advantages and drawbacks. Typically, an 

classifier is trained on a training set that is as large as possible, and evaluated on an 

independent test set [99]. It is expected that more training data results in a better 

performance of the classifier, because with more data the parameters of a classifier can be 

estimated more reliably. A learning curve (Figure 4) shows the change in classification 

error for a varying training set size. Often not only the true error is estimated, but also the 

apparent error, i.e. the error on the training set as opposed to the validation set. When the 

difference between the apparent error and the true error (also referred to as 

“generalization error” or “validation error” and is calculated using an independent 

validation set) is large, the classifier is called overtrained, or overfitted. The performance 
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on the training set gives a too optimistic estimate on what can be expected in practice. 

We can decompose the generalization error in terms of bias, variance and noise. 

The bias of an classifier is its average error for different training sets. The variance of an 

classifier indicates how sensitive it is to varying training sets. Noise is a property of the 

data. 

We plot the learning curve and show the classification (true) and training error 

(apparent error) of a classifier for varying numbers of training samples. This enabled us 

to extrapolate if our classifier may gain significantly in performance when more training 

data is added. Therefore, we use it as a tool to find out how much we benefit from adding 

more training data and whether the classifier suffers more from a variance error or a bias 

error. If both the validation error and the training error converge to a value that is low 

with increasing size of the training set, we will not benefit much from more training . 

 
Figure 4: Learning curve illustration 

1.7.5 Machine Learning That Matters 

A final note on the proposed machine learning approaches taken in this work addresses 

the issue of the considerable efforts we made in order to make the tests (described above) 

be applicable to real world problems. A lot of current machine learning research has lost 
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its connection to problems of importance to the “real world”. From this perspective, there 

exist limitations in the data sets investigated, the metrics employed for evaluation, and 

the degree to which results are communicated back to their originating domains [100] (in 

our case, Cardiology). We made all possible efforts in order to test our results using data 

from clinical settings and avoided using evaluation of the new algorithms on a handful of 

isolated benchmark data sets. Rather than phrase our challenge in the form of a pure 

mathematical objective function to be optimized, we tried to  ask a question of larger 

scope: what is the Cardiologist’s objective function? We wanted to characterize the 

progress of our algorithms in a meaningful way rather than simply maximize 

performance on isolated data sets. This was not always easy, given that we work in an 

academic environment, thus, at times, limited by time, expertise or both. 

1.8 Thesis Overview 

In this thesis, advanced image processing techniques, supervised and unsupervised 

machine learning algorithms, large database of manually annotated blood vessel plaques 

(in the Core Lab), large amount of cryo-images and blood vessel are all combined to 

develop highly automated software for comprehensive analysis of IVOCT pullbacks. The 

rest of this dissertation is organized as follows. Chapter 2 describes algorithms for 

computation and verification of optical properties of the three main plaque types in the 

blood vessel using a blood vessel phantom. Chapter 3 describes a complete pre-

processing pipeline developed for the purpose of improvement of automated plaque 

classification. In chapter 4 we propose to use Support Vector Machine (SVM) as a 

classifier that can be used for off-line plaque classification. In chapter 5 we use a 
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different approach  and develop a close-to-real-time calcium classification algorithm. 

Chapter 6 introduces the software which developed targeted towards on-line and off-line 

automated IVOCT image analysis software based on the algorithms developed in the 

previous chapters. Finally, we summarize and discuss future work in Chapter 7. 
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Chapter 2 Validation of parameter estimation methods for 

determining optical properties of atherosclerotic tissues in intravascular 

OCT 

2.1 Introduction 

Intravascular optical coherence tomography (IVOCT) is an invaluable tool for vascular 

assessments due to its high contrast and microscopic resolution. It has been shown that 

IVOCT is able to distinguish between lipid, calcium, and fibrous plaques [32, 43], 

quantify microscopic features such as macrophage content [65], and aid in assessment of 

new coronary artery stent designs [83, 101]. However, fast IVOCT systems can produce 

500+ image frames in a single 2.5s pullback scan, resulting in an explosion of image data 

which can be very difficult and labor intensive to analyze manually, thereby precluding 

measurements from every image frame. We are developing computational methods for 

automatically classifying tissue types in order to address many of the aforementioned 

challenges. Our methods employ both the physics of image formation and image analysis 

to compute features from 3D regions within the IVOCT pullback volume, which will then 

be employed for an automated and highly precise tissue classification as a follow up 

study. 

There have been previous studies relating to tissue identification and classification 

in OCT images [32, 61, 75, 102, 103]. Yabushita et al. [32] published a qualitative plaque 

classification scheme where he describes fibrous plaques as characterized by 

homogeneous, signal-rich regions; calcium plaque by well-delineated, signal-poor 

regions with sharp borders; and lipid-rich plaques by signal-poor regions with diffuse 
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borders. Kume et al. [61] have demonstrated in vivo evaluation of the different types of 

plaques with IVOCT but argues that interpretation of OCT images based on qualitative 

criteria alone might be ambiguous. Xsu et al. [102] used transverse imaging of ex vivo 

arteries using a high-resolution OCT microscopic system.  They imaged fixed tissue 

sections of coronary arteries and calculated attenuation and backscattering coefficients 

based on average of 400 –lines (over time).  Using single scattering light model, they 

performed least squares fitting of log compressed data.  They were able to discriminate 

numerically between the different plaque types.  Using a catheter based system and a 

stationary acquisition. Van Soest et al. [75]  measured µt in both in vivo and ex vivo 

specimens. They corrected for the non-ideal imaging system, used a linear equation 

model on log compressed data and applied an elegant algorithm to determine regions in 

one dimension corresponding to a single, homogenous tissue type. They argued in favor 

of µt values as a function of depth within tissue. 

In this study, we develop a method for assessing optical properties of tissue from 

3D pullbacks, the standard clinical acquisition method for IVOCT data. In this way, we 

can avoid the second injection of contrast agent to clear the lumen for a stationary 

acquisition. We operate on a volume of interest (VOI) consisting of about 20-50 A-lines 

spread across the angle of rotation (θ) and along the artery, z. This presents many 

challenges including eccentricity of the catheter relative to the lumen surface, catheter 

motion, etc. We meet this challenge using multiple processing steps including pixel 

shifting, noise reduction, and robust estimation. Results from the new pullback analysis 

method are statistically compared to those from a more traditional, “gold standard,” 
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stationary acquisition. In order to do this in a controlled fashion, we use a realistic artery 

phantom containing multiple “tissue types”. 

2.2 Methods 

2.2.1 Image acquisition and selection of volumes of interest (VOIs) 

Images were collected with the C7-XR system from St. Jude Medical Inc., MA. The 

swept source OCT system had a 1310nm center wavelength, 110 nm wavelength range, 

50 kHz sweep rate, 20 mW output power, and ~12 mm coherence length. For pullbacks, 

the nominal speed was 20 mm/s over a length of 54 mm, resulting in a 100 fps frame rate 

and 271 frames per pullback.  For stationary data acquisition, 121 frames were recorded 

with the catheter stationary at a predetermined location. 

The optical tissue phantoms used in this experiment are described in detail in [104, 

105]. These phantoms were carefully fabricated with tightly controlled optical parameters 

allowing us to use them as gold standard while assessing clinically viable pullback data. 

Three phantoms were used in this experiment.  Each phantom simulated one type of 

plaque (lipid, fibrous, and calcium) with known optical characteristics.  For stationary 

imaging, the phantom was placed in a water bath and immobilized.  The imaging catheter 

was moved along the lumen until the site of interest (containing phantom plaque) was 

identified.  Then, the catheter sheath was held firmly on both sides to avoid any motion 

artifacts and five stationary acquisitions were obtained for each phantom. For pullback 

acquisitions, the same process as above was repeated except that we recorded 271 frames 

over a pullback length of 54mm (at 20mm/s) along the segment of phantom tissue. The 

protocol for in vivo imaging is described in [106]. 
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The method used for identification of VOI's by an expert is detailed in [106]. The 

criteria used during human expert VOI identification is described in [1] (fibrous plaques 

were characterized by homogeneous, signal-rich regions; calcified regions by signal-poor 

regions with sharp borders; and lipid plaques by signal-poor regions with diffuse borders). 

TCFA was the most challenging type of plaque to identify [107]. The expert used the A-

line intensity profile for each of the A-lines of the VOI while paying most attention to the 

separation between the lipid pool and the thin cap inside the signal-rich region described 

in [102].  

In the stationary phantom acquisitions, there were 15 datasets in all (5 data sets 

for each plaque type).  In these datasets, the expert marked between 5 and 20 VOIs 

depending on the plaque type and image quality. Markings were similarly done on the 

pullback data. 

2.3 Image Analysis Algorithms 

2.3.1 IVOCT Pipeline 

The processing pipeline used in our IVOCT image data analysis consisted of the 

following steps: 

1. Pre-process in r-θ view: Correct for catheter optics. 

2. Remove Speckle noise using enhanced Lee filter [108, 109] on 2D r-θ images 

introducing minimum bias while preserving the sharp intensity level changes. 

3. Determine and remove baseline. 

4. Pixel-shift A-line within VOI’s ensemble. 

5. Log compress the data. 
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6. Average across time to obtain an averaged image (stationary sequences). 

7. Compute parameters using robust estimation approach.[106] 

This procedure is shown graphically in Figure 5. 

 

Figure 5: graphical illustration of (r-θ) pipeline 
processing.  The green indicates human operation 
while the rest is performed by our software. 

Noise Characterization and Removal 

Speckle in IVOCT is a multiplicative noise and is a major challenge in analysis of optical 

properties [75, 110, 111]. To reduce speckle, we used the so-called enhanced Lee filter 

[108] , which assumes multiplicative noise.  

We first determine if noise in IVOCT data is multiplicative in nature [112].  An 

observed pixel value zi is related to the noise-free pixel, xi,j,  

, , ,z x vi j i j i j=
 

 (2.1) 

where vi,j is a multiplicative noise with mean 1 and variance  σv. We will analyze this 

relationship using methods described in [112]. Briefly, assume that the signal process x 

and the noise v are not correlated, the mean of z is 𝑧𝑧̅ = 𝑥𝑥𝑥𝑥��� = �̅�𝑥 . And the variance of z is: 

2 2 2 2 2var( ) ( )z E xv xv E x E v x v     
     = − = −
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If we examine an ensemble of pixel data or a flat region with fixed x value, 𝐸𝐸[𝑥𝑥2] = �̅�𝑥2 

and the variance reduces to:  

( )2 2 2 2 2var( ) vz x E v v x σ 
 = − =

 
 

 

from which we get: 

var(z) var( )
v

z
x z

σ = =
 

(2.2) 

 

In other words if the model described in (2.1) fits the IVOCT data, then the standard 

deviation, σv should equal the ratio of the standard deviation of z and the mean of z.  

Speckle Noise Distribution: In order to get the speckle noise distribution we computed a 

histogram from an average r-θ frame of an intralipid pullback (obtained by averaging 

across frames of the pullback) truncated to only include pixels to the right of the catheter 

line.  Statistical analysis revealed that the distribution from water pullback. Then three 

additional VOIs were selected from different water pullbacks in order to confirm the 

initial findings.  Since the data does not fit a normal distribution, a classical Lee filter 

[113] would introduce bias in our measurement.  Therefore, we implemented the 

enhanced Lee described in [108] that is more appropriate for data from a Rayleigh 

distribution. 

Enhanced Lee Filter (ELEE): The ELEE as described in [108] reduces speckle while 

preserving texture information.  It is an adaptation of the Lee filter and similarly uses 

local statistics (coefficient of variation) within individual filter windows. Each pixel is 

put into one of three classes, which are treated as follows: 
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• Homogeneous region: The pixel value is replaced by the average of the filter 

window. 

• Heterogeneous region: The pixel value is replaced by a weighted average of 

the neiberhood pixels. 

• Point “pixel”: The pixel value is not changed. 

Baseline Analysis 

We analyzed the baseline, which we define as the noise floor of the intensity level. To do 

that  we used two approaches. In both, we employed the model described in [75]: 

0( ) ( ) ( )exp( )td offsetI r I T r S r r Iµ= − +  (2.3) 

Taking the natural log of both sides of equation (2.3) yields: 

0
0

( ( ) ( ))
ln ln( )( ( ; , ) ( ))

d offset
t

R

I r I r
I rT r z z S r µ

 
 
  

−
= −  (2.4) 

 

For the stationary phantom images, we applied the speckle removal algorithm 

described above to all 121 frames and averaged them. From the average r-θ frame, we 

computed a horizontal profile (i.e. along r) and identified a region within the vessel wall 

where the signal fell off to a minimum level, giving us the required offset to use in the 

model.  For the pullback, however, we used pullback dataset, where, rather than measure 

the noise along r, we selected an angle of an A-line. Then we created an image across the 

pullback direction composed of all of the A-lines having the same angle in each of the 

pullback r-θ frame.  The average of this image gave us the desired baseline. 

Pixel shift Correction 
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In an ideal pullback, the catheter would be fixed at the center of the lumen and would, 

therefore, appear as a straight line in r-θ view (assuming that the vessel is perfectly 

circular).  In addition, the A-line’s shape would look ideal as described by equation (2.3). 

However, typically, the catheter moves during a pullback and therefore its distance from 

the vessel wall is continuously changing.  If an image is “corrected” by “sliding” the A-

lines such that the lumen border is a straight line in an r-θ frame, it would weight equally 

any two points that are at the same depth within the vessel.  Also, all of the A-lines within 

an expert-marked VOI would be at the same distance from the catheter.  We call this 

process “pixel shift correction”. 

The steps in pixel shift correction are: (i) compute lumen border (using dynamic 

programming), and (ii) shift pixels of each A-line in an r-θ frame such that the vessel wall 

becomes a straight line.  The red peaks in Figure 6 represent the reference point from 

which the exponential attenuation occurs for each A-line (i.e. where the intensity is Io) 

and the blue illustrates the lowest point.  The flat blue is the baseline level after baseline 

offset correction as described above. 

  

       Figure 6: A VOI before (a) pixel shift and after (b).  Indices along the axes are index numbers 

(b) (a) 
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2.4 Results 

Results of the baseline analysis for stationary acquisition were such that an intensity level 

of approximately 6.7 (mean) was considered as baseline so that images were corrected by 

subtracting the baseline, dividing each A-line by the imaging system model and any 

negative values were truncated to zero. For the pullback, we received roughly the same 

values; however, we expect that in a clinical pullback, results will be different since there 

the fluids will contain a lot more scatterers than in water (blood/saline mixture).   

Next, we analyzed the noise characteristics.  The noise distribution is found to be 

a Rayleigh distribution with noise variance σv being constant and it is equal to 0.14994. 

An example of what an image looks like before and after speckle noise removal is shown 

in Figure 7.  

 

Figure 7: Illustration of an r-θ frames before (left) and after (right) speckle removal. 
 

In Table 3 below we show a comparison of results of parameter estimation on 15 

stationary phantom data sets of all three plaque types as a function of the processing steps 

in the pipeline.  Approximatelly 20 VOIs were used for each plaque type.  We first 

analyze calcium plaques. Without any processing, µt for calcium has a large uncertainty 

(expressed as larger standard deviation).  After enhanced Lee filtering application, the 

uncertainty of µt is greatly reduced with insignificant bias. When we pixel-shifted and 

averaged the A-lines, we observed that no additional bias was introduced, and uncertainty 
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is significantly reduced (i.e. lower standard deviation, lower cv).  Next, we studied lipid 

plaques. With no processing, we see a large uncertainty in µt but with a much lower cv.  

When we processed the frame using the same steps as before, we observe a progressively 

reducing cv.  In fact, cv is much lower than that for calcium, indicating very high 

precision of µt.  Last, we analyze fibrous plaques, where we see that due to noise removal 

and other steps, cv is significantly lowered indicating very high precision of µt. The data 

of Table 3 is shown graphically in  Figure 8 for all plaque types. 

  Raw Extended Lee Filter Pixel-shift & Averaging 
 μt σ cv μt σ cv μt σ cv 

Calcium 3.882 2.022 0.521 3.805 1.570 0.413 3.800 1.094 0.288 
Lipid 10.842 0.515 0.048 11.218 0.507 0.045 11.025 0.417 0.038 
Fibrous 7.083 2.199 0.310 5.980 1.818 0.304 6.080 1.337 0.220 
Table 3: Attenuation coefficient (μt) results of stationary dataset numerical analysis in the different 
pipeline stages (σ is the standard deviation and cv=σ/mean is the coefficient of variation) 

 

 

Figure 8: µt estimates as a function of processing steps in the processing pipeline for different tissue types 
using stationary acquisition.  Going from left to right we see calcium, lipid and fibrous. 

 

We now compare our results so far with phantom pullbacks.  Looking at Figure 9 

we observed that the average µt’s were very similar to those for the stationary, however 

the uncertainty was higher.  Pullbacks introduce other sources of noise such as motion, 

speed variations and other machine related disturbances during measurements.  However, 

the nice thing is that the average value of the µt for each of the tissue types remain 

relatively constant, thus confirming that the robust estimation method used to calculate 
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the optical values for the pullback, yielded the same results as the stationary acquisition 

where the more traditional method (averaging across the pullback and then across θ) was 

used. 

 

Figure 9: Stationary vs. pullback: µt uncertainty (right y-axis) and coefficient of variation (left y-axis).  
Calcium is 

2.5 Discussion 

Characterization of atherosclerotic plaques is extremely important for determining the 

risk of a cardiovascular event.  However, manually analyzing 100's of frames of IVOCT 

image data and accurately making clinical decisions needs a high level of expertise and 

an inordinate amount of time.  An automated approach will be a great step in the right 

direction; however, discrimination of atherosclerotic plaques using a computer algorithm 

is still not accurate enough for use in a clinical setting as a support system for decision 

making. Our results indicate an improved accuracy and precision as compared to 

previously reported approaches for optical parameter estimation.  Furthermore, this study 

may enable us to determine morphological features of coronary plaques that are at risk of 

rupture.  In this study, phantoms were employed to obtain a "gold standard" against 

which to compare clinical results. Phantoms have also proved useful for establishing the 

best set of processing steps needed for a fully automated IVOCT data analysis.  We 

applied the widely used sigma (Lee) filter to be useful for IVOCT image analysis.  No 
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consistent bias was observed in any of the pipeline stages, which is encouraging.  Our 

results have indicated an improvement in image quality, robustness in estimation, 

improved visualization of hard-to-analyze data, and an improved feature space clustering 

that would aid in unsupervised learning.  For stationary phantom data, calcified and lipid 

plaques exhibit roughly the same average intensity (signal poor regions), however, the 

high attenuation of the lipid and the low attenuation of the calcium help us to distinguish 

between the two.  The homogeneity of fibrous plaque is expressed by a low attenuation 

coefficient, while a high value of the average intensity indicates that it is signal rich. 

When we compared stationary phantoms with pullback phantoms, we observed that 

estimates were numerically comparable however the spread (standard deviation) for 

pullbacks was slightly higher due to motion artifacts during pullback. 

Next, we acknowledge some of the limitations in our approach. The results highly 

depend on the quality of the expert marking.  In fact, Kume et al. [61] show that when 

using IVOCT, evaluation of the different types of plaques could be possible in vivo,  

however,  they also argue that interpretation of OCT images based on qualitative criteria 

alone might be prone to errors and ambiguities. In this study, computation efficiency was 

not considered. Using parallel processing and GPU might make a significant difference in 

compute times; this is reserved for a future study.  Fibrous plaques thinner than 25µm 

were not marked.  Many artifacts such as catheter uniformity, polarization effect, and 

blood clearance may influence the reproducibility of optical parameters estimation.  In 

addition, we would also like to note that that although we performed the noise analysis in 

an intralipid bath, this will not be representative of a clinical pullback noise since when 

performing a clinical pullback, the characteristics of the contrast agent (or the saline) 
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which may be mixed with blood, might be different.  Therefore, the same analysis must 

be performed on a clinical data as well. 

