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CRR Option Pricing Model with Dependent Jump Sizes

Abstract

by

Souha Fares

Options are very important derivative securities in the financial market and the option

pricing theory is used in most areas in finance. Numerous researchers have contributed

to the theory of option pricing. Cox, Ross and Rubinstein presented a discrete time

option pricing formula that has, in the limit, the notorious Black-Scholes formula.

Kan extended the CRR model by representing the changes in the stock price by

the sequence of random variables Xt. She assumed theXt
′s to be independent and

introduced the multinomial model.

In this thesis, we extend the CRR model assuming a dependency between the jump

sizes of the stock price. We have chosen this approach because of its relevance to

the stock market. We show the option price to have a similar expression as in the

independent case. In addition, we introduce new limiting theorems using Fourier

inversion method and perturbation theory of linear operators. Finally we describe a

limit of the new option price.
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Introduction

Financial markets are basic structures of financial theory. They can be separated

into derivative securities and underlying. A derivative can be seen as a contract that

derives most of its value from some underlying asset, reference rate or index. There

are several types of derivatives, including financial derivatives, which is the focus of

this thesis.

In practice, financial derivatives cover a diverse spectrum of underlyings, including

stocks, bonds, exchange rates, interest rates..... The major types of financial deriva-

tives are forward contracts, futures, options and swaps.

Over the past few years derivative securities have become essential tools for

corporations and investors alike. Derivatives facilitate the transfer of financial risks.

Options are very important derivative securities in financial markets, ”almost

everything in finance can be written in terms of options”[P. Ritchken]. Any investment

which provides some kind of protection actually includes an option feature. Fore more

details about financial markets one can refer to [16, 26, 42, 36, 19, 37, 34, 10, 26].

Many people think that options and futures are recent inventions, in fact, options

have a long history, going back to ancient Greece. However they remained a vague

financial instrument until 1973 when the option exchange has been introduced. And

at the same time the option pricing theory underwent a revolutionary changing,

especially after Black-Scholes offered in their paper [6] a first satisfactory model of

option pricing.

Robert Merton and Myron Scholes were awarded the Nobel Prize for Economics

in 1997 to honour their contributions to option pricing. Unfortunately, Fischer Black,
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who has also given his name and contributions, had passed away two years before.

The Black-Scholes formula is still used nowadays.

However, the Black and Scholes model has some restrictions, after all, the deriva-

tion of the Black-Scholes equation, and hence, the closed-form solutions for some

options, assume a continuously trading strategy which is not feasible in the market

in order to hedge the portfolio that has been constructed.

In 1978 Sharpe [45] has partially developed a simplified approach to option pricing

and suggested the advantages of using the discrete-time approach.

In 1979 Cox, Ross and Rubinstein [11] presented a discrete-time option pricing

model known as the binomial model which has as a limiting case the Black-Scholes

formula. The binomial model assumes that the stock price at each time moment can

go either up or down by the multiplication of two factors called u and d.

Kan [22] extended the binomial model and considered the case where at each time

moment the stock price is changed not only by multiplication by the two factors u

and d, but due to the embedding of the process {Xt}t≤T ∗ , the changes of the stock

price are modeled by a variety of possible values uXt and dXt, t ≤ T ∗. Therefore,

the assumptions on the sequence {Xt}t≤T ∗ play a crucial role.

The generalized CRR stock price model was given by St = ξt−1St−1 for all t ≤ T ∗

where S1 = S0ξ0 and S0 is a positive constant and ξt = Xtνt,∀t ≤ T ∗.

Kan assumed that the random variables {Xt}t≤T ∗ and {νt}t≤T ∗ are mutually

independent and conditioned on the values that the random sequence {Xt}t≤T ∗ can

take.
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She assumed that the sequence {Xt}t≤T ∗ takes k possible values in the set she

referred to as the multinomiality set Ck = (c1, . . . , ck). Therefore it is obvious that

the probability distribution pn of the vector of occurrences (n1, . . . , nk) of these k

values is the multinomial distribution.

A local limit theorem by Richter [38] was then used in order to find the limit of

the option price. The theorem says that the multinomial distribution converges to

the normal distribution. The following asymptotic yield to a “general” form of the

Black-Scholes formula as a limit of the Conditional Generalized CRR option price.

Estimating procedures as the Hull-White algorithm in [19] were used to estimate

the multinomiality parameters. The results showed that embedding the multinomial

parameters gave a better approximation of the stock price (based on real data) than

the binomial model. It was also evident how the multinomiality parameters influenced

the option price.

However the assumption of the independence between the jump sizes is not relevant

to the actual stock price behavior: it is obvious that the changes in the stock price

over time are somehow dependent; the price of a stock in a certain financial period

can affect its price on the next one.

In this thesis we develop a new option pricing model, which we refer to as the

“Generalized CRR Option Price Model with Dependent Jump Sizes”. Based on Kan’s

model, we want to find a new model that describes the reality better.

In Chapter 1 we introduce and define the financial problem of option pricing.

We give a brief history about the option pricing theory and evolution of stock price

models, define options and present some basic aspects of the financial market. Then

we present the discrete time stock pricing models and corresponding option prices.
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We also introduce the idea behind our model. Based on the assumption of depen-

dence between the sizes of the jumps of the stock price, we extend the Conditional

Generalized Option Pricing Model” derived by Kan [22] and show that the expression

of the option and stock price in the dependent case are the same as in the independent

case.

Starting from this point we want to show that the limiting behavior is also similar.

In Chapter 2 we prove a Richter type theorem based on Fourier analysis with a

somewhat small region, however this will permit the generalization in Chapter 4.

The proof of this theorem involves the characteristic function of pn. The statement

of the theorem is the following

Theorem 2.2.3: Let X be a random variable which can assume k different values

β1, . . . βk with probabilities P (X = βj) = pj, j = 1, . . . k. Let Zn = (n1, . . . , nk) be

the vector of occurrences of these k possible outcomes in n trials of X.

If the n trials are independent, there exists a region of points

G′n =

{
x = (x1, . . . , xk) ∈ Rk; |xj| ≤

√
A

log(n)

n

}

for some A > 0 such that the following holds

P (Zn = (n1, ..., nk)) = pn(n1, . . . , nk) ∼
1

√
2πn

k−1√
p1 . . . pk

e
− 1

2

∑k
j=1

nx2j
pj , x ∈ G′n.

The use of Theorem 2.2.3 require the use of the characteristic function of Zn

which is known to be the multinomial distribution in the independent case.

In Chapter 3 we use perturbation theory of linear operators and find an expres-

sion of the characteristic function of Zn without the assumption of independence.
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For more details about perturbation theory of linear operators one can refer to

[24, 23, 13, 40, 1, 39, ?].

Let

T : [0, 1]→ [0, 1]

be a piecewise monotone and expanding transformation on the unit interval. This

means that there are finitely many intervals so that T is monotone and differentiable

on each interval and the derivative on each (open) interval can be extended to its

closure. Moreover, the derivative has a modulus which is bounded below by Λ > 1.

The sequence of jumps will be considered as a stochastic stationary sequence of the

form f̃ ◦T, f̃ ◦T 2, . . . , f̃ ◦T n, T being an operator and f̃ a function defined on the unit

interval with values in Rk. Stationarity is understood with respect to an invariant,

absolutely continuous measure. We assume that the transformation is weakly mixing

with respect to this transformation. We let Snf̃ =
∑n−1

k=0 f̃ ◦ T k, n ≥ 1 and S0f̃ = 0̃

and introduce what is referred to as a ”Characteristic Function Operator”, as in

[39, 1] and we denote it by Pf̃ (it), t ∈ C. The perturbation theory of Pf̃ gives us

the expression of the characteristic function we need which is that of Snf̃ , which will

play the role of the Zn in Theorem 2.2.3:

∫ 1

0

P n
f̃

(it̃)1dµ =

∫ 1

0

ei〈t̃,Snf̃〉dµ,

where µ denotes the unique absolutely continuous measure with respect to Lebesgue

measure. Of course, using perturbation theory, the maximal eigenvalue of the operator

Pf̃ (0) has to be unique, which can be expressed by the condition that µ is weakly

mixing.

The expression of the characteristic function of Snf̃ turns out to be similar to

that of a multinomial distribution. We substitute our expression in the proof of the

Richter-type local limit theorem and get the following asymptotic that holds when

the n trials are dependent.
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Theorem 3.5.2 Let T be a piecewise monotone and expanding transformation of the

unit interval and µ be the weakly mixing invariant probability, absolutely continuous

with respect to Lebesgue measure on [0, 1]. Let X be a µ-random variable which can

assume k different values β1, . . . βk with probabilities µ(X = βj) = pj, j = 1, . . . k.

Let SnX be the vector of occurrences of these k possible outcomes in n iterations

of X under T . Let Gn denote the region of points x = (x1, . . . , xk) ∈ Rk for which

|xj| ≤
√
A log n

n
for j + 1, . . . , k, where A > 0:

As (x1, . . . , xk) =
1

n
(n1 − np1, . . . , nk − npk) ∈ Gn and n → ∞ there exists a (k −

1)−multivariate normal distribution with mean 0̃ and covariance matrix Σ such that

µ (SnX = (n1, ..., nk)) = pn(n1, . . . , nk) ∼
1

(2πn)(k−1)/2|Σ|1/2
exp

{
−1

2
x̃′Σ−1x̃

}

In Chapter 4 we find the expression of the the option price when the stock

price follows the generalixed CRR model with dependent jump sizes and its limiting

behaviour. We follow Kan’s procedure, use Theorem 3.5.2 and make other necessary

change. We obtain the following results.

Proposition 4.1.1 The generalized CRR option price with dependent jumps is given

by the following formula

ĈT−m = ST−m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T, z)P(Nc1 = m1, . . . , Nck = mk)

− K

r̂m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T, z)P(Nc1 = m1, . . . , Nck = mk).

(0.0.1)
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Theorem 4.2.1 For x ∈ X, i = 1, . . . , k as n → ∞ the following asymptotic holds

true

ĈT−m ∼ ST−m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T )
1

(2πm)
k−1
2 |Σ|1/2

exp

{
−1

2
x′Σ−1x

}

− K

r̂m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T )
1

(2πm)
k−1
2 |Σ|(k−1)/2

exp

{
−1

2
x′Σ−1x

}
;

(0.0.2)

where Σ is the covariance matrix of a zero mean (k − 1)-normal distribution as in

chapter 3.
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Chapter 1

Option Pricing Theory and the
CRR Option Price Model

1.1 Options

An option is a contract between a buyer and a seller that gives the buyer the right,

but not the obligation, to buy or to sell a particular asset (the underlying asset), on

or before the option’s expiration time, at an agreed price, the strike price. [48]

Options are standard examples of derivative securities, that is, securities whose value

depends on the prices of other more basic securities, referred to as primary securities

or underlying assets. The underlying security of an option is fixed and cannot be

changed [48]. The underlying financial instruments include the bank accounts, bonds,

stocks . . . [36] and the derivatives include options, futures, swaps, warrants ... [46].

Options are traded only on a single security, which may be a stock or an index,

currency, commodity, another option . . . . In this thesis we will consider options on

stock as the best understood and most popular form of listed options trading [48].

Options are divided into call and put contracts. A call option gives its holder (or

purchaser) the right to buy a security from the call writer (or seller) at a specified
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price. Conversely, a put option gives its holder the right to sell a security to the put

writer at the exercise price. In return for granting the option, the seller collects a

payment (the premium) from the buyer. When an option could only be exercised on

the contract’s expiration date, it is called a European option. An American option

may be exercised at any time during the contract’s life. There exists also Exotic

options, Bermudian, Vanilla and Barrier options.

1.1.1 History of options

Options have existed -at least in concept- since antiquity. The aged history of options

is going way back to the Romans and the Phoenicians, who used contracts similar

to options in shipping. There is also remarkable evidence that Thales of Miletus

(624BC-547BC), a Greek mathematician and philosopher, used options to secure a

low price for olive presses in advance of the harvest. The concept was formalized in

Japan with the first physical futures exchange, the Yodoya rice market in Osaka in

1650. Option contracts became also popular as hedging and speculative devices in

the Dutch tulip market. These contracts continually resurfaced on most of the major

security markets throughout the world [3].

It wasn’t until publication of the Black-Scholes (1973)[6] option pricing formula that

a theoretically consistent framework for pricing options became available. That

framework was a direct result of work by Robert Merton as well as Black and Scholes

[32, 30].

Prior to the publication of the Black-Scholes model, the quest for a valuation formula

that would describe option prices reflected one of the most elusive goals in financial

economics [22].

Option pricing theory-also called Black-Scholes theory or derivatives pricing theory

traces its roots to Bachelier (1900)[2] who invented Brownian motion to model options

on French government bonds. In order to describe how option contracts are priced,

Bachelier needed to describe the underlying distribution of stock prices. By modeling
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successive price changes in a very specific way, he used the central limit theorem

to derive a normal distribution for stock price movements. The particular stochastic

process that Bachelier used to describe stock price changes is now known as Brownian

motion (or a Wiener process). It has the characteristic that the increments in the

process (the movement of stock prices) are independent random variables. Further,

the increments are normally distributed with a zero mean and a variance that is pro-

portional to the length of the time span involved. Combined, these two features imply

what is known as a “stationary” process. Brownian motion is used to characterize

stock price movements because stock prices are said to have “no memory” [47].

Research picked up in the 1960’s. Typical of efforts during this period is Samuelson

(1965)[41]. He considered long-term equity options, and used geometric Brownian

motion to model the random behavior of the underlying stock. Based upon this,

he modeled the random value of the option at exercise. The model required two

assumptions. The first was the expected rate of return α for the stock price. The

second was the rate β at which the option’s value at exercise should be discounted back

to the pricing date. These two factors depended upon the unique risk characteristics

of, respectively, the underlying stock and the option. Neither factor was observable

in the market place; depending upon their degree of risk aversion, different observers

might propose different values for the factors. Accordingly, Samuelson’s formula was

largely arbitrary. It offered no means for a buyer and seller with different risk aversions

to agree on a price for an option. Black and Scholes got around the problem with a

completely new approach.

The Black-Scholes (1972)[6] option pricing formula prices European put or call options

on a stock that does not pay a dividend or make other distributions. The formula as-

sumes the underlying stock price follows a geometric Brownian motion with constant

volatility. It is historically significant as the original option pricing formula published

by Black and Scholes in their paper [6].

The Black-Scholes model has some restrictions. A constant risk-free interest rate r

10



and a constant volatility sigma do not seem to be realistic. After all, the derivation

of the Black-Scholes equation, and hence, the closed-form solutions for some options,

assume a continuously trading strategy which is not feasible in the market in order

to hedge the portfolio that has been constructed.

Until then only continuous models were considered. In 1978 Sharpe [45] introduced

the advantages of using the discrete-time approach to option pricing.

In 1979 Cox, Ross and Rubinstein [11] presented a discrete-time option pricing

formula, the Binomial Model, for pricing a call option on a stock which doesn’t

pay any dividends and has, as a special limiting case, the celebrated Black-Scholes

model, which has previously been derived only by much more difficult methods. This

model is categorized as a Lattice Model or Tree Model because of the graphical

representation of the stock price and option price over the large number of intervals

or steps, during the time period from valuation to expiration, which are used in

computing the option price. At each step, the stock price will either move up, or

down, with a probability defined by the volatility of the stock. The Cox Ross and

Rubinstein model is generalized to the multinomial case. Limits are investigated and

shown to yield the Black-Scholes formula in the case of continuous sample paths for

a wide variety of complete market structures.

In 1977, Merton derived a formula for the discontinuous case. In this case, the limiting

formula requires the replacement of jump probabilities by the Arrow-Debreu prices.

For more details about the Arrow-Debreu model one can refer to [35, 31].

The mathematics behind some of the models cited above will be discussed in section

2.

