

IMPROVING TRANSMISSION EFFICIENCY AND

SCALABILITY FOR PEER-TO-PEER LIVE STREAMING

by

ZEMENG LI

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Thesis Advisor: Dr. Shudong Jin

Department of Electrical Engineering and Computer Science

Case Western Reserve University

August, 2010

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

candidate for the ______________________degree *.

(signed)___
 (chair of the committee)

 __

 __

 __

 __

 __

(date) _______________________

*We also certify that written approval has been obtained for any
proprietary material contained therein.

Zemeng Li

Master of Science

Prof. Shudong Jin

Prof. Michael Rabinovich

Prof. Swarup Bhunia

May 24th, 2010

III

Contents

List of Tables………………………………………………………………….. IV

List of Figures…………………………………………………………………. V

Abstract……………………………………………………………………….. VI

Chapter 1 Introduction

1.1 Motivation……………………………………………………… 1

1.2 Idea and Contributions…………………………………………. 3

1.3 An Overview of the Thesis…………………………………….. 4

Chapter 2 Background and Related Work

 2.1 Peer-to-Peer Live Streaming…………………………………… 5

 2.2 Peer-to-Peer Incentives………………………………………… 7

Chapter 3 Improving Transmission Efficiency in P2P Live Streaming

 3.1 Problem Description and Motivation………………………….. 10

3.2 Chunk Scheduling Algorithms………………………………… 12

3.3 Evaluation of Chunk Scheduling Algorithms…………………. 16

3.4 Chunk Delivery Methods: Push versus Pull…………………… 26

3.5 Evaluation of Delivery Methods……………………………….. 28

3.6 Summary……………………………………………………….. 31

Chapter 4 Improving Scalability for P2P Live Streaming

 4.1 Problem Description and Motivation…………………………... 32

 4.2 Introduction to Bank Incentive Model…………………………. 33

 4.2.1 Peer’s Bank Account…………………………………… 35

 4.2.2 Bank Working Model…………………………………... 39

IV

 4.2.3 Credit Level Rating Model……………………………... 40

 4.3 Improving Streaming Performance…………………………….. 41

 4.3.1 Query ACK and Deny………………………………….. 41

 4.3.2 Priority in Service Queue………………………………. 42

 4.3.3 Group Selection………………………………………… 43

 4.3.4 Push Helpmate………………………………………….. 45

 4.3.5 Contribution Bonus and Consumption Reward………… 46

4.4 Improving E-commerce Functionalities………………………………... 47

4.5 Extension of Bank Incentive Model…………………………………… 49

 4.5.1 Share Credit in Different Platforms/Systems………………….. 49

 4.5.2 Extend Incentive Strategies……………………………………. 50

4.6 Simulations and Results……………………………………………….. 51

 4.6.1 Impact of Upload Bandwidth………………………………….. 52

 4.6.2 Impact of Download Bandwidth………………………………. 57

4.7 Summary………………………………………………………………. 60

Chapter 5 Conclusion and Future Work

References

V

List of Tables

Table 3.2.1 Greedy algorithm……………………………………………………… 13

Table 3.2.2 Rarest First algorithm…………………………………………………. 14

Table 3.2.3 Mixed algorithm………………………………………………………. 14

Table 3.2.4 Random algorithm…………………………………………………….. 15

Table 3.2.5 Alternate algorithm…………………………………………………… 16

Table 3.3.1 Class relationship in simulator design………………………………… 18

Table 3.3.2 Simulation configuration for evaluating scheduling algorithms……… 18

Table 4.2.1 Factors affecting a peer’s bank account………………………………. 39

Table 4.4.1 E-commerce functionalities in popular commercial streaming

Applications…………………………………………………………... 48

Table 4.6 Simulation configuration for evaluating bank incentive model……… 52

Table 4.7 Summary of the bank incentive model……………………………….. 60

VI

List of Figures

Figure 1.1 Throughput degradation and performance of tasks pipeline in

 SEDA………………………………………………………………. 2

Figure 3.3.1 Average startup latency comparison in different network size…… 21

Figure 3.3.2 Average continuity comparison in different network size………… 21

Figure 3.3.3 Average startup latency comparison in different window size……. 24

Figure 3.3.4 Average continuity comparison in different window size………… 25

Figure 3.3.5 Average startup latency comparison in different window size……. 26

