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Causal Mediation Analysis for Non-linear Models  

 

Abstract 

by 

WEI WANG 

 

    Mediators are intermediate variables in the causal pathway between an exposure and 

an outcome. Mediation analysis investigates the extent to which exposure effects occur 

through these variables, thus revealing causal mechanisms. One interesting question in 

causal inference area is mediation analysis for non-linear models. 

In the first part of this dissertation, we consider the estimation of mediation effects 

in zero-inflated (ZI) models intended to accommodate ‘extra’ zeros in count data. 

Focusing on the ZI negative binomial (ZINB) models, we provide a mediation formula 

approach to estimate the (overall) mediation effect in the standard two-stage mediation 

framework under the key sequential ignorability assumption. We also consider a novel 

decomposition of the overall mediation effect for the ZI context using a three-stage 

mediation model. Simulation study results demonstrate low bias of mediation effect 

estimators and close-to-nominal coverage probability (CP) of confidence intervals. The 

method is applied to a retrospective cohort study of dental caries in very low birth weight 

adolescents. For overall mediation effect estimation, sensitivity analysis was conducted to 
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quantify the degree to which key assumption must be violated to reverse the original 

conclusion. 

The second question we focus on is the mediation analysis for a dichotomous 

outcome in multiple-mediator models. We formulate a joint model (probit-normal) using 

continuous latent variables for any binary mediators to account for correlations among 

multiple mediators. A mediation formula approach is proposed to estimate the total 

mediation effect and decomposed mediation effects based on this parametric model. We 

conduct a simulation study that demonstrates low bias of mediation effect estimators for 

two-mediator models with various combinations of mediator types. The results also show 

that the power to detect a non-zero total mediation effect increases as the correlation 

coefficient between two mediators increases, while power for individual mediation 

effects reaches a maximum when the mediators are uncorrelated. We illustrate our 

approach by applying it to a retrospective cohort study of dental caries in adolescents 

with low and high socioeconomic status. Sensitivity analysis is performed to assess the 

robustness of conclusions regarding mediation effects when the assumption of no 

unmeasured mediator-outcome confounders is violated. 
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11 
 

1.1 Introduction 

A common problem encountered in medical, public health and social studies is the 

presence of a high number of zeros, a problem known as zero inflation (ZI). For example, 

the distribution of decayed, missing, filled teeth index (DMFT), a count response variable 

from an ongoing longitudinal study which compares very low birth weight (VLBW) 

adolescents with full-term adolescents, contains a large number of zeros (Nelson et al., 

2010). Excess zeroes can be categorized as either sampling or structural zeros. A 

sampling zero refers to a zero count or an unobserved event, due to a chance zero 

outcome for an individual with a non-zero probability of an event. In contrast, a structural 

zero refers to a zero count or unobserved event that is determined (the event being 

impossible or irrelevant) for an individual (Ridout et al., 1998). For example, to answer 

the question “How often did you drink alcohol during the last month?” there will be 

individuals who drink alcohol but chose not to drink during the last 30 days (sampling 

zeros) and individuals who never drink alcohol (structural zeros). 

    Zero-inflated models, two-component mixture models combining a point mass at 

zero with a proper count distribution are appropriate for data containing structural as well 

as possible sampling zeros. A well-known version, suitable for unbounded counts, is the 

zero-inflated Poisson regression (ZIP) model (Lambert, 1992); however, this model has 

the limitation that it may provide an inadequate fit to data when there is overdispersion. A 

popular model accounting for overdispersion is the negative binomial regression model 
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(NB) in which the Poisson mean has a gamma distribution. For bounded data, the 

comparable models include the zero-inflated binomial (ZIB) and the zero-inflated 

beta-binomial (ZIBB) model. The latter accommodates extra dispersion by assuming the 

success probability in the binomial model has a beta distribution. Recent medical 

applications of zero-inflated models are illustrated by Cheung (2002) who applied 

zero-inflated models to early growth and motor development, and Lewsey and Thomson 

(2004) who used ZIP and ZINB models to examine the effect of socio-economic status on 

DMFT. Cheung (2006) also used zero-inflated proportion models (ZIB and ZIBB) to 

model growth and cognitive function of Indonesian children. 

    Another type of model used to analyze data with excess structural zeros only is a 

two-part conditional model, known as the hurdle model (Mullahy, 1986). A hurdle model 

is a modified count model in which there are two processes, one generating the zeros and 

the other generating the positive values. For the first process, a model (typically, logistic 

regression) is used to determine the binary outcome of whether the count response is zero 

or greater than zero. If the value is positive, “the hurdle is crossed”, and the conditional 

distribution of the positive values (the second process) is governed by a zero-truncated 

(for example, Poisson or NB) count model. A Swedish health care utilization study used a 

hurdle model (a logit model for the hurdle and a truncated NB model condition on a 

positive count) to model physician visit frequencies (Gerdtham, 1997). Similarly, another 

study evaluated the impact of managed care programs for Medicaid-eligible patients on 

utilization of health-care services using both parametric (Poisson and NB) and 
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semi-parametric hurdle models (Gurmu, 1997). 

    Although both ZI models and hurdle models can provide a satisfactory fit for some 

ZI data (Rose and Martin, 2006), one model type may be more applicable based on the 

study objectives. ZI models involve a sub-model predicting membership into one of two 

latent populations, generally referred to the ‘susceptible’ (contributing sampling zeros) 

and ‘non-susceptible’ populations (contributing structural zeros). In hurdle models, the 

first stage is to induce an event, and once the hurdle to the first event has been cleared or 

crossed, the second stage determines the number of subsequent events. The approach for 

both types of models is similar in that they use two regression models, one (logit or probit 

regression) models the susceptible probability or probability the hurdle is crossed, and the 

other (log linear regression for Poisson/NB, logistic regression for binomial or 

beta-binomial) models the mean for the susceptible population or the count given 

crossing of the hurdle. Explanatory variables are allowed to have a different impact for 

the two processes (Moulton et al., 2002), and the two models are fit simultaneously using 

maximum likelihood estimation. 

    Extensions of ZI and hurdle regression models for correlated data have begun to 

appear to study subject-specific and marginal effects. Berk and Lachenbruch (2002) and 

Min and Agresti (2005) have proposed various random intercept zero-inflated models. 

Dalrymple et al. (2003) have developed finite mixture zero-inflated models that allow for 

clustering of subjects based on their latent response trajectories. Dobbie and Welsh (2001) 

and Hall and Zhang (2004) used generalized estimating equations (GEE) or its extension 
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to estimate hurdle and zero-inflated marginal models, respectively. Several authors have 

recently proposed alternative Bayesian approaches to fitting zero-inflated models. 

Rodrigues (2003) developed Bayesian ZIP models for cross-sectional data and Neelon et 

al. (2010) proposed a Bayesian approach which incorporates prior information for 

repeated measures zero-inflated count data with application to outpatient psychiatric 

service use.  

    Generally, separate exposure effects were estimated for the susceptible probability 

and susceptible population mean respectively (Rose and Martin, 2006), though inference 

for the overall mean for the ZI model was also considered. Bӧhning et al. (1999) 

suggested two approaches to obtain confidence intervals for the overall mean of the ZIP 

model for a population. Yau and Lee (2001), considering a ZIP regression model with 

random effects, provided a confidence interval for the overall mean at a specified set of 

covariate values. Previously, we proposed two new methods for assessing an overall 

mean exposure effect in the context of ZI regression models. In the first approach, an 

‘average predicted value’ (APV) method was developed to assess an overall mean 

exposure effect, which allows covariate-adjusted estimation of flexible functions of 

exposure group means. The second method presented uses log-linear models for both the 

binary and the count components of the ZINB model (Albert et al., 2011). 

    Though mediation analysis may be of interest for zero-inflated as well as others 

types of (e.g., normally-distributed) responses, this problem does not appear to have been 

previously addressed in the literature. The main goal of Part I is to develop the mediation 
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analysis method for ZI models, particularly, the ZINB model. Different types of 

mediators will be considered. In order to accomplish this goal, three aims are proposed: 

Aim 1: To develop a mediation analysis method to estimate overall mediation effects 

using the mediation formula within the standard two-stage framework. 

Aim 2: To decompose the indirect effect into two paths: one through a latent variable 

representing the subpopulation (‘susceptible’ or ‘non-susceptible’), the other going 

directly from the mediator to the final outcome variable. 

Aim 3: To develop an approach for conducting sensitivity analyses that quantify the 

degree to which key assumptions must be violated to reverse the original conclusion for 

overall mediation effect estimation. 

    The rest for Part I is organized as follows. Section 1.2 presents a brief literature 

review of mediation analysis and also describes ZINB and hurdle models. In section 1.3, 

we define the natural indirect effect, natural direct effect, total causal effect and 

decomposition of the overall mediation effect in the ZINB model. Section 1.4 presents a 

difference in effects estimate of the mediation effect and also the mediation formula 

approach to estimate the overall mediation effect under given identifying assumptions. In 

this section we also discuss computation for the mediation formula using a Monte Carlo 

integration method as an alternative to ‘exact’ integration. Section 1.5 proposes the 

mediation formula approach to estimate the decomposition of the overall mediation effect 

as well as its Monte Carlo integration approximation. Simulation studies are used in 

Section 1.6 to examine the statistical properties of the proposed methods and to determine 



16 
 

the number of samples needed for the Monte Carlo integration approach. Section 1.7 

describes the application of the proposed method to the dental data and presents a 

sensitivity analysis. Discussion and suggestions for further research are presented in 

Section 1.8.   
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1.2 Background 

1.2.1 Mediation analysis 

The target of many empirical studies in the social, behavioral and health sciences is the 

causal mediation (or indirect) effect, which measures the extent to which the effect of the 

treatment on the outcome is mediated through some particular pathway. The examination 

of mediation is important because identification of the extent to which change in one or 

more mediating variables account for a treatment effect may shed light on the theoretical 

basis of the same effect, and therefore may help streamline and improve the treatment by 

focusing on effective components. 

1.2.1.1 Definitions of mediators, moderators and confounders 

Most research focuses on the relation between two variables, T and Y, in which T denotes 

treatment and Y denotes outcome variable, and T can be considered a possible cause of Y. 

Multiple relations may be present when a third variable is included in the analysis of a 

two-variable system. 

Mediators. A mediator, or intervening causal variable, is on the causal pathway between 

the treatment (T in Figure 1.1) and the outcome (Y in Figure 1.1), and it must be a 

post-treatment variable that occurs before the outcome is realized. Beyond this minimal 

requirement, the causal model containing a specific mediator needs to be conceptually 

plausible (Bauman et al., 2002). There may be a single mediator (M1) between the 

treatment and the outcome, or a series of cascading mediators (M2, M3) that are causally 
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related in sequence, between the treatment and outcome. It is also possible that some of 

the effect may be direct (from T to Y, bypassing any mediator). For example, a 

continuous measure of job search self-efficacy may be the key mediator between the 

treatment (receiving a job training intervention on unemployed workers) and the binary 

outcome, whether or not the respondent had become employed (Vinokur and Schul, 

1997).  

Confounders. A confounder (C) is a predictor of the outcome, but is also associated with 

treatment, so that ignoring the confounder leads to incorrect inference about the relation 

between treatment and outcome. For example, cigarette smoking may be a confounder of 

the relationship between weight and long-term mortality in the Framingham Heart Study 

(Garrison et al., 1983). Cigarette smoking may be related to the outcome – smokers have 

higher mortality than nonsmokers and cigarette smoking also associated with the 

exposure – of men under desirable weight, more than 80% were smokers. The confounder 

may then account for the association between an exposure and an outcome and thus give 

a false impression about the causal effect if not adjusted for. Methods for dealing with 

confounders include matching, stratified analyses, and controlling for them using 

multivariable analytic techniques (Rothman, 2001). 

Moderators. The third variable (B) may also modify the relation of treatment to outcome 

such that the relation of treatment to outcome differs at different values of B, and this is 

an example of an effect modifier (or moderator). This corresponds to the concept of 

statistical interaction, with the association T→Y varying across levels of the moderator, B 
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(Figure 1.1C). For example, Pediatric Traumatic Brain Injury (TBI) may generate less 

pronounced negative consequence for parents of black children than parents of white 

children at baseline, but become more pronounced at two years follow-up (Yeates et al., 

2002). Moderators can be dealt with by including interaction terms in statistical models 

used to assess treatment effects, or by stratifying the data by the levels of the moderator, 

and re-examining effects. 

    In addition, the third variable (W) may be related to Y and/or T, so that information 

about W improves prediction of Y by T, but does not substantially alter the relation of T to 

Y; this is an example of a covariates (Figure 1.1D). Covariates may be confounding 

variables if they are related to both T and Y. 

 

Figure 1.1. Definition of terms. Mediator – lies in the causal path from treatment to outcome. Confounder – 

affects the both the treatment and the outcome. Moderator – the relation of treatment to outcome differs 

with different values of moderator. Covariate – may affect the outcome and possibly be related to treatment. 
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1.2.1.2 Linear structural equation model 

The two-stage mediation model is shown in Figure 1.2, where the variables T, M and Y 

are in rectangles and the arrows represent causal associations among variables. Figure 1.2 

uses β2 to denote the coefficient in the linear relationship between T to M, γ for the 

relation of M to Y adjusted for T, and β3 for the relation of T to Y adjusted for M. The 

symbols ε2 and ε3 indicate errors for M and Y, respectively. The coefficients 

corresponding to Figure 1.2 are discussed below. Note that there is direct effect relating T 

to Y and a mediated effect by which T indirectly affects Y through M. 

 

Figure 1.2. Two-stage mediation model 

    The statistical assessment of the mediation effect has been well developed under the 

normality assumption. Assuming both the mediator (M) and the outcome (Y) are normally 

distributed and are related according to the path diagram shown in Figure 1.2, the linear 

structural equation model (SEM) will be: 

Y = α1 + β1T + ε1                                                     (1) 

M = α2 + β2T + ε2                                                                    (2)  
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Y = α3 + β3T + γM + ε3                                            (3) 

where εi ~ N(0, σi
2), i = 1, 2, 3, and Cov(ε2, ε3) = 0. 

    The most widely used method to assess mediation is the causal steps approach 

introduced by Baron and Kenny (1986). In general, under the assumptions that there is no 

unmeasured confounders between the mediator and the outcome, four conditions are 

involved in Baron and Kenny’s approach to establishing mediation. 

1. In the regression model of M regressed on T, T must be associated with M (β2 ≠ 0); 

2. In the regression model of Y regressed on T, T must be associated with Y (β1 ≠ 0); 

3. In the regression model of Y regressed on T and M, M must be associated with Y (γ ≠ 

0); 

4. The regression coefficient of T from model (3) is less than that of model (1) (β3 < β1). 

When all four of the above conditions hold, one may conclude that M is a mediator. It has 

been noted that the second condition is not necessary, since the mediation effect can be 

significant even when the total causal effect is zero. This happens when the mediation 

effect offsets the direct effect of the treatment. The mediation effect in the above 

two-stage mediation model (see Figure 1.2 as well as (1), (2) and (3)) may be estimated 

using two different approaches. The first one is called the difference in coefficients 

method, which evaluates the mediation effect as the difference in regression coefficients 

of the outcome on the treatment without and with adjustment for the mediator (β1 – β3) 

(MacKinnon, 1993). A second general method estimates mediation as the product of two 

coefficients, the coefficient of the mediator in its regression on the treatment, and the 
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coefficient of the mediator in the regression of the outcome on the mediator adjusted for 

the treatment indicator. This method is called the product of coefficients method (β2γ) 

(MacKinnon et al. 2002). The algebraic equivalence of both approaches was shown by 

Mackinnon et al. (1995) for normal theory ordinary least squares (or maximum likelihood 

estimation) under the above three mediation regression equations.  

    The asymptotic standard error of the indirect effect can be derived using the 

multivariate delta method (Sobel, 1982). Confidence intervals based on the normal 

distribution for the indirect effect are often inaccurate as found in simulation studies 

(MacKinnon et al., 1995, 2002; Stone and Sobel, 1990) and from bootstrap analysis of 

the mediated effect (Bollen and Stine 1990). These mediation effect confidence intervals 

tend to lie to the left of the true value of the mediation effect for positive mediation effect 

and to the right for negative mediation effect (Bollen and Stine 1990; MacKinnon et al. 

1995; Stone and Sobel, 1990). Asymmetric confidence limits based on the distribution of 

the product and bootstrap estimation generally have better coverage (MacKinnon et al., 

2004). 

    Often models are proposed that include more than a single mediator in the causal 

chain between treatment and outcome variables. An example can be found in Allen and 

Griffeth (2001) in which job performance positively affected employees’ perceived 

employment alternatives, which in turn positively affected their intention to leave 

(turnover intention), which in turn affected actual turnover. A study of divorced mothers 

tested the hypothesis that the effect of negative life events on parenting behaviors would 
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be mediated by two variables in turn: psychological distress and avoidant coping (Tein et 

al., 2000). In the linear case, the product of coefficients approach can be extended to 

estimate mediation effects in the context of multiple stages (Taylor et al., 2008). In this 

approach, the three-path mediation effects estimation requires that the following three 

regression equations be estimated: 

M1 = α1 + β1T + ε1                                                    (4) 

M2 = α2 + β2T + γ1M1 + ε2                                                    (5)  

Y = α3 + β3T + γ2M1 + γ3M2 + ε3                                                            (6) 

In these equations, Y is the outcome variable, T is the treatment indicator, and M1 and M2 

are the two sequential mediators. There are a number of different effects of that might be 

defined using this model. It can be shown that the direct effect of T on Y is β3 in equation 

(6), and the total mediation effect of T on Y, the effect passing through either mediator, is 

β1γ1γ3 + β1γ2 + β2γ3. This effect can be broken down into the three-path mediation effect, 

which is the effect passing through both mediators (β1γ1γ3), and the two-path mediation 

effects, the effects passing through only one of the mediator (β1γ2 and β2γ3). Another 

effect that may be studied is the mediation effect passing through one mediator, such as 

β1γ1γ3 + β1γ2 for M1 and β1γ1γ3 + β2γ3 for M2.  

1.2.1.3 Mediation analysis with other types of outcomes and mediators 

In some mediation analyses, the dependent variable is categorical, such as whether a new 

drug cures the patient or not after treatment. In this case, equation (1) and (3) must be 
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rewritten for logistic or probit regression, where the dependent variable may be viewed as 

a latent continuous variable that has been dichotomized in its observed form. The 

mediation effects for a binary outcome may be defined using either the risk difference 

scale or the odds ratio scale (VanderWeele and Vansteelandt, 2010). For the odds ratio 

scale, there are two commonly used methods for computing mediation effects. Freedman 

et al. (1992) suggested the difference of coefficients method, while MacKinnon et al. 

(2007) advocated the product of coefficients method. Advantages of the latter are that it 

has less bias than the difference in coefficients method. In addition, the product of 

coefficients method was also shown to be robust against (logistic versus probit) model 

misspecification, as well as the normality assumption for the distribution of the mediator 

(MacKinnon et al., 2007). Schluchter (2008) illustrates how generalized estimating 

equations (GEE) modeling which applies to the class of generalized models, including 

linear, logistic, and Poisson regression, can be used to estimate the indirect effect, defined 

as the amount by which the regression coefficients of exposure on outcome changes after 

adjusting for mediator.  

    Li et al. (2007) consider the mediation model with a binary mediator and a 

continuous outcome. In their paper, they consider three types of mediation effect 

estimators and found that the estimators that account for the binary nature of the mediator 

(called the adjusted logit and probit estimators in the paper) that are consistent for the 

mediation effect defined in this paper while other estimators are inconsistent. They 

further concluded that the crude difference-in-coefficients estimator should be used with 



25 
 

caution, and that the product of coefficients estimators should not be used. Huang et al. 

