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Improving Transmission Efficiency and Scalability for Peer-to-

Peer Live Streaming 

 

Abstract 

By 

ZEMENG LI 

Live streaming applications, especially those based on peer-to-peer networks, are 

becoming popular nowadays. It is widely known that there are still some performance 

challenges on transmission and scalability in peer-to-peer live streaming system. This 

thesis focuses on improving transmission efficiency in live media streaming and 

improving scalability in peer-to-peer live streaming systems.  

First, we improve transmission efficiency in live media streaming by studying chunk 

scheduling algorithms which include Greedy, Rarest First, Mixed, Random and our 

proposed Alternate algorithms, and delivery methods which include Push and Pull 

methods. Based on the evaluation of startup latency and streaming continuity for different 

chunk scheduling algorithms and delivery methods, we discuss how to make an optimal 

choice for better transmission efficiency. Second, we improve the scalability for peer-to-

peer live streaming system by utilizing our incentive model, a bank incentive model, 

which can encourage peers to make more contribution in order to obtain extra benefits 

from their neighbors and the system. As well as applying encouragement to the peers, our 

incentive model can support multiple platforms and the extensibility of incentive 

strategies.  
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Chapter 1 

Introduction 
 

1.1 Motivation 

Nowadays, an increasing number of companies produce various live media streaming 

applications, for example, Youtube, Helix server at RealNetworks [15], Darwin server at 

Apple [18], PPstream [4] and PPLive [3], along with the trend that live media streaming 

applications are widely accepted by Internet users.   

The author participated in the development of a live streaming application at 

RealNetworks, This project, named Media Delivery Service (MDS) inspired by SEDA 

[8], is a staged event-driven architecture, which is intended to support concurrent user 

demands and simplify the construction of well-conditioned services. SEDA architecture 

makes a good contribution to controlling mechanisms and load conditioning, but the 

weakness of this architecture, resulting in scalability and capacity problem, makes its 

performance as poor as other centralized architecture in supporting a large number of 

users. Furthermore, users today have much higher requirements for live streaming 

applications. Figure 1.1 [8] shows a sharp increment of latency when the number of 

simultaneous users is increasing in SEDA system. We observe when the number of 

concurrent requests is increasing, the latency is increasing sharply, and service queue is 

also becoming much longer.  
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Figure 1.1 throughput degradation and performance of tasks pipeline in SEDA [8] 

To solve the scalability problem, a better solution in terms of a decentralized and 

unstructured structure is utilized instead of the centralized one. Peer-to-Peer (P2P) 

networks are naturally a good option. In a P2P network, the capacity of supporting a large 
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number of users comes from the uploading bandwidth of all peers. Meanwhile the P2P 

system is able to guarantee an acceptable playback quality in most peers. 

In our work, one of our goals is to improve the chunk transmission efficiency in P2P live 

streaming system. The second goal is to design a good incentive model which can be 

utilized to encourage peers to make contribution. In this way, we could improve the 

scalability of supporting a large number of users by the achievement of above two goals.  

 

 

1.2 Idea and Contributions 

To achieve our goals, firstly we evaluated chunk scheduling algorithms which include 

Greedy, Rarest First, Random, Mixed, and our proposed Alternate algorithm. Chunk 

scheduling algorithm is the core of the data-driven protocols [17], [13], [12], [20], [21]. 

We simulated these algorithms in C++, conducted experiments in different scenarios, and 

analyzed their characteristics. Meanwhile, we studied delivery methods which include 

Push method and Pull method. We conducted simulations for delivery methods in C++ 

by integrating chunk scheduling algorithms. By comparing different scheduling 

algorithms and delivery methods, we got the direction of improving transmission 

efficiency, which can lead us to choose optimal chunk scheduling algorithm and delivery 

method based on the design requirements for our P2P live streaming applications.   

Second, besides the improvement of transmission efficiency, we propose an incentive 

solution, a bank incentive model for P2P live streaming system. Our bank incentive 

model establishes a reputation system on top of the live streaming applications by 

integrating itself with online activities of the peers, which can monitor a peer’s 
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downloading and uploading, encourage them to make contributions, and help them get 

more benefits from their neighbors and the system. Furthermore, our incentive model can 

be used for non-system-performance issues and support multiple platforms. It is 

particularly useful for a commercial live streaming application.  

 

 

1.3 An Overview of the Thesis 

The remainder of the thesis is organized as follows. In chapter 2, we provide an 

introduction to P2P live streaming and P2P incentives. Chapter 3 describes the research 

on chunk scheduling algorithms and delivery methods. In chapter 4, an incentive model, a 

bank incentive model for P2P live streaming is described, and we demonstrate a 

comprehensive evaluation for this model. Finally, chapter 5 summarizes the thesis.  
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Chapter 2 

Background and Related Work 
 

2.1 Peer-to-Peer Live Streaming 

There are many researches on the engineering of live media streaming from a server to 

clients along with the wide usage of Internet live streaming in our daily life. The 

development of encoding and decoding techniques makes many live streaming 

applications capable of supporting high-quality media streaming. However, serving a 

large number of users simultaneously challenges the scalability of P2P live media 

streaming.   

In order to improve scalability, a solution based on IP multicast was proposed [22] in 

early 1980’s. IP multicast substituted repeatable packets-sending at server by utilizing the 

routers in the network to manage the distribution and replication of media content from 

one source to multiple receivers. Popular IP Multicast routing protocols include DVMRP, 

MOSPF, CBT, PIM-SM etc. Obviously IP Multicast is an efficient solution since all data 

transmission is performed only once at all links. However, it has many weaknesses [25], 

[26], [27]. For example, IP multicast is based on IP layer, and it needs the support from 

network architecture. IP multicast has security and management problems because it is 

open to any multicasting source. It has difficulties for reliability control and congestion 

control, because IP multicast provides best-effort service.  

Application Layer Multicast [26], [10] is regarded as a better solution which was 

proposed in the early of 1990’s. Application layer multicast gains many advantages from 
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its ability that it multicasts data at the application layer by computing, replicating and 

transmitting at the application-layer end point. Researchers summarized Application 

Layer Multicast solutions as three general catalogs: Tree-based, Mesh-based and implicit 

[10], [26], [27], [28]. However, no matter which catalog we utilize, Application layer 

multicast has limited ability to support a large number of users, and it does not solve the 

scalability problem very well [11], [30].  

Recently, with the rapid development of P2P techniques, live media streaming based on 

P2P networks becomes a hot topic. As another better solution, P2P technique 

demonstrates its capacity to solve the scalability problem of live media streaming by 

supporting a large number of users and high simultaneous demand. Some commercial 

application are widely accepted by users, for example PPLive and PPStream, and they 

demonstrate that P2P techniques are another better solution to solve the scalability 

problem of live media streaming, which is supposed to support a large number of users 

and high simultaneous demands. The first widely used P2P system is Napster [31], [32], 

and the early research was mainly focused on the file sharing and distributed hash tables 

(DHT). DHT is used to construct a special structure for all peers, and hash tables are 

distributed into each node. Chord, CAN, Pastry and Tapestry belongs to this area. For the 

P2P file sharing, most applications are widely used nowadays, for example, Gnutella, 

BitTorrent, KaZaA, eMule. 

P2P file sharing applications are growing rapidly, which inspires researchers to focus on 

supporting live media streaming based on the P2P networks [33], [34], [35]. It also 

inspires researchers to apply similar idea in P2P file sharing that media content is divided 

into chunks for transmissions based on sharing protocols, for example BitTorrent. P2P 
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networks for live media streaming becomes a hot topic because of its capability to solve 

the scalability problem of supporting a large number of users.  

When P2P techniques for live media streaming were well developed, many scheduling 

and delivery algorithms were proposed at the same time, for example data-Driven 

algorithms, mesh-based algorithms, swarming-based algorithms, and pull-based 

algorithms. These protocols use random process to pick neighbors for a peer when it 

constructs overlay. For the streaming, they use the similar idea like BitTorrent: media 

content is divided into many chunks. Each peer periodically sends content information to 

its neighbors. When peers receive the notifications from their neighbors, they explicitly 

request chunks from their neighbors who may already store those chunks. In each peer, a 

buffer window is used to manage the chunk requests, uploading and downloading. In this 

way, a peer is a requester who requests media content for playing back, as well as a 

provider who provides content to its neighbors. 