We developed a framework for plaque characterization using three distinctive 

features, the attenuation coefficient, the average intensity and the incident intensity of 

VOI.  We used expert-marked VOIs from stationary phantom data, estimated optical 

parameters, and compared with pullback data.  We introduced the concept of IVOCT 

image pipeline analysis and applied an enhanced Lee filter to remove speckle noise.  

Results suggest that the aforementioned features are suitable for highly accurate plaque 

type discrimination, enabling automatic classification.  Machine learning algorithms can 

further exploit regional image features from IVOCT images such as texture and shape-

based features. 
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Chapter 3 Processing to determine optical parameters of 

atherosclerotic disease from phantom and clinical intravascular OCT 

3D pullbacks  

3.1 Introduction 

Intravascular optical coherence tomography (IVOCT) is a catheter-based, high-resolution 

imaging method that has demonstrated considerable application for assessments of 

vascular disease due to its high resolution and contrasts. IVOCT is able to distinguish 

between lipid, calcium, and fibrous plaque [32, 43, 102, 114], and aid in assessment of 

new coronary artery stent designs [83, 101, 114, 115]. Newer IVOCT systems can 

acquire more than 500 image frames in a single 2.5 second pullback scan, making it 

possible to image a complete artery volume in a few seconds [39, 116]. Although experts 

can classify tissue types using consensus rules [32, 89], there are sometimes regions in 

vessels which can confound the experts, especially if only a single frame is viewed. 

Moreover, it takes considerable training to become an expert reader, and there is 

significant potential for inter-reader variability, especially across sites and time. As a 

result of the volume of IVOCT data and difficulty in interpretation, it can be very 

difficult to interpret live-time in the catheterization suite or to analyze manually offline 

for research applications. We are developing computational methods for automatically 

classifying tissue. Our methods employ both the physics of image formation and image 

analysis to compute tissue optical features from 3D regions within the IVOCT pullback 

volume, which can then be employed for automated tissue classification. 
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There have been previous studies relating to tissue identification and classification in 

OCT images [32, 61, 75, 102].  Yabushita et al. [32] published a qualitative plaque 

classification scheme where fibrous plaques are characterized by homogeneous, signal-

rich regions; calcium plaque by well-delineated, signal-poor regions with sharp borders; 

and lipid-rich plaques by signal-poor regions with diffuse borders.  These descriptions 

later were accepted as the consensus [71] and are used as such in this research.  Kume et 

al. [61] have demonstrated in vivo evaluation of the different types of plaques with 

IVOCT but argues that interpretation of OCT images based on qualitative criteria alone 

might be ambiguous.  Xu et al. [102] used transverse imaging of ex vivo arteries using a 

high-resolution OCT microscopic system.  They imaged fixed tissue sections of coronary 

arteries and calculated attenuation and backscattering coefficients based on average of 

400 lines (over time).  Using single scattering light model, they performed least squares 

fitting of log compressed data.  They were able to discriminate numerically between the 

different plaque types.  Using a catheter based system and a stationary acquisition, Van 

Soest et al [75] measured µt in both in vivo and ex vivo specimens. They corrected for the 

non-ideal imaging system, used a linear equation model on log compressed data and 

applied an elegant algorithm to determine regions in one dimension corresponding to a 

single, homogenous tissue type. They argued in favor of µt values as a function of depth 

within tissue. These reports are encouraging, and results should be improved with robust, 

3D estimation of optical properties and with full accounting of tissue structural 

characteristics.  In a preliminary study, we used 3D spiral pullback acquisitions (rather 

than stationary acquisitions) obtained during a single blood clearing operation to estimate 

optical properties of atherosclerotic plaques within 3D volumes of interest (VOIs) [106]. 
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In this chapter, we propose an improved processing pipeline for estimating optical 

properties from 3D intravascular OCT (IVOCT) pullbacks. We introduce multiple 

enhancements as compared to previous reports from others [28, 75, 102, 117, 118] and 

our own report [106]. Improvements include, speckle noise reduction, baseline signal 

computation, and catheter eccentricity correction. Due to noise in a single A-line from a 

pullback, we estimate parameters from a collection of A-lines nearby in space, both 

within a polar (r-θ) image and across image frames in z. We evaluate the methodology 

using both a silicon-matrix vascular phantom and clinical pullback data. In experiments 

on homogenous phantoms, we compared results from stationary and pullback 

acquisitions, evaluated precision and accuracy of measurements, and investigated 

potential effects of oblique sensor orientation and distance from the lumen on parameter 

estimates.  

 

Figure 10: Bias of Lee filter that is fixed with the enhanced version.  (a) Probability density function (pdf) 
of image data from an IVOCT acquisition with Rayleigh distribution mean, μray =4.0. Assumption of a 
normal distribution ignores values in the Rayleigh tail and gives a µnorm= 3.2.   (b) Variation in normal and 
Raleigh means as a function of intensity. 
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3.2 Algorithms and Data Analysis 

We describe our processing pipeline and algorithms for estimating optical properties in 

3D IVOCT pullbacks. Starting with raw (linear) data in the (r-θ) view, the processing 

pipeline consisted of the following steps.    

1.   Reduce speckle noise using the enhanced Lee (ELEE) filter that accounts for the 

statistical distribution of noise.  

2.   Estimate and subtract the intensity baseline. 

3.   Correct for non-ideal imaging system response. 

4.   Segment lumen border using dynamic programming as described in [119]. 

5.   Spatially adjust pixels to account for catheter eccentricity. 

6.   Apply natural logarithm of intensities to linearize exponential attenuation.  

7.   Estimate optical parameters using 3D robust least square fitting technique. 

Some are described in more detail below.  

3.2.1 Speckle noise characterization and reduction 

We filtered IVOCT images to reduce speckle, multiplicative noise [112, 120], a major 

challenge in the analysis of optical properties [110, 111]. We used the enhanced Lee 

(ELEE) filter on IVOCT images, which accounts for the multiplicative nature of speckle 

noise [109, 121].  The ELEE filter is an adaptation of the Lee filter and uses local 

statistics within a processing window to adaptively filter. We used a rectangular window 

in (r-θ) with the width along θ ≥ 2 times the width in r.  We compared results to those 

from the traditional Lee filter used by us previously [106]. The traditional LEE assumes 

normally distributed multiplicative noise [108]. It replaces the center pixel of the kernel 
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with the average of the pixel values within 2σ of the center pixel value. For the IVOCT 

application, LEE suffers from two drawbacks: that (for a case with mean = 4) the original 

2σ range would shift the original mean value to μnorm, a value smaller than the true mean, 

causing an intensity under-estimation.  Thus, if one realizes that as the intensity level is 

higher, then the under estimation is higher (Figure 10b), it is clear that it has direct impact 

on the attenuation values: It is especially apparent with lipid since lipid-rich plaques start 

with very high intensity rapidly decreasing to signal poor region.  To illustrate, if the start 

of  a 0.14 mm  long A-line within a lipid VOI has intensity value of, say 4095 and at the 

end of the A-line the intensity value is 1000, then using Eq. (3.2), we compute the 

attenuation to be 10.7  mm-1.  However, if the under-estimation at the start of the VOI 

causes us to estimate it at, say, 3500 and at the end of the VOI we still estimate it at 1000, 

then the attenuation would be computed as 8.94 mm-1.  The second major drawback of 

the traditional Lee filter is that regions with very small variation in intensity (small sigma) 

are not filtered.  In the extreme case, of zero intensity, the sigma range is zero, and the 

pixel would remain unfiltered.  These two problems are addressed by ELEE. Within the 

window, each pixel is put into one of three classes, which are treated as follows: 

•   Homogeneous: The pixel value is replaced by the average of the filter window. 

•   Heterogeneous: The pixel value is replaced by a weighted average. 

•   Point pixel: The pixel value is not changed. 

For a more detailed description of the filter please see [108]. 

We numerically analyzed the effect of ELEE as compared to LEE (see Results).  

The ELEE filter performance was evaluated using signal-to-noise ratio (SNR), an 

established speckle-reduction performance metric [110, 122, 123] as defined by Gonzalez 
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[123]: { }2 2
1010 log max /SNR I σ 

 
 

= , where I is the linear magnitude image and σ is the 

variance of I in a background noise region.  To exemplify the improvement in the SNR 

we created several background images (taken from the region beyond beam penetration) 

to compute the noise standard deviation.  We then created the same number of images 

from regions which included meaningful information to get average intensity values (I). 

3.2.2 Baseline 

To find the value of the baseline intensity value, we arbitrarily selected a θ value and 

averaged all A-lines along the pullback direction (z) corresponding to this θ in a pullback. 

Using lumen segmentation as described later, we selected a segment beyond the beam 

penetration depth (> 2mm) in tissue. Any segment that was too short was ignored. The 

average intensity value within this (r-z) plane gave us the baseline.  We expected some 

variation in the computed baseline value for different θ's, therefore, in order to account 

for this variation; we repeated the above steps for several randomly selected θ values and 

picked the median value.  The baseline value determined was subtracted from the OCT 

signal (see Eq. (2.5)), where any negative values were set to zero. 

3.2.3 IVOCT signal model and catheter correction  

We used a commonly used model below to describe the OCT measurement [106]. In the 

equation below, the OCT signal is attenuated in an exponential fashion with the total 

attenuation constant, μt. Remaining components describe the non-ideal imaging system 

response. The equation is:  

0( ) ( ) ( ) exp( )d t bI r I T r S r r Iµ= − +  (3.1) 
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where T(r) is the confocal function and S(r) is the Gaussian Coherence function [75], 

accounting for the spectral coherence of the source in Fourier domain OCT with 

parameters Zw and Zc as given below.  

1/22
0( ) 1 ,r ZT r

ZR

−  − = +    
and 

2

( ) exp
r ZcS r

Zw

−
= −

  
  
   

  

where Z0 is the position of the beam waist and ZR is the Rayleigh length. We estimated 

parameters from model fits to IVOCT imaging data obtained in a low lipid concentration 

solution where attenuation is negligible, as described in [106].  Parameters used where: 

ZC and ZW were obtained from the specifications of the light source and their values were 

ZC = 0mm and ZW = 12mm.  The parameters I0, Z0, and ZR for the typical catheter were 

calculated to be: I0 = 154.93, Z0 = 10.57 mm and ZR = 0.59 mm. Following division of 

the imaging system response, we are left with the equation below. 

 
 ( ) exp( )0I r I r Id t bµ= − +  (3.2) 

3.2.4 Pixel shift correction for oblique incident beam 

In an IVOCT pullback, the catheter is often not at the geometric center of the lumen. This 

eccentricity gives rise to variations in the distance to the lumen boundary in the (r-θ) 

view. Since we do 3D processing rather than A-line processing, it is important to correct 

these variations to better align tissue structures. We segment the lumen border as 

suggested by Zhao et al. [119] with a slight modification where we make it a two-pass 

process: First pass, we implement the cost function as suggested by Zhao et al. along an 

A-line.  In the second pass we fine tune the lumen segmentation by computing the same 

cost function along the line perpendicular to any lumen segment (found in the first pass) 
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that is close to being a horizontal line (±5o).  This process has shown improvements 

mainly where the lumen appears as a close-to-horizontal line in the r-θ view.  For each 

A-line, we record the distance from the catheter to the lumen border and then shift the A-

line along r by an integer number of pixels to place the lumen border at r=50. We use 

integer pixel shifting to avoid interpolation and record the distance so that we can 

recreate the actual distance from the catheter to any pixel in the IVOCT data set. The 

result of this process is a new image with a lumen border consisting of a straight vertical 

line. 

3.2.5 Estimation of optical properties 

Following all processing above, we took the natural log of both sides of Eq. (3.2): 

ln ( ) ln( )0I r I rd tµ   = −   

This gave a linear equation with unknowns ln(Io) and μt. We applied a linear least squares 

fit to each separate A-line within a VOI. We computed medians and recorded this as our 

I0 and μt estimates for the VOI.  We termed this algorithm LSQM. 

3.2.6 Plaque Classification 

We performed an exploratory classification study. We applied a two-class support vector 

machine (SVM) classifier and for similarity function we used the Gaussian radial basis 

function kernel (RBF) which assigns a label, 𝑦𝑦 ∈ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝, 𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝). We used a one-

versus-all approach for multi-class classification of the three plaque types (calcium, lipid 

and fibrous).    
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We optimized SVM parameters, C and γ. The Gaussian kernel variance, γ, defines 

how far the influence of a single training example reaches, with low values meaning “far” 

and high values meaning “close.” The regularization parameter, C, trades off 

misclassification of training examples against simplicity of the decision surface. A low C 

makes the decision surface smooth, while a high C aims to classify all training examples 

correctly. We optimized these parameter using grid search and cross validation. We tried 

different pairs of (C, γ) values and the one with the best cross-validation accuracy was 

selected. We found that exponentially growing sequences of C and γ gave a good, 

practical search, i.e., C = 2−5 , 2−3 , . . . , 215 , γ = 2−15 , 2−13 , . . . , 23.   

Following standard nomenclature, we use TP (true positives), FN, FP, and TN to 

make assessments of precision, P=TP/(TP+FP), recall, R=TP/(TP+FN), and 

F1=2PR/(P+R). F1 is the harmonic mean of precision and recall and ranges between zero 

and one. That is, if R or P is zero, F1 will be zero, and if both are one, F1 will be one, the 

ideal value.  

3.3 Experimental Methods 

3.3.1 Image Acquisition 

Clinical images were selected from the database available at the Cardiovascular Core Lab 

of University Hospitals Case Medical Center (Cleveland OH), working with our 

institution. The images consist of 35 IVOCT pullbacks of the Left Anterior Descending 

(LAD) and the Left Circumflex (LCX) coronary arteries of patients acquired prior to 

stent implantation. All OCT images used in this study were acquired by commercial 

Fourier Domain OCT systems (C7-XRTM OCT Intravascular Imaging System, St. Jude 
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Medical Inc., St. Paul, Minnesota).  It has axial resolution of about 15µm. The scan 

characteristics of the system are: 50,000 lines/s, 504 lines/frame, yielding 100 fps and 20 

mm/s pullback speed yielding a 200 µm frame interval. The pullback length was 54 mm.   

The optical tissue phantoms used in this experiment are described in detail in 

[104, 105].  These phantoms were carefully fabricated with tightly controlled optical 

parameters allowing us to use them as “gold standard” while assessing clinically pullback 

datasets. Three phantoms were used in this experiment.  Each phantom simulated one 

type of plaque (lipid, fibrous, and calcium) emphasizing their homogeneity across the 

simulated plaque as described in [104]. For stationary imaging, the phantom was placed 

in a water bath and immobilized.  The imaging catheter was moved along the lumen until 

the site of interest (containing phantom plaque) was identified.  Then, the catheter sheath 

was held firmly on both sides to avoid any motion artifacts and five stationary 

acquisitions were obtained for each phantom. For pullback acquisitions, the same process 

as done with in-vivo acquisition as performed along the segment of phantom tissue.  

3.3.2 VOI Selection 

After acquiring both phantom and clinical images, we asked an expert (a cardiologist at 

our partner hospital) to label volumes of interest (VOIs) as belonging to one of the three 

plaque types in the images.    The expert marked the VOIs of a particular plaque type 

using freehand brush strokes. On the clinical images the expert annotated 311 VOIs 

(roughly equal number from each plaque type) on a total of 287 clinical images and 75 

phantom images. On the phantom images he marked 20 VOIs of each type taken from 15 

phantom pullbacks. VOIs were of various sizes and shapes. Most consisted of 2-5 image 

frames, 50-200 A-lines, and 20-50 sample points in each A-line. 
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3.4 Results 

Processing pipeline parameters were chosen in exploratory experiments. Dynamic 

programming parameter was the connectivity window = 25. With this connectivity value, 

phantom data were always segmented correctly and clinical data were correct in over 

probably 98% of frames, and any small errors due to connectivity did not negatively 

affect results. ELEE parameters were scanning window size=11x7 pixels in the θ and r 

detections, respectively, (θ, x, r) and damping factor, D=1.0 (damping factor controls the 

smoothing of the algorithm).  This window size aspect ratio embodies the idea that the 

data along the θ direction contains more information than that in the r direction. 

Example phantom and clinical IVOCT images are shown in Figure 11. Clinical 

images show the classic characteristics of tissue types where calcium shows sharp edges, 

low reflectivity and low attenuation, lipid shows diffuse edges, high reflectivity and high 

attenuation and fibrous shows high reflectivity and low attenuation. Phantom images 

have features similar to the clinical images. However, they are less noisy with reduced 

speckle noise owing to homogeneity of the phantoms. 
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Figure 11: Appearance of atherosclerotic tissue types.  Top row are clinical images where A is calcium, B 
is lipid and C is fibrous.  On the bottom row, phantom images are shown where D is calcium E is lipid and 
F is fibrous. 

The baseline intensity level, Ib, was quite consistent. It was determined to be 

6.7±3.8 over 15 pullbacks on the same number of different catheters. We modeled the 

OCT signal as Lambert-Beer exponential decay function, with the addition of baseline Ib 

to account for noise and other sources that elevate the expected signal value (Eq. (3.2)).   

The justification for using this model is exemplified in Figure 12. 
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Figure 12: Linearity of A-line averaged over 100 frames in a stationary acquisition from a phantom. Linear 
data in (a) is processed with all the steps including catheter correction, baseline subtraction, and log, giving 
the result in (b). Data in (b) is well fit by the linear model used in our analysis (red line) with μt=12.24mm-1. 
Data were obtained from a homogeneous “lipid” region in the phantom image. 

Visual inspection of the images before and after filtering (Figure 13) shows clear 

impact.  The SNR for the filtered image was calculated to be 15.604 db and that of the 

image prior to filtering was calculated to be 12.03db.  To evaluate the model assumptions 

for clinical IVOCT data, we created a histogram of intensity values in an (r,θ) frame of a 

clinically obtained pullback. Statistical analysis confirmed that the distribution from the 

pullback was negative exponential distribution [112, 120, 124].  
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Figure 13: Clinical image (A) before filtering (SNR=12.03 db) (B) after filtering (SNR=15.604 db).  A 
significant visual improvement after speckle reduction using the enhanced Lee filter. 

 

We first measured IVOCT optical parameters using the same approach (to enable 

comparison) where an expert annotated VOIs on individual sequential frames of both 

phantom stationary acquisition frames and phantom pullback frames. After going through 

the pre-processing steps as described above, parameters estimated from different VOIs 

and data acquisitions were quite consistent (Figure 14 and Table 4). In this controlled 

setting, we also assessed potential effects of the angle of the beam incidence, θi, and 

depth in tissue, as measured by the distance to the lumen, on μt estimates (Figure 15). 

Plots show little effect and statistical tests indicated no significant effect of angle or tissue 

depth. In Figure 14, histograms of pullback measurements show that the spread of μt 

estimates is greater than that for stationary data. Since the parameter estimation was done 

in a similar fashion we can assume that the small difference between the two types of 

acquisition is probably due to the pullback.    

As an additional validation paradigm, we compared our μt results to estimates 

obtained in the standard way from stationary acquisitions. In the standard approach we 

acquired five data sets from each of the three phantoms and averaged over 100 frames in 

each instance. We marked 5 VOIs in the piecewise homogeneous phantoms, and 

A
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estimated parameters from the low noise VOIs. Means across different VOIs were very 

similar, indicating no bias, and a student t-test has indicated insignificant differences 

between the new and standard method. 

