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Extraction Based Verification Method for off The Shelf Integrated Circuits

Abstract

by

VIVEK NAGUBADI

Off-the-shelf Integrated Circuits (ICs) are used in the design of many products. The

IC is supposed to implement a set of available specifications describing the function of the

IC. Users of off-the-shelf ICs need a simple and effective method to validate the specifica-

tions to insure that the IC implements exclusively the set of available specifications. In this

thesis, we propose an approach to validate these specifications by a set of IC re-engineering

experiments. The proposed approach is based on the construction of a high-level description

of the packaged IC and on using the extracted description to validate the specifications.

The approach uses the scan operations (available for manufacturing test of the IC) and the

IC specification to disassemble the states/flip-flops and output functions of the packaged

IC. Using the disassembled functions, a Register Transfer Level (RTL) model suitable for

Computer-Aided Design manipulation is constructed. The disassembling is based on an

ATPG scan experiment. Information on the scan chains is employed to construct the con-

nectivity of the logic function. The connectivity is then used to discover the implemented

logic. Using the proposed approach, we re-constructed over 90%of the system functions for

an example IC. Scope for future work has been discussed at the end of the thesis work.
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Chapter 1

Introduction to Reverse Engineering

Engineering can be classified into two sub-categories viz., Forward Engineering and Reverse

Engineering. Forward Engineering is the discipline in which a set of specifications/requirements

are realized into products and systems by applying technical, mathematical and scientific

knowledge. Where as Reverse Engineering is a processes of back-tracing to the initial speci-

fications or blueprint from a final product. Figure 1.1 illustrates a top view of both forward

engineering and reverse engineering processes. With reverse engineering one has the ability

to determine the internal working or implementation details of a product. Reverse Engi-

neering has its origins in the analysis of hardware for military or commercial applications

[1].

As the number of transistors on a chip are being doubled on a chip every two years

according to the Moore’s law, the complexity of the circuits has grown. Rapid technological

advancement in the field of integrated circuits has made reverse engineering an area of

interest for many. It has a broad spectrum of applications ranging from reverse engineering
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Figure 1.1: Engineering and Reverse Engineering Process Flow

obsolete products with lost documentation for the purpose of incorporating some of the

existing features in the latest technology to analyzing competitor’s products.

Software reverse engineering requires a combination of skills and a thorough under-

standing of computers and software development, but like most worthwhile subjects, the

only real prerequisite is a strong curiosity and desire to learn. Software reverse engineering

integrates several arts: code breaking, puzzle solving, programming, and logical analysis [6].

Reverse Engineering in semiconductors can be classified into several forms. Popular among

the existing methods are product tear downs, system level analysis, circuit extraction [20].

The processes used to reengineer are often very difficult and time consuming. The amount

of work involved in tracing back to the top-level specification depends on the type of method

used.

2



1.1 Laws Governing Reverse Engineering

The legitimacy of reverse engineering products varies from country to country. In U.S.

Reverse engineering of semiconductor devices is guarded under the Semiconductor Chip

Protection Act (SCPA) of 1984. The SCPA is found in title 17, U.S. Code, sections 901-914

[2]. Prior to this act its not considered illegal to reproduce a competitors chip with identical

layout. According to the SCPA law, reverse engineering is legal when done solely for the

purpose of teaching, analyzing, or evaluating the concepts or techniques incorporated in the

circuit, logic flow or organization of components used. The results obtained as a result of

analysis should be made to be distributed. The law also states that without the consent of

the actual owner the semiconductor chip cannot be reproduced for commercial purposes. The

respective owners of the mask are required to file an application for registration of their mask

with the U.S. Copyright office. The details related to the mask, such as pictorial information

of IC layers and identifying material should be submitted along with the application.

In Europe, inspite of the popularity of reverse engineering concepts among engineers,

the laws restrict the reverse engineering of hardware and makes reverse engineering of soft-

ware legal only under very limited circumstances [3].

1.2 Applications of Reverse Engineering

Reverse Engineering has a wide range of applications depending upon the industry. Tradi-

tionally the most well-know and important application is in developing competing products.

Below are some of the critical areas where semiconductor reverse engineering is applied.

• Interoperability:Interoperability is a technique of working together (inter-operate)

3



between diverse systems. Portability is the key for a system to operate in different

environments. Examples include hardware and software interoperability.

• Products with Lost Documentation: Company’s often want to incorporate part

of the functionality of an obsolete product into its current technology. Besides this

another important motivation for reverse engineering is, a product’s documentation

may have been lost and the person who designed it is no longer available. In these

scenarios reverse-engineering obsolete integrated circuit can provide information about

its functionality.

• Analyze competitor’s products: In order to determine the pricing information,

technical intelligence and functional details of the competitor’s products, company’s

rely on reverse engineering. Product tear downs are generally employed to accomplish

this task.

• Copyright Violation:Reverse Engineering is used to investigate products for copy-

right violation or patent infringement. The product under investigation is tear down

into individual components and the obtained information is cross-verified against the

information submitted while registering the copyright or patent.

• Educational or Academic Purpose: Reverse Engineering semiconductors is legal

for the sake of educational or academic purpose. This is one of the several ways

employed to study the functionality and operation of a product.

• Security: Computer security is one of the primary areas of concern now a days.

Reverse Engineering is being used to develop malware to attack computers and also

4



by developers to find antidotes for the attacks. Also another area of application is to

determine the level of security of the encryption algorithms.
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Chapter 2

Background

2.1 Types of Reverse Engineering

Depending upon the area of interest, a wide variety of techniques exist to reverse engi-

neer products. For example in software: decompilers, debuggers, system-monitoring tools,

disassemblers are used to reverse engineer software products [6]. Similarly for mechanical

products techniques such as rapid prototyping, scanning and converting the scanned data

into a 3D model exists [15]. According to [20] the most commonly employed methods to

Reverse Engineer Hardware are:

• Product Tear Down

• System Level Analysis

• Circuit Analysis

• Process Analysis

6



A combination of one or more of the above specified methods is generally employed.