1.1.2 Language of options

A European option written on a stock that pays no dividends during the option’s

lifetime is a financial security that gives its holder the right (but not the obligation)
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to buy the underlying stock on a predetermined date and for a prespecified price.

The predetermined price, K, is called the strike or exercise price, the terminal date,

T , is called the expiry date or maturity, the option’s price is called a premium.

The proximity between the strike price and the current market value determine the

option’s value along with the amount of time remaining until expiration. When the

underlying’s stock current value is higher than the strike price, the call option is in the

money. When the price is lower than the strike, the call is out of the money. When

it’s exactly equal to the strike, the option is at the money. Other characteristics

that also affect the theoretical price of an option are the amount of time remaining

to expiration, the current price of the underlying stock, the risk-free interest rate

over the life of the option and the volatility of the underlying. The most elusive

and hard to understand part of premium value is due to the level of volatility in the

underlying stock. Intuitively, price volatility is a measure of the amount and intensity

of price fluctuation. The more volatile a stock’s price, the more often and intensely

it fluctuates.

In this thesis we will consider stock price models in order to calculate the theoretical

price of the option using a specific option pricing model.

In the theory of option pricing, a stock price model is, roughly speaking, a mathe-

matical description of the relationship between the current price of a stock and its

possible future prices.

The perfect model would be predictive, it would tell you the future price of a stock

based on its present value and possibly some auxiliary data. The stock price models

employed in options pricing are not predictive but probabilistic. That is, they do not

make precise statements about what the future stock price will be, but instead, they

assume a distribution of future prices derived from historical data, current market
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conditions, and possibly other relevant data.

1.2 The Evolution of the Cox-Ross-Rubinstein Stock

Price Model

1.2.1 Discrete-time security markets

This thesis deals with finite markets, that is discrete-time models of financial markets.

We consider the number of dates to be finite, so there is no loss of generality if we

take the set of date T = {0, 1, . . . , T ∗}. Let Ω = (ω1, . . . , ωd) be an arbitrary finite

set and F = FT ∗ be the σ−field of all subsets of Ω.

We consider a filtered probability space (Ω,F,P) equipped with a filtration F =

(F)T
∗

t=0, where P is an arbitrary probability measure over (Ω,FT ∗) such that P(ωj) > 0

for every j = 1, . . . d [36].

We assume that the securities market operates under conditions of “ uncertainty ”

that can be described in the probabilistic framework in terms of a filtered probability

space (Ω,F,P).

We consider a (B, S)−market formed by a risky asset S, referred to as a stock and

a risk-free asset B, called a savings account (or bond). Bonds are fairly popular in

many countries mainly because the interest on bonds is fixed and payable on a regular

basis and the repayment of the entire loan at a specified time is guaranteed [46].

We will consider a European call option written on one share of stock S, which doesn’t

pay any dividends during the option’s lifetime. We will denote by ST the stock price

at the terminal date T and St the stock price at any time moment t ≤ T . This option

is equivalent to the claim Y with payoff at time T , contingent on the stock price ST

13



Y = (ST −K) = max{ST −K, 0}

where K is the exercise price [22].

The call option value at expiry time T equals CT = (ST −K)+. We want to evaluate

the option’s price Ct at any time moment t ≤ T .

We will now give several definitions relating to the financial position of an investor in

such a (B, S)-market. The following definitions are from [36, 46].

1.2.2 Definitions

Definition 1.2.1 A predictable stochastic sequence φ = (α, β) where α = (αt(w))t≥0

and β = (βt(w))t≥0 with Ft−1 measurable αt(w) and βt(w) for all t ≥ 0 (F−1 = F0)

is called an investment portfolio on the (B,S)-market.

For any t ≤ T , αt stands for the number of shares of stock held during the period

[t, t + 1) and βt for the dollar investment in the savings account during this period.

Sometimes the investment portfolio is called an investment or trading strategy instead.

The idea is to construct a portfolio at time 0 that replicates exactly the option’s

terminal payoff at time T.

Here the investment strategy φ(t) has to be determined on the basis of information

available before time t, which means that investor selects his portfolio φ(t) after

observing the prices St−1 [22].

Definition 1.2.2 The value of an investment portfolio V at time t is the stochastic

sequence

V (φ) = (Vt(φ))t≥0
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where

Vt(φ) = αtSt + βt

and V0(φ) = α1S0 + β1. The process Vt(φ) is called the wealth of the trading strategy

φ

Definition 1.2.3 A trading strategy φ is called self-financing if

αt−1St + βt−1r̂ = αtSt + βt∀t ≤ T ∗

In other words, a self-financing strategy is a strategy that draws no money. The

portfolio is recombined in such a way that its value remains the same. When new

prices are quoted at time t, the investor adjusts his portfolio from φt−1 to φt without

any withdrawals or inputs of funds concerning the wealth of portfolio [22].

Denote as Φ a linear space off all stock-bonds portfolios φ, then consider a security

market model M = (B, S,Φ).

Definition 1.2.4 We say that a security pricing model M is arbitrage-free if there

is no portfolio φ ∈ Φ for which

V0(φ) = 0 and P{VT (φ) > 0} > 0

A portfolio φ for which definition 1.2.4 is satisfied is called an arbitrage opportunity.

Definition 1.2.5 A strong arbitrage opportunity is a portfolio φ for which

V0(φ) < 0 and VT (φ) ≥ 0.

15



In other words an arbitrage possibility consists of the existence of a trading strategy

such that - starting from an initial investment zero, the resulting contingent claim is

non negative and not identically equal to zero. An arbitrage opportunity exists if it

is possible to make a gain that is guaranteed to be at least equal to the risk free rate

of return, with a chance of making a greater gain.

Although arbitrage opportunities do exist in real markets, they are usually very

small and quickly eliminated, therefore the no arbitrage assumption is reasonable

in financial theory.

Definition 1.2.6 A replicating strategy for the contingent claim Y which is paid off

at time T is a self-financing trading strategy φ such that VT (φ) = Y .

The replicating strategy can not be unique. There is usually a class of trading

strategies which replicate Y .

Definition 1.2.7 We say that a contingent claim Y is attainable in M if it admits

at least one replicating strategy.

Definition 1.2.8 A marketM is called complete if any contingent claim Y is attain-

able inM, or, equivalently, if for every FT -measurable random variable Y , where T

is the expiration time for a claim Y , there exists at least one trading strategy φ ∈ Φ

such that VT (φ) = Y .

In other terms, a complete market is a market in which all payoffs can be obtained by

trading the securities available in the market. If the financial instruments available
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in a market were not sufficiently rich and diverse to permit such a speculation, the

market would be deemed incomplete. From this, we see that completeness of the

financial market is an idealization that is most likely unobtainable in practice, however

it is a very desirable property. Only under market completeness, any European claim

can be priced by arbitrage and its price process can be replicated by means of a

replicating self-financing strategy.

Definition 1.2.9 Suppose that the security market M is arbitrage-free. Then the

rational price of Y is called the arbitrage price of Y .

It is worth noting that in order to determine the cost of a call option, we do not need

to know the probability of the rise or fall of the stock price. All investors agree on

the range of future price fluctuations but they may have different assessments of the

corresponding subjective probabilities. We only assume that they prefer more wealth

to less [22].

In their paper (1979) [11], Cox, Ross and Rubinstein presented a simple discrete

time model for valuing options, beginning by assuming that the stock price follows a

multiplicative binomial process over discrete periods. Their model was known as the

classical CRR option pricing model and was later extended in many ways, we will

discuss some of them in the sections that follow.

1.2.3 Classical discrete Cox-Ross-Rubinstein model

The Cox-Ross-Rubinstein model (CRR model) is a discrete time model of financial

(B, S)-market during the time interval [0, T ∗] = 0, . . . , T ∗, where T ∗ is some positive

natural number, with two primary traded securities, namely a risk-free bond with

interest rate r over each time period and a stock with initial price S0 and whose

price process is modeled as a strictly positive discrete-time process S = (St)t≤T . It
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is assumed that St is Ft−adapted, i.e. random variables St are Ft-measurable for

t ∈ [0, T ]. The price process of a bond (risk-free investment) is defined as

Bt = (1 + r)t,∀t ≤ T ∗. (1.2.1)

It is categorized as a Lattice Model or Tree Model because of the graphical represen-

tation of the stock price and option price over the large number of intervals or steps,

during the time period from valuation to expiration, which are used in computing

the option price. Binomial models of n-period financial markets are of considerable

practical and theoretical interest since they allow, due to their completeness, pricing

formulas. At each step, the stock price will either move up, or down, with a probability

defined by the volatility of the stock [11].

The savings account is assumed to have a constant rate of return r over each time

period [t, t+ 1]; its price process B is given by

Bt = (1 + r)t = r̂t,∀t = 0, . . . , T ∗. (1.2.2)

Definition 1.2.10 The stock price in the classical discrete Cox-Ross-Rubinstein model

is given by the following formula [36]

St = ξt−1St−1for allt ≤ T ∗ (1.2.3)

where:

• ξt, t ≤ T ∗ are i.i.d random variables taking two possible values u and d with

probabilities p and 1− p, respectively.

• d < 1 + r < u are given real numbers

• S0 is a strictly positive constant.
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It’s apparent under the present assumptions that the random variables ξt, t ≤ T ∗ are

mutually independent random variables on common probability space (Ω,F,P) with

probability law [36]

P{St+1 = uSt/S0, S1, . . . , St} = P{ξt+1 = u} = p ∀ t ≤ T ∗

and

P{St+1 = dSt/S0, S1, . . . , St},= P{ξt+1 = d} = 1− p ∀ t ≤ T ∗

Assuming that the financial security market M is complete and arbitrage free and

using a recursive pricing procedure (backward induction), Marek Musiela and Marek

Rutkowski [?] derived an explicit formula for the arbitrage price of a European call

option in the classical discrete CRR model, that turns out to be independent of the

choice of the probabilities with which the stock moves up or down and is uniquely

determined by the assumed values of the stock price.

Before we give the expression of the corresponding option price, we will introduce the

following notations as in [36].

For a fixed natural number m,

am(x) = inf{j ∈ N\xujdm−j > K}, ad = am(dx), au = am(ux)

∆m(x, j) =

(
m

j

)
pj(1− p)m−j(ujdm−jx−K)

In [36], it was shown that for any m = 1, . . . , T , the arbitrage price for a European

call option at time t = T −m is given by the Cox Ross Rubinstein valuation formula

CT−m = ST−m

m∑
j=a

(
m

j

)
pj(1− p)m−j − K

r̂m

m∑
j=a

(
m

j

)
pj(1− p)m−j, (1.2.4)
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where a = a(ST−m), p =
r̂ − d
u− d

, and p =
pu

r̂

In their book [36], Musiela and Rutkowski showed that the Black-Scholes option

valuation formula (1.2.5) can be obtained from the CRR option valuation formula

(1.2.4). For a fixed, real number T > 0 and for n of the form n = 2k, their asymptotic

procedure consisted in dividing the interval [0, T ] into n intervals Ij, j = 0, . . . , n−1.

Then, examining the asymptotic properties of the CRR model, when the number of

steps (i.e n) goes to infinity and the size of time steps goes to zero in an appropriate

way, they showed that the limit of the CRR option price CT−m (1.2.4) is Ct given by

the Black-Scholes formula (1.2.5)

Ct = StN(d1(St, T − t))−Ke−r(T−t)N(d2(St, T − t)), (1.2.5)

where

d1(s, t) =
ln(s/K) + (r + 1

2
σ2)t

σ
√
t

,

d2(s, t) = d1(s, t)− σ
√
t =

ln(s/K) + (r − 1
2
σ2)t

σ
√
t

,

and N stands for the standard Gaussian cumulative distribution function

N(x) =
1

2π

∫ x

−∞
e−

u2

2 du ∀ x ∈ R

1.2.4 Generalized discrete Cox-Ross-Rubinstein model

Since the Black-Scholes model disagrees with reality in a number of ways, some of

them significant, it is useful to think of ways to extend the classical CRR model and

get a model closer to practice.

Kan [22] generalized the binomial model in a way that at each time moment the stock

price is changed not only by multiplication by two possible values u and d, but by
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embedding a process{Xt}t≤T that takes different values at different time moments

and the changes of stock price are modeled by a variety of possible values uXt and

dXt, t ≤ T . The assumptions on the random sequence {Xt}t≤T play a crucial role.

A new formula for stock price was derived, along with corresponding option price

formula called “Generalized CRR option pricing model”.

Definition 1.2.11 [22] The model of stock price process is called generalized Cox-

Ross-Rubinstein stock price model if S is defined as follows

St = ξt−1St−1for allt ≤ T ∗ (1.2.6)

where:

• S1 = S0ξ0 and S0 is a positive constant

• ξt = Xtνt, ∀t ≤ T ∗ where {νt}t≤T ∗ are Bernoulli random variables taking values

u and d with corresponding probabilities p and 1− p. Also assume that random

variables {Xt}t≤T ∗ and {νt}t≤T ∗ are mutually independent.

It is also apparent that the random variables ξt, t ≤ T ∗, are mutually independent

random variables on common probability space (Ω,F,P) with probability law

P{Xtνt = xu/Xt = x} = p = 1− P{Xtνt = xd/Xt = x} ∀ t ≤ T ∗.

Before giving the expression for the option price, some notations are introduced

Let Γm = {1, . . . ,m}. For any fixed m ∈ N and j ∈ Γm Ij,m denotes the following

random set

Ij,m(x) =

J ⊂ Γm, |J | = j, x
∏
k∈J

ξuT−k
∏
k∈J

ξdT−k > K

 , (1.2.7)
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where |J | stands for the cardinality of the set J and J stands for the complement of

J . Also ∆m(x) is defined as

∆m(x) =
1

r̂m

m∑
j=0

∑
J∈Ipj,m(x)

∏
k∈J

pT−k
∏
k/∈J

qT−k

(
x
∏
k∈J

ξuT−k
∏
k/∈J

ξdT−k −K

)

For any fixed natural number m, am(x) = inf{j : Ij,m(x) 6= ∅}

and

pT−k =
r̂ − ξdT−k

ξuT−k − ξdT−k
, pT−k =

ξuT−k
r̂

pT−k

qT−k = 1− pT−k, , qT−k = 1− pT−k

Also, to shorten the lengthy expressions, the following notations are introduced;

P (J (j), T ) =
∏
k∈J

pT−k
∏
k/∈J

qT−k

P (J (j), T ) =
∏
k∈J

pT−k
∏
k/∈J

qT−k

Ξ(J (j), T ) =
∏
k∈J

ξuT−k
∏
k/∈J

ξdT−k

It was shown that [22] for any m = 1, . . . , T, the arbitrage price of a European call

option at time t = T −m provided that the stock price process follows generalized

CRR stock price model defined by (?) is given by the CRR valuation formula

CT−m = ST−m

m∑
j=0

 ∑
J∈Ij,m(ST−m)

P (J (j), T )− K

r̂m

∑
J∈Ij,m(ST−m)

P (J (j), T )

 (1.2.8)

for m = 0, . . . , T.
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1.2.5 Conditional generalized CRR option pricing model

In the generalized CRR model (1.2.6), the sequence {Xt}t≤T plays a crucial role.

Different assumptions about the distribution of the family of random variablesXk, k =

0, . . . ,m, yield different models for the option price, some of them can be complicated.

Since the generalized CRR model is an extension of the binomial model, where the

jumps of the stock price between two time moments are described not only by the

multiplication by the two values u and d, but by embedding the sequence {Xt}t≤T
which takes different values at each time moment, it is straighforward to consider the

multinomial distribution as a generalization of the binomial.

Kan considered the generalized CRR option price provided that the random variables

Xt, t = 1, . . . , T are independent and take values in the set

Ck = (c1, . . . , ck), k ∈ N, ci > 0, ∀i = 1, . . . , k, (1.2.9)

where the events {Xt = cj}, t = 1, . . . , T, j = 1, . . . , k, are equally likely with prob-

abilities p1 = . . . = pk = 1
k
, cji are in Ck, i = 1, . . . , k, and are called multinomiality

parameters.