We then, compared the phantom pullback estimates with clinical pullback 

estimates (Table 5). We observed that estimates from clinical dataset were consistent 

with phantoms, but with a larger spread.   
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Figure 14: Comparison of μt estimates of the phantom as estimated using stationary and pullback 
acquisitions. Mean values for simulated calcium, lipid, and fibrous tissues are similar. The stationary 
acquisition gives a tighter distribution of values and smaller standard deviation than pullback acquisitions. 
The values are shown to belong to the same distribution (using t-test, p-values are shown in Table 4).  
Vertical axis is the fraction of A-lines with attenuation value given on the x axis) 
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Figure 15: Independence of μt estimates on angle of incidence, θi (a) and depth, measured from the lumen 
(b) for a stationary acquisition dataset.  The (approximately) horizontal lines indicate that regardless of the 
independent variable’s value (i.e. distance or  angle), the μt remains constant.  In the case of fibrous tissue, 
due to the plaque’s narrow width it was not possible to select VOIs at varying distances from the lumen, 
thus it appears as highly aggregates cluster. Furthermore, in (a) there appear to be two clusters. This is due 
to the fact that incident angles (positive and negative) were always in the indicated range.  

 

Table 4: Results of attenuation coefficient estimates (mean of the median estimates) along with 
uncertainty estimates (standard deviation) computed for phantom stationary acquisition and 
phantom pullback.  The p-values of a  t-test indicate insignificant difference. 

 Stationary Pullback t-test 
 μt±σ μt±σ p-value 
Calcium 3.56±0.13 3.64±0.35 0.64 
Lipid 9.9±0.18 9.97±0.18 0.53 
Fibrous 1.94±0.23 2.17±0.50 0.76 

 
Table 5: Estimates on a clinical dataset of 311 VOI's from 35 pullbacks.  Values compared are the 
average values of the attenuation coefficient. 

 Estimated values 
 μt±σ 〈𝐼𝐼〉 Io 
Calcium 3.58±1.74 37.81 38.46 
Lipid 9.93±2.44 82.79 139.39 
Fibrous 1.96±1.11 162.23 195.83 

 

We plotted a feature space of optical properties (µt, I0, 〈𝐼𝐼〉) obtained by running 

our proposed processing pipeline on a set of 311 VOIs from 35 clinical pullbacks (Figure 

16). In the feature space plot, we observe good separation of the three plaque types 

identified with the three colors. In order to quantify this visual separation we trained and 
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tested an SVM classifier as described in Methods. We ran 5-fold cross validation on the 

311 VOIs and calculated the accuracy measures as described in Methods. These results 

are shown in Table 6, showing that the F1-Score is very close to 1 for all plaque types.  

This indicates that VOI-based classification is very close to perfect, indicating that our 

approach for volume classification will achieve very accurate results.  These results are 

very promising given that current published results (i.e. [103, 125]) based on more than 

the above 3 features is well below 90%.   

 

Figure 16: Feature space of (µt, 𝐼𝐼,̅ I0) created by applying the proposed LSQM method on 311 VOI's of all 
atherosclerotic tissue types after pre-processing pipeline. VOI's were derived from 35 clinical IVOCT 
pullbacks. We observe a good separation of plaque types even though only the three features (µt, 𝐼𝐼,̅ I0) were 
used. 

 

Table 6: SVM classification results: The overall classification accuracy was 92.5%, however, since 
we could not ensure that the data is not skewed, the F1 score is also given (F1 score = 2PR/(P+R)). 

 Precision (P) Recall (R) F1-Score 
Calcium 94.3% 86.8% 0.904 
Lipid 89.3% 96.2% 0.926 
Fibrous 93.3% 96.6% 0.949 
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3.5 Discussion 

We have created a computational pipeline for estimating optical parameters from 3D 

IVOCT pullback data and first evaluated it on realistic OCT vascular phantoms [104] . 

Because the phantom is locally homogeneous, it presents a unique opportunity for testing 

consistency of IVOCT measurements. We obtained µt estimates (3.58±1.74mm-1, 

9.93±2.44mm-1, 1.96±1.11mm-1 for calcium, lipid, and fibrous respectively), which were 

within the ranges specified for the phantom. We carefully compared our pullback 

analysis method to a more conventional stationary analysis where the catheter was not 

moving along the length of an artery. Means were insignificantly different for all three 

phantom types, indicating no bias of measurements, even though in a pullback data 

comes from a catheter rapidly spiraling along the vessel at a linear rate of 20 mm/sec. To 

assess precision, we compared data spread, as measured by standard deviation, of 

measurements over at least 600 (5 stationary acquisitions for each type) samples for each 

plaque type. Pullback data had only slightly higher standard deviations for calcium and 

fibrous the same for lipid (Figure 15). The barely statistically significant (Table 4) 

differences might have been due to mechanical instabilities between A-lines. Finally, we 

also determined that the angle of incidence insignificantly affected µt estimates. This 

reassures us that the pullback does not introduce an additional confound even though 

each angle of incidence will be somewhat different for each A-line under consideration in 

the pullback. Similarly, when we analyzed volumes of interest at different depths in 

tissue, we found no significant difference in µt estimates for calcium and fibrous. (There 

was insufficient depth of signal to do this in the case of lipid.).  Results of calcium and 

fibrous are consistent with good single exponential fits (Figure 16). Together, these 
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experiments suggest that our clinically practical, 3D pullback method yields accurate, 

precise results, as good as stationary analysis. 

Analyses on clinical pullback data were equally encouraging.  When comparing 

phantom pullback estimates to clinical pullback results, (Table 5) we observed that 

estimates were consistent with phantoms, but with a larger spread.  Another thing to note 

is that the calcified and lipid plaques (in both, clinical and phantom) exhibited a much 

lower average intensity (signal poor regions) than that of the fibrous; however, the high 

attenuation of the lipid and the low attenuation of the calcium helped us to distinguish 

between the two easily.  The high value of the average intensity of the fibrous indicates 

that it is signal rich region. The classification metric shows that the F1 score approaches 1 

as desirable for an accurate and efficient classification method.   

The pipeline has some novel aspects which can be compared to previous reports 

in the literature. It was applied to clinical 3-dimensional (3D) data, which is aimed at 

improving the robustness of optical parameter estimation.  In this study, we better 

account for noise in the acquired images.  We also note that each 3D VOI consists of 50-

400 A-lines with different angles of rotation (θ) and different axial positions along the 

artery, posing many challenges including eccentricity of the catheter relative to the lumen 

surface, catheter motion, etc. We meet these challenges by applying the processing 

pipeline steps including pixel shifting, noise reduction, lumen segmentation using 

dynamic programming as described in [119], and better statistics for robust and resource-

efficient estimation.  Furthermore, our method of analyzing the results of phantom 

stationary acquisition, phantom pullback and clinical pullback is a good framework 



75 
 

enabling efficiency of processing and classification.  Our results have indicated an 

improved feature space clustering that will aid in automated learning.   

In conclusion, the proposed computational pipeline appears to work as well as a 

more standard “stationary” approach. This is important as it will be difficult to justify 

stationary acquisitions for routine clinical work. We believe that when optical parameters 

are combined with other features, it would further improve these results. 
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Chapter 4 Machine Learning Plaque Classification from Intravascular 

OCT Image Pullbacks 

4.1 Introduction 

Heart attack is a major cause of death worldwide. Almost twice as many people die from 

cardiovascular disease than from all forms of cancer combined [126]. The underlying 

disease process in the blood vessels that results in coronary heart disease (heart attack) 

and cerebrovascular disease (stroke) is known as atherosclerosis. 

There are various methods for imaging coronary artery disease where X-ray 

coronary angiography and intravascular ultrasound (IVUS) represent the most commonly 

used. Invasive angiography uses contrast agent to image the lumen by providing 

projection X-ray images of contrast-filled coronary vessels. While it provides detailed 

images of vessel lumen, it offers no information about the coronary wall. IVUS, on the 

other hand, provides microscopic images of the vessel wall, however, the resolution of 

IVUS is on the order of 100μm and it has the limitation of not being able to “see” through 

calcium plaque (sound waves do not penetrate the calcium plaque). Further, due to its 

limited resolution, IVUS cannot quantify the thickness of a thin fibrous cap in an 

inflamed thin-capped fibroatheroma (TCFA), which according to [127], is responsible for 

most acute coronary events. 

Intravascular optical coherence tomography (IVOCT) is an emerging technology 

showing great promise for studying pathobiology of coronary artery lesions as well as for 

clinical diagnosis and treatment planning. In-vivo IVOCT generates high speed, high 

contrast, low noise, micron-scale resolution images with the capability of imaging plaque 
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components. It has been shown that IVOCT is able to distinguish between key types of 

plaque [32] [89], and aid in assessment of new coronary artery stent designs [83]. As 

compared to IVUS, IVOCT has low noise, better discrimination of lumen boundary, 

better resolution, and better delineation of plaque boundaries [71]. IVOCT has the 

resolution and contrast necessary to identify the thickness of a thin fibrous cap in a TCFA 

(a cap thickness <65 µm has been associated with risk of rupture in necropsy studies [7]). 

In addition to potential live-time clinical application of IVOCT for intervention planning, 

IVOCT can be used offline in pathobiology and drug treatment studies [29, 128-130]. 

The University Hospitals of Cleveland core lab, hereafter called Core Lab, is engaged in 

such studies and has manually analyzed over 2,500 IVOCT studies to date.  

IVOCT generates a tremendous amount of image data, suggesting a need for 

automated analysis and improved 3D visualization. To acquire image data on one 

commercial IVOCT imaging system (C7-XR system from St. Jude using Dragonfly Due 

catheter) a catheter is pulled back along the artery acquiring over 540 image frames. This 

large amount of data can overwhelm manual analysis, especially in the case of live-time 

intervention. In addition, when analysts in the Core Lab have characterized plaque in 2D 

image sectors, they have found the task difficult and quite tedious, giving rise to 

variability and reduced accuracy [131]. Our goal is automated plaque characterization 

and 3D visualization allowing one to quickly review an entire pullback.   

Several reports have shown that IVOCT can be used to evaluate plaque types. 

Tearney et al. [132] has shown that  different atherosclerotic plaque types may be 

distinguished by analyzing temporal and spatial speckle pattern fluctuations. Van der 

Meer et al. [28] demonstrated the principle that quantitative analysis of the IVOCT signal 
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allows the determination of the attenuation coefficient (they used 800 nm IVOCT light) 

in a layered phantom as well as in layered arterial tissues. Xu et al. [102] relied on the 

analysis of the reflected light and attempted to correlate the backscatter and attenuation 

coefficients with various plaque formations. They focused on the separate processing of 

each A-line and did not include 3D data into their calculations. Ughi et al. [125] used µt 

estimates from a layer model applied to single A-lines and 2D texture and geometric 

measures as features for classification with the added requirement of manual ROI 

selection for analysis. In order to reduce speckle noise, Ughi et al. used low pass 

Gaussian filter, thus introducing under estimation of μt values as discussed in [133]. A 

more recent report was proposed by Lambros et al. [103].  Lambros et al. used 2D texture 

and intensity features alone and assumed "islands" of calcified tissue surrounded by other 

tissue types, which is not necessarily true in many image frames [71].   Another approach 

is proposed by Wang et al. [134]. In this approach the problem is broken into two parts: 

Starting and ending frames of the image stack containing calcified plaque are manually 

preselected as the input to the algorithm and segmentation within that range.  In the 

segmentation step Wang et al. adopted a level set method to find the calcified region’s 

borders. Then, this is followed by post analysis where false positive are manually 

corrected by the user. More recently, Roy et al. [135] report good results on accessing 

vulnerable plaque areas which is quantified by modeling energy tissue interaction and 

extracting 4 features within a variable sized 2D neighborhood kernel combined with 

attenuation coefficient to model the speckle statistics, and signal confidence maps. 

In this chapter, we propose an algorithm for an automated characterization of 

three main plaque components: fibrotic, calcified and lipid-rich tissue. Our goal is to 



79 
 

create an automatic (no user interaction) procedure for plaque classification.  Our 

algorithm can be used to quantify parameters of interest (such as calcified region’s 

coverage and thickness) and its output will facilitate the ability to visually identify the 

morphology of atherosclerotic plaque. Our access to a database of over 2500 clinical 

IVOCT pullbacks from our partners at the Core Lab gives us a unique opportunity to test 

and validate our algorithm. Qualitative characteristics of atherosclerotic plaques 

described by former studies [32, 71] are quantified by employing both the physics of 

IVOCT image formation and image analysis to compute features from 3D regions within 

the IVOCT pullback volume. 

In a previous report by our group [136] it is shown that optical properties can be 

used as reliable features discriminating the three main plaque types. We base our 

approach on machine learning methods where all of the extracted features are combined 

in a supervised classification algorithm resulting in a fully automated characterization of 

atherosclerotic plaque.  The classification algorithm is trained by a set of data from 35 

pullbacks with a range of plaque morphology, manually annotated by an expert. The 

performance of the algorithm is subsequently evaluated against an independent testing set 

extracted from IVOCT pullbacks annotated against cryo-images (gold standard), thereby 

ensuring very accurate annotation. Measured optical properties are compared to previous 

results reported in literature.  
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4.2 Algorithms 

We created algorithms for voxel-based classification of IVOCT image data. Steps are 

pre-processing, moving box processing for feature extraction at each voxel, and 

supervised machine learning classification. 

4.2.1 Preprocessing 

We perform various preprocessing steps, starting with IVOCT A-lines in (r,θ) images. 

The first step is noise reduction using enhanced Lee filter optimized  for speckle noise, as 

we have described previously [108]. This is followed by baseline intensity subtraction, 

and optical imaging system correction, as described previously [133, 136]. We use a 

modified version of our previously described dynamic programming approach [88] to 

accurately segment the lumen and the back-borders of the tissue signal (The back border 

is the depth in tissue where one obtains IVOCT image data higher than background 

noise)[133]. Next, we pixel shift A-lines along r to correct for catheter eccentricity with 

respect to the vessel wall, making a vertical lumen border. Since the guide wire shadow 

obscures the view of the vessel wall, we exclude this region using a dynamic 

programming solution previously described [119]. Accounting for the lumen border, back 

border, and guide wire shadow, we create a mask for processing. Following these steps, 

natural logarithms are taken, linearizing the exponential attenuation of the IVOCT signal, 

( ) exp( )0I r I rtd µ= −  to be: 

ln( ( )) ln( )0I r I rtd µ= −  (4.1) 
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where r is the distance from the catheter lens, Id is the detected signal, Io is the incident 

intensity of the beam, and μt is the attenuation coefficient of the beam (both are the 

optical properties described below). 

4.2.2 Moving Box (mBox) Processing 

We compute features for each voxel within the blood vessel mask by processing within a 

local 3D neighborhood referred to as a moving box, or mBox. Calculation at each mBox 

location provides a vector of features, which gives a point in feature space. The 

𝑚𝑚𝑚𝑚𝑝𝑝𝑥𝑥(𝑝𝑝, 𝑗𝑗, 𝑘𝑘) is defined as a 3D volume of interest centered at (𝑝𝑝, 𝑗𝑗, 𝑘𝑘) in the (𝑟𝑟, 𝜃𝜃, 𝑧𝑧) 

view. We varied the dimensions of mBox, but settled on (11,7,3). Optionally, one can 

reduce processing time by skipping voxels, called the stride of the mBox in our 

implementation. The scanning range of mBox is determined by the 3D vessel mask and 

processing begins and ends when mBox fits just inside the mask. To save processing time, 

some processing steps such as filtering and co-occurrence matrix computations (see 

below) are done on the entire image, prior to running mBox. 

4.2.3 Feature Extraction  

We calculate various local features within mBox. Some features are crafted to assess 

criteria described in a consensus document for manual assessment [89]. Those criteria are: 

Fibrous plaque: “A fibrous plaque has high backscattering and a relatively 

homogeneous IVOCT signal.” High backscattering is captured by a high average 

intensity. A homogeneous signal is indicative of low attenuation (a low value of μt).  

Lipid plaque: “… a signal-poor region within an atherosclerotic plaque, with poorly 

delineated borders, a fast IVOCT signal drop-off, and little or no OCT signal 
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backscattering, within a lesion that is covered by a fibrous cap.” We capture these 

properties with texture, signal attenuation, geometric, and intensity features. 

Calcified plaque: “appears as a signal-poor or heterogeneous region with a sharply 

delineated border (leading, trailing, and/or lateral edges).” Calcium is darker than fibrous 

plaque with greater variation in intensity level inside the region.  Also, sharp borders 

characterize this region. These attributes are collected by our feature set. 

We determine real-valued features using a base of support the size of mBox. 

Features include: 

Attenuation coefficient, μt – We fit logarithmically transformed data in Eq.  (4.1), 

within an mBox, and we perform a least squares fit on each A-line segment to estimate μt 

and I0. To get a robust estimate of μt, we take the median across all values within the 

mBox, We previously showed that this method gave good estimates on pullbacks even in 

the presence of IVOCT noise [133].  

Reflected intensity, I0 – We use I0 from the A-line segment fit corresponding to the 

median μt reported above.  

Distance to lumen, Dl – This is the distance from the voxel of interest along the A-line to 

the segmented lumen border. Dl helps distinguish lipid because the average intensity 

rapidly falls off in lipid.  

Beam penetration depth, Dd – This is the distance over which the beam penetrates the 

tissue. It is the distance from the front border to the back-border and is a characteristic of 

the whole A-line. 
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Beam incident angle, θi – This is the angle between the A-line and the normal to the 

tangent of the front border in the (r, θ) view. When the optical beam is not at a 90° angle 

with respect to the artery wall, light can be reflected away affecting intensities along the 

A-line.  

Mean Intensity, I – This is the average signal intensity within the mBox.  

In addition to the above optical features, we use several commonly used intensity 

variation features [137].  

Homogeneity, H – This is a local coefficient of variation, (𝜎𝜎/𝐼𝐼)� , where σ represents the 

standard deviation of the intensity values within the mBox. This feature helps distinguish 

heterogeneous intensity regions and homogeneous intensity regions. 

Relative Smoothness of intensity, S – Defined as: S = 1-(1/(1+σ2)) following 

normalization of the maximum intensity to 1.0. It measures the relative smoothness of the 

intensity in the region. It is 0 for constant intensity regions and it approaches 1 for large 

deviations in intensity values (σ2 is the variance of the intensity values within the mBox).  

Entropy, E – We construct a histogram of intensities within an mBox, normalize it to 

give probabilities of intensity, p(zi) where zi is the gray scale value after pre-processing. 

Then, entropy is computed from 

1
2

0
( ) log ( )

L
i i

i
E p z p z

−

=
= − ∑  

where p(zi)  is the probability of the intensity level, zi, i=1,…,L for L bins in the 

histogram of intensity levels. Within homogeneous regions the entropy will be low and 

within heterogeneous regions it will be high.  



84 
 

We also include four spatial texture features by sampling the way certain grey-

levels occur in relation to other grey-levels (co-occurrence matrix). Briefly, let O be an 

operator that defines the position of two pixels relative to each other and consider an 

image I(r,θ), with L possible intensity levels. Let G (co-occurrence matrix) be a matrix 

whose element gij is the number of times that pixel pairs with raw intensities zi and zj 

occur in I at the position specified by O, where 1 ≤ i, j ≤ L. The total number, n, of pixel 

pairs that satisfy O is equal to the sum of the elements of G. Then the quantity pij=gij/n is 

an estimate of the probability that a pair of points satisfying O will have values (zi, zj) 

(see [138] for a detailed discussion of co-occurrence matrices). A normalized co-

occurrence matrix is formed by dividing each of its terms by n.  