(2004) studied the situation where both the mediator and outcome are binary variables. 

Three approaches to the estimation of mediation effects – the delta method (relevant to 

product of coefficients approach), a bootstrap and a Bayesian modeling approach ‒ were 

investigated. Their Monte Carlo simulations showed that Bayesian method using a 

non-informative prior outperformed both the bootstrap and delta methods, particularly for 

small sample sizes. 

1.2.1.4 The potential outcomes framework 

Recently, researchers (Robins and Greenland, 1992; Albert, 2008; Imai et al., 2010) have 

addressed mediation analysis using the potential outcomes framework. This framework 

allows clear definitions of mediation effects in causal terms and explication of 

assumptions required for causal inference. Generally, M(t) denotes the potential value of 

the mediator under the treatment status t, Y(t, m) represents the potential outcome of Y 

when T = t and M = m. Then, Y(t, M(t΄)) indicates the counterfactual value of Y that 

would be observed if T was set to t and M was set to value of M that would be observed if 

T was set to t΄. 

    In the potential outcomes notation, the causal mediation effect in the standard 

two-stage mediation model under treatment status t can be defined as (Robins and 

Greenland, 1992; Pearl, 2001): 

 ( ) { ( , (1))} { ( , (0))}IE t E Y t M E Y t M≡ −                                      (7) 
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for a binary treatment indicator t = 0, 1, Pearl (2001) called IE(t) the natural indirect 

effect, while Robins (2003) used the term the pure indirect effect for IE(0) and the total 

indirect effect for IE(1). In words, IE(t) represents the difference between two mean 

potential outcomes that would result under treatment indicator t, but where the mediator 

takes a value that would result under different treatment assignments. 

    Similarly, the natural direct effect and the total causal effect in the potential 

outcomes framework can be defined as: 

( ) { (1, ( ))} { (0, ( ))}DE t E Y M t E Y M t≡ −                                      (8)             

{ (1, (1))} { (0, (0))}TE E Y M E Y M≡ −            (9)                                                                                                          

It is easy to derive the important relationship TE = IE(t) + DE(1 ‒ t); in words, the total 

causal effect is equal to the sum of the natural indirect effect under one treatment 

assignment and the natural direct effect under the other treatment assignment (Imai, 2010; 

Pearl, 2011).  

    The natural indirect effect and natural direct effect differ from the controlled direct 

effect of the mediator, that is Y(t, m) - Y(t, m΄) for t = 0, 1, and that of treatment, which is 

Y(1, m) - Y(0, m) (Pearl, 2001 and 2011). In contrast to the natural direct and indirect 

effects, the controlled direct effects of the mediator are defined in terms of specific values 

of the mediator, m and m΄, rather than its potential value, M(t). In this sense, the natural 

indirect effect examines whether M mediates the causal relationship between T and Y, 

whereas the controlled direct effect of mediator investigates whether T moderates the 

causal effect of M on Y (Baron and Kenny, 1986; Imai, 2010). 
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1.2.1.5 Mediation analysis with mediation formula approach 

There are necessary assumptions for the identifiability of the causal mediation effects, 

and the key assumption made is that is that of ‘sequential ignorability’ which consists of 

no unmeasured confounding as well as the requirement that no mediator-outcome 

confounder be affected by exposure (Peterson et al., 2006). The assumption sets proposed 

by Imai et al. (2010) are defined as: 

Assumption 1 (Sequential Ignorability): 

{Y(t΄, m), M(t)} ╨ T | W = w                        (10) 

Y(t΄, m) ╨ M(t) | W = w, T = t                                 (11) 

Thus, the treatment is first assumed to be independent of potential outcomes and 

mediators given the baseline covariates, and then the mediator variable is assumed to be 

independent of potential outcomes given observed values of treatment assignment and the 

baseline covariates. Slight variants of this set of assumptions have been proposed by 

other authors (Pearl, 2001; Petersen et al. 2006; van der Laan and Petersen, 2008; 

VanderWeele, 2010). Imai et al. (2010) compared their identifying assumption with those 

proposed in the literature. Shpitser and VanderWeele (2011) show that Imai’s assumptions 

(2010) are equivalent to Pearl’s (2001) assumptions in the sense that if either set of 

assumptions holds for all models inducing a particular causal diagram, then the other set 

of assumptions will also hold for all models inducing that diagram.   

    The following theorem shows that the potential outcome means necessary for the 

estimation of mediation effect under the above assumptions are nonparametrically 
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identified. 

Theorem 1.Under Assumption 1, for continuous covariate w and binary treatment t: 

| ',( ( , ( '))) { | , , } ( ) ( )M T t W w WE Y t M t E Y M m T t W w dF m dF w= == = = =∫∫                (12) 

The proof is given in Appendix I. A similar proof is shown by Imai et al. (2010) and 

Shpitser and VanderWeele (2011). This theorem shows that under sequential ignorability 

the distribution of the required potential outcomes can be expressed as a function of the 

distribution of the observed data. Thus, the assumption lets us make inferences about the 

counterfactual quantities that are not observed. This approach to estimating causal effects 

is employed by numerous authors (Baron and Kenny, 1986; Li et al., 2007; Imai, 2010; 

Pearl, 2011), although its applicability in the context of the linear structural equation 

model is not always recognized. Pearl (2011) denotes the expression in Theorem 1 as the 

‘mediation formula’; this formula basically  expresses a mean potential outcome of Y as 

an integral of the conditional mean of Y over the probability density distribution of the 

mediators under the identifiability assumption described above.  

    Since Theorem 1 is not based on any specific model, it can be used to develop a 

general estimation procedure for causal mediation effects under linear as well as various 

nonlinear conditions. Imai et al. (2010) proposed a general approach based on the 

mediation formula idea which can accommodate continuous and discrete mediators, and 

various types of outcome variables. The application of this approach to mediation effect 

estimation for a binary outcome using the risk difference scale was discussed in their 
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paper. Imai et al. (2010) also developed a sensitivity analysis in the context of commonly 

used models, which enables researchers to formally assess the robustness of their 

empirical conclusion to violations of the key assumption. 

    Based on the mediation formula, Albert and Nelson (2011) presented a method 

applicable to multiple stages of mediation and mixed variable types using generalized 

linear models. They define pathway effects using a potential outcomes framework and 

present a general formula that provides the effect of exposure through any specified 

pathway. As shown by Avin et al. (2005), not all pathway effects will be identifiable 

without additional assumptions, in particular, the effect of a path from T to Y is 

nonidentifiable if and only if there is a path from some mediator M to Y that is activated 

(the response Y were set to the value it would have if M set to value it would have were 

the individual exposed) while another path from M to Y is deactivated (the response Y 

were set to the value it would have if M set to value it would have were the individual not 

exposed), and the path from T to M is activated (the mediator M were set to the value it 

would have were the individual exposed). A sensitivity analysis to assess the impact of 

the additional assumption was also proposed in this paper. 

1.2.2 Statistical Models for Zero-inflated Response 

We consider models for a count outcome y based on the zero-inflated negative binomial 

(ZINB) and negative binomial hurdle (NBH) models. In the ZINB model, two latent 

subpopulations can be defined, a susceptible population with responses distributed as 



30 
 

negative binomial (mean λ) and a non-susceptible group with responses fixed at zero. The 

mixture probability, denoted as ψ, is the probability of being in the susceptible population. 

In the NBH model, the cross-hurdle probability is denoted as ψ, and conditional on 

crossing the hurdle, a positive outcome is distributed as truncated negative binomial 

(mean λ). The negative binomial distribution has mass function given by 

1/
( 1/ ) 1( ; , )
! (1/ ) 1 1/

y
ynb y

y

φ
φ λλ φ
φ φλ φ λ

   Γ +
= ×   Γ + +         

                               (13) 

where ϕ is the dispersion parameter, and the mean and variance are λ and λ(1 + ϕλ) 

respectively. 

The ZINB model has a probability density function given by 
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( ; , ) for  0

( ; , , )
nb y y
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                          (14)  

with mean and variance given by ψλ and ψλ(1 + λ(1 – ψ + ϕ)). 

Similarly, the NBH model has a density given by 
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where p0 is equal to nb(0; λ, ϕ). The mean and variance for the NBH are given by 
01 p

yλ

−
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respectively. The 

derivation of mean and variance of ZINB and NBH model is shown in Appendix II. 

    As ϕ approaches zero, the ZINB and NBH models approach the zero-inflated 

Poisson (ZIP) and Poisson hurdle (PH) models respectively. The non-zero (crossing 
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hurdle) probability (ψ) and the (truncated) negative binomial mean (λ) may be modeled 

with a logistic regression model and a log-linear regression model, i.e. logit(ψ) = α′x and 

ln(λ) = β′x. Because the count responses for all subjects are assumed to be independent, 

the log-likelihood of the ZINB and NBH models are defined by summing the log of the 

expressions in equation (14) and (15) respectively over all the subjects. The resulting 

log-likelihood is then maximized simultaneously to estimate all parameters in the model. 

In our study, estimation was implemented using the adaptive Gaussian quadrature 

algorithm in the SAS (Version 9.2, SAS Institute Inc., Cary, NC, USA) PROC 

NLMIXED procedure. 
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1.3 Defining Overall and Decomposition of Meditation Effects 

We now provide definitions and notation relevant for our proposed methods.  

1.3.1 Defining causal mediation effects for zero-inflated regression models 

Consider the general casual model including a binary exposure or treatment indicator (T), 

a mediator (M) and a zero-inflated distributed outcome (Y), where T may affect Y directly 

or T may affect M, which then affects Y. Figure 1.3 provides the path diagram. To define 

the causal mediation effects, we use the potential outcomes framework. Under the 

standard two-stage mediation model considering ZI count outcome, the natural indirect 

effect, natural direct effect and total causal effect in ZI regression model can also be 

defined as equation (7), (8) and (9) (listed above). Here, we consider t = 1 only and 

denote IE(1) as IE and DE(0) as DE; for t = 0, method will be similar. 

 

Figure 1.3. Path diagram in a two-stage mediation model. T = exposure or treatment, M = mediator, Y = 

outcome; TE = total casual effect, IE = natural indirect effect, DE = natural direct effect. 

1.3.2 Defining decomposition of overall natural indirect effect 

In ZI models, it is possible to further dissect the total natural indirect effect. We do this by 

introducing a latent variable Y1 indicating whether the subject belongs to the ‘susceptible’ 



33 
 

(Y1 = 1) or ‘non-susceptible’ populations (Y1 = 0). Thus, our approach conceives of 

‘susceptibility’ as manipulable, rather than a fixed trait. Incorporating this latent variable, 

which we refer to as the ‘susceptibility indicator’, we obtain an extended causal model 

involving, in causal order, the variables (T, M, Y1, Y), and thus three stages of mediation 

(Figure 1.4). This model allows us to partition the overall total natural indirect effect into 

two paths, through or not through Y1. We will follow the notation used by Albert and 

Nelson (2011) in their three-stage mediation framework. In our ZI model, the potential 

outcome of Y given manipulation D, with corresponding exposure indicator variables d = 

(d0, d1, d2, d1,2), can be written as Y(d0, M(d1), Y1(d2, M(d1,2))), where Y1(d2, M(d1,2)) is the 

potential outcome for Y1, were exposure set to d2, and M set to the value it would take 

were exposure set to d1,2.  

 

Figure 1.4. Path diagram for decomposition of overall mediation effect in a three-stage model. Y1 = 

susceptible group indicator; IEB = natural indirect effect through susceptible group indicator (Y1), IEN = 

natural indirect effect not through susceptible group indicator (Y1). T, M, Y, and IE are shown as Figure 1.3.  

    The total natural indirect effect can be broken into two path-specific effects, one 

path effect (denoted ‘IEB’, meaning Indirect Effect by affecting Binary component of 
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ZINB model) is through the susceptibility indicator Y1; the other is the direct effect of M 

on Y (denoted as ‘IEN’, meaning Indirect Effect by affecting NB component of ZINB 

model directly), that is, the part of the mediation effect not through Y1 (Figure 1.4). IEB 

and IEN are each defined as the difference between two mean potential outcomes as 

follows,      

1 1{ (1, (0), (1, (1)))} { (1, (0), (1, (0)))}IEB E Y M Y M E Y M Y M≡ −               (16) 

1 1{ (1, (1), (1, (1)))} { (1, (0), (1, (1)))}IEN E Y M Y M E Y M Y M≡ −                     (17) 

Specifically, IEB represents the difference between two expected potential outcomes in 

which the exposure status (T = 1 indicating exposed) and the mediator potential outcome 

(M(0)) affecting the NB component of the ZI model is kept consistent, while the mediator 

affecting the binary component of the ZI model takes values that would result under 

different exposure statuses (M(1) vs. M(0)). Note that the sum of IEB and IEN is equal to 

IE. An alternative decomposition of the overall mediation effect (where IEB is defined as 

difference in the means of Y(1, M(1), Y1(1, M(1))) and Y(1, M(1), Y1(1, M(0))), and IEN is 

defined as the difference in the means of Y(1, M(1), Y1(1, M(0))) and Y(1, M(0), Y1(1, 

M(0)))) can be handled similarly and thus is not discussed here. 
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1.4 Analysis of Overall Mediation Effect for Zero-Inflated Models 

We begin by presenting approaches for assessing the overall mediation effect. For 

comparison, we illustrate an ad hoc ‘difference in effects’ method. Following that we 

derive total and decomposition of mediation effect estimators utilizing the mediation 

formula. 

1.4.1 Difference in effects approach 

Before defining the mediation effect for the ZINB model, we present an ad hoc estimator 

of causal effects using an extension of the popular difference in coefficients idea, which 

we refer to as a ‘difference in effects’ approach. In this approach, two ZINB models, each 

involving two component models, are fit in order to estimate IE and DE. The first model 

does not adjust for the mediator and is written as: 

0 1 0 1logit( ) ln( )t ty ζ ζ λ ξ ξ= + + = + +' 'ζ ξw w                                 (18) 

where ψ ≡ E(Y1 | t, w) , λ ≡ E(Y | t, w, Y1 = 1), ζ0, ζ1, ξ0 and ξ1 are unknown parameters, ζ 

and ξ are unknown parameter vectors, t is the exposure indicator (equal to 1 if exposed, 0 

otherwise), and w is a vector of observed covariate values for an individual with response 

y. The overall mean of ZINB distributed response y for this individual (covariate w) will 

be logit-1(ζ0 + ζ1 + ζ΄w)exp(ξ0 + ξ1 + ξ΄w) if this individual is exposed and logit-1(ζ0 + 

ζ΄w)exp(ξ0 + ξ΄w) if not exposed based on formula provided in Section 1.2.2. From this 

model, we define the overall exposure effect as the total causal effect TEi for an 

individual with covariate vector w (over the two components of the ZI model) (Albert et 
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al., 2011) 

-1 -1
0 1 0 1 0 0logit ( ) exp( ) logit ( ) exp( )iTE ζ ζ ξ ξ ζ ξ= + + + + − + +' ' ' 'ζ ξ ζ ξw w w w          (19) 

The second model adjusts for the mediator and is written as: 

0 1 2 0 1 2logit( ) ln( )t tm my α α α λ β β β= + + + = + + +' 'α βw w                  (20) 

where the mediator m is adjusted and included in both components of models. The 

overall exposure effect from this model provides the direct effect DEi (of exposure on 

response) for an individual with covariance vector w:  

-1
0 1 2 0 1 2

-1
0 2 0 2

logit ( ) exp( )

logit ( ) exp( )
iDE m m

m m
α α α β β β

α α β β

= + + + + + +

− + + + +

' '
' '

α β

α β

w w
w w

                        (21) 

The difference in the individual total and direct effects provides the individual indirect 

effect. Corresponding population effects are defined as averages over the subjects in the 

designated population (sample or subsample). Estimators for these effects are obtained by 

substituting the maximum likelihood estimators for the corresponding regression 

parameters obtained from the appropriate fitted model in the above expressions. This ad 

hoc method is an extension of the popular difference in coefficients approach 

(MacKinnon and Dwyer, 1993; MacKinnon et al., 2007). Note that different types of 

mediators (for example, continuous or discrete) are accommodated in this approach. 

1.4.2 Estimation of overall mediation effect with mediation formula approach 

We start by presenting identification results for the (overall) indirect and direct effects, 

defined by (7) and (8) using the potential outcomes framework described above. Under 

assumption 1 ((10) and (11)), the natural indirect effect, natural direct effect and total 
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causal effect can be calculated respectively as: 

{ }( )| 1, | 0,| , 1, ( ) ( ) ( )M T W w M T W w WIE E Y M m T W w dF m dF m dF w= = = == = = = −∫∫              (22)
 

{ } { }( ) | 0,| , 1, | , 0, ( ) ( )M T W w WDE E Y M m T W w E Y M m T W w dF m dF w= == = = = − = = =∫∫     
(23)

 

{ } { }( )| 1, | 0,| , 1, ( ) | , 0, ( ) ( )M T W w M T W w WTE E Y M m T W w dF m E Y M m T W w dF m dF w= = = == = = = − = = =∫∫
            

(24) 

Summation should be used in place of integration in the case of discrete mediators and/or 

discrete covariates. 

    Integrations can be approximated using Monte Carlo integration, which averages the 

integrand over randomly generated realizations of the assumed distribution of the 

mediator (James, 1980). Suppose that m1 … mS and m1΄ … mS΄ are randomly generated 

from the assumed distribution of M(0) and M(1) respectively. Formulae (22) and (23) can 

then be approximated by the following expressions: 

1 1 1

1 1 1
{ | ', 1, } { | , 1, }

N S S

i j i j
j i i

IE E Y M m T W w E Y M m T W w
N S S= = =

≈ = = = − = = = 
 
 

∑ ∑ ∑ (25)

1 1 1

1 1 1
{ | , 1, } { | , 0, }

N S S

i j i j
j i i

DE E Y M m T W w E Y M m T W w
N S S= = =

≈ = = = − = = = 
 
 

∑ ∑ ∑
                

(26) 

    To carry out estimation of the direct and indirect effects in (22) and (23) we need a 

model for the regression of Y on M, T, and W. For the present application of interest, we 

will consider the following zero-inflated model. The model for Y, allowing the mediator 

(M) to affect both the susceptibility indicator (Y1) and the response Y given susceptible is 

that given in (20). For the mediator, we consider appropriate regression models for the 

binary and continuous mediator cases (allowing the mediator to depend on the exposure 

variable and baseline covariates (W)) specifically, we use the following regression 
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models for a binary and continuous mediator, respectively, 

0 1logit( )m tg g= + + 'g w                                                      (27) 

0 1
2, (0, )m where Ntg g e e σ= + + +' g w                                 (28) 

1.4.3 Sensitivity analysis 

For the identified overall mediation effect in our potential outcomes framework, the 

quantity cannot be given a causal interpretation without the particular assumption set (10) 

and (11). Assumption (10) is satisfied in a randomized treatment study or cohort study, 

where randomization probabilities may be a function of baseline covariates, w. 

Assumption (11) may not hold if there exists unmeasured confounding for the 

mediator-outcome relationship. We examine the effect of violation of assumption (11) on 

estimation of the overall indirect and direct effects. To calculate the necessary joint 

distribution (possibly involving both continuous and discrete variables) we use the 

approach of Albert and Nelson (2011) which applies the Gaussian copula (Song et al., 

2009).  