The mean of the conditional expectation (1.2.8), CT−m given the random sequence

XT−m, . . . , XT was considered to find the corresponding option price

C̃T−m = E{E{CT−m|XT−m, . . . , XT}} = E(CT−m). (1.2.10)

The number of c′is occurred in the sequence XT−m(ω), . . . , XT (ω) for a fixed ω is

denoted by Nc1 , . . . , Nck . It is a sequence of random variables taking values in the

set Γm
⋃
{0} and satisfying the condition Nc1 + . . .+Nck = m.
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Since the random variables (Xt)t≤T , it is known that the sequence Nc1 , . . . , Nck follows

a multinomial distribution with parametersm and p. Based on this, the corresponding

option pricing model was called the multinomial model.

Because it is unknown which combination of of Nc1 , . . . , Nck occurs in practice, the

averaging over all possible combinations of Nc1 , . . . , Nck was considered.

Using an asymptotic procedure similar to [36] and limit theorems for the multinomial

distribution [38], the limit of the option price (??) was obtained. It was referred to

as the generalized Black-Scholes option valuation formula.

Remark. We will discuss the Black-Scholes type limit of the multinomial option

price (4.1.7) in details in chapter 4.

The only point we will mention for now is that in finding the expression of this limit,

the quantities T,m, ST−m, r and σ need to be known. All quantities are observable

directly except for the volatility parameter σ. The constant volatility assumed in the

Black-Scholes model was not satisfactory anymore [17].

It was shown that volatility models of asset returns have an important effect on

pricing options. One can model the volatility in different ways. Historical Volatility

is one way to measure price fluctuation over time; it uses historical (daily, weekly,

monthly, quarterly, and yearly) price data to empirically measure the volatility of a

market or instrument in the past . The implied volatility of an option contract is the

volatility implied by the market price of the option based on an option pricing model.

In general Continuous-time models model the volatility as a stochastic process. Such

models are called the stochastic volatility models. The discrete-time approach to

model stochastic volatility is based on autoregressive random variance models called

ARCH (or GARCH) models. For more about volaitility models one can refer to
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[8, 42, 43, 50, 33].

In the asymptotic procedure introduced in finding the limit of the multinomial option

price, the volatility parameter of stock return was modelled as the stochastic process

σt = σ(logXt + 1),∀t = 0, . . . , T

where Xt, t = 0, . . . , T take values in the set Ck defined in (1.2.9).

1.2.6 Binomial versus Multinomial option pricing models

The binomial and multinomial stock price models are both discrete time models. At

each time moment, the stock price moves up or down by the multiplication of two

(binomial) or k factors (multinomial).

After estimating the multinomiality parameters c1, . . . , ck, both stock price models

were applied to several raw financial data, under different volatilities ranging from

high to low. The results showed that including the multinomial parameters clearly

gave a better approximation for real data especially with data with higher volatility.

The results also showed that the values of the multinomiality parameters have a signif-

icant effect on the option price; including a multinomial parameter, the multinomial

option price was closer to the actual payoff of the option than the binomial.

As we already mentioned, the option prices corresponding to both models have in

the limit a Black-Scholes type formula. Both the classical and generalized Black-

Scholes formulae overestimate the payoff of the option; however the prices given by

the generalized formula are closer to the actual payoff of the option.
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Since the multinomial model gave a better approximation of the actual prices, the

idea of improving it in a way that is closer to the reality of financial markets is worth

considering.

As we already mentioned, the assumptions on the sequence of random variables

{Xt}t≤T representing the changes in the stock price, have the main effect in defining

the model.

Stock prices change every day as a result of market forces as the supply and demand.

And what makes investors want to buy or sell a stock is influenced by many factors

that can be social, political, economical...

Many theories tried to explain the way stock prices move the way they do and

unfortunately no one theory that can explain everything. However, depending on

the factors affecting the changes in the stock price, it is logical and closer to practice

to consider that the jumps from a day to another are dependent.

In this thesis, we will consider the generalized CRR stock price model (1.2.6) where

the random variables {Xt}t≤T are no longer assumed to be independent over a certain

period [T −m,T ]; that is the idea behind the title “CRR Option Pricing Model with

Dependent Jumps”.
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Chapter 2

A Limit Theorem for Option Price
Convergence

The limit of the conditional generalized option price formula was, as we mentioned

inCchapter 1, is what was referred to as the generalized Black-Scholes formula. An

important theorem used in finding this limit goes to Richter [38]; this theorem states

that the limit of the probability distribution of a multinomial random variable is a

mutivariate normal distribution (we will give the statement of the theorem below).

An important feature of the multinomial distribution is the independence between

the trials, which was the case assumed in order to find the limit of the option price:

the random variables {Xt}t≤T representing the jump sizes of the stock price were

assumed to be independent.

In this chapter, we will give an alternative proof of a Richter-type local limit theorem

using the Fourier Inversion method [40, 7, 14, 29]. In this proof the independence of

the multinomial trials is used only to find the expression of the characteristic function

of a multinomial random variable. In Chapter 3, we will find an expression of the

characteristic function of dependent random variables using perturbation theory of

linear operators. This expression turns out to be similar to that of the independent

case, a fact that will make the Richter-type local limit theorem valid even when the
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jump sizes are dependent.

We will start by giving the statement of the theorem and explaining how it was

applied in finding the generalized Black-Scholes limit for the conditional generalized

CRR option price.

2.1 Richter’s Local Limit Theorem

Theorem 2.1.1 [38] Let X be a random variable which can assume k different values

β1, . . . βk with probabilities P (X = βj) = pj, j = 1, . . . k. Let Zn be the vector of

occurrences of these k possible outcomes in n independent trials of X. Then as is

known Zn follows a multinomial distribution with parameters n and p = (p1, . . . , pk).

Let Gn denote the region of points x = (x1, . . . , xk) ∈ Rk for which |xj| ≤ An−β

for j + 1, . . . , k, where A > 0 and 1/3 < β < 1/2 are arbitrarily chosen (but fixed

afterwards):

As (x1, . . . , xk) =
1

n
(n1 − np1, . . . , nk − npk) ∈ Gn and n→∞ we have that

P (Zn = (n1, ..., nk)) = pn(n1, . . . , nk) ∼
1

√
2πn

k−1√
p1 . . . pk

e
− 1

2

∑k
j=1

nx2j
pj

where the sign ”∼ ” denotes the following relation as n→∞

A(n) ∼ B(n) if and only if
A(n)

B(n)
→ 1 as n→∞.

Remark. Note that the statement in the previous theorem is uniform in the region
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Gn. It states formally that

lim
n→∞

sup
(x1,...,xk)∈Gn

∣∣∣∣∣pn(n1, ..., nk)(2πn)(k−1)/2(p1 · ... · pk)1/2e
1
2

∑k
j=1

nx2j
pj − 1

∣∣∣∣∣ = 0.

Remark. Richter’s proof of the multinomial local limit theorem in [38] uses Stirling’s

formula

n! ∼
√

2πnnne−n

to approximate the exact distribution p(n1, ..., nk), which is multinomial. Below we

want to prove this theorem without using this approximation and without knowing

the exact form of the distribution. This leads to the traditional method of using

Fourier analysis, a standard tool to prove local limit theorems. The price we have to

pay is that the uniformity region becomes smaller. The advantage of the new method

of proof lies in the fact that it holds in more general situations when the independence

assumption is dropped.

Using this theorem, the following limit was found. For the full proof one can refer to

[22].

ĈT−n = ST−n
∑

M2k(n,p,x)

1

(2π)k/2
1√

(
∑k

i=1)pk+1 . . . p2k

exp

{
(
∑k

i=1 xi)
2∑k

i=1 pi
+

2k∑
i=k+1

x2
i

pi

}

−K
r̂n

∑
M2k(n,p,x)

1

(2π)k/2
1√

(
∑k

i=1)pk+1 . . . p2k

exp

{
(
∑k

i=1 xi)
2∑k

i=1 pi
+

2k∑
i=k+1

x2
i

pi

}

where

M2k(n, p, x) :=


(n1 + n2 + . . .+ nk, nk+1, . . . , n2k) : m1 + . . .+ n2k = n
x ≤ n1 + . . .+ nk ≤ n(p1 + . . .+ pk) + Anγ,
npi + Anγ ≤ ni ≤ mpi + Anγ,∀i = k + 1, . . . , 2k
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=


(nk1,mk+1, . . . ,n2k) : nk1 + . . .+ n2k = n
x ≤ nk1 ≤ n(p1 + . . .+ pk) + Anγ,
npi + Anγ ≤ ni ≤ npi + Anγ, ∀i = k + 1, . . . , 2k

for A > 0t, 1
2
< γ < 2

3
, k ≤ n

2

and

xi :=
ni − npi√

n
, xi :=

ni − npi√
n

The set X := {(x1, . . . , x2k) : |xi| ≤ An
1
2
−β ∀i = 1, . . . , 2k} where 1

3
< β < 1

2
.

Notice that:

∑2k
i=1 ni = n,

∑2k
i=1 pi =

∑2k
i=1 pi = 1 so

∑2k
i=1 xi =

∑2k
i=1 xi = 0

2.2 A New Proof of a Richter-Type Local Limit

Theorem

In this section we prove a Richter type theorem based on Fourier analysis with a

somewhat small region, however this will permit the generalization in Chapter 4.

The statement of the theorem follows.

Definition 2.2.1 Let X be a random variable which can assume k different values

β1, . . . βk with probabilities P (X = βj) = pj, j = 1, . . . k. Let Zn be the vector of

occurrences of these k possible outcomes in n trials of X.

We say that the sequence Zn satisfies a Richter’s type theorem if there exist a region Gn

such that as (x1, . . . , xk) =
1

n
(n1 − np1, . . . , nk − npk) ∈ Gnand a normal distribution

(0,Σ)such that as n→∞ we have

30



n(k−1)/2pn(n1, . . . , nk) ∼
1

√
2π

k−1√|Σ|e− 1
2
x̃′Σ−1x̃,

Where the sign ”∼ ” denotes the following relation as n→∞:

A(n) ∼ B(n) if and only if
A(n)

B(n)
→ 1 as n→∞

Remark. If the n trials are independent and Gn is the region of points x =

(x1, . . . , xk) ∈ Rk for which |xj| ≤ An−β for j + 1, . . . , k, where A > 0 and 1/3 <

β < 1/2 are arbitrarily chosen (but fixed afterwards), then as is known Zn follows

a multinomial distribution with parameters n and p′ = (p1, . . . , pk) and we have

Richter’s local limit theorem 2.1.1,

pn(n1, . . . , nk) ∼
1

√
2πn

k−1√
p1 . . . pk

e
− 1

2

∑k
j=1

nx2j
pj .

Observe the following easy fact.

Lemma 2.2.2 For each n ∈ N

sup
(x1,...,xk)∈Gn

∣∣∣∣∣(2πn)(k−1)/2(p1 · ... · pk)1/2e
1
2

∑k
j=1

nx2j
pj

∣∣∣∣∣ ≤ C−1
0 n(k−1)/2eA0n1−2β

,

where

C−1
0 = (2π)(k−1)/2(p1 · ... · pk)1/2

and

A0 =
1

2

k∑
j=1

1

pj
.
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In order to prove Richter’s theorem by estimating the difference of the left and right

hand side we need to show that uniformly in (x1, ..., xk) ∈ Gn,∣∣∣∣∣pn(n1, ..., nk)−
1

(2πn)(k−1)/2(p1 · ... · pk)1/2
e
− 1

2

∑k
j=1

nx2j
pj

∣∣∣∣∣
= o

(
C0n

−(k−1)/2e−A0n1−2β
)
.

We shall see below that the differences cannot be estimated well enough in that region,

but we show that this method suffices for a smaller region.

In this section we prove

Theorem 2.2.3 If the trials are independent, there exist regions of points

G′n =

{
x = (x1, . . . , xk) ∈ Rk; |xj| ≤

√
A

log(n)

n

}

for n ≥ 1 where A > 0 denotes some fixed constant, independent of n, such that

theorem 2.1.1 holds

pn(n1, . . . , nk) ∼
1

√
2πn

k−1√
p1 . . . pk

e
− 1

2

∑k
j=1

nx2j
pj , x ∈ G′n.

Remark. As we will see in the proof, the left hand side differs from the right hand

side but at most o(n−η) for some η > 1/3. So we may choose A
∑k

j=1
1
pj
< 2η. In fact

we have as in Lemma 2.2.2

sup
(x1,...,xk)∈Gn

∣∣∣∣∣(2πn)(k−1)/2(p1 · ... · pk)1/2e
1
2

∑k
j=1

nx2j
pj

∣∣∣∣∣ ≤ C−1
0 n(k−1)/2n

A
2

∑k
j=1 p

−1
j ,

where C−1
0 = (2π)(k−1)/2(p1 · ... · pk)

1
2 .
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In the rest of the chapter we prove theorem 2.2.3.

Note: First we notice that G′n ⊂ Gn, so what we can prove in the region Gn holds

automatically in the region G′n.

Let p1, ..., pk and n be fixed.

We need to show that uniformly in (x1, ..., xk) ∈ Gn as explained after Theorem 2.1.1:

pn

1
(2πn)(k−1)/2√p1...pk

e
− 1

2

∑k
j=1

nx2
j

pj

→ 1;

or equivalently:

Q =
n
k−1
2 pn

1
(2π)(k−1)/2√p1...pk

e
− 1

2

∑k
j=1

nx2
j

pj

→ 1;

where: pn = pn(n1, . . . , nk) is the probability function of a multinomial distribution

(pn =
n!

n1!.n2! . . . nk!
pn1

1 . . . . .p
nk
k ).

We will start by rewriting the vector of occurrences Zn = (n1, . . . , nk) as

Zn =
n∑
j=1

Yj, j = 1, . . . , n,

where the Yj, j = 1, . . . , n are k-dimensional vectors; each Yj represents the outcome

of the jth trial, being a vector with a 1 in position l if the l-th event occurs l = 1, . . . k

on that trial and 0′s in all other positions.

If we denote Yj by Yj = (Yj1, . . . , Yj(k−1)), j = 1, . . . n, then the random variables

Y ′j s, j = 1, . . . , n, are independent.
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Note: For each j = 1, ..., n the coordinate random variables in Yj = (Yj1, . . . , Yjk)

are not independent since nk = n− (n1 + . . . nk−1).

We introduce the following notations:

ñ = (n1, . . . , nk−1), n′ = (n1, . . . , nk),
∑k

j=1 nj = n;

p̃ = (p1, . . . , pk−1), p′ = (p1, . . . , pk),
∑k

j=1 pj = 1;

t̃ = (t1, . . . , tk−1) ∈ Rk−1, t′ = (t1, . . . , tk) ∈ Rk;

s̃ = (s1, . . . , sk−1) ∈ Rk−1, s′ = (s1, . . . , sk) ∈ Rk;

and

x̃ = (x1, . . . , xk−1), where xj =
nj − npj

n
, j = 1, . . . , k, so

∑k
j=1 xj = 0.

The symbol 〈, 〉 denotes the inner product of two vectors.

We will proceed using the Fourier inversion formula using the following well known

theorem in [40].

Theorem 2.2.4 For all f ∈ L1(G), the function f̂ defined on τ by

f̂(γ) =

∫
G

f(x)(x, γ)dx, (γ ∈ τ)

is called the fourier transform of f where τ is the dual group of G with respect to the

Haar measure. Then we have

f(x) =

∫
τ

f̂(γ)(−x, γ)dγ.
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We have two choices for G in our situation. First, let G = Zk with the counting

measure. Then its dual group is the k-dimensional torus [−π, π)k with normalized

Haar measure (2π)−kdt. Choosing the function

f(n′) = P (Zn = n′)

we see that

f̂(t) =

∫
Zk
f(n′)e−i〈n

′,t〉dn′ = φn′ = φZn ,

the characteristic function of Zn. Therefore

pn(n′) = f(n′) =
1

(2π)k

∫
[−π,π)k

φn(t)e−i〈n
′,t〉dt.