Co-occurrence values have been used successfully in previous IVOCT plaque 

classification papers [139-141]. In our experiments, we use four out of the 22 possible 

[142] features that can be extracted from the co-occurrence matrix. The probability pij is 

the ij-th element of G/n, mr is mean computed over the rows and mc is the mean 

computed over the columns of the mBox.  K is the row (or column) dimension of G. 

Contrast, C – Defined as: 

2

1 1
( )

K K
ij

i j
C i j p

= =
= −∑ ∑  

where K is the dimension of G. C measures the intensity contrast between a pixel and its 

neighbor over the mBox (C is zero for a constant mBox). 

Correlation, Cor – Defined as: 

1 1

( )( )K K r c ij

i j r c

i m j m p
Cor

σ σ= =

− −
= ∑ ∑  
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It measures how correlated a pixel is to its neighbor in the mBox and its value is in the 

range -1 and 1. Here, σr≠0, is the standard deviation measured along the rows of the 

mBox and σc≠0 is the standard deviation measured along the columns. Cor is 1 or -1 for 

perfectly positively or negatively correlated mBox and not defined for constant mBox 

(since the denominator is zero). 

Energy, E – is the sum of the squared elements in G with a range of [0 1] (the energy is 1 

for a constant mBox). 

Co-occurrence Homogeneity, Hc – It is the value of the closeness of the distribution of 

elements in the G to the diagonal of G and is computed as: 

 
1 11c

K K

i j

pijH
i j= =

= ∑ ∑
+ −

 

4.2.4 Classifier 

We use a Support Vector Machine (SVM) classifier. Each voxel gets a vector of features 

from the mBox calculations described above (each feature is normalized by subtracting its 

mean and divided by its standard deviation). SVM is widely used due to its high accuracy, 

ability to deal with high-dimensional data, and flexibility in modeling diverse sources of 

data [143, 144]. It is a maximum-margin linear classifier [145] that also has provably 

good generalization bounds [146]. Traditional SVM training is formulated in terms of a 

quadratic program (QP) which is typically optimized by a numerical solver. The SVM 

uses a linear discriminant function of the form: 𝑓𝑓(𝑥𝑥) =  𝑤𝑤𝑇𝑇 + 𝑏𝑏 where the vector w is the 

weight vector and b is the offset and x is the point in feature space. Its objective function 

trades off two quantities: the margin, which is the distance from the separating plan and 
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which is inversely proportional to ||w||, and the loss arising from misclassifying training 

instances. Constraints in the quadratic program reflect the fact that the training data 

should be classified correctly. Therefore, the cost function optimized by the linear SVM 

is [91]: 

2
1

,
1argmin || || ,2

N
i iw i

w C
ξ

ξ=+ ∑  (4.2) 

s.t.  ( ) 1 ,Ty w x bi i iξ+ ≥ −  

0iξ ≥  

 

where C is a positive parameter that sets the relative importance of maximizing the 

margin and maximizing the amount of slack, yi  is the true label,  xi is the feature vector, 

and ξi is the slack associated with training example i.   

Decision boundaries that are nonlinear in x can be constructed through the use of 

a nonlinear feature map, φ(x). When the quadratic program above is rewritten with φ(x) 

and converted into dual form, the solution appears in the form of the dot product, 

φ(x)φ(y), which is defined to be the kernel function, k(x,y). The kernel matrix can be 

constructed efficiently even when the feature maps φ(x) are very complex or even 

infinite-dimensional. This is known as the “kernel trick” and allows the SVM to 

efficiently produce classifiers that are high dimensional and nonlinear with respect to the 

original data.  

Various kernel functions are possible. In our work, we use Radial Basis Function 

(RBF) kernels, which are a common choice because of their expressiveness. The RBF is 

defined as: 
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2

|| ||
( , , ) exp

2
i jx x

k x xi j γ γ

− 
=   

 
   (4.3) 

where xi and xj  are the feature vectors,  𝛾𝛾 controls the width of the kernel (it controls  

how far the influence of a single training example reaches).  

We use the one-versus-rest (OVR) approach for multi-class classification, giving 

a binary classifier for each class. Because we are interested in three plaque types, we 

created three OVR classifiers (OVR-C, OVR-L, OVR-F for calcium lipid and fibrous 

respectively). An advantage of the OVR approach is interpretability. Since each class is 

represented by only one classifier, it is possible to gain knowledge about the class by 

inspecting its corresponding classifier. 

Because the majority of voxels did not belong to one of the main three plaque 

types, we experiment with two approaches for classifying these voxels as “other” plaque 

type. First, we considered another class, “other” and created a fourth OVR classifier, 

OVR-O. Second, since many voxels do not clearly belong to any of the three classes, we 

introduce the “other” class. We developed a threshold logic (OVR-P) on the OVR models 

that appropriately left many voxels in the “other” class without having a trained model 

for it (Algorithm 1). The idea behind this prediction rule is to classify any given voxel as 

one of the main plaque types only if we are highly confident that it belongs to that plaque 

type, otherwise, classify it as “other”. One of the key things to identify in this algorithm 

is the need to determine the probability threshold, pthresh which defines what “absolutely 

sure” means and is described in the next section. The complete multi-class plaque 

classifier, which combines all binary classifiers (OVR-C, OVR-L, OVR-F, and OVR-P) 

is referred to as MCC. 
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1: Init: 
2: 1. Use training set to train a binary SVM to get the 
3:  three models, OVR-j,               j=’C’, ‘L’, ‘F’ 
4: 2. mj = Compute the margins of each model.  
5: For each unknown point, xi {     i = 1…(num of points) 
6: 1. [cj, pj] = Predict using OVR-j,   cj∈(0,1); pj ∈(0-1);   
7: 2. if <all cj = 0>  
8: xi = “other” 
9: elseif <more than one c is 1> 
10: xi = plaque type of the larger mj.     
11: elseif <only a single cj =1> 
12: if pj>pthresh,j 
13: xi = j 
14: else 
15: xi = “other” 
 } 

Algorithm 1: OVR-P prediction rule of “other” plaque type. cj is the binary class assignment 
(0,1) where 1 means that the point is assigned the class of the classifier and 0 means it’s not. pj 
is the probability of the assignment. Pthresh,j is the probability threshold of the plaque j (j=’C’, 
‘L’, ‘F’) determined as described in the text. 

The probability threshold, pthresh, is the decision threshold (cut-off value) used to 

define positive or negative outcome as described on the ROC curve. Thresholds were 

determined using two common approaches for choosing an optimal operating point [147]. 

First, the minimal square distance, MSD, computes the square of distance from any point 

on the ROC to the theoretically optimum point, (0, 1), the upper left hand corner of the 

ROC space. The distance squared, d2, is given by  

d2 = (1-TPR)2 + FPR2 = (1- Sn)2 + (1-Sp)2 

where TPR is the true positive rate, or sensitivity (Sn), and FPR is the false positive rate, 

or (1 – specificity(Sp)). The squared distance is tested at all points along the ROC and the 

minimum distance is chosen as the operating point for our threshold. We call this 

optimum point MSD-OP. Second, we use the Youden index [148] to determine an 

operating point, the Youden-OP. The Youden index is the vertical distance between an 

ROC data point and the point (x, y) on the diagonal, chance line). This leads to the 

definition of the index as J = sensitivity + specificity - 1 = TPR - FPR. To choose the 
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operating point, Youden-OP, we maximize J above. It should be noted that by 

maximizing J, we, in fact, maximize the difference between TPR and FPR and by doing 

so we maximize (Sn + Sp) across various cut-off points. The Youden index’s value may 

range from 0 up to 1, and has a zero value on the chance line. A value of 1 indicates that 

there are no false positives or false negatives, i.e. the test is perfect. The index gives equal 

weight to false positive and false negative values, so all tests with the same value of the 

index give the same proportion of total misclassified results. The operating point used in 

the Youden approach is named Youden-OP. 

 There are two SVM parameters: C, the regularization parameter that trades off 

margin size and training error, and γ, the Radial Basis Function (RBF) Gaussian kernel’s 

bandwidth.   These parameters were optimized as described below. 

4.3 Experimental Methods 

4.3.1 IVOCT Image Acquisition and VOI Selection 

Images were collected on the C7-XR system from St. Jude Medical Inc., Westford, MA. 

It has an OCT Swept Source having a 1310nm center wavelength, 110nm wavelength 

range, 50 kHz sweep rate, 20 mW output power, and ~12mm coherence length. The 

pullback speed was 20 mm/s and the pullback length was 54 mm. A typical pullback 

consisted of 271 image frames spaced ~200 µm apart. Images used in this study were 

selected from the database available at the Cardiovascular Core Lab of University 

Hospitals Case Medical Center (Cleveland OH). They consisted of 35 IVOCT pullbacks 

of the Left Anterior Descending (LAD) and the Left Circumflex (LCX) coronary arteries 

of patients acquired prior to stent implantation. 
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4.3.2 Clinical Training Dataset 

The training dataset was created from de-identified clinical images in the Core Lab 

acquired for other purposes. An expert reviewed pullbacks and identified homogenous 

volumes of interest (VOIs) for each plaque type (fibrous, lipid, or calcified) utilizing 

consensus criteria descried earlier. VOIs were marked with freehand brush strokes on 

images in the (r,θ) view. We used over 300 VOIs from 35 pullbacks. VOIs were of 

various sizes and shapes. Most consisted of 2-5 image frames, 50-200 A-lines, and 20-50 

sample points in each A-line. 

4.3.3 Independent Validation Dataset 

For validation testing, we created an independent (not used in training) image dataset 

with each voxel accurately labeled and validated by 3D cryo-imaging. To create this 

dataset, we obtained coronary arteries (LADs) of human cadavers within 72 hours of 

death and stored at 4 °C. Arteries were treated and stored in accordance with federal, 

state, and local laws by the Case Institutional Review Board. To prepare for IVOCT 

imaging, arteries were trimmed to approximately 10 cm in length. A luer was then 

sutured to the proximal end of each vessel which was flushed with saline to remove blood 

from the lumen. Major side branches and the distal end of each artery were sutured shut. 

Using super glue, the artery was adhered to the sides and bottom of a rig that was used to 

minimize motion between cryo and IVOCT imaging procedures. IVOCT imaging 

conditions mimicked the in-vivo acquisitions described above. Sutures were placed on the 

vessel to identify ROIs (1.5–2cm in length) that would later be analyzed using cryo-

imaging. Following IVOCT imaging, the entire imaging rig containing the artery was 
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flash frozen in liquid nitrogen, and stored at -80 °C until cryo-imaging was performed.  

Prior to cryo-imaging, arteries were cut into blocks corresponding to the ROIs 

determined during IVOCT imaging. Blocks were placed in the cryo-imaging system and 

allowed to equilibrate to the -20 °C cutting temperature. The ROIs were then alternately 

sectioned and imaged at 20 μm cutting intervals, and color and fluorescent cryo-images 

were acquired at each slice. The process was repeated until the whole specimen was 

imaged.    

Cryo-imaging [149] is a novel validation tool that fills the gap between 3D 

IVOCT pullbacks and 2D histology. Briefly, the system consists of a modified cryo-

microtome with an integrated microscopic imaging system. The system serially sections 

and acquires micron-scale episcopic color and auto-fluorescence microscopy images 

along the vessel. Visualization software is then used on the cryo-images to generate 

microscopic resolution color/fluorescence volume renderings of vessels, in which plaque 

architecture and components are fully preserved [149]. This provides an accurate 

depiction of the vessel without the limitations of standard histological fixation and 

processing (shrinkage, spatial distortion, missing calcifications, missing lipid pools, tears, 

etc.). Most importantly, this provides 3D validation for volumetric IVOCT pullback. 

Furthermore, in cases where plaque type may be ambiguous, the system enables 

acquisition of standard cryo-histology. 

We created an accurately labeled, independent data set for validation. An expert 

annotated every pixel in IVOCT images using registered cryo-images as a gold standard 

guide. This manual method provided accurate labeling even if there were small 

registration errors between cryo- and IVOCT image volumes. To simulate the clinical 
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application, ex-vivo IVOCT images were acquired with different catheters and with 

different eccentricities with respect to the vessel wall. A range of plaque morphologies 

were included. 

4.3.4 Optimization and Evaluation of the Plaque Classifier  

To find the best Radial Basis Function’s parameters (C and γ), we implemented grid 

search using 5-fold stratified cross validation on the approximately 11,000 data points 

(roughly 33% for each plaque type) extracted from the clinical training dataset described 

above. That is, we trained the classifier on 80% of randomly selected voxels using a pair 

(C, γ), and we tested the performance on the held-out 20%. The goal was to identify 

parameters that maximized performance on the held out set. Different pairs (C, γ) were 

evaluated in a grid search using exponential sequences of C and γ, i.e., C = 2−5 , 2−3 , . . . , 

215 , γ = 2−15 , 2−13 , . . . , 23, as suggested previously [150]. Optimum values (C = 8.5742 

and γ = 0.1015) were used in subsequent experiments. 

  In addition, we performed an experiment to verify that  the amount of training 

data was appropriate using a “learning curve” analysis [90]. Briefly, we split the clinical 

training dataset into two parts: 20% which was used as a test set, Dtest, and 80%, Dtrain, 

from which random examples were drawn. We selected n samples (n=1,2,3,…,size(Dtrain)) 

from Dtrain, and perform on it a 5-fold cross validation getting a model (in each fold, the 

model with the highest performance accuracy measure is chosen). Then, the model’s 

performance is tested on the same n samples, yielding the training error, Jt and on Dtest, 

yielding the testing error, Jtest. Normally, as one increases n, Jtrain and Jtest should asymtote. 

We used stratified 5-fold cross validation when randomly dividing up the examples into 
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training and cross validation in each fold.  Stratified 5-fold cross validation means that 

each fold contained roughly the same proportions of the class labels.  

 We assessed classifier performance by generating a Receiver Operating 

Characteristic curves (ROC) for each OVR classifier using a stratified 5-fold cross 

validation experiment on the clinical training dataset. By plotting the ROC curve for each 

of the classifiers, we can calculate the threshold level of the probability. In addition, we 

computed the area under ROC curves, AUCs, giving us a summary statistics for each of 

the classifiers. To furthermore assess generalizability, we performed a leave-one-

pullback-out (LOPO) experiment, for each of 35 different pullbacks. The training set was 

the 34 other pullbacks. Previously, we have argued that this is a  more stringent, realistic 

test as opposed to random partitions [83]. We computed the quality of classification using 

standard metrics. That is, we used TP (true positive), FN (false negative), etc. and we 

computed specificity, SPC = TN/(FP+TN), and sensitivity (percentage of correctly 

classified pixels of all of the true, manually annotated pixels) with SEN=TP/(TP+FN).  

Values were averaged across the n test cases (where we computed n-fold cross 

validation). The values presented are computed using the MSD-OP as discussed above. 

Having assessed the performance of the MCC as described above, we then trained 

the MCC on all of the clinical training data and tested it on the independent validation 

data set. We compared automated results against the gold standard, labeled images with 

cryo-image backup on a voxel-by-voxel basis.  

4.3.5 Post Processing  

Since voxel-wise classification is noisy and because clinical application does not require 

voxel resolution, we performed multi-class noise “cleaning.” We performed post-
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classification smoothing on the binary images resulted from each of the OVR classifiers 

using the size-based filter proposed by Jensen et al. [151]. In this approach, each region 

that has an area less than a user-defined threshold, is defined as noise. If a noise region 

has the same classification as background, it is called “interior noise”, and otherwise, it is 

“exterior noise”. Interior noise voxels are relabeled as foreground (i.e. as the label of the 

majority of its neighbors). Exterior noise voxels are relabeled background (“other”).  

4.4 Results 

The IVOCT generates cross-sectional images of the lumen, plaque, and vessel wall 

(Figure 17). As described in the legend, images express the qualitative plaque criteria for 

calcium, lipid and fiber, described previously. 

 

Figure 17: Appearance of atherosclerotic tissue types in clinical images. (a) fibrous (high 
backscattering and a relatively homogeneous), lipid (signal-poor region with poorly 
delineated borders, a fast IVOCT signal drop-off, and little or no signal backscattering) 
and calcium (signal-poor or heterogeneous region with a sharply delineated border) are 
identified.  (b) Normal blood vessel wall showing layered structure.  The latter includes 
a zoomed inset to show the typical layered appearance. 

We evaluated the two approaches for classification: 4 OVR classifiers, including 

OVR-O and MCC. The challenge was that “other” voxels have a very wide range of 

attributes. When we trained the first method on VOIs and applied it to the independent 

data set, there were many classification errors and accuracy of the “other” plaque type 
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was degraded to the range of 50% (not shown). This is probably due to the wide range of 

attributes of “other” voxels. In general, the second approach, using MCC, worked much 

better, as detailed below.  

4.4.1 Training and Model Creation on Clinical Data Set 

The learning curve analysis provides insight of the bias/variance of our plaque classifier. 

We computed the overall training/test error using the MCC where the error is the overall 

error rather than of a specific OVR classifier. As shown in  Figure 18 the test error (blue 

line) starts quite high but decreases rapidly and approaches the training error (orange line) 

as the number of samples increases. The curves plateau around 10,000 samples. We use 

approximately 11,500 samples which should be sufficient for ensuring optimal 

performance. The horizontal dotted green line in the figure provides an important 

observation: It signifies the size of the classification error achievable with the current 

features set. It indicates the level of bias of the classifier, which means that to achieve a 

lower error, additional features (as opposed to additional examples) might help. 

 
Figure 18: Learning curve analysis. Blue curve represents the test error rate, Jtest (see text) 
and the orange curve represents the training error, Jtrain. The minimal number of samples 
should be at the asymptote, giving about 10,000. In experiments, we safely used 11,500 
samples. The cross validation error is averaged across the 5 folds. The steady state error 
(∼4%) at the blue arrows corresponds to the classification error where further improvement 
can be achived by adding more features but not by adding more samples. The horizontal line 
corresponds to the steady state error magnitude. 
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 CALCIUM LIPID FIBROUS 
 USING YOUDEN-OP 

SENSITIVITY 83.8±4.9% 94.6±1.7% 94.5±3.3% 
SPECIFICITY 94.6±1.4% 89.3±2.7% 89.0±2.5% 

 USING MSD-OP 
SENSITIVITY 87.6±4.1% 93.6±1.9% 94.5±7.4% 
SPECIFICITY 94.1±1.8% 91.1±2.9% 90.5±4.5% 

AUC 0.97 0.99 0.99 
Table 7: Statistics at the operating points of the ROC curve 

 

ROC curves with operating points thresholds are shown in Figure 18 and 

summary statistics are given in Table 7 for a 5-fold cross validation. For the three 

principal OVR classifiers (OVR-C, OVR-L, OVR-F), AUCs all exceed 0.95. All 

operating point thresholds values are above 50% as indicated, however, values depend 

upon plaque type.  The two methods tended to give similar probability thresholds, with 

only a 5% absolute probability variation between methods. At the operating points, mean 

sensitivities and specificities are unequal but all exceed 0.9. Comparing total error multi-

class classification with the clinical training data, we get error variation of about 2.7% 

and 3.7% for methods MSD and Youden, respectively. In subsequent analyses, we use 

the MSD to obtain operating points, unless otherwise noted.  
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Figure 19: ROC curves for each OVR. 11,500 manually annoated samples were used. The inset is a 
zoomed area showing the operating points of both methods, MSD and Youden used with OVR-P 
classification. Probability values at the operating points are: MSD-OP=52.1%, 67.0%, and 57.6%. 
Youden-OP=58.8%, 63.8%, and 57.6% for calcium, lipid, and fibrous, respectively. 

 

In Figure 20 and Table 8, we give the sensitivity and specificity of the two 

validation paradigms, 5-fold cross validation and the LOPO.  We obtained excellent 

performance for all plaque types. In fact, in the LOPO experiment we can see that in most 

cases the classifier is able to discriminate between the plaque types. One might expect 

that if a certain pullback does not contain, for example, calcium in a data set, there will be 

no TP or FN for that test, which may cause large variations for some folds across the 35. 