    We propose a sensitivity analysis based on a general model for the joint probability 

of Y(t΄, m) and M(t). The count outcome Y has K + 1 possible values (0, 1, 2, …K), where 

K is the assumed upper limit for Y. PY(t΄,m)(y) = P{Y(t΄, m) ≤ y} and PM(t)(m) = P{M(t) ≤ m} 

will denote the cumulative distribution functions of Y and M. We suppose that there are, 

corresponding to Y(t΄, m) and M(t), latent variables, denoted as Y*(t΄, m) and M*(t) 

respectively, which are marginally distributed as standard normal and satisfy the 
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relationship Y*(t΄, m) = Φ-1{PY(t΄,m)(y)} and M*(t) = Φ-1{PM(t)}, where Φ is the standard 

normal distribution function. In addition, Y*(t΄, m) and M*(t) are assumed bivariate 

normally distributed with correlation ρ, for all t, t΄ and m. In order to properly handle the 

discrete nature of the distributions of Y, we propose a Monte Carlo approach similar to 

that used by Albert and Nelson (2011) to compute the conditional distributions P{Y(t΄, mi) 

= j, j = 1, 2, …, K | M(t) = mi} for possible values of mi. Specifically, we use the 

following algorithm: 

(1) Sample a mediator mi ~ fM(t) (m), i = 1, 2, …, n. 

(2) For a continuous mi, get U1 = Φ-1{PM(t)(mi)}. For a binary mi, if mi = 0 then draw a 

uniform variate u1 from the interval [0, PM(t)(0)], if mi = 1 then draw a uniform 

variate u1 from the interval (PM(t) (0), 1], let U1 = Φ-1{u1} . 

(3) Draw a variate U2 ~ N (ρU1, 1 - ρ2), let u2 = Φ(U2). 

(4) Let Cji = 1 if u2∊ (PY(t´,mi)(j-1), PY(t´,mi)(j)], and Cji = 0, otherwise, for j = 1, 2, …, K 

(with the subscript i indicating the conditioning on mi). 

(5) Repeat steps 2 – 4 with independent draws a large number of (say R) times 

obtaining Cjir in the rth replicate for r = 1, 2, 3, … , R. 

(6) Following the R replications for each mi, we estimate the conditional probability 

P{Y(t´, mi) = j | M(t) = mi } as jirr
C

R
∑  for j, j = 1, 2, …, K. 

(7) Repeat steps 1 – 6 n times, we can obtain an estimate of E{Y(t´, M(t))} as 

( ) ( ){ }
1 1

1
',   |  

n K

i i
i j

jP Y t m j M t m
n = =

= =
 
 
 

∑ ∑ . 
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Therefore, supposing that the correlation ρ between Y*(t΄, m) and M*(t) is given, the 

overall natural indirect effect and natural direct effect are identified and given by 

( ) ( ){ } ( ) ( ){ }
1 1 1 1

1
1, '   | 1  ' 1,   | 0  

n K n K

i i i i
i j i j

IE jP Y m j M m jP Y m j M m
n = = = =

= = = − = =
    
    

   
∑ ∑ ∑ ∑

       

(29)
 

( ) ( ){ } ( ) ( ){ }
1 1 1 1

1
1,   | 0  0,   | 0  

n K n K

i i i i
i j i j

DE jP Y m j M m jP Y m j M m
n = = = =

= = = − = =
    
    

   
∑ ∑ ∑ ∑      (30) 

where mi and mi΄ are randomly generated from the assumed distribution of M(0) and M(1) 

as shown in formula (25) and (26). These estimates can be recomputed using the above 

algorithm over varying values for ρ to provide a sensitivity analysis.  
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1.5 Decomposition of the Causal Effect for Zero-Inflated Models  

1.5.1 Identifying decomposition path effects 

To identify the path effects of the decomposed overall indirect effect ((16) and (17) given 

in Section 1.3.2), we extend the preceding sequential ignorability assumption to the 

three-stage causal model case. The three-stage sequential ignorability assumption is given 

as 

Assumption 2: 

{Y(t΄΄, m΄, y1), Y1(t΄, m), M(t)} ╨ T | W = w                                  (31) 

{Y(t΄΄, m΄, y1), Y1(t΄, m)} ╨ M(t) | W = w, T = t                                 (32) 

Y(t΄, m΄, y1) ╨ Y1(t, m) | W = w, T = t, M = m                                               (33) 

 

Thus, each intermediate variable in the model is assumed to be ignorable (that is 

independent of subsequent potential outcomes) given all preceding variables in the causal 

model.  

1.5.2 Estimation of decomposition of total mediation effect for the ZINB Model 

To demonstrate identifiability of the decomposition path effects, we will examine 

identification of the relevant potential outcome means (of the general form E(Y(d0, M(d1), 

Y1(d2, M(d1,2))))) given baseline covariate w under sequential ignorability (Assumption 2). 

Under Assumption 2 it can be shown that, 

1 1 ,2

2

0 1 1 2 1,2 0 1 1 2 ( ), ( ){ ( , ( ), ( , ( )))} { | , , 1} { | , '} ( , ')M d M dE Y d M d Y d M d E Y T d M m Y E Y T d M m d F m m= = = = = =∫∫         (34) 
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As before, integration will be interpreted as summation in the case of a discrete mediator. 

Note that in general the expectations and distribution in (34) will be conditional on 

baseline covariates w; however, this conditioning is left out of the expression, and those 

below, for brevity. When d1 and d1,2 are unequal (thus, equal to 1 and 0 or vice versa), 

expression (34) shows that we require the joint distribution of M(1) and M(0) in order to 

estimate E(Y(d0, M(d1), Y1(d2, M(d1,2)))). As seen in equations (16) and (17), both IEB and 

IEN involve an expected potential outcome in which d1 does not equal d1,2 – namely, 

(E{Y(1, M(0), Y1(1, M(1)))});  d1 equals d1,2 in the other potential outcomes (E{Y(1, 

M(0), Y1(1, M(0)))} and E{Y(1, M(1), Y1(1, M(1)))}). Generally the joint distribution of 

M(1) and M(0) is unknown and cannot be estimated because both of these outcomes 

cannot be observed for the same subject. For identifiability we need to make an 

untestable assumption regarding the joint distribution of these two potential outcomes. 

For instance, in the continuous mediator case, we may assume that M(1) and M(0) are 

bivariate normally distributed with specified correlation coefficient τ. For a non-normally 

distributed mediator, we can specify joint distribution of these two counterfactuals (M(1) 

and M(0)) using the copula method discussed above. Under this assumption in addition to 

Assumption 2, the expected potential outcome E(Y(d0, M(d1), Y1(d2, M(d1,2)))) when d1 ≠ 

d1,2 can be identified and computed using formula (34). The nonidentifiability of some 

pathway effects in three (or more) stage mediation is also mentioned by Avin et al. (2005) 

and Albert and Nelson (2011).  

    When d1 equals d1,2, E(Y(d0, M(d1), Y1(d2, M(d1)))) can be estimated by, 
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10 1 1 2 1 0 1 1 2 ( ){ ( , ( ), ( , ( )))} { | , , 1} { | , } ( )M dE Y d M d Y d M d E Y T d M m Y E Y T d M m dF m= = = = = =∫      (35) 

A proof of formulae (34) and (35) under assumptions (31) – (33) is given in Appendix III. 

    Similar expressions using Monte Carlo integration can be used to estimate the 

components of the overall mediation effect (that is, IEB and IEN),  

1 1 1 1
1 1

1
{ | 1, , 1} { | 1, '} { | 1, , 1} { | 1, }

n n

i i i i
i i

IEB E Y T M m Y E Y T M m E Y T M m Y E Y T M m
n = =

≈ = = = = = − = = = = = 
 
 
∑ ∑ (36)
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1
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n n

i i i i
i i

IEN E Y T M m Y E Y T M m E Y T M m Y E Y T M m
n = =

≈ = = = = = − = = = = = 
 
 
∑ ∑

                      

(37) 

where (mi, mi΄) are drawn from the joint distribution fM(0), M(1) (m, m΄). 
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1.6 Simulation Study 

In this section, we conduct a simulation study to compare natural indirect effect 

estimators from the difference in effects and mediation formula approaches for a binary 

as well as a continuous mediator. For the continuous mediator case, we also determine the 

number of samples needed for our Monte Carlo integration method to achieve acceptable 

mean squared error. In addition, we consider analogous scenarios in which data are 

simulated under the NBH model and investigate the robustness under this model of 

estimates assuming the ZINB model. Finally, we want to assess the effect of the 

correlation (τ) between the (assumed bivariate normal) counterfactuals M(1) and M(0) on 

the estimation of the mediation effects through susceptibility indicator Y1 (IEB), and not 

through Y1 (IEN). 

1.6.1 Comparison of difference in effects and mediation formula approach 

In our first simulation study, we studied the mediation effect (IE) assuming a ZINB 

model with different types of mediators. The logistic regression model for the susceptible 

probability and log-linear model for the susceptible population mean both include a 

binary exposure indicator (T = 1 if exposed, 0, otherwise), a common categorical 

covariate, W (constrained so that each exposure group had a 50% frequency of w = 1) and 

a mediator variable, M (either binary or continuous). The model is thus given as (20) 

above with α΄ = α3 and β΄ = β3 where α3 and β3 are unknown scalar coefficients for 

covariate w. Binary and continuous mediators were modeled as (27) and (28), and the 
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same balanced covariate W was included in these two models. The other parameter that 

needs to be specified is the negative binomial dispersion parameter ϕ, and we chose 0.5 

for all our simulation scenarios. 

    We considered nine scenarios which are distinguished in the magnitude of the 

natural indirect effect, IE, (corresponding to parameters α2, β2 and γ1) and of the natural 

direct effect, DE, (corresponding to parameters α1 and β1). The scenarios were specified 

as: (1) large direct effect and zero indirect effect; (2) large direct effect and small indirect 

effect; (3) large direct effect and large indirect effect; (4) small direct effect and zero 

indirect effect; (5) small direct effect and small indirect effect; (6) small direct effect and 

large indirect effect; (7) zero direct effect and zero indirect effect; (8) zero direct effect 

and small indirect effect; (9) zero direct effect and large indirect effect. In the continuous 

mediator scenario, two standard deviation values for the mediator were considered, small 

σ (equal to 0.5) and large σ (equal to 2.5). 

    For each of the above scenarios and type of mediators, 1000 simulated datasets were 

generated. Sample sizes of 200 (100 per exposure group) and 1000 (500 per exposure 

group) were used. The exposure indicator and covariate were generated independently for 

individuals within each dataset using the pseudorandom number generator function 

‘RAND’ in SAS/IML. For each given exposure and covariate, the mediator variable was 

generated using equation (27) and (28). The response variates were then generated 

independently according to the ZINB distribution with regression model (20) given the 

generated individual exposure, covariate and mediator variables. 
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    The true natural indirect effect is defined by the function on the right hand side of 

(22), with true coefficients in place of the estimates. Summation should replace the 

integral calculation in equation (22) when dealing with discrete mediators or covariates. 

For each generated dataset, the difference in effects method and the mediation formula 

approach were used to calculate the estimated IE, and 95% confidence intervals for each 

approach were constructed with percentile estimates from 1000 bootstrap samples. From 

the simulations, we calculated the average estimate of IE; the average percent error (PE = 

100 ×  (Average Estimated IE – True IE)/true IE) of IE, a measure of relative bias; the 

SD of estimated IE; the average estimated SE of estimated IE; the coverage probability 

(CP, percent of simulated datasets for which 95% confidence interval for IE covered the 

true value). 

    Table 1.1 gives results for the binary mediator case with total sample size 200 and 

1000 respectively. With sample size 200, we see over all nine scenarios that the mediation 

formula approach produces a small bias in its estimation of IE, and the average PE is less 

than 2.1% for all scenarios. The coverage probabilities of 95% confidence intervals 

deviate from the nominal level for four of nine scenarios by around 3%. The difference in 

effects approach gives an IE estimator which is almost as good as that of the mediation 

formula approach when either true DE or IE is zero, but overestimates the IE (around 

30%) when a large DE exists. When the sample size per group is increased to 500 

(second part of Table 1.1), the mediation formula approach also shows very low bias (less 

than 2%) and the coverage probability gets closer to nominal rate compared with the 
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smaller sample size scenarios. In contrast, the difference in effects approach still 

overestimates the IE in non-zero IE scenarios, and the overestimation increases as DE 

increases. 

    We also considered the continuous mediator variables case, and corresponding 

simulation results are shown in Table 1.2. Both methods can give good estimators in zero 

IE scenarios. In the non-zero IE scenarios, the mediation formula approach provides 

relative biases of less than 9% for all scenarios with n = 100 per group, and less than 6% 

for all scenarios with n = 500 per group for both small and large mediator SD scenarios. 

Bootstrap 95% confidence intervals are conservative (with greater than 99% coverage 

probability) for zero-IE scenarios with small mediator SD, but are good for all scenarios 

(within 2% of nominal level) when the mediator SD increases from 0.5 to 2.5. For 

non-zero IE scenarios, the performance of difference in effects approach is similar to that 

in the binary case; specifically, it overestimates the IE, and the overestimation increases 

as DE increases. 

1.6.2 Determination of number of samples for Monte Carlo integration 

In a second simulation study, we determined the number of Monte Carlo samples (S) 

needed for a good approximation of the integration in formula (22) when the mediator 

variable is continuous in the model shown in (20) and (28). The same 9×2×2 scenarios 

(9 different magnitudes of IE and DE, 2 selected mediator standard deviations (σ), and 2 

sample sizes: 200 and 1000) were considered as above. IE estimators from 1000 

simulated datasets using the mediation formula approach with ‘exact’ integration (22) as 
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Table 1.1. Simulation statistics for the natural indirect effect of binary mediator using 
mediation formula approach and difference in effects approach on data generated from 
ZINB/logit-log model. 

Sa
m

pl
e 

 
Si

ze
 True 

DE 
Est 

True 
IE 
Est 

Mediation Formula approach  Difference in Effects approach 
Ave 
Est 
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 Ave 
Est  
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 

100 -0.766 0.000 -0.001 - 0.044 0.048 98.0  -0.003 - 0.083 0.095 98.1 
-0.888 -0.263 -0.265 0.61 0.117 0.121 94.3  -0.339 28.90 0.165 0.170 95.0 
-1.243 -0.753 -0.755 0.29 0.268 0.262 93.1  -0.978 29.94 0.323 0.321 90.2 
-0.265 0.000 -0.001 - 0.059 0.066 97.8  -0.005 - 0.093 0.103 98.5 
-0.308 -0.241 -0.242 0.34 0.126 0.131 95.1  -0.261 8.35 0.167 0.171 96.0 
-0.319 -0.773 -0.773 0.04 0.270 0.256 91.8  -0.833 7.71 0.270 0.268 95.0 
0.000 0.000 -0.002 - 0.065 0.075 97.7  -0.003 - 0.091 0.108 98.7 
0.000 -0.276 -0.277 0.14 0.145 0.149 95.3  -0.274 -0.92 0.172 0.182 95.7 
0.000 -0.710 -0.725 2.02 0.245 0.249 95.0  -0.723 1.76 0.257 0.265 95.4 

             
500 -0.766 0.000 -0.001 - 0.017 0.018 94.2  -0.001 - 0.033 0.034 94.1 

-0.888 -0.263 -0.264 0.38 0.050 0.051 95.1  -0.340 29.02 0.071 0.072 82.9 
-1.243 -0.753 -0.753 0.02 0.111 0.111 95.2  -0.971 28.91 0.137 0.137 63.8 
-0.265 0.000 0.000 - 0.024 0.025 95.4  -0.001 - 0.038 0.038 94.3 
-0.308 -0.241 -0.240 -0.53 0.056 0.055 95.2  -0.256 6.03 0.074 0.073 95.0 
-0.319 -0.773 -0.771 -0.32 0.112 0.109 94.7  -0.827 6.99 0.117 0.115 92.4 
0.000 0.000 0.000 - 0.027 0.028 95.5  -0.001 - 0.038 0.040 95.9 
0.000 -0.276 -0.272 -1.49 0.062 0.062 93.7  -0.271 -1.99 0.078 0.077 95.0 
0.000 -0.710 -0.707 -0.55 0.105 0.105 95.1  -0.708 -0.33 0.112 0.114 95.2 
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Table 1.2. Simulation statistics for the natural indirect effect of continuous mediator using 
mediation formula approach and difference in effects approach on data generated from 
ZINB/logit-log model. 

Sa
m

pl
e 

 
Si

ze
 

Si
gm

a True 
DE 
Est 

True 
IE 
Est 

Mediation Formula approach  Difference in Effects approach 
Ave 
Est 
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 Ave 
Est 
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 

100 0.5 -0.690 0.000 -0.001 - 0.023 0.036 99.6  -0.001 - 0.050 0.083 99.9 
  -0.789 -0.197 -0.207 5.31 0.205 0.218 95.1  -0.257 30.68 0.237 0.254 95.6 
  -1.194 -0.734 -0.775 5.47 0.394 0.384 92.7  -0.978 33.24 0.401 0.389 91.0 
  -0.240 0.000 -0.001 - 0.032 0.048 99.9  -0.003 - 0.061 0.087 99.5 
  -0.274 -0.280 -0.304 8.38 0.280 0.292 93.9  -0.311 10.86 0.275 0.283 94.9 
  -0.340 -0.720 -0.748 3.93 0.398 0.410 93.2  -0.783 8.74 0.365 0.368 94.4 
  0.000 0.000 -0.000 - 0.027 0.047 100.0  -0.002 - 0.045 0.080 99.9 
  0.000 -0.148 -0.150 0.87 0.282 0.282 93.6  -0.136 -8.40 0.268 0.273 93.0 
  0.000 -0.642 -0.668 4.07 0.365 0.389 95.3  -0.653 1.66 0.317 0.332 94.5 
               
 2.5 -0.777 0.000 0.000 - 0.069 0.077 96.1  0.003 - 0.111 0.124 97.4 
  -0.817 -0.234 -0.238 1.97 0.158 0.157 94.5  -0.294 25.67 0.240 0.234 94.9 
  -1.074 -0.749 -0.721 -3.84 0.497 0.515 95.1  -0.803 7.10 0.962 0.868 95.6 
  -0.269 0.000 0.001 - 0.095 0.100 95.6  0.003 - 0.133 0.137 96.5 
  -0.280 -0.250 -0.245 -1.71 0.191 0.196 93.8  -0.256 2.43 0.274 0.258 92.4 
  -0.383 -0.798 -0.788 -1.22 0.606 0.645 94.9  -0.812 1.78 1.092 0.980 93.6 
  0.000 0.000 -0.001 - 0.111 0.111 94.6  -0.000 - 0.139 0.142 96.8 
  0.000 -0.227 -0.209 -8.08 0.207 0.217 94.8  -0.213 -6.22 0.272 0.274 94.8 
  0.000 -0.726 -0.753 3.70 0.579 0.595 95.0  -0.727 0.16 0.996 0.830 93.4 
               

500 0.5 -0.690 0.000 0.000 - 0.006 0.008 99.3  0.000 - 0.013 0.017 99.3 
  -0.789 -0.197 -0.201 2.05 0.093 0.089 92.9  -0.262 33.18 0.109 0.105 89.4 
  -1.194 -0.734 -0.736 0.17 0.159 0.157 94.0  -0.965 31.39 0.167 0.166 70.6 
  -0.240 0.000 0.000 - 0.010 0.011 98.3  0.000 - 0.015 0.019 98.7 
  -0.274 -0.280 -0.278 -0.68 0.116 0.119 95.9  -0.298 6.45 0.114 0.118 96.2 
  -0.340 -0.720 -0.720 0.01 0.161 0.164 96.3  -0.773 7.41 0.149 0.152 94.9 
  0.000 0.000 0.000 - 0.006 0.009 99.7  0.000 - 0.009 0.015 99.9 
  0.000 -0.148 -0.157 5.93 0.118 0.118 94.5  -0.154 3.83 0.113 0.113 94.5 
  0.000 -0.642 -0.650 1.17 0.166 0.158 94.0  -0.649 1.06 0.145 0.139 93.9 
               
 2.5 -0.777 0.000 -0.001 - 0.032 0.031 93.5  -0.001 - 0.047 0.049 95.5 
  -0.817 -0.234 -0.235 0.50 0.063 0.067 96.0  -0.287 22.86 0.101 0.104 93.8 
  -1.074 -0.749 -0.748 -0.19 0.225 0.222 94.5  -0.860 14.70 0.475 0.428 92.9 
  -0.269 0.000 0.002 - 0.040 0.041 95.0  0.001 - 0.055 0.055 94.4 
  -0.280 -0.250 -0.252 1.02 0.086 0.084 94.2  -0.265 6.16 0.116 0.114 94.5 
  -0.383 -0.798 -0.810 1.55 0.267 0.277 94.6  -0.836 4.78 0.486 0.478 94.8 
  0.000 0.000 -0.000 - 0.044 0.046 95.6  -0.002 - 0.057 0.058 94.7 
  0.000 -0.227 -0.222 -2.03 0.095 0.093 95.1  -0.220 -3.04 0.122 0.121 94.0 
  0.000 -0.726 -0.732 0.77 0.240 0.251 94.9  -0.715 -1.53 0.432 0.412 94.5 
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well as Monte Carlo integration (25) were calculated. The selected S used for Monte 

Carlo integration were 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, and the 

quality of the Monte Carlo approximation was assessed by two simulation statistics, CP 

and normalized mean squared error which divide the mean squared error (MSE) from 

Monte Carlo by that from ‘exact’ integration, where MSE = 
1000

2

1

1
( )i

i

Estimated IE True IE
n =

−∑ .               