 

2.2 Peer-to-Peer Incentives  

P2P live streaming applications have many advantages compared against traditional 

media streaming, and more users choose to join this community. Most of these 

applications are developed as an unstructured overlay network based on data-driven 

protocols. Since P2P system is an open system and users are free to join and leave, 

researchers are inspired to design incentive mechanisms to solve management problems 

and improve scalability. For example, in eDonkey and eMule, each peer maintains a 

metric for every other peer, proportional to the size of the file it obtained from them. The 

metric determines serving priorities of other peers in that peer’s queue [36], [37]. KaZaa 
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utilizes a participation level metric which is defined as the ratio of uploaded to 

downloaded file sizes and determines the file search radius [36], [38]. One 

implementation of incentive mechanism is through a reputation mechanism, which 

attempts to estimate the behavioral profile of a peer in its transactions with other peers by 

recording and studying a peer’s online activities. In [39], peers use direct and second-

hand information to assess the behavior of other peers. With a statistical approach, 

erroneous or incompatible reputation rankings are prevented from inclusion in reputation 

updates [36]. In [40], the reputation of a peer is based on its past interactions and on 

indirect information from a selected subset of peers through a weighted voting scheme 

and can be used for bandwidth allocation or determination of query time-to-live (TTL) 

duration [36], [41]. In [42], an iterative distributed algorithm for trust information 

aggregation is provided, where each peer computes the maximum positive eigenvalue of 

the trust matrix. The eigenvector corresponding to that eigenvalue is the global trust 

vector of peers. Peers use trust values to select servers and avoid downloading inauthentic 

files [36]. In the model of [43], each peer is characterized by its reputation that models its 

past transaction behavior, as well as by its inherent tendency to cooperate. The reputation 

of a peer converges to its true inclination to cooperate [36]. Finally, [44] shows that 

certain server selection and contention resolution policies need to be adopted by peers 

when acting as clients and servers respectively in order for a reputation scheme to fulfill 

its purpose [36]. 

In order to improve transmission efficiency and scalability, we are not only focused on 

the optimization of scheduling and delivery algorithms, but there are also some 

challenges we need to deal with in P2P incentives. We simply suppose all peers can 
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obtain an optimal playback quality as long as the total upload capacity supply is higher 

than the system’s minimum bandwidth demand.  

For example, there are 10000 simultaneous users in the system. If a user watches a video 

with 360p resolution, it requires 700kbps download bandwidth to fluently play this video. 

The total bandwidth demand to support all 10000 users is 7 Gbps. 7 Gbps is almost a 

huge number for a server. However, 360p is just the lowest video quality. With the rapid 

development of H.264 codec, video quality has already gotten to 1080p from 480p/720p. 

We can define   

System Efficiency Ratio = Total Upload Capacity / (#users * min Bandwidth Demand) 

The more upload bandwidth a system has, the more user and better playback quality it 

can support. We observe that a critical challenge may hinder the system’s efficiency. No 

matter how we improve transmission algorithms, the system needs more upload capacity 

to improve scalability and to support a large number of users. Inspired by this observation, 

we propose that a good incentive strategy for the P2P live media streaming is extremely 

important, which should be able to encourage peers to make more uploading during 

online status.  
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Chapter 3 

Improving Transmission Efficiency in P2P Live Streaming 
 

3.1 Problem Description and Motivation 

P2P live streaming utilizes similar idea as BitTorrent, which is the most important work 

in the P2P community. In both of them, a media is divided into chunks for transmission. 

However, P2P live streaming has much difference from P2P file sharing. On one hand, 

P2P live streaming demands highly due to its real-time requirements. For example, P2P 

live streaming requires low startup delay, smooth playback, and good video quality. On 

the other hand, P2P live streaming does not require a complete copy of the media when 

user is ready to play back a video. Even when only a small part of content is ready, user 

can start watching the movie immediately.   

The reason for the difference between P2P live streaming and P2P file sharing lies in 

demanding and transmission algorithms. A user requests the most demanded chunks to 

satisfy the real-time demand in P2P live streaming. These most-demanded chunks are 

managed and maintained by buffering at each peer. In other words, the chunks in the 

buffer are those that are ready to be played immediately. Streamed media is divided and 

packetized into chunks for transmission when the media is requested. The user’s media 

player manages a buffer window for downloading and feeding the playback process. 

Users can play not only a continuous media time range, but they can also forward or 

backward or jump-to a time point. Corresponding to user’s request, media player adjusts 

its demanded media range. This results in updating the buffer window. Generally there 

are two basic steps for streaming a media. In the first step, a peer selects the demanded 
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chunks by chunk selection algorithms. When the media player confirms the chunks it will 

download, it explicitly requests these chunks from its neighbors. In the second step, 

neighbors forward the demanded chunks to the requester when they have available copies. 

During this step delivery method takes the major responsibility.  

The scheduling algorithms and delivery method are extremely critical to a live streaming 

system, and they are also the core of data-driven approaches. Furthermore, streaming 

quality, such as smoothness, delay, video quality and transmission speed depends on 

scheduling algorithms and delivery methods.   

The necessity that researchers need to improve playback continuity and streaming quality, 

reduce delay, and improve delivery efficiency is enhanced by the trend that users raise 

their requirement for live media streaming, and meanwhile live media streaming 

applications are becoming more bandwidth consuming. It is helpful that we clearly 

discuss the impact of scheduling algorithms and delivery method to the P2P live 

streaming systems. 

In this chapter, we study different chunk scheduling algorithms, chunk delivery methods, 

and their potential effect on the system. Then we propose a new chunk selection 

algorithm. By clarifying their difference based on the evaluations, we are able to make a 

better choice and get optimal efficiency when we design a P2P live streaming system.  
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3.2 Chunk Scheduling Algorithms 

In this section, we present the ideas of chunk scheduling algorithms. Every peer 

maintains a buffer window W that can cache up to n chunks. We give a definition that W(i) 

is the ith chunk in the buffer window, where i = [1, n], i.e. W(1) is the left-most chunk in 

the buffer, and W(n) is the right-most chunk in the buffer. The window W is always 

moving forward along the media content. In other words, the buffer acts as a sliding 

window which covers the demanded media range. Each buffer position is initially empty, 

and will be filled by the chunk scheduling algorithms. When the empty positions in the 

buffer are filled, the peer is able to playback the media content in the buffer window. In 

the P2P networks, all peers form a community. Every peer is a requester who requests 

and downloads the chunks from its neighbors. Meanwhile, it is also a provider who is 

willing to upload its available chunks to other requesters. As a result, chunk scheduling 

can be generally modeled as a pull process, in which each peer selects another peer as a 

neighbor to download chunks which are not available in its local buffer window. 

Chunk scheduling algorithm determines the order of the demanded chunks from W(1) to 

W(n). Simply it means that chunk scheduling algorithm determines which chunk will be 

downloaded first, and which chunks will be downloaded next. There are several popular 

chunk scheduling algorithms. 

Greedy algorithm aims to fill the empty chunks in the buffer closest to the playback 

deadline in the first order. It means that a peer will request and download the chunks 

which are closest to playback deadline in the top priority.  