The remainder of this section explains in detail about these commonly employed techniques

to Reverse Engineer integrated circuits.

• Product Tear Down: The goal of the product tear downs is to identify the com-

ponents used in making the product under investigation. The information obtained

from the product tear downs can be used to determine the system architecture, per-

formance metrics, cost of the individual components used and in general pricing of the

entire product including the manufacturing cost. Firstly, the product is systematically

teared down into individual components and internal boards. In some instances optical

and x-ray analysis are conducted on the components to determine the technology used

and also the capacity of the individual components. Dissemination of the product

into components is photographed and recorded so that others can use the informa-

tion. The dis-assembly and analysis of a product has been common practice for major

chip-makers and equipment manufacturers [20].

• System Level Analysis: Electronic systems primarily consist of hardware and soft-

ware. System level analysis of these components can be done using reverse engineering

or functional analysis. Reverse Engineering hardware is a hierarchial method, where

the product is for tear-down into subsystems and the connections between them are

noted. Next, the main board is delayered and the connections between layers are noted.

For software, reverse engineering involves conversion of the machine code into human

readable form. Functional analysis is similar to both hardware and software, where

test cases are developed, stimulus is created for operating the system in its functional

modes. The response is watched using signal generators, logic analyzers and oscillo-

7



scopes [20]. Similar to hardware and software, system-level analysis can be done on

firmware, communications, tranducers etc.

• Circuit Analysis: According to [20] circuit extraction is back tracing of the integrated

circuit back to circuit netlist it is intended to represent. Device extraction, interconnect

extraction and parasitic device extraction are the three important processes involved

in order to accomplish this technique. The packaging material is dissolved by applying

an acidic solution without effecting the die. Delayering of the die obtained from the

previous step is done by determining the chemical composition of the respective layers

using scanning electron microscopes. Significant amount of distinction has to be made

between the designed devices, which are created by the designer and the parasitic

devices, which are inherent to the circuit layout. The extracted circuit can be used for

logic simulation, timing analysis, power analysis, signal integrity and optimization.

• Process Analysis: If product tear down technique is used to identify the individual

components of a final product, its with the use of process analysis techniques which

helps determine the technology of the modules, how sub-system modules are manufac-

tured and also to do failure analysis on the wafers. Process analysis for semiconductors

is done using plan view imaging and cross-sectional analysis. While plan view imaging

gives limited information, cross-sectional analysis gives more detailed information of

the module. Transmission Electron Microscope (TEM) or Single Electron Microscope

(SEM) are required to perform the cross-sectional analysis. In-order to determine

the chemical composition of the module under investigation Energy Dispersive X-Ray

Spectroscopy (EDS) is used. Secondary ion mass spectroscopy and Auger Analysis are

also occasionally employed to find the chemical composition [20].
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2.2 Related Prior Work

In the past few decades research on reverse engineering semiconductors has been an interest

to many. Most of the techniques proposed so far either assumes that a gate-level netlist is

readily available or access to the integrated circuit die/wafer is present or both. However for

a packaged IC, access to the gate-level netlist and die/wafer may not be possible. In some

scenarios there is limit on the inputs to the functions that can be realized for a circuit.

Scan architecture was developed to alleviate the cost of sequential ATPG and to

reduce test requirement. Chip integrity and security was not addressed in the original scan

design. With the recent trend of implementing these algorithms in hardware [22], [7] security

is becoming an issue not only for cryptochips but also for general design [11], [19], [16], [14].

In fact, it was pointed out that scan chain can be used to attack Data Encryption Standard

cryptochip, retrieve secrets keys , and compromise its security. As a result, techniques have

been proposed to address this issue and make the scan chain more secure [9], [10], [12]. The

remainder of this section gives a brief overview of the existing techniques.

• In [13] a reengineering technique is proposed for the legacy hardware and/or software

systems which are functional. The entire procedure is divided into three phases, which

consists of Legacy system understanding, Reengineering trade-off exploration and De-

tailed hardware/software design integration. The paper is based on the assumption

that a structural transistor-level netlist of each of the circuit card assembly compo-

nent can be extracted through etching and circuit geometry abstraction. The obtained

netlist is then converted to the transistor-level netlist to a gate-level netlist, using a

library-based approach that includes describing the gates transistor implementation.
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Next search-based pattern-matching procedures are employed to extract the circuit’s

class and hence the key components in the legacy system are determined. In the sec-

ond phase of reengineering trade-off exploration evaluation is done to determine the

architectural changes required to upgrade the legacy system and also to determine the

reengineered systems cost and quality. Virtual prototyping of the hardware compo-

nents using clock-accurate and function-accurate models of the reengineered system is

created to test the entire systems operation in the final phase. However for packaged

ICs, the structural transistor-level netlist required for the first phase of Legacy sys-

tem understanding is not readily and the process of etching described to obtain the

structural transistor-level netlist may not be effective.