    Normalized MSE and CP were plotted against S in Figure 1.5 for 16 out of 36 

scenarios considered above (scenarios with small IE or small DE were omitted for 

graphic presentation purpose). Panels A, B, C and D show the normalized MSE and 

panels E, F, G and H show the CP. Straight lines y = 1.0 and y = 95.0 are plotted in each 

set for reference. From these plots, we can see that both normalized MSE and CP 

decrease as the number of Monte Carlo samples increases, and large σ scenarios (B and D) 

generally produce a larger normalized MSE compared with the corresponding small σ 

scenarios (A and C). When S is equal to 100, the normalized MSE is less than 1.07 (less 

than 10% error relative to the ‘exact’ integration results) for all small σ scenarios, but as 

high as 1.45 for some large σ scenarios (Figure 1.5D, large DE and IE scenarios, marked 

with ‘■’). As the number of samples increases to 500, the normalized MSE is less than 

1.02 for small σ scenarios and less than 1.09 for large σ scenarios. In addition, S = 100 for 

small σ and S = 500 for large σ also generate acceptable CPs in most scenarios. An 

exception is the zero-IE with small σ scenarios (Figure 1.5E ‘●’ and ‘○’ scenarios and 

1.5G ‘○’ scenario), for which SEs tend to be overestimated with the bootstrap method and 
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Figure 1.5. Normalized mean squared error (A, B, C, D) and 95% CI coverage probability (E, F, G, H) as 

function of number of Monte Carlo samples in simulation studies. A and E correspond to the first set of 

simulation scenarios in Table 1.2 (small σ 0.5, and small sample size n = 100 in each group), B and F 

correspond to the second set of simulation scenarios in Table 1.2 (large σ 2.5, and small sample size n = 

100 in each group), C and G correspond to the third set of simulation scenarios in Table 1.2 (small σ 0.5, 
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and large sample size n = 500 in each group), D and H correspond to the last set of simulation scenarios in 

Table 1.2 (large σ 2.5, and large sample size n = 500 in each group). ZIE = Zero Indirect Effect, LIE = 

Large Indirect Effect. ZDE = Zero Direct Effect, LDE = Large Direct Effect.  

conservative 95% confidence intervals obtained. This problem remains even for S as high 

as 5000 and also exists in the integration approach. 

    We also recorded the time required for integration calculation (‘exact’ integration 

using the ‘QUAD’ function in SAS/IML), and for Monte Carlo integration with different 

S’s (sampling the mediator using ‘RAND’ function in SAS/IML) when estimating IE with 

200 simulation data sets and sample size 200. We found that the time used by the 

‘QUAD’ function is comparable to Monte Carlo integration with S = 500 (16.0 seconds 

for ‘QUAD’ function vs. 16.2 seconds for Monte Carlo per dataset). When S is small, the 

time used for Monte Carlo does not decrease much (S = 1 used 14.8 seconds per dataset), 

and as S increases to 5000, the time consumption for Monte Carlo (32.7 seconds per 

dataset) doubled compared with ‘exact’ integration. 

1.6.3 Robustness of ZINB model against NBH model in mediation analysis 

In a third simulation study, we assumed a NBH model. Each NBH response was 

generated in two-step process: the first step used a logistic regression model to determine 

whether the outcome ‘crosses the hurdle’; if yes, a truncated negative binomial 

distribution was used to model the final outcome. As before, we considered both binary 

and continuous mediators with the same simulation scenarios as in Section 1.6.1. In this 

study, two IE estimators ‒ from the ZINB and NBH models ‒ were compared on the  
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Table 1.3. Simulation statistics for the natural indirect effect of continuous mediator using 
NBH/logit-log and ZINB/logit-log model on data generated from NBH/logit-log model. 

Sa
m

pl
e 

 
Si

ze
 

Si
gm

a True 
DE 
Est 

True 
IE 
Est 

NBH/logit-log Model  ZINB/logit-log Model 
Ave 
Est 
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 Ave 
Est 
IE 

Ave 
PE 
(%) 

SD of 
Est 
IE 

AVE 
SE 

CP 
(%) 

 

100 0.5 -0.712 0.000 0.001 - 0.024 0.038 99.9  0.000 - 0.024 0.038 99.8 
  -0.809 -0.202 -0.214 6.15 0.217 0.228 94.9  -0.218 7.67 0.218 0.227 94.9 
  -1.207 -0.740 -0.753 1.84 0.390 0.376 93.2  -0.758 2.49 0.397 0.383 92.9 
  -0.243 0.000 -0.000 - 0.034 0.050 99.7  -0.000 - 0.034 0.050 99.7 
  -0.276 -0.284 -0.290 2.40 0.292 0.291 94.1  -0.295 3.98 0.293 0.291 94.0 
  -0.341 -0.721 -0.743 3.15 0.406 0.397 92.8  -0.753 4.51 0.415 0.402 92.5 
  0.000 0.000 0.000 - 0.028 0.049 99.9  0.000 - 0.028 0.049 99.9 
  0.000 -0.150 -0.148 -1.46 0.285 0.286 94.6  -0.154 2.57 0.287 0.286 94.2 
  0.000 -0.647 -0.668 3.11 0.394 0.380 93.0  -0.679 4.87 0.403 0.385 92.8 
               
 2.5 -0.792 0.000 0.001 - 0.073 0.077 97.3  0.001 - 0.074 0.078 97.1 
  -0.831 -0.237 -0.238 0.05 0.154 0.159 95.0  -0.244 2.74 0.158 0.164 94.6 
  -1.091 -0.761 -0.711 -6.57 0.451 0.475 95.5  -0.769 0.97 0.490 0.527 96.1 
  -0.267 0.000 -0.003 - 0.094 0.099 96.2  -0.003 - 0.095 0.099 96.2 
  -0.279 -0.250 -0.242 -3.34 0.184 0.189 94.3  -0.248 -0.75 0.190 0.194 94.1 
  -0.383 -0.803 -0.804 0.16 0.581 0.599 95.5  -0.870 8.42 0.633 0.667 95.8 
  0.000 0.000 0.004 - 0.104 0.110 96.8  0.004 - 0.105 0.112 96.5 
  0.000 -0.226 -0.225 -0.20 0.208 0.210 95.0  -0.231 2.28 0.213 0.217 94.7 
  0.000 -0.731 -0.648 -11.38 0.489 0.523 94.7  -0.708 -3.09 0.540 0.592 96.0 
               

500 0.5 -0.712 0.000 -0.000 - 0.007 0.009 99.3  -0.000 - 0.007 0.009 99.3 
  -0.809 -0.202 -0.205 1.49 0.097 0.093 94.2  -0.204 1.07 0.097 0.093 94.2 
  -1.207 -0.740 -0.739 -0.06 0.156 0.157 94.8  -0.738 -0.21 0.159 0.160 94.6 
  -0.243 0.000 -0.000 - 0.009 0.011 98.7  -0.000 - 0.009 0.011 98.6 
  -0.276 -0.284 -0.287 1.25 0.118 0.122 94.6  -0.288 1.59 0.119 0.123 95.0 
  -0.341 -0.721 -0.727 0.93 0.160 0.168 95.3  -0.732 1.59 0.163 0.171 95.3 
  0.000 0.000 0.000 - 0.006 0.010 100.0  0.000 - 0.006 0.010 100.0 
  0.000 -0.150 -0.145 -3.05 0.126 0.121 93.5  -0.147 -2.07 0.127 0.122 93.4 
  0.000 -0.647 -0.648 0.06 0.157 0.159 94.6  -0.653 0.89 0.160 0.161 94.6 
               
 2.5 -0.792 0.000 0.000 - 0.031 0.032 95.0  0.000 - 0.031 0.032 95.0 
  -0.831 -0.237 -0.236 -0.58 0.068 0.067 94.7  -0.239 0.48 0.069 0.068 94.5 
  -1.091 -0.761 -0.709 -6.94 0.204 0.208 93.9  -0.747 -1.86 0.217 0.221 94.4 
  -0.267 0.000 -0.001 - 0.040 0.041 94.1  -0.001 - 0.040 0.041 94.1 
  -0.279 -0.250 -0.244 -2.43 0.082 0.083 94.6  -0.247 -1.35 0.083 0.084 94.6 
  -0.383 -0.803 -0.756 -5.76 0.254 0.257 95.6  -0.791 -1.43 0.268 0.272 95.4 
  0.000 0.000 -0.000 - 0.045 0.046 96.0  -0.000 - 0.045 0.046 96.0 
  0.000 -0.226 -0.222 -1.72 0.094 0.092 93.6  -0.225 -0.56 0.095 0.093 93.7 
  0.000 -0.731 -0.682 -6.76 0.232 0.229 95.4  -0.726 -0.65 0.248 0.247 95.9 
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same simulation statistics listed above. We focus on results for the continuous mediator 

case, given in Table 1.3; results for the binary mediator case are similar and therefore not 

presented. Although the interpretation of ZI and hurdle models is different, when the real 

data came from NBH model, the IE estimators from both models are very similar and 

have low relative bias (less than 12%) for all scenarios considered. The bias of IE 

estimators from ZINB model in most scenarios is slightly higher than that from NBH 

when the latter is the true model, but the difference is trivial. 

1.6.4 Estimation of decomposed mediation effects (IEB and IEN) 

Finally, we studied the estimators of decomposed natural indirect effect that go through 

the susceptibility indicator (IEB), and directly (not through the susceptibility indicator, 

IEN). In this study we assumed that M(1) and M(0) are bivariate normally distributed 

with correlation coefficient τ. We considered 6 scenarios, all with large natural indirect 

effect (IE), but different magnitudes of the natural direct effect (DE) and natural indirect 

effects through susceptible probability (IEB). The scenarios were listed as: (1) small DE 

and small IEB; (2) small DE and medium IEB; (3) small DE and large IEB; (4) large DE 

and small IEB; (5) large DE and medium IEB; (6) large DE and large IEB. In each 

scenario, the potential outcome means for the true IEB and IEN, was computed using 

‘exact’ integration formula (34) and (35) with true coefficients, and for the calculation of 

estimated IEB and IEN, the Monte Carlo integration formula (36) and (37) with 

corresponding coefficient estimates were used. Here we used 10,000 Monte Carlo 

samples (draws from the joint distribution of M(1) and M(0) with specified correlation 
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coefficient τ). Three sets of IEB and IEN were calculated corresponding to three values 

for τ (0.0, 0.4 and 0.9). From the simulations, we computed the average estimate of IEB 

and IE, and then obtained the proportion IE accounted for by IEB, defined as (IEB/IE ×  

100). The bias (mean estimate – true value) and the CP for two estimators, IEB and 

proportion of IEB, are given in Table 1.4. The true IEB magnitude decreases but the true 

IE stays constant as the specified correlation coefficient τ between M(1) and M(0) 

increases. Not surprisingly, the IEB estimator assuming the correct τ produces lower bias 

than IEB estimators assuming the wrong τs. When calculating the IEB estimator with 

mis-specified τ, scenarios with similar magnitude of IEB and IEN (scenario 2 and 5 in 

each set) always produce much higher bias compared with scenarios in which either IEB 

or IEN predominates. The average estimate of the IEB proportion is sometimes far off the 

true value when the sample size is small. This may be explained by the fact that the total 

indirect effect was relatively small in some data sets for these scenarios so that the 

estimate of the IEB proportion could be rather unstable. When sample size is increased to 

500 per group, the IEB proportion estimators are more stable, and correct specification of 

correlation coefficient τ improves the estimation of IEB proportion. Furthermore, 

scenarios 2 and 5 (true IEB proportion around 50%) also produce higher bias than other 

scenarios for the IEB proportion estimation.
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1.7 Application  

Our motivating example comes from a cohort study investigating the effect of VLBW 

(possibly with bronchopulmonary dysplasia) on dental caries in adolescence (Nelson et 

al., 2010). The subjects were previously recruited in a cohort study that followed them 

from birth and assessed various developmental outcomes (Singer, 1997). The study 

involved 224 infants (139 VLBW and 85 normal term), and the dental outcomes 

(including enamel defects, oral health behavior, and dental caries) were assessed at 

around age 14. The normal term group was selected in order to obtain similar 

distributions to the VLBW group for key baseline covariates, such as race, 

socioeconomic status (SES), and sex. The exposure variable is the binary variable 

referred to as “birth group”, namely, VLBW (birth group = 1) and normal term (birth 

group = 0). The outcome considered in this example is the DMFT (decayed, missing, and 

filled teeth) count. We also considered, in separate models, the following potential 

mediators: “Sealant” (a binary variable indicating use of sealants), and average “Oral 

Hygiene Index” (AvgOHI), a bounded continuous variable. The primary study found that 

the VLBW group had a lower mean DMFT than the normal term group, which may be 

explained by the facts that VLBW children might be receiving more extensive dental care. 

We wanted to test this hypothesis and explore whether the effect of VLBW on DMFT is 

explained by its effect on sealant use or on AvgOHI using the proposed methods 

discussed above. 
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    The dental dataset with complete model variables (exposure group, DMFT, Sealant, 

AvgOHI, baseline covariates SES, race and sex) gave us a final sample size of 203 

subjects which are used for our analysis. We note that the observed average DMFT (SD) 

was 2.42 (2.94) for the normal term group (n = 78) and 1.67 (2.74) for VLBW group (n = 

125). The models (20), (27) and (28) were fitted using maximum likelihood estimation. 

For the computations using the mediation formula, we assumed that AvgOHI follows a 

truncated normal distribution with values between 0 and 3, and mean depending on 

exposure status and covariate values for each individual. Three baseline covariates (SES, 

race and sex) were included in all three models, so that parameters were α′ = (α3, α4, α5), 

β′ = (β3, β4, β5), and γ′ = (γ3, γ4, γ5). Estimates of IE, DE, and TE, using both the difference 

in effects and mediation formula approaches are provided in Table 1.5. From this table, we 

see that both approaches provide similar causal effect estimates and nearly zero estimated 

mediation effect through either of the two potential mediators (Sealant and AvgOHI). The 

results are consistent with our simulation study for scenarios where DE predominates in 

the TE, in which case the difference in effects approach gave low bias, similarly to the 

mediation formula approach. From the analysis of the AvgOHI mediator by the mediation 

formula approach, we draw the following conclusions. When the birth group changes from 

normal term to VLBW, the mean DMFT decreases an estimated 0.67 (total causal effect). 

This decrease can be decomposed into an estimate change of 0.03 (-0.14, 0.19) attributable 

to the AvgOHI and an estimated change of -0.70 (-1.47, 0.06) attributable to other 

(unknown) pathways. Of note, in our example, TE is not statistically significant, which is 
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consistent with previous findings indicating a non-significant exposure effect under 

alternative ZI models (Albert et al., 2011). With respect to the decomposition of the 

overall indirect effect, under the assumption of a moderate correlation (τ = 0.4) between 

the two mediator counterfactuals, for the Sealant mediator, the natural indirect effect can 

be broken into path effects through susceptibility indicator Y1 (estimated IEB = -0.01 

(-0.07, 0.11)) and directly (estimated IEN = -0.01 (-0.17, 0.08)). As the correlation 

coefficient τ varies from 0 to 1, IEB and IEN estimates are contained in the bounded 

interval [-0.02, 0.00] and [-0.02, 0.01] respectively (0.00 denotes ‘< 0.005’ in absolute 

value). For the AvgOHI mediator, the decomposed mediation effects estimates are 0.00 

(-0.18, 0.27) for IEB and 0.04 (-0.19, 0.18) for IEN, and both estimates range between 

-0.01 and 0.07 when varying τ from 0 to 1. Note that 95% CIs for the decomposed indirect 

effect estimators above at any value of τ all cover 0 indicating no significant decomposed 

path effects. 

    In a sensitivity analysis, we examined the effect on DE and IE estimates of varying 

the assumed counterfactual correlation coefficient ρ (between Y*(t΄, m) and M* (t)) from -1 

to 1 in increments of 0.04. The plots of these relationships (Figure 1.6) show that the 

change in IE and DE estimates over ρ is in the opposite direction for Sealant and AvgOHI. 

For Sealant, the IE estimate is a maximum at ρ = 0.44 (Figure 1.6A) and DE increases as ρ 

increases (Figure 1.6B), while for AvgOHI, the IE estimate is a minimum at ρ = 0.24 

(Figure 1.6C) and DE decreases as ρ increases (Figure 1.6D). However, the range for each 

estimator was consistent with the original conclusion indicating nonsignificant DE and IE 
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effects (95% CIs cover 0). Thus, we find that mediation formula estimates of the direct 

and indirect effects in the dental data are robust to possible violations of the no M-Y 

confounding assumption (11). 
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Table 1.5. Estimated causal effects of interest based on the mediation formula approach 
and difference in effects approach from ZINB model using VLBW study data.   

  Mediation Formula 
approach 

Difference in Effects 
approach 

Binary  
Mediator  
(Sealant) 

Mediation IE -0.01 (-0.12, 0.08) -0.07 (-0.25, 0.11) 
  Through Y1 (IEB)*  -0.01 (-0.07, 0.11) NA# 
  Not through Y1 (IEN)* -0.01 (-0.17, 0.08) NA# 
Direct DE -0.62 (-1.49, 0.15) -0.62 (-1.48, 0.14) 
Total TE -0.64 (-1.51, 0.11) -0.69 (-1.54, 0.06) 

Continuous 
Mediator 
(AvgOHI) 

Mediation IE 0.03 (-0.14, 0.19) 0.01 (-0.29, 0.23) 
  Through Y1 (IEB)*  0.00$ (-0.18, 0.27) NA# 
  Not through Y1 (IEN)* 0.04 (-0.19, 0.18) NA# 
Direct DE -0.70 (-1.47, 0.06) -0.70 (-1.49, 0.06) 
Total TE -0.67 (-1.45, 0.10) -0.69 (-1.54, 0.06) 

Monte Carlo integration with 10,000 samples was used for estimation of IEB and IEN. 

*: Requires assumed correlation (τ) between counterfactual M(1) and M(0) (or normally distributed latent 
variable for a binary mediator); here we assume τ = 0.4 for both Sealant and AvgOHI.  