Figure 3.5.1 Average continuity in Pull method………………………………… 29

Figure 3.5.2 Average continuity in Push method……………………………….. 29

Figure 3.5.3 Comparisons of Pull and Push methods…………………………… 30

Figure 4.2.2 Communication messages flow in Banking Working Model…….. 40

Figure 4.2.3 Credit level Rate of Peers…………………………………………. 41

Figure 4.3.3 Group selection…………………………………………………… 45

Figure 4.3.4 Push helpmate…………………………………………………….. 46

Figure 4.3.5 Changes of bonus and reward based on credit level……………… 47

Figure 4.4.2 Unlock functionalities based on credit level……………………... 49

Figure 4.5.2 Extend incentive strategies in the Bank incentive model………… 51

Figure 4.6.1-1 Actual download bandwidth with increasing upload bandwidth…. 53

Figure 4.6.1-2 Actual download bandwidth with incentive and without incentives 54

Figure 4.6.1-3 Actual upload bandwidth with incentives and without incentives… 55

Figure 4.6.1-4 Comparison in incentive mode and non-incentive mode………….. 56

Figure 4.6.2-1 Actual download bandwidth in different configuration…………… 58

Figure 4.6.2-2 Startup latency with different download bandwidth………………. 58

Figure 4.6.2-3 Actual download bandwidth with incentive and without incentive... 59

VII

Improving Transmission Efficiency and Scalability for Peer-to-

Peer Live Streaming

Abstract

By

ZEMENG LI

Live streaming applications, especially those based on peer-to-peer networks, are

becoming popular nowadays. It is widely known that there are still some performance

challenges on transmission and scalability in peer-to-peer live streaming system. This

thesis focuses on improving transmission efficiency in live media streaming and

improving scalability in peer-to-peer live streaming systems.

First, we improve transmission efficiency in live media streaming by studying chunk

scheduling algorithms which include Greedy, Rarest First, Mixed, Random and our

proposed Alternate algorithms, and delivery methods which include Push and Pull

methods. Based on the evaluation of startup latency and streaming continuity for different

chunk scheduling algorithms and delivery methods, we discuss how to make an optimal

choice for better transmission efficiency. Second, we improve the scalability for peer-to-

peer live streaming system by utilizing our incentive model, a bank incentive model,

which can encourage peers to make more contribution in order to obtain extra benefits

from their neighbors and the system. As well as applying encouragement to the peers, our

incentive model can support multiple platforms and the extensibility of incentive

strategies.

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, an increasing number of companies produce various live media streaming

applications, for example, Youtube, Helix server at RealNetworks [15], Darwin server at

Apple [18], PPstream [4] and PPLive [3], along with the trend that live media streaming

applications are widely accepted by Internet users.

The author participated in the development of a live streaming application at

RealNetworks, This project, named Media Delivery Service (MDS) inspired by SEDA

[8], is a staged event-driven architecture, which is intended to support concurrent user

demands and simplify the construction of well-conditioned services. SEDA architecture

makes a good contribution to controlling mechanisms and load conditioning, but the

weakness of this architecture, resulting in scalability and capacity problem, makes its

performance as poor as other centralized architecture in supporting a large number of

users. Furthermore, users today have much higher requirements for live streaming

applications. Figure 1.1 [8] shows a sharp increment of latency when the number of

simultaneous users is increasing in SEDA system. We observe when the number of

concurrent requests is increasing, the latency is increasing sharply, and service queue is

also becoming much longer.