13 
 

From a single peer’s point of view, greedy algorithm is intuitively the best algorithm for 

streaming. Since peers are focusing on the short-term playback needs, it has a significant 

advantage in minimizing the startup latency. However, from a system wide view, 

especially when the peer population is large, greedy algorithm has its disadvantages. For 

example in improving the playback continuity, greedy algorithm is worse than rarest first 

algorithm. To be described below, here we present the pseudo-code of greedy: 

 

Greedy (W) 

FOR 1i   to n    // n is the buffer size 
         IF ( )W i  is empty    // ( )W i is the ith position of buffer window 
              Select ( )W i ; 
              Return; 

Table 3.2.1 Greedy Algorithm 

Rarest First algorithm selects a chunk which has the minimum number of holders among 

the neighbors in the first order. The rarest first algorithm works as follows. Each peer 

maintains a list of the number of copies of each chunk in its peer set. It uses this 

information to pick out the rarest chunks. Let m be the number of copies of the rarest 

chunk, then the index of each chunk with m copies in the peer set is added to the rarest 

chunk set. The rarest chunk set of a peer is updated periodically. Each time a peer selects 

the next chunk for downloading randomly in the rarest chunk set [16]. Rarest First 

algorithm ensures high diversity and availability of the chunks, such that it is effective in 

improving system-wide playback performance. The following is the pseudo-code of 

Rarest First algorithm. 
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RarestFirst (W) 
 
FOR i n  to 1    // n is the buffer size 
         IF ( )W i  is rarest    // ( )W i is the ith position of buffer window 
              S  ( )W i ;  // S is the rarest chunk set 
random-select (S) 
Return; 

Table 3.2.2 Rarest First Algorithm 

Mixed algorithm [9] is a combination of rarest first and greedy algorithms. In mixed 

algorithm, the buffer window W will be partitioned by a demarcation point m. Initially 

the Rarest First policy will be used in first-order on the right part of buffer which is 

divided by the demarcation point. If no chunk can be downloaded using rarest first policy, 

the Greedy is used on the left part of buffer in the second order. Mixed algorithm can take 

advantage of both rarest first and greedy. By devoting a fraction of the buffer, it can 

achieve better continuity and lower startup latency.  

Mixed (W) 
FOR i n  to m    // m is the mixed point 
         IF ( )W i  is rarest    // ( )W i is the ith position of buffer window 
              S  ( )W i ;  
IF S is not empty 
        Return random-select(s); 
 
FOR 1i   to 1m     
         IF ( )W i  is empty   
              Select ( )W i ; 
              Return; 

Table 3.2.3 Mixed Algorithm 

Random algorithm, as indicated by the name, randomly selects the index of empty 

chunks in the buffer. We present the pseudo-code of random algorithm.  
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Random (W) 

While(true) 
      ( )i random n ; 
      IF ( )W i  is empty    // ( )W i is the ith position of Buffer Window 
           Select ( )W i  
           Return 

End While           

Table 3.2.4 Random Algorithm 

So far we discuss 4 different chunk selection algorithms. There are two basic aspects they 

are dealing with, one is to reduce startup latency, and the other one is to improve 

playback continuity. Rarest First algorithm is much better in dealing with scale, and 

greedy is better in playback performance in small scale networks. Both of them have their 

advantage and focuses. The intuition of their different advantage inspires us to propose a 

new chunk selection algorithm: Alternate algorithm. In alternate algorithm, we utilize 

greedy policy and rarest first policy in an alternate order. Firstly, alternate algorithm 

selects the next empty-chunk which is closest to the playback deadline. In the next time, 

it selects the rarest chunk for downloading. Secondly, alternate algorithm goes back to 

the first step and starts the loop again. The idea of alternate algorithm is to use buffer 

space to improve startup latency and playback continuity performance simultaneously. 

The following is the pseudo-code of alternate algorithm. 
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Alternate (W) 

Initiation 
1i  ;    // for Greedy 

j n ;   // for Rarest First 
AlgType = Greedy; 
Iteration: 
While(true) 
      IF AlgType == greedy 
            IF   ( )W i  is empty    // ( )W i is the ith position of buffer window 
                  Select ( )W i ;  
                  1i i  ; 
                  AlgType = Rarest First; 
                  Return; 
            ELSE 1i i  ; 
      ELSE  IF  ( )W j is rarest  
                      Select ( )W j ; 
                     1j j  ; 
                      AlgType = Greedy; 

Table 3.2.5 Alternate Algorithm 

 

3.3 Evaluation of Chunk Scheduling Algorithms 

Users often rates a system based on some basic qualities: playback continuity, delays, 

transmission speed and media quality. Since users care about transmission speed mostly 

by evaluating buffering time, startup delay and continuous playback, here we use two 

major metrics to evaluate the performance of a P2P streaming application:  

Startup Latency: startup latency refers to the delay time a user should wait before starting 

playback.  

start-up latency =  (the time of 1st playback)- (start time) 
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Continuity: continuity means the degree of interrupt (delay) during playback. We define 

it as the percentage of delay time in total playback time: 

playback continuity = (1-(total delay time/finish time)) *100% 

Note: the total delay time does not count in the first chunk’s delay. 

To study the performance and impact of a variety of chunk scheduling algorithms, we 

implemented these algorithms in the simulator which we programmed in C++. To 

simplify the design, in our simulator the network topology is generated by a uniform 

distribution model. That means the neighbors of a peer is uniformly assigned for that peer 

initially.  

The following is the design of our simulator. In the simulation, there is a group of hosts, 

which represent peers. Each peer maintains a list of available and demanded chunks. 

Server serves as the Tracker in the P2P system. Metrics are used to collect information 

from the server and all peers. TestParameter is used to conduct simulation experiments.   
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Table 3.3.1 Class relationship in simulator design 

Table 3.3.2 shows the testing configuration in our simulations.  

Parameter value 
Peers 100 
Chunks 1000 
Demarcation Mid-point of buffer 
Buffer size 20 ~ 100 

Table 3.3.2 simulation configuration for evaluating scheduling algorithms 

First, we start our simulation with different peer’s population. In this simulation, two 

scenarios are used to study the efficiency of chunk scheduling algorithms and impact on 

overall network performance on different network size. With the same simulation 

Metrics

Metrics()
outputMetrics()
getAvgContinuity()
getAvgLatency()
output_All_Metrics()

Server

Server()
occupyPeer()
executeJob()

TestCase

TestCase()
setParameter()
createHostList()
getNeighbourList()
runJob()
randomGreedyTest()
randomRarestTest()
main()

Chunk
filled
selected

TestParameter
windowSize
totalChunk
totalHost
uploadCapacity
neighboutListFile

-$instance

ChunkSelectionAlgo
(from SelectionAlgorithm)

Host

Host()
setNeighbour()
setStartTime()
occupyPeer()
executeJob()
setBusy()
releaseBusy()
getBusy()

chunkList[]

PeerSelectionAlgo
(from SelectionAlgor...)
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configuration, one scenario is used to study the startup latency in different chunk 

scheduling algorithms. The other scenario is used to study the continuity. In each 

scenario, the buffer size of every peer is the same, which is equal to 20. The unit of buffer 

size is not actual data size, but a relative one. Here, it means that the buffer is able to 

contain 20 chunks in total. The sliding buffer window only slides when all chunks in the 

window are filled. To guarantee the fairness, every peer requests and playbacks the same 

media file, which has 1000 chunks of size in our simulation, and all peers start 

downloading at the same time. To simulate a distributed system using a single thread 

program, the running order of peers is randomly shuffled at each time slot.  

Figure 3.3.1 shows the average startup latency of chunk scheduling algorithms for the 

experiments with different peer population in the networks. In Figure 3.3.1, we observe 

that Greedy algorithm’s startup latency is very low since it is focused on satisfying the 

immediate playback demand.  

Theoretically, Alternate algorithm deals with most-demand chunks and rarest chunks in 

alternate order, so it handles the startup latency in half of its effort. As we observe in the 

figure, Alternate algorithm’s startup latency is also very low, and its performance is 

almost the same as the Greedy algorithm.  

Rarest First algorithm has the worst performance on startup latency. Because Rarest First 

is not focused on the most-demanded chunks, but on the rarest chunks in the networks 

with the first order, so it is better in improving the overall performance of the networks 

and average continuity at each peer. In the Figure 3.3.1 and Figure 3.3.2 we can observe 

such expectation that Rarest First’s startup latency is worst when it is compared with the 
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other four chunk scheduling algorithms. Moreover, the startup latency increases with the 

increasing number of peers. The reason is that all peers start up at the same time slot and 

only server has the complete media source at the beginning, so more peers in networks 

will induce severer competition. As a result, the total time of successfully filling the 

whole buffer window will be much longer.  