$: 0.00 denotes < 0.005 in absolute value. 

#: Not applicable. 
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Figure 1.6. Sensitivity analysis for dental data involving the binary mediator ‘Sealant’ and the continuous 

mediator ‘AvgOHI’. Panels A and B show estimated IE and DE for varying correlation ρ between Y*(t΄, m) 

and M*(t) for Sealant. Panels C and D show same relationship for AvgOHI. The solid line represents the 

estimated indirect and direct effect. The areas between dotted lines represent the 95% confidence intervals 

for the natural indirect and natural direct effects at each value of ρ.  
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1.8 Discussion 

In this part, we studied mediation analysis for ZI models using a mediation formula 

approach. A three-stage path framework was introduced due to the special 

two-component structure of the ZI model allowing us to further decompose the natural 

indirect effect, a decomposition which is not possible in mediation analysis based on 

standard linear regression models. An alternative ad hoc estimator based on a difference 

in effects approach was considered and compared to that of the mediation formula. The 

difference in effects method should be used with caution as it only gives IE estimator 

with low bias under small DE scenarios; an advantage of this approach is that it avoids 

the complex integration calculation or Monte Carlo sampling process used by the 

mediation formula method. 

    We addressed mediation analysis using the potential outcomes framework, where 

true causal effects are defined as differences in potential outcome means. The mediation 

formula calculates potential outcome means by integrating or summing over the mediator 

probability distribution space. Integration was carried out using the ‘QUAD’ function in 

SAS/IML, which uses an adaptive (Romberg-type) numerical integration technique. For 

some complex situations (for example, involving double integrals), this function may fail 

due to slow convergence or strong oscillation. We overcome this problem by 

approximating the integral calculation with Monte Carlo integration techniques, a version 

of which was used by Imai et al. (2010). Our simulation study, using standard linear 
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regression to model the continuous mediator, shows that the required number of Monte 

Carlo samples increases as the mediator variance increases. This conclusion is 

understandable, as more sampling is needed in this case to achieve a good approximation 

of the mediator distribution, and thus less deviation from estimates using the mediation 

formula with ‘exact’ integration.  

    The three-stage path framework used for ZINB model mediation analysis allows us 

to further decompose the natural indirect effect under additional assumptions. Estimation 

of the decomposed effects (namely, through or not through the susceptibility indicator) 

involves the joint distribution of counterfactuals (namely, M(1) and M(0)). This problem, 

which may occur when there are more than two stages of mediation, was also mentioned 

by Avin et al. (2005) and Albert and Nelson (2011). The simple identifying assumption 

that the counterfactuals are independent may not be scientifically plausible. In simulation 

studies, we examined the effect of varying a counterfactual correlation coefficient (under 

a bivariate normal model for M(1) and M(0)) on the estimation of IEB and IEN. An 

interesting finding is that when either IEB or IEN predominates, estimation of the 

proportions corresponding to IEB or IEB is robust to mis-specification of the correlation 

coefficient (τ). However, in the case where IEB and IEN are of similar magnitude, the 

IEB estimator can be substantially biased if a wrong τ is chosen. Although the joint 

distribution for these two counterfactuals is nonidentifiable, it may be reasonable in many 

applications to assume a positive correlation between M(1) and M(0). For example, we 

assume a moderate correlation (τ = 0.4) between M(1) and M(0) in the estimation of IEB 
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and IEN for our VLBW study example. Alternatively, it may be sensible in a given 

application to present bounds for these estimates over a plausible range for τ. 

    ZI and hurdle models are two popular types of models for the analysis of 

zero-inflated count data, which are often found to provide a better fit than standard 

Poisson or negative binomial models for such data. Fitted ZI and hurdle models are often 

essentially indistinguishable using goodness of fit statistics (Gray, 2005). In our 

simulation studies, we found that mediation effect estimators based on the ZINB model 

retains validity for data generated from a NBH model. However, one model type may be 

more scientifically sensible depending on the context and study objectives. Zero-inflated 

models are indicated if there are two underlying processes, one which puts the subject at 

risk (susceptible population) and the other which determines the outcome in the at-risk 

population. In contrast, if all individuals are considered at risk, then the realization of the 

event represents a hurdle that has been crossed, and in this case the hurdle model may be 

more appropriate.  

    In conclusion, we have proposed a mediation formula approach for mediation 

analysis of ZI models which allows estimation of direct and indirect effects, as well as a 

further decomposition of the indirect effect through consideration of the latent 

susceptibility indicator. The difference in effects approach may be a quick and easy 

method for estimating indirect effect in the case of null direct effect, or for testing the 

hypothesis of a null direct effect. Further work is needed to study multiple mediators in 

ZI models. 
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2.1 Introduction 

Randomized clinical trials and observation studies typically evaluate an overall treatment 

or exposure effect on a response. Of even greater scientific interest may be to explain by 

what means the treatment or exposure effect occurs, a goal that invokes the idea of 

mediation analysis. One way that a researcher can explain the mechanism by which one 

variable affects another is through the identification of mediating intermediate variables 

(or mediators). A well-known example of a mediated relationship in psychology is the 

effect of attitude on behavior which is mediated by intentions (Ajzen and Fishbein, 1980). 

Another example is the mediation of the effect of the apoliprotein E ε4 allele on cognitive 

impairment through an increase in the likelihood of chronic cerebral infarction 

(Schneider et al. 2005; Li et al., 2007).  

    At least a dozen methods have been proposed for testing the simple mediation 

hypothesis that the effect of an independent variable T on a dependent variable Y is 

mediated (at least in part) by an intermediate variable M (MacKinnon et al., 2002). 

Traditionally, causal mediation analysis has been dominated by linear regression 

paradigms, and the mediation effect assessed by difference in coefficient (MacKinnon 

and Dwyer, 1993) or product of coefficient approaches (MacKinnon et al., 2002). Pearl 

(2011) proposed a mediation formula approach which is applicable to nonlinear models 

with both discrete and continuous variables, and permits the evaluation of path-specific 

effects using the potential outcomes framework (Robins and Greenland, 1992; Albert, 
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2008). More generally, mediating processes may include multiple mediators. In 

school-based drug prevention, for example, primary prevention programs target multiple 

mediators such as resistance skills and social norms to reduce drug use (Donaldson et al. 

1994). Reynolds et al. (2004) explored knowledge, availability of fruits and vegetables, 

and parental consumption as mediators of a school-based nutrition intervention to 

increase healthy food consumption in children.   

    Models with more than one mediator are straightforward extensions of 

single-mediator models in the linear case, and the product of coefficients approach can be 

used for the estimation of multiple mediation effects (MacKinnon, 2000; Preacher and 

Hayes, 2008). With multiple-mediator models, additional questions can be raised. For 

example, one may investigate the total mediation (or indirect) effect, that is, the extent to 

which a set of intermediate variables collectively mediate the effect of T to Y. 

Alternatively, one may wish to assess the extent of mediation through each individual 

mediator. For inference on mediation effects, Preacher and Hayes (2008) advocates the 

bootstrap ‒ especially bias-corrected bootstrap ‒ over the mulitivariate delta method 

(Bishop et al., 1975), since the former provides the most powerful and valid method of 

obtaining confidence intervals for specific indirect effect under most conditions.  

    Standard regression approaches generally assume normally distributed response and 

mediator variables. A possible way to handle multiple, and possibly non-normally 

distributed, mediators is through joint modeling. Methods that jointly analyze discrete 

and continuous outcomes have recently begun to appear, and include three main 
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approaches. The first approach is based on a conditioning argument that allows the joint 

distribution to be factorized into a marginal and a conditional density (Little and 

Schluchter, 1985; Cox and Wermuth, 1992). A drawback of the conditioning approach for 

mixed outcome models is that it does not directly lead to marginal inferences (Geys et al., 

2001). Also, conditional models do not easily extend to the settings of three or more 

outcomes, and the correlations between pairs of outcomes cannot be directly estimated. 

The second approach attempts to specify the joint density of two outcomes directly. 

Multivariate methods are well established for the modeling of multivariate normally 

distributed outcomes (Johnson and Wichern, 2002). To analyze mixed types of outcomes, 

bivariate (or multivariate) continuous variables were considered with components being 

either explicitly observed or latent continuous variables underlying the discrete outcomes 

(Catalano and Ryan, 1992). The level of an observed discrete outcome is determined 

according to whether or not the corresponding latent variable exceeds some threshold 

values. A common example is the probit-type model which assumes an unobservable 

normally distributed random variable underlying the binary outcome (Regan and 

Catalano, 1999). Instead of using latent variables, the third approach directly specifies the 

joint distribution via a mixed effects model, by specification of the marginal distribution 

for each outcome, conditional on a common or correlated random effect (Molenberghs 

and Verbeke, 2005). In this part, the second approach is considered. The bivariate or 

multivariate joint distribution of continuous/binary mediators is specified via a marginal 

joint distribution, components of which are continuous mediators or continuous latent 
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variables underlying binary mediators. An advantage of this approach is that the 

correlation between the mediators is specified directly.     

    The multiple-mediator model is likely to provide a more accurate assessment of 

mediation effects in many research contexts. A limitation of the product of coefficients 

approach used for multiple mediator analysis is that it relies on linearity of the regression 

models, a restriction that may be difficult to justify unless the response and mediator are 

normally distributed. However, in medical research, the outcome or the mediator is often 

not normally distributed. Albert and Nelson (2011) handle sequential mediators, but not 

‘contemporaneous’ mediators, for a discrete (count) outcome. Thus, the problem of 

mediation analysis in nonlinear (for example, probit) models for multiple 

(contemporaneous) mediators does not appear to have been previously addressed in the 

literature. In the second part, mediation formula approach is used to develop mediation 

analysis method for a dichotomous outcome in multiple-mediator models, and two aims 

are proposed: 

Aim 1: To develop joint regression models to analyze binary and continuous 

mediators and adequately account for correlation structure in the data. 

Aim 2: To estimate total and decomposed natural indirect effects for a dichotomous 

outcome with mixed types of mediators using mediation formula approach. 

    The remainder of this work proceeds as follows. Section 2.2 introduces the joint 

modeling approach used for multiple mediators. In Section 2.3, we define, for 

multiple-mediator models with a dichotomous outcome, the natural direct, (total) indirect 
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effects, and decomposed mediation effects through individual or sets of mediators. 

Section 2.4 presents a mediation formula approach to estimate the total and decomposed 

mediation effects under given identifying assumptions. Section 2.5 proposes a sensitivity 

analysis that can be implemented by applied researchers to quantify the robustness of 

their conclusion to the potential violation of sequential ignorability assumptions. 

Simulation studies are used in Section 2.6 to examine the statistical properties of the 

proposed methods. Section 2.7 describes the application of the proposed method to a 

dental caries study and presents sensitivity analysis results. Discussion and suggestions 

for further research are presented in Section 2.8. 
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2.2 Background on Joint Models for Multiple Mediators 

The mediation formula approach would appear to be applicable for mediation analysis of 

multiple-mediator models, though this extension has not yet been provided in the 

literature. Basically, the mediation formula expresses a mean potential outcome of the 

response as an integral of the conditional mean of the response over the probability 

density distribution of the mediators. Thus, the (estimated) joint distribution of multiple 

mediators is necessary for estimation of mediation effects in this model.  

    In this part, we only consider binary and normally distributed continuous mediators. 

We will illustrate the joint modeling approach with respect to one continuous mediator 

and one binary mediator, which is easily extended to cases with multiple continuous 

mediators or multiple binary mediators. Let M1i and M2i be two mediators measured on 

subject i (i = 1, 2, … , N), where M1 denotes the binary mediator and M2 the continuous 

mediator. Let M1i
* be a latent variable underlying M1i, such that M1i

 = I{M1i
* ≥ 0}. For the 

bivariate response, we assume that the unobserved latent variable M1i
* and the observed 

continuous mediator M2i for individual i together follow a bivariate normal model of the 

form  

M1i
 * = Xi ΄α1 + ε1i               M2i = Xi ΄α2 + ε2i 

where α1 and α2 are fixed effect regression vectors of the covariate Xi on the binary and 

continuous endpoints, respectively, and the variance of the residual error is assumed to be 

2
1 1 1 2

2
2 1 2 2

i

i

Var
e σ rσ σ
e rσ σ σ

  
=   

   
. 
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As such, this model induces an unstructured correlation matrix for the two mediators. The 

parameter σ1 is not identified, and standard practice assumes that σ1 = 1 (Maddala, 1983; 

Edwards and Allenby, 2003). The presumption of a common design vector Xi for two 

mediators is not necessary, though a reasonable assumption in our application. 

    For the purpose of fitting, we note that the joint likelihood for the two mediators of 

subject i can be decomposed as 

{ }
1 2 2 2 2 1 2 2

* *
2 2 1 1 2 2 1 1 2 2

( , | , , , ) ( | , ) ( | , , , , )

( | , ) ( 1) ( 0 | , , , , ) ( 0) 1 ( 0 | , , , , )
i i i i i

i i i i i i i

f M M f M P M M

f M I M P M M I M P M M

σ r σ σ r

σ σ r σ r

=

 = = ≥ + = − ≥ 

2 2 2

2 2 2

α α α α α

α α α α α
1 1

1 1
   (38) 

The first term above is the marginal normal distribution given previously. The conditional 

density function given by 

* 2
1 2 2 2| ( ) , (1 )i i iM M N M r σ r + − −

 2 α α1
′ ′

i iX X  

Given this formulation, it is easy to then derive the contribution of M1i to the likelihood. 

Specifically, we have  

* 2 2
1 2 2 2

( )( 0 | , , , , )
(1 )

i
i i

MP M M r σσ r
r

 + − ≥ = Φ 
−  

2
2

α αα α 1
1

′ ′
i iX X

             
(39) 

Therefore, we can write out the subject-specific contribution to the joint likelihood for 

(M1i, M2i) as the product of the marginal normal likelihood for M2i times either the 

Bernoulli probability (39) or the probability of the complement, depending on whether 

M1i was 1 or 0 respectively. Therefore, the log-likelihood is defined by summing the log 

of expressions in formula (38) over all subjects. Here, model estimation can be 

implemented using either SAS PROC NLMIXED procedure to specify the likelihood 

function manually or PROC QLIM procedure which constructs the likelihood 
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automatically from specified regression models. 
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2.3 Defining Total and Decomposition of Mediation Effects 

Consider the general causal model including a binary exposure or treatment indicator (T), 

J mediators (M1, M2, …, MJ) and a dichotomous outcome (Y), where T may affect Y 

directly and/or T may affect any of the Mj, j = 1 to J, which then affect Y. Figure 2.1 

shows the path diagram. We can define the causal mediation effects of interest using 

nested potential outcomes (Albert, 2008) within this multiple-mediator model. The total 

mediation effect (through the set {Mj, j = 1, … , J}) under exposure t is defined as  

IE(t) ≡ E{Y(t, M1(1), M2(1), … , MJ(1))} - E{Y(t, M1(0), M2(0), … , MJ(0))}    (40) 

Here, Y(t, M1(t΄), M2(t΄), … , MJ(t΄)) denotes the potential outcome that Y would attain if 

T was set to t, and each Mj set to the counterfactual value that would be observed if T was 

set to t΄. IE(t) is called the natural indirect effect, and represents the difference between 

two mean potential outcomes that would result under exposure status t, but where all 

mediators takes values that would result under two different exposure statuses. Similarly, 

we can define the natural direct effect and the total causal effect in the potential outcomes 

framework as 

DE(t) ≡ E{Y(1, M1(t), M2(t), … , MJ(t))} - E{Y(0, M1(t), M2(t), … , MJ(t))}     (41) 

TE ≡ E{Y(1, M1(1), M2(1), … , MJ(1))} - E{Y(0, M1(0), M2(0), … , MJ(0))}     (42) 

Thus, the natural indirect effect under one exposure status and the natural direct effect 

under the other exposure status sum to the total causal effect. Here, we consider the 

decomposition involving IE(1) and DE(0) denoted as IE and DE; for the other  
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Figure 2.1. Path diagram for a multiple-mediator model with J mediators. T = exposure; Mj = mediator j, j = 

1, … , J; Y = outcome. T may exert indirect effects on Y through M1, M2, … , MJ, or affect Y directly.  

decomposition (involving IE(0) and DE(1)) the method will be similar. 

    In multiple-mediator models, we can further consider mediation effects through an 

individual mediator or sets of mediators. The total natural indirect effect can be broken 

into J path effects within a J-mediator model; we use ‘IEj (t0, t1, … , tj-1, tj+1, … , tJ)’ to 

denote the path (or mediation) effect through the jth mediator (Figure 2.1) with exposure 

set to t0 and other mediators except for Mj set to exposure levels t1, … , tj-1, tj+1, … , tJ 

respectively. IEj (t0, t1, … , tj-1, tj+1, … , tJ) can be defined as the difference between two 

mean potential outcomes as follows, 

IEj (t0, t1, … , tj-1, tj+1, … , tJ) ≡ E{Y(t0, M1(t1),…, Mj-1(tj-1), Mj(1), Mj +1(tj+1),…, MJ(tJ))}  

                - E{Y(t0, M1(t1),…, Mj-1(tj-1), Mj(0), Mj +1(tj+1),…, MJ(tJ))}         (43)              

Mediation effects through sets of mediators can be defined as the sum of mediation 

effects through the component individual mediators. Note that 2J versions of IEj (t0, t1, … , 



77 
 

tj-1, tj+1, … , tJ = 0 or 1), the indirect effect of Mj, can be formulated corresponding to 2J 

combinations of exposure settings for the outcome and other mediators in a J-mediator 

model. We use only one of them, IEj (t0 = 1, t1 = 0, … , tj-1 = 0, tj+1 = 1, … , tJ = 1), 

denoted as IEj for simplicity; the other possible estimands can be handled similarly and 

thus are not discussed here. Of note, this defined IEj΄s provide a proper decomposition of 

a total (indirect) effect among individual mediators as follow,  

IE = IE1 + IE2 + , … , + IEJ-1 + IEJ                                      (44) 
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2.4 Analysis of Total and Decomposed Mediation Effects 

2.4.1. Identification assumption for mediation effects in multiple-mediator models 

We present identification results for the (total) indirect and direct effects (defined by (40) 

and (41)) as well as mediation effects through individual or sets of mediators (defined by 

(43)) using the potential outcomes framework described above. Under a particular 

version of the sequential ignorability assumption, the mediation effect estimators are 

identified nonparametrically in the multiple-mediator causal model. We first define our 

identifying assumption which extends Imai et al.’s version (Imai et al. 2010).  

Assumption 3 (Sequential Ignorability) 

{Y(t, m1, … , mJ), M1(t1), … , MJ(tJ)} ╨ T | W = w                             (45) 

Y(t, m1, … , mJ) ╨ M1(t1) | W = w, T = t1, … , Y(t, m1, … , mJ) ╨ MJ(tJ) | W = w, T = tJ       (46) 

First, given the observed baseline covariates (W), the exposure or treatment is assumed to 

be statistically independent of potential outcomes and potential mediators. The second 

part of Assumption 3 states that all mediators are independent of potential outcomes 

given the observed exposure or treatment and pretreatment covariates.  

2.4.2. Estimation of total and decomposed mediation effect for multiple-mediator 
models 

To demonstrate identifiability of total and decomposed mediation effect for 

multiple-mediator models, we will examine the identification of the relevant potential 

outcome means (of the general form E{Y(t0, M1(t1), … , MJ(tJ))}) given baseline covariate 

W under sequential ignorability (Assumption 3), and the conditioning on W is left out for 
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brevity. Under Assumption 3 it can be shown that, 

1 10 1 1 0 1 1 ( ),..., ( ) 1{ ( , ( ),..., ( ))} ... { | , ,..., } ( ,..., )
J J

J
J J J J M t M t Jn J

E Y t M t M t E Y T t M m M m d F m m
=

= = = =∫ ∫     (47) 

A proof of formula (47) under assumptions (45) and (46) is given in Appendix IV. 

