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COMPUTATIONAL MODELING 
FOR CENSORED TIME TO EVENT DATA 

USING DATA INTEGRATION IN BIOMEDICAL RESEARCH 
 

 
 
 

Abstract 
 

by 
 
 
 

ICKWON CHOI 
 
 
 
 
 

 Medical prognostic models are designed by clinicians to predict the future course 

or outcome of disease progression after diagnosis or treatment. The data, which are used 

when these clinical models are developed, are required to contain a high number of 

events per variable (EPV) for the resulting model to be reliable. If our objective is to 

optimize predictive performance by some criterion, we can often achieve a reduced 

model that has a little bias with low variance, but whose overall performance is improved. 

To accomplish this goal, we propose a new variable selection approach that combines 

Stepwise Tuning in the Maximum Concordance Index (STMC) and Forward Nested 

Subset Selection (FNSS) in two stages. In the first stage, the proposed variable selection 

is employed to identify the best subset of risk factors optimized with the concordance 

index using inner cross validation for optimism correction in the outer loop of cross 

validation, yielding potentially different final models for each of the folds. We then feed 

the intermediate results of the prior stage into another selection method in the second 

stage to resolve the overfitting problem and to select a final model from the variation of 

predictors in the selected models. Two case studies on relatively different sized survival 

data sets as well as a simulation study demonstrate that the proposed approach is able to 
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select an improved and reduced average model under a sufficient sample and event size 

compared to other selection methods such as stepwise selection using the likelihood ratio 

test, Akaike Information Criterion (AIC), and least absolute shrinkage and selection 

operator (lasso). Finally, we achieve improved final models in each dataset as compared 

full models according to most criteria. These results of the model selection models and 

the final models were analyzed in a systematic scheme through validation for 

independent performance evaluation.  

For the second part of this dissertation, we build prognostic models that use 

clinicopathologic features and predict prognosis after a certain treatment. Most of the 

recent research efforts have focused on high dimensional genomic data with a small 

sample. Since clinically similar but molecularly heterogeneous tumors may produce 

different clinical outcomes, the combination of clinical and genomic information is 

crucial to improve the quality of prognostic prediction. However, there is lack of an 

integrating scheme into a clinico-genomic model due to the larger number of variables 

and small sample size, in particular, for a parsimonious model. We propose a 

methodology to build a reduced yet accurate integrative model using a hybrid approach 

based on the Cox regression model, which uses several dimension reduction techniques, 

L2 penalized maximum likelihood estimation (PMLE), and resampling methods to tackle 

the problems above. The predictive accuracy of the modeling approach is assessed by 

several metrics via an independent and thorough scheme to compare competing methods. 

In breast cancer data studies for metastasis and mortality outcome, in a DLBCL data 

study, and in simulation studies, we demonstrate that the proposed methodology can 

improve prediction accuracy and build a final model with a hybrid signature that is 

parsimonious when integrating both types of variables. The selected clinical factors and 

genomic biomarkers are found to be highly relevant to the biological processes and can 

be considered as potential biomarkers for cancer prognosis and therapy. Furthermore, 

selected but unidentified genes are open to thorough investigation. 
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CHAPTER 1 Backgrounds 
 

1.1 Prognostic prediction model 

 
    Prognostic prediction models are used in medical society for investigating clinical 

outcome in relation to patient and disease characteristics. Although many model building 

methodologies and computational tools exist in biomedical research, such final models 

built by using them do not always work well in practice. Thus it is needed to be validated 

before it is used as practical tools. In particular, uncritical application of modeling 

techniques can result in models that poorly or overly fit the dataset and inaccurately 

predict outcomes on new subjects. In this dissertation, we investigate two types of 

modeling design methodology for constructing a reliable final model using unbiased 

validation techniques. The two design methodology in primary problems are 1) to build a 

clinical prognostic model in a high events per variable (EPV) setting and 2) to build a 

clinicogenomic model using data integration in the high dimensionality and small sample 

size setting.   

 

1.1.1 Clinical prognostic model 
 

Medical prognostic models can be designed in a high events per variable (EPV) 

setting to predict the future course or outcome of disease progression after diagnosis or 
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treatment. Such models can provide individualized predictions about the characteristics 

of one single patient. However, there is considerable uncertainty within the statistical 

modeling community regarding how to develop an accurate prediction model for 

censored survival data [10]. Specifically, when it comes to variable selection, some 

advocate fitting the full model [22] in which predictors are pre-specified with external 

information from the literature, while variable selection methods remain popular [1,52]. 

Nonetheless, a full model may be large and complicated to be used as a statistical tool. 

There is little literature comparing these primary approaches with respect to the 

predictive accuracy in censored clinical data. Recently logistic regression models [52-55] 

have been studied for clinical models. If the goal is to optimize predictive accuracy for 

finding a set of reduced prognostic factors, a plausible alternative to the full model would 

be to fit the most accurate, possibly reduced, model. An argument can easily be made for 

a parsimonious model that is at least as accurate as the full model.  

 

1.1.1.1 Problems and strategies 

1.1.1.1.1 Estimation and selection bias in model selection 

 
In general, the complexity of a model obtained by a procedure of model selection is 

expected to be less than that of the full model, and the variance of the estimated 

parameters should be lower. Nevertheless, recent studies emphasize the limitations of 

variable selection, such as bias in the estimates of parameters (estimation bias) and the 
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lack of stability in an iterative scheme of variable selection [53]. In a stable algorithm, the 

effect of computational error during the iteration is no worse than that of a small amount 

of input data error from a phenomenon in which two or more predictor variables in a  

model are highly correlated (multicollinearity) [13,26]. An unstable variable selection 

algorithm may enlarge initial perturbations after numerous iterations. Furthermore, in 

variable selection, multicollinearity between the omitted variables and the selected 

variables can cause selection bias. Dropping influential variables from the effective 

model results in underfitting to data with increased residuals and biased parameter 

estimates for selected variables (omission bias). Adding unimportant variables to the 

effective model induces overfitting and increases the variance of parameter estimates for 

correlated predictors [36]. In this study, we attempt to reduce the instability and increase 

the reliability of the selection algorithm using the resampling method of cross validation 

[48]. 

 

1.1.1.1.2 Model complexity  

      

A large sample size is the need for a problem of fitting the full model with 

numerous and complicated predictors to obtain unbiased estimation in model fitting, and 

for the possibility of overfitting due to the high model complexity. The sample size 

problem due to the model complexity can be accounted for by the curse of dimensionality 

[3]. In fact, regression modeling with time to event data, which contain sequential time 
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information on event such as death of recurrence of a disease, is much more sensitive to 

the events per variable (EPV) [43] than the overall sample size. Some researchers 

carefully guide the ten EPV ratio to estimate bias and sometimes suggest using shrinkage 

of the coefficient estimates [54]. However, highly correlated features in this situation may 

produce high variance, even if there is no estimation bias according to the EPV. Hence, 

this guidance is crucial to model building at the development step. 

 

1.1.1.1.3 Right censoring effect 

 

The last challenging characteristic of clinical survival data, to tackle in variable 

selection, is right censoring. There are two types of censoring in classical survival models: 

(i) Type I: survival until the end of study but whose final event time is unknown; (ii) Type 

II: lost to follow-up after a certain time. Even though data are incomplete, they contain a 

certain amount of information to increase the sample size and thus improve performance 

of the model. However, with the presence of censoring, the behavior of the underlying 

mechanism produces unclear performance measurements of models and may lead to 

biased results in variable selection. In survival analysis, Cox regression models are 

commonly used, and one of the major advantages is the ability to utilize censored 

observations. We use the Cox proportional hazards model [10,40] in this dissertation. In 

order to consider the censoring effect in model assessment, several performance measures, 

some of which summarize a time dependency using integration [21,27] and are robust to 
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censoring [35], are introduced to quantify the prediction accuracy and the amount of 

prognostic information represented by the model. Among them, maximizing the 

concordance index (C-index) has some patterns to enhance other measures along with it 

and some merits (see Section 2.1). As a criterion for prediction accuracy, the C-index is a 

preferred choice in this study. 

 

1.1.1.2 Model selection principle 

 

 
 

 
 

Figure 1.1 Types of initial full models in the optimization path to their final models 
 

 

Figure. 1.1 illustrates the optimization path with the initial point of a full model in 

a variable selection procedure. The selection methods start from the full model, which is 

a type of single final model, and select the best model, optimized in some criterion. The 

starting full models can be categorized into 3 groups depending on the above challenges 
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with the data involving the event size, the model complexity, and the degrees of 

censorship: (a) model is more complex than the optimal model, (b) model is at optimum 

complexity, and (c) model is not adequately complex in Figure 1.1. The objective of 

model selection is to achieve the final model with optimal model complexity based on the 

prediction accuracy while tuning the tradeoff between bias and variance. In theory, the 

type (a) completes the course at (b), and in the types of (b) and (c), the full model is the 

final model, in which the difference is that in (c) the full model may suffer from a lack of 

time to event data, adequately significant predictors, or high rate of right censoring at the 

initial point.  

 

1.1.1.3 Specific aim and proposed approach 

 

The first aim of this dissertation is to propose a novel approach that builds a 

parsimonious model, in a high EPV setting, that is at least as accurate as the full model 

with respect to the C-index as an objective criterion. Herein, we propose a new approach 

to address these problems in two stages: (1) stepwise tuning in the maximum 

concordance index (STMC) as a variable selection process using inner cross validation 

for the optimism correction within each set of training folds of outer cross validation and 

(2) forward nested subset selection (FNSS) as overfitting control, which reduces 

uncertainty and variability in the predictors of chosen models resulting from STMC and 

builds a single final model. In the new approach, Cox proportional hazards regression 
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models with only main effect terms are used and fitted to two censored clinical data sets 

in the areas of renal transplantation and prostate cancer. For the comparative study of 

methods and models, we employ the same scheme as the first stage of our approach to 

compare our proposed method against the alternatives of the stepwise method that uses 

the likelihood ratio test and Akaike information criterion (AIC) criterion and the least 

absolute shrinkage and selection operator (LASSO) using an L1 absolute value penalty 

that has two meritorious features of shrinkage and model selection [16,59]. Then, we 

compare the single final model of the FNSS result with the full model for final model 

assessment. 

 

1.1.2 Clinicogenomic models for Data integration 

1.1.2.1 Introduction 

 

In clinical research, predictive models, such as nomograms [28,30], are developed 

based on clinical expertise or empirical results from the clinical literature, are validated 

externally, and are put into practical use for outcome prediction. High throughput gene 

expression profiles of primary cancer in the microarray technology have the potential to 

identify prognostic molecular markers associated with cancerous and metastatic 

phenotypes. Such findings can lead to translational research, the process of which 

translates those scientific discoveries into critical applications such as diagnostics, 

prognostics and treatments, and hence serves as a bridge between lab bench discoveries 
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and the patient bedside [17]. However, the deluge of both gene expression and clinical 

risk factor data is outpacing our ability to interpret and analyze using current models 

predictive for survival. It is increasingly apparent that a data integration scheme for 

model building that combines clinical and genomic variables is required to integrate data 

from heterogeneous sources, if maximal information is to be extracted and synergy 

created.  

    

1.1.2.2 Literature review for integration scheme 

The key challenge for integrative model building strategies in cancer prognosis is 

the high dimensionality and small sample size that characterizes microarray data, or the P 

>> N problem. Because the number of independent variables (P) far exceeds the number 

of individuals (N) in the training sample, model overfitting occurs, resulting in 

overwhelming overoptimism. Thus standard mutivariate Cox regression analysis cannot 

be directly applied to the data. Dimension reduction techniques of feature extraction, such 

as partial least squares [38] and supervised principal components [2], or feature selection 

(e.g., filter, wrapper, and embedded methods) [2,6], are required to reduce the number of 

features to a sufficient minimum. Although dimension reduction techniques identify 

candidate genes, those genes are highly correlated and penalization methods may be 

needed to adjust for overoptimism. 

 

1.1.2.2.1 Classification issues 
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Few articles on integrative models have been published, and of these, most have 

employed classification based approaches, where patients are classified into high risk or 

low-risk groups. The researchers of [51] employed a logit transformation of the patient’s 

7-year disease-progression-free probability, calculated from an extensively validated 

postoperative nomogram, as the first single clinical variable of a combined model in the 

stepwise logistic regression procedure. Gene variables were included until optimal 

classification was achieved within a training set. This clinical study was a case-control 

design of prostate cancer recurrence in which controls were chosen based on a minimum 

of 5 years of follow-up without evidence of recurrent cancer, and none of the patients 

developed recurrence after 5 years. The authors [14] applied Bayesian networks to 

integrate two different data sources but the model was not tuned for classification. To 

predict breast cancer prognosis, researchers [12] proposed kernel methods using least 

squares support vector machines (LS-SVMs) to learn simultaneously from multiple data 

sources in three ways: early integration, intermediate integration, and late integration. 

The researchers [57] developed a new feature selection algorithm (I-RELIEF), in which 

the optimized objective function approximates the leave-one-out accuracy of a nearest-

neighbor classifier, to identify a hybrid signature from clinical and microarray data and 

linear discriminant analysis (LDA) is used to estimate classification performance. These 

studies have showed that the combination of clinical and gene expression data can 

significantly improve prognostic specificity over either data type alone. However, a more 
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practical and appropriate strategy is needs to handle the heterogeneity present in clinical 

and gene expression data (see Section 1.1.2.3).  

 

1.1.2.2.2 Regression issues 

    

Clinico-genomic models for survival prediction based on the Cox proportional 

hazards regression have also been proposed, and evaluated with comparisons of various 

well-known prediction methods [6]. The researchers used three different gene expression 

data sets (breast cancer, diffuse large B-cell lymphoma, and neuroblastoma) to perform a 

systematic comparison of the performance of prediction models using clinical covariates 

only, genomic data only or a combination of the two. They used the breast cancer dataset 

(295 women) reported by [64], in which they reduced the initial set of 24,885 genes to 

4919 by employing the Rosetta error model as a first screening [65] and applied a global 

test for survival data developed by [18], which simultaneously tests the significance of all 

genes in a prognostic regression model, and obtained a highly significant result for the 

outcome of mortality (P–value < 0.00001). When building prediction models, both types 

of covariates are used simultaneously to infer the parameters, but dimension reduction 

was applied only to high dimensional genomic variables. They concluded that their 

clinico-genomic model using ridge regression outperformed six other methods in all three 

data sets. The researchers [34] performed gene ranking with a single gene and a 

multivariate set of clinical prognostic factors that is an adjustment, in the Cox regression 
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model and identified a set of significant genes based on the predictive accuracy in the 

multivariate Cox model of the standard prognostic factors for adjustment and a 

compound variable of genes for prognostic index instead of the criteria to control false 

discovery rates in multiple testing.   

 

1.1.2.3 Problems and a proposed methodology 

 

Usually, as cancer data analyzed in survival studies are collected with a censored 

time to event manner, if 1) two discrete classes, relapse or death based on a primary 

tumor are used as outcome response, 2) a compound variable such as a prognostic index 

rather than clinical variables, which is utilized as a single effect [32] or 3) gene 

expression profiles are transformed into categorical variables suitable for classification 

methods (e.g., as up or down-regulated expression), then underlying information might 

be lost. Therefore, in order to make the best use of data, we focus on the widely used Cox 

proportional hazards model [11] as a regression problem in survival analysis.  

For the second part, we propose a methodology to extend our approach to clinical 

model building [9] to an integrative model using clinic-genomic information through 

double cross validation, considering the problems that integrative methods might have in 

dealing with the P>>N problem as well as the issues associated with Cox regression 

models such as right-censoring, event per variable [42], and co-linearity between clinical 

factors or molecular biomarkers. We propose preliminary univariate screening using a 
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permutation test to reduce an initial immense set of gene expression profiles. During the 

validation procedure, the Stepwise Tuning in the Maximum Concordance Index method 

(STMC) [9] is employed. If the model size is greater than the sample size, the 

dimensionality is reduced by QR decomposition, and in the Forward Nested Subset 

Selection (FNSS), L2 penalized maximum likelihood estimation (PMLE) is used to adjust 

for overoptimism and only genomic variables are shrunk by the PMLE. This approach 

identifies a parsimonious set of relevant clinical prognostic factors and genomic 

signatures. To address the variation in censoring effect, competing methods are compared 

using various performance metrics. To ascertain the reliability of our experimental results, 

the integrative prognostic model is internally validated using double cross validation 

(DCV) to obtain generalization performance in a breast cancer data set [8] and final 

models are rigorously assessed by several accuracy measures through leave-one-out 

cross-validation (LOOCV). For further demonstration, a diffuse large B-cell lymphoma 

(DLBCL) data study and simulation studies were also performed. First, we define 

standard Cox proportional hazards regression using censored time to event data widely 

used in survival studies. 

 

1.2 Censored time to event data and standard Cox regression 

 

Censored survival data is defined as 𝒛𝑖 = (𝑡𝑖, 𝛿𝑖,𝒙𝑖) for n independent individuals, 

𝑖 ∈ {1, … ,𝑛}. The observed time, 𝑡𝑖 is given by 𝑡𝑖 = min (𝑇𝑖,𝐶𝑖), where 𝑇𝑖 is the time 
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of event and 𝐶𝑖 is the time of censoring. The event indicator variable, 𝛿𝑖 is equal to 1 if 

an event occurred at the observed time (𝑇𝑖 ≤ 𝐶𝑖), or a value of 0 if 𝑡𝑖 is censored, and 𝒙𝑖 

is a p-vector of covariates, [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑖]𝑇, which constitutes a row of the design 

matrix 𝑿. The Cox proportional hazards model is defined as 

 

                       ℎ(𝑡|𝒙𝑖) = ℎ0(𝑡)exp (𝒙𝑖𝑇𝜷),                      (1-1) 

 

where ℎ0(𝑡) is a baseline hazard function and left unspecified with ℎ0(𝑡) ≥ 0. For an 

estimate of the baseline hazard ℎ0(𝑡), the Breslow estimator is commonly used and 

given by 

                        ℎ�0(𝑡𝑖) = 1 ∑ exp�𝒙𝑗𝑇𝜷�.𝑡𝑗≥𝑡𝑖�                      (1-2)   

 

The vector of regression coefficients, 𝜷, is estimated by maximizing the partial log-

likelihood (PLL) 

 

             𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝜷) = ∑ 𝛿𝑖 �𝒙𝑖𝑇𝜷 − log �∑ exp�𝒙𝑗𝑇𝜷�𝑡𝑗≥𝑡𝑖 ��𝑛
𝑖=1 .          (1-3) 

 

Our proposed methodology is based on the Cox model and will be designed to 

overcome the problems we addressed in this chapter. 
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CHAPTER 2 An empirical approach 

through validation for Clinical Models 

in a High Events per Variable Setting 

 
Medical prognostic models can be designed in a high events per variable (EPV) 

setting by clinicians to predict the future course or outcome of disease progression after 

diagnosis or treatment. In this situation, measurement of predictive accuracy can be 

difficult for survival time to event data and is very important in the model design 

procedure. We first examine several performance measures to obtain unbiasedly validated 

predictive accuracy in a proposed comparative scheme.  