2

Figure 1.1 throughput degradation and performance of tasks pipeline in SEDA [8]

To solve the scalability problem, a better solution in terms of a decentralized and

unstructured structure is utilized instead of the centralized one. Peer-to-Peer (P2P)

networks are naturally a good option. In a P2P network, the capacity of supporting a large

3

number of users comes from the uploading bandwidth of all peers. Meanwhile the P2P

system is able to guarantee an acceptable playback quality in most peers.

In our work, one of our goals is to improve the chunk transmission efficiency in P2P live

streaming system. The second goal is to design a good incentive model which can be

utilized to encourage peers to make contribution. In this way, we could improve the

scalability of supporting a large number of users by the achievement of above two goals.

1.2 Idea and Contributions

To achieve our goals, firstly we evaluated chunk scheduling algorithms which include

Greedy, Rarest First, Random, Mixed, and our proposed Alternate algorithm. Chunk

scheduling algorithm is the core of the data-driven protocols [17], [13], [12], [20], [21].

We simulated these algorithms in C++, conducted experiments in different scenarios, and

analyzed their characteristics. Meanwhile, we studied delivery methods which include

Push method and Pull method. We conducted simulations for delivery methods in C++

by integrating chunk scheduling algorithms. By comparing different scheduling

algorithms and delivery methods, we got the direction of improving transmission

efficiency, which can lead us to choose optimal chunk scheduling algorithm and delivery

method based on the design requirements for our P2P live streaming applications.

Second, besides the improvement of transmission efficiency, we propose an incentive

solution, a bank incentive model for P2P live streaming system. Our bank incentive

model establishes a reputation system on top of the live streaming applications by

integrating itself with online activities of the peers, which can monitor a peer’s

4

downloading and uploading, encourage them to make contributions, and help them get

more benefits from their neighbors and the system. Furthermore, our incentive model can

be used for non-system-performance issues and support multiple platforms. It is

particularly useful for a commercial live streaming application.

1.3 An Overview of the Thesis

The remainder of the thesis is organized as follows. In chapter 2, we provide an

introduction to P2P live streaming and P2P incentives. Chapter 3 describes the research

on chunk scheduling algorithms and delivery methods. In chapter 4, an incentive model, a

bank incentive model for P2P live streaming is described, and we demonstrate a

comprehensive evaluation for this model. Finally, chapter 5 summarizes the thesis.

5

Chapter 2

Background and Related Work

2.1 Peer-to-Peer Live Streaming

There are many researches on the engineering of live media streaming from a server to

clients along with the wide usage of Internet live streaming in our daily life. The

development of encoding and decoding techniques makes many live streaming

applications capable of supporting high-quality media streaming. However, serving a

large number of users simultaneously challenges the scalability of P2P live media

streaming.

In order to improve scalability, a solution based on IP multicast was proposed [22] in

early 1980’s. IP multicast substituted repeatable packets-sending at server by utilizing the

routers in the network to manage the distribution and replication of media content from

one source to multiple receivers. Popular IP Multicast routing protocols include DVMRP,

MOSPF, CBT, PIM-SM etc. Obviously IP Multicast is an efficient solution since all data

transmission is performed only once at all links. However, it has many weaknesses [25],

[26], [27]. For example, IP multicast is based on IP layer, and it needs the support from

network architecture. IP multicast has security and management problems because it is

open to any multicasting source. It has difficulties for reliability control and congestion

control, because IP multicast provides best-effort service.

Application Layer Multicast [26], [10] is regarded as a better solution which was

proposed in the early of 1990’s. Application layer multicast gains many advantages from

6

its ability that it multicasts data at the application layer by computing, replicating and

transmitting at the application-layer end point. Researchers summarized Application

Layer Multicast solutions as three general catalogs: Tree-based, Mesh-based and implicit

[10], [26], [27], [28]. However, no matter which catalog we utilize, Application layer

multicast has limited ability to support a large number of users, and it does not solve the

scalability problem very well [11], [30].