• Integrated Circuits are designed at multiple levels of abstraction which include behav-

ioral level, register-transfer level (RTL), gate-level, transistor level. In [8] a technique

has been proposed to construct the higher level of description for ISCAS-85 bench-

mark circuits. The gate-level netlists of the benchmark circuits are used to reverse

engineer in order to determine the higher-lever structure. The technique starts with

identifying the library modules such as multiplexers, decoders and adders from the

gate-level netlist. Next repeated modules in the circuit are identified, if any. With

the information obtained so far expected global structures such as signals or functions

that use these modules are determined. The outputs of repeated modules are grouped

into buses and any common names derived from the netlists are temporarily grouped

together for further structural insights. The structural insight obtained is used to com-

pute logic functions in symbolic or binary form. When no information can be derived

from the gate-level netlists the technique demands the portion be represented as a

10



black box. Inorder to reverse engineer larger designs, the netlist is first converted to

the schematic for convenience. Although this technique systematically recovers the

circuits’ hidden functional and structural information, it works on the fact that the

gate-level netlist is readily available. However for packaged ICs obtaining gate-level

netlist is a difficult task. Also the technique cannot realize logical functions of greater

than five input signals.

• In [26] a technique for extracting integrated circuit design is disclosed. This method

requires an optical means which includes a camera and a microscope to capture the

sectional images of the integrated circuit that is positioned on a table. The camera

is placed directly above the table and the table means can be controlled with the

help of a computer or microprocessor to position the integrated circuit relative to the

camera. Images of the IC are obtained section-by-section until all the layers of the

die are photographed. There is a provision in the technique for video signal captured

by the camera be sent to an image processor. An image processor generates an ab-

stract representation which identifies the features such as size, type, relative location

of transistors, width, length and relative location of all the metal interconnects from

the captured images. Next, identified features are mapped to a library which contains

raw pixel data for each of the reference library elements. The computer generates an

abstract representation of the integrated circuit after all of the circuit cells on the die

have been identified. This technique explores reverse engineering of an IC at die level,

which prevents this method to be implemented on a packaged IC.

• In [24] discusses about the vulnerabilities of the scan based techniques. Although the

work described in [24] is not directly related to the thesis, it gives a different perspective
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on the scan chain design. The paper mentions about how scan chain techniques can

be used to decipher secret keys stored in the Application Specific Integrated Circuit

(ASIC) which implements cryptographic algorithms. Data Encryption algorithm is

used to discover the structure of internal scan chains and breaking the round key

is explained in detail. However our proposed technique does not need to read and

decipher the information stored in the scan-chain register.

• In [5] proposed a technique to derive higher-level of description of an integrated circuit

from a know structural-level description using an algorithmic process. The conceptual

algorithm is based on transforming the circuit to successive higher level abstractions by

identifying functional components in structural representations. This process is done

in two phases: partitioning into candidate components and matching candidate compo-

nents against a known set of library components. Matching the candidate components

can be performed in a syntactic or semantic fashion. In syntactic fashion the identified

structural component and the corresponding component in the library module should

match exactly. Where as in the case of Semantic method the identified sub-circuit is

matched based on the similar functionality within the library module. In order to re-

verse engineer larger circuits with sequential elements an iterative search is performed

which includes additional techniques such as family matching, coarse partitioning, reg-

ister identification, state machine identification, fine partitioning are employed. At

every step the new sub-circuit identified, is added to the syntactic library, to search

for additional instances of the new component. This research work is based on the fol-

lowing assumptions. Firstly, the algorithm assumes the availability of a netlist with no

significant errors. Secondly, the motivation for the syntactic matching is restricted to

12



either verification or intellectual property analysis, which in turns assumes that either

the design document or circuit functionality is readily available. Thirdly, it assumes

the availability of a library of module descriptions for each level of abstraction. For

a packaged IC or an IC with lost documentation the above assumptions may not be

valid.

• In [25] formal verifications methods are suggested to be incorporated during both engi-

neering and reengineering processes. VDELE (VHDL Design Environment for Legacy

Electronics) is simulation technique used to deliver functional clones which duplicate

the behavior of legacy hardware system. According to [25], VDELE technique alone

can’t guarantee the exact functional equivalence and with the incorporation of formal

methods with VDELE can guarantee the exact functionality. This model depends

on the existing manufacturing specification data sheet of the obsolete integrated cir-

cuit. It may not be possible to obtain the specification sheet for products with lost

documentation.

2.3 Design for Testability

Over the past few decades integrated circuit design has been driven by rapidly increasing

performance and functional density at reduced cost. This advancement in digital technology

posed new challenges to the capabilities of existing test equipment. A combinational circuit

with N inputs needs [2 power N] test vectors to test the circuit exhaustively and completely.

Similarly, a sequential circuit with N inputs and M registers needs [2 power N+M] test vectors

in order to validate this circuit [23]. This problem was addressed by incorporating features
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to test in the original design itself. Controllability and Observability of nodes became a key

in designing of integrated circuits.

• Controllability of a node with in an integrated circuits is defined as the flexibility in

setting the node to 0 or 1

• Observability of a node with in an integrated circuit is defined as the ability to observe

the state of the selected node at the output pins.

Design For Testability (DFT) is one of the manufacturing test principles which adds testa-

bility features to the integrated circuit design. If designed properly using these techniques

they can provide more controllability and Observability of nodes in a circuit. Ad hoc testing,

Scan-based testing, Built-In-Self-Test (BIST) are the three main approaches for Design for

Testability.

2.3.1 Scan Based Design:

Scan based techniques are very effective design methods that makes possible the testing of

complex VLSI chips . The registers generally operate in two modes of operation: scan mode

and normal mode. The scan mechanism requires additional input/output pins and circuitry

which provides a mechanism for the circuit to switch between scan mode and normal mode.