Integration will be replaced with summation in the case of a discrete mediator. 

    The total natural indirect effect, direct effect and total causal effect are identifiable, 

since the required joint distribution in formula (47) (M1(0), … , MJ(0)) and  (M1(1), … , 

MJ(1)) can be estimated with the joint modeling approach described in Section 2.2. 

However, when assessing mediation effects through individual or sets of mediators we 

require a joint distribution (M1(t1), … , MJ(tJ)) in which the tj΄s are not all equal; such a 

joint distribution is not estimable because this joint potential outcome cannot be observed 

for the same subject. For identifiability, we need to make additional assumptions 

regarding the joint distribution of (M1(t1), … , MJ(tJ)). In fact, the marginal distribution of 

Mj(tj), j = 1 , …, J, is estimable, and if each correlation coefficient ρkl΄ between Mk(tk) and 

Ml(tl), k < l, tk ≠ tl (or underlying continuous latent variables) is pre-specified, then the 

mean potential outcome in formula (47) is identifiable and therefore so is the 

decomposed natural indirect effect through individual or sets of mediators. Of note, we 

may assume two different ρkl΄s (one is for correlation coefficient between Mk(0) and Ml(1) 

and the other one is for that between Mk(1) and Ml(0)), but for any specific mediation 

effect, the identification of individual mediation effect only needs one of them (e. g., the 

former one is needed for defined IEj above). 

    To evaluate the joint integrals, we may also use Monte Carlo integration (James, 
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1980), a numerical integration technique that uses pseudo random numbers generated 

from a joint distribution of mediator counterfactuals. Suppose (m1n, … , mJn) and 

(m1n΄, … , mJn΄) are drawn from the joint distributions fM1(0), …, MJ(0) (m1, … , mJ) and 

fM1(1), …, MJ(1) (m1΄, … , mJ΄) respectively. Formula (40) can then be approximated by the 

following (using Monte Carlo approximations for formula (47)),  

1 1 1 1
1 1

1( ) { | ',..., ', } { | ,..., , }
N N

n J Jn n J Jn
n n

IE t E Y M m M m T t E Y M m M m T t
N = =

 ≈ = = = − = = = 
 
∑ ∑

  
(48) 

The considered IEj using formula (43) can be expressed in similar way: 
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where (m1n, … , m(j-1)n, mjn΄, m(j+1)n΄,…,  mJn΄), (m1n, … , m(j-1)n, mjn, m(j+1)n΄,…,  mJn΄) 

are drawn from the joint distribution fM1(0), …, Mj-1(0), Mj(1), Mj+1(1), … , MJ(1) (m1, … mj-1, mj΄, 

mj+1΄, … , mJ΄) and  fM1(0), …, Mj-1(0), Mj(0), Mj+1(1), … , MJ(1) (m1, … mj-1, mj, mj+1΄, … , mJ΄). 

    Estimation of mediation effects proceeds by estimating the regression function in the 

mediation formula. In the present context, we fit the data to the following regression 

models for the dichotomous outcome Y and the binary or continuous correlated mediators 

Mj, j = 1 , …, J,  

logit(Y) = β0 + β1M1 + … + βJMJ + βJ+1T + β΄W                            (50) 

Mj
 (*) = αj0 + αj1 T + αj΄W + εj, j = 1, … , J .                                               (51) 

If Mj is a binary mediator, Mj
 (*) denotes Mj

* and Var(εj) = 1. Otherwise if Mj is a 

continuous mediator, Mj
 (*) denotes Mj and Var(εj) is estimable. Further, we assume a 

constant unstructured correlation matrix for the J continuous (observed and latent) 



81 
 

mediators regardless of the set exposure statuses. The β΄s and αj΄s are regression 

parameters, and W is baseline covariate vector with corresponding coefficient vectors β΄ 

and αj΄. 
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2.5 Sensitivity Analysis 

Sensitivity analysis explores the impact of departures from untestable assumptions and 

thus is an important component of our approach. Two sensitivity analyses are provided in 

this section. The first one assesses the effect of the assumed correlation coefficient ρkl΄ 

between Mk
(*)(tk) and Ml

(*)(tl), k < l, tk ≠ tl on the estimation of decomposed mediation 

effects, and the second one evaluates the effect of violation of the no unmeasured 

mediator-outcome confounder assumption (46) on mediation effect estimation. For ease 

of presentation, we use a two-mediator model with one binary mediator (M1) and one 

continuous mediator (M2) to illustrate our sensitivity analysis approach in this section. 

The approach described can be easily extended to models with more than two mediators.  

2.5.1. Effect of assumed correlation coefficient on decomposed mediation effect 
estimation 

As stated in section 2.4.2, the correlation coefficient ρ΄ between counterfactuals M1
*(0) 

and M2(1) needs to be pre-specified for the estimation of decomposed mediation effects 

IE1 and IE2. We may examine the robustness of the IE1 and IE2 estimators, thus providing 

a sensitivity analysis, by varying the specified counterfactual correlation ρ΄ over the 

interval -1 to 1. 

2.5.2. Sensitivity analysis for violation of no unmeasured mediator-outcome 
confounder assumption 

We propose a sensitivity analysis based on the approach of Albert and Nelson (2011) and 

Wang and Albert (2012), which applies the Gaussian copula (Song et al., 2009), to assess 
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the joint probability of Y(t0, m1, m2), M1(t1) and M2(t2), where Y and M1 are binary and M2 

is continuous (normally distributed). In order to handle binary variables, corresponding 

continuous latent variables are introduced, such that the observed binary event is realized 

if the latent variable exceeds some threshold. Specifically, for the probit-type model, the 

threshold is 0. Then Y*(t0, m1, m2), M1
*(t1) and M2(t2) are assumed to have a trivariate 

normal distribution with covariance matrix Σ and mean μ. The marginal distributions of 

Y*(t0, m1, m2), M1
*(t1) and M2(t2) as well as the correlation coefficient ρ between M1

*(t1) 

and M2(t2) are estimable; we assume that the correlation between M1
*(t1) and M2(t2) is 

constant over all t1 and t2. The correlation between Y*(t0, m1, m2) and M1
*(t1) is denoted as 

ρ1 and the correlation between Y*(t0, m1, m2) and M2(t2) as ρ2. Similarly, we also assume 

ρ1 and ρ2 keep consistent for all t0, t1, and t2. Nonzero ρ1 (or ρ2) implies that there exists an 

omitted variable that affects both M1 (or M2) and Y. We propose a Monte Carlo approach 

to estimate the conditional probability P{Y(t0, m1, m2) = 1} under the assumed ρ1 and ρ2. 

This approach involves the following algorithm: 

(1) Sample the pair of mediator values (m1i
*, m2i) ~ f M1* (t1), M2 (t2) (m1

*, m2), i = 1, 

2, … , n. If m1i
* > 0 then m1i = 1, otherwise, m1i = 0. 

(2) The conditional distribution Y*(t0, m1i, m2i) is obtained based on the trivariate 

normal distribution of Y*(t0, m1i, m2i), M1
*(t1) and M2(t2) with estimated ρ as well 

as pre-specified ρ1 and ρ2. 

(3) Compute P{Y(t0, m1i, m2i) = 1} as P{Y*(t0, m1i, m2i) > 0} based on the distribution 

in (2). 
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(4) Repeat steps 1-3 n times, we can obtain the potential outcome mean E(Y(t0, M1(t1), 

M2(t2))) as { }
1

0 1 2
1 ( , , ) 1

n

i
i iP

n
Y t m m

=

=∑ . 

This algorithm provides an estimation method for the general expected value of potential 

outcome Y(t0, M1(t1), M2(t2)) assuming specified correlations (ρ1 and ρ2) between each 

mediators and the outcome adjusted for the mediators. It thus provides a sensitivity 

analysis of the total and decomposed natural indirect effect for the sequential ignorability 

assumption (46). 
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2.6 Simulation Study 

In this section, a simulation study was used to assess the empirical bias, coverage 

probability and power of total and decomposed natural indirect effect estimators from our 

mediation formula approach for a binary outcome in a two-mediator model. We use 

SAS/IML (Version 9.2) for all statistical simulation and analysis.  

2.6.1. Empirical bias 

To assess the empirical bias of mediation effect estimators, we conduct simulations using 

a 3 × 4 × 3 × 3 factorial design. First of all, we consider three two-mediator models with 

different combinations of mediator types, two binary, one binary and one continuous, or 

two continuous mediators. For each two-mediator model, four correlation coefficients 

values (-0.5, 0.0, 0.5 and 0.9) between the two mediators (or latent variables underlying 

any binary mediators) are assumed. The exposure effect is similar for all scenarios 

(around 0.2).Three cases are considered for the magnitudes of the total natural indirect 

effect, IE, (involving parameters β1, β2, α11 and α21) and the natural direct effect, DE, 

(involving β3): dominant IE, dominant DE, and similar magnitude of IE and DE. The last 

factor, related to the decomposition of the total natural indirect effect, consists of three 

scenarios: indirect effect exclusively through one mediator, similar mediation effect 

through each mediator, and substantial mediation effects through each mediator but with 

different directions. Sample sizes of 200 (100 per exposure group) and 500 (250 per 

exposure group) were used for each scenario. 
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    The bivariate normal distributed error terms for two mediators (or underlying latent 

variables corresponding to binary mediators) were generated using the 

‘RANDNORMAL’ function in SAS/IML. No baseline covariates were used in our 

simulation scenarios to simplify the calculations. For each given exposure, the mediator 

variables or corresponding latent variables were generated using equation (51) with 

above produced error terms. The response variates were then generated according to the 

logistic regression model (50) given the individual exposure and observed mediators 

(possibly from corresponding latent variables). For each dataset, we estimated the total 

and decomposed natural indirect effects using formula (40), (43) and (47). The true value 

is defined by the same function, with true coefficients in place of estimates. In addition, 

in the calculation of both true and estimated decomposed mediation effects, we assume 

that the correlation between M1
(*)(t1) and M2

(*)(t2) (which is estimable only for t1 = t2) is 

constant over all t1 and t2. We performed 1000 independent datasets and the following 

statistics for mediation effects estimators (total or individual) were provided: the average 

estimate; the average percent error (PE, estimate minus true value then divided by true 

value); the SD of the estimate.  

    We focus on results for the two-mediator model with one binary mediator and one 

continuous mediator; results for two-mediator model with either two binary or continuous 

mediators are similar and therefore not presented. The simulation results are given in 

Table 2.1 with total sample size 200. We see that the mediation formula approach 

generally produces a small bias in its estimation of IE, IE1 and IE2 in most scenarios. 
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However, the proposed approach occasionally provides some bias in two situations, 

scenarios in which the two mediators have mediation effects in different directions (the 

sixth scenario in each set) and scenarios with similar mediation effects magnitude 

through either mediator and where the correlation coefficient between the two mediators 

is 0.9 (the fifth scenario). In the first situation, our approach tends to produce high 

relative bias for the IE estimator, but low relative bias for the IE1 and IE2 estimators (less 

than 4%); on the contrary, high relative bias for individual and low relative bias (less than 

3%) for overall mediation effect estimators can be detected in the second situation. When 

the sample size per group is increased to 250, the proposed approach shows low relative 

bias for all scenarios (less than 8.9%, Table 2.2). 

2.6.2. Coverage probability and power 

In a second simulation study, we compared the coverage probability (CP) of 95% CIs 

constructed by different methods. Four such methods were evaluated in this section: 

jackknife (Mosteller and Tukey, 1977), percentile bootstrap, bias-corrected bootstrap, and 

bootstrap-t (Efron and Tibshirani, 1993). The second goal was to assess the power to 

detect non-zero mediation effects under different correlation coefficients between two 

mediators. Four correlation coefficients were chosen as before, -0.5, 0.0, 0.5 and 0.9. For 

each correlation coefficient, we designed six different simulation scenarios: (1) small 

indirect effects with different signs for the two mediators; (2) substantial indirect effects 

with different signs and magnitudes for the two mediators; (3) zero indirect effect through 
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each mediators; (4) zero indirect effect through the binary mediator and small indirect 

effect through the continuous mediator; (5) zero indirect effect through the continuous 

mediator and small indirect effect through the binary mediator; (6) small direct effects 

with the same sign for both mediators. Of note, for power comparison purpose, we 

adjusted the corresponding parameter β1, β2, α11 and α21 to make the true mediation 

estimand almost ‘identical’ (constant up to the fourth decimal) for different specified 

correlation coefficient values. The CP is calculated as the percent of simulated datasets 

for which the 95% CIs covered the true value, and the power is calculated as the 

proportion of these 1000 replicated CIs that do not include zero. The results are 

summarized in Table 2.3, Table 2.4 and Table 2.5 respectively. 

    Table 2.3 shows the CP of four different methods for total and individual indirect 

effect estimates with sample size 100 per group. The results indicate that the bootstrap 

percentile CIs, for which the CP is within 3% of the nominal level for all scenarios, 

performs best. The coverage for bias-corrected bootstrap and jackknife CIs is only around 

85% for the second scenario with correlation coefficient -0.5, and the CP of bootstrap-t 

CIs for continuous mediator indirect effect, IE2, is unstable in most scenarios. We 

repeated the simulations with a sample size of 250 per group (Table 2.4). With the larger 

sample size, the CP for bootstrap percentile, bias-corrected bootstrap and jackknife CIs 

gets closer to nominal level while problems for bootstrap-t CIs still exist. 

    We then compared the power of bootstrap percentile CIs to detect non-zero 

mediation effects under different values of the correlation between the two mediators. 
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The results, given in Table 2.5, show that the power to detect non-zero IE increases as the 

correlation coefficient between two mediators increases, and the power to detect non-zero 

IE1 and IE2 increases as the absolute value of the correlation coefficient between two 

mediators gets close to zero for most simulation scenarios. When the sample size per 

group is increased to 250, the power is larger than that in small sample size scenarios and 

similar results can be observed.  



92 
 

Table 2.3. Coverage probabilities of four confidence interval methods for overall and 
decomposed mediation effects in a dichotomous outcome model with two mediators (one 
binary (M1) and one continuous (M2)), n = 100 per group. 

ρ 
(M

1, 
M

2) True 
IE 

True 
IE1 

True 
IE2 

Overall IE  IE1  IE2 
Jack

knife 
Boot Bc Bt  

Jack

knife 
Boot Bc Bt  

Jack

knife 
Boot Bc Bt 

-0.5 0.000 0.050 -0.050 93.2 94.6 94.5 93.8  95.5 94.4 92.9 94.3  92.8 93.4 92.7 82.1 
0.200 0.300 -0.100 83.8 97.3 83.1 90.4  81.5 97.7 84.4 87.5  95.2 94.9 94.3 99.9 
0.000 0.000 0.000 95.2 94.7 93.7 93.5  99.7 98.0 95.1 90.8  97.0 93.1 90.6 68.0 
0.051 0.000 0.051 96.3 94.8 94.7 94.9  99.5 97.3 94.6 92.0  94.9 94.3 94.9 64.2 
0.050 0.050 0.000 94.2 95.1 94.9 94.5  96.0 95.3 94.6 94.4  96.8 95.6 93.0 99.2 
0.100 0.050 0.050 93.6 94.7 95.1 93.2  95.4 95.0 93.4 94.3  95.0 94.9 94.0 81.8 

                  0.0 0.000 0.050 -0.050 94.1 94.1 93.5 93.6  96.2 94.7 93.6 93.8  94.8 94.9 94.1 85.0 
0.200 0.300 -0.100 91.4 94.8 89.7 91.9  91.5 94.5 89.0 91.6  94.4 94.0 94.6 99.9 
0.000 0.000 0.000 94.7 95.2 93.1 95.0  99.7 97.9 95.2 92.3  95.8 93.7 91.1 67.5 
0.051 0.000 0.051 95.2 94.8 94.1 94.9  99.7 97.4 95.4 93.0  94.0 94.2 94.1 61.7 
0.050 0.050 0.000 96.8 96.2 95.6 94.8  96.8 96.5 95.5 95.3  96.8 94.5 92.9 98.7 
0.100 0.050 0.050 96.1 94.4 94.3 93.9  95.3 94.1 92.6 93.9  95.8 95.3 95.1 83.9 

                  0.5 0.000 0.050 -0.050 95.2 94.6 94.6 93.9  95.8 94.4 93.7 95.0  93.2 94.2 93.9 85.8 
0.200 0.300 -0.100 92.6 95.0 94.0 93.5  92.8 94.8 93.6 93.3  94.2 93.5 94.5 100 
0.000 0.000 0.000 96.7 95.2 93.0 94.3  99.1 97.8 94.7 91.2  96.0 94.1 91.0 67.5 
0.051 0.000 0.051 95.5 94.7 94.5 93.9  99.4 97.9 95.3 92.4  94.9 93.1 93.1 62.5 
0.050 0.050 0.000 94.3 95.9 95.0 94.8  95.4 92.8 92.2 93.5  95.6 94.7 92.7 99.3 
0.100 0.050 0.050 96.2 94.4 94.1 93.6  95.5 93.9 93.0 94.7  95.2 94.0 93.4 84.2 

                  0.9 0.000 0.050 -0.050 95.9 95.1 94.2 94.5  94.8 94.7 93.4 93.5  94.7 94.7 94.4 86.5 
0.200 0.300 -0.100 95.4 93.4 93.7 94.0  94.5 93.1 93.0 93.1  95.8 93.4 94.2 100 
0.000 0.000 0.000 96.4 95.3 94.5 93.9  99.2 97.6 94.4 93.6  97.1 94.7 93.0 69.2 
0.051 0.000 0.051 95.8 95.3 95.0 94.6  98.8 97.6 94.1 91.4  94.7 94.7 94.1 66.3 
0.050 0.050 0.000 95.6 95.2 94.8 95.0  95.1 94.8 94.3 95.3  96.7 94.6 93.8 99.1 
0.100 0.050 0.050 94.6 95.1 94.8 95.4  93.5 95.2 94.3 94.1  93.7 94.8 94.6 83.4 

Jackknife: jackknife CIs; Boot: bootstrap percentile CIs; Bc: bias-corrected bootstrap CIs; Bt: bootstrap-t CIs. 
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Table 2.4. Coverage probabilities of four confidence interval methods for overall and 
decomposed mediation effects in a dichotomous outcome model with two mediators (one 
binary (M1) and one continuous (M2)), n = 250 per group. 