This can be seen directly using characteristic functions of k-dimensional random

variables. Let pX′ denote the probability function of the discrete random variable

X ′ = (X1, . . . , Xk) with values in Zk and φX′ its characteristic function. Using the

definition of the characteristic function we get

φX′(t
′) =

∑
n1,...,nk

P (X1 = n1, . . . , Xk = nk)e
i〈t′,n′〉 (2.2.1)

If we multiply (2.2.1) by 1
(2π)k

e−i〈t
′,m′〉 and integrate over [−π, π)k with respect to the

normalized Haar measure we get

1

(2π)k

∫ π

−π
. . .

∫ π

−π
φX′(t

′)e−i〈t
′,m′〉dt′

=
∑

n1,...,nk

1

(2π)k

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k integrals

P (X1 = n1, . . . , Xk = nk)e
i〈t′,n′〉e−i〈t

′,m′〉dt′

=
∑

n1,...,nk

1

(2π)k

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k integrals

P (X1 = n1, . . . , Xk = nk)e
i〈t′,n′−m′〉dt′
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But
∫ π
−π e

i〈tj ,nj−mj〉 = 0 if nj 6= mj and 1 otherwise.

So

1

(2π)k

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k integrals

φX′(t)e
−i〈t′,n′〉dt′ = P (X1 = n1, . . . , Xk = nk) = pn.

The right hand side is the probability function of X ′ and therefore

pX′(n
′) =

1

(2π)k

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k integrals

φX′(t)e
−i〈t′,n′〉dt′ (2.2.2)

It is possible to work in this setup, however it turns out that it is more convenient

to use the group G = Zk−1 with the counting measure and its dual group [−π, π)k−1

with the normalized Haar measure
1

(2π)k−1
dt.

Proposition 2.2.5 The Fourier inversion formula of pn in Zk−1 is given by

pn(ñ) =
1

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

φn(t̃)e−i〈ñ,t̃〉dt̃. (2.2.3)

Proof. Consider the function

f(n1, ..., nk−1) = f(ñ) = P (Z ′n = (n1, ..., nk−1)),

where

Z ′n =
m∑
j=1

Y ′j

and

Y ′j = (Yj,1, ..., Yj,k−1) j = 1, ...,m.

36



Then, as before f̂(t̃) = φZ′n(t̃), the characteristic function of Z ′n and

pn(n′) = P (Z ′n = ñ) =
1

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

φn′(t̃)e
−i〈ñ,t̃〉dt̃. �

In the proof of Theorem 2.1 we shall work with the Fourier inversion in k − 1

dimensions.

Lemma 2.2.6

φZ′n−np̃(t) =
(
E
(
ei〈t,Y

′
1−p̃〉

))n
Proof. Since Z ′n is a sum of n independent identically distributed random variable

Y ′j with expectation p̃, the lemma follows. �

For the proof of Theorem 2.2.3 we need to estimate E
(
ei〈t,Y

′
1−p̃〉

)
for −π ≤ t < π.

We do this by splitting [−π, π) into three different regions. We take β as in Richter’s

theorem, so 1
3
< β < 1

2
. The first two lemmas and corollaries hold for the larger

regions Gn, hence also apply for the regions G′n.

Lemma 2.2.7 For each δ > 0 there exists 0 < ∆ < 1 such that

sup
δ<maxj |tj |≤π

∣∣∣E (ei〈t,Y ′1−p̃〉)∣∣∣ ≤ ∆.

Proof. By definition

E
(
ei〈t,Y

′
1−p̃〉

)
=

k−1∑
j=1

eitj−i〈t,p̃〉P (Y1,j = 1) + e−i〈t,p̃〉P (Y1,l 6= 1,∀l)

= e−i〈t,p̃〉

[
k−1∑
j=1

pje
itj + (1− p1 − ...− pk−1)

]
.

This complex number has a modulus which is bounded by one and is equal to 1 if

and only if each tj = 0. Thus, given δ > 0 and one of the tj > δ, the modulus

of the number is strictly bounded away from 1, where the bound ∆ can be taken

independent of these −π ≤ t ≤ π and is smaller than 1. This proves the claim. �.
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Corollary 2.2.8 Letting Iδ = (−δ, δ)k−1 we have

1

(2π)k−1

∣∣∣∣∣
∫
...

∫
Icδ

φn(t̃)e−i〈ñ,t̃〉dt̃

∣∣∣∣∣ ≤ ∆n = o
(
C0n

−k+1e−A0n1−2β
)
.

Proof. This follows immediatly from the lemma:

1

(2π)k−1

∣∣∣∣∣
∫
...

∫
Icδ

φn(t̃)e−i〈ñ,t̃〉dt̃

∣∣∣∣∣
≤ 1

(2π)k−1

∫
...

∫
Icδ

∣∣∣E (ei〈t,Y ′1−p̃〉)∣∣∣ dt̃
≤ ∆n.�.

We will next use the expansion for e
i< s̃√

n
,(Y1−p̃)> to approximate φZ′n−np̃(

s̃√
n
), where

maxj |s̃j| ≤ δ
√
n.

Lemma 2.2.9 For any 0 < δ < 2
3k

there exists 0 ≤ q < 1 such that as maxj |s̃j| ≤

δ
√
n, it follows that

|φZ′n−np̃(
s̃√
n

)| ≤ e−
1−q
2
E(〈s̃,(Y1−p̃)〉)2 .

Proof. Using the definition of the complex exponential function we have

e
i〈 s̃√

n
,(Y1−p̃)〉 = 1 + i〈 s̃√

n
, (Y1 − p̃)〉 −

1

2
(〈 s̃√

n
, (Y1 − p̃)〉)2 + ...

=
∞∑
l=0

il

l!
〈 s̃√

n
, (Y1 − p̃)〉l.

Taking expectation and observing that E〈 s̃√
n
, (Y1 − p̃)〉 = 0 we derive

Ee
i< s̃√

n
,(Y1−p̃)> = 1−

∞∑
l=2

il−2

l!
E〈 s̃√

n
, (Y1 − p̃)〉l.
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Now observe that for maxj |sj| ≤ δ
√
n

|〈 s̃√
n
, (Y1 − p̃)〉| =

k−1∑
j=1

sj√
n

(Y1,j − pj)

=
k−1∑
j=1

sjY1,j√
n
−

k−1∑
j=1

sjpj√
n

≤ kδ.

It follows that ∣∣∣∣∣
∞∑
l=3

il

l!
E〈 s̃√

n
, (Y1 − p̃)〉l

∣∣∣∣∣
≤

∞∑
l=3

1

l!
E

∣∣∣∣〈 s̃√n, (Y1 − p̃)〉l
∣∣∣∣

≤ E〈 s̃√
n
, (Y1 − p̃)〉2

∞∑
l=3

1

l!
(kδ)l−2

≤ 1

6(1− kδ)
E〈 s̃√

n
, (Y1 − p̃)〉2.

Because δ < 2
3k ∣∣∣∣∣

∞∑
l=3

il−2

l!
E〈 s̃√

n
, (Y1 − p̃)〉l

∣∣∣∣∣ ≤ q

2
E〈 s̃√

n
, (Y1 − p̃)〉2,

where q < 1.

It follows now that

E(e
i〈 s̃√

n
,(Y1−p̃)〉) = 1 + iE〈 s̃√

n
, (Y1 − p̃)〉 −

1

2
E(〈 s̃√

n
, (Y1 − p̃)〉)2

+
i3

3!
E(〈 s̃√

n
, (Y1 − p̃)〉)3 + . . . ,
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and moreover, since E〈 s̃√
n
, (Y1 − p̃)〉 = 0,

∣∣∣E(e
i〈 s̃√

n
,(Y1−p̃)〉)

∣∣∣ ≤ 1− 1− q
2

E(<
s̃√
n
, (Y1 − p̃) >)2.

Applying the inequality 1− x ≤ e−x we arrive at∣∣∣(E(e
i〈 s̃√

n
,(Y1−p̃)〉)

)n∣∣∣ ≤ e
−n 1−q

2
E(〈 s̃√

n
,(Y1−p̃)〉)2

= e−
1−q
2
E(〈s̃,(Y1−p̃)〉)2 .

This finishes the proof of the lemma. �.

Corollary 2.2.10 Let δ < 2
3k

, α > 1−2β
2

, Iα = [−nα, nα]k−1 and Iδ√n = (−δ
√
n, δ
√
n)k−1.

Then ∣∣∣∣∣ 1

(2π)k−1

∫
. . .

∫
Iδ
√
n\Iα

e
−i〈s̃, ñ−np̃√

n
〉
(
Ee

i〈 s̃√
n
,(Y1−p̃)〉

)n
d(̃s)

∣∣∣∣∣
= o

(
C0e

−A0n1−2β
)
.

Proof. First note that by the next lemma (Lemma 2.7) it follows that there is a

constant c > 0 such that

E〈s̃, Y1 − p̃〉2 ≥ cn2α,

whenever s̃ ∈ Icα. Therefore, using the previous lemma as well,∣∣∣∣ 1

(2π)k−1

∫
. . .

∫
Iδ\Iα

e
−i〈s̃, ñ−np̃√

n
〉
(
Ee

i〈 s̃√
n
,(Y1−p̃)〉

)n
d(̃s)

∣∣∣∣
≤ 1

(2π)k−1

∫
. . .

∫
Iδ\Iα

e−
(1−q)c

2
n2α

d(̃s)

≤ e−
(1−q)c

2
n2α

= o
(
C0n

−(k−1)/2e−A0n1−2β
)
.�.

Using Corollaries 2.2.8 and 2.2.10 we have reduced the estimation problem to

1

(2π)k−1

∫
. . .

∫
Iα

e
−i〈s̃, ñ−np̃√

n
〉
(
Ee

i〈 s̃√
n
,(Y1−p̃)〉

)n
d(̃s).
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This will be used below.

In a second step we compute the covariance structure of Y1 and hence thae covariance

of the limiting normal density function. This is needed to represent the denominator

as a Fourier integral.

We compute E〈s̃, Y1 − p̃〉2 and show the proposition below

Proposition 2.2.11 Let s̃ ∈ Rk−1. Then

E < s̃, Y1 − p̃ >2=
k−1∑
l=1

s2
l pl(1− pl)−

∑
l 6=l′

slsl′plpl′ .

Moreover,

s̃ 7→ e
−1
2

∑k−1
l=1 s

2
l pl(1−pl)−

∑
l 6=l′ slsl′plpl′

is the characteristic function of a (k− 1)-multivariate normal distribution with mean

0 and covariance matrix

Σ =


p1(1− p1) −p1p2 . . . −p1pk−1

−p1p2 p2(1− p2) . . . −p2pk−1
...

−p1pk−1 −p2pk−1 . . . pk−1(1− pk−1)


The determinant of the covariance matrix is |Σ| = p1p2 . . . pk.

Proof. The first equality follows easily since for s̃ = (s1, ..., sk−1) ∈ Rk−1 we have

E < s̃, Y1 − p̃ >2 = E

(
k−1∑
l=1

sl(y1l − pl)

)2

= E
∑
ll′

slsl′E(Y1l − pl)(Y1l′ − pl′)

=
k−1∑
l=1

s2
l var(Y1l) +

∑
l 6=l′

slsl′E(Y1lY1l′ − Y1lpl′ − Y1l′pl + plpl′).

Next
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Σ =



p1(1− p1) −p1p2 −p1p3 . . . −p1pk−2 −p1pk−1

−p1p2 p2(1− p2) −p2p3 . . . −p2pk−2 −p2pk−1

−p1p3 −p2p3 p3(1− p3) . . . −p3pk−2 −p3pk−1
...

−p1pk−2 −p2pk−2 −p3pk−2 . . . pk−2(1− pk−2) −pk−2pk−1

−p1pk−1 −p2pk−1 −p3pk−1 . . . −pk−2pk−1 pk−1(1− pk−1)


.

|Σ| = p1 × p2 × . . .× pk−1 × |Σ′| where

Σ′ =



c1 c2 c3 . . . ck−2 ck−1

1− p1 −p2 −p3 . . . −pk−2 −pk−1

−p1 1− p2 −p3 . . . −pk−2 −pk−1

−p1 −p2 1− p3 . . . −pk−2 −pk−1
...

−p1 −p2 −p3 . . . 1− pk−2 −pk−1

−p1 −p2 −p3 . . . −pk−2 1− pk−1


.

We will denote the rows in Σ′ as l1, l2, . . . , lk−2, lk−1 and proceed as follows



c1 c2 c3 . . . ck−2 ck−1

l1 − l2 1 −1 0 . . . 0 0
l2 − l3 0 1 −1 . . . 0 0
l3 − l4 0 0 1 −1 . . . 0

...
lk−2 − lk−1 0 0 0 . . . 1 −1

lk−1 −p1 −p2 −p3 . . . −pk−2 1− pk−1




c1 c2 + c1 = c′2 c3 . . . ck−2 ck−1

1 0 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 −1 . . . 0

...
0 0 0 . . . 1 −1
−p1 −p2 − p1 −p3 . . . −pk−2 1− pk−1


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

c1 c′2 c3 + c′2 = c′3 . . . ck−2 ck−1

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 −1 . . . 0

...
0 0 0 . . . 1 −1
−p1 −p2 − p1 −p3 − p2 − p1 . . . −pk−2 1− pk−1




c1 c′2 c3 + c′2 = c′3 . . . ck−2 + c′k−3 = c′k−2 ck−1

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0

...
0 0 0 . . . 1 −1
−p1 −p2 − p1 −p3 − p2 − p1 . . . −pk−2 − . . .− p2 − p1 1− pk−1




c1 c′2 c′3 . . . c′k−2 ck−1 + c′k−2 = c′k−1

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0

...
0 0 0 . . . 1 0

−p1 −p2 − p1 −p3 − p2 − p1 . . . −
∑k−2

j=1 pj 1−
∑k−1

j=1 pj




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0

...
0 0 0 . . . 1 0

−p1 −p2 − p1 −p3 − p2 − p1 . . . −
∑k−2

j=1 pj pk


The determinant of Σ′ is equal to the determinant of the above triangular matrix, so

Det(Σ′) = 1× 1× . . .× pk = pk .
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Finally Det(Σ) = p1p2 . . . pk−1 × det(Σ′) = p1p2 . . . pk−1pk.

We will now show that −1

2
z̃′Σ−1z̃ = −1

2

∑k
j=1

z2j
pj

= −1

2

∑k
j=1

mx2j
pj

k∑
j=1

z2
j

pj
=
z2

1

p1

+
z2

2

p2

+ . . .+
z2
k−1

pk−1

+

∑k−1
j=1 z

2
j

1−
∑k−1

j=1 pj

=
z2

1

p1

(
1

p1

+
1

pk

)
+ . . .+

z2
k−1

pk−1

(
1

pk−1

+
1

pk

)
+
∑
j 6=j′

zjzj′

pk
.

So
k∑
j=1

z2
j

pj
= z̃′∆z̃,

Where

∆ =


1
p1

+ 1
pk

1
pk

. . . 1
pk

1
pk

1
p2

+ 1
pk

. . . 1
pk

...
1
pk

1
pk

. . . 1
pk−1

+ 1
pk


We need to prove that ∆ = Σ−1 or equivalently ∆Σ = I, where I denotes the (k− 1)

identity matrix. Note that

∆Σ =


1
p1

+ 1
pk

1
pk

. . . 1
pk

1
pk

1
p2

+ 1
pk

. . . 1
pk

...
1
pk

1
pk

. . . 1
pk−1

+ 1
pk



p1(1− p1) −p1p2 . . . −p1pk−1

−p1p2 p2(1− p2) . . . −p2pk−1
...