During the test mode, internal flip-flops are chained into a shift register. Figure

2.1 shows a sequential scan circuit. The flip-flops can be configured into a shift-register,

with scanin/scanout as Input/Output, when primary input mode is asserted; otherwise the

flip-flops load their normal inputs (functional mode). Using the scanin pin a test vector is

scanned into the flip-flop shift-registers by asserting the mode signal and are clocked using

14
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Figure 2.1: Example of a Scan Based Circuit

the system clock. When a test vector is fully scanned, the flip-flops are configured to be in

normal mode for one clock cycle. At the end of the normal clock cycle the flip-flops load the

normal system response. At this point, the flip-flops are again configured into a shift register

to scan-out the stored normal response, concurrently scanning in the next test vectors. This

process is repeated for all test vectors. In a scan based design, combinational Automatic

Test Pattern Generation (ATPG) tools are used to generate tests for the combinational part

of the circuit eliminating the need for the more expensive sequential Automatic Test Pattern

Generation tools (ATPG).

Because of the high degree of controllability and observability of the nodes this tech-

nique provides, Automatic Test Pattern Generation (ATPG) tools provide high-fault cover-

age with reasonable memory and CPU requirements. ATPG techniques can be used for the

combinational blocks and can easily be tested with the help of scan chain.
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2.4 Contribution of this thesis:

In this thesis, examination of a packaged integrated circuit implantation of a sequential sys-

tem is done and a technique to reverse-engineer the implemented design using scan functions

is proposed. The approach is different from the previous techniques in that we compute a

netlist for a packaged integrated circuit and do not need to read and decipher any specific

[24] information stored in the register file. Unlike previous techniques, this approach targets

packaged integrated circuit designs where the design netlist is not available. The thesis work

employs the scan chain and available integrated circuit specification to construct the circuit

connectivity. The gained connectivity knowledge is used with the scan chain to discover

the logic of the connected function. Also, if the integrated circuit netlist is readily available

we proposed an ambiguity analysis technique to map the flip-flops present in the gate-level

netlist and the packaged IC.
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Chapter 3

Modeling Packaged Integrated Circuit

After the integrated circuit is verified for its functionality, packaging is the final step in the

semiconductor device fabrication. Currently, there are several existing packaging techniques.

Depending upon the type of technique used, the yield and efficiency of electronic components

are determined. The package provides mechanical and environmental protection for the chip

and enables electrical connections to be made from the chip to other electronic components

[18]. The remainder of this chapter presents a detailed description of the simulation technique

developed to model packaged integrated circuits.

The goal of modeling a packaged IC is to replicate the exact representation of a

circuit for simulation purposes. Our model primarily involves the following steps for complete

representation and testing of a circuit under consideration.

• Node Creation

• Sequencing

• Simulation

17



3.1 Node Creation:

Figure 3.1 shows a scan based circuit. The goal of this step is to create a node for each and

every unique gate in the circuit and determine the fanin, fanout and gatetype of each gate.

Figure 3.3 shows a flowchart used to create nodes for each and every gate. The parser is a

combination of parser and lexical analyzer whose role is to break the circuit into individual

tokens. These tokens are sent to the search routine which searches the list and creates a

node if there isn’t any node for the gate. If a node already exists, then it calculates the fanin

to that particular node. The fanin for primary inputs gates is considered to be 0.

At this point, we already have the information of the inputs of each and every gate.

This information is used to calculate the output. Consider the circuit shown in Fig 3.4. The

inputs to the Gate Z are Gate X and Gate Y. Which implies Gate Z is a fanout to both

Gate X and Gate Y. From previous step we have calculated that fanin to Gate Z has Gate

X and Gate Y. Calculation of fanout to each gate involves, traversing each and every node’s

fanin array and updating the fanout of the corresponding gate.

Figure 3.5 and 3.6 represents the algorithms to calculate the fanout of every gate.

For primary outputs, fanout value is 0. Each gate at the end of this step is represented as

node in Figure 3.2.

3.2 Sequencing:

Next step in modeling the circuit, invovles dividing it into subsequent levels. Figure 3.7

shows flowchart of the algorithm to levelize the circuit. All the primary input gates are

considered to be at Level 0. Levelizing of further gates invovles, verifying if levels of the
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Figure 3.2: Gate Structure
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Figure 3.3: Flowchart to create a gate
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Figure 3.4: Illustration of fanout

nfanout(){

    for(int i=0;i<total_gates;i++){

        int total_fanin=ckt_gate[i].nfanin;

for(int j=0;j<total_fanin;j++){

int number=ckt_gate[i].fanin[j];

ckt_gate[number].nfanout++;

}
}

}

Figure 3.5: Algorithm to calculate number of fanout for each gate

fanout(){

     int temp;

     for(int i=0;i<total_gates;i++){

          int total_fanout=ckt_gate[i].nfanout;

          ckt_gate[i].fanout=(int *)malloc(total_fanout)*sizeof(int));

          for(int j=0;j<total_fanout;j++){

               temp=ckt_gate[i].fanin[j];

               ckt_gate[temp].fanout[ckt_gate[temp].cout]=i;

               ckt_gate[temp].count++;

          }
      }

}

Figure 3.6: Algorithm to calculate fanout

21



START

EXIT

if i < total_gates

i = 0

i = i+1

if all gate
levels are

determined
level(i) = 

+ 1Yes

No

YesNo

No

max(fanin_levels)

Yes

if fanin
levels are

determined

Figure 3.7: Flowchart to calculate Levels

fanin gates are determined. If they are, then the level of the gate under consideration will

be (maximimum level(fanin gates) + 1). This is an iterative approach and program will exit

when all the individual gates present in the circuit are determined.

