
ENERGY EFFICIENT COMPUTING IN FPGA

THROUGH EMBEDDED RAM BLOCKS

by

ANANDAROOP GHOSH

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Thesis Advisor: Dr. Swarup Bhunia

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

May, 2013



CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis / dissertation of

ANANDAROOP GHOSH

MASTER OF SCIENCE

candidate for the degree*

SWARUP BHUNIA

signed by

(Research Advisor)

CHRISTOS PAPACHRISTOU

(Committee Member)

FRANCIS MERAT

(Committee Member)

Date: 03/07/2013

*We also certifiy that written approval has been obtained for any proprietary material

contained therein.

i



Contents

List of Tables iv

List of Figures vi

Acknowledgements vii

List of Abbreviations viii

Abstract ix

1 Introduction 1

1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background And Motivation 9

2.1 Energy-Efficient Design Techniques in FPGA . . . . . . . . . . . . . . 9

2.2 Computation with Memory . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Motivation for the Proposed Approach . . . . . . . . . . . . . . . . . 11

2.4 Use of Embedded Memory Blocks for Computation . . . . . . . . . . 12

3 Application Mapping Methodology 15

3.1 Mapping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ii



3.1.1 Functional Decomposition . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.4 Memory-Logic Interface and Timing Strategy . . . . . . . . . 21

3.1.5 Energy-Efficient Configuration of RAM Blocks . . . . . . . . . 21

3.1.6 Mapping Complex Datapath in Memory . . . . . . . . . . . . 26

3.1.7 Mapping Complex Functions in Memory . . . . . . . . . . . . 27

4 Application Mapping Results 29

4.1 8-tap FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Coherence Calculation in a Cluster . . . . . . . . . . . . . . . . . . . 31

4.3 Calculation of Approximation Coefficient in DWT . . . . . . . . . . . 32

4.4 3rd Order Polynomial Evaluation . . . . . . . . . . . . . . . . . . . . 33

4.5 Solution to Schrodinger Equation (1-D) . . . . . . . . . . . . . . . . . 34

5 Energy Accuracy Tradeoff 37

5.1 Energy Accuracy Trade-Off for Conventional Arithmetic . . . . . . . 39

5.1.1 Uniform Truncation . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Preferential Truncation . . . . . . . . . . . . . . . . . . . . . . 39

5.1.3 Energy Accuracy Trade-Off for Distributed Arithmetic . . . . 44

5.1.3.1 Uniform Truncation . . . . . . . . . . . . . . . . . . 45

5.1.3.2 Preferential Truncation . . . . . . . . . . . . . . . . 46

5.1.4 Comparison between CA and DA based Implementation . . . 46

5.1.5 Integration with Existing EMB-based Mapping Approaches . . 48

6 Conclusion and Future Work 49

iii



List of Tables

3.1 Operation types supported in the FPGA mapper tool . . . . . . . . . 17

3.2 Energy improvements with the proposed mapping approach compared

to mapping in logic and DSP blocks for Stratix II, Stratix III and

Stratix IV FPGA families . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Comparison of operational latency among the three mapping approaches

for Stratix II, Stratix III and Stratix IV FPGA families . . . . . . . . 23

4.1 Comparison of Resource Usage for 3 complex datapath applications . 32

4.2 Comparison of Energy, Latency and EDP for Several common Appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Mapping Time in seconds for Applications Using Different mapping

approaches for Stratix IV using Quartus 11.0 . . . . . . . . . . . . . . 36

5.1 Resource Usage and Energy Consumption for a 32-tap FIR filter using

heterogenous, logic based and DSP based mapping Using Conventional

Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



List of Figures

1.1 The trend in embedded memory in FPGA: a) size (Mb), and b) access

speed (MHz) for Altera Stratix [11] and Xilinx Virtex [12] series of

FPGA devices across different technology generations. . . . . . . . . . 4

3.1 Application mapping steps using EMBs for computation. . . . . . . . 16

3.2 (a) Example of fusion of multiple nodes into a single node satisfying

the LUT input/output count; (b) Specific example of mult-add fusion

for 4-input operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Packing algorithm for energy-efficient mapping in a FPGA device. . . 22

3.4 (a) Trimatrix memory block with one address, one clk and one com-

bined clk enable port; (b) Implementation of a large memory block

(16K x 16) using smaller RAM blocks with additional pre-decoding to

save access energy; (c) Alternative implementation of the same mem-

ory, which incurs more access energy. . . . . . . . . . . . . . . . . . . 23

3.5 Variation in energy consumption of a memory block with varying mem-

ory type and block depth for: a) 12x12 memory; and b) 16x16 memory. 24

3.6 Variation in energy consumption with varying input resolution for

CORDIC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Interfacing and timing strategies for three different cases: (a) memory

access followed by logic; (b) logic followed by memory access; and (c)

memory access followed by another memory access. . . . . . . . . . . 25

v



3.8 Energy trends with bipartite, tripartite and quadpartite decomposi-

tions for different transcendental functions. . . . . . . . . . . . . . . . 26

3.9 Comparison of Energy with varying input resolution for constmultadd

in Altera (a) Stratix II, (b) Stratix III and (c) Stratix IV series of devices. 27

4.1 Variation in energy with varying input resolution for (a) 8-tap FIR

filter; (b) coherence calculation; and (c) calculation of approximation

coefficient in DWT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Variation of mean square error (MSE) with different bit allocation at

the truncated bits for a 32-tap FIR filter. . . . . . . . . . . . . . . . . 40

5.2 Variation of stopband ripple magnitude by zeroing different coefficients

of a 32-tap FIR filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 MSE versus energy consumption for a 32-tap FIR filter using hetero-

geneous mapping approach. . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Functional block diagram of the computation unit to realize dynamic

truncation for energy-accuracy trade-off. . . . . . . . . . . . . . . . . 43

5.5 Variation in output MSE versus energy consumption for a DA based

32-tap FIR filter using heterogeneous mapping. . . . . . . . . . . . . 46

5.6 Comparison of energy consumption for a CA vs DA based implemen-

tation of FIR filter for: (a) memory based; (b) logic based; and (c)

DSP based implementation. . . . . . . . . . . . . . . . . . . . . . . . 47

vi



Acknowledgements

I have countless people to acknowledge for whom I have been able to complete my

graduate studies. First I want to thank my parents for their help and mental support

throughout the thick and thins of my graduate life. My mother has always been a

constant source of encouragement for me. My friends at Case were also a great source

of knowledge and encouragement throughout my tenure at Case. Secondly I want to

thank my advisor Professor Swarup Bhunia for his technical and financial support

he has provided me during my grad studies. Starting from an idea to maturing it

to an attractive research, to writing a technical article, I have learnt loads from his

expertise. I also want to thank my labmates, especially my seniors who guided me

during the initial days of my grad research. Starting from technical discussions to

how to balance grad life, their inputs have always been extremely helpful for me.

The courses I have taken at Case Western have been an integral part of my academic

development and I would sincerely like to thank all the course instructors. Finally I

want to thank Professor Chris Papachristou and Professor Frank Merat for acting as

my thesis committee members.

vii



List of Abbreviations

ASIC Application Specific Integrated Circuit

RAM Random Access Memory

EMB Embedded Memory Block

CLB Configurable Logic Block

CPU Central Processing Unit

DFG Data Flow Graph

FPGA Field Programmable Gate Array

FSM Finite State Machine

IC Integrated Circuit

ITRS International Technology Roadmap for Semiconductors

LUT Look-Up Table

MSB Most Significant Bit

LSB Least Significant Bit

viii



Energy Efficient Computing in FPGA

through Embedded RAM Blocks

Abstract

by

ANANDAROOP GHOSH

FPGAs have emerged as the preferred prototyping and accelerator platform for

diverse application domains like digital signal processing (DSP), security, and multi-

media having real time performance requirements. Applications in these domains are

often dominated by complex compute-intensive operations requiring implementation

of complex datapaths or functions e.g. transcendental functions. Conventional spa-

tial mapping of these operations to the configurable logic blocks (CLBs) or embedded

DSP blocks of a FPGA device imposes a major bottleneck in energy efficiency. In

this thesis, we propose to use embedded memory blocks (EMBs) in FPGA for energy-

efficient mapping of these operations. We select appropriate parts of an application

for mapping into embedded memory blocks in a heterogeneous mapping framework

that aims at maximizing energy efficiency. Complex operations are decomposed /

fused into large multi-input multi-output look-up tables, mapped into EMBs and

evaluated through sequential access of them. Optimal energy configuration of the

embedded memory blocks are determined and effectiveness of the proposed method-

ology is evaluated for a set of common applications using a commercial state-of-the-

art FPGA system (Altera Stratix IV). The proposed work also builds a strategy for

energy-accuracy trade-off for multimedia applications and leverages the effectiveness

of memory based computing in FPGA for such approximate computations.

ix



Chapter 1

Introduction

Chiefly the research objectives, the already existing works, the outline and the con-

tribution of the thesis have been stated in this chapter. The increasing use of re-

configurable platforms like Field Programmable Gate Array (FPGA) have motivated

research in energy efficient application mapping in FPGA which is the main objec-

tive of this work. FPGAs are increasingly used in embedded applications (such as

digital signal processing, multimedia, security and graphics) due to the flexibility

in application mapping, reduced design cost and improved time-to-volume. FPGA

has also emerged as a preferred coprocessor platform providing higher performance

while working in conjunction with a CPU for a variety of applications with real-

time processing requirements [34]. However, these platforms are well-known to suffer

from poor energy efficiency, primarily due to large overhead of their elaborate pro-

grammable interconnect (PI) fabric. Currently the PI accounts for 80% of power and

60% of delay in FPGAs at scaled process technologies [4]. For resource-constrained

embedded systems, it is extremely important to minimize the energy requirement and

hence, there is a growing need to address the energy issues in reconfigurable platforms

while retaining their performance and flexibility advantages [2].