−p1pk−1 −p2pk−1 . . . pk−1(1− pk−1)


with ∆ = (δij)i,j=1,...,k−1 where δii = 1

pi
+ 1

pn
and δij = 1

pn
for i 6= j

and Σ = (σij)i,j=1,...,k−1 where σii = pi(1− pi) and σij = −pipj for i 6= j.

Denote ∆Σ by P = (pij)i,j=1,...,k−1, where pij =
∑k−1

r=1 δirσrj.
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for i = j, pii = 1 because

pii =
k−1∑
r=1

δirσri = δiiσii +
∑
r 6=i

δirσri =

(
1

pi
+

1

pk

)
(pi(1− pi)) +

∑
r 6=i

1

pk
(−prpi)

= 1− pi +
pi(1− pi)

pk
− pi
pk

∑
r 6=i

pr = 1− pi +
pi(1− pi)

pk
− pi
pk

(1− pi − pk)

= 1− pi +
pi(1− pi)

pk
− pi(1− pi)

pk
+
pipk
pk

= 1− pi + pi = 1

for i 6= j, pij = 0 because

pij =
k−1∑
r=1

δirσrj = δiiσij + δijσjj +
∑
r 6=i,j

δirσrj

=

(
1

pi
+

1

pk

)
(−pipj) +

1

pk
pj(1− pj) +

∑
r 6=i,j

1

pk
(−prpj)

= −pj −
pipj
pk

+
pj(1− pj)

pk
− pj
pk

(1− pj − pi − pk)

= −pj −
pipj
pk

+
pj(1− pj)

pk
− pj(1− pj)

pk
+
pjpi
pk

+
pjpk
pk

= 0

Therefore P = I and ∆ = Σ−1. �.

In a last step we prove Theorem [?], using the previous two steps.

We will split the work for the proof of the main theorem into two parts, one for the

numerator and one for the denominator of Q. For both expressions, we will proceed

in the same fashion, that can be summarized as follows:

• Use the fourier inversion formula, where the bounds of integration are [−π, π).

• Make a change of variables for which the integration bounds become [−
√
nπ,
√
nπ).
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• Split the integration in three parts: one in (−
√
nπ,−nα), then in (−nα, nα) and

finally (nα,
√
nπ) where α < 1/2. The first and last region can be treated by

Corollaries 2.2.8 and 2.2.10.

• Get an estimate of the integral over each of these intervals as n→∞.

Starting with the denominator, we will only recall for now lemma 2.2.2 that

1

denominator
∼ O

(
C−1

0 n(k−1)/2eA0n1−2β
)

x ∈ Gn,

and from remark (p 32) that

1

denominator
∼ O

(
C−1

0 n(k−1)/2en
A
2

∑
j p
−1
j

)
x ∈ G′n.

For the numerator we will start by using the Fourier inversion formula (2.2.3). Then

for δ < maxj|tj| < π, split the integral in Iδ and Icδ .

For t̃ ∈ Icδ we have from corollary 2.2.8 that the numerator ∼ o
(
C0n

−(k−1)e−A0n1−2β
)

and therefore

Q = numerator × 1

denominator
∼ o

(
C0n

−(k−1)/2e−A0n1−2β × C−1
0 n(k−1)/2eA0n1−2β

)
Hence Q ∼ o (1) which is of order less than one and goes to zero uniformly in x ∈ Icδ .

We will continue with the numerator in the region Iδ.

We multiply (2.2.3) by n
k−1
2

n
k−1
2 pn = n

k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ︸ ︷︷ ︸
k−1 integrals

e−i〈t̃,ñ〉φn(t̃)dt̃ (2.2.4)

where φn(t̃) is the characteristic function of
∑n

j=1 Yj. Replace φn(t̃) by Eei〈t̃,
∑n
j=1 Yj〉

which yields
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n
k−1
2 pn = n

k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ︸ ︷︷ ︸
k−1 integrals

e−i〈t̃,ñ〉Eei〈t̃,
∑n
j=1 Yj〉dt̃

Multiplying above by ei〈t̃,np̃〉e−i〈t̃,np̃〉 = 1 gives

n
k−1
2 pn = n

k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ︸ ︷︷ ︸
k−1 integrals

e−i〈t̃,ñ〉E(ei〈t̃,
∑
Yi〉)ei〈t̃,np̃〉e−i〈t̃,np̃〉dt̃

= n
k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ︸ ︷︷ ︸
k−1 integrals

e−i〈t̃,ñ−np̃〉Eei<t̃,
∑

(Yi−p̃)>dt̃.

But Eei〈t̃,
∑

(Yi−p̃)〉 is the characteristic function of
∑

(Yi− p̃) = Z ′n−np̃, so from lemma

2.2.6

n
k−1
2 pn = n

k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ︸ ︷︷ ︸
k−1 integrals

e−i〈t̃,ñ−np̃〉φZ′n−np̃(t)dt̃

= n
k−1
2

1

(2π)k−1

∫ δ

−δ
. . .

∫ δ

−δ
e−i〈t̃,ñ−np̃〉

(
E
(
ei〈t,Y

′
1−p̃〉

))n
dt̃. (2.2.5)

Using the change of variables sl =
√
n tl for l = 1, . . . , k − 1,

equation (2.2.5) becomes

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iδ
√
n

e
−i〈s̃, ñ−np̃√

n
〉
(Ee

i〈 s̃√
n
,(Y1−p̃)〉)nds̃ (2.2.6)

Splitting the integral in (2.2.6) in Iα and Iδ√n \ Iα with Iα = (−nα, nα)k−1 and

Iδ√n = (−δ
√
n, δ
√
n)k−1 and using corollary 2.2.10, we get that in Iδ√n \ Iα, Q is of

47



o (1) uniformly in x ∈ Gn as before, so also on G′n.

Therefore the proof of the main theorem is reduced to the integral over Iα.

For the numerator it is left to estimate the following integral

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iα

e
−i〈s̃, ñ−np̃√

n
〉
(Ee

i〈 s̃√
n
,(Y1−p̃)〉)nds̃ (2.2.7)

To do so we will continue by using Taylor’s expansion for e
i〈 s̃√

n
,(Y1−p̃)〉 yielding

e
i〈 s̃√

n
,(Y1−p̃)〉 = 1 + i〈 s̃√

n
, (Y1 − p̃)〉 −

1

2
(〈 s̃√

n
, (Y1 − p̃)〉)2+

i3

3!
(〈 s̃√

n
, (Y1 − p̃)〉)3 + . . .

Taking the expectation

E(e
i〈 s̃√

n
,(Y1−p̃)〉) = 1 + iE〈 s̃√

n
, (Y1 − p̃)〉 −

1

2
E(〈 s̃√

n
, (Y1 − p̃)〉)2+

i3

3!
E(〈 s̃√

n
, (Y1 − p̃)〉)3 + . . .

But E〈 s̃√
n
, (Y1 − p̃)〉 = 0, and equation (2.2.7) becomes

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iα

e
−i〈s̃, ñ−np̃√

n
〉
[1− 1

2
E(〈 s̃√

n
, (Y1− p̃)〉)2 +

i3

3!
E(〈 s̃√

n
, (Y1− p̃)〉)3

+ . . .]nds̃.

Lemma 2.2.12 Let 0 < xn ≤
√
qn, where 0 < q < 1, and yn ∈ C satisfying

|y| = o(n−η) for some η > 0. Then
(

1− x

n
+ y
)n
∼ e−x

(
1 + o(x

2

n
+ n−η)

)
,
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Proof. We need to show

(
1− x

n
+ y
)n

e−x
− 1 = o(x

2

n
+ n−η)

or equivalently,
(

1− x

n
+ y
)n
ex − 1 = o(x

2

n
+ n−η)

Define the function f(y) =
(

1− x

n
+ y
)n
ex − 1.

We know for some z in the ball B(1− x
n
, y),

|f(y)− f(0)| ≤ |f ′(z)||y|

and by the triangular inequality

|f(y)| < |f ′(z)||y|+ |f(0)|.

Note that

f(0) =
(

1− x

n

)n
ex − 1

and that

f ′(z) = n
(

1− x

n
+ z
)n−1

ex − 1

is bounded. Hence we need to estimate f(0).

In order to do so, let

g(x) =
(

1− x

n

)n
ex.

We now consider log(g(x)) :
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log(g(x)) = log
[(

1− x

n

)n
ex
]

= n log
(

1− x

n

)
+ x

= n

(
−
∞∑
j=1

xj

nj
1

j

)
+ x

= −
∞∑
j=2

xj

nj−1

1

j

=
x2

n

(
−
∞∑
j=0

xj

nj−1

1

(j + 2)

)

= K(x)
x2

n
.

Therefore

g(x) = exp

{
K(x)

x2

n

}
.

Note that |K(x)| ≤ K for some constant K since x2

n
< 1, and hence,

|f(0)| = |g(x)− 1| =
∣∣∣∣exp

{
K(x)

x2

n

}
− 1

∣∣∣∣
≤ |1 +K

x2

n
+

1

2
K
x4

n2
+ . . .− 1|

< K ′
x2

n

for some constant k′, since
x2

n
< 1. �.

We apply this lemma to the integral over Inα .

We know sj < nα So

|x| =
∣∣E(〈s̃, (Y1 − p̃)〉)2

∣∣ < ((k − 1)nα)2 = (k − 1)2n2α
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where x ∈ R and α <
1

2
. If we suppose also that α <

1

6
we get 2α <

1

3
and

|x|
n
< n2α−1 < 1, so using the Taylor expansion for log in this case is appropriate.

Recall that α was chosen to be greater than
1− 2β

2
and since

1

3
< β <

1

2
then

1− 2β

2
<

1

6
, and therefore, α can be chosen appropriately.

It follows that
x

n
is the expression

1
2
E(〈 s̃√

n
, (Y1 − p̃)〉)2 i.e x = 1

2
E(〈s̃, (Y1 − p̃)〉)2.

Define y ∈ C by

y =
i3

3!
E(〈 s̃√

n
, (Y1 − p̃)〉)3 + . . . =

∑
l=3

il

l!nl/2
E(< s̃, (Y1 − p̃) >)l.

So we need to estimate

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iα

e
−i〈s̃, ñ−np̃√

m
〉
[1− x

m
+ y]nds̃. (2.2.8)

The order of |f(0)| is that of
|x2|
n
∼ o(n4α−1) = o(n−η) where η >

1

3
.

Recall that |f ′(z)||y| =
∣∣∣∣n(1− x

n
+ z
)n−1

ex
∣∣∣∣ |y| = O(|y|),

and

y =
∞∑
l=3

il

l!
E(〈 s̃√

n
, (Y1 − p̃)〉)l.

Hence

|y| <
∞∑
l=3

1

l!

∣∣∣∣E(〈 s̃√
n
, (Y1 − p̃)〉)l

∣∣∣∣ .
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But sj < nα so
sj√
n
< nα−

1
2 .

Therefore, ∣∣∣∣E(〈 s̃√
n
, (Y1 − p̃)〉)l

∣∣∣∣ < ((k − 1)nα−
1
2

)l
,

since α− 1
2
< 0 and l ≥ 3, nl(α−

1
2

) < n3(α− 1
2

) = n3α− 3
2 .

So

|y| < n3α− 3
2

∑
l=3

1

l!
(k − 1)l < n3α− 3

2 ek−1.

It follows that |f ′(z)||y| < Constant n−ζ , for some ζ > 1, since α is smaller that 1
6
.

So |f(y)| ∼ (n−η), η > 1/3.

We denote zj =
ñ− np̃√

n
, j = 1, . . . , n and use lemma 2.2.12. Equation (2.2.8)

becomes:

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iα

e−i〈s̃,z̃〉(1 + o(n−η))e−xds̃

n
k−1
2 pn =

1

(2π)k−1

∫
. . .

∫
Iα

e−i〈s̃,z̃〉e
−1
2
E〈s̃,Y1−p̃〉2(1 + o(n−η))ds̃ (2.2.9)

And as we already proved in proposition 2.2.11, equation (2.2.9) becomes

1

(2π)k−1

∫
. . .

∫
Iα

e−i<s̃,z̃>φz̃(s̃)(1 + o(n−η))ds̃. (2.2.10)

Using the fact that φz̃ is real we obtain∣∣∣∣∫ . . .

∫
Iα

e−i<s̃,z̃>φz̃(s̃)o(n
−η)ds̃

∣∣∣∣ < Cn−η,

and hence

1

(2π)k−1

∫
. . .

∫
Iα

e−i<s̃,z̃>φz̃(s̃)ds̃+ o(n−η). (2.2.11)
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We now go back to the denominator of Q.

Now 1
(2π)k/2

√
p1...pk

e
− 1

2

∑k
j=1

nx2j
pj is the probability density function of a multivariate nor-

mal random variable with mean 0̃ and the same covariance matrix Σ as in proposition

2.2.11. Therefore applying the Fourier inversion formula (2.2.1) and restricting the

integration over Iα (which is asymptotic to the integral over [−π
√
n, π
√
n]k−1 by

Corollaries 2.2.10 and 2.2.8) we get

1

(2π)k/2
√
p1 . . . pk

e
− 1

2

∑k
j=1

nx2j
pj ∼ 1

(2π)k−1

∫
. . .

∫
Iα

e−i〈s̃,z̃〉φz̃(s̃)ds̃. (2.2.12)

Therefore, we have the following for Q in Iα:

n
k−1
2 pn

1
(2π)k/2

√
p1...pk

e
− 1

2

∑k
j=1

mx2
j

pj

∼
∫
. . .
∫
Iα
e−i<s̃,z̃>φz̃(s̃)ds̃+ o(n−η)∫

. . .
∫
Iα
e−i<s̃,z̃>φz̃(s̃)ds̃

= 1 +
o(n−η)∫

. . .
∫
Iα
e−i<s̃,z̃>φz̃(s̃)ds̃

.

By Remark (p 32) we have

sup
(x1,...,xk)∈G′n

∣∣∣∣∣(2πn)(k−1)/2(p1 · ... · pk)1/2e
1
2

∑k
j=1

nx2j
pj

∣∣∣∣∣ ≤ C−1
0 m(k−1)/2n

A
2

∑k
j=1

1
pj ,

where

C−1
0 = (2π)(k−1)/2(p1 · ... · pk)1/2

and

A

k∑
j=1

1

pj
< 2η.

The proof of the theorem is complete. �.
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Chapter 3

Perturbation Theory of Linear
Operators

In this chapter, we will study the Richter type local limit theorem for weakly de-

pendent random variables. The weak dependence originates from dynamical systems

and the perturbation theory of the Perron-Frobenius operators allows to express the

Fourier transform in terms of perturbed eigenvalues. It follows that the sequence of

jumps will be considered as a stochastic stationary sequence of the form f̃ ◦ T, f̃ ◦

T 2, . . . , f̃ ◦ T n, T being the transformation and f̃ a function in Rk.

We will start by introducing the mathematics behind the model.

3.1 Maps of the Interval

3.1.1 Dynamical systems

Here we use the notation of a dynamical system obtained from a map T : Ω → Ω,

where Ω is a set. We call (Ω, T ) a dynamical system.

Definition 3.1.1 Let (Ω, T ) be a dynamical system and let (Ω,F,P) be a probability

space. Then T is said to be probability (or measure) preserving if P(T−1A) = P(A)
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for all A ∈ F.

Remark. An R-valued stationary stochastic sequence X1, X2, . . . defined on a proba-

bility space (Ω,F,P) is, in general, generated by a dynamical system and a measurable

function: Xn = f ◦ T n where T is a probability preserving transformation of Ω, and

f : Ω→ R is measurable.

3.1.2 Basics of Banach spaces

Recall that a normed space is a vector space X in which a function || || is defined

and satisfies the following conditions:

(i) For u ∈ X, ||u|| ≥ 0; ||u|| = 0 if and only if u = 0.

(ii) ||αu|| = |α|||u|| for u ∈ X and α ∈ C.