Consider the circuit shown in figure 3.1. Primary inputs a, b and c are considered to

be at Level 0. Next the algorithm traverses the gatestructure 3.2 and search for gates which

exclusively depend on primary inputs. They are labelled as Level 1. In the figure 3.1 d, e

depend on primary inputs. Similarly levels are calculated for every gate in the circuit.
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3.3 Simulation:

Simulation is the final step in modeling the circuit, used to validate the circuit functionality

as a whole. This step involves, generating random test vectors to apply as the input. The

output observed at the primary outputs and next state elements for a particular test vector

is cross-verified.
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Chapter 4

Technique

Consider the sequential circuit with i primary input lines, o primary output lines and n

storage elements. The output of each of the n storage elements is considered as a present-

state line and the input as a next-state line. The clocking scheme is assumed to be known

(in our case it is a single clock), and the value of the next-state line of a storage element in

the previous time frame becomes the present-state line value of that element in the current

time frame. The symbol yi is used to indicate the present-state variable corresponding to

the storage element i and Yi to indicate its next-state variable. The symbol Zi is used to

indicate the primary output variable corresponding the ith circuit output variable.

4.1 illustrates the general data flow and key steps of the approach. The object of our

system is to determine if the manufactured IC implements its intended specifications. To

accomplish this, our re-engineering approach discovers the circuit connectivity by generating

and using a set of tests that detects specific input/output dependency, existing in the spec-

ification, and on using the test to assert that the discovered dependencies are implemented
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in the manufactured circuit. The discovered/disassembled dependencies are combined to

form an interconnected circuit. This is show in the boxed labeled State Identification and

Interconnect Discovery. The two steps identify the number of states (flip-flops), generate the

variables declaration, and create the interconnection of the declared variables using function

instantiations. Algorithms that identify variable similarity are applied to identify buses and

registers. Note that any design error that causes connectivity changes in the specification

can be detected at this point. In addition, the interconnected functions are partially dis-

covered. To disassemble the functions implemented by the IC, the discovered structure, the

scan and the specifications are used to compute the IC exhibited logic. The IC exhibited

logic is minimized and stored symbolically or in a truth table. During function discovery, we

use the specification to identify control signals, data-path signals, buses and registers. This

involves the derivation of formal verification properties from the specifications, verifying the

properties using the IC and the scan functions, and assembling the exhibited IC functions.

As a result of the verification, functions associated with interconnect are discovered. In fact,

a complete IC verification implies complete function [17].

4.1 State Identification:

The scan chain consists of a shift register where each flip-flop corresponds to a state variable.

The flip-flop can store a logic 0 and a logic 1 and the combination stored in the scan chain

can be shifted and observed, one bit during each clock cycle at the scan out. To compute

the number of flip-flops are in the chain, WE shift a logic 1 followed by a large number n of

0s (n is larger than the number of flip-flops in the chain).
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Figure 4.1: General Approach

Concurrently while shifting into the scan, we observe the scan out and record the

clock cycle when the last 1 is observed at the scanout line. Since we are shifting one 1

followed by n zeros into the chain, the clock cycle K in which the last 1 appears indicates

the size of the scan chain. In fact, the actual size is K - 1. Once the number of flip-flops

is determined, each flip-flop is given a identification number between 1 and K - 1. These

numbers are used to identify variables corresponding to present-states yis and next-states

Yis.

4.1.1 Illustration of State Identification:

Consider the circuit show in 4.2 and assume the initial state of flip-flops (y0, y1, y2) is (101)

as shown in the table 4.1 below. A sequence of 000001 is serially shifted into the scan one
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Table 4.1: Demonstration of State Identification
scanin y0 y1 y2 scanout clockcycle

1 1 0 1 1 0
0 1 1 0 1 1
0 0 1 1 0 2
0 0 0 1 1 3
0 0 0 0 1 4
0 0 0 0 0 5
0 0 0 0 0 6

bit/clock. The sequence observed at the scanout at each clock is 1101100. During the 4th

clock cycle, the last logic 1 is observed at the scanout line. This indicates that the length of

the scan chain for this circuit is 3 flip-flops.

4.2 Interconnect Generation:

The extracted circuit is to be described by a set of Boolean equations. For each of the

output and next-state lines, we extract a Boolean description in terms of the primary inputs

and present-state lines. To compute the Boolean expression for each output and next-state

lines, we divide the task into two steps, the first is the computation of dependency matrix

(show in 4.2) followed by function generation. The dependency matrix provides the global

interconnection of the circuit and the Boolean function reveals the behavior of the circuit.

The dependency can be computed either by deriving an expression for an output Z and

literals appearing in the expression are included in the dependency list of Z. This is not

possible in this case, since we have only access to the circuit input/output.

Definition 1: A function f depends on variable y if there exists an input combination

such that f is equal to y(y ’)
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Consider the circuit shown in 4.2 and the input combination

(i0, i1, y2) = (1, 0, 0)

The value of the output Z0 for this input combination is

Z0 = i3’

Thus Z0 depends on i3. Therefore, applying a transition at i3 causes a transition at

Z0 revealing the dependency. To compute the dependency matrix, WE need to find for each

dependency an input combination that reveals that dependency at a primary output or at

next-state lines.

Algorithm 1 shows the dependency generation procedure. The algorithm is based

on generating random test patterns Test pattern and performing input/output sensitivity

analysis. The test patterns are generated using the specification. These tests target the

sensitivity of the specification to primary inputs. This helps our analysis and increases the

chances of discovering input/output/register dependencies. The analysis consists of comple-

menting input bits in Test pattern and monitoring changes, caused by this complementation,

on the outputs and next state functions. In the case of a change in one of the outputs or

next state Fi, the variable corresponds to the complemented bit is in the support of the func-

tion Fs. The algorithm increases the search time for a given Test pattern flipping (reward)

when a dependency is found. Otherwise, the search is aborted after a fixed number of bit

inversions.

The complete procedure is shown in algorithm 1. The input to this algorithm is the

set of K inputs I1, I2, . . . ., In, In+1, In+2, . . . ., In+s. The first n inputs correspond

to the primary circuit inputs and the next SSS corresponds to the present state lines. The

algorithm generates the dependency for the N functions F1, F2, . . . ., Fo, Fo+1, Fo+2, . . .
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., Fo+s. The first o corresponds to the primary circuit outputs and the next s corresponds

to the next state lines. The computed dependency for each function Fi is saved in D(Fi).