ρ 
(M

1, 
M

2) True 
IE 

True 
IE1 

True 
IE2 

Overall IE  IE1  IE2 
Jack

knife 
Boot Bc Bt  

Jack

knife 
Boot Bc Bt  

Jack

knife 
Boot Bc Bt 

-0.5 0.000 0.050 -0.050 93.6 94.7 94.2 93.8  96.3 96.0 95.0 95.4  94.0 93.3 93.4 81.7 
0.200 0.300 -0.100 94.6 95.3 95.6 95.2  95.3 95.7 95.4 95.2  94.9 95.9 96.0 100 
0.000 0.000 0.000 96.8 94.9 94.2 95.3  97.8 96.0 93.6 93.8  96.9 94.1 93.0 64.1 
0.051 0.000 0.051 95.4 94.3 94.3 94.9  98.2 94.5 91.8 93.2  95.1 94.4 94.5 58.3 
0.050 0.050 0.000 95.1 94.3 93.8 94.7  95.7 94.8 94.3 95.3  95.8 94.0 93.2 98.9 
0.100 0.050 0.050 94.8 93.7 93.3 92.9  95.8 95.4 94.5 95.5  94.6 94.0 93.8 82.8 

                  0.0 0.000 0.050 -0.050 92.8 94.2 94.2 94.6  94.7 95.3 94.5 95.0  93.2 94.2 93.7 83.5 
0.200 0.300 -0.100 95.3 94.3 94.8 93.2  95.4 94.2 94.6 93.5  95.2 94.7 95.1 100 
0.000 0.000 0.000 95.8 95.6 95.1 94.3  97.9 96.1 93.1 93.5  96.5 94.7 94.3 65.5 
0.051 0.000 0.051 93.9 95.8 96.4 95.2  98.5 95.6 93.4 94.1  94.0 94.9 95.4 59.6 
0.050 0.050 0.000 95.4 93.6 93.6 93.9  95.5 93.7 93.5 94.8  95.0 94.9 93.7 99.6 
0.100 0.050 0.050 94.8 94.2 94.0 94.3  95.7 94.9 94.0 93.6  94.0 94.4 94.1 84.3 

                  0.5 0.000 0.050 -0.050 95.0 94.9 94.7 94.5  95.9 94.7 95.0 94.6  94.1 95.5 95.6 86.4 
0.200 0.300 -0.100 95.5 95.6 95.4 95.4  95.5 95.4 95.5 94.6  94.6 94.5 94.6 100 
0.000 0.000 0.000 96.1 95.3 94.8 95.5  98.7 96.7 93.1 93.4  96.2 95.3 95.0 65.0 
0.051 0.000 0.051 94.1 95.4 95.6 94.8  98.3 95.2 91.4 92.5  94.4 94.9 94.7 57.9 
0.050 0.050 0.000 94.5 94.3 94.2 94.2  95.4 95.1 95.0 94.4  95.8 94.9 94.2 99.6 
0.100 0.050 0.050 94.8 95.3 95.0 95.6  94.8 95.5 95.3 95.7  95.7 95.8 95.6 84.9 

                  0.9 0.000 0.050 -0.050 94.8 96.5 96.0 96.1  94.9 94.4 94.2 94.2  95.2 93.7 94.1 85.0 
0.200 0.300 -0.100 95.0 96.3 96.7 95.4  94.6 96.7 96.3 95.2  95.5 95.8 95.5 100 
0.000 0.000 0.000 96.8 95.4 94.3 95.2  98.1 95.5 93.2 94.0  96.0 94.7 93.4 62.8 
0.051 0.000 0.051 95.1 94.6 94.5 94.8  98.6 95.1 92.7 93.3  95.4 94.4 94.0 64.0 
0.050 0.050 0.000 96.7 95.2 94.9 95.3  95.5 94.0 93.9 94.6  96.0 94.9 94.0 99.2 
0.100 0.050 0.050 95.6 95.0 94.4 94.0  95.1 94.8 94.9 93.9  95.4 92.6 91.9 83.4 

Jackknife: jackknife CIs; Boot: bootstrap percentile CIs; Bc: bias-corrected bootstrap CIs; Bt: bootstrap-t CIs. 
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Table 2.5. Power of bootstrap percentile CIs to detect non-zero mediation effect for a 
dichotomous outcome model with two mediators (one binary (M1) and one continuous 
(M2)), n = 100 and 250 per group. 

ρ 
(M

1, 
M

2) True IE 
True 
IE1 

True 
IE2 

Sample Size 
100  250 

Overall 
IE 

IE1 IE2 
Overall 

IE 
IE1 IE2 

-0.5 0.000 0.050 -0.050 - 24.8 18.6  - 54.8 35.0 
0.200 0.300 -0.100 36.6 91.6 95.6  74.0 100 100 
0.000 0.000 0.000 - - -  - - - 
0.051 0.000 0.051 33.2 - 53.0  70.2 - 89.1 
0.050 0.050 0.000 14.3 26.0 -  33.6 54.3 - 
0.100 0.050 0.050 26.1 24.4 16.0  55.0 53.0 33.8 

           0.0 0.000 0.050 -0.050 - 30.9 20.4  - 59.6 41.6 
0.200 0.300 -0.100 51.7 94.4 97.4  90.5 100 100 
0.000 0.000 0.000 - - -  - - - 
0.051 0.000 0.051 42.4 - 57.4  86.1 - 93.9 
0.050 0.050 0.000 18.6 27.3 -  46.0 61.8 - 
0.100 0.050 0.050 38.2 30.6 16.7  75.9 63.3 37.5 

           0.5 0.000 0.050 -0.050 - 25.6 17.3  - 53.5 36.4 
0.200 0.300 -0.100 62.2 94.1 96.2  94.4 100 100 
0.000 0.000 0.000 - - -  - - - 
0.051 0.000 0.051 53.7 - 53.9  93.0 - 88.1 
0.050 0.050 0.000 25.1 27.2 -  54.8 52.5 - 
0.100 0.050 0.050 45.3 26.7 16.1  85.6 52.0 34.0 

           0.9 0.000 0.050 -0.050 - 17.5 12.8  - 38.4 24.4 
0.200 0.300 -0.100 54.9 85.7 87.9  93.9 99.9 100 
0.000 0.000 0.000 - - -  - - - 
0.051 0.000 0.051 48.5 - 33.7  89.9 - 71.7 
0.050 0.050 0.000 30.3 19.3 -  62.3 39.2 - 
0.100 0.050 0.050 56.5 17.8 13.3  91.2 36.8 26.2 
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2.7 Study Example 

The illustrative example considered here comes from a dental caries study measuring the 

number of decayed, filled, or missing teeth (#DMFT) at around age of 14 years for a 

cohort of very low birth group (VLBW) and a matched group of normal birth weight 

(NBW) children. The exposure variable of interest is the binary variable, socioeconomic 

status (SES), coded as SES = 1 for low SES (‘exposed’), SES = 0, for high SES 

(‘unexposed’). The outcome considered in this example is the dichotomous DMFT 

variable, DMFT = 0 (#DMFT = 0) versus DMFT = 1 (#DMFT > 0). Baseline covariates 

adjusted for in the model include birth group (VLBW vs. NBW), sex and race. We also 

considered the following potential mediators: “Sealant” (a binary variable indicating use 

of sealants), “AvgOHI” (the average oral hygiene index score with higher values 

indicating worse oral hygiene status), and “Visit” (a binary variable indicating whether 

the child received regular (at least once a year) checkups from the dentist or not). We 

wanted to assess the direct effect of SES on DMFT and its indirect effect through Sealant, 

AvgOHI and Visit. 

    The dental dataset we used for the analysis included 129 subjects in the exposed 

group (SES = 1) and 74 subjects in the unexposed group (SES = 0). 79/129 (61.2%) of 

subjects in the exposed group and 28/74 (37.8%) of subjects in the unexposed group had 

at least one DMFT indicating that children from families with low SES may have a 

higher risk of developing dental caries compared with those from families with high SES. 
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The system of models (including the outcome model (50) and the mediator model (51) 

for the selected mediators, each of which incorporated the three baseline covariates, birth 

group, sex and race), were fitted using maximum likelihood estimation. First, we 

considered the two-mediator model including Sealant and AvgOHI. Estimates of TE, DE, 

IE, IE1 and IE2 using the mediation formula approach with ‘exact’ integration (SAS, 

‘QUAD’ function), and the Monte Carlo approximate integration approach (using 10,000 

bivariate samples of M1
*(t1) and M2(t2)) are provided in Table 2.6; 95% CIs for these 

estimators were computed using bootstrap percentile methodology. The ‘exact’ and 

Monte Carlo approaches provided almost identical mediation effect estimates as well as 

CIs. The results indicate that the total natural indirect effect accounts for approximate 

25% of the total exposure effect and the mediation effect through AvgOHI predominates 

among the individual mediation effects. The effect estimates are interpreted as follows. 

Low (versus high) SES increases the probability of DMFT = 1 by 0.19 (95% confidence 

interval: 0.04, 0.34), by an estimated 0.04 (-0.00, 0.09) (0.00 denotes ‘< 0.005’ in 

absolute value, same as below) attributable to the two mediators (Sealant and AvgOHI), 

and an estimated 0.15 (0.00, 0.30) due to the direct effect (or other unknown pathways). 

The overall indirect effect (attributable to the two mediators together) can be decomposed 

into mediation effects through Sealant (-0.00 (-0.02, 0.02)) and through AvgOHI (0.04 

(0.01, 0.09)). In summary, we found, using the two-mediator model for the dental data, a 

significant total exposure effect (TE), direct effect (DE), and indirect effect through 

AvgOHI (IE2), a marginally significant total indirect effect estimate (IE) and a 
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non-significant indirect effect through Sealant (IE1) (at the 0.05 level based on the 

confidence interval). We next included one additional potential mediator, Visit, in the 

model; the analysis results of this model are shown in Table 2.7. Similar conclusions 

were drawn as above. Low (versus high) SES increases the probability of DMFT = 1 by 

an estimated 0.18 (0.03, 0.34) with an estimated increase of 0.05 (0.00, 0.11) attributable 

to the set of mediators (with the following individual mediation effects: Sealant 0.00 

(-0.02, 0.02), AvgOHI 0.04 (0.00, 0.08) and Visit 0.02 (-0.01, 0.05)) and an estimated 

increase of 0.13 (-0.03, 0.29) due to the direct effect (that is, any other pathways). 

Comparing with the results from Table 2.6, we may conclude that part of the direct effect 

in the two-mediator model was explained by an indirect effect through the added 

mediator Visit, although the indirect effect through Visit is not statistically significant. 

    We conducted two sensitivity analyses in the two-mediator model for our dental data. 

In the first sensitivity analysis, we examined the effect on the individual mediation effects, 

IE1 and IE2, of varying the correlation coefficient ρ΄ between M1*(0) and M2(1) from -1 to 

1 in increments of 0.01. The change in IE1 and IE2 estimates over ρ΄ is shown in Figure 

2.2. The plots indicate that the IE1 estimate increases (Figure 2.2A) and the IE2 estimate 

decreases (Figure 2.2B) as ρ΄ increases; the sum of IE1 and IE2 is constant, since ρ΄ 

doesn’t affect the total indirect effect estimate. Based on repeated computations of the 

confidence intervals, we found a nonsignificant indirect effect through Sealant and a 

significant indirect effect through AvgOHI over the whole range of ρ΄ indicating 

robustness of the decomposed mediation effect estimates to the correlation between 
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Table 2.6. Estimated causal effects (and 95% bootstrap percentile CIs) based on the 
mediation formula approach with ‘exact’ integration and Monte Carlo integration in the 
two-mediator model using dental data.   

  Mediation Formula 
‘exact’ Integration Monte Carlo Integration# 

Sealant 
(binary) and 

AvgOHI 
(continuous) 

Total TE 0.19 (0.04, 0.34) 0.19 (0.04, 0.33) 
Direct DE 0.15 (0.00$, 0.30) 0.15 (0.00, 0.30) 
Mediation IE 0.04 (-0.00, 0.09) 0.04 (-0.00, 0.09) 
  Through Sealant (IE1)*  -0.00 (-0.02, 0.02) -0.00 (-0.02, 0.02) 
  Through AvgOHI (IE2)* 0.04 (0.01, 0.09) 0.04 (0.01, 0.09) 

#: Monte Carlo integration with 10,000 samples was used for estimation of causal effects. 

*: Assumes correlation coefficient (ρ´) between unobserved counterfactual values M1
*(0) and M2(1) 

the same as that between M1
*(0) and M2(0) and M1

*(1) and M2(1). 

$: 0.00 denotes < 0.005 in absolute value. 
 
Table 2.7. Estimated causal effects (and 95% bootstrap percentile CIs) based on the 
mediation formula approach with ‘exact’ integration and Monte Carlo integration in a 
three-mediator model using dental data.   

  Mediation Formula 
‘exact’ Integration Monte Carlo Integration# 

Sealant 
(binary), 
AvgOHI 

(continuous), 
and Visit 
(binary) 

Total TE 0.18 (0.03, 0.34) 0.18 (0.03, 0.34) 
Direct DE 0.13 (-0.03, 0.29) 0.13 (-0.03, 0.29) 
Mediation IE 0.05 (0.00$, 0.11) 0.05 (0.00, 0.11) 
  Through Sealant (IE1)*  0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 
  Through AvgOHI and Visit (IE23)* 0.05 (0.01, 0.11) 0.05 (0.01, 0.11) 
  Through AvgOHI (IE2)* 0.04 (0.00, 0.08) 0.04 (0.00, 0.08) 
  Through Sealant and Visit (IE13)* 0.02 (-0.02, 0.05) 0.02 (-0.02, 0.05) 
  Through Visit (IE3)* 0.02 (-0.01, 0.05) 0.02 (-0.01, 0.05) 
  Through Sealant and AvgOHI (IE12)* 0.04 (-0.00, 0.08) 0.04 (-0.00, 0.08) 

#: Monte Carlo integration with 1,000,000 samples was used for estimation of causal effects. 

*: Assumes correlation between Mi
(*)

(ti), Mj
(*)

(tj) (i, j = 1, 2, 3 and i ≠ j) is constant over all ti and tj. 

$: 0.00 denotes < 0.005 in absolute value.
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counterfactuals M1*(0) and M2(1). In the second sensitivity analysis, we assessed the 

effect on mediation effect estimates (IE, IE1 and IE2) of possible violation of the no 

unmeasured mediator-outcome confounding assumption. Since there are two correlation 

parameters of interest, 3-D graphs (Figure 2.3) were plotted describing the change of 

mediation effect estimates over the ranges of the two correlations. Namely, the 

correlations are those between each of the two mediators (or underlying latent variables) 

and the latent variable underlying outcome variable adjusting for the mediators. We find 

that ρ1 (the correlation between Y*(t0, m1, m2) and M1*(t1)) does not substantially affect 

estimate of overall indirect effect (IE), and as ρ2 (the correlation between Y*(t0, m1, m2) 

and M2(t2)) increases, IE estimate significantly decreases (Figure 2.3A). Furthermore, IE 

estimate is contained in the bounded interval [-0.14, 0.16], and when ρ2 is greater than 

0.56, we find significant negative IE estimate. For the IE1 estimate, it is stable and trivial 

(bounded by [-0.01, 0.00]) over the range of ρ1 and ρ2 (Figure 2.3B). The fact that the 

95% CIs recalculated over the full bivariate range for the two correlation coefficients 

always contain zero indicates the robustness of the original conclusion (that there is no 

evidence for a mediation effect through Sealant). The pattern of the change in the IE2 

estimate (over the ranges of ρ1 and ρ2) is similar with that of IE estimate (Figure 2.3C); 

IE2 is close to IE in this example since the estimate of IE1 is approximate zero. This result 

indicates that our original conclusion regarding the significant positive indirect effect 

through AvgOHI may not hold if unmeasured confounders (explaining a correlation of 

greater than 0.5) between the mediator and outcome exist.  
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Figure 2.2. Sensitivity analysis for overall indirect effect decomposition of dental data involving binary 

‘Sealant’ and continuous ‘AvgOHI’ mediators. Panels A and B show the estimated indirect effect through 

‘Sealant’ and ‘AvgOHI’, respectively, for varying correlation ρ΄ between M1*(0) and M2(1). The areas 

between dotted lines represent the 95% CIs for the decomposed natural indirect effect estimator at each 

value of ρ΄. 

 

 

Figure 2.3. Sensitivity analysis for overall indirect effect estimation and indirect effect decomposition of 

dental data involving binary ‘Sealant’ (M1) and continuous ‘AvgOHI’ (M2) mediators. Panels A shows the 

estimated overall indirect effect for varying correlation ρ1 (between Y*(t0, m1, m2) and M1*(t1)) and ρ2 

(between Y*(t0, m1, m2) and M2(t2)). Panel B shows indirect effect estimation through ‘Sealant’, and Panel C 

shows indirect effect estimation through ‘AvgOHI’. Red surface shows the mediation effect estimate, the 

space between the two green surfaces represents the 95% confidence intervals, and the black surface 

indicates zero mediation effect reference. 
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2.8 Discussion 

In this part, we consider multiple-mediator models with binary or continuous mediators 

and a binary outcome. A marginal joint modeling approach with a probit-type model for 

binary mediator is applied to accommodate correlations among multiple mediators. The 

total and individual mediation effects are estimated with a mediation formula approach 

and sensitivity analyses are conducted to assess the robustness of the results. 

    Our simulation study showed good properties (low bias and close-to-nominal 

confidence interval coverage rates) for the proposed estimators under most scenarios. For 

the estimation of individual natural indirect effects, there appears to be some bias when 

there are substantial mediation effects through each mediator and the correlation 

coefficient between the two mediators is high. The reason for this bias may be due to the 

fact that our approach cannot dissect the total indirect effect accurately with the relatively 

small sample size of 200 when the two mediators are highly correlated. We note, however, 

that the total natural indirect effect can be estimated precisely in this situation. 

Comparing four methods of constructing CIs based on the coverage probability, we 

recommend that CIs for mediation effects in our multiple-mediator model context be 

obtained using the bootstrap percentile method. Preacher and Hayes (2008) advocate the 

bias-corrected bootstrap for CIs of mediation effects estimated with the product of 

coefficients approach in linear multiple-mediator models. However, we found that CIs 

from the bias-corrected bootstrap may be biased when there are substantial unbalanced 
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indirect effects through both mediators with different signs and the sample size is small. 

An interesting finding is that the power for detecting a total indirect effect increases as 

the correlation between two mediators increases and the power for individual-mediator 

indirect effects is maximized when the two mediators are uncorrelated. Therefore it is 

relatively easy to detect a total mediation effect when the two mediators are highly 

correlated, whereas individual mediation effects are most easily detected with 

uncorrelated mediators.     

    Multiple-mediator models allow us to dissect the total mediation effect and estimate 

mediation effects through individual or sets of mediators under additional assumptions. 

Estimation of the decomposed mediation effects involves the joint distribution of 

counterfactuals that cannot be observed at the same time (namely, M1(0) and M2(1) in our 

data example). This problem, which may occur when there are more than two stages of 

mediation, was recognized previously in the literature (Avin, et al., 2007; Albert and 

Nelson, 2011; Wang and Albert, 2012). The simple identifying assumption of a constant 

correlation coefficient between counterfactuals M1
*(t1) and M2(t2) for all t1, t2 may not 

always be plausible. Therefore, it may be sensible to make use of bounds for the 

decomposed mediation effect estimate by considering ρ΄ over a plausible range, or even 

over the entire interval, [-1, 1]. To assess the effect on mediation effect estimates of 

violations of the no unmeasured mediator-outcome confounders assumption, we use the 

correlation coefficients between each mediator (or underlying latent variables) and the 

latent variable underlying the outcome variable (adjusting for the mediators), denoted as 
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ρ1 and ρ2, as our sensitivity analysis parameters. Alternatively, Imai et al. (2010) 

expressed the correlation coefficient between the mediator and the outcome as a function 

of the coefficients of determination (i.e. R2, which represent the proportion of previously 

unexplained variance either in the mediator or outcome that is explained by the 

unobserved confounders), allowing for the sensitivity analysis to be based on the 

magnitudes of an effect of the omitted confounder. Imai et al. (2010) also extended this 

approach to the case of a binary mediator and/or binary outcome using the pseudo-R2 of 

McKelvey and Zavoina (1975). This approach may possibly be applied to our model. 

Although R2 as a sensitivity parameter has an advantage of interpretability, a 

disadvantage of this approach is that it requires two such R2s instead of a single 

parameter (ρ). One consequence is that the graphical presentation of the sensitivity 

analysis results is more difficult, especially for our multiple-mediator models. 