 

2.1 Performance measures of censored time to event data for model and 

method assessment  
 

There are many metrics used to measure a computational prognostic model’s 

prediction accuracy. These are principally categorized into (1) Discrimination, which 

measures how well the prediction model can discriminate between cases with events and 

those without events, includes the time dependent receiver operating characteristic (ROC) 

curve [25], the concordance index (or C-statistic) [22,23], and the CPE (Concordance 

Probability Estimates) [18]; (2) Calibration, which quantifies how close a predicted 

estimate is to the real probability, includes the calibration slope and curve; and lastly (3) 
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Overall score of the measures such as explained variation (R2 type statistics and the Brier 

score) [27]. Some relatively new performance measures for reclassification and clinical 

usefulness are also discussed as well as the above in [56] and they stress that a well-

discriminating model may be most relevant for research purposes, suggesting that 

reporting discrimination and calibration is important for a prediction model.  

Although the partial log likelihood (PLL) is used for predictive inference and 

modeling, it can also be used in the difference in deviance (DD) between a fitted model 

and the null model, given by -2(𝑃𝑃𝑃(𝜷) − 𝑃𝑃𝑃(𝟎)) and can be used as a prediction 

error for evaluating the performance on new data as well as for the selection of 

complexity on training data.  

As for explained variation, the variants of R2 statistic on censored data can be 

defined in several ways [27] and are very sensitive to the rate of censoring, and it is tricky 

to determine which type of measure is proper for comparisons due to the uncertainty of a 

censoring mechanism. 

Our concern in this study is to gauge the prediction ability of a model, whose 

optimism is corrected and whose estimation is unbiased, using the performance measures. 

However, numerous existing predictive measures have advantages and disadvantages for 

survival analysis and we would not insist that there is one that is superior to the others 

and the development of new measures is also an active area of research. Hence, we use 

several metrics, defined in the following sections, simultaneously in order to compare the 

performances of the different model selection methods, whose results may directly be 
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amenable to produce the empirical prediction performance for new patients [29]. 

 

2.1.1 Integrated area under the receiver operating curve  

     

The ROC curve for the discriminative ability is a standard technique to assess the 

trade-off between sensitivity and 1-specificity in a binary classification rule [43]. The 

ROC curve is a plot of sensitivity and 1-specificity for all of the possible cutoff values, c 

of a continuous variable, which is the risk score R, such as the prognostic index (PI), 

which is a linear predictor, in survival analysis. The time-dependent ROC curves were 

proposed to assess the predictive accuracy of survival models [25], defined as  

 

                𝑆𝑆𝑛𝑆𝑖𝑡𝑖𝑆𝑖𝑡𝑆(𝑐, 𝑡) = Pr{𝑅 > 𝑐|𝐷(𝑡) = 1},                 (2-1)                            

               𝑆𝑆𝑆𝑐𝑖𝑆𝑖𝑐𝑖𝑡𝑆(𝑐, 𝑡) = Pr{𝑅 ≤ 𝑐|𝐷(𝑡) = 0}. 

 

Here, 𝐷𝑖(𝑡) = 1 if 𝑇𝑖 ≤ 𝑡 and 𝐷𝑖(𝑡) = 0 if 𝑇𝑖 > 𝑡 and it represents the event 

status of individual i at time t. The corresponding time-dependent ROC curve and the 

time-dependent area under the ROC curve can be defined for time t as ROC(t) and 

AUC(t), respectively. The AUC(t) can be summarized by the integrated IAUC, given by 

the area under ROC(t) over event time. As for the AUC, an IAUC=1 indicates perfect 

prediction accuracy and IAUC =0.5 is as good as a random guess over time.  
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2.1.2 Concordance index 

 

In survival analysis, one of the most popular performance measures for assessing 

models is the concordance index, which is similar to the Wilcoxon-Mann-Whitney 

statistic in bi-partite ranking problems [33]. The concordance index [1] is defined, for the 

second measure of the discriminative ability, as 

 

 C-index=
∑ 𝟏{𝑃𝐼𝑖<𝑃𝐼𝑗}𝑖,𝑗𝜖Ω

|Ω|
.                        (2-2) 

     

Here, PIi and PIj is a linear combination of clinical variables and their estimated 

coefficients (a linear predictor) of patient i and j. 1{} is an indicator function that is equal 

to 1 if the argument is true, 0 if false, and Ω is the set of all pairs of patients (i, j) that 

satisfy one of the following: (i) the patients i and j experienced recurrence and the 

recurrence time 𝑡𝑖 is shorter than 𝑡𝑗, or (ii) only patient i experienced recurrence and 𝑡𝑖 

is shorter than the follow-up time 𝑡𝑗. Tied pairs contribute 1/2 weight to the numerator 

and denominator. The C-index estimates the probability that given two randomly selected 

patients, the patient who has the event first also had a higher probability of the event. The 

experienced recurrence time of an individual in (2-2) can be replaced with the prognostic 

index. The C-index is a metric to compute and measure discriminative ability utilizing a 

complete dataset. 
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    Although the C-index is unable to represent evolutionary performance over time, it 

is a generalization of AUC(t) [21]. Also, the researchers in [44] demonstrate that a 

method maximizing the PLL ends up approximately maximizing the concordance index. 

We have thus chosen the concordance index as the primary objective criterion in our 

proposed approach due to its popularity, interpretability, simplicity, and robustness, 

though several measures in this section will be utilized to compare methods and models 

on account of the censoring variation. 

 

2.1.3 Calibration slope and curve 

 
Calibration is performed by using the calibration slope and calibration curve. The 

calibration slope 𝛽 for survival data can be computed by performing a Cox regression 

with the PI (prognostic index) for a new data set, as a single continuous variable in the 

Cox proportional hazards model as follows.  

 

                      ℎ(𝑡|𝑃𝐴) = ℎ0(𝑡) exp(𝛽 ∙ 𝑃𝐴).                     (2-3) 

 

Here, the prognostic index is a linear combination of the regression coefficients 

estimated in a training sample and the values of risk factors in the test data. If the 

calibration slope is unity, the regression model is perfectly calibrated. Otherwise, the 
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regression coefficients that are estimated in the training sample reflect underestimation or 

overestimation. For the validity of the whole model, however, we need to check the 

correctness of the baseline survival function as well [63] and the optimism corrected 

slope can be considered as a shrinkage factor that takes overfitting into account [23]. 

Calibration is also visually inspected by a calibration curve which is a plot of groups with 

their equal sample sizes and displays the accuracy between average predicted 

probabilities vs. Kaplan-Meier estimates of actual outcomes. 

For performance evaluation and model validation, two main concepts of 

discrimination and calibration can be combined for a data analysis. These can provide a 

complementary interpretation for comparative analysis, as the overall score is suffering 

from a censoring mechanism. 

 

2.1.4 Integrated Brier score (IBS) 

 

    For the inaccuracy of individual predictions, the censored brier score (CBS) is 

calculated based on the sum of squared differences between predicted and observed 

survival with censorship [19]. CBS can be computed empirically as a function of time t 

for n patients of multiple covariate x with a censoring variable 𝛿𝑖 and a time to event 

variable 𝑇𝑖 as follows.   

 

  𝐶𝐵𝑆(𝑡) = 1
𝑛∑ ��0 − 𝜋�(𝑡|𝒙𝑖)�

2𝟏(𝑇𝑖 ≤ 𝑡, 𝛿𝑖 = 1) � 1
𝐺�(𝑇𝑖)

�𝑛
𝑖=1 +�1 − 𝜋�(𝑡|𝒙𝑖)�

2𝟏(𝑇𝑖 > 𝑡) � 1
𝐺�(𝑡)

��.   (2-4) 
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Here, 𝜋�(𝑡|𝒙𝑖) is an estimated recurrence free probability for a patient i, and 𝐺�(𝑡) is a 

probability of being censoring and is calculated by the Kaplan Meier estimate on 

(𝑇𝑖, 1 − 𝛿𝑖). The variable 𝑇𝑖 has the time value of an event recurrence if the event status 

of a patient i, 𝛿𝑖 is 1, or a censored time if 𝛿𝑖 is 0. Note that the Brier score is 0 in the 

perfect prediction and 0.25 when the trivial prediction of 𝜋�(𝑡)=0.5 is made for all 

patients. The integrated Brier score (IBS) is a summary of the prediction error over event 

time by integrating the formula (2-4). 

 

2.2 Risk prediction methods 

 

For the comparison purpose with our proposed method, first we introduce the 

stepwise selection method starting from the full model using two different criteria, the 

likelihood ratio test and Akaike information criterion (AIC) in Cox models, and we define 

the LASSO method that perform variable selection while penalizing coefficient 

parameters in the following section. 

 

2.2.1 Stepwise variable selection and P-value 

 

    The standard stepwise variable selection method uses a p-value to 
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determine a variable to be eliminated from or be inserted into an accurate 

model. The p-value is based on a statistical hypothesis test in which a result 

is statistically significant if it is unlikely to have occurred by chance alone, 

according to a pre-specified threshold probability, the significant level.  

 

2.2.1.1 Hypothesis test 

 
    In order to test the null hypothesis 𝐻0: 𝜷 = 𝜷(0), where 𝜷(0) are the coefficients of 

the null model or nested smaller model with 𝑆0 parameters in contrast to the bigger 

model with the 𝑆1 parameters of 𝜷, Wald test or the likelihood ratio test can be used to 

derive the significance of a variable for variable selection. The probability distribution of 

both test statistics is approximated by a chi-square distribution with (𝑆1 − 𝑆0) degrees of 

freedom. 

 

2.2.1.2 Wald test 

 

The Wald test statistic is written as (𝜷� − 𝜷(0))𝑇𝑰�(𝜷� − 𝜷(0)), where 𝑰� = 𝑰(𝛃�) is the 

estimated information matrix, which is the second derivative of the log partial likelihood 

(PLL) with respect to 𝜷. This reduces to the z-statistic �̂�/𝑆𝑆(�̂�), where 𝑆𝑆��̂�� is a 

standard error of �̂�, in a single variable [16,63]. 
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2.2.1.3. Likelihood ratio test (LRT) 

 

The likelihood test statistic is defined as 2(𝑃𝑃𝑃(𝜷�) − 𝑃𝑃𝑃(𝜷(0)), where 𝑃𝑃𝑃(𝜷�) 

and 𝑃𝑃𝑃�𝜷(0)� are the log partial likelihood of the bigger model and the nested smaller 

model respectively. The likelihood test is generally more stable than the Wald test, and 

therefore is used for the stepwise selection. 

 

2.2.1.4 Stepwise selection in Cox model 

 

The stepwise variable selection is a hybrid method in either direction of two classic 

methods: (1) the forward selection method and (2) the backward elimination method, and 

uses the significance of a variable as a criterion for selection. In Cox proportional hazards 

regression models, the likelihood ratio test is used to compute p-values. In the forward 

selection, the algorithm begins with the null model and adds the predictor with the 

smallest p-value. This is repeated until no variable upon entry into the model has a p-

value less than a significance level that is a parameter to be determined in advance. If 

variables entered are no longer significant they may be dropped off while candidate 

variables are added in the forward approach. This step is repeated until the final model 

has no variables with p-values greater than or equal to the significance level. For the 

backwards elimination, we start with the full model and remove the variable with the 
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largest p-value if it is larger than the significance level. We repeat this process until no 

variable in the model has a p-value greater than or equal to a significance level. The 

hybrid stepwise gives a second chance to each dropped variable except the most recently 

dropped one. If this value is more significant than that of the dropped one and less than 

the significance level, the predictor is reintroduced in the current model of the process. 

The hybrid stepwise is used in this dissertation and we refer to it as stepwise selection. As 

a threshold significance level for selection, the conventional quantity 0.05 is used. 

    

2.2.2 AIC for variable selection 

 

The AIC for variable selection is defined by  

 

                   𝐴𝐴𝐶 = −2 ∙ 𝑃𝑃𝑃(𝜷) + 2 ∙ 𝑑,                      (2-5) 

 

where d is the effective number of parameters and given by the number of parameters in a 

model. We simply choose the model giving the smallest AIC over the subsets of models 

considered in each search space started from the full model. The AIC estimates prediction 

errors in an analytical and intrinsic way that the optimism is estimated directly from a 

training set and then this is added to the training error. So the optimism correction using 

cross validation or bootstrapping is not required in such a criterion. Although future 

inputs are not likely to be identical to training sets, this kind of error can be used for the 
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effective model selection due to its relative nature. It turns out that the significance level 

0.157 in the backward elimination method usually chooses the variables that are selected 

by minimizing the AIC in all subset procedure when all variables have 1 degree of 

freedom [1]. This criterion is used in the stepwise selection method instead of a P-value. 

 

2.2.3 Lasso 

 
The last baseline method we choose for comparison is the L1 penalized estimation 

method, LASSO [16,59], that shrinks the estimates of the coefficients of a Cox model 

towards zero by imposing a penalty on their absolute values. It has a built-in feature 

selection procedure while penalizing the parameters unlike L2 penalized Cox regression 

with a quadratic penalty (ridge regression) [5,6] that allows all coefficients to be non-zero 

and may yield complex models. The objective of this shrinkage is to prevent overfitting 

occurring by collinearity of the covariates. Thus we fit the parameters 𝜷 of clinical 

variables 𝒙𝑖 for patient i by maximizing L1 penalized partial log-likelihood (PPLL) 

defined over the entire data with an absolute value (lasso) penalty 𝜆 on 𝛃 as follows.  

 

             𝑃𝑃𝑃𝑃𝜆(𝜷) = 𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝜷) − 𝜆‖𝜷‖1                  (2-6) 

= �𝛿𝑖

𝑛

𝑖=1

�(𝒙𝑖T𝜷) − log�� exp�𝒙𝑗T𝜷�
𝑡𝑗≥𝑡𝑖

�� − 𝜆‖𝜷‖1, 
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where 𝜆 > 0 and ‖∙‖1 stands for the L1 norm. The zero value of 𝜆 means no shrinkage 

and the infinity value indicates infinite shrinkage. In our study, we used the R package 

penalized to apply the lasso implementation and used likelihood cross-validation for 

optimizing the tuning parameter [16].  

 

2.3 Proposed approach 

2.3.1 Comparative Scheme for the unbiased assessment of methods and 

models 

 
The framework of model building generally consists of (1) model selection for the 

final model to find a final set of predictors or determine tuning parameters for model 

complexity, (2) validation and assessment using internal validation for the final model 

and model selection methods, and (3) the final model building for the practical use; 

including learning the parameter coefficients of the predictors that are found in the 

previous steps and its application of the final model to the external data sets (external 

validation). 

For building a final model using model selection, the common procedure is to (1) 

make best use of the whole data set for finding model complexity parameters or for 

identifying a final set of variables, instead of using a test data held out for validation, and 

(2) proceed to estimate the coefficients of predictors, also using the data, for the single 
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final model.  

As for the unbiased assessment of the final model, we need a final set of predictors, 

the resultant tuning parameters of the model complexity in learning methods, and 

resampling techniques, such as data splitting, cross validation (CV), or bootstrapping. 

This assessment scheme should be differentiated from that of model selection methods 

for comparisons we used in the proposed methodology as below.  

The relative performance of a model within a variable selection method may be 

subject to the variability of the training data on account of the EPV, selection bias, and 

right censoring in survival data. Thus, we need the unbiased estimate of the true 

performance of a variable selection method, and it can be achieved, using CV, by the fact 

that all the aspects of the model development such as model selection and parameter 

tuning should take place in the training sets within the CV [66]. Although the Leave-one-

out cross-validation (LOOCV) and bootstrapping, in general, perform well regarding bias, 

n-fold CV may be preferable to them due to the lower computational cost [37]. For this 

reason, we employ the CV as an outer loop for the assessment of variable selection 

methods and a nested CV of training folds within the outer CV for the optimism 

correction. In order to make the best use of the training data in variable selection, we 

randomly permute the data for the repeated resampling and obtain the replicates of CV. 

Each of the n-final models of n-fold CV after model selection is tested on the fold set left 

out for the independent evaluation and they are averaged for the assessment of each 

method. The procedure of this scheme is displayed in Table 2.1. For the best optimized 
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final model, note that it is crucial to hold the ten EPV guideline in the developing step of 

model selection. 

The stepwise methods with the likelihood ratio test and the AIC are applied to this 

scheme without the resampling setting of inner validation to compare with the proposed 

method.   

 

 
 

 

 

2.3.2 Final model building through validation 

 

Our approach for variable selection consists of two stages. First, Stepwise Tuning 

in the Maximum C-index (STMC) begins from a full model using the backward 

elimination. After a round of elimination, it reanalyzes the discarded variables one by one 

 

1.  For each variable selection method: 

 i) For each training data set obtained from n1-fold outer cross validation: 

     - Find the optimal set of predictors using k replicates of n2-fold nested cross 

validation using the randomly permuted training data set. 