The procedure selects the first of the four random inputs, from a test generated from the

circuit specifications, that causes a change in at least 10% of the function Fi’s. A gain

indicator is set to TRUE and Ggain (global gain) to FALSE. The gain and Ggain are used

to reward good search. In the inner loop, the sate of the output functions are saved in

Fs state, the gain is set to FALSE, and bits in Test pattern are completed one at a time.

For each complemented bit operation, the output state response is recorded in New Fs state.

The New Fs state and the saved previous output states Fs state are compared for changes.

For each changed output Fn, the corresponding complemented input Ik that caused Fn to

change is added to the dependency set D(Fn). Every time a dependency is found, the gain

is set to TRUE to reward the search. After every complementation, implication, comparison

and state update are repeated once for every input variable. If during a single iteration no

dependency is found, then the gain search is terminated and a new random Test pattern is

generated. The random Test pattern generation is repeated Iter Limit times and is rewarded

if any gain is recorded in the previous iteration. For our experiment, we set the Iter Limit

to 1000.

4.2.1 Illustration of Interconnect Generation:

In the previous section, we have calculated number of flipflops present in the packaged IC

using State Identification. To demonstrate the Interconnect Generation, consider the Figure

4.2 shown. It represents ISCAS ’89 sequential s27 circuit. From the specificaiton we know

the input/output configuration of the IC and we have calculated the number of flip-flops
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present in the scan chain. According to the algorithm 1 set of NI inputs are i0, i1, i2, i3, y0,

y1, y2 and set of NF functions are Z0, Y0, Y1, Y2.

Table 4.2 contains the test vector applied and the calculation of dependency. First

column shows the test vector (i0i1i2i3y0y1y2) randomly generated, followed by the flipped

variable of the test vector. Column III shows the flipped test vector and columns IV and

V shows the previous output and current output generated when the flipped test vector is

applied. Dependency is calculated by comparing the previous output and current output.

In Figure 4.2, for example Y0 = y1’i3i0y0 + y1’i1’y2’;

From the above expression, we can say that Y0 depends on y2, y1, y0, i3, i2, i2,

i0. Knowing the dependency of primary outputs and next state lines is a crucial step in re-

engineering the design using the scan chain and associated operations. Thus for every circuit,

we need to compute the dependency matrix similar to the dependency matrix show in table

4.3. In this matrix, a”1” is used in the dependency matrix to indicate that a dependency

exists. Next-state function of flip-flop Y2 depends only on its present state and input lines

i1 and 2; hence, this flip-flop is independent of the other two flip-flops.

Dependency can be classified into two types viz., structural and functional. The

dependency calculated using the above algorithm ?? generates functional dependency. In

Figure 4.2, flip-flop Y1 is assumed to be dependent on y0. But if its logic equations are

computed, however it is found to be independent of y0:

Y1 = i3’i0 + i1i0 + y2i0 + y1 i0;

Y1’ = i0’ + y2’y1’i3i1’;

Structural dependency for 4.2 is given in table 4.4. Note that strucutal dependency

may contain superfluous variables.
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Table 4.2: Dependency Table
Test Vector FlipVariable FlipVector Prev Output Output Dependency
i0i1i2i3y0y1y2 i0i1i2i3y0y1y2 Z0Y0Y1Y2 Z0Y0Y1Y2

1110011

N/A N/A N/A 1100 N/A
i0 0110011 1100 0010 Z0(i0), Y0(i0), Y1(i0)
i1 0010011 0010 0010 N/A
i2 0000011 0010 0011 Y2(i2)
i3 0001011 0011 0011 N/A
y0 0001111 0011 1001 Z0(y0), Y1(y0)
y1 0001101 1001 1001 N/A
y2 0001100 1001 1000 Y2(y2)

1111111

N/A N/A N/A 1100 N/A
i0 0111111 1100 1000 Y0(i0)
i1 0011111 1000 1000 N/A
i2 0001111 1000 1001 Y2(i2)
i3 0000111 1001 1001 N/A
y0 0000011 1001 0011 Z0(y0), Y1(y0)
y1 0000001 0011 1001 Z0(y1), Y1(y1)
y2 0000000 1001 1000 Y2(y2)

1100111

N/A N/A N/A 1101 N/A
i0 0100111 1101 1001 Y1(i0)
i1 0000111 1001 1001 N/A
i2 0010111 1001 1000 Y2(i2)
i3 0011111 1000 1000 N/A
y0 0011011 1000 0010 Z0(y0), Y1(y0)
y1 0011001 0010 1000 Z0(y1), Y1(y1)
y2 0011000 1000 0010 Z0(y2), Y1(y2)
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module top(Z0, clk, i0, i1, i2, i3);
input clk, i0, i1, i2, i3;
output Z0;

     dff XG2(y1, Y1, clk);
     dff XG3(y2, Y2, clk);
     fy0 XG4 (Y0, y0, y1, y2, i0, i1, i3);
     fy1 XG5 (Y1, y0, y1, y2, i0, i1, i3);
     fy2 XG6 (Y2, y2, i2, i1);
     fZ0 XG7 (Z0, y0, y1, y2, i0, i1, i3);
endmodule

     dff XG1(y0,Y0, clk);

Figure 4.3: State and Interconnect Generation

Table 4.3: Functional Dependency
y2 y1 y0 i3 i2 i1 i0

Y0 1 1 1 1 . 1 1
Y1 1 1 . 1 . 1 1
Y2 1 . . . 1 1 .
Z0 1 1 1 1 . 1 1

In Figure 4.3 the State Identification step generates the first seven lines in the ex-

tracted model. Interconnect generation step discovers the circuit interconnections using the

specification, the scan, the manufacturing test, the IC and a sensitivity experiment. This is

represented as the last four lines in the 4.3.