In the Mixed algorithm, we set its demarcation point at the middle of buffer window in 

our simulation. It also shares the same network configurations which are used in the 

simulations for Greedy and Rarest First. We observe in Figure 3.3.1 that the average 

startup latency with mixed algorithm is nearly half of Rarest First algorithm, and the 

trend of curve is also similar. Since Mixed algorithm is a pure combination of Greedy and 

Rarest First algorithms, Mixed algorithm’s startup latency is between Greedy and Rarest 

First.   

Compare with the other four chunk scheduling algorithms, the average startup latency 

with Random algorithm is not stable, but it is better than Rarest First and Mixed in 

dealing with the startup latency. However, when we evaluate the Random algorithm from 

the aspect of continuity, Random algorithm is also a good algorithm.  

 



21 
 

 

Figure 3.3.1 Average startup latency comparison in different network size 

 

Figure 3.3.2 Average continuity comparison in different network size 
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number of peers. As we mentioned before, all peer start up at the same time and use same 

chunk scheduling algorithm. More peers in networks will increase the diversity of chunks 

and improve the availability of chunks. As a result the general continuity will increase. 

It is very interesting that Random algorithm’s performance is very good, especially for 

small-size networks. It seems there is contradiction that, if we evaluate continuity, 

Random algorithm is better than Rarest First algorithm which should be theoretically 

better than Random. It is probably due to our simulation configuration. Since in our 

simulations the networks size is not very large, in each time slot if the chunks a peer 

select fail to be filled, the peer will try next chunk until success. Therefore the continuity 

of Random algorithm is possible to overcome other algorithms, because Random is able 

to increase the diversity of chunks. However, if we set the network size to be large 

enough, i.e., there are more diversity and plenty of chunks, the performance of Rarest 

First is better than Random algorithm.  

For Greedy algorithm, its performance is the worst, because Greedy always focuses on 

the most-demanded chunks, not the continuity. However, with the increasing number of 

peers, its performance increases more rapidly than the other chunk scheduling algorithms. 

The competition among peers will not become stronger and it is more likely that each 

peer can successfully download the chunk it requests in Greedy.  

Alternate algorithm’s performance is better than Greedy algorithm, because it tries to 

download the most-demanded chunk for once in every two time slot. It is very interesting 

that Rarest First algorithm and Mixed algorithm’s continuity are very similar. Mixed 

algorithm does not improve continuity as well as we expect.  
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Based on our experiments, generally we can conclude that Rarest First algorithm and 

Mixed algorithm have no advantages on startup latency in either large or small networks. 

Alternate algorithm and greedy algorithm are best evidently. 

Second, we study the performance of chunk scheduling algorithms in the conditions of 

changing buffer window size. In these simulations, we also test these algorithms in two 

scenarios as we use in testing different network size. One scenario is focused on the 

startup latency, and the other scenario is focused on continuity.  Since in this set of 

simulations we are focused on evaluating the performance with different buffer size, so 

the network’s configuration is the same, that peer’s population is the same in all 

simulations. Furthermore, the media source keeps the same in order to guarantee the 

fairness, whose size is always 1000 chunks. The sliding buffer window only slides when 

all empty positions are filled. All peers start their jobs at the same time. To ensure the 

fairness, the running order of peers is still randomly shuffled at each time slot. 

Figure 3.3.3 shows the average startup latency of different chunk scheduling algorithms 

with changing buffer size. Since chunk scheduling algorithm is used to fill empty 

positions in the buffer window, by changing the buffer we evaluate the efficiency and 

performance of these chunk scheduling algorithms. In Figure 3.3.3 we observe that 

Greedy algorithm is always the best algorithm in handling startup latency, since its first 

priority is to download the most-demanded chunks in the buffer. We also observe that 

Alternate algorithm is almost as good as Greedy algorithm. In this Figure we can see that 

Rarest First algorithm has the worst performance on startup latency, as we expect Rarest 

First algorithm is not good at reducing startup latency. Since Mixed algorithm is a 

combination of Greedy and Rarest First, its performance is between them. For Rarest 
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First algorithm and Mixed algorithm the latency increases with the increasing buffer size 

linearly. The number of chunks which are downloaded before the user starts the first 

playback depends on the buffer size in Rarest First algorithm and in Mixed algorithm, 

and the startup latency for the first played chunk also depends on buffer window size. If 

the buffer size is bigger, then the startup latency could be longer. Compared with Rarest 

First and Mixed algorithms, the startup latency of Greedy/Alternate/Random algorithms 

is independent of the buffer window size.  

 

Figure 3.3.3 Average startup latency comparison in different window size 

 

Figure 3.3.4 Average continuity comparison in different window size 
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The experiment result of continuity is similar as we study in evaluating startup latency. 

For most of the algorithms except for Random, their continuity keeps constant when the 

window size is increasing. It means the continuity is independent of the window size. 

Considering the evaluations on changing network size, we notice that network size has a 

significant impact on continuity. Because if there are more peers in the networks, they 

increase the diversity of chunks, but the buffer window size is not relative with the 

continuity. 

All of above testing cases observe the metrics when jobs of all peers are finished. Now 

we study the metrics during the playback. In this simulation, the population of peers is set 

to be 100, media source size is 1000 chunks, and we set buffer window size to be 40. 

Since startup latency only determined by the time slot of first playback, so here we only 

evaluate the continuity curve at different time slot in Figure 3.3.5. In this figure, we find 

that all algorithms’ trends are similar. The continuity increases with time, and the 

continuity become stable after a particular time. Therefore, we discover that when the 

number of chunks achieves a particular number, the continuity will stay on a stable and 

good value.  
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Figure 3.3.5 Continuity during playback 
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demanded chunks. These communication messages incur some control overhead. 

Meanwhile, it becomes the source of delay.  

A good solution for these problems is to integrate the push method with the pull method. 

A brief description about Push-Pull delivery method is as follows: 

 First, each peer uses the pull method as a startup,  

 Second, after a startup when chunks are received, a peer will receive the next 

chunks from its neighbors without explicit demand. 

 Third, when a peer receives a chunk, it will relay/push this chunk to those 

neighbors who might be interested with this chunk.  

To improve transmission efficiency and reduce delay, Push method has significant 

advantages compared again Pull method: since a peer is no longer to send a request for 

every chunk in the Push method, the provider positively sends continuous chunks to the 

requester based on requester’s previous demand information, instead of waiting for 

arrivals of every demand. In this way the delay can be reduced and the diversity of 

chunks are also improved. Furthermore, by reducing the number of explicit requests 

between peers, the system reduces the control overhead, and push method efficiently 

utilizes the remaining bandwidth. Hence, the transmission delay will be reduced and 

playback continuity can be improved. Meanwhile, push method ensures high diversity 

and availability of the chunks. It means more copies of media content are distributed into 

peers.  
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3.5 Evaluation of Delivery Methods 

To study the performance of Push and Pull delivery methods, we use playback continuity 

we define in section 3.3 as our major metric. Since Push method utilizes the Pull method 

as an initial step, Push method is the same as Pull method in reducing startup latency. As 

a result, we do not consider the startup latency in this scenario. In our experiment, there is 

one tracker, peers and one log-server used for collecting data for analysis.  

Initially, tracker is supposed to connect with all peers, and each peer has several 

neighbors (20% of population and randomly picked), and sources (a complete copy of a 

file) are distributed randomly to some peers. Although at an initial step each peer has 

randomly-picked neighbors, in our simulation each experiment for testing different 

strategies share the same overlay. This guarantees the correctness of comparisons. In the 

following set of test cases, the peer’s population increases, the fluency is evaluated in pull 

and pull-push mode. Following figures are the experiments results. 