     - Given the set, estimate the vector of regression coefficients  𝜷 on the entire 

training data set. 

     - Compute the values of several performance criteria (see section 3.2) on the 

test data set held out from outer cross validation. 

 ii) average the performance measures of n1 final models built from i). 

     2. Compare the different variable selection methods in terms of the criteria values. 
 

Table 2.1 The procedure for evaluating the performance of variable selection methods 
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and allows one more chance to be included in the current model. Using the n1-fold outer 

CV, we obtain a set of n1 final models with the different sets of predictor variables fitted 

to a training subsample and optimized, using the k- replicates of n2–fold inner CV, for the 

maximum C-index. This might approximately represent the proportion of predictors in 

the final model and is used for the interpretation of their relative importance. As an 

overfitting control, numerous methods use a regularization scheme (e.g. weight decay in 

Neural Networks), early stopping during repetition, or a Bayesian approach. Instead of 

using early stopping in the first stage, we achieve this effect in the second stage of 

forward nested subset selection (FNSS) using variable ranking from the results of the 

distribution.  
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Figure 2.1 Flow diagram for the STMC and FNSS method. 

 

Figure 2.1 shows a flow diagram for the STMC and FNSS method and will be 

described in the following sections. 

 

2.3.2.1 First stage: STMC (Stepwise Tuning in Maximum C-index)) 

 
The STMC method we propose is in the class of wrapper methods [4,31]. The C-

index is used for the performance evaluation of a subset of predictors in the goodness of 

fit. This kind of method might produce correlated variables in a group of predictors of a 

chosen model, but have the optimal performance. The iterative process of variable 

selection can be viewed as performing the optimization search in the model space. The 

search is performed over finite models in a given model class for model selection. Given 

p predictors, there are 2p possible variable subsets for the entire search. It is usually very 

expensive to compare all combinations for a large p and so typically some heuristic 

search procedure is used to find a locally optimal good feature subset. We design the 

STMC method based on the backward elimination scheme and give one more chance for 

variables to reenter the model in the forward direction. This process is repeated until all 

variables are visited.  
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Table 2.2 The algorithm of STMC 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

The pseudo code of this procedure is shown in the STMC algorithm of Table 2.2. 

Initially, a full model is assigned as a current best model with the maximum C-index, and 

Algorithm STMC 
    - Input : F, the set of variables in the full model 

- Output : max, the final set of variables in STMC 

 
1.  Initialize F = {1,…,p}, where p is the number of predictor and visit = 

{∅}, and let max = F be the best subset. 
2. Repeat 

{ 
 // a. Drop Step 

 for i = 1 to p 
 {     
    - if (i ∈F), Fi =F - {i} 
    - CVCI(Fi, k, N)  // Estimate k-replicated N-fold cross validated C-

index to evaluate only the predictors of Fi in Cox Model. 
 } 

 
// Compare the best feature subset found in Drop Step with max, and set 
max to be the subset with the greater C-index. 
- if (MAX(CVCI(Fi, k, N))> CVCI(max,k, N)) max = MAXFi (CVCI(Fi, 

k, N))  
    - visit = visit ∪ MAXi (CVCI(Fi, k, N)) 
    - F = F - MAXi(CVCI(Fi, k, N)) 
 
    // b. Add Step 

 for j = 1 to length(visit) 
{     
    - if (j∈visit), Fj =F + {j} 
    - CVCI(Fj, k, N)  // Estimate k-replicated N-fold cross validated  C 

-index to evaluate only the predictors of Fj in Cox Model. 
} 

 
    // Compare the best feature subset found in Add Step with max, and set 

max to be the subset with the greater  C -index. 
if (MAXj(CVCI(Fj, k, N))>CVCI(max, k, N))  

    { 
- max = MAXFj (CVCI(Fj, k, N)) 
- visit = visit - MAXj (CVCI(Fj, k, N)) 
- F = F ∪ MAXj (CVCI(Fj, k, N)) 

    } 
 

// c. Stopping Rule Check 
- if (F=={∅}) break the Repeat iteration  

 } 
3. Select and return the best feature subset, max which is evaluated  

during the search space 
 
* MAX(CVCI(Fi, k)): a maximum value of CVCI(Fi, k)  
* MAXi (CVCI(Fi, k)): i with a maximum value of CVCI(Fi, k) 



３１ 

 

a set of visited variables is initialized to be empty. The repeat loop in the STMC 

algorithm is comprised of 1) Drop step, 2) Add Step, 3) Comparison for choosing an 

intermediate best model, and 4) Stopping rule check (when all variables are searched, 

break the iteration). The drop step (backward direction) tests each predictor by comparing 

the current model with a potential model whose size is one smaller than the current model, 

and eliminate the most irrelevant predictor producing the smallest C-index in the current 

best feature set when excluded from the current model. If there are no variables to win 

over the current feature, no changes happen in the best model. In the add step (forward 

direction), every element in the visit set of discarded predictors is given a possibility to be 

reintroduced in the current best model except for the element extracted from the previous 

drop step. Between both models from the drop and add step, the set of predictors with the 

greater C-index is chosen. The repetition stops when the procedure considers all 

predictors in the pool of feature variables.  

The n1-fold outer CV is used for the investigation of variable selection having the 

uncertainty of different predictors and sizes. This should be distinguished from the k 

replicates of randomly permuted training data sets and their internal n2-fold CV, with 

which the generalization C-index of each potential model is evaluated by the sample re-

use of k-replicates of the internal CV for the purpose of the overoptimism correction. The 

STMC method builds n1 intermediate models and yields the distribution of predictors for 

a final model. The inclusion frequency is computed by the proportion of each variable in 

those models and reflects the significance of variables in the distribution. The results of 
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STMC are connected to the filter type approach of FNSS at the next stage. Our approach 

is very complex in running time because it performs internal validation while building 

intermediate models. The time complexity of the STMC algorithm is O(k·n2·N·P2). 

 

2.3.2.2 Second stage: FNSS (Forward Nested Subset Selection) 

  

The proposed Forward Nested Subset Selection (FNSS) algorithm is a filter type 

method [20], and is designed for controlling overfitting caused from model selection and 

for identifying a single final model. The ranking criterion is defined for individual 

variables by the inclusion frequency obtained in the previous stage. High score variables 

are regarded as valuable, and they are sorted in the decreasing order of the inclusion 

frequency. After variable ranking, the FNSS builds models with increasing numbers of 

predictors while incorporating a variable one by one from the null model and evaluates 

each constructed model through the 10-fold cross validation based on the C-index, the 

IAUC, the calibration slope, the calibration curve, and the IBS. As our approach chooses 

the C-index as an objective metric, we select a set of variables with the maximum C-

index as the final model. The time complexity of the STMC algorithm is O(n2·N·P). 

The R software version 2.8.1 [45] with the Design and survcomp packages were 

used to perform all analyses and the proposed approach is implemented with R package 

for free use (https://vorlon.case.edu/~ixc27/).  
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2.4. Results of two case studies 

 
     We first describe two datasets of prostate cancer and renal transplantation and 

apply our methodology to them to compare predictive performance with other methods. 

 

2.4.1 Datasets  

2.4.1.1 Prostate cancer data  

 
We procured data from a study that created a postoperative nomogram for 

predicting the risk of prostate cancer recurrence [30] following institutional Review 

Board waivers (Cleveland Clinic IRB number: 4270). The cohort consists of a total of 

1123 patients (with 167 biochemical recurrences) with clinically localized prostate cancer 

treated with open radical retropubic prostatectomy between 1987 and 2003. The seven 

predictors in the full model include the following categorical variables: (1) svi (seminal 

vesicle involvement), (2) sm (surgical margins), (3) lni (lymph node involvement) and (4) 

ece (extra-capsular extension), and the continuous variables: (5) psa (prostate specific 

antigen), (6) experience (surgery experience), and (7) pgx (postoperative Gleason sum) 

which is treated as an ordinal type variable. In [9], the full model is prespecified based on 

medical literature reviews and clinical knowledge of investigators and surgeons prior to 

an analysis of the data. For the further detail of the description of the data, see [9]. Two 
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missing values in psa are imputed using the R MICE package in the study and other 

variables are complete. Patients who are lost to follow-up or died from causes other than 

prostate cancer are right-censored. Table 2.3 shows the statistical description of the 

prostate cancer recurrence data in our study, and the estimated coefficients and statistical 

significance of the predictors in a multivariable Cox proportional hazards regression 

fitted to the entire data set for the full model and the final model built from the proposed 

method, which predict the 10-year probability of freedom from cancer recurrence defined 

as a PSA level > 0.4 ng/mL and rising, or a secondary treatment for a detectable and 

rising PSA less than or equal to 0.4 ng/mL. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.1.2 Renal transplantation data 

Predictor No.(per cent) fullβ̂  Pfull Mβ̂
 PM 

Pathology Gleason Sum 
      4-6 
      7 
      8-10 
ExtraCapsular Extenstion(yes)  
Surgical Margin(yes)  
Seminal Vesicle Involvement(yes) 
Lymph Node Status(Positive) 
PSA*(ng/mL) 
Surgery Experience*                                                    

 
449(40) 
621(55) 
53(5) 
389(35) 
297(26) 
89(8) 
23(2) 
(0.5) 7.6 (94.5) 

(0) 679.2 (1336) 

0.95 
 
 
 

0.92 
0.63 
0.29 
0.56 
0.02 
-0.00 

<0.00001 
 
 
 
<0.00001 
0.00019 
0.19 
0.048 
0.033 
0.67 

0.92 
 
 
 
0.95 
0.65 
0.42 
 
0.02 
 

<0.00001 
 
 
 
<0.00001 
<0.00011 
<0.048 
 
0.0066 
 

* continuous variable: (Min) Mean (Max) 

Table 2.3 Description of prostate cancer data (1123 patients), and estimated coefficients and statistical 
significance of predictors in a multivariable Cox Proportional hazards model fitted to the entire data for 
the full model and the final model built by the proposed method. �̂�𝑓𝑓𝑓𝑓 , estimated log-relative risk (full 
model, 7 predictors); 𝑃𝑓𝑓𝑓𝑓 , P-values of full model;  �̂�𝑀 , estimated log-relative risk (model M: 
STMC+FNSS, 5 predictors); PM, P-values of M.  
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Renal transplantation data was obtained from the UNOS (United Networks for 

Organ Sharing) Registry for chronic kidney disease from 2000 to 2003 [60] and appendix 

A describes the original renal transplantation data of 20085 patients and 67 variables. The 

cohort includes 20085 living donor renal transplant cases with 2,300 documented graft 

failures. This data is used to form pre-transplant and post-transplant nomograms that 

predict 5-year graft failure in [60], in which all patients received kidney transplant as a 

primary treatment for renal failure and are then followed for signs of the transplant failure. 

The outcome of transplant failure is defined as a recurrence of kidney disease within 5 

years of transplant. In the study, the predictor variables for the full models are chosen by 

clinicians based on their theoretical association with graft failure in the clinical literature.     

Our study is based on the post-operative nomogram [60] and we use the data with 

22 variables selected based on the full model [60] that is specified by clinicians from the 

67 original predictor variables, which include some measurements before and after the 

time of the renal transplant. The predictors consists of demographical information of 

donors and recipients: age, gender, race (black, white, and others); pathological 

information: bmi (Body Mass Index), Donor Serum Creatinine Pre-transplant (SCr), 

Donor Procedure, Nephrectomy Type, HLA (Human Lymphocyte Antigen) mismatch 

level, Dialysis in the first week, any treatment for rejection within first 6 months, eGFR 

(Estimated Glomerula Filtration Rate)-MDRD (Modification of Diet in Renal Disease) 

after 6 months of transplant, Adjuvant chemotherapy on the use of immunosuppressants: 
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(Azathioprine, Rapamicine (Sirolimus), Mycophenolate Mofetil), IL2 Receptor 

Antibodies, Calcineurin Inhibitor without fk506, and Induction with Depleting 

Antibodies. The race variables of donors and recipients have a categorical type and are 

processed using dummy variables and HLA Mismatch is treated as an ordinal type. No 

missing values are identified. 

The final predictive model predicts the 5-year graft survival probability after living 

donor kidney transplant. Table 2.4 further describes the above predictors and multivariate 

analysis used for the prespecified full model of the multivariable Cox model and the final 

model resulting from the proposed method. 
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2.4.2 Experimental results 

2.4.2.1 Prostate cancer data  

 

Characteristic Variables Description 
Mean(SD)  
or No.(%) fullβ̂  Pfull Mβ̂

 PM 

Recipient 
 

 
 
 

 
 

Donor 
 

 
 

 
 

 
 

 
 

 
Recipient/Donor 

 
 

 
 

 
 

 
Adjuvant 
Chemotherapy 
 

 
 

 
Recipient 
Posttranplant 

 

Age 
Gender 

race 
      Black 
      White 

      Others 
bmi  

AGE_DON  
GENDER_DON 

drace 
      Black 

      White 
      Others 

d_bmi 
d_creat 

d_procec 
    Laparoscopi 

    Open 
HLAMIS 

      0 
      1 

      2 
      3 

      4 
      5 

6 
im_deple 

im_il2 
im_aza 

im_myco 
im_rapa 

im_calci 
dial_1wk 

trt_rej6 
gfr_po6                                                    

Recipient Age(yrs) 
Recipient Gender(Female) 

Recipient Race 
 
 

 
Recipient Body Mass Index(kg/m2) 

Donor’s Age(yrs) 
Donor’s Gender(Female) 

Donor Race  
 

 
 

Donor’s BMI(kg/m2) 
Donor Serum Creatinine(SCr) Pre-Tx(mg/dl) 

Donor Procedure:Nephrectomy Type 
 

 
HLA Mismatch Level 

 
 

 
 

 
 

 
Induction with Depleting Antibodies(yes) 

Induction with IL2 Receptor Antibodies(yes) 
Azathioprine Maintenance(yes) 

Mycophenolate Mofetil Maintenance(yes)  
Rapamycin(Sirolimus) Maintenance(yes) 

Calcineurin Inhibitor with fk506(yes) 
Dialysis in the First Week(Yes) 

Any treated for Rejection within 1st 6mths(Yes) 
eGFR(MDRD) in 6 Mths(ml/min/1.73m2) 

46(14) 
8,320(41) 

 
2,992(15) 
13,525(67) 

3,568(18) 
26.7(5.4) 

40(10.8) 
11,806(59) 

 
2,767(14) 

13,876(69) 
3,442(17) 

26.9(4.7) 
0.9(0.5) 

 
13,057(65) 

7,028(35) 
 

2,148(11) 
1,262(6.3) 

3,738(19) 
5,739(29) 

2,500(13) 
2,956(15) 

1,538(7.7) 
3,731(19) 

7,604(38) 
723(4) 

15415(77) 
2960(15) 

18729(93) 
957(5) 

1,861(13) 
56.5(18) 

0.003 
-0.05 

 
0.24 
-0.03 

 
-0.002 

-0.005 
0.003 

 
0.174 

0.022 
 

0.013 
-0.081 

-0.017 
 

 
0.021 

 
 

 
 

 
 

 
0.013 

-0.013 
-0.142 

-0.318 
-0.324 

-0.934 
1.423 

0.425 
-0.025 

0.129 
0.242 

 
0.09 
0.756 

 
0.525 

0.02 
0.941 

 
0.233 

0.834 
 

0.0029 
0.148 

 
0.148 

 
0.106 

 
 

 
 

 
 

 
0.817 

0.77 
0.223 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

 
 

 
0.424 
 

 
0.0001 

-0.004 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

-0.903 
1.403 

0.423 
-0.025 

 
 

 
<0.0001 
 

 
0.034 

0.978 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

~0.00000 
~0.00000 

~0.00000 
~0.00000 

Table 2.4 Description of renal transplant data (20085 patients), and estimated coefficients and statistical 
significance of predictors in a multivariable Cox Proportional hazards model fitted to the entire data for the 
full model and the final model built by the proposed method. �̂�𝑓𝑓𝑓𝑓 , estimated log-relative risk (full model, 
22 predictors); 𝑃𝑓𝑓𝑓𝑓 , P-values of full model; �̂�𝑀, estimated log-relative risk (model M: STMC+FNSS, 7 
predictors); PM, P-values of M.  
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For variable selection methods in our study design, we use the 10-fold outer cross 

validation to get information on variations in the final models of 10 training subsets and 

test them on each independent test data set. The STMC algorithm uses the 10 replicated 

5-fold inner CV for correcting overoptimism. Models are fitted using the Cox 

proportional hazards regression, and no interaction or nonlinearity effect terms are 

assumed, and thus, none of them are incorporated in the full model and other models as 

well. For the comparison of models and selection methods, we achieve the generalization 

measures of predictive performance based on i) the C-index, ii) the integrated AUC 

(IAUC), iii) the slope of prognostic index, and iv) the integrated Brier score (IBS). 