Recently, with the rapid development of P2P techniques, live media streaming based on

P2P networks becomes a hot topic. As another better solution, P2P technique

demonstrates its capacity to solve the scalability problem of live media streaming by

supporting a large number of users and high simultaneous demand. Some commercial

application are widely accepted by users, for example PPLive and PPStream, and they

demonstrate that P2P techniques are another better solution to solve the scalability

problem of live media streaming, which is supposed to support a large number of users

and high simultaneous demands. The first widely used P2P system is Napster [31], [32],

and the early research was mainly focused on the file sharing and distributed hash tables

(DHT). DHT is used to construct a special structure for all peers, and hash tables are

distributed into each node. Chord, CAN, Pastry and Tapestry belongs to this area. For the

P2P file sharing, most applications are widely used nowadays, for example, Gnutella,

BitTorrent, KaZaA, eMule.

P2P file sharing applications are growing rapidly, which inspires researchers to focus on

supporting live media streaming based on the P2P networks [33], [34], [35]. It also

inspires researchers to apply similar idea in P2P file sharing that media content is divided

into chunks for transmissions based on sharing protocols, for example BitTorrent. P2P

7

networks for live media streaming becomes a hot topic because of its capability to solve

the scalability problem of supporting a large number of users.

When P2P techniques for live media streaming were well developed, many scheduling

and delivery algorithms were proposed at the same time, for example data-Driven

algorithms, mesh-based algorithms, swarming-based algorithms, and pull-based

algorithms. These protocols use random process to pick neighbors for a peer when it

constructs overlay. For the streaming, they use the similar idea like BitTorrent: media

content is divided into many chunks. Each peer periodically sends content information to

its neighbors. When peers receive the notifications from their neighbors, they explicitly

request chunks from their neighbors who may already store those chunks. In each peer, a

buffer window is used to manage the chunk requests, uploading and downloading. In this

way, a peer is a requester who requests media content for playing back, as well as a

provider who provides content to its neighbors.

2.2 Peer-to-Peer Incentives

P2P live streaming applications have many advantages compared against traditional

media streaming, and more users choose to join this community. Most of these

applications are developed as an unstructured overlay network based on data-driven

protocols. Since P2P system is an open system and users are free to join and leave,

researchers are inspired to design incentive mechanisms to solve management problems

and improve scalability. For example, in eDonkey and eMule, each peer maintains a

metric for every other peer, proportional to the size of the file it obtained from them. The

metric determines serving priorities of other peers in that peer’s queue [36], [37]. KaZaa

8

utilizes a participation level metric which is defined as the ratio of uploaded to

downloaded file sizes and determines the file search radius [36], [38]. One

implementation of incentive mechanism is through a reputation mechanism, which

attempts to estimate the behavioral profile of a peer in its transactions with other peers by

recording and studying a peer’s online activities. In [39], peers use direct and second-

hand information to assess the behavior of other peers. With a statistical approach,

erroneous or incompatible reputation rankings are prevented from inclusion in reputation

updates [36]. In [40], the reputation of a peer is based on its past interactions and on

indirect information from a selected subset of peers through a weighted voting scheme

and can be used for bandwidth allocation or determination of query time-to-live (TTL)

duration [36], [41]. In [42], an iterative distributed algorithm for trust information

aggregation is provided, where each peer computes the maximum positive eigenvalue of

the trust matrix. The eigenvector corresponding to that eigenvalue is the global trust

vector of peers. Peers use trust values to select servers and avoid downloading inauthentic

files [36]. In the model of [43], each peer is characterized by its reputation that models its

past transaction behavior, as well as by its inherent tendency to cooperate. The reputation

of a peer converges to its true inclination to cooperate [36]. Finally, [44] shows that

certain server selection and contention resolution policies need to be adopted by peers

when acting as clients and servers respectively in order for a reputation scheme to fulfill

its purpose [36].

In order to improve transmission efficiency and scalability, we are not only focused on

the optimization of scheduling and delivery algorithms, but there are also some

challenges we need to deal with in P2P incentives. We simply suppose all peers can

9

obtain an optimal playback quality as long as the total upload capacity supply is higher

than the system’s minimum bandwidth demand.