 

Figure 3.5.1 Average continuity in Pull method 
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Figure 3.5.2 Average continuity in Push method 
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instead of pure Pull method. Figure 3.5.2 shows that when the peer’s population is 

increased, the average continuity will also increase constantly till up to almost 1 (the best 

playback continuity). We observe that Push method has a significant impact in improving 

playback continuity, since Push method helps chunks distributed more broadly and 

rapidly. Figure 3.5.3 shows a comparison of Push method and Pull method: Push mode 

can increase the playback continuity. From the point view of the whole system, system 

has better performance in Push mode. Take Rarest First for example (in Fig. 3.5.3), the 

average Fluency can be increased by 149%. This is an amazing improvement for 

playback.  

 

3.6 Summary 

The efficiency of chunk selection algorithm plays a significant role in the P2P live 

streaming system. We evaluate the performance of different chunk scheduling algorithms. 

We observe that Greedy has the lowest startup latency, Rarest First is much better in 

scalability, and Greedy is much better in a small scale networks. Mixed has better 

efficiency in playback continuity. We designed a new algorithm – Alternate algorithm. 

Compared with other chunk selection algorithm, Alternate algorithm presents a 

comprehensively good performance. 

Meanwhile, Push method is also able to improve streaming efficiency. It reduces the 

latency, increases the fluency, and increases the diversity of media chunks. The 

simulation shows that Push method has better performance in utilizing bandwidth 



31 
 

capacity. It can distribute media content rapidly and broadly, that indicates system has 

smaller overhead and users have lower delay. 
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Chapter 4 

Improving Scalability for P2P Live Streaming 
 

4.1 Problem Description and Motivation  

In chapter 3, we discussed scheduling algorithms and delivery methods in P2P live media 

streaming. Based on the evaluation and study of scheduling algorithms and delivery 

methods, we are able to improve the transmission efficiency of P2P live streaming. In this 

chapter we present an incentive model to improve the scalability for P2P live streaming 

system. 

We use an example to illustrate the scalability problem in P2P live media streaming 

system. For example, there are 10000 active users in the system, and all of them are 

streaming videos based on 360p resolution. To support their real-time demand, we 

calculate that the system needs about 7 Gbps uploading throughput. If the video quality 

increases, the system requires higher upload throughput to support all users. According to 

our definition: 

System Efficiency Ratio = Total Upload Capacity / (#users * min Bandwidth Demand) 

Except the improvement of transmission efficiency, another challenge for the P2P 

systems is that the support capacity depends on the overall upload throughput in the P2P 

live streaming system. The larger the overall upload throughput is, the more users and 

higher streaming quality the system can support. To improve the scalability, we need to 

design an effective incentive strategy which is able to encourage peers to make more 

uploading, so that the system can get more upload throughput.  
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In P2P file sharing systems, typical incentive strategies focuses on the fairness and free-

rider problems, while incentive strategies should focus on encouraging peers to make 

contribution and offering extra benefits to good-reputation peers in P2P live streaming 

system. In this chapter, we present an incentive model, a bank incentive model.  

 

4.2 Introduction to Bank Incentive Model 

The idea of reputation based on a peer’s contribution and consumption is widely used as 

a common incentive solution in many P2P systems for incentive purposes. However, 

most of these works focus on fairness and free-rider problems. There is no such a work so 

far, which provides an incentive solution especially for P2P live streaming. Our work 

focuses on designing incentive solution for P2P live streaming system.  

Nowadays H.264/AAC codecs which can support high resolution videos are widely used 

in the Internet streaming. The resolution of videos varies from lower-to 360p to up-to 

1080p. High resolution videos have higher real-time requirements. It is a challenge for a 

P2P system to support high quality video streaming, because it needs to effectively utilize 

remaining bandwidth at peers. To encourage peers for more contribution and utilize 

remaining bandwidth at peers, we propose a banking system which can be used as an 

incentive solution.   

In this chapter, we present the advantage and features of our incentive model. First, it 

improves the scalability in P2P live media streaming. Second, it deals with not only 

system performance issues, but also non-system issues. Third, we present how to use this 
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model in different platforms/systems, and how to extend incentive strategies in this 

model.  

Here we present the components of our bank incentive model, it has 3 major components: 

I Peer’s Bank Account: 

 Deposit Account (balance); 

 Credit Account (credit-in-use / credit limit); 

 Credit Level 

 Factors that affects a peer’s the Bank Account 

II Bank Working Model: 

 How to support credit query 

 How to maintain peer’s account 

III Credit Level Rate Model; 

 Credit Level Hierarchy 

 Credit Rating: How to evaluate a peer’s credit level 

The first component is the bank account of each enrolled user in the system. Every peer is 

encouraged to register a user ID. Otherwise, a guest has only basic benefits and 

functionalities, and the system will constrain a guest in many online activities. A peer’s 

bank account includes a deposit account, a credit account, and a credit level which is 

considered as a peer’s reputation. The bank account is relative with a peer’s downloading 

and uploading activities. The second component is the working model which is 

responsible for managing and utilizing a peer’s bank information. The third component is 

credit level rating model which is used to manage a peer’s reputation. 
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4.2.1 Peer’s Bank Account 

Every registered peer (user) has an associative bank account in our model, and the 

account composes of three parts: Deposit Account, Credit Account, and Credit Level. 

A Deposit Account stands for a peer’s available balance which highly depends on a peer’s 

income, and the income is computed based on a peer’s contribution.  

Credit Account includes two parts: credit-in-use and credit-limit. Credit-in-use has the 

meaning of consumption, which indicates the volume of chunks a peer has downloaded 

from its neighbors. Credit-limit, as indicated by the name, constraints the overall credit a 

peer can finally use. In another words, if the credit-in-use is greater than credit-limit, this 

peer cannot download any more from its neighbors until it pays off its credit-in-use.  

Credit Level has the meaning of reputation. If a peer has higher credit level, it can be 

accepted by more neighbors in the P2P community and it can get more benefits from the 

system. The Credit Level is the core that drives the incentive strategies. 

We take an example to illustrate how a peer’s bank account is working. For example, 

when a peer named Alice joins the system, her available balance is 3000 points in her 

Deposit Account. Meanwhile, her credit-in-use is 800 with the credit-limit of 1500 in 

Alice’s credit account. It means Alice has accumulated 800 point for her downloading 

activities, and she can continue to download (consume) 700 point until she use off all her 

credit-limit of 1500.  

For a peer’s bank account, we further define: 
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Account Balance =  DepositBalance + Income*(1+bonus) – CreditInUse (1-reward) 

When a new-comer with both of bonus and reward being zero consumes 100MB content, 

the incentive model requires that the new-comer needs to contribute approximate 100MB 

content to its neighbors in order to keep the account balanced. If the new-comer fails in 

its contribution, its available account balance will decrease. 

When a user regarded as a good credit peer with bonus and reward being greater than 

zero downloads 100MB content, it could upload less than 100MB content to balance its 

account. To simplify description, we take Alice for the example and we assume bonus = 

reward = 0. Alice’s Bank Account: 

Alice’s Status Credit Deposit 

Initial Status  0 / 1500 0 

Hours later 450 / 1500 +600 

Pay credit 0 / 1500 150 

Credit limit increase  0 / 1700 150 

Alice’s Account Balance 

 = DepositBalance + Income*(1+bonus) – CreditInUse (1-reward) 

= 0 + 600 – 450 

= 150 
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Initially, Alice’s credit-limit was 1500. She downloaded nothing, and her saving was zero. 

After she downloaded 450MB content, her credit-in-use was 450. At the same time, she 

also uploaded 600MB content to her neighbors (making contributions). Because of her 

contribution, her income was 600 during this process. Later on she used her income to 

pay for her credit. Finally because of her contribution, she was rewarded for 200 points of 

credit limit add-up. As a result, Alice played back media of 450MB, and contributed 

600MB media to neighbors. Her credit line increased by 200 points, and kept 150 points 

deposit for future usage. 

Table 4.2.1 presents a variety of factors that affect a peer’s bank account.  

For the income, income is computed directly based on a peer’s uploading (contribution). 