FPGA vendors such as Xilinx and Altera, as well as academic researchers have in-

1



vestigated various device engineering options (such as low-k dielectric, multiple device

thresholds) [23] as well as architecture-level techniques (e.g. clustered architecture)

[24] to improve the energy consumption of the FPGA devices. These optimization ap-

proaches however, cannot provide adequate solution to reduce the energy requirement

for many compute-intensive applications. The energy consumption is dominated by

the routing energy for compute intensive applications, which result in comparatively

lesser improvements at the application level. Moreover, as the interconnect delay does

not scale as well as logic delay, fine-grained architectures of FPGAs suffer from poor

technological scalability of performance and energy than custom implementation of a

design.

An efficient application mapping methodology that can drastically reduce the

need of PIs for an application while using conventional FPGA architecture, can be

extremely effective in reducing energy consumption. Such an approach can be at-

tractive to both FPGA vendors and users alike, since it does not require modifica-

tions in FPGA hardware and thus saves device fabrication cost. Furthermore, it can

work on legacy hardware. In this thesis, we propose a novel application mapping

methodology for FPGA that aims at achieving these objectives. We propose using

the embedded memory arrays in FPGA for mapping compute-intensive parts of an

application. We note that modern FPGAs come with large number of embedded

memory blocks (EMBs). For example, Altera Stratix-IV devices are equipped with

17-33 Megabits (Mb) of block random access memory (RAM), in addition to the

one-dimensional lookup tables (LUT) for CLBs. As shown in Fig. 1.1, driven by

aggressive technology scaling, FPGA devices from different vendors are integrating

larger amount of RAM with faster access speed in each technology generation. There

has also been a significant reduction in the access energy of an embedded block RAM

across technology generations (e.g. 53% from Stratix II to Stratix III and 48% from

Stratix III to Stratix IV). While many applications use the EMBs for storing input

2



and intermediate data during processing, large part of memory may remain unused

for many compute-intensive applications [3]. Hence, if these memory blocks can op-

portunistically be used for computation - in particular, to realize complex datapaths

or functions, one can significantly improve both energy consumption and resource

utilization by reducing the combinational elements and routing power required for

purely logic based implementation.

We observe that fine-grained architecture of conventional FPGA devices cannot

efficiently map complex coarse-grained operations, like complex datapath (like filter-

ing) operations and complex transcendental functions, which demand large amount

of reconfigurable logic and PI resources. At the same time, the large number of DSP

blocks available in an FPGA device can efficiently map coarse-grained functions for

higher bitwidth. But at lower bitwidth, energy improvement is small primarily due to

poor resource usage at smaller bitwidth [33]. For example, when a functional unit in

DSP block operates as a multiplier, the minimum configurable multiplier width is 9 ×

9 resulting in unused logical resources for smaller bitwidth operations. On the other

hand, judicious mapping of complex operations in EMBs as large two-dimensional

LUTs can be highly effective to reduce the energy requirement. Earlier works have

considered mapping fine-grained applications like ISCAS and MCNC benchmarks in

EMBs inside a FPGA [14], [16]. These investigations lay the foundation of using

EMBs for computation. However, they primarily focus on mapping small Boolean

functions in fine-grained applications (e.g. control logic). Furthermore, use of EMBs

for mapping logic operations in earlier work is driven by performance or throughput

improvement. The authors in [17] show the power implications of mapping logic in

embedded RAM for Stratix-1 series of devices. Due to power-hungry nature of EMBs

in previous generation FPGA devices, mapping logic in embedded memory resulted

in considerable increase in dynamic power compared to the implementation in CLBs.

Several other works have also been reported on mapping transcendental functions like

3



Figure 1.1: The trend in embedded memory in FPGA: a) size (Mb), and b) access
speed (MHz) for Altera Stratix [11] and Xilinx Virtex [12] series of FPGA devices
across different technology generations.

arctan in an embedded RAM of a FPGA [35]. However, existing works in this area do

not consider optimization of energy exploiting the properties of nanoscale embedded

memory blocks. They also do not provide a comprehensive heterogeneous mapping

flow. Finally, existing works also do not consider dynamic trade-off between energy

and output quality in the memory based computing framework.

Using a commercial FPGA platform, we have shown that compared to conven-

tional mapping approaches, the proposed mapping approach achieves significant im-

provement in energy requirement for a set of representative applications. This is due

to the fact that typical implementation of complex operations require multiple logic

levels connected through PIs, thus incurring large overhead in performance and en-

ergy. On the contrary, a memory based mapping approach where a large multiple

input/output function is computed in one or few lookup table (LUT) accesses sig-

nificantly improves the latency of operation and energy due to large reduction in PI

overhead.

4



1.1 Research objectives

FPGA have traditionally been used as a prototyping platform for new design method-

ologies and ASIC implementations. However due to the increasing resources inside

a FPGA like embedded multipliers and embedded memory as well as logic blocks at

low power consumption and lower cost coupled with lower time to market, current

commercial FPGAs have been found to be extremely helpful for several application

domains and have been able to successfully replace ASIC in several scenarios. How-

ever still the power consumption is a huge issue in computing with FPGA as increased

programmability leads to higher energy consumption. This thesis is aimed at explor-

ing energy efficiency in FPGA in terms of mapping applications more efficiently by

exploiting the heterogeneity in current commercial FPGAs. Such a heterogeneous

application mapping strategy, especially the opportunistic use of embedded memory

blocks have been able to provide significant energy efficiency in DSP/ multimedia ap-

plications. Finally the thesis also investigates the role of memory based computing in

approximate computation for several applications and shows the advantages obtained

compared to conventional logic / DSP based computations.

1.2 Thesis Outline

From inception to completion, this thesis is dedicated in analyzing and developing

a memory based heterogeneous computing strategy inside a FPGA and the energy

consumption savings with respect to normal logic based computing as well as logic

+ DSP based computing for several application scenarios. Secondly it also shows the

advantage of such a framework for performing energy accuracy trade-off at run-time

for several DSP and multimedia applications.

In chapter one, we have described the requirement of energy efficient comput-

ing in FPGA and the research objectives coupled with the contribution of our work.

The background and motivation will be described in chapter two. It also describes

5



the motivation of the proposed approach and the different function / application

types which would gain maximum energy efficiency through the proposed approach.

Chapter three describes in detail with the application mapping methodology for the

proposed framework, starting from the decomposition of functions, to fusion of indi-

vidual operations to packing of fused operations in the available resources and finally

placement and routing of the synthesized hardware. It also describes the memory

logic interface and the timing strategy of the proposed heterogeneous framework.

Next it describes the optimal mapping of RAM blocks in FPGA to achieve energy

efficiency followed by the energy consumption comparison of using embedded memory

for mapping a unit coarse grained datapath compared to conventional logic based and

DSP based mapping over different technology generations and input bitwidth. Sec-

ondly it also shows the use of EMBs for mapping compute intensive transcendental

functions and the energy savings achieved in the corresponding cases over different

input bitwidth of operand. The energy savings obtained in these unit functions using

the proposed mapping approach is chiefly exploited at the application level in order

to achieve lower energy consumption. Chapter four deals with the performance of

the proposed application mapping procedure for several DSP and multimedia appli-

cations over different bitwidths of input operands and the energy savings compared

to conventional computing in Stratix IV FPGA. Applications mapped are mainly of

two types-applications dominated by complex datapaths and applications dominated

by transcendental functions. In chapter five, finally the usefulness of the proposed

framework for performing dynamic energy accuracy trade-off is described and com-

pared with conventional approaches for the same set of applications to showcase the

advantages of the proposed framework at lower precision scenarios. Specifically the

application of a 32-tap FIR filter is taken and judicious truncation techniques are

applied in order to achieve graceful degradation of output quality at iso-energy con-

sumption. For the filtering example, both conventional and distributed arithmetic

6



implementations are studied and the energy savings of the proposed approach are

shown compared to conventional mapping approaches. Finally in Chapter six, we de-

scribe the conclusions and the future work which can potentially improve the already

proposed work.

1.3 Contributions

The chief contributions of this work are as listed below:

1. It analyzes the effectiveness of mapping coarse-grained compute-intensive oper-

ations in an application to EMBs in FPGA. It also explores the most energy-

efficient memory configuration in a FPGA for mapping operations with varying

memory requirements.

2. It then develops a hybrid application mapping framework, which combines

conventional application mapping in logic and DSP blocks (for DSP-enhanced

FPGA devices) with judicious mapping of specific computations in memory. It

determines the complete mapping methodology including functional decompo-

sition, which partitions complex functions into multi-input/multi-output LUTs

of manageable size, fusion of small operations into a large one, and finally op-

timal packing of operations into a combination of EMBs and logic array. It

considers applications from diverse domains with varying datapath width.

3. It validates the effectiveness of the proposed methodology by mapping a number

of common signal processing, scientific and graphics applications on a commer-

cial state-of-the-art FPGA platform (Altera Stratix IV, 40nm process).

4. It shows that computation with memory can be an effective vehicle for energy-

accuracy tradeoff at run time. In this case, operand bitwidth for complex oper-

ation can be dynamically truncated to achieve exponential reduction in memory

7



space leading to large saving in computation energy. We demonstrate the ef-

fectiveness of such dynamic trade-off for a common filtering application using

conventional arithmetic (CA). Furthermore, noting that some realizations of

DSP applications resort to distributed arithmetic (DA) to improve area and

performance, we extend the approach to DA based implementation.