 

 

 

 
 
 

  

 

 

 

 

 

 

 

 Dataset   Prostate Cancer Data  

Model Selection LRT AIC Lasso STMC 
 Train. EPV 

Exp. Model Size 
C-index 
IAUC 
PI Slope 
IBS 

 21.5 
4.8 
0.8043(0.05) 
0.8388(0.05) 
0.9606(0.03) 
0.1418(0.02) 

21.5 
5.3 
0.8126(0.06) 
0.8532(0.06) 
0.9542(0.05) 
0.1390(0.04) 

21.5 
6.2 
0.8100(0.04) 
0.8499(0.04) 
0.9598(0.04) 
0.1339(0.03) 

21.5 
5.1 
0.8147(0.06) 
0.8552(0.06) 
0.9606(0.04) 
0.1375(0.04) 

 
 

 Dataset   Renal Transplant Data  

Model Selection LRT AIC Lasso STMC 
 Train. EPV 

Exp. Model Size 
C-index 
IAUC 
PI Slope 
IBS 

 101 
7.8 
0.6763(0.04) 
0.7312(0.01) 
0.9589(0.03) 
0.0970(0.01) 

101 
10.1 
0.6732(0.04) 
0.7284(0.02) 
0.9530(0.03) 
0.0970(0.01) 

101 
12.6 
0.6768(0.01) 
0.7323(0.02) 
0.9600(0.03) 
0.0965(0.01) 

101 
7 
0.6772(0.04) 
0.7356(0.03) 
0.9635(0.04) 
0.0968(0.01) 

 
 

Table 2.5 Comparative analysis for the performance of model selection methods on prostate cancer data 
and renal transplant data. Model selection methods are Stepwise LRT (likelihood ratio test), Stepwise AIC 
(Akaike Information Criterion), lasso, and STMC (Stepwise Tuning in Maximum C-index). 
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Table 2.5 shows a comparative analysis for the performance of model selection 

methods on prostate cancer data. The average EPV of training data sets in each method is 

21.5, which is greater than 10 and is enough for eluding estimation bias, and the expected 

model size of each method is 4.8, 5.3, 6.2 and 5.1 for LRT (likelihood ratio test), AIC, 

lasso, and STMC, respectively. All of the performance measures of STMC are modestly 

the best on the C-index, IAUC, and PI slope. Lasso has the best score only on the IBS 

and has a largest expected model size. A distribution of predictors, as a result of STMC, 

yields variable ranking in (a) of Figure. 2.2. In particular, the variables of psa, ece, svi, 

pgx, and sm have a full frequency of 10, whereas experience is not selected at all.  

 

 
 

 
 
 
 
 
 
 

Figure 2.2 Variable ranking of model distribution using STMC (Stepwise Tuning in Maximum C-index) 
in (a) prostate cancer data and (b) renal transplant data. 

(a)                                       (b) 
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With FNSS, the optimization path based on C-index is displayed in Figure. 2.3 and 

the results of the other measures are also shown with the corresponding values of 

discrimination, calibration, and overall score. The open red circle indicates the 

performance measures of the final model optimized with maximum C-index in FNSS. 

Note that the IAUC has nearly a comparable pattern with the C-index, but the IAUC 

increases and reach to the full model of 7 variables as opposed to the decrease of the C-

index. We can examine this result numerically in Table 2.6, where the full model and the 

final model of FNSS are assessed and compared with four primary measures, their 

development EPV, and the model size computed by 10 CV. The EPV of FNSS grows 

from 21.5 to 30.04 by the reduction of the model size from 7 to 5. Except for the IAUC, 
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Figure 2.3 Optimization Path of FNSS (Forward Nested Subset Selection) on prostate cancer data.  
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most measures of the FNSS model are improved as reflected by increases in the C-index 

and the PI slope, and by decreases in the IBS. Table 2.3 also shows the estimated 

coefficients and statistical significance of predictors in the multivariable Cox proportional 

hazards model fitted to the entire data on the prostate cancer data for the full model and 

the final model constructed by FNSS. All of the variables in the FNSS model have 

significant p-values at the 0.05 level.  
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 Dataset  Prostate Cancer Data  Renal Transplant Data  

 Full Model FNSS Full Model FNSS 
 Train. EPV 

Expected Model Size 
C-index 
IAUC 
PI Slope 
IBS 

 21.5 
7 
0.8141(0.063) 
0.8607(0.060) 
0.9371(0.011) 
0.1390(0.035) 

30.04 
5 
0.8153(0.057) 
0.8560(0.057) 
0.9567(0.013) 
0.1377(0.035) 

 
 

101 
22 
0.6742(0.040) 
0.7387(0.028) 
0.9223(0.059) 
0.0965(0.010) 

329 
7 
0.6857(0.039) 
0.7515(0.018) 
0.9889(0.039) 
0.0966(0.107) 

 

Table 2.6 Assessment and comparison of the full model and the final model of FNSS (Forward Nested 
Subset Selection) 

Figure 2.4 Calibration curves of the full model and the final model of FNSS (Forward Nested Subset 
Selection) on prostate cancer data 
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The calibration curves of the full model and the FNSS model appear in Figure 2.4. 

In order to plot the calibration curves of the actual vs. predicted 10-year recurrence-free 

probability for internal validation, we use a splitting technique using two thirds of the 

whole data for a training set and one third for a test set, where red asterisks represent the 

apparent calibration accuracy. In two plots, there seems to be no significant difference in 

training and test samples, suggesting that it appears to be acceptable in re-substitution 

results, but is a bit biased in test samples. Note that the results of the plots are based on 

the specific follow-up-time of 10 years.  

 

2.4.2.2 Renal transplantation data 

 

The same comparative and parameter schemes as used in the prostate cancer data 

were applied to the renal transplant data. Table 2.5 provides performance measures of the 

variable selection methods of the LRT, AIC, and STMC on the data set. The development 

EPV is 101 for all methods alike and the average model size of every method is reduced 

to approximately half of the full model and the lasso produces a relatively somewhat 

complex model with 12.6. As with the prostate cancer data, STMC illustrates better 

performance in all measures except for the IBS, whose value is the largest for the lasso.  

The results from the comparative scheme procedure of STMC approximately yield 

the inclusion frequencies of predictors in the final model in (b) of Figure 2.2. Only 10 

variables are included in model selection and the remaining 12 have zero proportions 
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with no information of ranking.  

 
 

 
 
 
 

 

 

The optimization path of Figure 2.5 shows the peaks on the same place of the 

model size 7 in the IAUC and the C-index, whose paths have the similar pattern. The PI 

slope tends to decrease as the model size increases and the IBS illustrates the sensitivity 

of the values to the increasing model size.  

As shown in Table 2.6, the final model constructed from the FNSS consists of 7 

predictors, which are markedly reduced from the 22 variables in the full model and, 

consequently, the EPV augments from 101 to 329. The FNSS model is improved for 

every measure, except for the IBS with the difference of 0.0001 from the full model. In 

the plot of Figure 2.6, the calibration of the prior four groups in the FNSS model is 

smoother than that in the full model whereas the last group suffers from overestimation 

bias. 
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Figure 2.5 Optimization path of FNSS (Forward Nested Subset Selection) on renal transplant data.   
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Finally, in Table 2.4 of the multivariable analysis of the full model and the FNSS 

model, we can see that two p-values (recipient’s bmi and donor’s age) change 

significantly and conversely with the decrease of 0.525 to 0.034 and with the increase of 

0.02 to 0.978, respectively, and this illustrates the selection bias due to multi-collinearity 

between the variables that are included and excluded. 

 

2.5. A simulation study 

 
In addition to two clinicopathologic datasets, we present a simulation study to 

demonstrate the effectiveness of the proposed approach in building a predictive model 
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Figure 2.6 Calibration curves of the full model and the FNSS (Forward Nested Subset Selection) model 
on renal transplant data.  
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with simplified important predictors. We simulate independent clinicopathologic data 

with p=30 variables and n=2000 individuals. All predictor values are generated from the 

uniform distribution [0, 1] and the true prognostic index of a linear risk score function f(x) 

is formed by the coefficients of (10, -10, 7, -7, 3, -3, 1, -1, 0.3, -0.3) for 

(𝑥1, 𝑥2, … , 𝑥10)T. The remaining 20 variables of x11-x30 are not related to risk time to 

events. The survival time T is generated from an exponential distribution with parameter 

exp(f(x)) when x is given, and the censoring variable C is generated from an exponential 

distribution with parameter 0.4. Then we obtain the survival data, 

{(𝑡𝑖 = min(𝑇𝑖,𝐶𝑖) , 𝛿𝑖 = 𝐴(𝑇𝑖 ≤ 𝐶𝑖))|𝑖 = 1, … ,𝑛}  with approximately 50 % of right 

censoring. We assume that the 30 variables represent the full model. Using multivariate 

analysis, the variables x1-x8, which is related to the time to event, and the randomly 

generated variables of x17, x19, and x30 are significant at the level of 0.05. Our objective is 

to find a reduced model with variables more relevant to survival information that is at 

least as accurate as the full model. Table 2.7 shows the results of a simulation study that 

compares the performance of the different model selection methods and final models. The 

10 EPV rule for each model in the development step is held as seen in Table 2.7.       

The experimental results demonstrate that the STMC moderately outperforms the 

LRT and AIC on most measures except the PI slope and is better than the LASSO except 

for the IBS measure. The LASSO has the poorest performance on the C-index, IAUC, 

and PI slope. For the expected model size, the LRT is over-simplified with 7.6, and the 

LASSO built many complex models (of average size 18) that often include many of the 
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insignificant and non-relevant variables in x11-x30 (not shown). AIC models contain 

variables with the size close to the true model but they are also inconsistently 

insignificant. STMC models always include the variables x1-x8 and many of them have 

the size of 8. The performance of the final model achieved by FNSS is also moderately 

better than the full model and true model, and is reduced to a simple model with the 8 

variables of x1-x8 although it does not include the variables of x9 and x10 that are not 

significant but related to survival function. Those variables seem to improve each score. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

2.6 Discussion 

 
Our specific goal of this study is to design a model selection method that identifies 

 Comparison  Method   

Model Selection LRT AIC LASSO STMC 
 Train. EPV 

Exp. Model Size 
C-index 
IAUC 
PI Slope 
IBS 

 127.24 
7.6 
0.6986(0.01) 
0.7481(0.02) 
0.8825(0.04) 
0.1661(0.04) 

94.06 
10.2 
0.6957(0.01) 
0.7462(0.02) 
0.8773(0.04) 
0.1663(0.04) 

31.44 
18 
0.6933(0.03) 
0.7460(0.04) 
0.8771(0.05) 
0.1648(0.02) 

105.43 
9.1 
0.7016(0.01) 
0.7530(0.02) 
0.8790(0.10) 
0.1651(0.04) 

 
 

 Comparison  Final model  

Model Selection Full Model 
(x1-x30) 

True Model 
(x1-x10) 

FNSS 
(x1-x8) 

 Train. EPV 
Exp. Model Size 
C-index 
IAUC 
PI Slope 
IBS 

 31.98 
30 
0.6898(0.02) 
0.7401(0.02) 
0.7943(0.04) 
0.1674(0.03) 

95.94 
10 
0.7023(0.01) 
0.7485(0.02) 
0.8356(0.06) 
0.1663(0.03) 

119.93 
8 
0.7025(0.01) 
0.7537(0.02) 
0.8620(0.02) 
0.1659(0.03) 

 
 

Table 2.7 A simulation study for the performance evaluation of model selection methods: LRT (likelihood 
ratio test), AIC (Akaike Information Criterion), lasso, and STMC (Stepwise Tuning in Maximum C-
index), and the final models: the full model, the true model, and FNSS (Forward Nested Subset Selection). 
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a computational model that is optimally reduced based on the C-index. To achieve this 

goal, we have presented the new approach of STMC and FNSS. Using the STMC within 

10-fold outer cross validation, we built 10 intermediate optimal final models with the 

subsets of predictors maximizing the objective criterion, C-index and we use the internal 

validation of 10 replicated 5-fold cross validation for optimism correction. Moreover, 

instead of using the early stopping strategy that controls the loop number in the STMC, 

through the optimization path of FNSS, we handle the potential overfitting problem of the 

STMC stage and the variability of chosen candidate models.  

The researchers [56] underline that numerical measures may be difficult to interpret 

depending on some situations and a model with a good discriminative power will be most 

relevant for research purposes. Besides, the censoring effect complicates the performance 

measures of survival models, and we calculate several measures categorized into 

discrimination (C-index, IAUC), calibration (PI Slope and calibration curves), and the 

overall score (IBS). In particular, the C-index is emphasized as a primary accuracy 

measure of the proposed approach, due to its simplicity and efficiency.  

As illustrated in our experiments of two data examples as well as a simulation 

study using the comparative scheme and the final model of the model selection methods 

and the final model assessment, the proposed approach demonstrates that the STMC 

achieves better performance, in the C-index, IAUC and PI slope, than other methods. The 

LASSO method shows good performance on the IBS and yields a relatively complex 

model. The final model of FNSS, which yields a reduced model, performs better than the 
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full model in a majority of the measures. On the simulation study, only a random 

experiment was performed. We need a random experiment design for a comprehensive 

study. 

In the variable selection of survival models, the bias, which may commonly occur 

in the traditional variable selection methods of a survival data analysis, is i) estimation 

bias, ii) selection bias, and iii) censoring bias. We discuss, below, what the causes are and 

how we overcome these kinds of bias in the proposed approach.  

When an estimator converges, in probability, to the true parameter as the sample 

gets larger, it is said to be consistent, which indicates that the estimator is unbiased in 

large samples. In the Cox regression dealing with the time to event data, the event size is 

much more essential than the sample size. The partial likelihood of parameters in the Cox 

regression is maximized, especially over event time, with respect to parameters and they 

can be estimated by using some version of the Newton-Raphson algorithm. The 

maximum partial log-likelihood estimation is consistent and unbiased in a sufficiently 

large event size. Moreover, in connection with the curse of dimensionality, a linear 

increase in the number of variables requires much of the event size geometrically. In 

general, as the dimension increases, the estimation bias increases when the event size is 

fixed. This is because many subspaces of features are sparse and empty. Therefore, in 

survival analysis, the sparse sampling of time to event in high dimensions results in 

estimation bias in time to event modeling of censored data. Especially, in the literature of 

survival analysis, a small data is defined by one with less than 10 EPV [42]. Some 
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references emphasize the ratio of one to ten to prevent the estimation bias. Furthermore, 

although the EPV is sufficiently large, if there is multicollinearity among independent 

variables, the parameter estimates remain unbiased but their variances can be large. To 

somewhat alleviate the problem of the estimation bias, we attempted to correct for the 

overoptimism using 10 replicated 5-fold cross validation for internal validation [48]. Also, 

since the estimation under multicollinearity can be unstable in each learning phase of the 

variable selection method using p-values, this can aggravate the predictive accuracy and 

may add selection bias during the iteration process. However, in the proposed approach, 

instead, we employ the strategy to find the final model with a set of predictors optimized 

for predictive accuracy in the FNSS.  

The problem of the censoring bias can be considered via the time dependent 

measures such as IAUC and IBS, where the information prior to the right censoring of 

lost to follow-up is used to compute the values over time. Due to the time complexity of 

the IAUC and the sensitivity to censoring of the IBS, the concordance index is used in 

our approach for its efficiency, and it tends to have a similar pattern to the IAUC.  

Nonlinear or interaction terms can be considered in the multivariable Cox 

proportional hazards regression to improve model bias but this flexibility may suffer from 

overfitting. We can handle the problem of the model complexity by the structured model 

that applies the kernel trick or structured functions giving nonlinear effects [24]. Some 

authors have proposed multivariable fractional polynomial models using backward 

elimination with an adaptive algorithm and have compared it with a nonparametric 
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approach, generalized additive models (GAMs) using cubic smoothing splines [49]. They 

state that the method can have a risk of overfitting problem and stress that the functional 

form of the final model should be consistent with medical knowledge. Also, for a more 

accurate calibration, an appropriate baseline survival function may be required to be 

specified along with the assumption checking and this may be used in an objective 

function, which should be less influenced by censoring, for assessing the performance of 

a model, since discrimination measurement depends on the order of the predicted survival 

rates. 

We have strived to reduce overoptimism using resampling methods in our 

algorithms and could find a stable set of predictors for the final model. Practically, the 

prediction of a new patient may still have a variance problem and may be inaccurate and 

biased for only a single final model. Ensemble methods, which build numerous simpler 

base models and combine their advantages for a single prediction model, can be designed 

for the survival model in regression problem.  

For the further study, we are investigating the integration of clinicopathologic and 

genomic data in censored survival analysis. The researchers [5,6] show that, in most of 

data in the results, the L2 penalized method (ridge) produced the better performance than 

the LASSO whose computational cost is very high. However, the ridge method uses the 

full predictors without parsimony. Furthermore, in the data fusion studies of clinico-

genomic data [6], the L2 penalized method tends to show little improvement in clinical 

predictors rather than genomic ones. The concern of this research might be to develop a 
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statistical and computational algorithm that finds the integrative final model with high 

accuracy and parsimony.  
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CHAPTER 3 A Hybrid Approach Using 

Data Integration of Clinicogenomic 

Information 

For the second issue of this dissertation, we contributed to build integrative 

prognostic models that use clinicopathologic features and predict prognosis after a certain 

treatment. We introduce a proposed methodology to construct a reduced yet accurate final 

model with a hybrid signature on high dimensional genomic data with a small sample and 

investigate competing methods. 

3.1 Methods 

3.1.1 Cox proportional hazards model for an integrative model 

 
Censored survival data for a combined model is defined by a quartet of 

variables, (𝑡𝑖, 𝛿𝑖,𝒙𝑖 , 𝒛𝑖) for a patient of i, 𝑖 ∈ {1, . . ,𝑁}. The observed time 𝑡𝑖 is given 

by 𝑡𝑖 = min (𝑇𝑖,𝐶𝑖), where 𝑇𝑖 is the time of event and 𝐶𝑖 is the time of censoring. The 

event indicator variable, 𝛿𝑖 has a value of 1 if an event occurred at the observed time, or 

a value of 0 if 𝑡𝑖 is censored, and 𝒙𝑖 and 𝒛𝑖 are the the p1-vector and p2-vector of the 

clinical and molecular variables, respectively. 