However, the fact that the results’ variation did not increase significantly, indicates that 

in cases where the missing plaque type (calcium in our example) was claimed by a 

specific classifier, the confidence of the claim was lower than the pthresh of the MSD-OP 

and, thus, its ownership claim was modified to “other” by our OVR-P rule. 
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Figure 20:Training/testing statistics. (a) 5-fold cross validation sensitivity and 
specificity. (b) Sensitivity and specificity for leave-one-pullback out experiment. The 
two strategies gave comparable results, within the uncertainty of the assessment, 
suggesting generalizability. The uncertainty measure shown above is the standard 
error of the measurements. 

 LEAVE-ONE-PULLBACK-OUT 

 CALCIUM LIPID FIBROUS 
ACCURACY 91.58±14.3% 93.22±16.28% 95.12±19.26% 
SPECIFICITY 89.83±18.85% 95.05±18.03% 91.73±10.52% 
SENSITIVITY 89.48±6.48% 95.25±8.6% 91.57±17.4% 

 5-FOLD CROSS VALIDATION 
ACCURACY 87.75±8.62% 96.73±4.94% 97.31±2.45% 
SPECIFICITY 87.02±2.74% 92.66±4.34% 92.94±4.34% 
SENSITIVITY 87.75±8.62% 92.73±4.94% 93.31±2.45% 

Table 8: Training/testing statistics from Figure 20. 
 

Since voxel-wise classification is noisy and gives a higher resolution than desired 

clinically, we analyzed classification within entire VOIs. The preponderance of voxel 

classifications were correct. In Figure 21, we have plotted percentage of voxels attributed 

to each class and the corresponding ground truth label for the VOI. In all cases, most 
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voxels were labeled correctly. In fact, when applied plurality voting within each VOI, we 

got perfect, 100% accuracy for VOI classification.  

 

Figure 21: mBox plurality vote within a VOI. The preponderance of voxel classification leads to 
100% accuracy in VOI classification. 

4.4.2 Evaluation on Independent Validation Dataset  

We evaluated the MCC approach on the independent validation dataset confirmed with 

cryo-imaging. Example image results (Figure 22) show cryo and IVOCT input images, 

manual gold standard plaque annotations, and classifier results. Noise cleaning using 

size-based filter greatly improved results. For example, in the image shown on the top 

row of Figure 22 the overall accuracy of the MCC before cleaning was 87.3% and after 

cleaning it was improved to 89.7% (7879 voxels’ labels were changed). Analysis showed 

that many of the misclassifications after noise cleaning occurred at the edge of regions, 

probably because features are obtained over a finite base of support leading to edge 

effects. Another possible reason is that the cleaning algorithm puts voxels of the same 

class into the same region only if they are neighbors, which may be a too strict condition. 

For example, pixels may occupy a big area without neighboring to one another, given 

they are interleaved. In such case size-based filter would regard all pixels as noise and 

remove the whole region.  
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Figure 22: Example of validation analysis. Top row images (from left to right): cryoimage 
fluoresence, IVOCT, expert annotation of IVOCT guided by regisered cryo-image, results of 
automated classification, and automated classification after noise cleaning. In the bottom row, 
image data from a different vessel segment are shown with the exception that the fluoresence 
image is replaced by the color cryo-image. Calcium, fibrous, and lipid are labeled red, blue, 
and green respecitively, Note the good correspondence between the third and fifth columns 
indicating good classifications. 

The confusion matrix in Figure 23shows voxel-wise multi-class plaque 

classification results. Tests are shown for ~4 million voxels following classifier noise 

cleaning. Large values along the main diagonal of the confusion matrix show that the 

predominance of voxels (87.1%) were correctly classified. The noise cleaning post-

processing had a significant visual impact as shown in Figure 22. In addition, its impact 

was also evident in the classification results. Comparing the confusion table before noise 

cleaning (not shown) to the post-cleaning confusion table showed that the overall 

performance was improved by 3-4% indicating that the cleaning (or more accurately “re-

classifying”) scheme had positive impact on the overall accuracy and meaningful data is 

preserved. Furthermore, a few observations are important to note in the table: First, the 

main confusion between calcium and lipid is where a lipid is being classified as calcium, 

and vice versa. This points to the fact that adding a lipid-specific feature may reduce the 

errors further.  In addition, the major confusion is shown to be in misclassifying “other”.  

This, however, is inconsequential since “other” is of no interest (in this research). Finally, 

as shown in Figure 23, we note the overwhelming number of “other” plaque type.  This 
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causes all of the plaques of interest to have relatively small numbers, thus causing the 

accuracy figure to be less effective (we keep it as a means of comparison throughout the 

study). 

  Expert Annotation 

  Calcium Lipid Fiber Other 

Pr
ed

ic
te

d 
la

be
l Calcium 23,111 1,691 9,163 1,877 

Lipid 1,768 33,414 1,271 899 

Fiber 772 564 645,235 505 

Other 2,420 705 13,225 2,968,707 

Figure 23: Confusion matrix from the independent validation data set after cleaning 
operation. Note that the majority of the misclassification occures for “other” plaque 
type as discussed in the text. 

 CALCIUM LIPID FIBROUS OTHER 
ACCURACY 91.3% 91.4% 91.4% 91.4% 
SENSITIVITY 82.3% 91.9% 96.5% 90.5% 
SPECIFICITY  91.2% 91.4% 90.0% 95.7% 

Table 9: Classification statistics from the independent validation data set (see Figure 23). 

4.4.3 Visualization of Automatic Classification 

We created visualization methods for conveying plaque classifications in a clinical 

setting (Figure 24). Out of the multiple approaches available to show the results we found 

three to be most effective. We show majority plaque type vote (the color of the outer rim 

in Figure 24a) within a sector (red, green and blue indicate calcium, lipid and fibrous 

respectively). Second (Figure 24b), we display the automatic classification, allowing a 

better judgment on what the given sector contains.  Finally, possibly more useful in the 

real time application, is a 3D view of the segment of interest (Figure 24c). This type of 

visualization may enable the physician to view a complete section, replacing the current 

need of going back and forth about a frame of interest in order to make a decision as to 

what is the plaque content within that frame. The 3D reconstruction was obtained using 
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Amira [152] by combining 65 2D frames into a volume of a 13mm long blood vessel 

segment which went through automatic classification. 

 

Figure 24: Visualizations describing necessary output for clinical use. Possible application of automatic 
classification. (a) A frame is masked and divided into sectors (in this example, 8 sectors) showing the 
plurality vote of the 3 main plaque types in an arc on the frame’s edge. (b) The actual classification result is 
shown aiding to view the actual plaque distribution within the sector. (c) A more advanced 3D volumetric 
visualization showing a blood vessel segment with the plaque types as overlays.  This visualization will be 
more appropriate in an on-line application where total coverage along a segment is important to see in order 
to make an informative decision of treatment (3D visualization implemented using Amira). This view also 
enables the physician to view the blood vessel segment from inside the lumen. 

a 

    

b 

c 

Opening due to guidewire 
abstraction 

Virtual fly-through enables viewing of 
lumen from the inside 
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4.5 Discussions 

Voxel-wise plaque characterization using physics, morphology, and 13 features 

performed well. Overall accuracy > 90% for all plaque types on the clinical training data 

were excellent, probably owing to the selectivity of this data. The independent, ex-vivo, 

cryo-image backed data provided a better test of performance. Voxel-wise accuracy was 

good (87.1%) but more importantly, regional characteristics were very well matched to a 

preponderance of classified voxels. Voxel-wise errors are probably due to classification 

noise and are rather unimportant. For clinical decision making, relatively large regions of 

calcium or lipid will be of interest, and even for research on therapy assessment, one will 

use more regional assessments. When machine labeled images following classification 

noise cleaning were compared to the annotated gold standard, there was very good visual 

agreement, allowing one to easily determine regional characteristics (Fig 5). When we 

analyzed clinical image homogeneous sub-volumes, we obtained a remarkable 100% 

accuracy with a plurality vote. Finally, when we did a sector comparison of machine 

labeling to annotation on the independent data set, we improved accuracy from ~85% 

(voxels) to 100% (sectors). Since results were quite promising, we created some 

visualizations which might be useful for real-time clinical and post-acquisition analysis 

for therapeutic assessment. We avoid macrophage imaging, mostly because it would 

probably not affect intervention planning (Our preliminary macrophage analysis method 

[88] could be used in a semi-automated fashion if required). 

 Importantly, we evaluated classification with independent data. Not only that, we 

actually had two different data sources for training and evaluation – expert determined 

sub-volumes from in-vivo datasets and ex-vivo IVOCT images labeled from registered 
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cryo-image data, respectively. Because labeled data were acquired in two different ways, 

it probably stress-tests classification much more than if we used a single type of labeled 

data source, probably suggesting that performance on the ex-vivo data gives a 

conservative evaluation of performance. In fact, when we did 5-fold cross validation on 

the in-vivo sub-volumes performance was much better, as expected.  

We used a multi-class one-versus-all with rejection of many voxels, called “other.” 

We created OVR-C, OVR-L, OVR-F, and OVR-P used a threshold and when combined 

in a single scheme, are referred to as MCC. The MCC approach worked better than the 4 

OVR class solution tested probably because modeling of plaques which do not conform 

to the expected pattern of the main three plaque types in features space is very 

challenging since these plaques are not well understood or characterized. Our MCC 

approach could be expanded upon. 

There are mainly two alternatives in the literature [153] for arriving at different 

thresholds for each class allowing for different operating point probability threshold 

(AKA cut-off): One, where the specificity and the sensitivity are equally weighted (such 

as Youden and MSD) and the other puts different weights on the sensitivity and 

specificity. For the purpose of the current research, we decided to use the equal weight 

approach. One can introduce different costs to specific types of errors [154-156]. For 

example, we could add extra cost to misclassifications of lipid and calcium because if one 

were to perform atherectomy on lipid that could have disastrous effect. As more data is 

obtained, we will investigate such solutions.  

The approach of one-versus-all with rejection (or as we referred to it, the MCC) is 

an improvement on the general approach in pattern recognition where the conditional 
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probabilities is computed and the most unreliable objects are rejected, that is, the objects 

that have the lowest class posterior probabilities (AKA “ambiguity reject” [157]). The 

improvement is expressed in two ways: First, we select a per-class-threshold, second, we 

select the probability threshold in a way which is relevant to the problem at hand (i.e. by 

allowing emphasis on sensitivity/specificity).  

In any data analysis task, verification that the data available is comprehensive 

enough to draw general conclusions is very important. Furthermore, the size of the 

classification error achievable with the current features set is indicated by the green 

arrows in Figure 18 (which also indicates the level of bias of the classifier).  To achieve a 

lower error, additional features (as opposed to additional examples) might help.  

Features that describe the structures inherent in the data are as important as the 

quality and quantity of the data. One approach for feature extraction is to create as many 

features as possible (with less emphasis on their significance on the problem at hand) and 

let the classifier make the decision. The other approach, as done in this work, is to use 

domain expertise. We constructed features which were inspired by physics and 

qualitative features criteria as described by Yabushita et al. [32] and Tearney et al. [89].  

These features were incorporated as a priori knowledge to create the most effective 

features to be used in the machine learning algorithm. There are three main reasons for 

the approach we took: First, better features means flexibility. One can choose “the wrong 

classifier model” (less than optimal) and still get good results. Most models can pick up 

on good structure in data. The flexibility of good features allow using less complex 

models that are faster to run, easier to understand and easier to maintain. Second, with 

“good” features, we are closer to the underlying problem and a representation of all the 
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data we have available and could use to best characterize that underlying problem. 

Finally, the most demanding task in classification is features extraction and design.  

Spending time on meaningless feature extraction is not the best use of our time. 

Three experiments were used to test the quality of the MCC classification 

approach: 5-fold cross validation and LOPO, both using the clinical training datasets and 

classification performance using the independent validation dataset. The 5-fold cross 

validation provided the frame work for feature extraction, parameter selection and overall 

classifier design. The LOPO experiment had a practical significance. In real usage, we 

expect the system to see and classify plaque types from entirely new pullbacks. In this 

experiment, in a few folds, the accuracy is lower. We conjecture that this is because when 

holding out a certain pullback, it may cause an imbalance of plaque types in the training 

set and, therefore would cause a classifier with lower accuracy. This issue was addressed 

in the step of the learning curve analysis, where we made sure that we had enough 

training examples, thus making sure that the MCC does not suffer from large variance or 

bias. Finally, performance generalization on an independent dataset was the experiment 

which was the best representative of clinical setting. Referring to the results of the 

experiment done on a set of independent validation images as described above (Figure 23 

and Table 9) it may appear that the results are on the one hand, surprising as we thought 

that most errors would arise from confusing lipid and calcium.  On the other hand, the 

results are expected when using the OVR-P rule. We found that when a lipid was 

confused with calcium, the confidence level was lower than pthresh (using MSD-OP) thus, 

causing the voxel to be re-assigned as “other”. This is indicated by the large number of 

“others” being misclassified as calcium.  Generally, the majority of the errors on all 
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plaque types come from misclassification as being of type “other”.   Further, we also see 

that the misclassification rate of “other” is equally good as the other plaque types or 

better, indicating that the OVR-P is as good as if we were able to train a classifier with 

features that characterize “other”. Finally, the confusion table in Figure 23 provides 

another useful piece of information: The main confusion between calcium and lipid is 

where a lipid is being classified as calcium, but not the other way around.  This points to 

the fact that adding a lipid-specific feature may reduce the errors further.  

To further improve results we “clean” the noisy OVR crisp classification results 

using a size-based filter as discussed above (see “Post Processing”). Our features and 

classification all relied on the qualitative description of the plaques as described in [32], 

and [71].  Therefore, when analyzing the automated results, we found that the small 

patches (what appears as noise in the classification results image) of calcium can/should 

be filtered out. The approach we took to clean the classification results has the advantage 

of preserving more details of the field boundary than a simple neighborhood-majority 

filter. However, it still has two drawbacks. The first drawback is due to the threshold on 

region size. Some small-size regions may not be noise while some big-size regions may 

be. The way we solve this problem is by looking at all of our training data and selecting 

the smallest VOI selected by the expert.  

We can compare our results to other studies with the caveats that analyses are 

done on different, typically small sets of image data and that actual statistical analyses 

can differ. For example, Ughi et al. [141] showed a relatively high overall 5-fold cross 

validation accuracy of 81.5%, which is much lower than our per-voxel 5-fold cross 

validation accuracy of 93.6%. Further, on the practical aspect of sector-based analysis we 
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show 100% accuracy, which is what is needed in intervention planning.  We strengthen 

the applicability of this approach by using independent validation dataset which is 

confirmed by the cryo-imaging ground truth. 

The application of the proposed automated approach has significant implication in 

offline analysis studies in various respects. Although the current research focuses on the 

algorithm’s accuracy rather than speed of performance we can definitely see a significant 

value for off-line analysis. Very large number of pullbacks can be cued for automated 

analysis via the cloud, putting no limit on physical location of the pullback source. The 

automated analysis results can be distributed to each location for review in any number of 

formats.  For examples, if a specific range of frames is required, a visual volumetric view 

can be displayed such that the reviewer can move back-and-forth across frames to 

analyze plaque characterization.  

One of the issues that will require further analysis in our future work is the 

problem with the one-versus-the-rest approach. In this scenario a well-known drawback 

is that the training sets are imbalanced. For instance, we have 3 classes each with roughly 

3000 training data points, which means that the individual classifiers are trained on data 

sets comprising 67% negative examples and only 33% positive examples, therefore, the 

symmetry of the original problem is lost. This issue will be addressed in combination 

with the investigation of the OVR-P rejection rule since the prevalence of “other” plaque 

type must also be taken into account.   
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4.6 Conclusion 

We have demonstrated a novel method for automated plaque classification using 3D 

intravascular OCT. Our method combines human expert knowledge and high level 

information which include geometric, optical and textural a priori knowledge. The 

algorithm has achieved robust performance with an independent validation dataset. The 

algorithm has the potential to improve manual plaque assessment time needed for both 

clinical and research purposes. 
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Chapter 5 Classification of calcium in intravascular OCT images for 

the purpose of intervention planning 

5.1 INTRODUCTION  

Vascular disease, which extracts a terrible toll on health in the developed world, is being 

treated percutaneously using a variety of methods that could be improved with the use of 

intravascular imaging. Heart attack and stroke are the major causes of human death, and 

almost twice as many people die from cardiovascular diseases than from all forms of 

cancer combined. Coronary calcified plaque (CP) is an important marker of 

atherosclerosis and as such, it is important to gain understanding into CP lesion formation, 

as it is associated with higher rates of complications and lower success rates after 

percutaneous coronary intervention (PCI) [158, 159].  The CP lesion can provide an 

estimate of total coronary plaque burden for a patient [8-12, 160, 161], thus, concise 

analysis may be used to prevent and treat occlusions, which are caused by CP as soon as 

it is discovered.  

An automatic method to segment and quantify CP in medical images would 

facilitate our understanding of its role in the clinical cardiovascular disease risk 

assessment [8]. Furthermore, current concepts in interventional cardiology highlight the 

need for IVOCT. First, there is a need to guide plaque modification. The presence of 

calcium is the strongest factor affecting “stent expansion,” a well-documented metric for 

clinical outcome [14, 15]. IVOCT provides the location, circumferential extent, and 

thickness of calcium. Angiography gives no such details. IVUS detects calcium but gives 

no information about thickness, as the signal reflects from the front surface. As 
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interventional cardiologists tackle ever-more complex vascular lesions and use 

bioresorbable stents, there is a recent growing interest in using atherectomy devices for 

lesion “preparation.” Since there is a substantial economic cost and risk of complications 

with atherectomy [16], we should un-blind physicians with IVOCT and provide them 

with improved assessment of the need for atherectomy and with angular location for 

“directed” atherectomy. Second, there can be a geographic miss, where the stent either 

misses the lesion along its length or is improperly expanded, affecting its ability to 

stabilize the lesion and/or provide appropriate drug dosage. There is well-documented 

impact on restenosis.[17] Plaque dissections at the edge of a stent clearly visible in 

IVOCT were detected by angiography in only 16% of cases [18]. Edge dissection 

happens almost exclusively in areas with eccentric calcium/lipid [18], characteristics only 

available with intravascular imaging. Under IVOCT guidance, one can use a longer stent 

or apply a second stent to reduce effects of geographic miss. Third, plaque sealing is the 

treatment of a remote lesion that is hemodynamically insignificant (<50% stenosis) but 

that may appear vulnerable under intravascular imaging. Because approximately 50% of 

coronary events after stenting happen at remote, non-stented sites, plaque sealing is an 

attractive concept under investigation in trials. IVOCT’s high sensitivity for lipid plaque 

will be advantageous for guidance of plaque sealing.  

To meet this unmet clinical need, we will develop a methodology for automatic 

detection of calcified plaques. The methodology we propose is a new approach for CP 

segmentation and is intended to perform robustly with IVOCT images encountered in the 

clinical environment, in real time, without the need for user interaction.  In previous 

study done in our lab [162] we came to the realization that, in the case of plaque 
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characterization, due to the complexity of the different plaque compositions, when 

attempting to discriminate a specific, well defined plaque type (positive),  all positive 

examples are alike, yet each negative example is negative in its own way. This led to our 

proposed algorithm, where we use a one-plaque classifier that tries to identify CP 

amongst all other plaques. 

A CP region appears as a signal-poor or heterogeneous region with a sharply 

delineated border (leading, trailing, and/or lateral edges) [163]. Calcium is darker than 

fibrous plaque with greater variation in intensity level inside the region. A few major 

contributors to the variance in appearance of the different plaques are also artifacts as 

discussed in [89] including multiple reflection, saturation, motion etc.  