If a peer is willing to perform as a helpmate for the system, for example it provides 

additional service to other peers, which is supposed to be taken care of by the system. 

This peer gains income for its helpmate activities. If a peer is willing to be a Push-method 

helpmate, it also gains income for its kindly contributions. 

For credit-in-use, obviously the downloading is used to compute a peer’s consumption 

(credit-in-use). If a peer is willing to provide debit to its neighbors, it is also considered 

as consumption. 

For credit-limit, it is directly associated with the credit level. The higher the credit level is, 

the higher credit limit a peer can get to. 
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Income (deposit) Credit-in-use Credit Limit Credit Level 

Contribution 
(Upload) 

Consumption 
(Download) 

Historical 
Contribution 

Historical 
Contribution 

System Helpmate Debit  Historical Loan 

Push Helpmate   Historical System 
Help 

   Historical Pull-Push 
Help 

 

Table 4.2.1, Factors affecting a peer’s bank account 

 

 

 

4.2.2 Bank Working Model 

Section 4.2.1 presents the major components of the bank incentive model. In this section, 

we present the corporation of the components of our bank incentive model.  

There are three general steps. In the first step, peers make queries and answer queries in 

the system. In the second step, peers download chunks based the availability of media 

chunks and upload chunks based the requests of their neighbors. In the final step, peers 

send report, and the Bank Server updates the accounts of peers. Figure 4.2.2 displays the 

communication flows between peers in the banking system.  
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Figure 4.2.2 Communication message flow in bank working model 

The following example presents how this model works out between peers. Alice wants to 

playback a movie, she connects to Bob as her neighbor. Then Alice sends a request to 

Bob, saying “I want to download some content from you”. When Bob receives her 

request, Bob sends a credit query to Bank Server, saying “I want to check Alice’s credit 

level”. Bank Server responds to Bob the credit report of Alice. When Bob receives the 

credit report, he will make a decision whether or not to accept Alice’s request based on 

Alice’s credit report. If Alice’s request is accepted by Bob, Bob will send media chunks 

to Alice. Otherwise Bob could deny Alice’s request if Alice’s credit level is not 

acceptable for Bob. Both Alice and Bob will report to the Bank Server periodically the 
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transaction information between them. Based on this information, the Bank Server will 

update Bob and Alice’s bank account and credit level.  

 

4.2.3 Credit Level Rating Model 

After sorting and organizing the peers based on their credit levels in our bank incentive 

model, our model establishes a Credit Level Hierarchy which is the core of implementing 

incentive strategies in the system. With the corporation of the Credit Level Hierarchy, the 

bank incentive model is able to support credit query and identification by managing the 

credit levels in the Bank Server, which form a bottom-up hierarchy in the Bank Server. 

Compared with users at bottom who are identified as bad credit peers, those at top have 

highest credit level who are considered as good credit peers.  

Figure 4.2.3 presents a general hierarchy of the credit levels of peers. 

 

|------------------------------------- Top Credit Level 
| 
| 
|-------- Alice’s Credit Level (eg. 800) 
| 
| 
| 
| 
| 
| 
|-------- Bob’s Credit Level (eg. 200) 
| 
|------------------------------------- Bottom Credit Level 

 

Figure 4.2.3 Credit level rate of peers 
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The Bank Server is responsible for organizing all peers into a hierarchy, so that this 

hierarchy can be used as the core of incentive strategies. For example, Alice’s credit level 

is higher than Bob. If Bob wants to download chunks from Alice, Alice could deny his 

request as an option or Bob will be put behind in Alice’s service queue, just because 

Bob’s credit level is lower than Alice’s. So for any peer, if it wants to obtain more 

benefits from its neighbors, it has to contribute. That’s the reason this credit hierarchy can 

be used to encourage a peer’s contribution as an incentive factor. 

Another incentive reason is that, many bonus benefits and functions will be unlocked 

with the increase of Credit Level.  

 

4.3    Improving Streaming Performance 

4.3.1 Query ACK and Deny 

As we present the working model at 4.2.2, a peer can deny a requester’s demand if the 

requester has a lower credit level after the peer looks up the credit information at the 

Bank Server which is responsible for managing a peer’s credit.   

For example, Alice connects Bob as her neighbor. She sends a request to Bob in order to 

download chunks from Bob. When Bob receives her request, Bob will check Alice’s 

credit level at the Bank Server. If Alice’s credit level does not meet Bob’s expectation (in 

our model, this expectation is ranged based on Bob’s self-credit-level by a lower-bound 

threshold), Bob will deny Alice’s request.  
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In this scenario, a peer is encouraged to improve its credit level by making contributions 

(uploading) in various ways. Otherwise its credit level will be far away behind its 

neighbors’ credit level, and most of its neighbors could deny its request.  

 

 

4.3.2 Priority in Service Queue 

In our bank incentive model, we utilize priority policy as another incentive strategy, 

which is the most important incentive strategy in our model, since priority policy is also 

widely used even in the real world, for example vip customer in shopping or waiting 

room. A user with better credit level is considered as the one that has higher priority in 

our incentive model, and it could be served by its neighbors in first order. Normally, a 

peer has a limit of the maximum number of peers which it can support in a unit time, (no 

matter it’s a software-default value or a user-customized value). Priority policy does not 

concern about the arriving order of the requesting messages, but concern about the credit 

level of the peer who sends this request message. This feature ensures that a request could 

be processed in a first order even it arrives in a later order. Every peer maintains a service 

queue which keeps the requesting messages from its neighbors.  

For example, Alice is a provider, and she provides chunks to her neighbors: Bob, Charlie, 

and Daisy. Suppose, credit_level(Daisy) > credit_level(Bob) > credit_level(Charlie). 

Alice receives Bob’s request and Charlie’s request in 1st order and 2nd order respectively. 

Alice receives Daisy’s request in the last order. However Daisy’s credit level is the 

highest. Even though Daisy’s request is the last-come, her request will be processed in a 

first order by Alice. If Alice receives the requests which exceed the maximum number 
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that Alice can support, the requests from those lower-credit-level peers will be suspended 

till next time.  

In this scenario, if a peer is always keeping a lower credit level, its request message could 

fall behind others in its neighbor’s service queue. Furthermore, if a request message is 

timed out in the service queue, this message will be dropped. Priority policy formulates a 

competition scenario, which encourages every peer to make more contribution in order to 

increase its credit level. 

 

4.3.3 Group Selection 

The bank incentive model, providing query ack/deny and priority policy as incentive 

strategies we have discussed in previous sections, also supports group selection that is 

another incentive strategy in our model. Group selection can block unexpected neighbors 

and select better neighbors for a peer. Take Alice as an example (Figure 4.3.3). 

Alice has a good credit level. When Alice sends requests to the Tracker, the Tracker 

answers to Alice, and provides the neighbor information to Alice, or when Alice receives 

gossip message from her neighbors directly, typically a set of random neighbors is 

selected. However, in our model group selection can help Alice to select a range of 

neighbors which could be better than random selection. For example, this range could be 

(1 + 20%) of Alice’s credit level. In this way, some unexpected neighbors for Alice will 

be filtered out. 

As a reversed-side example, if Bob’s credit level is always bad, then the kind of the 

neighbor information he can get is always comparatively bad group. Or we can rule that, 
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Bob is able to fetch all kinds of neighbor information. However, if Bob’s credit is not 

located at a given-range of Alice’s credit, Alice will deny Bob’s request. 

In this scenario, the banking (incentive) system encourages peers to contribute to improve 

their credit scores.  