8



Chapter 2

Background And Motivation

In this chapter, we propose the already existing works for improving energy efficiency

in FPGA. Researchers from industry as well as academia have proposed several tech-

niques at the circuit level, logic level, architecture level as well as software level in order

to improve the usability of FPGA for computing. We describe the circuit/architecture

level approaches previously proposed in the following sections. Then the motivation

of the proposed approach is described. Finally we describe the concept of computa-

tion with memory and the specific functions or operation types which is amenable for

mapping in memory.

2.1 Energy-Efficient Design Techniques in FPGA

Several system and device-circuit-architecture level low-power design techniques have

been applied to FPGA in order to improve its power consumption. A comprehensive

description of the power optimization techniques have been provided in [31]. The

techniques can be broadly classified into three categories:

Device/Circuit Level Techniques : a) Clock gating can be effectively used to turn

off the unused portions of the FPGA resources in order to minimize propagation of

undesired signal values [28]. b) Dynamic voltage scaling can be used to adapt the

9



supply voltage of a FPGA according to the temperature of the device during operation

[29]. Efficient circuit implementation techniques have been employed and improved

across generations in order to address the power/performance issues of logic blocks,

routing resources, and I/O resources. c) Moreover, the logic array blocks (LABs)

are made with a mix of high threshold (Vt) and Low Vt transistors to achieve lower

power while maintaining the performance target in a particular technology node [30].

Architecture Level Techniques : a) Sizes of the LUTs present in the configurable

logic blocks have been increased from 4 to 7-input in order to map larger functions

in a single LUT, thereby significantly improving on routing power consumption [6].

b) Generally for embedded RAM, coarse grained block based architecture gives bet-

ter power/energy results compared to fine-grained RAM architecture [31]. c) The

addition of more specialized units like DSP blocks and more embedded memories

have helped improve energy consumption for specific functions which can otherwise

be mapped using a large number of logic blocks with significant combinational cell

power and routing power consumption. d) Finally, most vendors have also improved

the routing distance between the neighboring logic blocks that can be reached using

1-hop or 2-hop paths in order to reduce the average capacitance of the routes [5].

Software Techniques : Energy-efficient mapping algorithms for legacy FPGA hard-

ware have been investigated earlier e.g. [36]. However, existing software techniques

primarily focus on reducing PI overhead in logic and DSP based implementations.

They use embedded RAMs only for storing large input data or intermediate values

and do not leverage on the prospect of mapping complex operations in memory.

2.2 Computation with Memory

Computation with memory is a LUT based computation approach, where the func-

tion response is stored in a 2D memory array. The same memory array may also

10



store multiple LUTs and computing is done by accessing the LUT with the right

address values. The table values are pre-computed and used during application map-

ping process. LUT based realization has been traditionally used as a method for

computing complex functions to avoid logic based computation, which may be very

expensive in resource requirements. However, the downside of the LUT based com-

putation is the exponential growth of the memory size with the increase in resolution

of the input operands. As a result, without the presence of effective decomposition

techniques or approximate computing techniques as proposed in [9] and [10], LUT

based computation can only be possible in FPGA up to a certain LUT input size.

Altera Stratix IV FPGA devices support a maximum LUT input size of 16 in a single

EMB. In general application mapping scenarios, a large part of the existing embedded

RAM in a FPGA remain unutilized. Authors in [14] and [16] have proposed using

the idle memory blocks for fine-grained logic computation. It has also been shown

that performance or throughput of an application can be improved through effective

computation in memory [14], [16].

2.3 Motivation for the Proposed Approach

Due to the power hungry nature of the interconnects, if for a given complex func-

tion, the maximum LUT input size is not violated then it is highly beneficial from

an energy perspective to map the function on to the embedded memory. For DSP

applications, which lend themselves to energy-accuracy trade-off, dynamic truncation

of primary input operands can often provide significant improvement in energy effi-

ciency at graceful degradation of output quality when the energy budget is limited.

At the same time, computation at consistently lower input resolutions often provide

sufficient output quality for many DSP applications [25]. The proposed mapping

strategy achieves significant improvement in energy-efficiency using a heterogeneous

11



mapping procedure. The main advantages achieved is chiefly due to the following

reasons: a) improvement in PI requirement; b) improvement in access energy for

nanoscale memories; c) for DSP applications which are amenable to energy-accuracy

trade-off, memory provides a better computing fabric compared to fine-grained logic

or DSP blocks which either have high PI overhead or the hardware far exceeds the

requirement.

2.4 Use of Embedded Memory Blocks for Compu-

tation

It is well-known that a majority of scientific and graphics applications include a set of

common compute-intensive kernels, which essentially constitute of basic mathemati-

cal operations such as addition, multiplication as well as evaluation of many complex

functions such as sine, cosine, reciprocal, arctan, square root, exponentiation, and

logarithm [1]. Traditionally, in an FPGA framework the transcendental functions

are mapped using CORDIC approach [7] or Taylor series expansion [8], which either

requires large number of computing resources or suffers from large latency. Evalua-

tion of these functions by holding the output response of a function as LUT in the

embedded memory array is an attractive solution. Besides, use of memory blocks in

computing offers enormous parallel computing resources due to the presence of large

(hundreds to thousands) number of embedded RAM blocks in a modern FPGA device.

For complex transcendental functions, efficient decomposition techniques proposed in

[9] and [10] have been employed in order to achieve improvement for larger bitwidth

computations. The focus of our work is to achieve energy efficient mapping of the

complex functions instead of performing memory-latency trade-off as illustrated in

[15].

Memory based computing can also be very effective in case of complex datapaths

12



having multiple combinational levels, just as in the case of two constant coefficient

multiplications followed by an addition. This kind of datapath is very common in

many multimedia and signal processing (e.g. discrete cosine transform, filtering)

applications. Investigations done in this thesis point to the fact that for complex

datapaths, memory based computation can give improvement for up to 8-bit of input

resolution in many cases. We note that an effective mapping methodology, which can

leverage such decomposition algorithms and large parallel computing resources offered

by embedded high-density RAM blocks in FPGA, can provide significant improvement

in performance and energy-efficiency using the memory based computing model. The

following computations have been identified to be amenable for mapping to memory:

1. Any function satisfying the maximum LUT input size (I). The function can

be a regular transcendental one (such as Sine(x)) where x has a resolution of

≤I) or any arbitrary function with input size of ≤I, obtained by fusing many

simple ones.

2. Complex datapath having constant coefficients like two constant coefficient mul-

tiplications followed by an addition, with total input size ≤I.

3. Any function that is easily bit-sliceable such as logic and Galois field operations

and some datapath operations like addition, multiplication, etc.

4. Functions with arbitrary input width which can be realized by cascading LUTs,

each of input size ≤I, e.g. transcendental functions with fixed and floating

point operands.

5. Functions which are amenable to decomposition into acceptable input size in

other ways. For example, a multiplication realized using logarithmic number

system is converted from a two operand function to a single operand function.

The following chapter describes in detail the proposed application mapping method-

13



ology which will be finally used to map applications which are dominated by one or

more above mentioned functions so as to understand the impact of such a heteroge-

neous application mapping process.

14



Chapter 3

Application Mapping Methodology

In this chapter, we describe the application mapping process using a combination of

EMBs and other FPGA resources to maximize energy efficiency for a given appli-

cation. Secondly we also describe the energy efficient configuration of RAM blocks

which can contribute maximum energy efficiency at the application level. Finally we

also describe the mapping of a unit complex datapath and complex transcendental

function using the proposed approach across different input bitwidth to understand

the energy savings achieved compared to normal logic / DSP based implementation.

3.1 Mapping Flow

Figure 3.1 shows the application mapping process for the proposed framework. The

input to our application mapping flow is a control data flow graph (CDFG) containing

a hypergraph representation (G(V,E)) of the input application. The operations in the

input application constitute the set of vertices (V) and the dataflow between them is

represented by the edges (E) in the hypergraph. Types and subtypes of the operation

nodes currently supported in the CDFG representation are summarized in Table 3.1.

Each operation node is characterized by the following fields: (i) name, (ii) type, (iii)

15



Figure 3.1: Application mapping steps using EMBs for computation.

subtype, (iv) inputs, (v) outputs, and (vi) bitwidth. ‘name’ field specifies the name

of the operation and is unique. Each ‘type’ can have multiple subtypes. For example

addition and subtraction both fall under the greater type of operations that can be bit-

sliced into sub-operations with a smaller bitwidth and with a carry function (denoted

as bitswC). ‘bitwidth’ denotes the bitwidth of the input operands. ‘bits’ represents

operations which are bit-sliceable without carry. ‘mult’ denotes conventional two-

input multiplication. ‘shift’ and ‘rotate’ has one operand and the shift / rotate

direction as subtype. ‘complex’ denotes a general class of LUT operations. Maximum

number of inputs for each type of operation is fixed, except for select type, which

represents N to 1 selection, where N is a variable. The proposed application mapping

flow is implemented in C language and is here after referred to as the FPGA mapper

tool. Major steps of the application mapping flow are described below.

16



Table 3.1: Operation types supported in the FPGA mapper tool
Instr Instr Inputs Outputs Bitwidth Comment

Type Subtype

bitswC add a, b, cin d, e x1, x2, 1 bit-sliceable

w/ carry

bits xor a, b, c x1x2 bit-sliceable

w/o carry

mult mult a, b prod x1, x2 two-in mult

shift left/right a, as x1, x2 shift op

shftamt w/ shftamt

rotate left/right a, ar x1, x2 rotate op

rotamt w/ rotamt

complex rand a,..,sel out x0, .., xn select one

from n

const rand x0, x1, out x0, x1, const coeff

multadd C0, C1 C0, C1 mult add

sel rand a,.. out x0, .., xn select one

from n

3.1.1 Functional Decomposition

Decomposition is the process of replacing a vertex in the hypergraph with large in-

put/output count into multiple vertices satisfying the input-output constraint for

the LUTs. For example, operations which are bit-sliceable, transcendental functions

(e.g. sine, arctan, etc.) and other complex functions, which can be appropriately

decomposed are broken down in this step into vertices satisfying the maximum LUT

input/output count for a target FPGA device. The resource constraints of the FPGA

along with the maximum available RAM input size are read from a parameter file,

which acts as an input to the FPGA mapper tool. Transcendental functions and other

complex functions with fixed-point operands can be decomposed using either (i) bi-

partite / multipartite [9] or (ii) ATA (Add-Table lookup-Add) [10] based methods in

order to address the exponential increase in memory requirement with the increase

in LUT input size.