(iii) ||u+ v|| ≤ ||u||+ ||v|| for u, v ∈ X.

Any function ||u|| defined for all u ∈ X and satisfying these conditions is called a

norm.

A sequence un is called a Cauchy sequence if un → u implies ||un− um|| → 0,m, n→

∞. A normed space in which every Cauchy sequence has a limit is said to be complete.

A complete normed space X is called a Banach space. We write (X, || ||X).

Let X and Y be two vector spaces. A map T : X → Y is a function whose domain

is X and whose range is contained in Y ; that is for every x ∈ X, the map T assigns

an element T (x) ∈ Y .

A linear map or linear operator T between normed spaces X and Y is a map T :

X → Y such that

T (αx+ βy) = αTx+ βTy
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for all α, β ∈ C and all x, y ∈ X.

The linear operator T : X → Y is said to be bounded if there exists some k > 0 such

that

||Tx|| ≤ k||x||.

We denote by B(X, Y ) the set of all bounded operators on X to Y and B(X,X) =

B(X) the set of all bounded operators from X to itself.

The product TS of two linear operators T and S is defined by

(TS)u = T (Su)

for all u ∈ X where X is the domain space of S provided that the domain space of T

is Y .

We write TT = T 2, TTT = T 3 and so on.

The identity operator is denoted by I and is defined by Iu = u for every u ∈ X.

If T ∈ B(X) is nonsingular, the inverse T−1 exists and belongs to B(X) and is defined

by

T−1T = TT−1 = I.

A projection in an arbitrary linear space X is a linear operator T such that T 2 = T .

Two linear operators T and S in an arbitrary linear space X are said to be orthogonal

if (TS)u = 0 for every u ∈ X.

A complex function f on a Banach space X is said to be analytic if its derivative f ′

exists and is continuous on X.
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A scalar-valued linear map from a linear space X to R is called a linear functional or

linear form on X.

The space of all bounded linear functionals on X, B(X,C), is denoted by X∗ and

called the dual or adjoint space of X.

Since C is complete, X∗ is a Banach space.

Consider an operator T from X to Y . The operator T ∗ from Y ∗ to X∗ is called the

adjoint or dual of T if

g(Tu) = (T ∗g)(u), u ∈ X, g ∈ Y ∗.

One can find the definitions above in [1, 24, 13, 25].

Remark. Let m be a probability measure and Lpm the Banach space of functions f

with
∫
|f |pdm < ∞, 1 ≤ p ≤ ∞. Let T : Lpm → C be a linear operator. Then the

dual space is Lqm for 1 ≤ p <∞ and p−1 + q−1 = 1 and it holds that∫
T (f) · gdm =

∫
f · T ∗gdm

for all f ∈ Lpm and g ∈ Lqm. For p =∞ the dual space is the space of signed measures

which contains the space L1
m canonically. If a measure is S-preserving for some map

S : Ω→ Ω then it defines a linear operator T : Lpm → C in a canonical way:

Tf(ω) = f(S(ω)).

We then have

T ∗m = m (3.1.1)

since for f ∈ L∞m and g ∈ L1
m the measure gdm lies in the dual of L∞m and∫
fT ∗(g)dm =

∫
T (f)gdgm.
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In particular, if g = 1, ∫
fdT ∗m =

∫
Tfdm. (3.1.2)

3.1.3 Spectral theory

Let X be a finite dimensional complex Banach space and T a linear operator on B.

Let I denote the identity operator, interpreted as T 0.

Definition 3.1.2 The spectrum σ(t) of an operator T in a Banach space is the set

of complex numbers λ such that (λI − T )−1 does not exist or is not continuous [13].

Definition 3.1.3 The resolvent set ρ(T ) of T is the set of complex numbers λ, for

which (λI − T )−1 exists as a bounded operator with domain X. The spectrum σ(T )

is the complement of ρ(T ). The function R(λ, T ) = (λI − T )−1, defined on ρ(T ), is

called the resolvent function of T , or simply the resolvent of T . R(λ, T ) is analytic

in ρ(T ) [13].

Definition 3.1.4 The quantity

r(T ) = sup|σ(T )| = lim
n→∞

n
√
|T n|

is called the spectral radius of T .

Definition 3.1.5 Let T ∈ B(X). A complex number λ is called an eigenvalue of T

if there is a non-zero vector u ∈ X such that

Tu = λu,

where u is called an eigenvector of T associated with the eigenvalue λ [24].

For more about Banach spaces, linear operators and their spectral theory one can

also refer to [23, 5, 49, 21, 25, 52]
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3.2 The Perron-Frobenius Operator

We take the setup as in [39].

Definition 3.2.1 Consider a map T from I to I, where I = [0, 1]. Denote m the

Lebesgue measure and L1
m the space of integrable functions on [0, 1] with respect to

m. We consider a finite or countable partition of I given by points ai ∈ I, where

Ij = (aj−1, aj) is an open interval satisfying

1. The restriction of T on Ij is strictly monotone and is expanding as a C2 map

on Ij where Ij is the closure of Ij.

2. There exists a finite family of disjoint intervals such that each image T (Ij)} is

a union of sets from this finite family. This property is called the finite range

property.

3. There exists an n such that γ = infx∈I |(T n(x))′| > 1.

It is known that Lebesgue measure m on [0, 1] is non-singular (i.e. m(T−1(A) = 0 iff

m(A) = 0). The Perron-Frobenius operator associated with T is the operator Φ from

L1
m in L1

m defined as follows

∫ 1

0

Φf · gdm =

∫ 1

0

f · g ◦ Tdm (3.2.1)

where f ∈ L1
m and g ∈ L∞m , L∞m being the space of all bounded measurable functions.

One immediately calculates that Φ∗m = m, i.e. Lebesgue measure is an eigenmeasure

for the eigenvalue 1 of the dual operator.

Remark. The system ([0, 1], T ) is a dynamical system.
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3.2.1 Properties

1. From elementary integration theory one immediately infers that Φ can be writ-

ten in the form

Φf(x) =
∑
Ty=x

f(y)eφ(y). (3.2.2)

For x ∈ I and for some function φ : I → R called a potential. In this special

case one finds

φ(y) = − log |T ′(y)| < 0.

This means that, if x ∈ Xj = T (Ij), Ij being the closure of Ij, then ∃ y ∈ Ij
with Ty = x.

2. Let N and L be two Banach spaces such that N ⊂ L, with respective norms

|| ||N and || ||L. Due to a theorem by Ionescu-Tulcea and Marinescu [20], if

the application T verifies the conditions of definition 3.2.1 then Φ has only a

finite number of eigen values of modulus 1: λ1, . . . , λp. The corresponding eigen

vectors Ei = {f ∈ L : φf = λif} are of finite dimension and are included in N ,

3. This can be seen by letting Φh = h where the measure µ = hm is invariant by

T i.e if
∫ 1

0
f ◦ Tdµ =

∫ 1

0
fdµ, for all f ∈ L1

m.

To see this let Φh = h then the measure µ = hm is T-invariant.

Indeed, using 3.1.1 and 3.1.2 we have

∫ 1

0

f ◦ Tdµ =

∫ 1

0

f ◦ Thdm =

∫ 1

0

f ◦ ThdΦ∗m =

∫ 1

0

Φ(f ◦ Th)dm

=

∫ 1

0

∑
Ty=x

f(Ty)h(y)eφ(y)dm =

∫ 1

0

f(x)Φ(h(x))dm =

∫ 1

0

fhdm =

∫ 1

0

fdµ. �

The converse can be shown similarly.
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4. Since Lebesgue measure is an eigenmeasure for the eigenvalue 1, the oprerator

Φ has the eigenvalue 1 as well. By the theorem of Ionescu-Tulcea and Marinescu

[20] there exists an eigenvector h for the eigenvalue 1, such that Φh = h and

µ = hm will be T -invariant.

5. It follows from the discussion so far that (see Theoreme 1 in [39]) the operator

Φn can be written as:

Φn =

p∑
i=1

λni φi + ψn, n ≥ 1,

where φi are the projections on the eigenvectors Ei, ||φi||L ≤ 1|| and ψ is an

operator on L1
m such that supn≥1||ψn||L <∞. Also, φi and ψ are orthogonal.

6. If the map T verifies the conditions of definition 3.2.1, it is known that T is

weakly mixing. This implies that Φ satisfies the properties cited above, and

moreover p = 1 [39].

7. Note that Φ is a bounded operator [39].

3.2.2 The adjoint operator

Continuing with the same set up as above (see [39]) we define the adjoint operator of

T with respect to the invariant measure µ as follows

Definition 3.2.2 The adjoint operator of T restricted to L1
µ is defined by

Pf =
Φ(fh)

h
. (3.2.3)

For the readers’s convenience, we include the proofs of the following folklore state-

ments, proposition 3.2.3 and lemma 3.2.4.
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Proposition 3.2.3 P is an operator on L1
µ and it is the Perron-Frobenius operator

associated with T with respect to the new measure µ.

Proof. Using definition 3.2.2 and equation 3.2.1,

∫ 1

0

Pf ·gdµ =

∫ 1

0

Φ(fh)

h
·ghdm =

∫ 1

0

fh·g◦Tdm =

∫ 1

0

f ·g◦Thdm =

∫ 1

0

f ·g◦Tdµ �

Lemma 3.2.4 P also can be expressed explicitly as Pf(x) =
∑

Ty=x f(y)eφ
′(y) where

φ′(y) is the cohomologous potential

φ′(y) = φ(y) + log h(y)− log h(T (y)).

Proof. Using 3.2.2,

Pf(x) =
Φ(fh)(x)

h(x)
=

∑
Ty=x f(y)h(y)eφ(y)

h(Ty)
=
∑
Ty=x

f(y)eφ
′(y),

Where φ′(y) = φ(y) + log h(y)− log(h(Ty)). �.

Later we will denote φ′ by φ for simplicity of notation.

Note: Like Φn, we have P n = µ + Qn, where Q is an operator with spectral radius

ρ(Q) < 1 [39], since µ is weakly mixing.

In addition to this, P satisfies the same properties (1-7) as Φ [39].
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3.3 Characteristic Function Operators

In his paper[39], Rousseau-Egele gave a series of lemmas and propositions describing

the operator Pf and its perturbation theory for t ∈ R and f ∈ N to give an expression

of the characteristic function of Snf as n goes to infinity. In this section we will extend

the work for t ∈ Rd and f̃ ∈ N d.

Definition 3.3.1 Let N be a Banach space. Let f̃ = (f1, . . . , fd) be an Rd-valued

function ∈ N d and t̃ = (t1, . . . , td) ∈ Rd, d ∈ N.

We define the operator Pf̃ (it̃) on L∞m by

Pf̃ (it̃)g = P (exp(i〈t̃, f̃〉)g), (3.3.1)

where g ∈ L∞m and 〈, 〉 denotes the inner product.

Lemma 3.3.2 Let Snf̃ =
∑n−1

k=0 f̃ ◦ T k, n ≥ 1 and S0f̃ = 0̃.

For every t̃ ∈ Rd,

P n
f̃

(it̃)1 = P n(exp(i〈t̃, Snf̃〉)1), n ≥ 0. (3.3.2)

Proof. We will proceed by induction

P 2
f̃
(it̃)1 = Pf̃ (Pf̃ (it̃)1) = Pf̃ (P (ei〈t̃,f̃〉) · 1) = Pf̃ (

∑
Ty=x

ei〈t̃(y),f̃(y)〉eφ(y))

= P (
∑
Ty=x

ei〈t̃(y),f̃(y)〉eφ(y)ei〈t̃,f̃(z)〉) =
∑
Tz=y

∑
Ty=x

ei〈t̃(y),f̃(y)〉eφ(y)ei〈t̃,f̃(z)〉eφ(z)

=
∑
T 2z=x

ei〈t̃,f̃(z)+f̃(Tz)〉eφ(z)+φ(Tz) = P 2(ei〈t̃,S2f̃〉).
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We suppose P n−1

f̃
(it̃)1 = P n−1(ei〈t̃,Snf̃〉), n ≥ 0

P n
f̃

(it̃)1 = Pf̃ (P
n−1

f̃
(it̃)1) = Pf̃ (P

n−1(ei〈t̃,Sn−1f̃〉) · 1)

Pf̃

( ∑
Tn−1z=x

ei〈t̃(z),Sn−1f̃(z)〉eφ(z)+φ(T 2z)+...+φ(Tn−1z)

)

= P

( ∑
Tn−1z=x

ei〈t̃(z),Sn−1f̃(z)〉eφ(z)+φ(T 2z)+...+φ(Tn−1z)ei〈t̃(y),f̃(y)〉

)

=
∑
tx=y

∑
Tn−1z=x

ei<t̃(z),Sn−1f̃(z)>eφ(z)+φ(T 2z)+...+φ(Tn−1z)ei〈t̃(y),f̃(y)〉eφ(y)

=
∑
Tnz=y

ei〈t̃(z),Sn−1f̃(z)+f̃(Tnz)〉eφ(z)+φ(T 2z)+...+φ(Tn−1z)+φ(Tnz)

P n
f̃

(it̃)1 = P n(ei〈t̃,Snf̃〉 · 1). �.

Remark. Due to equality 3.3.2, Pf̃ is called the characteristic function operator.

Indeed ∫ 1

0

P n
f̃

(it̃)1dµ =

∫ 1

0

P n(ei<t̃,Snf̃> · 1)dµ

But by the definition of P we have
∫ 1

0
Pf · gdµ =

∫ 1

0
f · g ◦ Tdµ which means

∫ 1

0
Pf · 1dµ =

∫ 1

0
f · 1 ◦ Tdµ =

∫ 1

0
fdµ and

∫ 1

0
P nf · 1dµ =

∫ 1

0
fdµ.

Therefore, ∫ 1

0

P n
f̃

(it̃)1dµ =

∫ 1

0

P n(ei〈t̃,Snf̃〉 · 1)dµ =

∫ 1

0

ei〈t̃,Snf̃〉dµ (3.3.3)

which is the expression of the characteristic function of Snf̃ =
∑n−1

k=0 f̃ ◦ T k.
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3.4 Perturbation Theory of Pf̃

In this section we continue the extension of the work in [39] for t ∈ Rd and f̃ ∈

N dand give an expression of the characteristic function of Snf̃ for large n. The first

proposition is an extension of Proposition 4 in [39] to the multidimensional case.

Proposition 3.4.1 There exists a real number α > 0 such that if |t̃| < α

1. for all g ∈ N and n ≥ 1

P n
f̃

(it̃)(g) = (λ(it̃))nN1(it̃)(g) + P n
2 (it̃)(g) (3.4.1)

where

(a) λ(it̃) is the unique eigenvalue of highest module of P n
f̃

(it̃)(g) and |λ(it̃)| >

(2 + ρ(Q))/3

(b) N1(it̃) is the projection on the eigen sub-space of dimension 1 corresponding

to λ(it̃)

(c) P2(it̃) is an operator on N with spectral radius ρ(P2(it̃)) ≤ θ|t̃|, fore some

θ < 1.

(d) and P2(it̃)Et̃ = 0.

2. The maps t̃→ λ(it̃), t̃→ N1(it̃) and t̃→ P2(it̃) are analytic.

3. ||P n
2 (it̃)1||N ≤ C|t̃|θn where C is a positive constant and θ < 1

Proof. For part 1, see [1] section 4.

Part 2 follows from the perturbation theory of Pf̃ since t→ Pf̃ is analytic.

And part 3 is the same as in [39]. �.
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We will use this proposition to find an explicit expression of the characteristic function

of Snf̃ .

First notice that using lemma 3.3.2, equation (3.3.3) and proposition 3.4.1 with

g = 1, we have

∫ 1

0

ei〈t̃,Snf̃〉dµ = (λ(it̃))n
∫ 1

0

N1(it̃)1dµ+

∫ 1

0

P n
2 (it̃)1dµ (3.4.2)

We will then use the Taylor expansion for λ(it̃).