 

|------------------------------------- Top Credit Level 
| 
|-------- + 20% Alice’s credit line (960) 
 
|-------- Alice’s Credit line (eg. 800)      Range of Alice’s neighbors 
|| 
|-------- - 20% Alice’s credit line (640) 
 
 
|-------- Bob’s Credit Line (eg. 200) 
 
 
|------------------------------------- Bottom Credit Level 

Figure 4.3.3 Group selection 

 

 

4.3.4 Push Helpmate 

In chapter 3, we discussed Pull delivery method to Push delivery method. Compared with 

Pull method, a peer using Push method is able to play a good role in helping its neighbors, 

which is the major advantage of Push method. In our incentive model, a peer will be 

awarded if it is willing to help its neighbors. To illustrate how a peer could be rewarded 

for its contribution as a push helpmate, we take an example. As a push-method helpmate, 

Alice receives packets from Evan, and then Alice will forward these packets to her 
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neighbors (Bob, Charlie and Daisy). However these packets are not those ones that Alice 

is explicitly requesting for herself. Alice is helping with pushing packets to her neighbors, 

and improving system performance.  

In this scenario, although Alice is downloading content from Evan, she does not need to 

pay for this consumption. Meanwhile, Alice is uploading (forwarding) packets to 

neighbors, so she is able to accumulate her income. 

 

Figure 4.3.4 Push helpmate 

 

 

 

4.3.5 Contribution Bonus and Consumption Reward 

The bank incentive model is running on top of the P2P live streaming system by 

monitoring a peer’s downloading and uploading activities, establishing a consumption 

and payment system, and integrating incentive strategies with itself. When a peer is 

downloading chunks from its neighbors, it is actually consuming its credit. In the 

opposite side, a peer is earning income when it is uploading chunks to its neighbors. A 

peer uses its income to pay off its consumption. When a peer’s credit level increases 
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because of its contribution, it will get higher bonus which makes the peer earn more 

income based on the same amount of contribution, and meanwhile get higher reward 

which helps the peer make less payment for the same amount of consumption. Here we 

can image both of these incentive functionalities in the scenario of using a credit card in 

our daily life.  

Figure 4.3.5 presents a general relationship between credit level, bonus and reward: 

 

 

Figure 4.3.5 Changes of Bonus and Reward based on credit Level 

Peers are encouraged to increase their credit level by contribution, in order to get more 

benefits in terms of Bonus and Reward. 
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4.4      Improving E-commerce Functionalities 

In Section 4.3, we present typical incentive functionalities for our incentive model that 

can encourage peers to make more contribution, which improves the system’s scalability 

and efficiency to support a large number of users. In this section, we present that our 

model can be also used as an incentive in the non-system issues, commercial 

functionalities.  

Various user-customized functionalities are supported in many live streaming 

applications, for example, vip user and advertisement during playing. Based on the 

research of some popular streaming applications, we summarize their functionalities for 

non-system-performance issues. We present that our bank incentive model can be utilized 

for e-commerce purpose.  

Streaming Applications E-commerce Functionalities 

easyMule Advanced search 

Share personal file 

Youtube Ads in buffering 

PPStream 

 

 

PPLive 

Ads in buffering (non-vip) 

NO Ads (VIP) 

VIP movie 

Broadcast personal media 

Support third-party application 

Personal setting for VIP 

Real’s Helix  File conversion for multiple devices (not free) 

Apple’s Darwin File conversion for multiple devices (not free) 
 

Table 4.4.1 E-commerce functionalities in popular commercial streaming applications 
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Besides supporting incentives to improve scalability, the bank incentive model can be 

used in the area of E-commerce functionalities, which is another contribution for 

encouraging peers for wide online activities. For example, Table 4.4.1 demonstrates 

various functionalities in different live media streaming applications. PPStream provides 

registration and purchase for vip users who have special benefits and bonus. Inspired by 

this feature, we can build a special-benefit switch-on hierarchy based on the credit level 

of the peers. With the increment of credit level, special benefits and functionalities will 

be unlocked, which means that the higher the credit line is, the more functionalities a peer 

can get. 

These live streaming applications categorize users by user’s level or by user’s payment 

type. Typically a user registered as a payment user or a user with higher level, gets more 

benefits. In our model, extra benefits are associated with different credit levels. Figure 

4.4.2 presents this organization. While the credit level is increasing, more functionalities 

are unlocked which are supposed to be locked at lower level. If a peer is trying to 

increase its credit level, it obtains extra functionalities.  

|------------------------------------- Top Credit Level 
| 
|-------- broadcast personal media (unlock) 
| 
|-------- VIP movie (unlock) 
| 
|-------- high definition movie switch-on (unlock) 
| 
|-------- advanced search (unlock) 
| 
|--------  
| 
|-------- remove Ads in buffering (unlock) 
| 
|------------------------------------- Bottom Credit Level 
 

Figure 4.4.2 Unlock functionalities based on credit level 
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4.5       Extension of Bank Incentive Model 

4.5.1 Share Credit in Different Platforms/Systems 

Since the bank incentive model is a centralized model, in which every user is encouraged 

to register a unique ID, so its information can be kept in the server and used in a wide 

area of platforms or systems. For example, a peer’s credit can be used in a mobile system.  

If multiple machines are associated with the same user id, the user can choose one 

machine as the major source of its contribution, and select another one for more 

consumption. For example, user can use the desktop PC for major uploading activities, 

and choose the mobile device as the major consumption device since the bandwidth at the 

mobile device is more valuable.  

 

4.5.2 Extend Incentive Strategies 

Not only the bank incentive model is compatible in different platforms, but we can also 

extend its incentive strategies when we need to re-design or add incentive strategies. Here 

we mimic the idea of Strategy Design Pattern to extend the incentive strategies for our 

bank incentive model. Since our model built on top of P2P system inherits to be open, we 

can add or modify incentive strategies in the ways of affecting a peer’s credit level.  For 

example, when Alice communicates with Bob, or Alice is a system helpmate, or Alice 

works as a Push helpmate, changes on Alice’s credit depends on the methods that are 

used to evaluate a peer’s credit. Although the communications are fixed, we can still 
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modify or add the methods of How-to evaluate a peer’s contribution, consumption and 

reputation level. 

 

 

Figure 4.5.2 Extend incentive strategies in the Bank Incentive Model 

 

4.6       Simulations and Results 

To study the performance and impact of this incentive model on P2P live media 

streaming system, we implemented a simulator in Visual Studio C++ 2008, in which we 

simulated a group of peers which connect with randomly-picked neighbors of a given 

number, a Bank Server which is responsible for managing the banking information of 

every peer and answering queries from the peers, and a Track Server which provides 

media and peer information. Table 4.6 shows the network configuration for incentive 

strategy experiments in our simulations. Instead of the actual units, the unit of these 

parameters and settings are relative units but constant. For example, buffer size is 100. It 
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means the buffer window can hold 100 chunks in total. The download speed is 60. It 

means the speed is 60 chunks per time slot. The timing is not an actual time unit, but time 

slot. 

Peer’s Configuration 
Peers Population 30 ~ 300 
Buffer Size (chunks) 100 
Download Speed Range 1 ~ 100 
Upload Speed Range 1 ~ 100 
Media Size 10000 
Running Time Slot 1 ~ 100 

Peer’s Account Configuration 
Credit Limit 1000 
Credit Level 500 
Deposit 500 
Income 0 
Credit-in-use 0 
Bonus 0 ~ 100% 
Reward 0 ~ 15% 

Table 4.6 Simulation configuration for evaluating bank incentive model 

 

4.6.1 Impact of Upload Bandwidth 

In this simulation, we intend to find the impact of upload bandwidth on the download 

bandwidth at each peer when we utilize the incentive model in P2P live media streaming 

system. Theoretically we expect that, a good incentive model has a critical feature of the 

capability of encouraging peers to obtain better download bandwidth by making more 

contribution.  

In our experiments, a group of peers with the same download bandwidth configuration 

but different upload bandwidth are deployed in the P2P system which provides a basic 

P2P environment. For this group of peers, we configure their download bandwidth at 50 

chunks per time slot along with different upload bandwidth. 
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Figure 4.6.1-1, Actual download bandwidth with increasing upload bandwidth 

Figure 4.6.1-1 shows the changing curve of actual average download bandwidth when we 

increase the upload bandwidth. We observe that the peers with very low upload 

bandwidth can only get approximately 65% download bandwidth of configuration level.  