The idea behind bipartite and multipartite decomposition is to divide the input

17



space (2α segments) into 2γ larger intervals (where γ < α) so that the slope of the

function is considered a constant in the larger interval. Hence it contains 2γ tables

of offsets, each with 2β tables of offsets. This allows storing a total of 2α + 2γ+β

values instead of 2α+β. For transcendental functions (such as sine, cosine, log2x, 2x

etc), further reduction in memory requirement at the cost of increased latency can be

achieved through multipartite methods. Another method for reducing the memory

requirement is the Addition Table Addition or ATA method. The main premise is

to approximate a function f(x) using Taylor series central difference method and the

errors induced in the approximation are calculated in each stage to ensure that the

error is less than the unit in the last place (ULP). The basic method involves parallel

additions, followed by parallel lookups and finally multi-stage additions. This method

can be used to approximate all polynomial and transcendental functions which can be

represented in a given fixed point resolution. For functions which are decomposable

with both multipartite and ATA, multipartite based decomposition is selected as it

requires smaller memory at iso-output accuracy. A list of decomposition routines,

which are included in the proposed mapping flow is shown in Fig. 3.1.

3.1.2 Fusion

Fusion involves opportunistic reduction of the total number of operations after de-

composition by combining multiple operations into a single operation, which can be

suitably mapped into a LUT. It incorporates two routines: (i) fusion of random LUT

based operations, and (ii) fusion of bit-sliceable operations. Figure 3.2 shows an ex-

ample of fusion of multiple nodes into a single node satisfying the input / output

constraint of the available RAM blocks in the selected FPGA device. We have devel-

oped a heuristic for partitioning a target application into multi-input multi-output

partitions. The partitioning is based on an input granularity, which indicates how

fine-grained decomposition of an input operand can be done. The vertices inside each

18



Figure 3.2: (a) Example of fusion of multiple nodes into a single node satisfying
the LUT input/output count; (b) Specific example of mult-add fusion for 4-input
operands.

partition are then fused to form a single vertex to be mapped as a LUT operation.

This heuristic is inspired from the Maximum Fanout Free Cone (MFFC) and Maxi-

mum Fanout Free Subgraph (MFFS) approach as outlined in [14]. Through off-line

analysis using FPGA synthesis tool, we evaluate the effectiveness of mapping each

fused node of specific input/output width to embedded memory. This is done by map-

ping the function realized in the fused node using three alternative implementations

(memory, logic and DSP-based) and comparing their energy behaviors.

The datapath operation in a DFG, as described in Fig. 3.2(a), provide opportu-

nities for fusion of number of operations into a more complex one. For the datapath

illustrated in Fig. 3.2(a), following vertex types can be obtained after fusion: 1)

multadds: stands for the function (a ∗ b+ c) << shiftamt; 2) multaddsel: stands for

the function sel?(a ∗ b+ c) : c; 3) adds: stands for the function (a+ b) << shiftamt;

4) addsel: stands for the function sel?(a + b) : a; 5) adds: stands for the function

19



(b + c) << shiftamt; 6) multadd: stands for the function a ∗ b + c ∗ d; 7) mults:

stands for the function (a ∗ b) << shiftamt; 8) multsel: stands for the function

sel?(a ∗ b) : c. Note that the constraint for fusion of the datapath operations is that

they must share one or more input operands. The fusion process is constrained by

the number of input/output bits and granularity. Figure 3.2(b) shows an example

fusion of two multiplications followed by an addition (multadd) into a single node

where the total input and output operand bitwidth of the resultant fused node is 16

and 8, respectively.

3.1.3 Packing

The decomposed and fused nodes in the DFG act as the input to the packing stage.

The sequence of packing steps are illustrated in Fig. 3.3. As shown in the figure,

we use a mapping database in this stage which contains a-priori knowledge about

energy-efficient mapping of different operations and input bitwidth. Such a database

can be created through off-line analysis of different operation types/sizes for a target

FPGA device. For mapping an application to memory, we derive energy-optimal

configuration for the required LUT size. During the mapping step, we also consider

specific resource constraints of the FPGA device. For example, in case of mapping

to memory, if the number of particular memory block types (say M9K or M144K for

Stratix IV) present in the selected device is insufficient, then the next best energy

efficient configuration is attempted to fit in the device. On successful determination of

the final implementation strategy for each individual fused node, we create resource-

binding information for all nodes. For the nodes which are mapped to memory, we

store the optimal memory configuration. For these nodes, we also create LUT contents

at this stage.

20



3.1.4 Memory-Logic Interface and Timing Strategy

For a heterogeneous mapping procedure, where the computational blocks can be

mapped either to fine-grained distributed logic, DSP datapaths or embedded RAMs,

there are three mapping scenarios, which need to be considered for timing assignment:

(i) memory access followed by another memory access, (ii) memory access followed by

logic/DSP operation, and (iii) logic/DSP operation followed by memory access. Fig-

ure 3.7 shows these scenarios. Embedded RAMs in FPGA are typically synchronous,

which requires latching address at a clock edge. The output data from memory can

optionally be latched. The Trimatrix embedded memory blocks in Altera Stratix

family of devices follow such a timing strategy [11]. From the DFG representation

of the packed nodes, we derive a multicycle timing assignment, as described in Algo-

rithm 1, which tries to optimize the total latency of an application. The algorithm

considers a step size, which represents the timing increment on clock period while

searching the optimal clock cycle. It depends on how fine-grained division can be

done on the logic/DSP operations. The algorithm assigns a clock boundary to each

memory operation. It starts with a minimum clock period (T ) determined by the

access time of maximum memory block and then increments T by the step size up

to a limit (determined by maximum logic delay between two memory operations or

one memory and primary input/output). At each step, it tries to balance the latency

of each stages in a multicycle timing assignment. The best clock cycle and timing

assignment are chosen through this process.

3.1.5 Energy-Efficient Configuration of RAM Blocks

In this section, the packing stage is elaborated in more details. An important part

of the packing is to derive optimal energy configuration of the EMBs for all memory

blocks instantiated in any application. For energy-efficient mapping of RAM blocks

in an FPGA, there are mainly two algorithms which the designer can target [13]:

21



Table 3.2: Energy improvements with the proposed mapping approach compared to
mapping in logic and DSP blocks for Stratix II, Stratix III and Stratix IV FPGA
families

Stratix II Stratix III Stratix IV

Input % impr. % impr. % impr. % impr. % impr. % impr.

bitwidth logic DSP logic DSP logic DSP

4 40.59 56.30 16.11 63.29 11.72 52.88

5 36.82 30.86 51.91 64.61 51.68 56.11

6 9.67 -16.85 28.28 43.14 46.01 39.90

7 -40.66 -139.38 -21.95 -15.78 17.15 -26.38

8 * * -28.18 -65.07 -6.36 -89.85

*cannot place due to lack of memory resources

• The dynamic power of a SRAM EMB is dominated by dynamic power due

to bitline precharging and the designer can use a clock enable signal which

can be connected to the clk enable input port of the memory as shown in Fig.

Figure 3.3: Packing algorithm for energy-efficient mapping in a FPGA device.

22



Table 3.3: Comparison of operational latency among the three mapping approaches
for Stratix II, Stratix III and Stratix IV FPGA families

Stratix II Stratix III Stratix IV

Input bitwidth Memory Logic DSP Memory Logic DSP Memory Logic DSP

(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)

4 1.8 3.3 3.6 1.6 3.4 2.8 1.7 3.1 2.2

5 1.8 3.7 3.6 1.6 3.7 2.8 1.7 3.6 2.2

6 1.8 4.0 3.6 1.6 3.8 2.8 1.7 3.7 2.2

7 1.8 4.1 3.6 1.6 4.6 2.8 1.7 4.1 2.2

8 2.1 4.2 3.6 2.8 4.8 2.8 2.8 4.2 2.2

3.4(a), thus avoiding the precharging energy of the unused memory blocks. Such

optimizations can be done for a large logical RAM placed in a design and can

switch off a large memory block as a whole. Typically such optimizations are

Figure 3.4: (a) Trimatrix memory block with one address, one clk and one combined
clk enable port; (b) Implementation of a large memory block (16K x 16) using smaller
RAM blocks with additional pre-decoding to save access energy; (c) Alternative im-
plementation of the same memory, which incurs more access energy.

23



Figure 3.5: Variation in energy consumption of a memory block with varying memory
type and block depth for: a) 12x12 memory; and b) 16x16 memory.

extremely helpful in applications where a particular RAM block in accessed

once in many cycles.

• A single large memory block is broken into multiple small sub-banks with nec-

essary additional pre-decoding so as to access only a single or a few smaller sub-

banks for a particular memory access, keeping the unaccessed memory blocks to

be off. In general an embedded memory block provided in Stratix family can be

configured for a number of memory block depth and width configurations. For

Figure 3.6: Variation in energy consumption with varying input resolution for
CORDIC algorithm.

24



Figure 3.7: Interfacing and timing strategies for three different cases: (a) memory
access followed by logic; (b) logic followed by memory access; and (c) memory access
followed by another memory access.

example an m9k block available in Stratix IV can be configured as a 8192 × 1,

4096×2, 2048×4, 1024×8, 1024×9, 512×16, 512×18, 256×32 and 256×36.