Lemma 3.4.2

∂λ

∂ti
|t̃=0̃= µ(fi), i = 1, . . . , d

Proof. For n sufficiently large, equation (3.4.2) becomes

∫ 1

0

ei〈t̃/n,Snf̃〉dµ = (λ(it̃/n))n
∫ 1

0

N1(it̃/n)1dµ+

∫ 1

0

P n
2 (it̃/n)1dµ. (3.4.3)

We use Taylor expansion for operator N1 as in [13].

N1(it̃/n) = N1(0̃) +
i

n

d∑
j=1

ti
∂N1

∂ti
|t̃=0̃ −

1

2n2

∑
1≤i,l≤d

∂2N1

∂ti∂tl
|t̃=0̃ +

t2

n2
N1(it̃/n), (3.4.4)

where N1(0̃) = µ and N1(it̃/n),
∂N1

∂ti
and

∂2N1

∂ti∂tl
are bounded operators.

Therefore we get

lim
n→∞

∫ 1

0

N1(it̃/n)1dt̃ = N1(0) = 1
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For P2 we have by proposition 3.4.1 part 1(c),

∣∣∣∣∫ 1

0

P2(it̃/n)1dµ

∣∣∣∣ ≤ ∣∣∣∣P2(it̃/n)1
∣∣∣∣
N ≤

1

n
C(|t̃|)θn.

Because θ < 1,
∫ 1

0
P2(it̃/n)1dµ ∼ O( 1

n
).

We will now use the Taylor expansion for λ(it̃/n) with remainder [13] that exists due

to the analycity of λ(it̃) by proposition 3.4.1 part 2 and since for ti small enough we

have
1

n

∣∣∣∣i∑d
j=1 ti

∂λ

∂ti
|t̃=0̃

∣∣∣∣ < 1. Hence,

λ(it̃/n) = 1 +
i

n

d∑
j=1

ti
∂λ

∂ti
|t̃=0̃ −

1

2n2

∑
1≤i,l≤d

∂2λ

∂ti∂tl
|t̃=0̃ +

t2

n2
λ(it̃/n)

= 1 +
1

n

(
i

d∑
j=1

ti
∂λ

∂ti
|t̃=0̃ −

1

2n

∑
1≤i,l≤d

∂2λ

∂ti∂tl
|t̃=0̃ +

t2

n
λ(it̃/n)

)

where λ is bounded. Thus,

Snf̃ =
n−1∑
k=0

f̃ ◦ T k =

(
n−1∑
k=0

f1 ◦ T k, . . . ,
n−1∑
k=0

fd ◦ T k
)
.

Denoting Snfi =
∑n−1

k=0 fi ◦ T k for i = 1, . . . , d and Snf̃ = (Snfi)i=1,...,d

And using ergodic theory as in [15],

lim
n→∞

1

n
Snfi = µ(fi), i = 1, . . . , d.

So we get

(
λ(
it̃

n
)

)n
=

∫ 1

0

ei〈
t̃
n
,Snf̃〉dµ+ o(1). (3.4.5)
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The LHS in equation (3.4.5) is

1 + i
d∑
j=1

ti
∂λ

∂ti
|t̃=0̃ +o(1)

and the RHS is

1 +
d∑
j=1

ti

∫ 1

0

1

n
Snfidµ+ o(1).

So we have

1 + i
d∑
j=1

ti
∂λ

∂ti
|t̃=0̃ +o(1) = 1 +

d∑
j=1

ti

∫ 1

0

1

n
Snfidµ+ o(1)

and

∂λ

∂ti
|t̃=0̃= µ(fi), i = 1, . . . , d.

Without loss of generality and for the simplicity of calculations, we will suppose that

µ(f̃) = 0̃. (i.e µ(fi) = 0, i = 1, . . . , d)

We note equation (3.4.4) as a separate corollary.

Corollary 3.4.3

N1(it̃) = N1(0̃) +O(t̃).

Lemma 3.4.4

∂2λ

∂ti∂tl
|t̃=0̃ = lim

n→∞

∫ 1

0

(
Snfi/

√
n
) (
Snfl/

√
n
)

dµ, 1 ≤ i, l ≤ d

= lim
n→∞

E
(
Snfi/

√
n
) (
Snfl/

√
n
)
, 1 ≤ i, l ≤ d

To prove lemma 3.4.4 we need the following remark.
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Remark. P n
2 (it̃/

√
n)→ 0

Proof. Notice that

∂2

∂ti∂tl

{∫ 1

0

ei〈t̃/
√
n,Snf̃〉dµ

}
|t̃=0̃

= −
∫ 1

0

(
Snfi/

√
n
) (
Snfl/

√
n
)

dµ.

Then repeating the calculations for lemma 3.4.2 with
∂λ

∂ti
|t̃=0̃= 0, i = 1, . . . , d, and

replacing it̃/n by it̃/
√
n we get for the LHS of (3.4.5)

(
1− 1

2n

∑
1≤i,l≤d

titl
∂2λ

∂ti∂tl
|t̃=0̃

)n

= 1− 1

2

∑
1≤i,l≤d

titl
∂2λ

∂ti∂tl
|t̃=0̃ + o(1)

and the RHS

∫ 1

0

(
1− 1

2

∑
1≤i,l≤d

titl
1

n
SnfiSnfl

)
dµ = 1− 1

2

∑
1≤i,l≤d

titl
1

n

∫ 1

0

SnfiSnfldµ

= 1− 1

2

∑
1≤i,l≤d

titlE
1

n
SnfiSnfl + o(1).

LHS=RHS leads to the statement of the lemma. �.

Lemma 3.4.5 Let Σ =
(
limn→∞

∫ 1

0
(Snfi/

√
n) (Snfl/

√
n) dµ

)
1≤i,l≤d

.

Σ is positive definite.

Proof. Σ is clearly non-negative definite. We will assume that it is positive definite

in order to consider it as a covariance matrix. �.
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Lemma 3.4.6

limn→∞

∫ 1

0

P n
f̃

(it̃/
√
n)(1)dµ = exp

(
−1

2
t̃′Σt̃

)
Proof. The statement of the lemma is evident. �.

3.5 Richter Type’s Theorem for Dependent Ran-

dom Variables

In Chapter 2 we found a new proof for the Richter-type local limit theorem that was

used in finding the limit of the CRR option’s price where the vector of occurrences

in the n independent trials of the random variable X was assumed to follow a

multinomial distribution. In this section, the n trials of X are not supposed to be

independent and no distribution is assumed. However, we will still denote the vector

of occurrences by Zn and its probability mass function by pn, and all other notations

we used in Chapter 2 will remain the same.

We will start by using the Fourier Inversion formula (2.3) of pn,

pn(ñ) =
1

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

φn(t̃)e−i〈ñ,t̃〉dt̃, (3.5.1)

where φn is the characteristic function of pn. The following lemma substitutes lemma

2.3 and gives the expression of this characteristic function using remark (p 64) and

proposition 3.4.1.

Lemma 3.5.1

φZ′n−np̃(t) =

∫ 1

0

P n
f̃

(it̃)1dµ

= (λ(it̃))n
∫ 1

0

N1(it̃)1dµ+

∫ 1

0

P n
2 (it̃)1dµ

= (λ(it̃))n
∫ 1

0

N1(it̃)1dµ+Ko(θn),
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where θ < 1, and limn→∞
∫ 1

0
N1(it̃)1dµ = 1. Ysing Corollary 3.4.3,

φZ′n−np̃(t) = (λ(it̃))n(1 +O(t̃)) + o(θn). (3.5.2)

Before substituting φZ′n−np̃(t̃) by the expression (3.5.2) in equation (3.5.1), note that∫ π
−πKθ

n)e−i〈ñ,t̃〉dt̃→ 0 exponentially. Therefore, equation (3.5.1) becomes

pn(ñ) =
1

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

[(λ(it̃))n(1 +O(t̃)) + o(θn)]e−i〈ñ−np̃,t̃〉dt̃. (3.5.3)

Multiplying equation (3.5.3) by n(k−1)/2,

n(k−1)/2pn(ñ) =
n(k−1)/2

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

(λ(it̃))ne−i〈ñ,t̃〉dt̃ (3.5.4)

+
n(k−1)/2

(2π)k−1

∫ π

−π
. . .

∫ π

−π︸ ︷︷ ︸
k−1 integrals

[(λ(it̃))n(O(t̃)) + o(θn)]e−i〈ñ−np̃,t̃〉dt̃.

Using the same change of variables sl =
√
ntl, for l = 1, . . . k − 1, equation (3.5.4)

becomes

n
k−1
2 pn =

1

(2π)k−1

∫ π
√
n

−π
√
n

. . .

∫ π
√
n

−π
√
n

e
−i〈s̃, ñ−np̃√

n
〉
(λ(is̃/

√
n))nds̃ (3.5.5)

+
1

(2π)k−1

∫ π
√
n

−π
√
n

. . .

∫ π

−π
√
n

√
n︸ ︷︷ ︸

k−1 integrals

[(λ(i ˜s/
√
n))n(O(s̃/

√
n)) + o(θn)]e

−i〈s̃, ñ−np̃√
n
〉
ds̃

We then use the Taylor expansion for λ

(
is̃√
n

)
and use lemmas 3.4.2 and 3.4.4 to

get as in Chapter 2 that
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n
k−1
2 pn =

1

(2π)k−1

∫ π
√
n

−π
√
n

. . .

∫ π
√
n

−π
√
n

e
−i〈s̃, ñ−np̃√

n
〉
e(− 1

2
s̃′Σs̃)ds̃ (3.5.6)

+
1

(2π)k−1

∫ π
√
n

−π
√
n

. . .

∫ π
√
n

−π
√
n

e
−i〈s̃, ñ−np̃√

n
〉
e(− 1

2
s̃′Σs̃)O(s̃/

√
n)ds̃ (3.5.7)

+
1

(2π)k−1

∫ π
√
n

−π
√
n

. . .

∫ π
√
n

−π
√
n

e
−i〈s̃, ñ−np̃√

n
〉
o(θn)ds̃. (3.5.8)

We denote
ñ− np̃√

n
by z̃ as in Chapter 2.

We know that e(− 1
2
s̃′Σs̃) is the characteristic of a (k-1) multivariate normal distribution

with mean 0̃ and covariance matrix Σ. So the limit of the integral in equation (3.5.6)

is the probability density function of the same multivariate normal at z̃

1

(2π)(k−1)/2|Σ|1/2
exp

{
−1

2
z̃′Σ−1z̃

}
It is then immediate to see that for z ∈ G′n (as in Chapter 2),

∣∣∣∣∣∣∣∣
1

(2π)k−1

∫ π√n
−π
√
n
. . .
∫ π√n
−π
√
n
e
−i〈s̃, ñ−np̃√

n
〉
e(− 1

2
s̃′Σs̃)o(s̃/

√
n)ds̃

1

(2π)(k−1)/2|Σ|1/2
exp

{
−1

2
z̃′Σ−1z̃

}
∣∣∣∣∣∣∣∣→ 0

and ∣∣∣∣∣∣∣∣
1

(2π)k−1

∫ π√n
−π
√
n
. . .
∫ π√n
−π
√
n
e
−i〈s̃, ñ−np̃√

n
〉
o(θn)ds̃

1

(2π)(k−1)/2|Σ|1/2
exp

{
−1

2
z̃′Σ−1z̃

}
∣∣∣∣∣∣∣∣→ 0

which means we have

n(k−1)/2pn(n1, . . . , nk) ∼
1

(2π)(k−1)/2|Σ|1/2
exp

{
−1

2
z̃′Σ−1z̃

}
We now state in the following theorem.
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Theorem 3.5.2 Let T : [0, 1] → [0, 1] be a piecewise monotone and expanding map

of the unit interval, having the finite range property and the absolutely continuous

invariant probability µ. Let f be a measurable function admitting k different values

β1, . . . βk with probabilities µ(f = βj) = pj, j = 1, . . . k. Let Xn = f ◦ T n denote

the stationary sequence generated by f and T . Let Zn be the vector of occurrences

of these k possible outcomes in n iterations of f . Let Gn denote the region of points

x = (x1, . . . , xk) ∈ Rk for which |xj| ≤
√
A log n

n
for j + 1, . . . , k, where A > 0:

As (x1, . . . , xk) =
1

n
(n1 − np1, . . . , nk − npk) ∈ Gn and n → ∞ there exists a (k −

1)−multivariate normal distribution with mean 0̃ and covariance matrix Σ such that

µ(Zn = (n1, ..., nk)) = pn(n1, . . . , nk) ∼
1

(2πn)(k−1)/2|Σ|1/2
exp

{
−1

2
x̃′Σ−1x̃

}

Remark. Recall that in Chapter 2, we wrote the vector of occurrences Zn =

(n1, . . . , nk) as
∑k−1

j=1 Yj where the Y ′j s, j = 1, . . . , n are k-dimensional vectors; each

Yj represents the outcome of the jth trial which is a vector with a 1 in position l if

the l-th event occurs, l = 1, . . . k, on that trial and 0′s in all other positions. Then

take Yj = (Yj1, . . . , Yj(k−1)), j = 1, . . . n. Since nk = n − (n1 + . . . nk−1), the Y ′j s are

independent.

Here we write our vector of occurrences as

(n1, . . . , nk) = Snf̃ =
n−1∑
j=0

f̃ ◦ T j =
n∑
j=1

f̃ ◦ T j−1, f̃ ∈ Rk.

Note that f̃ = (f1, . . . , fk) where each fl, l = 1, . . . , k, takes the value 1 in position l

if the lth event occurs and 0 otherwise, just like the Y ′j s, and the dependence between

the n trials is described by T j, j = 1, . . . , n.
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So we have

Y1 = f̃

Y2 = f̃ ◦ T

Y3 = f̃ ◦ T 2

...

Yn = f̃ ◦ T n−1

and
∑n

j=1 Yj = n. Because n = n−(n1+. . .+nk−1), we work with f̃ = (f1, . . . , fk−1).
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Chapter 4

Generalized CRR Option Price
Formula with Dependent Jumps

In this chapter we will give the expression of the arbitrage price of a European call

option written on one share of stock, when the stock price follows the generalized

CRR stock pricing model with dependent jumps. We will also give the asymptotic

behavior of this expresion.

In the generalized CRR setting the jumps of the price of the stock were described by

the sequence (Xt)t≤T . Conditioning on the values thatXT−m, . . . , XT form = 0, . . . , T

yield the conditional generalized CRR option price formula.

The assumptions on XT−m, . . . , XT have an important role in finding the expression

of the option price. Since the generalized CRR option pricing model, as introduced in

[22], is the generalization of the binomial model, it is straightforward to think about

the multinomial distribution.

In her Ph. D dissertation [22], Kan imposed on the random variables Xt, t =

1, . . . , T, to be independent and identically distributed, in order to the vector of

occurrences of the values that those n independent variables can take, follows the
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multinomial distribution, and she introduced the multinomial model, that we de-

scribed in Chapter 1.

As is known, stock prices change because of the economics of market forces, supply

and demand in the market determines stock price. There are many theories that try

to explain the way stock prices move the way they do. Unfortunately, there is no one

theory that can explain everything.

Even if one cannot explain in well defined terms the numerous intricate situations that

determine the price changes, one can see that those situations cause the changes in

the stock price one day obviously depend on the changes that occurred the day before.

In the following section we consider the case where the random variables Xt, t ≤ T

are dependent, but still take values in the multinomiality set Ck. We have chosen

this approach because of its relevance to the stock market.

4.1 Generalized CRR Option Price Formula with

Dependent Jumps

We consider a finite probability space (Ω,F,P) and a map S : [0, 1]→ [0, 1] verifying

the conditions of definition 3.2.1. We assume XTl = f ◦ ST−l, l = T − m, . . . , T ,

where f is a measurable function admitting k different values β1, . . . βk with proba-

bilities µ(f = βj) = pj, j = 1, . . . k.