Even when we actually set the configuration level of the download bandwidth at a higher 

value, the peers with low upload bandwidth cannot have better download bandwidth. The 

reason is that when we utilize the incentive model in the P2P system, if a peer constraint 

its upload bandwidth at a low level and meanwhile it is downloading content from its 

neighbors, its credit level will finally fall behind others. When its neighbors receive its 

demand requests for downloading chunks, these neighbors will check its credit level by 

querying at the bank server. If this peer’s credit level is not in the expected range, its 

neighbors could possibly deny its request. As a result, not matter how this peer configures 

its download bandwidth. Its actual download bandwidth is actually relative with its 
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upload bandwidth. If a peer constraints its upload bandwidth at a low level, it cannot get a 

better download bandwidth. When we increase the upload bandwidth constantly, the 

actual download bandwidth stays at a constant level when the upload bandwidth gets to a 

specific level. In this simulation, when a peer’s upload bandwidth can get to 24 chunks 

per time slot, it is able to get a full configured download bandwidth. It indicates that a 

peer should keep a good upload-download ratio in order to get an optimal download 

bandwidth (configured download bandwidth). 

 

Figure 4.6.1.-2, Actual download bandwidth with incentive and without incentive 

Figure 4.6.1-2 shows the difference between a P2P live media streaming system with and 

without incentive model. In this figure we observe that, if we utilize the incentive model 

in networks, peers are able to get to their optimal download bandwidth (100% configured 

download bandwidth) if they are willing to increase upload bandwidth and keep a good 
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upload/download ratio. However, if we do not utilize the incentive model in the networks, 

the actual average download bandwidth of peers can only get to 42% of configured 

download bandwidth. Even if we increase the upload bandwidth of a peer, this peer is 

probably not able to get to a good download bandwidth. The reason for the performance 

degradation can be found in Figure 4.6.1-3. Without incentives peers constraint their 

contribution (uploading), this results in the decrease of total upload volume, so that the 

average download bandwidth will decrease. If we do not utilize the incentive model in 

the networks, there is another degradation: a peer is not able to get appropriate benefits 

even if it has a good contribution, since without incentives the system cannot guarantee 

extra benefits. 

 

Figure 4.6.1-3, Actual upload bandwidth with incentive and without incentive 
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Figure 4.6.1-3 shows how the actual upload bandwidth changes in networks with the 

incentive model and without incentives. We observe that actual upload bandwidth will 

gradually increase with the increasing of configured upload bandwidth. However, in the 

incentive model this increase becomes much more rapid. In the figure we observe that, in 

the incentive model the average upload bandwidth is increased by 23%, and the average 

download bandwidth is increased by 118%. Since the average download bandwidth is 

increased, the average startup latency can be reduced by 65%, which is shown in Figure 

4.6.1-4.  
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Figure 4.6.1-4 Comparison in incentive mode and non-incentive mode 

From the results of this simulation, we can see that the actual download bandwidth and 

startup latency is highly related to the upload bandwidth in the incentive model. Because 

a peer with higher upload bandwidth has a better credit level, its download bandwidth is 

higher. This guarantees that the peer has low startup latency.  

 

 

4.6.2 Impact of Download Bandwidth 

In this simulation, we study the impact of download bandwidth, which leads us to 

simulate a group of peers with the same upload bandwidth but variable download 

bandwidth configuration.    

Figure 4.6.2-1 shows the average download bandwidth increases gradually to a peak 

point. This peak point is highly related to the upload bandwidth. When the actual average 

download bandwidth get to the peak, and we continue to increase the configured 

download bandwidth, its actual downloading speed will decrease a little until it stays at a 

constant level. It means the peer will stay in the constantly balanced state. In this state, 

download bandwidth is balanced with the upload bandwidth. 

2.3

6.6

0

1

2

3

4

5

6

7

Startup Latency

Ti
m
e
 S
lo
t

Incentive

No Incentive



57 
 

 

 

Figure 4.6.2-1, Actual download bandwidth in different configuration 

 

 

Figure 4.6.2-2, Startup latency with different download bandwidth 
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Figure 4.6.2.-2 shows that, when the download bandwidth is increasing, a peer’s startup 

latency is decreasing rapidly. However, there is a constraint for the rapid decrease of 

startup latency. The constraint is the upload bandwidth. If the peer does not increase the 

upload bandwidth, it cannot further improve its startup latency. Finally the startup latency 

will be kept at a balanced level which is highly relative with a peer’s upload bandwidth. 

 

Figure 4.6.2-3, Actual download bandwidth with incentive and without incentives 

Figure 4.6.2-3 shows how the actual download bandwidth changes with the incentive 

model and without incentives. We observe that, in both modes the actual download 

bandwidth increased gradually and rapidly. In the incentive mode, the download 

bandwidth will get to a balanced state, in which a peer’s download bandwidth is highly 

relative with its upload bandwidth. If the peer constraint its upload bandwidth, its 

download bandwidth will be constrained too. However, in the No-Incentive Mode, no 

matter how we configure a peer’s upload bandwidth, we observe that a peer’s download 
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bandwidth will always gradually increase if we increase its configuration of download 

bandwidth. That means a peer can get a higher download bandwidth with a very low 

upload bandwidth, which can easily result in free-rider behavior. If this bad 

upload/download ratio is allowed in a P2P networks, the performance of many peers 

would be impacted.  

 

4.7 Summary 

In this chapter, we introduced an innovative incentive model, a bank incentive model. 

This model effectively encourages peers to make more contributions and improves the 

scalability of the P2P live streaming system. This is the most important goal we propose 

this model for. Table 4.7 summarizes the functionalities of this model. 

Streaming 

Performance 

E-commerce Functionalities Flexibility and Scalability 

Query ACK and Deny  

Priority in Service 

Queue 

Advanced Search 

Pull-Push Helpmate 

Peer Group selection 

Bonus and Reward 

Advanced search 

broadcast personal media 

Ads in buffering 

VIP movie 

Support third-party application 

File conversion for multiple 

devices 

Support multiple platform 

Banking Credit strategy is 

scalable 

Table 4.7 Summary of the Bank Incentive Model 
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Our simulation demonstrates that our bank incentive model can solve free-rider problems, 

apply a balance between a peer’s upload bandwidth and download bandwidth, and 

encourage contributions by utilizing and managing credit level of the peers. Besides the 

improvement of scalability, our model is designed to support multiple platforms and the 

extension of incentive strategies.  
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Chapter 5 

Conclusion and Future Work 

In this work, we studied the methods for improving transmission efficiency and 

scalability in the P2P live streaming system.  

For the goal of improving transmission efficiency, we present the chunk scheduling 

algorithms and delivery methods which manage the requesting and transmission of 

chunks respectively. Furthermore, we proposed an incentive model named bank incentive 

model to improve the scalability for P2P live streaming system. For the scheduling 

algorithms which are considered as the core of data-driven protocols, Greedy has the best 

performance on reducing startup latency while Rarest First is much better in improving 

streaming continuity. Instead of Mixed which is a combination of Greedy and Rarest First, 

we propose a new chunk scheduling algorithm named Alternate algorithm that integrates 

the advantage of Greedy and Rarest First and presents a better comprehensive 

performance in both startup latency and continuity.  

Besides the improvement of chunk scheduling, we also study chunk delivery method to 

improve the transmission efficiency, which include the evaluation and comparison of Pull 

method and Push method. Our simulation shows that Push delivery method is much more 

powerful than pure Pull method, and it can greatly reduce the latency and increase the 

playback continuity. 

Inspired by a common idea of establishing reputation for a peer based on its contribution 

and consumption, we propose an incentive model to encourage contribution especially for 



62 
 

P2P live streaming system as the major incentive purpose besides ensuring fairness in 

traditional P2P file sharing, which is named bank incentive model. Our incentive model 

demonstrates a good performance and efficiency in solving free-rider problems, 

encouraging peers for more contribution, improving system’s scalability, and 

encouraging peers for broader online activities. In future, a challenge for our bank 

incentive model, the collusion problem needs to be solved.   
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