However this strategy introduces some additional logic and designers have to

find a minima for energy consumption for different sizes of memory as larger

number of sub-banks result in significant amount of routing energy of the pre-

decoding logic. Fig. 3.4(b) and Fig. 3.4 (c) show two possible implementations

of a 64k× 16 embedded RAM block. The implementation shown in Fig. 3.4(b)

decomposes the 64k × 16 logical RAM block into 4 physical RAM blocks, each

of output size 16. As a result, for each memory access, only one of the mem-

ory blocks are precharged and the rest remains off which results in significant

amount of energy-efficiency. In Fig. 3.4(c), the physical RAM blocks chosen

have an output size of 4 each and as a result for each memory access, all the

blocks need to be turned on and hence requires much higher precharge energy.

An energy optimal mapping result for a 4k× 12 memory block is shown in Fig.

3.5(a) and that for a 64k× 16 memory block is shown in Fig. 3.5(b) by varying

the memory block depth and type of memory used.

25



3.1.6 Mapping Complex Datapath in Memory

For smaller bitwidths, datapaths with more number of combinational levels have sig-

nificantly better energy consumption while mapping in memory compared to normal

logic or DSP based mapping. The datapath for two constant coefficient multiplica-

tions followed by an addition (constmult add) have been optimally mapped in memory

across different technology generations like Stratix II, Stratix III and Stratix IV and

compared with the corresponding mapping results in logic and DSP blocks in the same

technology nodes. Figure 3.9 shows the energy of the respective mapping schemes

and Table 3.2 shows the corresponding energy improvement compared to mapping

only in logic and DSP. The primary input for all the three implementation have been

flopped and so also the primary output. The clk period for the respective implemen-

tations is the minimum clk period which the design can meet from the primary input

flop to the primary output flop. For Stratix IV, energy consumption improvement is

obtained up to 6-bit input resolution compared DSP based implementation and up to

7-bit compared to logic based implementation as shown in Table 3.2. Latency results

for the different implementations across different technology generations are shown

in Table 3.3. All implementations in memory, logic and DSP have been done with

area optimal synthesis constraint with special emphasis on reducing routing energy

for conventional logic based implementation.

Figure 3.8: Energy trends with bipartite, tripartite and quadpartite decompositions
for different transcendental functions.

26



Figure 3.9: Comparison of Energy with varying input resolution for constmultadd in
Altera (a) Stratix II, (b) Stratix III and (c) Stratix IV series of devices.

3.1.7 Mapping Complex Functions in Memory

Conventionally complex transcendental functions are computed in a FPGA using

CORDIC based approaches where the latency of the computation increases linearly

with the increase in the resolution of the input operands. On the other hand a LUT

storing the output response of a function in a single lookup table gives tremendous

improvement in terms of energy consumption and latency. In a Stratix IV FPGA,

the maximum input size of a lookup table permissible is 16 bits. As a result, upto

16-bit resolution, any function can be mapped in a single lookup table. Figure 3.6

shows the improvement in energy consumption with respect to normal CORDIC

based uni-variable function computation in Stratix IV. The energy improvement is

minimum (3.3X) in case of 16-bit operands and maximum (8.2X) in case of 11-bit

input operands. However, if the size of the input bitwidth does not match with

the size of the lookup, then efficient decomposition techniques like multipartite and

ATA (addition-table lookup-addition) have to be employed in order to minimize the

memory requirement at the cost of some increase in latency. These decomposition

techniques have been optimized so as to achieve energy-efficient mapping of complex

transcendental functions. Figure 3.8 shows the optimization results for energy con-

sumption in Stratix IV for bipartite, tripartite and quadpartite decompositions [9] of

transcendental functions for 24 bit input fixed points. In general tripartite decompo-

sitions give the most energy optimal mapping for 24 bit input resolution uni-variable

functions as shown in Fig. 3.8. Further decompositions have been avoided because

27



not all 24-bit input transcendental functions can be efficiently decomposed into more

than 4 lookup operations.

28



Chapter 4

Application Mapping Results

This chapter summarizes the application mapping results of several real DSP / mul-

timedia applications using the proposed approach and compares the energy savings

achieved compared to normal logic based / DSP based implementation in Stratix IV

device. In this chapter we evaluate the effectiveness of the proposed mapping ap-

proach in improving energy consumption for several common applications, which re-

quire complex datapaths and/or complex functions. We consider a commercial FPGA

platform from Altera (Stratix IV) and compare with alternative implementations us-

ing both logic and DSP elements. For applications requiring no complex datapath,

comparisons are made only with a logic based implementation. We have consid-

ered three common complex datapath dominated applications, namely finite impulse

response (FIR) filtering, coherence calculation in a cluster, and discrete wavelet trans-

form (DWT). We have also considered two complex function dominated applications,

namely 3rd Order Polynomial Evaluation and Solution to Schrodinger Equation.

For all simulations we have used Altera Quartus II 11.0 tool suite. Altera’s Design

Space Explorer Tool in this tool suite is used to find out the energy consumption for

the optimal memory configuration for varying memory sizes. For power simulations,

the Quartus Powerplay analyzer tool is used with clock period set to a relaxed value,

29



which is satisfied by all three implementations (heterogeneous, logic and DSP). This is

done to achieve iso-delay energy comparison between alternative mapping approaches.

We used a vector set of 1000 vectors with uniform random input at each clock cycle

to generate internal node activity. The same vector set is used for all three mapping

scenarios. Energy comparison is made with respect to the compute energy, which is

derived from the core dynamic power excluding IO and clock power, as reported by

the power analyzer. In all three implementations, the mapping of logic functions is

optimized for power under iso-delay target using the Quartus Design Space Explorer

tool. For logic-based implementation, we have considered the constant coefficients as

programmable input and hence not optimized the logic for a specific constant value.

Many DSP applications (e.g. filtering) require the coefficients to be programmable. It

also helps to make a fair comparison of energy through uniform mapping to memory

and DSP, which provide no scope of such optimization.

Note that the FPGA synthesis tools typically provides an option for logic to mem-

ory mapping during physical synthesis optimizations. However, this built-in option is

provided for better area optimization instead of energy. It tries to map some of the

sequential elements in a design to small memory blocks (e.g. MLAB in Stratix IV) in

order to reduce area or resource requirements. It does not consider mapping multi-

output complex datapath/functions to large embedded memory arrays (e.g. M144K

block in Stratix IV). Hence, such an option does not affect the energy behavior of the

applications considered here.

4.1 8-tap FIR Filter

Due to the speed ups achieved in complex datapaths like constmult add, memory

based mapping of FIR filter gives significant advantage over conventional FPGA based

mapping [18]. The energy trends for an 8-tap FIR filter is shown in Fig. 4.1(a) with

30



Figure 4.1: Variation in energy with varying input resolution for (a) 8-tap FIR filter;
(b) coherence calculation; and (c) calculation of approximation coefficient in DWT.

variation in input bitwidth in Stratix IV. For a heterogeneous mapping of memory

and logic, significant energy improvement is achieved up to 7 bit inputs (ranging

from 37.5% improvement for 4 bit input to 9.1% improvement for 7 bit input) when

compared to logic only implementation and up to 6 bit input resolution (ranging

from 44.4% improvement at 4 bit input resolution to 0.08% improvement at 6 bit

input resolution) when compared to a heterogeneous implementation of logic and DSP

blocks.The implementation for all the complex datapath have been done in a similar

fashion. The primary inputs and the primary outputs are flopped, however there are

no flops in between the datapath. So essentially, it is a single cycle implementation,

assuming that all the data are already available at the tap inputs. The cycle time of

the clk is essentially the latency of the application. The resource usage for the 8-tap

filter is shown below in Table 4.1 for the logic based mapping, DSP based mapping

and memory based mapping process with variation in input bitwidth.

4.2 Coherence Calculation in a Cluster

During the iterative procedure of k-means clustering, the coherence in a cluster has

to be calculated in order to measure the quality of clustering [19]. First the absolute

distance between the different points allocated to a particular cluster from its centroid

is computed and then the distances for all the points from their corresponding cluster

centroid are squared and added which define the coherence of the cluster. Memory

31



Table 4.1: Comparison of Resource Usage for 3 complex datapath applications
Logic based DSP based Memory based

mapping mapping mapping

Application Input Comb. DSP Comb. Memory Comb.

Bitwidth ALUTs Blocks ALUTs (KB) ALUTs

FIR 4 192 8 8 1.02 48

5 276 8 10 5.12 58

6 344 8 12 24.57 220

7 500 8 14 114.68 78

8 584 8 16 524.28 272

Coherence 4 296 8 48 1.02 48

Calculation 5 428 8 58 5.12 58

6 584 8 67 24.57 220

7 764 8 78 114.68 78

8 968 8 88 524.28 272

DWT 4 46 0 46 0.28 12

5 66 2 12 1.40 14

6 82 2 14 6.56 56

7 120 2 16 30.72 18

8 140 2 18 139.26 68

based computation in coherence calculation is extremely helpful and gives significant

advantage till 6 bit input over a DSP based implementation (ranging from 54.5% im-

provement for 4 bit input resolution to 16.7% improvement for 6 bit input resolution)

and till 8 bit input resolution over a logic only based implementation (ranging from

63.0% improvement for 4 bit input resolution to 33.3% improvement for 8 bit input

resolution). The advantages in energy over different bitwidth of inputs are shown in

Fig. 4.1(b) for a Stratix IV platform. The resource usage for different input bitwidths

for coherence calculation are shown in Table 4.1 for different mapping methodologies.