    In conclusion, we have proposed a mediation formula approach for mediation 

analysis of multiple-mediator models with a dichotomous outcome that allows estimation 

of the total indirect effect, as well as further decomposition of the total indirect effect 

through individual mediators. This approach can be easily extended to other types of 

discrete outcomes (such as a count response). Future work is needed to explore possible 

dimension reduction strategies for mediation analysis with multiple mediators in 

non-linear models to avoid the extensive computation required by the present approach.  
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Appendix I: Proof of Theorem 1 (Section 1.2.1.5) 
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Appendix II: Derivation of ZINB and NBH mean and variance (Section 

1.2.2) 

For ZINB model: 
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For NBH model: 
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Appendix III: Proof of Formula (34) and (35) (Section 1.5.2)

 

First, note that expressions for the mean of Y(d0, M(d1), Y1(d2, M(d1,2))) in general involve 

the potential outcomes of M and Y1, the latter being random variables (representing 

endogenous variables in the causal model (Albert and Nelson, 2011)). Therefore, 

obtaining the marginal mean of the potential outcome Y(d0, M(d1), Y1(d2, M(d1,2))) 

requires integrating or summing over M and Y1 as follows, 
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The second equation follows from the fact that when y1 = 0 (the subject belongs to the 

non-susceptible group), E{Y(d0, m, 0) | M(d1) = m, Y1(d2, M(d1,2)) = 0} = 0. We can 

therefore express E(Y(d0, M(d1), Y1(d2, M(d1,2)))),  as a function of E{Y(d0, m, 1) | M(d1) 

= m, Y1(d2, M(d1,2)) = 1} and P{Y1(d2, M(d1,2)) = 1 | M(d1) = m}. The result that the 

former term is identifiable is shown as follows, 
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0 1 1 2 ( )| ( ) ( )

0 1 1 2 ( ), ( )

{ ( , ( ), ( , ( )))}

{ | , , 1} { | , '} ( ') ( )

{ | , , 1} { | , '} ( , ')

M d M d m M d

M d M d

E Y d M d Y d M d

E Y T d M m Y E Y T d M m dF m dF m

E Y T d M m Y E Y T d M m dF m m

== = = = = =

= = = = = =

∫∫
∫∫

 

Therefore when d1 ≠ d1,2, formula (34) holds. 
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For formula (35), under the condition d1 = d1,2, 

1 2 1,2 1

1 2 1 1 1 1,2

1 2 1

1 2 1 1

1 2 1

1 2 2

1 2 2 2

{ ( , ( )) 1 | ( ) }

{ ( , ( )) 1 | ( ) }

{ ( , ) | ( ) }

{ ( , ) | , ( ) } (31)

{ ( , ) | } (32)

{ ( , ) | } (31)

{ ( , ) | , ( ) } (32)

P Y d M d M d m

P Y d M d M d m Condition d d

E Y d m M d m Definition

E Y d m T d M d m

E Y d m T d

E Y d m T d

E Y d m T d M d m

= =

= = = =

= =

= = =

= =

= =

= = =

= 1 2{ | , }E Y T d M m Consistency= =

This gives: 

1

0 1 1 2 1

0 1 1 2 ( )

{ ( , ( ), ( , ( )))}

{ | , , 1} { | , } ( )M d

E Y d M d Y d M d

E Y T d M m Y E Y T d M m dF m= = = = = =∫
 

So formula (35) also holds. 
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Appendix IV: Proof of Formula (47) (Section 2.4.2)

 

Note that, the potential outcomes for J mediators in Y(t0, M1(t1), … , MJ(tJ)) are random 

variables, therefore, to obtain the marginal expected value of Y(t0, M1(t1), … , MJ(tJ)) 

requires that we integrate over these variables, comprising the endogenous (random) 

explanatory variables in the model of Y (Albert and Nelson, 2011), as 

follows,

1 1

1 1

0 1 1

0 1 1 1 1 ( ),..., ( ) 1

0 1 1 1 1 1 ( ),..., ( ) 1

{ ( , ( ),..., ( ))}

... { ( , ,..., ) | ( ) ,..., ( ) } ( ,..., )

... { ( , ,..., ) | , ( ) ,..., ( ) } ( ,.

J J

J J

J J

J
J J J J M t M t Jn J

J
J J J J M t M tn J

E Y t M t M t

E Y t m m M t m M t m d F m m Definition

E Y t m m T t M t m M t m d F m
=

=

=

= = =

= = = =

∫ ∫
∫ ∫

1 1

1 1

0 1 1 2 2 2 ( ),..., ( ) 1

0 1 2 2 2 2 ( ),..., ( ) 1

.., ) (45)

... { ( , ,..., ) | , ( ) ,..., ( ) } ( ,..., ) (46)

... { ( , ,..., ) | , ( ) ,..., ( ) } ( ,..., ) (45)

...

J J

J J

J

J
J J J J M t M t Jn J

J
J J J J M t M t Jn J

n J

m

E Y t m m T t M t m M t m d F m m

E Y t m m T t M t m M t m d F m m

E

=

=

=

= = = =

= = = =

=

∫ ∫
∫ ∫

1 1

1 1

1 1

0 1 2 3 3 3 ( ),..., ( ) 1

0 1 ( ),..., ( ) 1

0 1 0 ( ),.

{ ( , ,..., ) | , ( ) ,..., ( ) } ( ,..., ) (46)

......

... { ( , ,..., ) | } ( ,..., ) (46)

... { ( , ,..., ) | }

J J

J J

J
J J J J M t M t J

J
J J M t M t Jn J

J
J M tn J

Y t m m T t M t m M t m d F m m

E Y t m m T t d F m m

E Y t m m T t d F
=

=

= = =

=

= =

= =

∫ ∫

∫ ∫
∫ ∫

1 1

1 1

.., ( ) 1

0 1 0 1 0 1 ( ),..., ( ) 1

0 1 0 1 0 1 2 0 2 ( ),..., ( ) 1

( ,..., ) (45)

... { ( , ,..., ) | , ( ) } ( ,..., ) (46)

... { ( , ,..., ) | , ( ) , ( ) } ( ,..., ) (46)

......

...

J J

J J

J J

M t J

J
J M t M t Jn J

J
J M t M t Jn J

n

m m

E Y t m m T t M t m d F m m

E Y t m m T t M t m M t m d F m m
=

=

= = =

= = = =

=

=

∫ ∫
∫ ∫

1 1

1 1

0 1 0 1 0 1 0 ( ),..., ( ) 1

0 1 1 ( ),..., ( ) 1

{ ( , ,..., ) | , ( ) ,..., ( ) } ( ,..., ) (46)

... { | , ,..., } ( ,..., )

J J

J J

J
J J J M t M t JJ

J
J J M t M t Jn J

E Y t m m T t M t m M t m d F m m

E Y T t M m M m d F m m Consistency
=

=

= = =

= = = =

∫ ∫
∫ ∫  

So formula (47) holds.

 

 

 



110 
 

Bibliography 

Ajzen I, Fishbein M. Understanding attitudes and predicting social behavior. Englewood 

Cliffs, 1980; NJ: Prentice Hall. 

Albert JM. Mediation analysis via potential outcomes models. Statistics in Medicine 2008; 

27:1282-1304. 

Albert JM, Nelson S. Generalized causal mediation analysis. Biometrics 2011; 

67:1028-1038. 

Albert JM, Wang W, Nelson S. Estimating overall exposure effects for zero-inflated 

regression models with application to dental caries. Statistical Methods in Medical 

Research 2011; DOI: 10.1177/0962280211407800.  

Allen, DG, Griffeth RW. Test of a mediated performance-turnover relationship 

highlighting the moderating roles of visibility and reward contingency. Journal of 

Applied Psychology 2001; 86:1014-1021. 

Avin C, Shpitser I, Pearl J. Identifiability of path-specific effects. Proceedings of 

International Joint Conference on Artificial Intelligence 2005; 19:357-363. 

Baron RM, Kenny DA. The moderator-mediator variable distinction in social 

psychological research: Conceptual, strategic, and statistical considerations. Journal of 

Personality and Social Psychology 1986; 51:1173-1182. 

Bauman AE, Sallis JF, Dzewaltowski DA, Owen N. Toward a better understanding of the 

influences on physical activity: the role of determinants, correlates, causal variables, 



111 
 

mediators, moderators, and confounders. American Journal of Preventive Medicine 2002; 

23:5-14. 

Berk KN, Lachenbruch PA. Repeated measures with zeros. Statistical Methods in 

Medical Research 2002; 11:303-316. 

Bishop YM, Fienberg SE, Holland PW. Discrete multivariate analysis: Theory and 

practice. Cambridge, MA: MIT Press. 

Böhning D, Dietz E, Schlattmann P, Mendonca L, Kirchner U. The zero-inflated Poisson 

Model and the Decayed, Missing and Filled Teeth Index in Dental Epidemiology. Journal 

of the Royal Statistical Society, Series A 1999; 162:195-209. 

Bollen KA, Stine RA. Direct and indirect effects: classical and bootstrap estimates of 

variability. Sociological Methodology 1990; 20:115-140. 

Catalano, PJ and Ryan LM. Bivariate latent variable models for clustered discrete and 

continuous outcomes. Journal of the American Statistical Association 1992; 87:651-658. 

Cheung YB. Zero-inflated models for regression analysis of count data: a study of growth 

and development. Statistics in Medicine 2002; 21:1461-1469. 

Cheung YB. Growth and cognitive function of Indonesian children: Zero-inflated 

proportion models. Statistics in Medicine 2006; 25:3011-3022. 

Cox DR, Wermuth N. Response models for mixed binary and quantitative variable. 

Biometrika 1992; 79:441-461. 



112 
 

Dalrymle L, Hudson IL, Ford RPK. Finite mixture, zero-inflated Poisson and hurdle 

models with application to SIDS. Computational Statistics and Data Analysis 2003; 

41:491-504. 

Dobbie MJ, Welsh AH. Modelling correlated zero-inflated count data. Australian and 

New Zealand Journal of Statistics 2001; 43:431-444. 

Donaldson SI, Graham JW, Hansen WB. Testing the generalizability of intervening 

mechanism theories: Understanding the effects of adolescent drug use prevention 

interventions. Journal of Behavioral Medicine 1994; 17:195-216. 

Edwards YD, Allenby GM. Multivariate analysis of multiple response data. Journal of 

Marketing Research 2003; 40:321-334. 

Efron, B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman & Hall. 

Freedman LS, Graubard B, Schatzkin A. Statistical validation of intermediate endpoints 

for chronic diseases. Statistics in Medicine 1992; 11:167-178. 

Garrison RJ, Feinleib M, Castelli WP, MaNamara PM. Cigarette smoking as a 

confounder of the relationship between relative weight and long-term mortality. The 

Framingham Heart Study. Journal of American Medical Association 1983; 

249:2199-2203. 

Gray BR. Selecting a distributional assumption for modeling relative densities of benthic 

macro-intvertebrates. Ecological Modelling 2005; 185:1-12. 

Gerdtham UG. Equality in health care utilization: further tests based on hurdle models 

and Swedish micro data. Health Economics 1997; 6:303-319. 



113 
 

Geys H, Regan MM, Catalano PJ, Molenberghs G. Two latent variable risk assessment 

approaches for mixed continuous and discrete outcomes from developmental toxicity data. 

Journal of Agricultural Biological and Environment Statistics 2001; 6:340-355. 

Gurmu S. Semi-parametric estimation of hurdle regression models with an application to 

Medicaid utilization. Journal of Applied Econometrics 1997; 12:225-242. 

Hall, DB, Zhang Z. Marginal models for zero-inflated clustered data. Statistical 

Modelling 2004; 4:161-180.  

Huang B, Sivaganesan S, Succop P, Goodman E. Statistical assessment of meditational 

effects for logistic meditational models. Statistics in Medicine 2004; 23:2713-2728. 

Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal 

mediation effects. Statistical Science 2010; 25:51-71. 

Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. 

Psychological Methods 2010; 15:309-334. 

James F. Monte Carlo theory and practice. Reports on Progress in Physics 1980; 

43:1145-1189. 

Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis (5th edition). 

Prentice-Hall: Englewood Cliffs, NJ, 2002. 

Lambert D. Zero-inflated Poisson regression, with an application to defects in 

manufacturing. Technometrics 1992; 34:1-14. 

Lewsey JD, Thomson WM. The utility of the zero-inflated Poisson and zero-inflated 

negative binomial models: a case study of cross-sectional and longitudinal DMF data 



114 
 

examining the effect of socio-economic status. Community Dental and Oral 

Epidemiology 2004; 32:183-189. 

Li Y, Schneider JA Bennett DA. Estimation of mediation effect with a binary mediator. 

Statistics in Medicine 2007; 26:3398-3414. 

Little RJA, Schluchter MD. Maximum likelihood estimation for mixed continuous and 

categorical data with missing values. Biometrika 1985; 72:497-512. 

MacKinnon DP. Contrasts in multiple mediator models. Multivariate Applications in 

Substance Use Research: New Methods for New Questions 2000; 141-160. 

MacKinnon DP, Dwyer JH. Estimating mediated effects in prevention studies. Evaluation 

Review 1993; 17:144-158. 

MacKinnon DP, Lockwood CM, Brown CH, Wang W and Hoffman JM. The intermediate 

endpoint effect in logistic and probit regression. Clinical Trials 2007; 4:499-513. 

MacKinnon DP, Lockwood CM, Hoffman JM, West SG Sheets V. A comparison of 

methods to test mediation and other intervening variable effects. Psychological Methods 

2002; 7:83-104. 

MacKinnon DP, Lockwood CM, Williams J. Confidence limits for the indirect effect: 

distribution of the product and resampling methods. Multivariate Behavioral Research 

2004; 39:99-128. 

MacKinnon DP, Warsi G, Dwyer JH. A simulation study of mediated effect measures. 

Multivariate Behavioral Research 1995; 30:41-62. 

Maddala GS. Limited Dependent and Qualitative Variables in Econometrics. Cambridge 



115 
 

University Press: Cambridge, UK, 1983. 

McKelvey RD, Zavoina W. A statistical model for the analysis of ordinal level dependent 

variable. Journal of Mathematical Sociology 1975; 4:103-120. 

Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count 

data. Statistical Modelling 2005; 5:1-19. 

Molenberghs G, Verbeke G. Models for discrete longitudinal data. Spring, New York, 

2005. 

Mosteller F, Tukey JW. Data analysis and regression: A second course in statistics. 

Reading, MA: Addison-Wesley. 

Moulton LH, Curriero FC, Barroso PF. Mixture models for quantitative HIV RNA data. 

Statistical Methods in Medical Research 2002; 11:317-325. 

Mullahy, J. Specification and testing of some modified count data models. Journal of 

Econometrics 1986; 33:341-365. 

Neelon BH, O’Malley AJ, Normand SL. A Bayesian model for repeated measures 

zero-inflated count data with application to outpatient psychiatric service use. Statistical 

Modelling 2010; 10:421-439. 

Nelson S, Albert JM, Lombardi G, Wishnek S, Asaad G, Kirchner HL, Singer LT. Dental 

caries and enamel defects in very low birth weight adolescents. Caries Research 2010; 

44:509-518. 



116 
 

Pearl, J. Direct and indirect effects. In Proceedings of the Seventeenth Conference on 

Uncertainty in Artificial Intelligence (J.S. Breese and D. Koller, eds.) 2001; 411-420. 

Morgan Kaufman, San Francisco, CA. 

Pearl J. The causal mediation formula – a guide to the assessment of pathways and 

mechanisms Technical report R-379, 2011: http://bayes.cs.ucla.edu/jp_home.html. 

Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. 

Epidemiology 2006; 17:276-284. 

Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and 

comparing indirect effects in multiple mediator models. Behavior Research Methods 

2008; 40:879-891. 

Regan MM, Catalano PJ. Likelihood models for clustered binary and continuous 

outcomes: Application to developmental toxicology. Biometrics 1999; 55:760-768. 

Reynolds KD, Bishop DB, Chou CP, Xie B, Nebeling L, Perry CL. Contrasting mediating 

variables in two 5-a-day nutrition intervention programs. Preventive Medicine 2004; 

39:882-893. 

Ridout MS, Demetrio CGB, Hinde JP. Models for count data with many zeros. 

Proceedings of XIXth International Biometric Society Conference 1998; IBC98:179-192. 

Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. 

Epidemiology 1992; 3:143-155. 



117 
 

Robins JM. Semantics of causal DAG models and the identification of direct and indirect 

effects. In highly Structured Stochastic Systems (P.J. Green, N. L. Hjort and S. 

Richardson, eds.) 2003; 70-81. Oxford Unv. Press, Oxford. MR2082403. 

Rodrigues J. Bayesian analysis of zero-inflated distributions. Communications in 

Statistics, Theory and Methods 2003; 32:281-289. 

Rose CE, Martin SW, Wannemuehler KA, Plikaytis BD. On the use of zero-inflated and 

hurdle models for modeling vaccine adverse event count data. Journal of 

Biopharmaceutical Statistics 2006; 16:463-481. 

Rothman K, Greenland S. Modern epidemiology. Philadelphia: Lippincott-Raven Press, 

2001. 

Schneider JA, Bienias JL, Wilson RS, Berry-Kravis E, Evans DA, Bennett DA. The 

apolipoprotein E epsilon4 allele increases the odds of chronic cerebral infarction detected 

at autopsy in older persons. Stroke 2005; 36:954-959.  

Schluchter, MD. Flexible approaches to computing mediated effects in generalized linear 

models: generalized estimating equations and bootstrapping. Multivariate Behavioral 

Research 2008; 43:268-288. 

Shpitser I, VanderWeele TJ. A complete graphical criterion for the adjustment formula in 

mediation analysis. International Journal of Biostatistics 2011; 7:Article 16. 

Singer L, Yamashita T, Lilien L, Collin M, Baley J. A longitudinal study of 

developmental outcome of infants with bronchopulmonary dysplasia and very low birth 



118 
 

weight. Pediatrics 1997; 100:987-993. 

Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation 

models. Sociological Methodology 1982; 13:290-312. 

Song PXK, Li M, Yuan Y. Joint regression analysis of correlated data using Gaussian 

copulas. Biometrics 2009; 65:60-68.  

Stone CA, Sobel ME. The robustness of estimates of total indirect effects in covariance 

structural models estimated by maximum likelihood. Psychometrika 1990; 55:337-352. 

Taylor AB, MacKinnon D Tein JY. Test of the three-path mediated effect. Organizational 

Research Methods 2008; 11:241-269.  

Tein JY, Sandler IN, Zautra AJ. Stressful life events, psychological distress, coping, and 

parenting of divorced mothers: A longitudinal study. Journal of Family Psychology, 2000; 

14:27-41. 

Van der Laan MJ, Petersen ML. Direct effect models. International Journal of 

Biostatistics 2008; 4:Article 23. 

VanderWeele TJ Bias formula for sensitivity analysis for direct and indirect effects. 

Epidemiology 2010; 21:540-551. 

VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous 

outcome. American Journal of Epidemiology 2010; 172:1339-1348. 



119 
 

Vinokur, AD, Schul Y. Mastery and inoculation against setbacks as active ingredients in 

the JOBS intervention for the unemployed. Journal of Consulting and Clinical 

Psychology 1997; 65:867-877. 

Wang W, Albert JM. Estimation of mediation effects for zero-inflated regression models. 

Submitted to Statistics in Medicine 2012. 

Yeates KO, Taylor HG, Woodrome SE, Wade SL, Stancin T, Drotar D. Race as a 

moderator of parent and family outcomes following pediatric traumatic brain injury. 

Journal of Pediatric Psychology 2002; 27:393-403. 

Yau KKW, Lee AH. Zero-inflated Poisson regression with random effects to evaluate an 

occupational injury prevention program. Statistics in Medicine 2001; 20:2907-2920. 

 

 

 


	Wei's thesis HEAD March 15 Final 2012
	Wei's thesis TEXT Feb 25 2012 Final