4.3 Function Discovery:

At this point, we have a set of dependent inputs for every function. Generating the function

is the process of enumerating the input combinations of the function dependent variables,
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Algorithm 1 Dependency generation algorithm

Procedure dependency(){
set of NI inputs: {I1, I2, , In, In+1, In+2, .., In+s}
set of NF functions: {F1, F2, . . . ., Fo, Fo+1, Fo+2, . . . ., Fo+s}
D(Fi): set of inputs supporting function Fi

set all D(Fi) = empty
iter = 0;
Test pattern = Generate random input();
while (iter ≤ Iter limit) do

i = 0;
repeat

Test pattern = Generate random input();
New Fs state = apply input(Test pattern);
i = i + 1;

until (NumberofFschangingstate ≥ 10%ofNFandi ≤ 4);
gain = TRUE;
Ggain = FALSE;
while (gain ) do

gain = FALSE;
Fs state = New Fs state;
for (k = 0 ; k ≤ NI; k + +) do

flipbit(ik, Test pattern);
New Fs state = imply(Test pattern);
diff = Fs state XOR New Fs state;
gain = diff != 0 : TRUE ? gain;
if ( bit position n in diff == 1) then

D(Fn) = D(Fn) U {Ik};
Fs state = New Fs state;

end if

end for

if (gain) then

Ggain = TRUE;
end if

end while

iter = Ggain : 0 ? iter+1;
end while

}
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Table 4.4: Structural Dependency
y2 y1 y0 i3 i2 i1 i0

Y0 1 1 1 1 . 1 1
Y1 1 1 1 1 . 1 1
Y2 1 . . . 1 1 .
Z0 1 1 1 1 . 1 1

applying each input combination to the circuit, and computing the logical behavior fo the

output functions. This process is very expensive and can only be performed on functions

with limited number of inputs. In our case, we generated logical behavior for circuit which

has functions with less than 32 inputs. To speed up this process, we employ concurrent

enumeration of multiple functions with overlapping inputs. This reduces the total number

of input combinations to be applied.

4.3.1 Illustration of Function Discovery:

At this point, we have all the interconnection of the circuit. In the next step, the functions

are discovered. In the next step, the functions are discovered. An example of a discovered

function is shown in next page. Functions are compared for similarity which are used to

identify registers and to minimize the extracted model. In this case, we find that Z0 and Y0

are complements. This causes the algorithm to change the function for line

f(Z0) to fy0 XG7 (Z0’, y0, y1, y2, i0, i1, i3);

not XG8 (Z0, Z0’);
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module fy2 (out, y2, i2, i1);
output out;
input y2, i2, i1;
     assign out = y2 & ~i2 & i0 | i1 & i2 & ~i0 ;

endmodule

Figure 4.4: Discovered Function
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Chapter 5

Results

The procedure outlined in Chapter 4 was implemented in a computer program. The input

data to the program is in the form of a bench file. We evaluated the procedure using

ISCAS’89 benchmark circuits [4] and an implementation of an AES encryption chip [21].

To explain the results shown above, we define the following.

• The total number of outputs Zi and next state Yi functions in the circuit is defined

by Tfun. Note that Yi is computer by this approach. In our experiment, the approach

discovered all the states using the shifting experiment and monitoring experiment de-

scribed in the previous section.

• The total number of discovered functions in the circuit is defined by Dfun. A function

which all its inputs are known is a discovered function. In our experiment, we use the

circuit netlist to compute the structural dependencies for each function. We compare

the results from our approach to the structural dependencies of each function.

• The function coverage is defined as Fcov = Dfun/Tfun X 100.
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• The total number of primary inputs Ii and present states yi in the circuit is given by

Ti. For the circuit shown in Figure 1, Ii, yi and Ti are equal to 4, 3 and 7, respectively.

• Each function in the circuit is structurally dependent on K inputs. The total number

of structurally dependent inputs for all Tfun is given by Tdep. For the circuit show in

Figure 1 Tdep is equal to 27.

• The total number of discovered dependencies for all Tfun is defined by Ddep. Note, that

structural dependencies may contain some superfluous variables while discovered ones

do not.

• The dependency coverage is defined as DPcov = Ddep/Tdep X 100. Because of the

superfluous terms in the structural dependency, the Fcov may not be 100.

• Ntries is the total number of test vectors applied to the circuit using the algorithm

shown in Figure 3

As mentioned above, the results of this experiment are show in tables 5.1, 5.2, 5.3.

Table 5.1 shows the state identification results. Each row in this table shows the number of

flip-flops (FF) in the circuit, the number of inputs (In), the number of outputs (Out), the

number of shifts applied ( Shifts), and the number of state variables identified (yi). As a

result of this procedure, the position of each identified state variable in the scan register is

revealed. WE performed 2000 shifts for these circuits. In general, WE may want to perform

more shifts to reduce uncertainties in the number and position of the state variables.