4.3 Calculation of Approximation Coefficient in DWT

The datapath for the approximation computation in a DWT consists of 2 constant

coefficient multiplications of the odd samples followed by one addition [20]. After a

32



single level of truncation, the intermediate output is added to the even sample of the

current level. The first level of multiplications and the first addition is mapped in

memory whereas the rest of the datapath is mapped spatially in FPGA logic. The

energy results with the variations in input operands bitwidth is shown in Fig. 4.1(c)

and compared with that of logic and DSP in Stratix IV. Energy improvements are

obtained till 6 bit inputs compared to logic only implementation (ranging from 23.1%

improvement for 4 bit input resolution to 33.3% improvement for 6 bit input resolu-

tion). Similarly improvements are obtained till 6 bit input resolution for a heteroge-

neous implementation of logic and DSP (ranging from 23.1% for 4 bit input resolution

to a marginal 0.09% improvement for 6 bit input resolution). The resource usage for

different input bitwidths are shown in Table 4.1 for different mapping methodologies.

4.4 3rd Order Polynomial Evaluation

Newton Raphson’s (NR) method is widely used for the evaluation of roots for poly-

nomial functions. Consider a 3rd order polynomial given by [21]

f(x) = a3x
3 + a2x

2 + a1x+ a0 (4.1)

NR method employs the following iteration formula in order to move closer to the

actual root:

Xn+1 = Xn −
f(x)

f ′(x)
= Xn −

a3X
3
n + a2X

2
n + a1Xn + a0

3a3X2
n + 2a2Xn + a1

(4.2)

For a 24 bit input fixed point, implementing the Addition Table Addition (ATA)

method in the proposed framework takes 106 KB of memory through [10]. The ATA

method takes an average energy consumption of 0.2 nJ with a latency of 8.2 ns,

implemented in a single cycle. For the DSP based implementation, the divider macro

33



is employed which is available in the Quartus Altera suite in Stratix IV. The divider

hardware customarily flops the input, and the rest of the division is done in a single

cycle, that is the primary output of the division is also flopped. The rest of the logic is

optimized and pipelined so as to meet the cycle time of the design. A cycle period of

5ns is employed in the design with a 11 cycle latency. So the DSP based computation

takes a latency of 55ns and consumes 1 nJ of energy. The critical path is provided by

the divider. Logic based implementation takes similar latency of 55 ns but consumes

2.4 nJ of energy. The logic based implementation is achieved by converting all the

half DSP blocks used in the DSP based implementation into corresponding logic,

however keeping the pipelining in the circuit the same. The energy improvements

achieved with respect to conventional mapping in FPGA is shown in Table 4.2. The

better result in between logic based and DSP based implementation is taken as the

conventional implementation in FPGA for all the applications shown in Table 4.2.

4.5 Solution to Schrodinger Equation (1-D)

A very common scientific application dominated by transcendental functions is finding

the solution of a time-independent Schrodinger wave equation for arbitrary periodic

potentials. For single dimension, the function is given by [37]:

ψn(x) =

√
2

L
sin(

nπx

L
) (4.3)

An FPGA based evaluation of this function using the proposed mapping approach for

24-bit fixed-point input operand requires 193.96 KB. The decomposition of the com-

plex functions involved in the application have been done using the energy efficient

tripartite decompositions as obtained in Chapter 3. The memory based implementa-

tion has a latency of 25.8 ns with a 3 cycle latency and an average energy consumption

of 0.7 nJ, where individual tripartite decompositions have been implemented in a sin-

34



Table 4.2: Comparison of Energy, Latency and EDP for Several common Applications
Conventional Mapping Proposed Mapping

Application Latency Energy EDP Latency Energy EDP Memory % impr

(ns) (nJ) (aJ − s) (ns) (nJ) (aJ − s) (KB) Energy

8-tap FIR 6.4 0.15 0.98 5.6 0.08 0.42 24.6 50.2

(6-bit)

Coherence 8.3 0.21 1.7 5.6 0.08 0.42 24.6 64.1

(6-bit)

DWT 4.6 0.027 0.13 4.4 0.018 0.08 6.1 33.0

(6-bit)

3rd order 55.0 1.0 55.0 8.2 0.2 1.6 106.0 79.1

poly. eval.

Schrodinger 308.7 5.9 1821.3 25.8 0.7 18.1 193.9 88.3

eqn.

gle cycle. Conventional FPGA has a latency of 308.7 ns in logic-only implementation

whereas DSP-based heterogeneous implementation is not possible for the datapath

to be mapped. The conventional logic based implementation involves computing all

the transcendental functions in CORDIC, that is consuming 24 cycles for individual

24-bit transcendental functions. The latency of the application is 49 cycles with the

critical path determined by the 24 bit multiplication involved in several parts of the

application. The logic based framework has an average energy consumption of 5.9 nJ.

Due the increased latency of CORDIC based computation, the proposed framework

has significant improvement in energy over conventional FPGA based mapping as

shown in Table 4.2. The mapping time for the different applications are as shown in

Table 4.3 for different mapping methodologies.

aJ-s= atto J-s

Through the investigations done in this chapter, we can evaluate the effectiveness

of such a heterogeneous application mapping procedure at the application level over

different bitwidths of input operands. Such improvements at lower bitwidths can

be exploited in a dynamic framework to achieve energy efficiency at approximate

computing scenarios with judicious strategies for achieving graceful degradation of

35



Table 4.3: Mapping Time in seconds for Applications Using Different mapping ap-
proaches for Stratix IV using Quartus 11.0

Applications Input Heterogeneous Logic based DSP based

Bitwidth Mapping(secs) Mapping(secs) Mapping(secs)

FIR 8 140 146 143

Coherence Calculation 8 140 88 79

DWT 8 81 80 75

3rd order poly. eval. 24 90 97 87

Schrodinger eqn. 24 95 85 78

output quality which is the focus of the next chapter.

36



Chapter 5

Energy Accuracy Tradeoff

As demonstrated in the previous chapters, heterogeneous mapping can provide sig-

nificant improvement in energy consumption for specific datapath bitwidth in case

of applications dominated by complex datapaths or functions. As a result such a

heterogeneous mapping methodology can be utilized to trade-off energy requirement

and accuracy of computations for DSP/multimedia applications both statically and

dynamically. Such a trade-off will allow FPGA based embedded systems in handheld

and portable devices to run for longer times at lower battery levels with acceptable

performance degradation at the output. The trade-off can be achieved by reducing

operand bitwidth through truncation such that the memory requirement in mapping

the complex datapaths/functions can be exponentially reduced leading to large saving

in energy, as shown in Fig. 3.9. Clearly, operand truncation would have impact on

the output quality. However, judicious choice of bit values assigned at truncated bit

position and a non-uniform truncation approach that aggressively truncates inputs of

only the less critical components can lead to modest impact on output.

DSP applications can be computed using two forms of arithmetic (a) Conventional

Arithmetic (b) Distributed Arithmetic. The chief difference between both forms of

arithmetic is in the multiplication stage. In conventional arithmetic coarse grained

37



multiplication is done in between the individual inputs and the constants whereas

in the case of distributed arithmetic, bits at the same positions of multiple input

instances are multiplied with the same constants. Heterogeneous computing can

potentially provide improvement in energy consumption in both forms of arithmetic

as illustrated in the following sections.

In most DSP/multimedia applications, the final output is interpreted by human

senses. This fact gives the flexibility of producing approximate output for DSP appli-

cations to the extent of acceptable quality degradation to the human senses [25]. The

scope of approximate output computation gives great opportunities to the designer

for truncation of datapath in order to reduce the power/energy consumption. Earlier

works have proposed the advantages of intermediate bit truncation in adders for DSP

applications in order to reduce the process variation induced failures in the context

of post-silicon calibration or repair approaches [27]. Standard techniques like Level

Constrained Common Subexpression Elimination (LCCSE) have been used in order

to optimize the number of adder stages in order to reduce the critical path of the

filter for specific filter coefficients in order to avoid process variation induced delay

failures[22].

The proposed methodology differs from the previous investigations in the following

manner: i) previous investigations have looked into truncation of the constant coeffi-

cient multiplication output and adder outputs. In contrast we are investigating the

effect of input truncation on the output performance. ii) the focus of this work is to

improve the energy-accuracy trade-off in a FPGA platform using embedded memory

based computing. The previous investigations have mostly focused into energy sav-

ings in DSP blocks with custom adders and multipliers. A FIR filter is implemented

here using the Conventional Arithmetic (CA) and Distributed Arithmetic (DA) in

the proposed work.

38



5.1 Energy Accuracy Trade-Off for Conventional

Arithmetic

In the case of applications requiring complex datapaths e.g. FIR and DWT, results

shown in previous sections clearly suggest improvements up to 6 or 7 bit input de-

pending on the application using the proposed heterogeneous mapping approach.

5.1.1 Uniform Truncation

In this work, the effect in the primary output of the filter is studied by truncating

the primary input operands or in effect by reducing the input operand resolution.

During blind truncation, i.e. truncating inputs at all taps equally, the lookup tables

are generated for the FIR filter by optimal value allocation at the truncated bits in

order to see the impact on the output. The designed filter is essentially a low pass

equiripple 32-tap FIR filter with a passband frequency of 9.6 kHz and a stopband

frequency of 12 kHz. The original filter input operand resolution is 8 bits. 3 bits of

the inputs, starting from the LSB have been allocated different values and the impact

in the output mean square error (MSE) for such value allocation at the primary inputs

is shown in Fig. 5.1. The inputs applied to the filter is an impulse input of magnitude

8′b11111111. It can be inferred that for 3 bit truncation, generating lookup tables

assuming 3′b011 or 3′b100 values at the truncated positions gives minimum error at

the output.

5.1.2 Preferential Truncation

Specific inputs are truncated more aggressively or less aggressively depending on the

significance of the corresponding coefficients at the output.