A proportional hazards integrative model for censored data is defined by  
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 ℎ(𝑡|𝒙𝑖,𝒛𝑖) =  ℎ0(𝑡) ∙ exp(𝐶𝑃𝐴𝑖 + 𝐺𝑃𝐴𝑖)                 (3-1) 

 

where 𝐶𝑃𝐴𝑖=𝒙𝑖𝑇 ∙ 𝜷𝐶 , and 𝐺𝑃𝐴𝑖=𝒛𝑖𝑇 ∙ 𝜷𝐺  are the clinical and genomic prognostic indices, 

respectively and ℎ0(𝑡)  is a baseline hazard function that is left unspecified with 

ℎ0(𝑡) ≥ 0. To estimate the baseline hazard, we employ the commonly used Breslow 

estimator written as  

 

                  ℎ�0(𝑡𝑖) = 1/∑ exp�𝒙𝑗T𝛃𝐶 + 𝒛𝑗T𝛃𝐺�𝑡𝑗≥𝑡𝑖 .                 (3-2) 

 

The coefficient parameters, 𝜷𝐶  and 𝜷𝐺 of the regression are estimated by 

maximizing the partial log-likelihood (PLL) written as 

 

𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝛃𝐶 ,𝛃𝐺) =  ∑ 𝛿𝑖𝑁
𝑖=1 �(𝒙𝑖T𝛃𝐶 + 𝒛𝑖T𝛃𝐺) − ln �∑ exp�𝒙𝑗T𝛃𝐶 + 𝒛𝑗T𝛃𝐺�𝑡𝑗≥𝑡𝑖 ��.  (3-3) 
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3.1.2 A methodology framework for integrative model building 

 

Before examining computational algorithms in detail, we briefly present the 

framework of our proposed integrative modeling methodology. Figure 3.1 displays a 

methodology framework. All data in outer loop K1-cross validation (CV) is split into 

training (Traink1) and test data sets, and the training data is further divided into the 
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training data (Train(k2)) and validation data in inner loop K1-cross validation (CV). 

Train(k2) data are used for developing the model and consist of clinical and genomic 

variables with an N2 by P1 design matrix, in which only genomic variables are presented 

in the filtering step and a great deal of the dimensionality is reduced in the preliminary 

univariate screening process using a permutation test based on the concordance index (C-

index) criterion. The combined and reduced data (N2 by P2 design matrix) is fed into the 

STMC to search an optimized model. However, if N2 < P2, then the maximum partial log-

likelihood estimation of learning using the standard Cox model has infinite solutions 

leading to the perfect performance. In this case, we first, perform a dimension reduction, 

using QR factorization prior to the regression. Then maximum partial log-likelihood 

estimation is applied to fit the data and we obtain an optimized intermediate model. After 

the results of the inner loop K2-CV, these K2 intermediate models are used in a Forward 

Nested Subset Selection (FNSS) to control overfitting [11]. The difference from the 

previous version is that the extended version of the FNSS in this study incorporates QR 

factorization and L2 penalized Cox regression for the N << P problem but only genomic 

variables are penalized to adjust for overoptimism among them. The optimal tuning 

parameter λ* is selected by using the 10-folds Cross Validated C-index (CVCI) for Nλ 

tuning parameters. Each of the intermediate final models of the outer loop K1-CV is 

evaluated using an independent test data set for model assessment. Note that the 

validation data in the inner loop CV are not used in the STMC but is utilized in the FNSS 

combined with Train(k2) to find the optimized model. Methods are compared based on 
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several metrics (see Section 2.1 and 3.2.1). The single final model is constructed at the 

second level of the FNSS using the (K1×K2) intermediate models and is evaluated 

through LOOCV (see Section 3.2.3). 

 

3.1.3 Dimension reduction 

3.1.3.1 Taxonomy of dimension reduction strategies 

 
The advance in genomic studies and the multiple accumulations of microarray data 

have led to alteration in the dimension reduction techniques for machine learning 

approaches so that they now play an important role in the success of learning algorithms 

when a relatively small sample size along with a large number of irrelevant features 

causes extremely poor performance on independent data. In this study, we use the term 

“feature” to refer to both clinicopathologic and genomic expression measurements. 

Dimension reduction techniques can be largely classified as feature extraction or feature 

selection approaches. Feature extraction methods typically transform the original features 

of a data set into a reduced number of orthogonal features; examples include Principal 

Component Analysis (PCA), Singular Value Decomposition (SVD) and QR 

decomposition, and feature selection algorithms attempt to choose a minimal subset of 

features while retaining the originals. Furthermore, feature selection techniques can be 

organized into three categories, depending on how they integrate the feature selection 

search into learning algorithms for classification and regression: filter methods, wrapper 
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methods and embedded methods. The description, characteristics, and examples of each 

approach are summarized well in [20,47]. When used in microarray data analysis, 

wrapper and embedded approaches generally yield computationally intensive algorithms, 

although they produce better predictive accurate estimates than the filter approach. Most 

gene selection algorithms employ filter methods that evaluate genes individually using a 

t-test, Fisher score, or Wilcoxon rank-sum test [68] for binary outcomes or using Cox 

proportional hazards modeling for survival outcomes. However, they do not consider the 

probable correlation information among genes. Hybrid approach to account for the 

problem was employed in Principal Components Regression (PCR) and Supervised PCR 

[2] by combining univariate gene selection and feature extraction, and Partial Least 

Squares (PLS) regression [39] by using components that maximizing the covariance with 

the outcome in a univariate scheme. Embedded methods, such as the LASSO version of 

Cox regression [41], are variable selection methods that shrink some of the regression 

coefficients toward zero by penalizing the coefficient size. 

 

3.1.3.2 Permutation test and preliminary univariate screening 

 
All of the clinical features are included in the initial input, and molecular features 

are initially filtered using a permutation test described in this subsection, but if the N << 

P problem still exists, then QR decomposition (Section 3.1.3.3) is further employed to 

solve the underdetermined system problem. 
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For preliminary univariate screening, we introduce a model-free permutation test that 

is more robust than the t-test and more efficient than the Wilcoxon test. Moreover, we can 

obtain the P-value of a metric regarding two quantitative variables or the relationship 

between each gene and survival outcome information. The preliminary gene selection 

using the permutation test we proposed is based on the concordance index (C-index; 

Section 2.1) in Cox regression. For each gene, we test the null hypothesis that its gene 

expression profile is not associated with time to survival or recurrence. Instead of 

obtaining the null distribution from model assumption, e.g. normal distribution, it is 

computed by randomly permuting event and nonevent labels that have the same size in 

developing samples. The P-value is the proportion of instances one obtained a C-index 

greater or equal to that of the observed data. After testing genes one by one, we arrange 

them in order of increasing P-value. We then choose the top ranked genes that have a 

value less than the fixed significance level of 0.05, and these are used as the input in the 

next step. We compared our proposed preliminary screening using the permutation test 

with a global test [15] yields a more significant P-value, 0.000076 with 459 genes than P 

= 0.98 with 4919 genes in [64] for mortality outcome.  

 

3.1.3.3 Dimensionality reduction using QR decomposition and 

parameter estimation using space transformation 

 

If the number of combined features is still greater than that of observations (N < P), 
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then standard multivariate Cox regression yields infinite solutions to estimate parameters, 

resulting in poor generalization performance, or it simply cannot solve the ill-posed 

problem due to multicollinearity. To overcome the underdetermined system problem of a 

design matrix, we take advantage of the geometric intuition that N points in a space of P 

dimensions lie in an affine subspace of N dimensions and using QR decomposition, 

project a vector from a higher dimensional space onto some lower dimensional subspace 

using QR decomposition. The prognostic index N-vector, PI = 𝐗𝛃 in Cox regression, 

where 𝐗 is a N × P matrix and 𝛃 is a P-vector, can be factorized into 𝐗 = 𝐑T𝐐𝟏
T using 

the following QR decomposition. 

 

                     𝐗𝐓 = 𝐐 �𝐑𝟎� = [𝐐1𝐐2] �𝐑𝟎� = 𝐐1𝐑,                  (3-4) 

 

where 𝐐 is a P × P orthogonal matrix and is partitioned as 𝐐 = [𝐐1𝐐2] with the first N 

columns and the remaining (P-N) columns of 𝐐, and 𝐑 is an (N× N) square upper 

triangular matrix. The columns of 𝐐1 and 𝐐2 form an orthonormal basis for span(𝐗𝐓) 

and for the orthogonal complement of span(𝐗𝐓) respectively, when 𝐗𝐓 has a full column 

rank. Replacing 𝐗  by 𝐑T𝐐𝟏
T  and substituting an N -vector of 𝛉  for 𝐐𝟏

T𝛃 , then 

PI = 𝐑T𝐐𝟏
T𝛃 = 𝐑T𝛉 and 𝛃 = 𝐐1𝛉. This transformation leads to a data matrix reduction 

from 𝐗𝐓 to 𝐑 and reduces the computational cost from O(P3) to O(PN2). Figure 3.2 

shows how a higher P-dimensional point in columns (observations) of 𝐗T is projected 
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to a point with a lower dimensionality of N in columns of R by QR decomposition.  

 

 

 

 

 

 

Orthogonal matrices, e.g. 𝐐 (𝐐T𝐐 = 𝐐𝐐T = 𝐈 ), have two important properties in 

geometrical analysis: (1) Euclidean norm preserving property of any vector 𝒙 between 

spaces, ‖𝐐𝒙‖22 = 𝒙T𝐐T𝐐 𝒙 = 𝒙T𝒙 = ‖𝒙‖22, (2) Angle preserving property between any 

two vectors, 𝒙  and 𝒚  from P space to N subspace and vice versa; 〈𝐐𝒙,𝐐𝒚〉 =

(𝐐𝒙)T𝐐𝒚 = 𝒙T𝐐T𝐐 𝒚 = 〈𝒙,𝒚〉. By these two properties, the Euclidean distance between 

any two vectors, 𝒙 and 𝒚 is preserved in two subspaces transformed via an orthogonal 

matrix and 𝐐𝟏
T rotates the columns of 𝐗𝐓 in a coordinate system between subspaces 
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Figure 3.2 Projection from a higher p-dimensional point in columns of XT to a lower n-dimensional 
point in columns 
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while reducing the dimensionality from P to N.  

 

3.1.3.4 Extended versions of the STMC and FNSS 

 

 

 

 

Flow diagrams of the extended versions of the STMC and FNSS are presented in 

Figure 3.3. The STMC is a backward stepwise selection method based on the C-index in 
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a Cox model, and thus is a wrapper method [9]. The C-index is a metric for evaluating the 

performance of a group of features in regard to goodness of fit. The iterative process of 

variable selection performs the optimization search for model complexity in the model 

space. The algorithm consists of a (1) dropping step, (2) addition step, (3) comparison for 

choosing an intermediate best model, and 4) stopping rule test. The extended version of 

the STMC incorporates two techniques such that the current full model is initialized by 

combined features selected from the preliminary univariate screening step and the 

dimension reduction using QR decomposition is performed.  

The FNSS approach is a filter method [9]. It is designed to control for overfitting 

resulting from the previous backward stepwise selection and to identify stable single final 

model. The feature ranking criterion is defined on individual features by the frequency of 

inclusion in intermediate models produced in inner loop cross validation, which 

approximately produces the distribution of features of an intermediate final model in an 

empirical way and is used to interpret their relative relevance. Based on the proportion of 

inclusion frequency in models, the FNSS builds a model with an increasing set of 

features while incorporating a single feature one by one from the null model and 

evaluates the model by the cross-validated C-index. The FNSS method selects the subset 

of features with the maximum cross validated C-index as a intermediate final model. The 

method is also extended to such that L2 penalization as well as QR decomposition is 

included in these methods. 

     Note that only molecular features are applied to the dimension reduction 
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techniques such as univariate screening and QR decomposition in the STMC and FNSS 

methods because molecular features suffer from correlation among them and clinical 

features are stable and have values with small variance. 

 

3.1.4 Competing methods  

 

We compared our proposed method with three others: the forward stepwise 

selection (FSS), LASSO (L1 penalization), and ridge regression (L2 penalization). 

Currently, ridge Cox regression, which uses L2 penalized maximum partial log-likelihood 

estimation, performs better than existing methods [5,6] but it uses too many predictors for 

analysis and interpretation of survival data. The FSS and LASSO were selected as they 

are commonly used and well-established. The performance for each method is assessed in 

the DCV procedure via LOOCV as summarized in Section 3.2.2. 

 

3.1.4.1 Forward stepwise selection (FSS) using the likelihood ratio test 

(LRT) 

 

Forward stepwise selection starts with the null model and then in our proposed 

model sequentially includes the feature that has the most significant P-value. The P-value 

of each feature is computed using the likelihood ratio test (LRT) defined by 2(𝑃𝑃𝑃(𝜷�) −

𝑃𝑃𝑃(𝜷(0)), where 𝑃𝑃𝑃(𝜷�) and 𝑃𝑃𝑃�𝜷(0)�, which are the log partial likelihood of the 
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larger model and the nested smaller model, respectively. In order to test the null 

hypothesis 𝐻0: 𝜷 = 𝜷(0), where 𝜷(0) are the coefficients of the null model or nested 

smaller model with 𝑆0  parameters in contrast to the bigger model with the 𝑆1 

parameters of 𝜷, the likelihood ratio test is used to derive the significance of a feature for 

variable selection. The probability distribution of both test statistics is approximated by a 

chi-square distribution with (𝑆1 − 𝑆0) degrees of freedom. The strategy used in this 

method is to sequentially add in the feature yielding the largest value of the likelihood 

ratio statistic and to stop when no feature yields a statistic greater than a fixed 

significance level.  

 

3.1.4.2 LASSO (L1 penalization) 

 
LASSO shrinks the coefficients of a Cox model toward zero by imposing a penalty 

on their absolute values. It has a built-in feature selection procedure while penalizing the 

parameters, unlike L2-penalized Cox regression which uses a quadratic penalty (ridge 

regression) that allows all coefficients to be non-zero and may yield complex models. The 

major objective of this shrinkage is to prevent overfitting occurring by collinearity among 

molecular features. Thus, we fit the parameters 𝛃𝐶  and 𝛃𝐺  of clinical features 𝒙𝑖 and 

molecular features 𝒛𝑖 respectively for patient i by maximizing L1 penalized partial log-

likelihood (PPLL) defined over the entire data with LASSO penalty 𝜆𝐺  only on 𝛃𝐺  as 

follows. 
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               𝑃𝑃𝑃𝑃𝜆𝐺(𝛃𝐶 ,𝛃𝐺) = 𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝛃𝐶 ,𝛃𝐺) − 𝜆𝐺‖𝛃𝐺‖1            (3-5) 

= �𝛿𝑖

𝑁

𝑖=1

�(𝒙𝑖T𝛃𝐶 + 𝒛𝑖T𝛃𝐺) − ln�� exp�𝒙𝑗T𝛃𝐶 + 𝒛𝑗T𝛃𝐺�
𝑡𝑗≥𝑡𝑖

�� − 𝜆𝐺‖𝛃𝐺‖1. 

 

where  𝜆𝐺 > 0  and ‖∙‖1  stands for the L1 norm. The zero value of 𝜆𝐺  means no 

shrinkage and the infinity value indicates infinite shrinkage. The cross-validated partial 

log-likelihood (CVPLL) is used for optimizing tuning parameters.  

 

3.1.4.3 Principal component regression 

 

    A principal component regression (PCR) approach in integrative model building is 

only applied to molecular features 𝒁𝑗 , j = 1,…, P2 and produces a small number of linear 

combinations, principal component (PCm), m = 1,…, M of 𝒁𝑗 , and the PCm are then used 

in place of the 𝒁𝑗  as inputs in integrative Cox regression. We fit the parameters 

𝛃𝐶  and 𝛃𝑀𝐺
𝑃𝐶𝑃 of clinical features 𝒙𝑖  and molecular features 𝒛𝑖 respectively for patient i 

by maximizing partial log-likelihood (PLL) for PCR defined with a tuning parameter 𝑀𝐺  

only for molecular features as follows. 

 

                           𝑃𝑃𝑃𝑀𝐺
𝑃𝐶𝑃�𝛃𝐶 ,𝛃𝑀𝐺

𝑃𝐶𝑃�                         (3-6) 
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= �𝛿𝑖

𝑁

𝑖=1

�(𝒙𝑖T𝛃𝐶 + 𝒛𝑖T𝛃𝑀𝐺
𝑃𝐶𝑃) − ln�� exp�𝒙𝑗T𝛃𝐶 + 𝒛𝑗T𝛃𝑀𝐺

𝑃𝐶𝑃�
𝑡𝑗≥𝑡𝑖

��, 

 

,where 𝛃𝑀𝐺
𝑃𝐶𝑃 = ∑ 𝜃𝑚𝐕𝑚

𝑀𝐺
𝑚=1  , and 𝜃𝑚 = 〈𝑃𝐶𝑚,𝑮𝑮𝑰 = 𝒁𝛃𝑀𝐺

𝑃𝐶𝑃〉 〈𝑃𝐶𝑚,𝑃𝐶𝑚〉⁄  and 𝐕𝑚 is 

the mth eigenvector of 𝒁T𝒁. Actually, 𝑮𝑮𝑰 = ∑ 𝜃𝑚 ∙ 𝑮𝑷𝑚
𝑀𝐺
𝑚=1  is used in 𝑃𝑃𝑃𝑀𝐺

𝑃𝐶𝑃 to 

estimate the 𝜃𝑚 and the tuning parameter 𝑀𝐺  is also determined by using the CVPLL. 

 

3.1.4.4 L2 penalized maximum partial log-likelihood estimation for ridge 

Cox regression and the proposed approach 

 
Although the strategy of dimension reduction lessens the computational burden 

from P to N, highly correlated molecular gene expression measurements still exist. We 

thus employ the L2 penalized maximum partial log-likelihood estimation in Cox 

regression to handle this problem.  

We fit the parameters 𝛃𝐶  and 𝛉𝐺  of clinical features 𝒙𝑖 and genomic features 

𝒓𝑖 (the columns of 𝐑) for patient i derived from 𝐙T = 𝐐1𝐑 and 𝛉𝐺 = 𝐐𝟏
T𝛃𝐺  using QR 

decomposition when the number of features is greater than that of observations, by 

maximizing the L2 penalized partial log-likelihood (PPLL) defined as below over the data 

with a quadratic penalty 𝜆𝐺 only on 𝛉𝐺.       
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     𝑃𝑃𝑃𝑃𝜆𝐺(𝛃𝐶 ,𝛉𝐺) = 𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝛃𝐶 ,𝛉𝐺) − 1
2
𝜆𝐺𝛉𝐺T𝛉𝐺              (3-7) 

= ∑ 𝛿𝑖𝑁
𝑖=1 �(𝒙𝑖T𝛃𝐶 + 𝒓𝑖T𝛉𝐺) − ln �∑ exp�𝒙𝑗T𝛃𝐶 + 𝒓𝑗T𝛉𝐺�𝑡𝑗≥𝑡𝑖 �� − 1

2
𝜆𝐺𝛉𝐺T𝛉𝐺   

 

The estimate 𝛉�𝐺 is then transformed back to 𝛃�𝐺 through a matrix multiplication 

as 𝛃�𝐺 = 𝐐1𝛉�𝐺 . Note that the L2 penalty is invariant under rotations via the orthogonal 

matrix and two Cox regressions performed in different subspaces are equivalent. The 

cross-validated partial log-likelihood (CVPLL) and the cross validated C-index (CVCI) 

are used for optimizing tuning parameters for ridge Cox regression and our proposed 

approach respectively. 