In our approach, a CP image is modeled by the joint distribution of filter 

responses combined with edge data as derived by using a canny edge detector. This 

distribution is represented by texton (cluster center) distribution.  Classification of a new 

image proceeds by mapping the image to a texton distribution and comparing this 

distribution to the learned models. We further enhance this unique approach by 

increasing robustness by introducing methods novel to plaque analysis. First, we created 

a dictionary using images containing all possible variations of calcium encountered in a 

clinical environment. In addition, we introduced an approach that minimizes the reliance 

on edge orientation and avoids the reliance on visible structures. In the next section, we 

describe the algorithms in detail. Then, we describe the validation experiments, and 

analyze results of the comparison with human experts. 
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5.2 Algorithms 

Classification algorithms based on distribution of filter responses have been used in the 

past with various level of success [164, 165].  Our algorithm enhances this concept by 

adding various features at various stages of the algorithm. Specifically, when extracting 

features, we add a very plaque-specific feature set we name DGAS (stands for Distance, 

Gradient, Average and Smoothness) as described below. Our algorithm is divided into 

four main steps: processing for extraction of image-wide features, dictionary creation, 

model creation (training) and classification (prediction).  

5.2.1 Image Processing for extraction of DGAS features  

In the initial step, before the SIs are extracted, all images are passed through canny edge 

detector [166] preceded by blood vessel mask extraction (the mask includes all pixels 

between the lumen border and the back border [167] and guidewire artifact removal [119]. 

This enables each pixel to be assigned a global edge feature vector (features of edges 

extending over a length in the image) set referred to as DGAS feature set (these are five 

real-valued features). The DGAS feature set includes distance of the pixel from the lumen, 

continuous edge gradient magnitude, continuous edge gradient direction (together, they 

express the acutance of the edge), average edge intensity and edge smoothness computed 

as the second derivative of the image (i.e. Laplacian) [137]. Notice that these features are 

assigned based on edge which are found by processing the complete frame, thus, 

continuity across SIs is preserved. Following this step, SIs are extracted as described 

below. 
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5.2.2 Calcium Texton Dictionary Creation 

In the dictionary creation step (Algorithm, part 1), we obtain a finite set of local structural 

features that can be found within a large collection (40 randomly selected from the CA-

DS set described below) of calcium SIs from various pullback images. We follow the 

hypothesis that this finite set, which we call the calcium texton dictionary, closely 

represents all possible local structures for every possible calcium instance in a pullback. 

Textons: We characterize a calcium SI by its responses to a set of linear filters 

(filter bank, F) combined with edge features (DGAS feature set). We seek a set of 

local structural features (filter responses) which is targeted towards having largest 

response representing the calcium specifically. This approach leads to our main 

four-part proposal: First, to use a filter bank containing edge and line filters in 

different orientations and scales.  Second, optionally, select a subset taking into 

account only the strongest responses across all orientations (thus providing 

orientation invariance).  Third, based on the concept of textons and its 

generalizations introduced by Malik et al. [168] we use the concept of clustering 

the pixel responses into a small set of prototype response vectors we refer to as 

textons. Note that by adding to each filter response vector the DGAS feature set, 

we enable the addition of spatial relationships between adjacent SIs in the form of 

continuous borders within the image. 
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Init : split CA-DS into 2 disjoint sets: dictionary, 
training&testing (for model creation)  
input: 40 calcium sub-images. 
output: dictionary of textons  (∈ ℝK x n) 
for each sub-image { 

a. Create filter bank, F 
b. Convolve with filter bank, F ( fn∈ ) and 

record convolution value. 
c. Combine with DGAS feature set - ℝn for 

each pixel 
}  
Concatenate all calcium pixel responses 
Create K clusters for each group via K-means 
(Identify K via “elbow” method). 
Output dictionary 

 

Algorithm, part 1: Dictionary creation Figure 25: Filter bank designed to capture the 
calcium characteristics. Each row represents a 
different scale, where the upper three rows are 
bar filters in 6 orientations, the three middle 
rows are edge filters in six orientations and in 
the last row, Gaussian and Laplacian of 
Gaussian filters.  To generate the MR8 filter 
responses, only 8 responses are recorded by 
taking maximal response at each orientation, 
the Gaussian, and the Laplacian of Gaussian. 

Filter bank, F: We designed a special filter bank, in an attempt to capture the 

qualitative description of calcium as signal-poor or heterogeneous region with a 

sharply delineated border [32, 89]. We then investigate the maximum response 

filters over the orientation (MR8) versus the entire filter bank.  It is shown that by 

doing that we reduce computation effort significantly with minimal loss in 

performance. The full filter bank (Figure 25) consists of a Gaussian and a 

Laplacian of Gaussian filters, an edge filter at three scales and six orientations and 

a bar filter (a symmetric oriented filter) at the same three scales and orientations, 

giving a total of 38 filters. When using the maximum response filters, the output 

dimensionality is reduced by recording only the maximum filter responses across 

all scales, therefore, yielding one response for each of the upper six rows in 

Figure 25, where the Gaussian and Laplacian of Gaussian are recorded always, 
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hence MR8.  In the MR8 case, the final vector of filter responses consists of eight 

numbers. 

5.2.3 Model Creation 

In the model creation step (Algorithm, part 2), the remaining mt SIs subset from the CA-

DS is used. Each of these training SIs is convolved with F, generating a vector of filter 

responses which is concatenated with the DGAS feature set, thus creating a pixel 

response vector (∈ ℝn) for each of the SIs pixels. This vector is compared with the 

dictionary described above using k-nearest neighbors (k-NN) thus each pixel of the SIs 

pixels is assigned a label creating a label vector whose length is the number of pixels in 

the SI.  We then quantized this label vector into a histogram (with L bins) of texton 

frequencies. Finally, the texton frequency histogram is converted into a texton probability 

distribution, by normalizing the texton frequency histogram to sum to unity. The reason 

we normalize the histogram is to avoid the need of the various SIs to have the same size 

or shape. This process is repeated for all mt training SIs, thus the final outcome of this 

process is a matrix whose dimension   is mt x L which is used as the training dataset for 

one class Support Vector Machine classifier (OC-SVM) as described below.   

Texton probability distribution (normalized histograms): The histogram of 

image textons is used to encode the global distribution of the local structural 

attributes (i.e. the filter bank’s responses and the DGAS feature set) over the 

calcium texture image while ensuring that every shape and size of SI can be part 

of the experiment. This representation, is a discrete function of the labels l derived 

from the texton dictionary. Each SI is filtered using the same filter bank, F, and its 
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DGAS feature set is computed the same way. Each pixel within the SI is 

represented by a one-dimensional (∈ ℝn) feature vector which is labeled (i.e. 

assigned a texton number) by determining the closest image texton using k-NN 

algorithm. The spatial distribution of the representative local structural features 

over the image is approximated by computing the normalized texton histogram.  

The dimensionality of the histogram is determined by the size of the 

texton dictionary, K, which should be comprehensive enough to include large 

range of calcium appearances and the number of bins, L, used to create the 

histogram.  Therefore, the histogram space is high dimensional and a compression 

of this space is suitable since computation time is a factor at the event of on-line 

processing.  This may be an essential requirement, provided that the properties of 

the histogram are preserved.   

input: dictionary & training sub-images 
output: calcium plaque model 
For each training sub-image { 

a. Convolve with filter bank, F and 
record convolution value. 
b. Combine with DGAS feature set (ℝn 
for each pixel) 
c. Label each pixel response by 
comparing to the dictionary (using k-NN) 
d. Create histogram of label frequencies 
e. Normalize to get distribution (hence, 
sub-images do not need to be of the same 
size) 

 } 
Assemble all histogram vectors into a single 
matrix ( tm K×∈ ) 
Train a one-class SVM to get the model 

 input: test sub-images, dictionary, model.  
output: label (calcium, non-calcium) 
For each new  sub-image { 

a. Convolve with filter bank, F and record 
convolution value. 

b. Combine with DGAS feature set (ℝn for 
each pixel) 

c. Label each pixel response by comparing 
to the dictionary (using k-NN) 

d. Create a histogram of label frequencies 
e. Normalize to get distribution (hence, sub-

images do not need to be the same size) 
f. Predict using OC-SVM model 

} 

 

Algorithm, part 2: Model creation.  Algorithm, part 3:  Classification rule for new 
data. 
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5.3 Classification Rule: One-class Support Vector Machine (OC-SVM) 

For classifying new data, we use a one-class classifier. In this step, (Algorithm, part 3), 

we do not have stand-alone SIs since the only input to the automated algorithm is an 

IVOCT pullback.  We scan the pullback within the blood vessel mask, one frame after 

the other in (r-θ) view, with a window whose size was determined by the size of smallest 

calcium region required for measurement (100x100 in our experiments) and with a step 

which is equal to half the window size (ensuring 50% overlap). Each window is treated as 

an SI.  The same procedure as done in the training step is followed to build a histogram 

corresponding to the new SI. This histogram is the new data point, which is used by the 

trained OC-SVM classifier for classification, producing the final SIs classification as 

calcium or non-calcium as described below. 

There is a reason for selecting the one-class paradigm: The traditional multi-class 

classification paradigm aims to classify an unknown data object into one of several pre-

defined categories (two in the simplest case of binary classification). A problem arises 

when the unknown data object does not belong to any of those categories. When 

analyzing plaque in IVOCT images, it is challenging to decide what the plaque type is, 

especially because there are many plaques types other than the main three plaque types 

typically being analyzed (calcium, lipid, fibrous). One-class classification algorithms aim 

to build classification models when the negative class is absent, either poorly sampled, or 

not well defined (where the latter describes our case). This unique situation constrains the 

learning of efficient classifiers by defining class boundary just with the knowledge of 

positive class. In our problem, the calcium plaque type is defined as positive and 

everything else is negative.  We decided to use one-class-SVM (implemented using 
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libsvm library [169]) because of the following reasons: First, it is effective in high 

dimensional spaces even in cases where number of dimensions is greater than the number 

of samples, second, it is very versatile since different kernel functions can be specified 

for the decision function including custom kernels. 

One-class SVM was suggested by Scholkopf et al.[144] where the approach is to 

adapt the binary support vector machine classifier (SVM) methodology to one-class 

classification problem, which only uses examples from one-class, instead of multiple 

classes, for training. The one-class SVM algorithm first maps input data into a high 

dimensional feature space via a kernel function, Φ(∙), and treats the origin as the only 

example from other classes. Then the algorithm learns the decision boundary (a 

hyperplane) that separates the majority of the data from the origin. Only a small fraction 

of data points, considered outliers, are allowed to lie on the other side of the decision 

boundary. The hyperplane is found iteratively such that it best separates the training data 

from the origin. The kernel that guarantees the existence of such a decision boundary is 

the Gaussian kernel [144] and, therefore, was selected to be the kernel used in this study. 

Considering that our training dataset x1, x2,…,xl ∈ X, Φ(∙) is the feature mapping 

X→F to a high-dimensional space. We can define the kernel function as:  

( , ) ( ) ( )k x y x y= Φ Φ  

Using kernel functions, the feature vectors need not be computed explicitly, greatly 

improving computational efficiency since we can directly compute the kernel values and 

operate on their images. We used the radial basis function (RBF) kernel: 

2 2/2
( , )

x y
k x y e

σ− −
=  

http://scikit-learn.org/stable/modules/svm.html#svm-kernels
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Solving the one-class SVM problem is equivalent to solving the dual quadratic 

programming (QP) problem:  

1 12
min
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i
w iil

ξ ρ
ν

+ −∑
=

 

subject to 

( ( )) ,  1, 2, ..., ,  0w x i l
i i i

ρ ξ ξΦ > − = >
 

where  ρ is the bias term and w is the vector perpendicular to the decision boundary. ξi is 

the slack variable for point i that allows it to lie on the other side of the decision boundary.

ν  is a parameter that controls the  trade-off between  maximizing the number data points 

contained by the hyperplane and the distance from the hyperplane to the origin.  It has 

two main functions: it sets an upper bound on the fraction of outliers (training examples 

regarded out-of-class) and, it is a lower bound on the number of training examples used 

as support vectors. Finally, the following function is the decision rule of the OC-SVM: It 

returns a positive value for normal examples xi points (i.e. positive) and negative 

otherwise. 

( ) (( ( )) )f x sign w x ρ= Φ −  

5.4 Experimental Methods 

5.4.1 IVOCT Image Acquisition and selection of regions for SI extraction  

Images were collected on the C7-XR system from St. Jude Medical Inc., Westford, MA. 

It has an OCT Swept Source having a 1310 nm center wavelength, 110 nm wavelength 

range, 50 kHz sweep rate, 20 mW output power, and ~12 mm coherence length. The 

pullback speed was 20 mm/s and the pullback length was 54 mm. A typical pullback 
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consisted of 271 image frames spaced ~200 µm apart. Images used in this study were 

selected from the database available at the Cardiovascular Core Lab of University 

Hospitals Case Medical Center (Cleveland OH). They consisted of 35 IVOCT pullbacks 

of the Left Anterior Descending (LAD) and the Left Circumflex (LCX) coronary arteries 

of patients acquired prior to stent implantation. These images were manually analyzed by 

an expert from the Core Lab to identify images of calcium, lipid, and fibrous plaques. See 

Figure 26 for a few examples of the CP appearance as compared to the other plaque types 

in a typical pullback (r-θ) view.   

 

Figure 26: Images in (r-θ) view showing the different appearance of the main three plague types: left, 
fiber; middle, lipid; right, calcium. It is shown that the calcium has a few distinctive characteristics 
which are apparent in the images: sharp borders with low average intensity and low attenuation (beam 
goes from left to right) within the calcified region. 

The training dataset was created from de-identified clinical images in the set 

described above. An expert reviewed pullbacks and identified regions containing plaques 

(fibrous, lipid, or calcified) utilizing consensus criteria descried [163]. This was followed 

by identifying sub-images (SIs) which were generated by cropping a region in the image 

and the rest of the image was regarded as background data which was discarded. All 

processing is done on these cropped regions we refer to as sub-images (SIs). 

For validation testing, we created an independent (not used in training) image 

dataset with each voxel accurately labeled and validated by 3D cryo-imaging [149]. To 
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create this dataset, we obtained coronary arteries (LADs) of human cadavers within 72 

hours of death and stored at 4 °C. Arteries were treated and stored in accordance with 

federal, state, and local laws by the Case Institutional Review Board. To prepare for 

IVOCT imaging, arteries were trimmed to approximately 10 cm in length. A luer was 

then sutured to the proximal end of each vessel which was flushed with saline to remove 

blood from the lumen. Major side branches and the distal end of each artery were sutured 

shut. Using super glue, the artery was adhered to the sides and bottom of a rig that was 

used to minimize motion between cryo and IVOCT imaging procedures. IVOCT imaging 

conditions mimicked the in-vivo acquisitions described above. Sutures were placed on the 

vessel to identify ROIs (1.5–2cm in length) that would later be analyzed using cryo-

imaging. Following IVOCT imaging, the entire imaging rig containing the artery was 

flash frozen in liquid nitrogen, and stored at -80 °C until cryo-imaging was performed.  

Prior to cryo-imaging, arteries were cut into blocks corresponding to the ROIs 

determined during IVOCT imaging. Blocks were placed in the cryo-imaging system and 

allowed to equilibrate to the -20 °C cutting temperature. The ROIs were then alternately 

sectioned and imaged at 20 μm cutting intervals and color and fluorescent cryo-images 

were acquired at each slice. The process was repeated until the whole specimen was 

imaged. 

5.5 Training, Testing and Dictionary Datasets  

The following four datasets, which were assembled from the above pool of SIs, were 

used in the experiments: CA-DS (stands for Calcium Data Set) composed of 316 

calcium-only SIs, LI-DS composed of 250 lipid-only SIs, FI-DS composed of 250 fiber-
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only SIs and NON-DS, composed of approximately 750 SIs which are neither one of the 

main plaque types.  

In addition, we also created an independent (in the sense that data from it were not 

part of the training or any other experiment) dataset which is extracted from a cadaver 

where each pixel is annotated using cryo-based ”ground-truth” images as a confirmation 

of annotation, thus removing reliance on expert’s interpretation of qualitative plaque 

description. We name this dataset “validation dataset”. 

5.6 Experiments 

We compare the performance of the method using two filter banks, the full filter bank 

and the MR8 version of it (see below for a full description). In the following experiments, 

a positive example is an example that came from calcified dataset and a negative example 

is an example that is drawn from any dataset other than calcified dataset. 

1. Stratified five-fold cross validation (SFV-CV) experiment: In one-class classifier, 

class boundary (model) is determined by just using the knowledge of the positive 

class, allowing some outliers (negatives) to be present [170].  To create the one-class 

model, we combine the CA-DS with 15 negative examples (2-3 from each type). 

Then perform stratified 5-fold cross validation.  

2. Leave-one-pullback-out (LOPO): The idea is to quantify the generalization capability 

of the classifier to new pullbacks. Although this approach repeats the same logic as 

the SFV-CV approach described above, there is one important difference: the left out 

set is not randomly selected from the dataset but is chosen such that all samples 

belong to the same pullback are held out.  This represents a much more realistic 



124 
 

condition in our application, thus is a better indication of the classifier ‘sability to. We 

use 35-fold (because we have data from 35 different pullbacks) cross validation 

where we use the CA-DS set combined with a small number (2-3) examples from 

each of the other sets. For each of the folds, the dataset corresponding to one 

pullback’s images is held out and constitutes the cross validation set, while the other 

datasets constitute the training set. Note that this is a much more stringent and 

realistic condition as opposed to randomly partitioning the dataset as done in the 

SFV-CV experiment, since in real usage, we expect the system to see and classify 

plaque types from entirely new pullbacks.  

3. Next experiment is intended to measure the confusion between calcium and the other 

plaque types. We combine the CA-DS with each of the other datasets described above 

and run a classification experiment. We create two mixed sets (CA-DS and FI-DS 

when testing against fiber and CA-DS and LI-DS when testing against lipid) and we 

perform internal stratified 5-fold cross validation. We divide the CA-DS into 5 folds 

and the mixed set into 5 folds. In each of the folds, we use a fold which is composed 

of only CA-DS examples for training and then we do the prediction on the rest of the 

CA-DS folds combined with the FI-DS/LI-DS folds.  This gives a better balanced 

dataset and enables us to create accuracy results (as opposed to F1 score) since the 

data is minimally skewed.  The goal of this experiment is to quantify the amount by 

which the calcium can be discriminated from the other main plaque types.  This also 

helps focus our attention on the more “problematic” plaque type, thus increase the 

overall performance of the classifier. 
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4. Finally, to further increase our confidence we use the validation dataset to classify 

never-seen-before datasets. 

 

As performance measure, we use F1 score, which can be interpreted as a weighted 

average of the precision and recall values. We follow standard nomenclature where we 

use TP (true positives), FN (false negative), FP (false positive), and TN (true negative) to 

make assessments of (P)recision = TP/(TP+FP), (R)ecall  = TP/(TP+FN), F1 = 

2PR/(P+R).  (ACC)uracy = (TP+TN)/(TP+FN+FP+TN). 

5.7 Results 

Before analyzing the algorithm’s performance, it is essential to determine all of its 

parameters to ensure good performance. We show that using the MR8 as opposed to the 

full filter bank, does not impact significantly the final outcome, yet the speed is improved. 