The output impulse response magnitude of the designed 32-tap FIR filter when

all the tap inputs are kept intact at 8 bit input resolution is 82.56. The variation in

39



Table 5.1: Resource Usage and Energy Consumption for a 32-tap FIR filter using
heterogenous, logic based and DSP based mapping Using Conventional Arithmetic

Proposed mapping approach Logic based mapping DSP based mapping

Trunc. Comb. Memory Energy Comb. Energy Comb. DSP Energy

Method ALUTs (KB) (pJ) ALUTs (pJ) ALUTs (pJ)

1-bit trunc 1279 458.7 637.3 2074 592.9 175 32 263.9

2-bit trunc 685 98.3 252.9 1454 483.1 159 32 215.4

3-bit trunc 242 20.5 88.1 1196 311.0 153 32 200.5

4-bit trunc 197 4.1 71.8 859 180.3 240 26 172.5

Config.1 587 138.5 246.9 1572 407.0 177 32 223.0

Config.2 279 29.5 108.6 1507 330.0 225 30 220.8

Config.3 127 6.1 63.7 1284 250.5 288 28 210.2

Config.4 1013 174.1 247.0 4383 407.1 410 90 223.1

(1.7X∗) (1.3X) (2.8X) (2.3X) (2.8X)
∗Times improvement in the last row (within braces) is with respect to Config.1.

the stopband ripple due to zeroing different tap coefficients are recorded in Fig. 5.2.

The taps corresponding to the coefficients having the greatest impact in the stop-

band ripple is defined as the most significant tap or the corresponding coefficients are

called the most significant coefficients. Similarly the next level important coefficients

are called the 1st order coefficients and so on. Lesser truncation is done at the more

significant taps and more aggressive truncation is done at the lesser significant taps

in order to achieve minimum accuracy penalty at iso-energy consumption. As shown

in Fig. 5.2, the middle most significant inputs are truncated by 1 bit, the inputs

corresponding to the 1st order coefficients are truncated by 2 bits, followed by 3

Figure 5.1: Variation of mean square error (MSE) with different bit allocation at the
truncated bits for a 32-tap FIR filter.

40



Figure 5.2: Variation of stopband ripple magnitude by zeroing different coefficients
of a 32-tap FIR filter.

bits and so on (Config.1). In the second (Config.2) and third truncation modes

(Config.3), 2 and 3 bits are truncated respectively at the middle with increasing

truncation at the sides.

Figure 5.3 shows the effect in output mean square error at different energy con-

sumption configurations due to varying levels of truncation for a 32-tap FIR filter.

Zero value allocation denotes blind truncation with 1′b0 at the truncated bits. The

three design points in case of zero value allocation are 1′b0, 2′b0 and 3′b0 trunca-

tions at primary inputs; i.e. truncating the inputs at the corresponding bits with

zero value allocation. Similarly by allocating the optimal bits at the truncated inputs

(1′b1, 2′b01, 3′b011, 4′b1000), the error due to uniform truncation through opti-

Figure 5.3: MSE versus energy consumption for a 32-tap FIR filter using heteroge-
neous mapping approach.

41



mal bit allocation is obtained at the output. Finally the 3 design points described

as Config.1, Config.2 and Config.3 have been plotted and the mean square er-

ror (MSE) at the output is compared at similar energy consumption levels. Clearly

when preferential truncation methodology is properly employed along with optimal

value allocation, the energy savings is significant with respect to only optimal value

allocation or any other form of blind truncation across the board. As shown in Fig.

5.3, for an energy consumption of 100 pJ, the MSE for preferential truncation is 7.8,

for optimal value allocation is 88.2 and for zero value allocation is 280.8 which re-

sults in 91.1% improvement in output MSE over optimal value allocation and 97.2%

improvement in output MSE over zero value allocation at iso-energy consumption.

So in effect, optimal value allocation gives lesser MSE compared to blind truncation

but consumes the same amount of energy. Preferential truncation on the other hand

consumes lesser amount of energy consumption and also has lesser MSE compared to

both blind truncation and optimal value truncation.

Heterogeneous mapping also significantly helps in reducing the resource require-

ments compared to conventional mapping techniques. Table 5.1 shows the resource

requirements for uniform truncation (1b trunc, 2b trunc, 3b trunc and 4b trunc) and

preferential truncation methodologies through heterogeneous mapping, logic based

mapping and DSP based mapping techniques. For the 4 modes of uniform truncation

described in Table 5.1, heterogeneous mapping provides 43.0% improvement in energy

consumption on an average compared to logic based mapping. However it provides

slight degradation in average energy consumption (nearly -11%) compared to DSP

based implementation due to the significant difference in energy results at 7-bit in-

put resolution. Similarly for preferential truncation, heterogeneous mapping provides

60.3% improvement in energy consumption over logic based mapping on an average

and 36.6% improvement in energy consumption over DSP based mapping. Secondly

at the cost of few hundred kilobytes of memory (which is around 5− 10% of the total

42



Figure 5.4: Functional block diagram of the computation unit to realize dynamic
truncation for energy-accuracy trade-off.

embedded RAM available in high end FPGA devices in Stratix IV), the logic require-

ment or the combinational ALUT requirement goes down significantly compared to

logic based mapping. So the proposed methodology can also be potentially employed

in increasing the overall throughput of the device.

Configuration4 (as mentioned in Table 5.1) denotes a dynamic truncation frame-

work which can operate in configuration1, configuration2 and configuration3 and

can switch the configurations dynamically depending on the available energy budget.

Figure 5.4 shows the methodology of dynamic truncation for trading off energy con-

sumption and output quality. The overhead due to the controller and the multiplexer

is negligible compared to the resource requirement of the actual mapped design as

shown in Table 5.1. Due to the exponential reduction in memory space with the trun-

cation at the inputs, the effective memory requirement for the dynamic framework is

not significantly more than configuration1 which computes with minimum truncation

of primary input operands. However the number of DSP blocks increases 2.3X-3X

as also the logic requirements for DSP based mapping or purely logic based mapping

respectively.

43



5.1.3 Energy Accuracy Trade-Off for Distributed Arithmetic

Distributed Arithmetic (DA) along with modulo-arithmetic has a very significant

role in embedded DSP applications as mentioned in [26]. DA specifically targets

the sum of products (SOP) computation that is common in most DSP applications.

The arithmetic sum of products that defines the response of a linear time-invariant

network can be expressed as

y(n) =
K∑
k=1

Ak ∗ xk(n) (5.1)

where y(n) is the response of the filter at time n, xk(n) is the kth input variable at

time n, and Ak is the weighting factor of the kth input variable that is constant for

all n. The variable xk can be expressed in 2’s complement fractional form as

xk = −xk0 +
B−1∑
b=1

xkb2
−b (5.2)

where xkb is a binary variable and can assume only values of 0 and 1. The derivation

can be extended to show that

y =
K∑
k=1

Ak[−xk0 +
B−1∑
b=1

xkb ∗ 2−b] (5.3)

Expanding equation 5.3 we get

y = −[x10 ∗A1 + x20 ∗A2 + x30 ∗A3 + ...+ xk0 ∗AK ]

+ [x11 ∗A1 + x21 ∗A2 + x31 ∗A3 + ...+ xk1 ∗AK ]2−1

+ [x12 ∗A1 + x22 ∗A2 + x32 ∗A3 + ...+ xk2 ∗AK ]2−2

...

+ [x1(B−1) ∗A1 + x2(B−1) ∗A2 + .....+ xK(B−1) ∗AK ]2−(B−1)

(5.4)

44



Compute terms in brackets in equation 5.4 are computed in memory ALUTs or em-

bedded memory lookups and is termed as the Distributed Arithmetic look-up table

(DALUT). The rest of the additions are computed in combinational logic. In case

of mapping filtering applications using DA based approach in the proposed hetero-

geneous mapping framework, the DALUT operation for all the inputs are done in

memory and the final addition is done in logic to get the final output.

5.1.3.1 Uniform Truncation

While computing with memory, instead of decreasing memory size for each and every

input in case of conventional arithmetic, the number of memory blocks gets diminished

by 1 with each bit truncation at the primary input. This decreases the total latency

of the circuit and the decrease in energy consumption with variation in input bitwidth

also occurs at almost a linear rate for DA based approach compared to exponential

energy reduction for CA based approach.

Zero Value Allocation: Uniform or blind truncation across the board is the sim-

plest methodology of truncating inputs at the cost of graceful degradation in PSNR.

For an input bitwidth of 8, and a memory wordsize of 16, for truncating one input

bit at the primary input, the memory requirement for a 32-tap FIR filter goes down

from 16KB to 8KB. Further truncation can be done at the primary input till 7 bits

so as to have a meaningful output.

Optimal Value Allocation: Initially the LUT contents are generated assuming

the truncated bits to be zero. However as in the case of conventional arithmetic,

computing with distributed arithmetic also has similar observations about optimal

bit allocation in order to reduce the MSE at the output.

45



Figure 5.5: Variation in output MSE versus energy consumption for a DA based
32-tap FIR filter using heterogeneous mapping.

5.1.3.2 Preferential Truncation

The preferential truncation is implemented in exactly the same way as has been

proposed for conventional arithmetic. For higher input resolution, preferential trun-

cation methodology can be even more effective in applications like CA and DA based

filtering.

As shown in Fig. 5.5, at iso-energy consumption of 400pJ, the output MSE

through zero value allocation is 293.7, through optimal bit allocation is 92.5 and

through the proposed preferential truncation technique is 7.75 as shown in Fig. 5.5.

Thus clearly the preferential truncation strategy gives significantly less output er-

ror at iso-energy or conversely consumes significantly less energy at the iso-output

quality.