 

3.2 Experimental design 

 
In this section, we describe experimental design on how we will compare the 

relative performance of the prediction methods independently and how the final single 

prognostic model is constructed. First, we define the model assessment criteria for the 

difference in deviance (DD), the C-index, the integrated area under the receiver operating 

curve (IAUC), and the integrated Brier score (IBS) to compare model building methods. 

Using double cross-validation (DCV), the comparison will be carried out on intermediate 

final models constructed with each method. The single final model with a hybrid 

signature will be assessed through leave-one-out cross validation (LOOCV) based on the 
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log rank test, the C-index, and the PI (Prognostic Index) slope and its p-value. 

 

3.2.1 Performance assessment for method comparison 

 

The performance metrics for the predictive accuracy of a prognostic model on 

censored time to event data are primarily categorized as: (1) Discrimination, which 

measures how well the prediction model can discriminate between cases with events and 

those without events, and includes the C-index and the IAUC, (2) Calibration, which 

quantifies how close a predicted estimate is to the real probability (e.g., the PI slope), (3) 

Overall score, which computes the explained variation in the goodness of the fit, and 

involves the IBS [56]. In addition to the above general categories, we add the metric, 

difference in deviance (DD) as the measure of prediction error [5,6]. Here, we define only 

the DD and the other metrics of the C-index, the IAUC, and the IBS are well summalized 

in Section 2.1.   

 

3.2.1.1 Difference in deviance (DD) 

 

The difference in deviance (DD) between a fitted penalized model and the null 

model is a measure of a prediction error when evaluating how well a prediction model 

performs on a test data set. For assessment of our model, we define it on the hybrid 

features of clinical and genomic features by  
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    DD�𝛃�𝐶 ,𝛃�𝜆𝐺� = −2 �𝑃𝑃𝑃𝑃(test)�𝛃�𝐶 ,𝛃�𝜆𝐺� − 𝑃𝑃𝑃𝑃(test)(𝟎𝐶 ,𝟎𝐺)�,       (3-8) 

 

where 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓
(test)�𝛃�𝐶 ,𝛃�𝜆𝐺� and 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓

(test)(𝟎𝐶 ,𝟎𝐺) are the partial log-likelihood for the 

test data set evaluated by �𝛃�𝐶 ,𝛃�𝜆𝐺� and (𝟎𝐶 ,𝟎𝐺) respectively, where 𝟎 indicates a 

vector of zeros. 

 

3.2.2 Double cross validation (DCV) for comparison of methods 

 

The relative performance measurement of a model for model selection and method 

comparison are subject to the variability of training samples on account of the EPV, 

multicollinearity, and right censoring of survival data. Therefore, we need an unbiased 

estimate of the true performance of the method used to build the integrative model. This 

can be achieved using K-fold CV because all the aspects of model development, such as 

model selection and parameter tuning, take place in the training sets within the CV. 

Consequently, we employ the K1-fold CV as an outer loop for the assessment of a model 

building method and a nested K2-fold CV of training folds within the outer CV to correct 

for overoptimism. Each of the K1 intermediate final models during K1-fold CV is tested 

on the independent test set left out for evaluation and they are averaged for the 

assessment of each method.  



７０ 

 

 

3.2.2.1 A modified version of the DCV for the proposed approach 

 

In [9], using the DCV, the relative generalization performance for the STMC 

method was calculated and assessed independently for method comparison. After the 

FNSS step using the DCV, a single final model was built but the performance test was not 

independent in order to compare methods. To achieve a method that is independent for 

comparison, the DCV procedure described above is modified for our proposed approach 

as in Figure 3.1 and Table 3.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.2.2 Cross-validated penalized partial log-likelihood (CVPPLL) 

 

 

(1) In outer K1-fold CV, the entire data is divided into a training ( Traink1 ) and test data set ( Testk1) .         

{k1 is an integer |1 ≤ k1 ≤ K1} 

(2) In inner K2-fold CV, Traink1  is again split into a training ( Traink1
(k2) ) and validation set ( Valk1

(k2)) . 

{k2 is an integer |1 ≤ k2 ≤ K2} 

    - At each inner fold, the STMC is applied to Traink1
(k2) and builds an intermediate model mk1

(k2). 

    - The CVCI is used for parameter tuning. 

- The purpose of Valk1
(k2) is to vary the samples for the generalization performance and the data set is utilized in 

the first level of FNSS along with Traink1
(k2). 

 (3) After K2 repetitions, K2 intermediate models are constructed for each outer fold.  

 (4) The first level of the FNSS builds an intermediate final model mk1using K2 intermediate models.  

 (5) The final model fitted to Traink1 , mk1 is independently assessed using Testk1, which is the assessment of the 

instance for a result of a method. 

 (6) By averaging the K1 test performances, the relative generalization performance of the proposed approach is 

computed for method comparison. 

     (7) The second level of the FNSS builds a single final model using all of the intermediate models and breast cancer data, 

and it is evaluated via LOOCV.  

Table 3.1 Summary of the procedure for the modified version of DCV. 
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In conjunction with a double cross validation strategy, we can define the cross 

validated penalized partial log-likelihood (CVPPLL) for tuning the model complexity as 

 

   𝐶𝐶𝑃𝑃𝑃𝑃(𝜆𝐺) =  ∑ (𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝛃�𝐶
(−𝑔𝑖),𝛃�𝜆𝐺

(−𝑔𝑖)) − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓
(−𝑔𝑖)(𝛃�𝐶

(−𝑔𝑖),𝛃�𝜆𝐺
(−𝑔𝑖)))𝑁𝑔

𝑖=1 ,  (3-9) 

 

where the first term is the PPLL evaluated on the entire training data at (𝛃�𝐶
(−𝑔𝑖),𝛃�𝜆𝐺

(−𝑔𝑖)) 

and is estimated by the training set except for the held-out set 𝑔𝑖 in the inner 𝑁𝑔-fold CV, 

and the second term is the PPLL evaluated on only the training data set at 

(𝛃�𝐶
(−𝑔𝑖),𝛃�𝜆𝐺

(−𝑔𝑖)). This strategy is used for parameter tuning in LASSO and ridge Cox 

regression methods. 

 

3.2.3 LOOCV for a final model assessment 

 

We obtain a final model on the basis of the 10-fold CVCI from the second level of 

the FNSS using a complete breast cancer data set. The final model is assessed through 

LOOCV (leave one-out cross validation) on the basis of the following criteria: the log 

rank test, the C-index, and the PI slope and its p-value. The LOOCV effectively adjusts 

the evaluation measures for overly optimistic values when an experimental sample is a 

relatively small by assigning each individual observation to the test set and selecting the 
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remaining observations as a training set.  

For a final model assessment, we have manipulated the internal validation strategy 

because adequate publicly available data are lacking. Therefore, independent validation 

for generalization performance using external validation is required to more accurately 

assess the performance of the final model.  

The LOOCV C-index is defined as C-index = ∑ 𝟏{𝑃𝐴𝑖 < 𝑃𝐴𝑗}𝑖,𝑗∈Ω |Ω|⁄ , where the 

prognostic index, 𝑃𝐴𝑖 is a linear combination of the regression coefficients estimated in a 

training sample and the values of hybrid features in the test data for an individual i and Ω 

is a set of all pairs of patients {i, j} that satisfies one of the following conditions: (1) both 

of the patients i and j experienced their events and the event risk score 𝑃𝐴𝑖 is greater than 

𝑃𝐴𝑗 (𝑃𝐴𝑖 > 𝑃𝐴𝑗) or, (2) only patient i experienced an event and the 𝑃𝐴𝑖 is greater than the 

𝑃𝐴𝑗  with censored time 𝑐𝑗  (𝑃𝐴𝑖 > 𝑃𝐴𝑗). 

 

3.2.3.1 PI Slope and its p-value 

 

Calibration can be examined by using the PI slope, 𝛼 for survival data. It can be 

computed by performing a Cox regression with the 𝑃𝐴𝑖 for the new data set 𝒙𝑖 in the 

LOOCV, as a single covariate in the Cox proportional hazards model as follows.  

 

                      ℎ(𝑡|𝑃𝐴𝑖) = ℎ0(𝑡) exp(𝛼 ∙ 𝑃𝐴𝑖),                    (3-10)             
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where 𝑃𝐴𝑖 = 𝜷�(Train.)T ∙ 𝒙𝑖
(Test). If the PI slope is unity, the regression model is perfectly 

calibrated. Otherwise, the regression coefficients that are estimated in the training sample 

reflect underestimation or overestimation. Also we perform a hypothesis test of the null 

hypothesis (β = 0) vs. the alternative hypothesis (β ≠ 0) using the likelihood ratio test 

(LRT) and we use the P-value as a criterion for model assessment. 

For performance measures and model validation, the discrimination and calibration 

can be combined in a data analysis. These can provide complementary interpretation for 

comparative analysis, as the overall calibration score is sensitive to censoring 

mechanisms. 

 

3.2.3.2 Log-rank test 

 
In clinical trials of cancer treatment, the log rank test is a nonparametric hypothesis 

test that is usually used to compare the survival distributions of two groups. We assign 

individuals of a test set (𝒙𝑖) to one of the two groups based on their prognostic index 𝑃𝐴𝑖, 

either good prognosis group or poor prognosis group; the PI median is used as the cut-off. 

How well the grouping performs is evaluated using the log rank test and its p-value.  

3.3 APPLICATION TO BREAST CANCER STUDY 
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3.3.1 Breast cancer dataset 

 
We performed a computational study using the publicly available Netherlands 

Cancer Institute (NCI) breast cancer data, which contains 24481 gene expression profiles 

as measured on spot oligonucleotide arrays and 10 clinical covariates from 295 cases of 

breast carcinoma. This dataset had previously been used to identify and validate a 

prognostic gene expression profile defined by a set of 70 genes [62,65] and [64] also used 

it to develop a prognostic signature for survival outcome prediction. The data used in our 

current study were obtained from [8] and contains 295 patients with 101 metastasis (34%) 

and 79 death (27%) events. The microarray data was already normalized and background 

corrected. All patients included in this dataset were younger than 53 years old at 

diagnosis and had stage I (tumors ≤ 2.0cm) or II disease (tumors ≥ 2.0cm). The median 

follow-up among all 295 patients was 6.8 years (range, 0.05-18.3) for metastasis outcome 

and 7.2 years (range, 0.05-18.3) for mortality outcome. Multiple missing expression 

values were imputed by using the K-nearest neighbor estimation method [60] to minimize 

the effect of incomplete data on analyses. 

The clinical data consisted of the following 10 variables, which are of 3 types: (1) 

the continuous variables are Age (per year), Lymph Node Status (number of positive 

nodes), and Diameter (per cm); (2) the categorical variables are T1_T2 (tumors ≤ 2.0cm 

vs. tumors ≥ 2.0cm), Estrogen Receptor Status (positive vs. negative), Mastectomy (yes 

vs. no), Chemotherapy (yes vs. no), and Hormonal Therapy (yes vs. no); (3) the ordinal 
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variables are Vascular Invasion (0 vessels, 1-3 vessels, and >3 vessels), and Tumor Grade 

(well differentiated, intermediate differentiated, and poorly differentiated). Note that 74 

patients of 295 died of metastatic breast cancer and it is 94 percent of patients who died. 

 

3.3.2 Experimental results 

3.3.2.1 Metastasis outcome 

 
As a preliminary gene-filtering step, we applied the univariate screening using a 

permutation test in a modified version of the DCV to each of the training sets for 

metastasis outcome, in which the 10-fold CV Concordance index was used as a reliable 

performance result, yielding on average 101 genes with P-values < 0.05. Then, this 

genomic information was used for building the molecular and integrative models. The 

initial predictor size as an input for each approach was 10, ~102, and ~112 in the clinical, 

molecular, and integrative models, respectively. Because the molecular and integrative 

model size is on average smaller than that of the subsamples, model inference was 

performed using maximum partial log-likelihood estimation (MPLLE) and maximum 

penalized partial log-likelihood estimation (MPPLLE) without QR decomposition in the 

STMC and FNSS method, respectively. For feature selection in the STMC and an 

optimized model in the FNSS, the set of features is evaluated using the twice-replicated 

10-fold CV C- index for unbiased estimation. In order to tune the MPPLLE parameters in 

the FNSS, the 10-fold CVPPLL is used for the LASSO and ridge Cox regression 
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approaches, and the 10-fold CV C-index is used for our approach.  

In the modified version of the DCV, we assigned (K1-1) to K2 so that the same fold 

positions could be used in both the outer and inner CV, and one fold was reserved for the 

independent test in the outer CV. Thus, the maximum inclusion frequency in the first 

level of the FNSS was 9 and K1 ∙ K2 2⁄ = 45 was used in the second level of the FNSS. 

The STMC was carried out only for k2 > k1 and the previously generated model was 

used to test for k2 ≤ k1. The single parsimonious final model was constructed on the 

basis of the 45 intermediate models. Note that if there exist tied proportions in the FNSS, 

the univariate ranking C-index score was used to place in order. 

Table 3.2 shows the results of the comparative analysis of methods (FSS, LASSO, 

Ridge, PCR and the proposed) for the clinical, molecular, and integrative models for 

predicting metastasis in the breast cancer. All methods used univariate screening except 

the clinical model. Method performances which were the best or on which methods tie 

are indicated in bold and the smallest expected model size is indicated in italics. In the 

clinical model, the proposed method performed better on the majority of performance 

measures as also reported in [9]. For the development of the molecular and integrative 

models, the proposed methodology outperformed others in all performance measures. 

Note that in the clinical model, the FSS was the best on the IBS, and in the integrative 

model, the ridge and proposed methodology tied on the IBS. In regard to model size, the 

FSS yielded the smallest model except the PCR that uses supergenes, but it performed the 

worst in all measures in the molecular and integrative model building and in particular on 
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the DD, revealing that it is worse than the null model (DD=0); however, the proposed 

method performed better with a few more features. The results for our methodology show 

that although the clinical model was better than the molecular model alone, the 

integrative model enhanced the performance of the clinical model. 

  

 

  Dataset   BCD on Metastasis    

Method  FSS LASSO Ridge PCR Proposed 

 
  

 
Clinical 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 3.1(0.32)  
0.708(0.10)  
0.760(0.11)  
0.189(0.03)  
-3.440(3.96)  

7.2(1.55)  
0.700(0.04)  
0.757(0.05)  
0.193(0.02)  
-3.010(3.16)  

10  
0.703(0.05)  
0.762(0.06)  
0.215(0.06)  
-2.927(1.20)  

-  
-  
-  
-  
-  

4.9(0.99)  
0.716(0.05)  
0.763(0.06)  
0.206(0.06)  
-4.277(2.73)  

 

 
 

Molecular 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 12.7(2.54)  
0.611(0.05)  
0.646(0.07)  
0.253(0.05)  
22.23(34.76)  

33.8(4.92)  
0.630(0.07)  
0.665(0.07)  
0.218(0.03)  
2.476(8.70)  

102  
0.687(0.07)  
0.736(0.08)  
0.221(0.06)  
-1.227(3.98)  

2.9(1.449)  
0.665(0.097)  
0.702(0.118)  
0.227(0.022) 
1.535(2.27)  

16.1(2.69)  
0.697(0.08)  
0.739(0.07)  
0.214(0.06)  
-3.019(6.38)  

 

 
 

Integrative 
Model 

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 12.4(1.06)  
0.660(0.07)  
0.703(0.07)  
0.225(0.06) 
24.86(64.6) 

15(7.44)  
0.681(0.08)  
0.735(0.08)  
0.198(0.03) 
-1.995(5.09)  

112  
0.751(0.06)  
0.811(0.07)  
0.188(0.07) 
-5.665(4.99)  

12.3(0.07)  
0.744(0.04)  
0.807(0.03)  
0.192(0.02) 
2.739(3.16)  

19.8(4.05)  
0.759(0.03)  
0.823(0.03)  
0.188(0.06)  
-7.062(3.05)  

  

 

 

 

 

 

 

 

  Dataset   BCD on Metastasis  

 

 Method   BestRand(1000) Final Model  

 
 

Molecular 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 15 
0.593 
0.596 
0.214 
-0.663 

15 
0.735(0.079) 
0.778(0.084) 
0.199(0.074) 
-5.057(5.442) 

 

 

 
 

Integrative 
Model 

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 23 
0.631(0.07) 
0.670(0.08) 
0.217(0.05) 
-0.878(1.93) 

23 
0.767(0.07) 
0.827(0.08) 
0.188(0.07) 
-7.48(5.11) 

 

- The smallest expected model size is indicated in italics. 
- Method performances which are the best or on which methods tie are indicated in bold.  
 

Table 3.2 Comparative performance analysis of methods for the clinical (10 variables), molecular (~102 
variables; P-value < 0.05), and integrative model (~112 variables) for breast cancer data (BCD) on the 
metastasis event. All methods use univariate screening, except the clinical model. 
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To further verify the effectiveness of our approach, we define the best random 

method (BestRand) such that if our algorithm returns a model of size n, we select n 

features randomly from the original hybrid set of the clinical feature (10) and molecular 

feature (24481), repeat 1000 times using boostrapping resampling, and select the best set 

of n random features. Table 3.2 shows that the final model performance of our proposed 

method in the molecular and integrative model outperform the BestRand method on all 

measures. 