We will start with the generalized CRR option price model derived by Kan [22].

Recall from chapter 1 that in the generalized conditional CRR model, the stock price,

or risky asset, is modelled as a strictly positive discrete-time process S = (St)t≤T

defined as follows
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St = St−1Xt−1νt−1, ∀t ≤ T (4.1.1)

where {νt}t≤T ∗ are Bernouilli random variables taking values u and d with probabili-

ties p and 1−p and {Xt}t≤T describes the jumps of upward and downward movements

and is assumed to be independent on {νt}t≤T .

The bond or risk-free asset price process is given by

(1 + r)t, ∀t ≤ T ∗ (4.1.2)

where r̂ = 1 + r, r is any positive real number.

The expression of the generalized CRR option price is

CT−m = ST−m

m∑
j=0

 ∑
J∈Ij,m(ST−m)

P (J (j), T )− K

r̂m

∑
J∈Ij,m(ST−m)

P (J (j), T )

 (4.1.3)

where

pT−k :=
r̂ − ξdT−k

ξuT−k − ξdT−k
, pT−k =

ξuT−k
r̂

pT−k

qT−k = 1− pT−k, , qT−k = 1− pT−k

P (J (j), T ) =
∏
k∈J

pT−k
∏
k/∈J

qT−k (4.1.4)

and

P (J (j), T ) =
∏
k∈J

pT−k
∏
k/∈J

qT−k. (4.1.5)

The set Γm = {1, . . . ,m}. For any fixed m ∈ N and j ∈ Γm, Ij,m denotes the following
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Ij,m(x) =

J ⊂ Γm, |J | = j, x
∏
k∈J

ξuT−k
∏
k∈J

ξdT−k > K

 (4.1.6)

where |J | stands for the cardinality of the set J and J stands for the complement of

J .

Remark In finding the corresponding generalized CRR option pricing formula (4.1.3),

Kan [22] used the backward induction technique with respect to m. This method

consists in selecting a portfolio φT−m−1 = (αT−m−1, βT−m−1) for the period [T −m−

1, T − m) in a way that the portfolio’s wealth, as defined in definition 1.2.2, at

time T −m replicates the option’s payoff at time T,CT , starting with the last period

before expiration which means with m = 0. And as was shown, the assumption

needed was that of absence of arbitrage, that can be represented in the market as

P{ξdt < 1 + r < ξut } = 1, ∀t ≤ T . For the full proof, one can refer to [22] pp.

20-23, 26-29. The same setup with the same assumptions was used by Musiela and

Rutkowski in [36] pp.43-46 for the binomial model.

Note that CT−m as in (4.1.3) depends on the random sequence XT−m, . . . , Xt.

We now consider the expected value of CT−m in (4.1.3) and call this expectation the

arbitrage price,

C̃T−m = E(CT−m). (4.1.7)

For integrating CT−m we need the integrals E(P (J (j), T ) and E(P (J (j), T ); therefore,

we need to compute (4.1.8) and (4.1.9), where ∀ z = (zT−m, . . . , zT ) ∈ Rm

C̃
(1)
T−m(j) =

∫
. . .

∫
︸ ︷︷ ︸
m integrals

∑
J∈Ij,m(ST−m,z)

P (J (j), T, z)dFXT−m,...,XT (z) (4.1.8)
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and

C̃
(2)
T−m(j) =

∫
. . .

∫
︸ ︷︷ ︸
m integrals

∑
J∈Ij,m(ST−m,z)

P (J (j), T, z)dFXT−m,...,XT (z) (4.1.9)

where the set

Ij,m(x, z) =

J ⊂ {1, . . . ,m}, |J | = j : x
∏
k∈J

uzT−k
∏
k∈J

dzT−k > K

 (4.1.10)

is a realization of the random set (4.1.6).

Also, FXT−m,...,XT (z) = FT−m,...,T (z) is the joint distribution function ofXT−m, . . . , XT .

Equation (4.1.7) becomes

C̃T−m = ST−m

m∑
j=0

C
(1)
T−m(j)− K

r̂m

m∑
j=0

C
(2)
T−m(j). (4.1.11)

Remark As one can see, obtaining the option price from equation (4.1.11) depends

on the sequence of random variables (Xt)t≤T and the assumptions imposed on it.

Note that C̃T−m in (4.1.11) is still random as ST−m is random. However, for m = T ,

S0 is assumed to be constant, thus C̃0 is computable as a non random number.

The important point is that (4.1.8) and (4.1.9) has to be computed and this is where

we make a contribution in this thesis, in the case where XT−m, . . . , XT are dependent

and take finitely many values.

Let Nc1 , . . . , Nck denote the occurrences of c1, . . . , ck among f ◦T l, l = T−m, . . . , T .
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For every z = (zT−m, . . . , zT ) ∈ Rm, we have

P (J (j), T, z) =
∏
k∈J

pT−k(zT−k)
∏
k/∈J

qT−k(zT−k)

and

P (J (j), T, z) =
∏
k∈J

pT−k(zT−k)
∏
k/∈J

qT−k(zT−k)

where

pT−k(zT−k) :=
r̂ − dzT−k

uzT−k − dzT−k
, pT−k(zT−k) =

uzT−k
r̂

pT−k(zT−k),

qT−k(zT−k) = 1− pT−k(zT−k), qT−k(zT−k) = 1− pT−k(zT−k)

We fix z which is a sequence clT−m , . . . , clT , then

pT−l(cjT−l) =
r̂ − dcjT−l
cjT−l(u− d)

, pT−l(cjT−l) =
ucjT−l
r̂

pT−l(cjT−l),

qT−l(cjT−l) = 1− pT−l(cjT−l), qT−l(cjT−l) = 1− pT−l(cjT−l)

Let J ⊂ {1, . . . ,m}. Let m1 be the number of occurrences of c1 when l ∈ J and m′1

the number of occurrences of c1 when l /∈ J .

Next recall that the random set

Ij,m(x, z) =

J ⊂ {1, . . . ,m}, |J | = j : x
∏
k∈J

uzT−k
∏
k∈J

dzT−k > K


is independent of the order of the values zT−m, . . . , zT
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since

x
∏
k∈J

uzT−k
∏
k∈J

dzT−k > K (4.1.12)

means that

xu|J |d|J |c
m1+m′1
1 . . . . .c

mk+m′k
k > K.

We define the set O of all points zT−m where we have (m1 +m′1) occurrences of c1, . . .,

(mk +m′k) occurrences of ck.

On the set O for all sets J with |J | = j, condition 4.1.12 holds or does not hold,

so I(j,m)(x, z) is independent of the order of zT−m, . . . , zT and only depends on the

values of the random variables Nc1 , . . . , Nck alone; that is,

Nc1 = m1 +m′1, . . . , Nck = mk +m′k.

Let

I(m, j,M1, . . . ,Mk) =


(m1, . . . ,m2k) : mi ∈ τm, i = 1, . . . , 2k;
m1 + . . .+m2k = m : m1 + . . .+mk = j;
M1 = m1 +m′1, . . . ,Mk = mk +m′k


.

Let a be the random number of the smallest index j with

ujdm−jc
Nc1
1 . . . . .c

Nck
k > K.

This means that the sum over J ∈ I(j,m)(ST−m, z) equals the sum over I(m, j,Nc1 , . . . , Nck).

Integral (4.1.9) becomes

C̃
(2)
T−m(j) =

∫
. . .

∫
︸ ︷︷ ︸
m integrals

∑
J∈Ij,m(ST−m,z)

P (J (j), T, z)dFXT−m,...,XT (z) (4.1.13)

= E
∑

I(m,j,Nc1 ,...,Nck )

P (J (j), T,XT−m, . . . , XT ).
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Defining the set Cl = {z : cl occurs Ml times}, we get

C̃
(2)
T−m(j) =

∑
{M1,...,Mk}

∫
Cl

∑
I(m,j,M1,...,Mk)

P (J (j), T, z)dFXT−m,...,XT (z)

=
∑

{M1,...,Mk;
∑
Mj=m}

∑
I(m,j,M1,...,Mk)

P (J (j), T,M1, . . . ,Mk)P(Nc1 = M1, . . . , Nck = Mk).

With the same calculations, (4.1.8) becomes

C̃
(1)
T−m(j) =

∫
. . .

∫
︸ ︷︷ ︸
m integrals

∑
J∈Ij,m(ST−m,z)

P (J (j), T, z)dFXT−m,...,XT (z) (4.1.14)

= E
∑

I(m,j,Nc1 ,...,Nck )

P (J (j), T,XT−m, . . . , XT )

=
∑

{M1,...,Mk}

∫
Cl

∑
I(m,j,M1,...,Mk)

P (J (j), T, z)dFXT−m,...,XT (z)

=
∑

{M1,...,Mk;
∑
Mj=m}

∑
I(m,j,M1,...,Mk)

P (J (j), T,M1, . . . ,Mk)P(Nc1 = M1, . . . , Nck = Mk).

Proposition 4.1.1 The generalized CRR option price with dependent jumps is given

by the following formula:

ĈT−m = ST−m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T, z)P(Nc1 = m1, . . . , Nck = mk)

− K

r̂m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T, z)P(Nc1 = m1, . . . , Nck = mk).

(4.1.15)
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4.2 Limit of the Generalized CRR Option Price

Formula with Dependent Jumps

We assume that there exists a set Ck,n = {c1,n, . . . , ck,n} such that xn ∈ Ck,n.

We introduce the following notations. Let

xi =
mi −mpi√

m
i = 1, . . . , 2k

and

xi =
mi −mpi√

m
i = 1, . . . , 2k

where
∑2k

i=1 pi = 1,
∑2k

i=1mi = m so
∑2k

i=1 xi =
∑2k

i=1 xi = 0

We define the set

X =

{
x = (x1, . . . , xk) : |xi| ≤

√
A logm

m
, i = 1, . . . , k

}
where A is a positive constant.

Theorem 4.2.1 For x ∈ X, i = 1, . . . , k as n → ∞ the following asymptotic holds

true

ĈT−m ∼ ST−m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T )
1

(2πm)
k−1
2 |Σ|1/2

exp

{
−1

2
x′Σ−1x

}

− K

r̂m

m∑
j=0

∑
{M1,...,Mk;

∑
Mj=m}

∑
I(m,j,Nc1 ,...,Nck )

P (J (j), T )
1

(2πm)
k−1
2 |Σ|(k−1)/2

exp

{
−1

2
x′Σ−1x

}
,

(4.2.1)

where Σ is the covariance matrix of a zero mean (k − 1)-normal distribution as in

Chapter 3.
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Proof. Due to theorem 3.5.2 the statement of the theorem is the true one. �.

4.3 Outline

We rewrite equation 4.1.1 in the following fashion

ĈT−m = km
m∑
j=0

∑
{M1,...,Mk}

∑
I(m,j,M1,...,Mk)

(ST−mP (J (j), T )− K

r̂m
P (J (j), T ))

× P(Nc1 = M1, . . . , Nck = Mk)

= km
m∑
j=0

∑
{M1,...,Mk}

∑
I(m,j,M1,...,Mk)

(
ST−mP (J (j), T )− K

r̂m
P (J (j), T )

)
m!

M1!. . . . .Mk!
k−m

× P(Nc1 = M1, . . . , Nck = Mk)

k−m
m!

M1!. . . .Mk!

= km

ST−m m∑
j=0

∑
I(m,j)

M2k(m, p)−
K

r̂m

m∑
j=0

∑
I(m,j)

M2k(m, p)

 P (Nc1 = M1, . . . , Nck = Mk)

k−m
m!

M1!. . . .Mk!

= C̃T−m
P (Nc1 = M1, . . . , Nck = Mk)

k−m
m!

M1!. . . .Mk!

,

where

p1(c1) =
1

k

r̂ − c1d

c1(u− d)
, . . . , pk(ck) =

1

k

r̂ − ckd
ck(u− d)

,

pk+1(c1) =
1

k

c1u− r̂
c1(u− d)

, . . . , p2k(ck) =
1

k

cku− r̂
ck(u− d)

,

p1 =
c1u

r̂
p1, . . . , pk =

cku

r̂
pk, pk+1 =

c1d

r̂
pk+1, . . . , p2k =

ckd

r̂
p2k,

M2k(m, p) =
m!

m1! . . .m2k!
pm1

1 . . . pm2k
2k , (4.3.1)

and

84



M2k(m, p) =
m!

m1! . . .m2k!
pm1

1 . . . pm2k
2k . (4.3.2)

• Kan [22] used the following asymptotic procedure:

– Taking n of the form n = 2s, s is a natural number

– Then dividing the interval [0, T ], for T > 0 into n equal subintervals Ij of

length ∆n = T
n

for j = 0, . . . , n− 1.

– Then find the asymptotic value of the European call option price ĈT−m

for any T > 0 and m ∈ [0, T ] when the number of periods increases as n

goes to infinity which means the size of the time steps goes to zero.

and showed

C̃T−m → StΦ(f1(St, T − t))−Ke−r(T−t)Φ(f2(St, T − t)), as n→∞

uniformly where

f1(s, t) =
ln s

K
+ (T − t) ln c1....ck+k

k

(
r
k

ln c1....ck+k∏k
i=1(ln ci+1)

+ σ2

2
ln c1....ck+k

k

)
σ ln c1....ck+k

k

√
T − t

f2(s, t) = f(s, t)− σ
ln c1. . . . ck + k

k

√
T − t

and Φ stands for the standard Gaussian cumulative distribution function Φ(x) =

1√
2π

∫ x
−∞ e

−u
2

2 du,∀ x ∈ R

• Due to Richter’s local limit theorem we have

k−m
m!

M1!. . . .Mk!
∼ 1

(2πm)
k−1
2 k−k/2

exp

{
−m

2k

k∑
j=1

x2
j

}
.

• Due to theorem 3.5.2

P(Nc1 = M1, . . . , Nck = Mk) ∼
1

(2πm)
k−1
2 |Σ|(k−1)/2

exp

{
−1

2
x′Σ−1x

}
.
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Using the same asymptotic procedure as in [22], the following can be shown:

Theorem 4.3.1 Let X be a random variable which can assume k different values

β1, . . . βk with probabilities P (X = βj) = 1
k
, j = 1, . . . k. Let Zn be the vector of

occurrences of these k possible outcomes in n dependent trials of X.

Let

X =

{
x = (x1, . . . , xk) : |xi| ≤

√
A logm

m
, i = 1, . . . , k

}
.

As (x1, . . . , xk) =
1

m
(m1 −mp1, . . . ,mk −mpk) ∈ X and m→∞,

there exists a (k − 1)-normal distribution with zero mean and covariance matrix Σ

such that:

If condition (C) holds true

1

|Σ|(k−1)/2
exp

{
−1

2
x′Σ−1x

}
k−k/2 exp

{
−m

2k

∑k
j=1 x

2
j

} → 1 (C)

uniformly for x ∈ X, then the following convergence is valid

lim
n→∞

ĈT−m = StΦ(f1(St, T − t))−Ke−r(T−t)Φ(f2(St, T − t)), as n→∞

where

f1(s, t) =
ln s

K
+ (T − t) ln c1....ck+k

k

(
r
k

ln c1....ck+k∏k
i=1(ln ci+1)

+ σ2

2
ln c1....ck+k

k

)
σ ln c1....ck+k

k

√
T − t

f2(s, t) = f(s, t)− σ
ln c1. . . . ck + k

k

√
T − t
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and Φ stands for the standard Gaussian cumulative distribution function Φ(x) =

1√
2π

∫ x
−∞ e

−u
2

2 du,∀ x ∈ R.

In this chapter we showed that the option price for a European call option written

on one share of stock, when the stock price follows the generalized CRR model with

dependent jumps as in equation (4.1.1) where the X ′ts, representing the jumps in

the stock price are dependent, has a similar expression as in the independent case.

Using theorem 3.5.2, the limit of the option price also is similar as the one in the

independent case.
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