5.7.1 Algorithm Parameters 

We optimized algorithm parameters in multiple steps. First, we determined the two OC-

SVM parameters to be used in all subsequent analyses. These parameters are σ, the RBF 

kernel’s bandwidth and ν, which according to [144] can be viewed as either the upper 

bound on the fraction of outliers (in our case, we simply set this value to be the number 

on non-calcium SIs used in the training divided by the total number of training SIs). Or, it 

can also be viewed as a lower bound on the number of training examples used as support 

vectors. This good initial value enables us to perform an efficient grid search for best 

parameters for the OC-SVM. In this grid search we were able to find the best σ for the 
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radial basis function (RBF) and fine-tune the initial ν.  The final values were: ν=0.0896 

and σ=0.0313. 

 

Figure 27: Learning curve analysis for a OC-
SVM. Here we use F1 score as performance 
measure. The vertical dashed line is the 
minimal number of data points which will 
enable high enough performance (280). The 
horizontal dashed line represents the steady 
state F1 score which is the best possible 
performance given the current training data. 

 

 

Figure 28: Finding the optimal number of textons 
by plotting the within-cluster sum of squared 
distances vs. the number of clusters. 

Second, we verified that the number of training examples was sufficient to enable 

efficient training of the OC-SVM. We performed a learning curve analysis where we 

varied the number of samples and compared the training and the cross validation F1 score 

until they converged (Figure 27). This gave us a good starting point to ensure minimal 

over/under fitting is minimized.  We selected to use the F1 score as performance matrix, 

since, as it is typical with one-class classification, the number of negative examples is 

very small compared to the positive examples, causing the overall dataset to be skewed. It 

is shown that for cross validation F1 score to reach that of training F1 score, 

approximately 280 examples are sufficient (each point is a point in feature space, 

meaning, it represents a single SI). 
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Third, to find the best number of textons to be used in the dictionary, we used the 

“elbow” approach by plotting the sum of the within-cluster square of Euclidean distances 

versus increasing number of clusters and observed where the “elbow” occurred.  As 

shown in Figure 28, the optimal number of textons for the calcium dictionary was K=29. 

This value was used in all subsequent processing of SIs. 

Fourth, we determined the optimal size of the kernel to be used in the filter bank.  

To do that, we created a dictionary of 29 calcium clusters and then ran the classification 

algorithm on CA-DS set using the full kernel and then using the MR8 version of the filter 

bank’s responses. The idea was to be able to derive the best kernel size rather than get the 

optimal performance measure. We ran 5-fold cross validation of the created datasets for 

varying values of filter kernel (Figure 29).  The optimal kernel size, which was found in 

this experiment, was 19 x 19 for full filter bank and 15 x 15 for the MR8 filter bank. 

 
Figure 29: Determination of filter bank’s kernel size. 5-fold cross validation performance (using F1 score 
as a statitical measure) performed by varying filter kernel size.  (left) plot of F1 score variation for full 
kernel filter bank. (right) F1 score variation for MR8 filter bank. Red circles indicate the location of best 
performance size (full kernel, kernel is 19x19, MR8 kernel is 15 x 15). 

5.7.2 Training and Model Creation using Regions from Clinical Dataset 

Results of the SFV-CV and the LOPO experiments are shown in Table 10.  First, we note 

that, the MR8 performs as well as the full filter bank.  This is a clear indicator that 
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orientation invariant description is not a disadvantage (i.e. salient information for 

classification is not lost). Second, the fact that MR8 does as well as the full filter bank is 

also evidence that it is detecting the most distinctive features. These results are 

encouraging since reduction of the features space down to 8 from 38 is a significant 

computational advantage, making the process more suitable for on-line usage.   

 
 SFV-CV LOPO 
  Full filter 

bank 
MR8 Full filter 

bank 
MR8 

F1 Score 0.929±0.026 0.933±0.027 0.815±0.265 0.825±0.258 
Precision 0.986±0.015 0.975±0.016 0.899±0.274 0.894±0.273 
Recall 0.879±0.046 0.896±0.048 0.785±0.278 0.866±0.266 

Table 10: Performance statistics for the two experiments (showing mean±sd), SFV-CV and LOPO. 

In the next experiment, we tested the calcium against each of the other main 

plaque types (Table 11).  It is evident that calcium and fibrous are more easily 

discriminated compared to calcium and lipid.  It suggests that we should consider 

designing additional filters that not only favor the calcium plaque characteristics but also 

favor the lipid characteristics. Moreover, we see that the results when using the responses 

of the full filter are better than when we just use the maximum responses. 

 
 5-fold cross validation 
 Full filter bank MR8 
 mean±sd mean±sd 

Ca-v-lipid 0.762±0.07 0.743±0.004 
Ca-v-fiber 0.835±0.016 0.814±0.018 
Ca-v-all 0.778±0.012 0.759±0.010 

Table 11: Performance of calcium classification versus classification of the other main plaque types. 

5.7.3 Evaluation on Independent Validation Dataset  

We evaluated our algorithm performance on the independent validation dataset confirmed 

with cryo-imaging. Example result (Figure 31) show cryo and IVOCT input images, 
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manual plaque annotations, and classifier outputs. For the purpose of quantifying the 

automatic calcification on the validation dataset, we counted the number of SIs scanned 

where classification is considered TP if more than 25% of the SI covered a true calcified 

region.  Using this criterion, the performance of the scanned image shown in Figure 31 is 

shown in the form of a confusion table (Figure 30). Clearly, due to the fact that the 

majority of the SIs scanned are not calcium, using accuracy will not reflect the 

performance accurately, so we choose to compute the F1 score as described above, 

yielding F1 = 0.72. 

   Actual 
    Calcium Non-

calcium 

pr
ed

ic
te

d Calcium 9 2 

Non-
calcium 5 493 

Figure 30: Confusion table showing independent validation image classification results (Figure 31) 
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Figure 31: Independent validation classification. a) Original IVOCT imaged where the guidewire (marked 
by yellow asterisk) and data beyond lumen and back border are masked out. Notice the calcified region 
with sharp borders. b) Results of automated classification. C) Corresponding registered cryo-image. Notice 
how the calcified region is much brighter when using fluoroscopy. D) Expert annotation of the plaque types 
present in the image (blue is fiber and red is calcium). e) IVOCT image with automated classification 
overlay. The yellow line represents the experts annotation of the calcified region (can also be seen in part 
a). Red represents the classification and the blue represents fiber, the “+” sign represents the center of the 
image. 

Finally, in terms of time performance, the MR8 yielded a classifier which is more 

than 30% faster, yet, as can be seen in the results above, the accuracy measurements are 

not significantly affected. When using MR8 filter bank, the average time to compute 

features (histogram) for a single frame is 2.6 seconds  and for full filter bank 3.7 seconds 

(measured by running Matlab).  This means that the feature creation using MR8 filter 

bank is 30% less expensive than full filter bank, thus making the algorithm suitable for 

on-line application.  

5.8 Discussion 

The presence of calcium in the coronary arteries is an indication of intimal 

atherosclerosis [171]. Because of the demonstrated value of coronary calcium detection 
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in predicting significant coronary disease and because of its independent predictive value 

for coronary events [172], it is important to be able to precisely and efficiently detect and 

quantify coronary calcium.  

Automated calcium plaque classification represents the key step to help in 

treatment decision making in clinical settings and reduce the human interaction during 

post-procedure analyses. We have presented a novel approach for completely automatic 

intravascular calcium classification in close to real time performance which significantly 

improves on the state of the art [141]. It presents the following advantages. First, our 

model representation captures efficiently “texture like” visual structures where we do not 

impose any constraints on, or requiring any a priori knowledge of, the catheter type, 

IVOCT machine type or any other conditions under which the images were acquired. The 

second is the learning algorithm which does not require manual extraction of objects or 

features. The third is the independence of region segmentation and feature extraction, 

which are never perfect. Finally, we have shown that the results of the reduced filter bank 

(MR8) do not significantly affect the performance, yet speed is improved by more than 

30%, a very important parameter to consider when an on-line application is required. 

In Figure 31, we note two important “artifacts” which are caused by the scanning 

algorithm: First, the classifier’s output looks bulky.  This is due to the way we extract SIs 

from a new pullback: we scan the image with a scanning window that is being labeled in 

its entirety as calcium or non-calcium, there is no partial-window labeling. This results in 

over estimation of the calcified region however, it preserves the ratio between different 

sizes of circumferential calcified regions.  Second, the farther the scanning window is 

from the catheter in r-θ view, the larger the size in Cartesian view is (a square in r-θ view 
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is transformed into an arc in Cartesian view). This causes the area in Cartesian view to 

look as if it is larger. This characteristic is also shown in the false positives (part b). 

Another thing to note is the fact that the classifier can discriminate calcium from any 

other plaque type (in this case, fiber). This emphasizes the advantage of using a one-class 

classifier, where the classifier does not have to classify one class or the other, but it 

simply indicates if a plaque belong to the class of interest (calcium) or not, a very elegant 

solution to a problem other researchers encountered [103, 134, 141, 167]. 

Our choice of one-class classifier approach can be proven useful in another aspect. 

Because a one-class classifier defines class boundary just with the knowledge of positive 

class (“positive” being the class of interest, calcium in our case), we can use its parameter 

such that they reflect expert annotation quality.  For example, we can create a one-class 

classifier model, using cryo-imaging as annotation tool (as done in our study as described 

above). We can then compare the classifier results to, say, three experts, and quantify the 

quality of their annotation according to their deviation from the model.  Since we assume 

that cryo-based-imaging is a reliable ground truth, this quantification can be used a 

scoring mechanism for expert annotation. 

Finally, we are continuously working to improve the results in several ways: We 

will improve the visualization of the scanning window such that when switching between 

r-θ view and Cartesian view, the classified area is preserved. Pixel-based feature set will 

be improved using a different or enhanced feature set (i.e. improved dictionary). SI-based 

feature set will be enhanced by modifying histogram creation combined with additional 

SI-specific features. Dimension reduction will be addressed to adjust the method to cope 

with very large pullbacks. In addition, we will address the incorporation of a post-
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processing step in the third dimension (i.e. along the pullback direction). This way the 

impact of the spatial variability of coronary cross-sectional morphology will be reduced 

and the accuracy of the classification will increase. 

5.9 Conclusion 

We have demonstrated an automatic method for calcified plaque segmentation. The 

promising results show that the method has the potential to be used in the clinic to 

facilitate quantitative analysis of intravascular IVOCT images. Although additional 

validation is needed, the presented method holds great promise for reliable, robust, and 

clinically applicable segmentation of calcium in IVOCT image sequences on and off line, 

thus change clinical practice. 
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Chapter 6 Automated Volumetric Intravascular Plaque Classification 

Using Optical Coherence Tomography (OCT) 

6.1 Introduction 

Cardiovascular diseases are the leading cause of death worldwide. An estimated 17.5 

million people died from a cardiovascular disease in 2012, representing 31% of all global 

deaths. Of these deaths, an estimated 7.4 million were due to coronary heart disease and 

6.7 million were due to stroke [173]. The underlying disease process in the blood vessels 

that results in coronary heart disease (heart attack) and cerebrovascular disease (stroke) is 

known as atherosclerosis.  It is a complex pathological process where fatty material and 

cholesterol are deposited inside the lumen of medium and large-sized blood vessels 

(arteries). These deposits (plaques) cause the inner surface of the arteries to become 

irregular and the lumen to become narrow, making it harder for blood to flow through. 

Further, the plaque can rupture, triggering the formation of a blood clot, which may 

eventually lead to disease.  

To treat atherosclerosis, we must first have access to an imaging technique with 

suitable resolution. As we describe in the next section, the recently approved 

intravascular optical coherence tomography (IVOCT) approach fulfills this need. In 

IVOCT, a probe is inserted into a blood vessel. As the probe moves through the vessel, it 

collects images of the vessel wall. These images are subsequently analyzed by experts to 

identify at-risk regions. 

A major issue when working with IVOCT, however, is that it can produce more 

than 500 image frames in a single scan, resulting in an explosion of image data. This can 
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be difficult and labor-intensive to analyze manually, taking up to one hour of examination 

for each frame by a trained analyst. This often precludes measurements from every frame, 

and plaque classification is not even done because it is infeasible in terms of time. Further, 

this manual process is also prone to error. In prior work [83] , our group has found 

evidence of up to 5% intra and 6% inter-rater variability among analysts looking at these 

images.  

The goal of our work is to enable an effective detection and diagnosis of 

atherosclerosis, which is a necessary precursor for effective treatment. We do it in three 

ways: (i) reduce the effort involved, (ii) improve the accuracy of high-risk plaque 

identification and (iii) make the diagnosis available as early in the process as possible. 

The prevalence of atherosclerosis means achieving these goals can have a major impact 

on health worldwide. 

We anticipate fulfilling our goals in two steps. In the first step, reported in this 

chapter, we develop an automated method to process single frames generated by IVOCT 

scans. We demonstrate that it is accurate and efficient on real IVOCT data, it outperforms 

a previously published baseline [141] , and the output can be used by analysts to greatly 

reduce their annotation effort. In the second step, our goal is to integrate this approach 

into a real time visualization that accompanies an IVOCT scan. We would like to produce 

3D images as in Figure 1, by stacking the output of multiple 2D frames. These images 

will be annotated with different detected plaque types, and will be used for rapid 

identification of high-risk regions for intervention and management and guidance. 

In the rest of the chapter, we first describe IVOCT. Next, we describe how we 

extract meaningful features from IVOCT images for our automated analysis, followed by 
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a description of our classifier. We then describe empirical results that illustrate the 

performance characteristics of our approach, and discuss current limitations and future 

work. 

 
Figure 32: Example of desired 3D output (using current automated approach’s 
output).  This greatly enhances the physician’s ability to make (pre)treatment 
decisions. 

6.2 Optical Coherence Tomography (OCT) 

Before OCT was approved, Intravascular Ultrasound (IVUS) was used to identify plaques. 

IVUS has a resolution of ~200 μm and is able to detect for example, calcium. However, it 

cannot measure the distance between the superficial calcium and the lumen, nor can it 

assess the thickness of calcium due to acoustic distortion [174] . The underlying concept 

of OCT is similar to that of ultrasound; by measuring the delay time of optical echoes 

reflected or backscattered from subsurface structures in tissues, we can obtain structural 

Fibrous plaque Arterial wall 

Lipid plaque 
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information as a function of depth within the tissue [89]. However, OCT does not possess 

the limitations of IVUS. 

In IVOCT we obtain cross-sectional images by inserting a flexible imaging probe 

(catheter) into the blood vessel to be imaged.  The catheter has an optical fiber coupled to 

a lens and micro-prism. The micro-prism reflects the OCT beam perpendicular to the 

catheter longitudinal direction and captures the light that is back-scattered from that 

tissue (the reflected beam is referred to as an A-Line). The probe is then rotated and 

pulled back. This pullback creates a two-dimensional image (referred to as polar or r-θ 

image) by assembling successive A-lines next to each other resulting in an image shown 

in Figure 33b. This image is then transformed to Cartesian coordinates to produce the 

image shown in Figure 33c. A typical pullback contains 271 images covering 54mm and 

an image contains 504 A-lines. 

Different tissues have different qualities that influence the back-reflectance. The 

longer the distance traveled, the longer the delay in returning to a detector. The delay in 

the returning light from deeper structures compared with shallow structures is used to 

reconstruct images. 

 

(a) 

 

(b) 

 

(c) 

Figure 33: (a) Backscattered intensity of a single A-line (b) polar (r-θ) image (the red line 
is the A-line in (a)). (c) the polar image converted to the more human readable x-y. 

 



138 
 

Since its approval for clinical use, IVOCT has become an invaluable tool for 

vascular assessments due to its high contrast and microscopic resolution (5-15 μm), 

which is superior to other in-vivo imaging modalities such as IVUS. It has been shown 

that IVOCT is able to distinguish between key types of plaque [32] , and aid in 

assessment of new coronary artery stent designs [83, 88] . These characteristics make it 

ideal for our purposes.  

Our group has access to a large database of manually analyzed OCT images 

obtained in a clinical setting. Images were collected on the C7-XR system from St. Jude 

Medical Inc., Westford, MA. It has an OCT Swept Source having a 1310 nm center 

wavelength, 110 nm wavelength range, 50 kHz sweep rate, and ~12 mm coherence length. 

The pullback speed was 20 mm/s and the pullback length was 54 mm. Images from this 

source were used in training our machine learning approaches, described below. 

6.3 Representing an OCT Image 

In order to build our system, we need to automatically and accurately identify different 

plaque types in OCT images. In this section, we describe image characteristics that are 

key to identifying different plaque types. In constructing our features we use the 

qualitative description of the different plaques’ characteristics in prior work [32] 

described below. This also provides the ability to interpret results in a meaningful way. 

A fibrous plaque (Figure 34 part A) has high backscattering and the region has relatively 

homogeneous intensity values.  We see that the average intensity is high (bright).  

Likewise, the intensity is not attenuated much along the A-line. 
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A lipid plaque (Figure 34 part B) is a low intensity region with poorly delineated borders, 

a fast IVOCT signal drop-off, and little or no OCT signal backscattering, within a lesion 

that is covered by a fibrous cap. We see that the intensity starts very bright and decreases 

quickly along the A-line.   

A calcified plaque (Figure 34 part C) appears as a low intensity or heterogeneous region 

with a sharply delineated border (leading, trailing, and/or lateral edges). Calcium is 

darker than fibrous plaque with greater variation in intensity level. 

Based on this description, we construct a set of eight (real-valued) features for 

each pixel in the image. We compute these features using a three-dimensional (3D) 

neighborhood centered on the pixel of interest. The third dimension comes from 

neighboring frames (human analysts will often use adjacent frames when annotating a 

frame). In these features, σ represents the standard deviation of the intensity values within 

a 3D neighborhood. 

 

Figure 34: Appearance of plaque types in clinical images. A is fibrous, B is lipid and C is 
calcium.  D shows the appearance of a normal blood vessel wall which has layered structure. 
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Distance to lumen (Dl):  This is a measure of the distance of the center pixel from the 

lumen border (i.e. the wall of the blood vessel).  This feature helps identify lipid plaques 

since they are typically within a fibrous plaque as above. 

Beam penetration (Dd) – This is a measure of the length of the beam from the lumen 

border to the back-border (the border beyond which the near infrared beam does not 

reach and the signal is at baseline). It depends on tissue type, thus can distinguish 

between plaques. This feature is invariant for pixels across an A-line but varies across A-

lines. 

Mean Intensity ( I ): This represents the average signal intensity of the different plaque 

types within the 3D neighborhood.  As can be seen from Figure 3, this is a very 

distinctive feature. 

Homogeneity (H): This is a local coefficient of variation,  ( / Iσ ).  It helps in 

distinguishing between heterogeneous intensity regions and homogeneous intensity 

regions. 

Relative Smoothness of Intensity (S): This is defined as: S = 1 – 1/(1+σ2). S is 0 for 

constant intensity regions and it approaches 1 for large deviations in intensity values.  

Entropy (E): Entropy is another measure of the variability of the signal intensity within 

the respective plaque type regions. To compute it, we construct a histogram of the 

intensity distribution within a 3D-neighborhood. Then entropy is defined as: 

1
( ) log ( )20

L
E p z p zi ii

−
= − ∑
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where (z )p i   is the probability of the intensity level zi, i=1,…,L for L bins in the 

histogram of intensity levels. It is expected that within homogeneous regions the entropy 

will be low and within heterogeneous regions it will be high. Similar features as these are 

often used in image processing applications [138]. 

The final two features we use are optical parameters.  These features are based on 

models of light transmission and reflectance described below. 

Attenuation coefficient, μt – This feature measures the rate at which the signal intensity 

drops off within the tissue. Calcified plaque has lower attenuation, and as a result, 

IVOCT can see deeper into these tissues, compared to lipid where IVOCT does not see as 

deeply. For this reason, the attenuation coefficient (or penetration depth) gives useful 

information about plaque types.   