 

 
 
 

 

 

Figure 3.4 displays the feature relevance ranking (FRR) of the model distribution 

for metastasis outcome obtained from the 45 intermediate models using an extended 

version of the STMC in (a) the clinical, (b) molecular, and (c) integrative model. After 

applying our methodology to build a single final model, we selected a hybrid signature, 

Figure 3.4 Feature Relevance Ranking (FRR) of the model distribution for metastasis obtained from 
intermediate models of an extended version of STMC. (a) Clinical model, (b) Molecular model, (c) 
Integrative model. 
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as described in Table 3.3, for (a) the clinical model with 5 clinical factors, (b) the 

molecular model with 15 genomic biomarkers, and (c) the integrative model with 5 

clinical factors and 18 genomic biomarkers. Many clincial and molecular features in each 

model overlapped with those in the integrative model. The clinical risk factors were more 

dominant than the molecular biomarkers in the FRR for the integrative model, and 7 

unidentified genes in the model were included in the molecular features (18). The top set 

of panels in Figure 3.5 shows the Kaplan-Meier curves, in which patients are devided into 

the high and low risk groups by using the median PI, and assessment of the single final 

model via LOOCV using the log rank test, the C-index, the PI slope and its P-value in the 

clinical, molecular, and integrative model. It is not readily apparent whether the clinical 

or molecular model performs better. However, the integrative model obviously 

outperformed both of them and it is clear that the metastasis free probailities between the 

two groups show the steep difference with the small censoring effect from 0 to 5 years.  
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Clinical Var. FRR Description Type

Age.years 1 Age (Year) Cont.

Grade_3_classes 2 (Well, intermediately, poorly) 
differentiated

Ord.

T1_T2 3 tumors ≤ 2.0cm vs. tumors ≥ 
2.0cm

Ord.

Chemo 4 Chemotherapy (Yes vs. No) Cat.

LNP 5 Lymph node number positive 
(Yes vs. No)

Cat.

Molecular Var. 
(Accession #)

FRR Gene Description Symbol

U79277 1 - -

Contig45717_RC 2 - -

NM_006311 3 nuclear receptor 
corepressor 1

NCOR1

Contig42566_RC 4 - -

NM_001047 5 steroid-5-alpha-reductase, 
alpha polypeptide 1 (3-oxo-
5 alpha-steroid delta 4-
dehydrogenase alpha 1)

SRD5A1

AB018292 6 Homo sapiens mRNA for 
KIAA0749 protein, partial 
cds.

KIAA0749

Contig31899_RC 7 - -

Contig48473_RC 8 - -

NM_014005 9 protocadherin alpha 9 PCDHA9

D50911 10 vestigial like 4 (Drosophila) KIAA0121

Contig35154_RC 11 - -

NM_002244 12 potassium inwardly-
rectifying channel, subfamily 
J, member 12

KCNJN1

NM_003463 13 protein tyrosine 
phosphatase type IVA, 
member 1

PTP4A1

Contig47970 14 - -

Contig36581_RC 15 - -

Clinical Var. FRR Description Type

Age.years 1 Age (Year) Cont.

Grade_3_classes 2 (Well, intermediately, poorly) 
differentiated

Ord.

Chemo 9 Chemotherapy (Yes vs. No) Cat.

Mastectomy 14 Mastectomy (Yes vs. No) Cat.

T1_T2 22 tumors ≤ 2.0cm vs. tumors ≥ 2.0cm Ord.

Molecular Var. 
(Accession #)

FRR Gene Description Symbol

NM_001047 3 steroid-5-alpha-reductase, alpha 
polypeptide 1 (3-oxo-5 alpha-
steroid delta 4-dehydrogenase 
alpha 1)

SRD5A1

U79277 4 Human clone 23548 mRNA 
sequence

-

Contig42566_RC 5 - -

AB018292 6 Homo sapiens mRNA for KIAA0749 
protein, partial cds.

KIAA0749 

NM_014005 7 protocadherin alpha 9 PCDHA9

NM_001566 8 inositol polyphosphate-4-
phosphatase, type I, 107kDa 

INPP4A

NM_003559 10 phosphatidylinositol-5-phosphate 
4-kinase, type II, beta

PIP5K2B

Contig31899_RC 11 - -

NM_016208 12 vacuolar protein sorting 28 
homolog (S. cerevisiae)

LOC51160

Contig52170_RC 13 - -

Contig35154_RC 15 - -

NM_020806 16 gephyrin GPH

Contig47970 17 - -

D50911 18 vestigial like 4 (Drosophila) KIAA0121

Contig45717_RC 19 - -

NM_000864 20 5-hydroxytryptamine (serotonin) 
receptor 1D 

HTR1D

Contig36448_RC 21 - -

NM_006311 23 nuclear receptor corepressor 1 NCOR1

(a)

(b)

(c)

FRR : Feature Relevance Rank

Table 3.3 The description of features in the single final model built by the proposed approach for 
metastasis. (a) Clinical model (5 clinical factors), (b) Molecular model (15 genes), (d) Integrative model 
(5 clinical factors and 18 genes).  
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3.3.2.2 Mortality outcome 

 

The same model building scheme was applied to mortality outcome. Using the 

permutation test, the preliminary univariate screening produced on average 459 genes 

with P-values < 0.05. The initial feature size for each method was 10, ~459, and ~469 in 

the clinical, molecular, integrative model, respectively. In this instance, due to the P >> N 
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Figure 3.5 The KM curves and the single final model assessment via LOOCV using the log rank test, C-
index, PI slope and its P-value. The three panels of the first row are the results for metastasis outcome and 
the three panels of the second row are the results for mortality outcome (left column: Clinical model, 
middle column: Molecular model, right column: Integrative model). The horizontal coordinate of KM 
curves is the time of year, and the vertical coordinate of the first row is the metastasis free prob. and that 
of the second row is the survival prob.   
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problem, the intermediate models were estimated using QR decomposition in the STMC 

and FNSS.   

 

 

 

  Dataset   BCD on Mortality    

Method  FSS LASSO Ridge PCR Proposed 

 
  

 
Clinical 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 2.6(0.70)  
0.710(0.09)  
0.732(0.13)  
0.175(0.04)  
-3.755(4.06)  

5.7(0.68)  
0.722(0.09)  
0.750(0.13)  
0.173(0.04)  
-3.624(4.00)  

10  
0.733(0.10)  
0.740(0.13)  
0.188(0.07)  
-4.166(4.09)  

-  
-  
-  
-  
- 

4.8(1.05)  
0.739(0.10)  
0.757(0.15)  
0.187(0.07)  
-4.301(2.77)  

 

 
 

Molecular 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 20(4.38)  
0.585(0.07)  
0.646(0.06)  
0.243(0.08)  
32.892(25.90)  

29.9(26.08)  
0.556(0.11)  
0.578(0.14)  
0.188(0.05)  
1.261(3.33)  

459  
0.738(0.12)  
0.806(0.09)  
0.173(0.08)  
-2.729(5.53)  

2.6(0.84)  
0.699(0.107)  
0.733(0.109)  
0.171(0.043)  
-0.97(2.68)  

15.9(3.28)  
0.769(0.11)  
0.809(0.09)  
0.165(0.07)  
-5.496(5.34)  

 

 
 

Integrative 
Model 

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 15.4(3.27)  
0.692(0.11)  
0.713(0.13)  
0.197(0.05)  
9.441(14.18)  

26.7(14.24)  
0.741(0.11)  
0.759(0.15)  
0.191(0.06)  
-3.461(4.02)  

469  
0.769(0.91)  
0.802(0.12)  
0.181(0.12)  
-5.420(4.11)  

12.8(0.04)  
0.775(0.07)  
0.814(0.08)  
0.163(0.05)  
-0.814(6.14)  

19(1.94)  
0.802(0.10)  
0.826(0.09)  
0.162(0.07)  
-7.628(5.80)  

  

 

 

 

 

 

 

 

 

  Dataset   BCD on Mortality  

 

 Method   BestRand(1000) Final Model  

 
 

Molecular 
Model  

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 16 
0.607 
0.613 
0.212 
-0.925 

16 
0.777(0.075) 
0.804(0.077) 
0.176(0.074) 
-5.64(1.65) 

 

 

 
 

Integrative 
Model 

Exp. Model Size  
C-index  
IAUC  
IBS  
DD  

 17 
0.649(0.09) 
0.662(0.13) 
0.200(0.07) 
-1.261(3.06) 

17 
0.821(0.084) 
0.853(0.073) 
0.153(0.070) 
-9.137(4.950) 

 

Table 3.4 Comparative performance analysis of methods for the clinical (10 variables), molecular (~459 
variables; P-value < 0.05), and integrative model (~469 variables) for breast cancer data (BCD) on the 
death event. FSS and lasso use univariate screening, and ridge and the proposed method use univariate 
screening and QR decomposition, except for the clinical model.  
 

- The smallest expected model size is indicated in italics. 
- Method performances which are the best or on which methods tie are indicated in bold.  
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     Table 3.4 shows the results of the comparative analysis of methods (FSS, LASSO, 

ridge , PCR, and the proposed methods) for the clinical, molecular, and integrative model. 

All methods used univariate screening, and the ridge and proposed method used QR 

decomposition, which was not used in the clinical model. In the clinical model, the 

proposed methodology performed better on most measures than the other methods. For 

the development of the molecular and integrative model, the proposed methodology 

surpassed others on all performance measures. Note that the LASSO method had the best 

IBS in the clinical model and that in the molecular model, the FSS and LASSO were 

overfitted to the training set and performed even worse than in the null model in the test 

set. Table 3.4 also shows that the final model performance of our proposed method in the 

molecular and integrative model outperform the BestRand method on all measures. 

     Although the size of the FSS or PCR was the smallest in all model building, the 

proposed methodology also had better performance with a few more features. In contrast 

to our results for the outcome of metastasis, when we used our methodology to build a 

model for predicting mortality, the molecular model outperformed the clinical model, and 

the integrative model also enhanced the performance of the molecular model. 
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(a)

(b)

(c)Clinical Var. FRR Description Type

Grade_3_classes 1 (Well, intermediately, poorly) 
differentiated

Cont.

ER 2 Estrogen Receptor Status (Pos. vs. 
Neg.)

Ord.

Age.years 3 Age(Year) Ord.

T1_T2 4 tumors ≤ 2.0cm vs. tumors ≥ 
2.0cm

Cat.

Molecular Var. 
(Accession #)

FRR Gene Description Symbol

NM_014918 1 chondroitin sulfate 
synthase 1

KIAA0990

Contig34060_RC 2 - -

NM_016208 3 vacuolar protein sorting 28 
homolog (S. cerevisiae)

LOC51160

Contig12842_RC 4 - -

NM_003860 5 barrier to autointegration
factor 1

BCRP1

Contig45717_RC 6 - -

Contig27761_RC 7 - -

NM_000479 8 anti-Mullerian hormone AMH

NM_005267 9 gap junction protein, alpha 
8, 50kDa

GJA8

D50911 10 vestigial like 4 (Drosophila) KIAA0121

NM_007218 11 ring finger protein 139 TRC8

Contig47888_RC 12 - -

NM_001427 13 engrailed homeobox 2 EN2

AB018304 14 chloride channel CLIC-like 
1

KIAA0761

NM_001232 15 calsequestrin 2 (cardiac 
muscle)

CASQ2

Contig9553_RC 16 - -

Clinical Var. FRR Description Type

Grade_3_classes 4 (Well, intermediately, poorly) 
differentiated

Ord.

ER 5 Estrogen Receptor Status (Pos. vs. 
Neg.)

Cat.

Age.years 9 Age(Year) Cont.

Chemo 11 Chemotherapy (Yes vs. No) Cat.

Molecular Var. 
(Accession #)

FRR Gene Description Symbol

NM_003860 1 barrier to autointegration factor 1 BCRP1

Contig12842_RC 2 - -

Contig34060_RC 3 - -

Contig45717_RC 6 - -

NM_005267 7 gap junction protein, alpha 8, 
50kDa

GJA8

Contig27761_RC 8 - -

NM_016208 10 vacuolar protein sorting 28 
homolog (S. cerevisiae)

LOC51160

NM_000479 12 anti-Mullerian hormone AMH

Contig9553_RC 13 - -

D50911 14 vestigial like 4 (Drosophila) KIAA0121

AB018304 15 Mid-1-related chloride channel 1 
isoform 1 

KIAA0761

NM_001427 16 engrailed homeobox 2 EN2

Contig47888_RC 17 - -

FRR : Feature Relevance Rank

Table 3.5 The description of features in the single final model built by the proposed approach for 
mortality outcome. (a) Clinical model (4 clinical factors), (b) Molecular model (16 genes), (d) Integrative 
model (4 clinical factors and 13 genes). 
 



８５ 

 

 

 
 
 
 

 

Figure 3.6 displays the feature relevance ranking (FRR) of the model distribution 

for mortality in (a) the clinical, (b) molecular, and (c) integrative model. After applying 

our methodology to build a single final model, we selected a subset of features, as 

described in Table 3.5, for (a) the clinical model with 4 clinical factors, (b) the molecular 

model with 16 genomic biomarkers, and (c) the integrative model with 5 clinical factors 

and 18 genomic biomarkers. The estrogen receptor status, ER that was not contained in 

the metastasis event models was selected in the clinical and integrative model, and it 

appears that the ER status is the important clinical risk factor in survival anaysis of the 

breast cancer data set. All of the genomic features in the integrative model were included 

in the molecular model. The genomic biomarkers were more dominant than the clinical 

risk factors in the integrative model FRR, and 6 unidentified genes in the model were 

Figure 3.6 Feature Relevance Ranking (FRR) of the model distribution for mortality obtained from 
intermediate models of an extended version of STMC. (a) Clinical model, (b) Molecular model, (c) 
Integrative model. 
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included in the genomic features (13). The bottom set of panels in Figure 3.5 shows the 

Kaplan-Meier curves using the median PI and assessment of the single final model via 

LOOCV in the clinical, molecular, and integrative model. In analogy to the metastasis 

outcome, it is not readily discernible as to whether the clinical or molecular model 

performs better, but the integrative model clearly outperformed both, and it is also 

apparent that the Kaplan Meier survival probailities differ steeply between the two groups 

with the small censoring effect from 0 to 5 years. 

 

3.4 Molecular model for DLBCL data 

3.4.1 DLBCL data 

 

     The survival of patients with diffuse large-B-cell lymphoma (DLBCL) after 

chemotherapy is influenced by molecular features of the cancers. We used the gene-

expression profiles of these lymphomas to develop molecular models of survival. We 

examined the DLBCL dataset [46] and there were 7399 genes from 240 patients with the 

use of DNA microarrays. All patents had received anthracycline-based chemotherapy. 

Median follow-up was 2.8 years overall (7.3 years for survivors), and 57 percent of 

patients died during this period. The median age of the patients was 63 years, and 56 

percent were men.  

 

3.4.2 Experimental results 
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 Dataset   DLBCL Data   
Method  FSS  LASSO  Ridge  PCR  Proposed  

 
 

Molecular 
Model  

Exp. Model  Size  
C-index  
IAUC  
IBS  
DD  

 3.3(0.675)  
0.606(0.08)  
0.647(0.10)  
0.247(0.04)  
0.627(5.86)  

7.9(1.66)  
0.628(0.08)  
0.665(0.11)  
0.232(0.03)  
2.52(02.37)  

39(3.45)  
0.633(0.08)  
0.668(0.103)  
0.261(0.09)  
-1.42(3.11)  

1.3(0.675)  
0.632(0.08)  
0.674(0.10)  
0.230(0.02)  
0.888(2.47)  

8.5(3.54)  
0.676(0.05)  
0.705(0.08)  
0.218(0.06)  
-4.53(1.82)  

 

 

 

 

Molecular prognostic models were constructed with expression patterns that were 

associated with survival. Several model building methods were applied to the DLBCL 

dataset using the DCV procedure in the same manner as before. Table 3.6 shows the 

comparative performance analysis of methods for the molecular model fitted to the 

DLBCL data for mortality outcome. The preliminary univariate screening selected ~39 

significant molecular features with P-value < 0.05 for the following steps. The proposed 

methodology outperformed other methods on all performance metrics and the FSS has 

the smallest expected model size except for the PCR that has super genes. The inclusion 

frequencies of molecular features for the molecular model are produced after the DCV 

procedure of STMC as shown in (a) of Figure 3.7. The single final model was build and 

assessed by LOOCV measures and KM curves are in (b) of Figure 3.7. The final model 

includes the five molecular features of Septin 1, thyroxine-binding globulin precursor, 

- The smallest expected model size is indicated in italics. 
- Method performances which are the best are indicated in bold.  
 

Table 3.6 Comparative performance analysis of methods for the molecular model (~39 variables; P-value 
< 0.05) for DLBCL data on the death event. 
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KIAA0084 protein, cyclin-dependent kinase 7, and eukaryotic translation initiation 

factor2. The P-values of the log-rank test and the PI slope are very significant with P-

values < <0.00001 and LOOCV C-index is 0.688. 

 

 

(a)                            (b) 

  

 

 

3.5 Simulation study 

3.5.1 Simulated data 

 

We simulated genomic data with P=1000 features and N=240 subjects to 
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Figure 3.7 (a) Feature Relevance Ranking (FRR) for the molecular model of DLBCL data on mortality 
event, (b) Final model assessment for DLBCL data. 
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demonstrate the effectiveness of the proposed approach for building a predictive model 

that is optimized to have a smaller signature in the N << P problem settings. All predictor 

values are generated from a uniform distribution [0, 1]. Tthe prognostic index of a linear 

risk score function f(x) is formed for 𝐱 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)T  so that only the true 

predictors are related to risk time to events. The survival time T is generated from an 

exponential distribution with parameter exp(f(x)) when x is given, and the censoring 

variable C is generated from an exponential distribution with parameter 0.4. Then we 

obtain the survival data, {(𝑡𝑖 = min(𝑇𝑖,𝐶𝑖) , 𝛿𝑖 = 𝐴(𝑇𝑖 ≤ 𝐶𝑖))|𝑖 = 1, … ,𝑛}  with right 

censoring effect and the EPV of simulated data is 0.84.  