5.1.4 Comparison between CA and DA based Implementa-

tion

Both uniform and preferential truncation methodologies have been proposed in this

work for conventional as well as distributed arithmetic. The memory requirement

for heterogeneous mapping is much less for DA compared to CA based implementa-

tion. As a a result, memory based computing using DA is more scalable compared

46



Figure 5.6: Comparison of energy consumption for a CA vs DA based implementation
of FIR filter for: (a) memory based; (b) logic based; and (c) DSP based implementa-
tion.

to its CA-based counterpart. Figure 5.6 shows that when computing in a heteroge-

neous framework, the energy consumption increases exponentially with input operand

bitwidth in conventional arithmetic unlike in distributed arithmetic where the energy

consumption increases linearly. As a result the energy consumption for DA based

computation is much less compared to CA based computation. For logic based im-

plementation, at smaller input resolution the multiplier size requirement is smaller in

CA compared to DA and a result, the energy consumption in CA is lesser. However

with the increase in input resolution, DA based computation is more energy-efficient

as shown in Fig. 5.6. For DSP based computation, due to the fine-grained nature

of the computation, the number of DSP blocks in DA is more compared to CA and

as result the power/energy consumption is much more significant in DA. In sum-

47



mary the proposed methodology gives exponential savings in energy for conventional

arithmetic and linear savings in energy for distributed arithmetic with input bitwidth

truncation.

5.1.5 Integration with Existing EMB-based Mapping Ap-

proaches

The proposed heterogeneous mapping approach, which focuses on efficient mapping

of coarse-grained functions to EMBs, can be integrated with existing fine-grained

approaches of mapping random logic to EMBs [14], [16]. Such an unified approach

can maximize the energy saving. In the fine-grained mapping approach, the random

logic functions or applications that require fine-grained control of data can benefit

from memory based mapping. Hence, the proposed approach is complementary to

the existing fine-grained mapping approaches. However, for seamless integration of

both approaches in a unified mapping framework, we need to carefully adjust the

timing of memory and logic operations. A multicycle timing approach as described

in Algorithm 1 can be extended for use in such a framework.

48



Chapter 6

Conclusion and Future Work

We have presented an application mapping process for FPGA that exploits the em-

bedded memory blocks for computation to minimize the overhead of programmable

interconnects. We show that the proposed mapping process can significantly improve

energy efficiency for many applications, which require complex datapath, complex

functions or both. The software architecture to perform functional decomposition,

fusion of operations, packing of individual coarse-grained operations and timing as-

signment is presented in this thesis. The effectiveness of the proposed mapping tech-

nique has been validated with a commercial FPGA platform, namely Altera Stratix IV

FPGA. Finally, computation in embedded memory in FPGA is extended to dynam-

ically trade-off energy versus accuracy through use of judicious bitwidth truncation

at run time for both conventional as well as distributed arithmetic based implemen-

tations. To minimize the impact on output quality, we have presented a preferential

truncation methodology that exploits the nature of DSP applications to minimize

impact on output quality with operand truncation. With continued scaling of mem-

ory and emergence of novel high-density memory technologies - both volatile and

non-volatile - FPGA devices are expected to integrate more memory with improved

performance, which can significantly benefit the proposed approach. Future work

49



will include extending the framework to emerging FPGA platforms, other domains

of applications, support for different precision and data formats, and more efficient

decomposition/fusion methodologies.

50



Bibliography

[1] “The landscape of parallel computing research: A view from Berkeley [Online]”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

[2] “Energy Efficient Hardware-Software Co-Synthesis Using Reconfigurable Hard-

ware,” Chapman and Hall, CRC Computer and Information Science Series.

[3] T. Good and M. Benaissa, “AES on FPGA from thr Fastest to the Smallest,”

Cryptographic Hardware and Embedded Systems, 2005.

[4] A. Rahman, S. Das, A. P. Chandrakasan and R. Reif, “Wiring Requirement and

Three-Dimensional Integration Technology for Field Programmable Gate Arrays,”

IEEE Transactions on Very Large Scale Integration Systems, Vol. 11, No. 1, 2003.

[5] “FPGA Architecture [Online]” http://www.altera.com/literature/wp/wp-

01003.pdf

[6] “FPGA Logic Cells Comparison [Online]” http://www.1-

core.com/library/digital/fpga-logic-cells/

[7] W.B. Ligon III, G. Monn, D. Stanzione, F. Stivers and K.D. Underwood, “Imple-

mentation and Analysis of Numerical Components for Reconfigurable Comput-

ing,” Aerospace Applications Conference,1999.

51



[8] C. Brunelli, H. Berg and D. Guevorkian, “Approximating sine functions Using

Variable Precision Taylor Polynomials,” IEEE Workshop on Signal Processing

Systems, 2009.

[9] F. D. Dinechin and A. Tisserand, “Multipartite Table Methods,” IEEE Trans-

actions on Computers, Vol. 54, No. 3, 2005.

[10] W.F. Wong and E. Goto, “Fast Evaluation of Elementary Functions in Single

Precision,” IEEE Transactions on Computers, Vol. 44, No. 3, 1995.

[11] “Stratix FPGA: Low Power, High Performance [Online]”

http://www.altera.com/devices/fpga/stratix-fpgas/stratix/stratix/stx-index.jsp

[12] “Xilinx Virtex series of FPGAs [Online]”

http://www.xilinx.com/products/index.htm

[13] R. Tessier, V. Betz, D. Neto, A. Egier and T. Gopalsamy, “Power-Efficient RAM

Mapping Algorithms for FPGA Embedded Memory Blocks,” IEEE Transactions

on Computer-Aided Design of Circuits and Systems, Vol.26, No. 2, 2007.

[14] J. Cong and S. Xu, “Technology Mapping for FPGAs with Embedded Memory

Blocks,” International Symposium on Field Programmable Gate Arrays, 1998.

[15] A. Ghosh, S. Paul and S. Bhunia, “Energy Efficient Application Mapping in

FPGA through Computation in Embedded Memory Blocks,” VLSI Design, 2012.

[16] S. Wilton, “SMAP: Heterogeneous Technology Mapping for Area Reduction

in FPGAs with Embedded Memory Arrays,” International Symposium on Field

Programmable Gate Arrays, 1998.

[17] S. Chin, C. Lee and S. Wilton, “Power Implications of Implementing Logic Using

FPGA Embedded Memory Arrays,” Field Programmable Logic and Applications,

2006.

52



[18] N. Sankarayya, K. Roy and D. Bhattacharya, “Algorithms for low power and

high speed FIR filter realization using differential coefficients” IEEE Transactions

on Circuits and Systems, Vol. 44, No. 6, 1997.

[19] C. Ding and X. He, “K-means Clustering via Principal Component Analysis,”

International Conference on Machine Learning, 2004.

[20] S. Narasimhan, H.J. Chiel and S. Bhunia, “Ultra-Low Power and Robust Digi-

tal Signal Processing Hardware for Implantable Neural Interface Microsystems,”

IEEE Transactions on Biomedical Circuits and Systems,Vol. 5, No. 2, 2011.

[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, “Fortran Nu-

merical Recipes,” Cambridge University Press, 1992.

[22] N. Banerjee, J.H. Choi and K. Roy, “A Process Variation Aware Low Power

Synthesis Methodology for fixed point FIR filters,” International Symposium on

Low Power Electronics and Design, 2007.

[23] “Achieving low Power in 65-nm Cyclone-III FPGAs,” Altera White Paper, 2007.

[24] F. Lee, D. Chen, L. He and J. Cong, “Architecture Evaluation for Power-Efficient

FPGAs,” International Symposium on Field Programmable Gate Arrays, 2003.

[25] V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan and K. Roy, “IMPACT:

IMPrecise adders for low-power Approximate CompuTing,” International Sym-

posium on Low Power Electronics and Design, 2011.

[26] “The Role of Distributed Arithmetic in FPGA-Based Signal Processing”

http://www.xilinx.com/appnotes/theory1.pdf

[27] K. Kunaparaju, S. Narasimhan and S. Bhunia, “VaROT: Methodology

for Variation-Tolerant DSP Hardware Design Using Post-Silicon Truncation of

Operand Width,” VLSI Design, 2011.

53



[28] W.G. Osborne, J.G.F. Coutinho, W. Luk and O. Mencer, “Power-Aware and

Branch-Aware Word-Length Optimization,” Field-Programmable Custom Com-

puting Machines, 2008.

[29] C.T. Chow, L.S.M. Tsui, P.H.W. Leong, W. Luk and S. Wilton, “Dynamic

Voltage Scaling for Commercial FPGAs,” Field Programmable Technology, 2005.

[30] M. Klein, “Power Consumption at 40 and 45 nm,” Xilinx White Paper, 2009.

[31] J. Lamoureux and W. Luk, “An Overview of Low Power Techniques for Field

Programmable Gate Arrays,” NASA/ESA Conference on Adaptive Hardware and

Systems, 2008.

[32] “Lookup table [Online],” http://en.wikipedia.org/wiki/Lookuptable

[33] “Soft Multipliers for DSP Applications,” Altera.

[34] “Embedded Intel Solutions [Online]” http://www.embeddedintel.com/news.php?article=276

[35] R. Gutierrez, V. Torrez and J. Valls, “FPGA-implementation of atan(Y/X)

based on logarithmic transformation and LUT-based techniques,” Journal of

Systems Architecture, Vol. 56, No. 11, 2010.

[36] S. Choi, R. Schrofano, V.K. Prasanna and J.W. Wang, “Energy Efficient Signal

Processing Using FPGAs,” International Symposium on Field Programmable Gate

Arrays, 2003.

[37] “Time Dependent Schrodinger Equation [Online]” http://hyperphysics.phy-

astr.gsu.edu/hbase/quantum/scheq.html

54