Incident intensity, I0 – This represents the backscattering characteristics of the plaque at 

the point where the light touches it.  This feature is excellent at distinguishing fibrous 

plaques, which are very reflective. 

In order to estimate Io and μt, we modeled the OCT signal as Lambert-Beer 

exponential decay function [175] , with the addition of baseline Ibaseline to account for 

noise and other sources that elevate the expected signal. 

( ) ( ) ( ) exp( )0I r I T r S r r Itd baselineµ= − +  (4.4) 

Here T(r) is the longitudinal point spread function which describes the shape and focal 

point of the beam and thus affects the contrast of the image, and S(r) is the Gaussian 

coherence function which describes the signal roll-off with depth [75] . In order to 

identify the unknown parameters in these two functions, we use nonlinear optimization 

over their unknown variables.  After estimating T(r) and S(r), and subtracting the baseline 
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intensity, we use least squares estimation to find the unknowns Io and μt for each separate 

A-line [106] . We verified these estimates by fabricating phantom (realistic imitations) 

blood vessels with known plaque types and checking the estimates against measured 

values in these cases. 

6.4 The Plaque-Type Classifier 

After extracting features from pixels in our OCT images, we then train a support vector 

machine (SVM) [145] with a radial basis function (RBF) kernel for classification of the 

individual pixels. The SVM is a state-of-the-art classification method. It is widely used 

due to its high accuracy, ability to deal with high-dimensional data, and flexibility in 

modeling diverse data sources. We use a standard SVM formulation (omitting details due 

to space). Given that we are interested in classifying three different plaque types, we use 

a one-versus-rest (OVR) approach for multi-class classification. There are two 

parameters which must be input to the SVM: C, the regularization parameter that trades 

off margin size and training error, and γ, the RBF kernel’s bandwidth. In our experiments, 

we select these parameters using an internal 5-fold stratified cross validation loop and a 

two-dimensional grid search. 

6.5 Empirical Evaluation 

We now describe experiments to test our hypothesis that the system we described will be 

able to accurately and efficiently classify different plaque types from OCT images.  

The clinical images (in-vivo) that we use were selected from the database 

available at our institutions. The images consist of 35 IVOCT pullbacks of the Left 
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Anterior Descending (LAD) and the Left Circumflex (LCX) coronary arteries of patients 

acquired prior to stent implantation, with a total of 287 images across 35 patients. An 

expert cardiologist on our team then labeled volumes of interest (VOIs) as belonging to 

one of the three plaque types in the images. The expert marked the VOIs of a particular 

plaque type using freehand brush strokes. On the clinical images the expert annotated 311 

VOIs (roughly equal number from each plaque type). VOIs were of various sizes and 

shapes. Most consisted of 2-5 image frames, 50-200 A-lines, and 20-50 sample points in 

each A-line. 

We also acquired a second set of 106 images from blood vessels used in cadaver 

studies. Since in this case the blood vessels can be extracted and cryogenically frozen and 

imaged, they are much easier to label very accurately for the expert. However, since this 

is ex-vivo, we do not use these images for training our classifiers, but use them to validate 

the 1results. We call these images “Cryo-images” below to distinguish them from the 

previous set. 

Next, we preprocess all images for speckle noise reduction, baseline subtraction, 

catheter optical system correction, and catheter eccentricity correction. We segment the 

lumen and the back-border using dynamic programming. To do this, we use a cost 

function from prior work [119] . An example of the results of the back-border 

segmentation is shown in Figure 35 in both (r-θ) view and (x-y) view. Segmenting the 

image in this way is important because (i) the regions of interest are contained between 

these borders and the rest of the pixels do not contain any relevant information, and (ii) it 
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enables us to properly compute the distance to the lumen and the beam penetration depth 

discussed above, which are important signals for different plaque types. 

Next, we generate features by scanning the annotated VOIs in the image pixel by 

pixel. For each pixel, we construct a 7 x 11 x 3 neighborhood (0.035mm x 0.055mm x 

0.6mm) around it. As long as the neighborhood is within the VOI, the features of the box 

are computed as explained above and the values are assigned to the pixel. In the cryo-

images (images that did not take part in the training at all), we generated features for all 

pixels between border regions in a similar way.  

For cross validation we use the processed images with a leave-one-pullback-out 

strategy. Here, in each iteration, we hold out all the data from one pullback as the test set 

and use the remaining 34 pullbacks as the training set. This mimics practical usage where 

the system will operate on novel pullbacks and is more stringent than using random folds. 

In a second experiment, we ran the trained classifiers on the cryo-images (these were not 

used at all during training/cross validation). We ran our experiments on a 64-bit Windows 

7 machine with 3rd generation Intel Core i7 and 16 GB RAM. 

(a) (b) 
Figure 35: An illustration of back border segmentation (yellow line) along with lumen segmentation (red 
line) in a typical clinical image in both views. (a) is the polar image and (b) is the x-y image. The yellow 
line is broken due to view conversion). Asterisk marks the guide-wire shadowing artifact. 
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6.6 Results and Discussion 

The Receiver Operating Curves (ROC) for each OVR classifier from the cross validation 

experiment is shown in Figure 36. The summary statistics are shown in Table 12, where 

the accuracy, sensitivity and specificity are noted at the optimal operating point along the 

curves. The ROC describes the system’s behavior for a range of confidence threshold 

settings and enables the cardiologist (the end user) to decide on weighting the false 

positives (FP) and false negatives (FN) unequally (a very desirable property according to 

our expert). 

 CALCIUM LIPID FIBROUS 
ACCURACY 92.2±6.28% 96.95±2.79% 96.17±4.0% 
SENSITIVITY 93.0±2.58% 98.95±2.35% 94.28±5.23% 
SPECIFICITY 96.5±3.39% 93.65±2.77% 95.89±2.18% 
AUC 0.9837 0.9947 0.9959 

Table 12: Performance measures: Area under ROC and the accuracy, sensitivity and 
specificity at the optimal operating point on the ROC curves. 

The overall accuracy results averaged over 35 folds are shown in Table 13. As 

can be seen from all of these results, our approach has excellent accuracy for all three 

plaque types. In fact, across the 35 folds, the median accuracy for all three plaque types is 

100%, indicating that our classifiers are (in most cases) able to perfectly separate the 

plaque types using the features we designed. In a few folds, the accuracy is lower than 

100%. We conjecture that this is because some pullbacks have many more images 

associated with them than others. When such a pullback is held out, the training set size 

becomes much smaller, and yields a classifier with lower accuracy. 
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Figure 36: ROC curve for all three plaque types.  Area Under the Curve 
(AUC) values are 0.9837, 0.9947 and 0.9959 for calcium, lipid and 
fibrous respectively. 

In the second experiment, we ran our trained classifier on the cryo-images. We 

also ran a baseline approach following [141]. This approach used beam attenuation 

estimates from a layer model applied to single A-lines and 2D texture and geometric 

measures as features for classification with the added requirement of manual region of 

interest  selection for analysis. These results are shown in Table 14. Here the “Other” row 

corresponds to pixels in these images that belong to none of the three plaque types. The 

accuracy of the approach in this case is lower, possibly because these are ex-vivo images 

which have somewhat different characteristics from the training set. However, our 

approach still outperforms the state of the art. Further, these values are still at a very 

useful level according our expert.  In particular, cardiologists now divide an image into 

quadrants and simply state whether a quadrant contains a certain plaque type. If we use 
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this as a performance measure, our current approach has perfect accuracy on the cryo-

images. 

 ACCURACY MEDIAN ACC. 
OVERALL 90.70±8.28%  
CALCIUM 92.14±10.74% 100% 
LIPID 96.40±8.87% 100% 
FIBROUS 100%±0.0% 100% 

Table 13: Accuracy results for leave-one-pullback-out experiment 

 
 OUR APPROACH BASELINE 
OVERALL 81.15% 69.4% 
CALCIUM 97.62% 66.88% 
LIPID 87.65% 67.07% 
FIBROUS 97.39% 77.95% 
OTHER 77.96% 30.46% 

Table 14: Accuracy results for Cryo-images. 

The results also indicate that in some cases some plaque types may be confused 

with others. For example, the average intensity of a lipid region may be very close to that 

of calcium. However, they may still be separable due to the fact that the lipid’s 

attenuation coefficient is much higher.  

To confirm our intuitive understanding of the plaques’ characteristics we 

performed a leave-one-feature-out experiment.  In this experiment, we ran the classifier 

using all of the features and noted the accuracy measures (as shown in Table 13). We 

then removed each feature at a time to see the impact on the accuracy.  We found that 

removing the attenuation parameter had the biggest impact on the lipid accuracy reducing 

it down to 92.4±8.87% while removing the average intensity feature, had a significant 

effect on the fibrous’ accuracy and uncertainty (down to 95.2%±10.75). In addition to 

high accuracy, our approach was also efficient at classification. Each test fold (on 

average 200,000 datapoints) was classified in 0.0366 seconds by our implementation. 

This facilitates future real-time usage. 
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Finally, we consider whether an automatic classification procedure such as this 

can be useful in reducing the amount of time taken to process images in a clinical setting. 

In an initial experiment, we found that cardiologists would spend approximately 5 hours 

analyzing a section of a blood vessel. We then created a tool (Figure 37) with our 

classifier built in. The cardiologist would run the classifier for a new image and then, 

using the tool, analyze the results and correct some of the errors in the predictions. We 

found that this process took at most an hour, a reduction of 80%. This effort reduction 

indicates that improving the tool will make it deployable in the near future. 

 

6.7 Conclusion 

In this chapter, we have discussed an important emerging application: an automated 

approach to early plaque detection in blood vessels. Our approach analyzes OCT images 

to solve this task. Using a carefully designed feature set, we show that an SVM with an 

RBF kernel is a high-accuracy classifier for this task. Our results are of significant impact 

Figure 37: User Interface of Editing tool. 
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on this important  problem [100] with implications for early diagnosis of cardiovascular 

disease. In future work, we plan to work on further improving our classification tool and 

integrating it with a real-time 3D visualization module which will be able to quantify 

(volume, area covered, etc.) the presence of calcified regions. This can help in decision 

making regarding stent implantation and pre-implantation treatment (e.g. directional 

atherectomy). We also plan to add an explanatory module to help explain the automated 

classification process to the cardiologists, and accept feedback in an active learning 

environment.  
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Chapter 7 Summary and Future Work 

This dissertation presents multiple machine-learning-based algorithms for fully 

automated, on-line and off-line plaque image analysis using IVOCT. We investigated and 

developed a variety of image analysis algorithms for automated quantitative diagnosis of 

CAD for the purpose of intervention planning. On the one hand, we developed an 

algorithm suitable for common IVOCT image analysis tasks in research labs. On the 

other hand, we developed an algorithm which can be used in the clinic as a tool for the 

purpose of treatment planning decision support visualizations and quantifications. The 

algorithms have been validated using a large number of clinical datasets with the 

combination of, arguably, the most accurate ground truth available for IVOCT, cryo-

images. The algorithms have been proven to be robust and their scalability to larger 

datasets can be done easily.  

In Chapter 1, CAD and related imaging and image processing technologies, in 

particular OCT and IVOCT image analysis, were introduced. The ever-increasing 

demand for new imaging methods that can provide additional information about the 

coronary wall to better characterize and stratify high-risk plaques and to guide 

interventional and pharmacologic management of patients with coronary artery disease 

brought about the IVOCT. While there are a number of imaging modalities that facilitate 

the assessment of coronary artery pathology, it is shown that IVOCT is the first modality 

with the necessary resolution to identify and follow CAD development. The IVOCT is 

shown to be valuable for assessment of superficial vascular features, such as superficial 

atherosclerotic plaques. A brief review of the IVOCT principles was also given. Then, we 
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discussed the major topic of this dissertation, IVOCT image analysis, its unmet needs, 

and gave a detailed review of the relevant previous work done in the field. 

In Chapter 2 we discuss algorithms for computation and verification of plaque 

optical properties of the three main plaque types and compared the results to blood vessel 

phantoms designed for this purpose. We based our analysis approach on robust statistical 

measures and showed that the observation that the optical properties can be instrumental 

as discriminative features which can be used to numerically distinguish between the main 

three plaque types is correct. 

We further enhance the notion of plaque separation in Chapter 3 where we 

describe a complete processing pipeline designed to further enhance the IVOCT image 

quality enabling accurate and efficient feature extraction for the purpose of creating 

automated machine learning methods for plaque discrimination. 

In Chapter 4 we propose the SVM as a machine learning method to be used  as a 

classifier for off-line plaque classification. We have shown that a careful feature design, 

conforming to qualitative plaque characteristics, along with clever design of classifier 

parameters (i.e. thresholding of probabilities) can achieve very accurate classification 

performance.  We used cryo-imaging as ground truth for validation and verification of 

our method and showed that clinically-useful metrics can be derived from our results. 

Superficial calcified plaques (CP) can strongly affect the successful implantation 

of stents and today, is the most widely treated plaque in the clinic. In Chapter 5 we 

developed a close-to-real-time method for calcified plaque segmentation. We achieve 

real-time performance by not imposing any constraints on, or requiring any a priori 

knowledge of, the catheter type, IVOCT machine type or any other conditions under 
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which the images were acquired. Automatically classifying CP under such general 

conditions is a very demanding task. However, we show that the proposed novel 

algorithm, based on probability distribution of pixel responses, is highly accurate and 

efficient. 

  Chapter 6 introduces the software that packages most of the developed algorithms 

in a single comprehensive application whose architecture is focused towards web-based 

service to be access by an interest party as SaaS (Software as a Service) application. 

Being offered on the web, we also added the functionality of study creation, cloud storage, 

medical image transfer and hosting, automated image analysis tools, clinical trial 

management and collaboration tools. These tools provide all of the necessary means 

required for the secure storage, analysis, reporting and data management required in any 

kind of clinical-related interaction among medical professionals. 

7.1 Future Work 

The main emphasis and accomplishments of this dissertation was to enable automated 

IVOCT image analysis for the purpose of intervention planning, however, being in its 

infancy stage, IVOCT image analysis has many unmet needs. Below, we discuss some 

important topics for future directions from the aspect, which we believe, will push the 

field forward to practical implementation. However, it is important to note that other 

issues such as neointima hyperplasia (NIH) formation analysis, macrophage 

accumulation measurements etc., which are extremely important subjects to study, are not 

discussed since such discussion is done in other places (e.g. [71]). Furthermore, we  
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developed software which will be offered as a web service (using the Software as a 

service, Saas model) in the future. 

7.1.1 Atlas for IVOCT 

One of the main issues that needs to be addressed by the IVOCT research community is 

the creation of high quality Atlas. Here, an atlas refers to a set of IVOCT images, a 

corresponding cryo-image/histology and expert annotation mask. Because IVOCT 

images can vary significantly, and when combined with expert annotation disagreements 

on plaque interpretation and annotation, a very different ground-truth results. Such a pool 

of images would serve to enhance the reproducibility and reliability of future findings. 

Today, researchers do not have the means to perform quality comparison with competing 

methods, thus a claim for “success” of a certain method is always local and subjective. 

Case Western Reserve University and its collaborator, University Hospitals Core lab, are 

at a unique position to create such an atlas.  The atlas should also contain cryo-images 

and corresponding images of IVOCT (both from cadavers), thus providing a potential 

researcher a tool to perform validation on their own.  The atlas can also be expanded to 

specific models for a population of images with parameters that are learned from a 

training dataset and so on.  The main point here is to enable reasonable means for 

comparison and analysis to anyone, regardless of their ability to access an IVOCT dataset 

source. 

7.1.2 Stent Analysis 

There have been numerous research activities addressing the issue of stent analysis [83, 

84, 176].  However, to our knowledge, none of the researchers have addressed the issue 
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of real-time performance.  We believe that the proposed algorithm discussed in Chapter 5 

has the potential to be successful in stent analysis.  The application of the algorithm has 

the advantage of automatic feature creation, thus, can cope with metallic stent (which 

appear as very bright spots in the IVOCT image) as well as non-metallic stents (whose 

appearance may vary). Bio absorbable stents [177] use degradable polymers instead of 

metals. When imaged with IVOCT, bio absorbable stents exhibit very different 

characteristics from metallic stents. For instance, one type of bio absorbable stent, BVS 

stent, has a box-like shape at baseline and may change the appearance thereafter before 

being fully absorbed by the tissue [177]. Different bio absorbable stents may have 

different appearances, a characteristic which is ideally, solved with automatic feature 

generation approach as discuss in Chapter 5. To our knowledge, in the research 

community today, only metallic stent analysis is investigated [83]. 

7.1.3 Quantitative Measurements 

Methods for quantitative measurements of the blood vessel structure are important for 

future application of OCT technology.  One aspect is the identification of normally 

structured vessel wall. This means that reliable methods for identifying intima-media 

border (IEM) as well as media-adventitia border (EEM) have to be developed to ensure 

proper quantification. 

7.1.4 Parallel Processing and GPU-Accelerated Image Processing 

Feature extraction, training and classification methods using machine learning techniques 

are commonly applied in data analysis such as in this dissertation. Despite their success,  

as shown above, in terms of modeling and accuracy performance it is known that some of 



155 
 

these techniques are computationally bound as input sample size and model complexity 

are increased. Investigating opportunities for potential performance improvements is 

therefore of great importance if these techniques are to be applied to much larger data 

volumes expected from current and future intravascular modalities. 

Acceleration of classification as well as feature extraction using many-core 

devices will be the first natural step, where utilizing the GPU platform should also be 

considered. The development approach and optimization steps that should be taken to 

maximize the performance should be flexible enough to allow for various classification 

algorithms to be used. It should enable to process three-dimensional medical imaging so 

that it is not limited to IVOCT, but any 3D data source (IVUS, CT MRI etc.).  

Offloading computationally intensive sections of machine learning classification 

techniques to many-core devices is more beneficial for higher volumes of input data and 

for increasing model complexity.  Many-core implementations can offer a platform to 

improve discrimination capabilities of a given method by parallelizing repeated 

applications of the feature extraction process as well as the training process to determine 

optimal input parameters. In addition, GPU kernels can be processed concurrently which 

would allow workloads to be multiplexed either on the same dataset or on disjointed 

workloads to provide a computationally efficient acceleration service for the application. 

To illustrate what we mean, we will use the SVM algorithm used in Chapter 3 as 

an example. We believe that a successful implementation will make 3D IVOCT plaque 

classification a suitable application to be used in a clinical application setting taking it 

beyond “research-only”. 
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One of the main tasks in feature extraction for multi-class SVM (Chapter 3) was 

the calculation of the optical attenuation parameter, μt. To do it, we had to perform two 

main operations, line fitting and sorting. The computational complexity of the line fitting 

is O(C2n) where C is the number of features (in our case, it’s one since we compute only 

the attenuation), n is the number of points to be fitted, and in the sorting step it is O(n) if 

the range of image values is small, e.g. the typical (0,..., 255), since the sort can be 

implemented as BINSORT. The point is that computation times vary widely, but in the 

current implementation, we use serial process and do not use the GPU. This means that 

this single operation of finding the attenuation can be cut in half, just by using two 

separate processes. We believe that multi-core computer with clever GPU utilization will 

create a real-time classification algorithm which can be used in a clinical setting.  Further, 

in the classification step, as discussed  in [178] and shown in Figure 38, the GPU-based 

SVM performance improvement is also evident, especially as we increase the number of 

voxels (in the figure, named “vectors”) to be analyzed.  

 
Figure 38: LIBSVM GPU-based implementation expected improvement. GPU-accelerated LIBSVM gives 
a performance gain depending on the size of input data set. This gain is increasing dramatically with the 
size of the dataset (source: http://mklab.iti.gr/project/GPU-LIBSVM) 
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