Table 5.2 shows results of the dependency computation procedure. The first column

in that table gives the circuit name, the second column gives the number of gates, the
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Table 5.1: State Identification
Circuit Flip-Flops Inputs Outputs Number of Shifts Present State(yi)

s27 3 4 1 2000 3
s208 8 11 2 2000 8
s298 14 3 6 2000 14
s344 15 9 11 2000 15
s349 15 9 11 2000 15
s382 21 3 6 2000 21
s386 6 7 7 2000 6
s400 21 3 6 2000 21
s420 16 19 2 2000 16
s444 21 3 6 2000 21
s526 21 3 6 2000 21
s641 19 35 24 2000 19
s713 19 35 23 2000 19
s820 5 18 19 2000 5
s832 5 18 19 2000 5
s953 29 16 23 2000 29
s5378 179 35 49 2000 179
s1238 18 14 14 2000 18
s1488 6 8 19 2000 6
s1494 6 8 19 2000 6

aescipher 533 261 130 2000 533
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third column give the number of primary outputs and state variables, the fourth gives the

number of scan operations performed, the fifth column gives the number of functions that are

completely identified, the number of dependencies discovered, followed by the total number

of dependencies in the circuit, the function coverage and the dependency coverage are shown

in the last columns. In this table, a total of 17 functions were completely discovered out of

20 functions. The total number of inputs supporting the 20 functions, for s298, is 86 inputs

out of which 83 were identified and only 3 inputs were not identified. In this circuit, we

cannot tell whether these three inputs are real inputs to these functions. The reason for

this ambiguity is that we are comparing our results to the structural input dependency. For

this circuit, the function coverage is 85% and the dependency coverage is 96.5%. We would

like to note that the DPcov is very close to 100% for most of the circuits. This shows that

the procedure discovered most of the dependencies and very few were not discovered. In

this experiment, we used the structural dependency to compare the results produced by our

approach. As show earlier, structural dependencies contain superfluous variable. If we can

determine the superfluous variables, then the DPcov might become 100% for more circuits.

Table 5.3 shows the size of the extracted functions. In this table, every row corre-

sponds to one of the circuits. The first column shows the circuit name, the second column

shows the total number of functions, the third column shows a pair of numbers consisting

of the size of the largest function in therms of the number of inputs and the number of such

function, the last column shows a pair of numbers consisting of the size of the next largest

function in terms of the number of inputs and the number of such function. We noticed that

in every circuit most of the functions are small with that expect of a few. This shows that

the construction by enumeration is possible. In addition, design specification can be used
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Table 5.2: Dependency Generation Results
Circuit gates Tfun Ntries IDfun Ddep Tdep Fcov , DPcov

s298 119 20 1957437 17 83 86 85% 96.5%
s344 160 26 26572 26 121 121 100% 100%
s382 158 27 2678858 24 172 175 88.8% 98.2%
s386 159 13 30645 13 129 129 100% 100%
s400 163 27 2781972 24 172 175 88.8% 98.2%
s420 218 17 3710268 14 179 186 82.3% 96.2%
s444 181 27 2679378 24 172 175 88.8% 98.2%
s526 193 27 2679300 24 164 167 88.8% 98.2%
s641 379 43 5776344 42 499 500 97.6% 99.8%
s713 393 42 5776344 41 485 486 97.6% 99.7%
s820 289 24 1051600 24 213 213 100% 100%
s832 287 24 2576675 22 211 213 91.6% 99.0%
s953 395 52 802901 52 351 351 100% 100%
s5378 2779 228 22770072 216 2232 2313 94.7% 96.4%
s1238 508 32 3505944 26 375 387 81.2% 96.8%
s1488 653 25 80896 25 266 266 100% 100%
s1494 647 25 80896 25 266 266 100% 100%

asecipher 68805 659 812910 659 7860 7860 100% 100%
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Table 5.3: Max Inputs
Circuit Tfun MaxI, NxtMaxI,

s27 3+1 4,1 3,2
s208 8+2 8,2 7,6
s298 14+6 8,2 7,6
s344 15+11 13,2 6,3
s344 15+11 13,2 6,3
s382 21+6 14,4 10,3
s386 6+7 12,3 10,5
s400 21+6 14,4 10,4
s420 16+2 34,1 17,1
s444 21+6 14,4 10,4
s526 21+6 14,2 13,1
s641 19+24 27,1 22,3
s713 19+23 27,1 22,3
s820 5+19 21,1 20,2
s832 5+19 21,1 20,2
s953 29+23 18,1 17,5
s5378 179+49 61,1 56,1
s1238 18+14 23,1 22,1
s1488 6+19 14,6 12,1
s1494 6+19 14,6 12,1

aescipher 130+533 35,128 15,2

for signature matching to deduce the functions with large numbers of inputs.
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Chapter 6

Scope of Future Work

The thesis work discussed so far assumes no knowledge of gate-level netlist of the packaged

IC. Only the input/output specification of the IC is assumed to be know. If the gate-level

netlist of an IC is readily available, the scope of this work can be extended to determine the

flip-flops present in the packaged IC.

Let us assume that verilog netlist of the IC under investigation is available. Using the

industry-standard tools, the verilog code can be converted to a bench circuit. Random test

vectors are generated and applied to both the packaged IC and the bench file. Next-state

values of the flip-flops present in the IC are scanned out. These values are mapped against

the output of the flipflops in the bench file which is extracted from the verilog netlist.

Ambiguity analysis is performed to correlate the flipflops present in the packaged IC

and extracted circuit by applying random test vectors and comparing the outputs of next-

state elements present. Flowchart of the process is shown in next page. Better understanding

of the circuit and functionality of the flip-flops can be known.
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Chapter 7

Conclusion

In this research work, we presented a new approach for generating a circuit netlist by re-

engineering the design through an experiment that uses the scan functions and the design

specification. The proposed approach for re-engineering a general sequential circuit is by

exploiting and intelligently using the scan chain functions and the design specifications

to construct the connectivity of the circuit blocks. The connectivity is then used to dis-

cover/compute the logic expressions and deduce the logical behavior of each block. The

experimental results show that using the proposed approach we are able to construct over

90% of the system functions for a set of benchmark circuits. If the verilog code of the pack-

aged IC is readily available then the scope of this thesis work as discussed in Chapter 6 can

be extended to determining the mapping of the flip-flops present in the packaged IC.
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