 

 

 Dataset   Simulated Data   
Method  FSS  LASSO  Ridge  PCR  Proposed  

 
 

Simulated 
Model  

Exp. Model size  
C-index  
IAUC  
IBS  
DD  

 21(0)  
0.857(0.06)  
0.903(0.05)  
0.200(0.10)  
9.32(29.42)  

36.3(7.92)  
0.861(0.06)  
0.910(0.05)  
0.190(0.16)  
-0.53(7.42)  

85(1.43)  
0.872(0.06)  
0.911(0.04)  
0.269(0.15)  
-10.14(2.36)  

3.3(1.34)  
0.862(0.09)  
0.890(0.08)  
0.186(0.06)  
-3.67(5.79)  

11.3(4.40)  
0.893(0.08)  
0.931(0.10)  
0.167(0.07)  
-13.54(3.23)  

 

 

 

3.5.2 Experimental results 

     
The prognostic models for the simulated data were constructed in the identical way 

with the above. Table 3.7 shows the comparative performance analysis of methods for the 

Table 3.7 Comparative performance analysis of methods for simulated data (85 variables; P-value < 
0.05). 

- The smallest expected model size is indicated in italics. 
- Method performances which are the best are indicated in bold.  
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simulated data. On average, 85 significant features with P-value < 0.05 were selected by 

the preliminary univariate screening for the following steps. The proposed approach also 

outperformed other methods on all performance measures and the expected model size of 

PCR was the smallest but was in lack of interpretability.  

The inclusion frequencies of simulated features are produced after the DCV 

procedure of STMC as shown in (a) of Figure 3.8. The single final model was build and 

assessed by LOOCV measures and KM curves are in (b) of Figure 3.8. The final model 

includes the true five simulated features, x1-x5, and the other features, x361, x480, and x726 

that are irrelevant but significant. However, both P-values of the log-rank test and the PI 

slope are very significant with P-values < <0.00001 and LOOCV C-index is 0.858. 

  

(a)                                      (b) 
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Figure 3.8 (a) Feature Relevance Ranking (FRR) for the simulated data, (b) Final model assessment for 
the simulated data 
 



９１ 

 

 

 

 

 

 

 

0.
80

0.
85

0.
90

0.
95

Simulated True Model Size

C
-in

de
x

5 10 20 40 80

mean: 0.893 mean: 0.895 mean: 0.894
mean: 0.885

mean: 0.851

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Simulated True Model Size

IA
U

C

5 10 20 40 80

mean: 0.931

mean: 0.953
mean: 0.947

mean: 0.914
mean: 0.92

-0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

Simulated True Model Size

IB
S

5 10 20 40 80

mean: 0.167
mean: 0.159 mean: 0.165

mean: 0.173
mean: 0.181

-3
0

-2
5

-2
0

-1
5

-1
0

Simulated True Model Size

D
D

5 10 20 40 80

mean: -13.54

mean: -15.15

mean: -23.65

mean: -19.73

mean: -17.18

Figure 3.9 The performance analysis of our approach for five simulated datasets with the variation of the 
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    In addition to the above simulated data, we also simulated four additional genomic 

datasets of P=1000 features and N=240 subjects, whose the true model sizes are 10, 20, 

40, and 80. Figure 3.9 shows the performance analysis of our approach for five simulated 

datasets with the variation of the true model size of 5, 10, 20, 40, and 80 on the C-index, 

IAUC, IBS, and DD. We analyze the results based on the mean value of each measure 

instead of using the median value. The true model size of 10 in simulation datasets was 

the best on the C-index, IAUC, and IBS except for the DD in which the size of 20 was 

the best. The performance of each measure tends to increase or decrease toward making 

worse as the size is augmented due to the multicollinearity among features. 

 

3.5 Disscussion 

 

In recent years, the rapid increase in availability of high dimensional gene 

expression profiles and the active research in translational science have given rise to the 

need for a data integration methodology to build a prognostic model to improve 

predictive accuracy. However, a primary problem of overfitting arises from the P >>N 

problem and censoring effect when obtaining estimates using the standard Cox model. 

We have presented a methodology using problem-oriented strategies to build an accurate 

prognostic prediction model with parsimony, using the data integration scheme that 

combines clinical and molecular features, which is reliable and is well calibrated for 

future prediction based on a trial application using highly correlated breast cancer data.  

In order to avoid overfitting due to high dimensional features and small sample size 

settings, we employed the dimension reduction methods including the preliminary 
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univariate screening using a permutation test and QR decomposition. In particular, the 

correction for overoptimism in the situation of the P >>N problem is critical in 

experimental design if comparison with other methodologies is to be fair. For this reason, 

we have proposed a modified DCV for internal validation for comparison of methods, 

and have used replicated K-fold CV to find the optimal model complexity of a hybrid 

signature and to estimate the optimism corrected model performance. Predictive models 

were evaluated by several measures based on discrimination, calibration, and the overall 

score to reflect and consider the variability in the censoring effect when comparing 

models. Also, gene expression measurements in microarray data are highly correlated 

with one another. Thus, we used MPPLLE for L2 penalization in order to avoid 

multicollinearity, which adds estimation bias through coefficient shrinkage but reduces 

variance and, consequently, improves predictive accuracy as a result. Regression 

modeling for time to event data is much more sensitive to the event per variable than to 

the overall sample size and researchers carefully guide the 10 events per variable ratio 

[67]. As this is, however, a problem we cannot avoid when P >>N, we attempted to use 

the DCV and dimension reduction techniques to diminish estimation bias while 

simultaneously reducing the number of features. We have proposed using the strategies 

above to build a single final model with a hybrid signature as an optimal subset. For 

practical use of the developed model, the entire breast cancer data set must fit the hybrid 

signature.  
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Figure 3.10 Performance analysis of data integration for the proposed method on metastasis outcome in 
breast cancer data. 
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Our comparative study is based on the prediction of metastasis and mortality in the 

breast cancer data set. A comparative analysis for model building methods was performed 
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Figure 3.11 Performance analysis of data integration for the proposed method on mortality outcome in 
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models, and was better on most of the measures than the other methods in the clinical 

model. Although the FSS size except the PCR, whose results include supergenes, was the 

smallest for the majority of the models, its performance deteriorated as the size decreased. 

The proposed method had a sufficiently small number of features so as to improve the 

performance. We should note that for metastasis and mortality outcome, the FSS method 

showed the poorest performance on the DD in the molecular and integrative model and 

those results imply that molecular features were very highly correlated and were not 

handled by penalization techniques.  

Figure 3.10 and Figure 3.11 show the box plots of performance analysis of our data 

integration scheme for metastasis and mortality outcome and illustrate that the clinical 

model was better than the molecular model for metastasis but it was on the contrary for 

mortality, and overall, the integrative model outperformed them on all of the measures. In 

particular, the results for the metastasis outcome illustrate the stability of the integrative 

model with the smaller variance of most measures.    
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Figure 3.12 displays the number of clinical and molecular features selected in the 

integrative model for metastasis and mortality in each run of 45 models built in our 

methodology and shows that the feature numbers are stable in either type. In the single 

final model assessment, it was not easy to determine whether the clinical or molecular 

model on either event outcome performed better, but it was evident that the integration of 

clinical data and high-dimensional genomic data yielded better predictive performance 

than when each data set is handled separately, which was demonstrated by the KM curves 

and several LOOCV measures. Also, the experimental results on the DLBCL data and 

simulation studies reinforced that our methodology performed better than other methods. 

For internal validation, we have used the DCV and a resampling method, the CV, 

which are relative but effective to achieve predictive performance for method comparison. 

For an accurate and independent performance evaluation, we may need additional 
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publicly available censored survival data for external validation and may need to perform 

bootstrap 0.632+ estimator to obtain accurate performance measures [50]. However, this 

bootstrap approach can demand a large number of resampling samples.  
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CHAPTER 4 Conclusions 
 

In this dissertation, first, we proposed a new approach to construct accurate final 

clinical models with the optimally reduced size of risk factors through validation using 

resampling-based techniques in the high events per variable setting. The proposed 

method, STMC, compared to the stepwise selection methods with the different criteria of 

the LRT and the AIC, and LASSO, demonstrated better results in the two different data 

sets and a simulation study, and can be used for clinical prognostic modeling. The final 

model of FNSS improved the C-index at least better than the full model and had better 

performance on most measures. Also, in order to handle the high dimensionality and 

small sample size problem in censored time to event data, we have presented and tested 

an integrative model building methodology that improves the prognosis prediction 

accuracy for breast cancer data, and that optimizes to identify a small subset of a hybrid 

signature of clinical factors and molecular biomarkers that is most relevant to the risk of 

two clinical outcomes. When comparing methods using the DCV procedure, our 

proposed approach outperformed the other competing methods and the ridge Cox 

regression, which currently is accepted as having the best prediction performance, in the 

molecular and integrative models using breast cancer data. The results of the method 

comparison and the final model assessment for our methodology indicate that the 

discrimination between performance of clinical and molecular models depends on a 

dataset with a risk event, and that the integrative model improved predictive accuracy 
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over models that used clinical or molecular data alone. Also the unidentified genes among 

the features we selected can be investigated further to validate biological processes in 

breast cancer studies.  

Although our approach is computationally demanding, we can obtained an 

integrative clinicogenomic model that is improved by predictive accuracy and includes a 

reduced and reliable hybrid signature in contrast with other methods.  

Furthermore, the experimental results of the DLBCL data and simulated data 

supported our demonstration. Finally, although our approach of this dissertation utilizes a 

Cox model as a regression problem in censored time to event data, it can also be applied 

to other classification problems and binary outcome data using appropriate performance 

measures. This is because our methodology is based on a wrapper approach.  
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Appendix A 

 

Description of Original Renal Transplantation Data (20085 records and 67 variables)
Variable Names Description Type Values(Min vs Max or % or #) # of NA

1 TRANSPLANT_ID ID Number of Kidney Transplantation numeric(numeric) 6-231543 0
2 TX_DATE Transplant Date factor(numeric) 01/01/2000-12/31/2003 0
3 FAILDATE_KI Date of Graft Failure factor(numeric) 01/01/2001-12/31/2004 18680(93%)
4 PX_STAT_DATE Date of Death, Re-TX or Last Follow-Up factor(numeric) 01/01/2002-12/31/2005 1
5 wt Weight of Recipient at Tx (kg) numeric(numeric) 18.70-166.90 910(5%)
6 ht Height of Recipient at Tx (cm) numeric(numeric) 99.06-225.00 910(5%)
7 AGE Recipient Age in years (yrs) numeric(numeric) 18-84 0
8 bsa Recipient Body Surface Area (m2) numeric(numeric) 0.7632-2.1250 0
9 bmi Recipient Body Mass Index numeric(numeric) 15.04-49.92 0

10 ht_inch Recipient Height (inch) numeric(numeric) 39.00-88.58 0
11 wt_lbs Recipient Weight at Tx (lbs) numeric(numeric) 41.14-367.20 0
12 racecat Recipient Race factor(numeric) Black(2992:15%), White(13525:67%), or Other(3568:18%) 0
13 GENDER Recipient Gender factor(numeric) F(8320:41%) or M(11765:59) 0
14 wtht Recipient Preop Weight/Height Ratio numeric(numeric) 0.1764-0.8940 910(5%)
15 diab_r Recipient Diabetes numeric(binary) 0(99.8%) or 1(0.2%) 5917(29%)
16 dial_reg On Dialysis at Registration numeric(binary) 0(33%) or 1(67%) 509(3%)
17 dial_tx On Dialysis at Transplant numeric(binary) 0(26%) or 1(74%) 322(2%)
18 fail_acu Graft Failure Contrib. Cause: Acute Rej numeric(binary) 0(91%) or 1(9%) 18864(94%)
19 fail_chr Graft Failure Contrib. Cause: Chron Rej numeric(binary) 0(91%) or 1(9%) 19167(95%)
20 gfail Graft Failure numeric(binary) 0(17785:89%) or 1(2300:11%) 0
21 dead Recipient Death numeric(binary) 0(18963:94%) or 1(1122:6%) 0
22 iv_dead Time Interval (yrs) to Death or Censoring numeric(numeric) 0-5.621 1
23 d_wtht Donor's Weight/Height Ratio numeric(numeric) 0.2516-0.8431 3239(16%)
24 d_wt Donor's Weight (kg) numeric(numeric) 39-161 3239(16%)
25 d_ht Donor's Height (cm) numeric(numeric) 106-221 3239(16%)
26 AGE_DON Donor's age (yrs) numeric(numeric) 15-48 0
27 GENDER_DON Donor's Gender factor(numeric) F:11806 or M:8279 0
28 d_bsa Donor's bsa numeric(numeric) 1.293-2.978 0
29 d_bmi Donor's bmi numeric(numeric) 15.21-49.95 0
30 d_htinch Donor's Height (inch) numeric(numeric) 41.73-87.01 0
31 d_wt_lbs Donor's Weight (lbs) numeric(numeric) 85.8-354.3 0
32 d_creat Donor Serum Creatinine (SCr) - (Preop) numeric(numeric) 0.2-18.4 0
33 d_procec Donor Procedure: Nephrectomy Type factor(numeric) Laparoscopi(13057:65%) or Open(7028:35%) 0
34 dracecat Donor Race factor(numeric) Black(2767:14%), White(13876:69%), or Other(3442:17%) 0
35 abo_ordc ABO Match factor(numeric) Compatible(4568:23%) or Identical(15517:77%) 0
36 gen_m2m Gender: Male to Male Transplant numeric(binary) 0(77%) or 1(23%) 0
37 gen_f2f Gender: Female to Female Transplant numeric(binary) 0(77%) or 1(23%) 0
38 gen_m2f Gender: Male to Female Transplant numeric(binary) 0(82%) or 1(18%) 0
39 gen_f2m Gender: Female to Male Transplant numeric(binary) 0(65%) or 1(35%) 0
40 iv_opyrs Interval (yrs): 01/01/2000 to Tx numeric(numeric) 0-3.997 0
41 iv_wait Time (yrs) on Waiting List numeric(numeric) 0-12.41 7795(39%)
42 im_thera Induction Therapy-Depleting & Receptor numeric(binary) 0(8919:45%) or 1(10912:55%) 254(1%)
43 im_fk506 fk506 (Tacrolimus) Maintenance numeric(binary) 0(8776:44%) or 1(11055:56%) 254(1%)
44 im_calco Calcineurin Inhibitor without fk506 numeric(binary) 0(12270:62%) or 1(7561:38%) 254(1%)
45 crcl_pr CrCl (Cockcroft-Gault Formula) (Preop) numeric(numeric) 0.6987-186 1588(8%)
46 gfr_pr eGFR (MDRD) Pre-Transplant numeric(numeric) 1.577-167.1 1271(6%)
47 crc_po6 CrCl (Cockcroft-Gault) in 12 Mths (Post-Tx) numeric(numeric) 0.8795-748 7153(36%)
48 crc_po12 CrCl (Cockcroft-Gault) in 6 Mths (Post-Tx) numeric(numeric) 0.9328-760.5 8368(42%)
49 kidrand Random # Seeded 15789473 on 05/24/06 numeric(numeric) 0.0000823-0.9999 0
50 HLAMIS HLA Mismatch Level numeric(numeric) 0(11%),1(6%),2(19%),3(29%),4(13%),5(15%),6(8%) 0
51 dial_1wk Dialysis in the First Week (Post-Tx) numeric(binary) 0(95%)-1(5%) 0
52 trt_rej6 Any Treated for Rejection within 1st 6 mths factor(numeric) Y(2650:13%) or N(17435:87%) 0
53 diaggrpc Primary Diagnosis: Cause of Renal Failure factor(numeric) Diabetes:3095,glomerulonephritis:4854,other:12000,retransplant:136 0
54 im_deple Induction with depleting antibodies numeric(binary) 0(16354:81%) or 1(3731:19%) 0
55 im_il2 Induction with IL2 Receptor Antidodies numeric(binary) 0(12481:62%) or 1(7604:38%) 0
56 im_myco Mycophenolate Mofetil Maintenance numeric(binary) 0(4670:23%) or 1(15415:77%) 0
57 im_rapa Rapamycin (Sirolimus) Maintenance numeric(binary) 0(17125:85%) or 1(2960:15%) 0
58 im_aza Azathioprine Maintenance numeric(binary) 0(19362:96%) or 1(723:4%) 0
59 im_calci Calcineurin Inhibitor with fk506 numeric(binary) 0(1356:7%) or 1(18729:93%) 0
60 gfr_po6 eGFR (MDRD) in 6 mths Post-Tx numeric(numeric) 1.508-550.2 0
61 iv_gfail Time (yrs) to Graft Failure or Censoring numeric(numeric) 0-5.574 0
62 gfaildea Graft Failure or Death factor(numeric) Dead(1122:6%),Gfail_alive(1178:6%),No_Gfail_alive(17785:88%) 0
63 gfr_po12 eGFR (MDRD) in 12 Mths Post-Tx numeric(numeric) 3.225-988.7 0
64 PRAMR RH Most Recent PRA (%) Pre numeric(numeric) 0-100 0
65 PRAPK RH Peak PRA (%) Pre numeric(numeric) 0-100 0
66 drelgrpc Relation of Donor to Recipient factor(numeric) biol_blood_related:13912,nonbiol_related:3657,spouse_partner:2516 0
67 iv_dial Duration of Dialysis Pre-Tx (yrs) numeric(numeric) 0-68.44 0

- BSA: Body Surface Area
- BMI: Body Mass Index
- eGFR: Estimated Glomerular Filtration Rate
- CrCl: Creatinine Clearance
- HLA: Human Lymphocyte Antigen
- PRA: Panel Reactive Antibody
- SCr: Serum Creatinine
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