For example, there are 10000 simultaneous users in the system. If a user watches a video

with 360p resolution, it requires 700kbps download bandwidth to fluently play this video.

The total bandwidth demand to support all 10000 users is 7 Gbps. 7 Gbps is almost a

huge number for a server. However, 360p is just the lowest video quality. With the rapid

development of H.264 codec, video quality has already gotten to 1080p from 480p/720p.

We can define

System Efficiency Ratio = Total Upload Capacity / (#users * min Bandwidth Demand)

The more upload bandwidth a system has, the more user and better playback quality it

can support. We observe that a critical challenge may hinder the system’s efficiency. No

matter how we improve transmission algorithms, the system needs more upload capacity

to improve scalability and to support a large number of users. Inspired by this observation,

we propose that a good incentive strategy for the P2P live media streaming is extremely

important, which should be able to encourage peers to make more uploading during

online status.

10

Chapter 3

Improving Transmission Efficiency in P2P Live Streaming

3.1 Problem Description and Motivation

P2P live streaming utilizes similar idea as BitTorrent, which is the most important work

in the P2P community. In both of them, a media is divided into chunks for transmission.

However, P2P live streaming has much difference from P2P file sharing. On one hand,

P2P live streaming demands highly due to its real-time requirements. For example, P2P

live streaming requires low startup delay, smooth playback, and good video quality. On

the other hand, P2P live streaming does not require a complete copy of the media when

user is ready to play back a video. Even when only a small part of content is ready, user

can start watching the movie immediately.

The reason for the difference between P2P live streaming and P2P file sharing lies in

demanding and transmission algorithms. A user requests the most demanded chunks to

satisfy the real-time demand in P2P live streaming. These most-demanded chunks are

managed and maintained by buffering at each peer. In other words, the chunks in the

buffer are those that are ready to be played immediately. Streamed media is divided and

packetized into chunks for transmission when the media is requested. The user’s media

player manages a buffer window for downloading and feeding the playback process.

Users can play not only a continuous media time range, but they can also forward or

backward or jump-to a time point. Corresponding to user’s request, media player adjusts

its demanded media range. This results in updating the buffer window. Generally there

are two basic steps for streaming a media. In the first step, a peer selects the demanded

11

chunks by chunk selection algorithms. When the media player confirms the chunks it will

download, it explicitly requests these chunks from its neighbors. In the second step,

neighbors forward the demanded chunks to the requester when they have available copies.

During this step delivery method takes the major responsibility.

The scheduling algorithms and delivery method are extremely critical to a live streaming

system, and they are also the core of data-driven approaches. Furthermore, streaming

quality, such as smoothness, delay, video quality and transmission speed depends on

scheduling algorithms and delivery methods.

The necessity that researchers need to improve playback continuity and streaming quality,

reduce delay, and improve delivery efficiency is enhanced by the trend that users raise

their requirement for live media streaming, and meanwhile live media streaming

applications are becoming more bandwidth consuming. It is helpful that we clearly

discuss the impact of scheduling algorithms and delivery method to the P2P live

streaming systems.

In this chapter, we study different chunk scheduling algorithms, chunk delivery methods,

and their potential effect on the system. Then we propose a new chunk selection

algorithm. By clarifying their difference based on the evaluations, we are able to make a

better choice and get optimal efficiency when we design a P2P live streaming system.

12

3.2 Chunk Scheduling Algorithms

In this section, we present the ideas of chunk scheduling algorithms. Every peer

maintains a buffer window W that can cache up to n chunks. We give a definition that W(i)

is the ith chunk in the buffer window, where i = [1, n], i.e. W(1) is the left-most chunk in

the buffer, and W(n) is the right-most chunk in the buffer. The window W is always

moving forward along the media content. In other words, the buffer acts as a sliding

window which covers the demanded media range. Each buffer position is initially empty,

and will be filled by the chunk scheduling algorithms. When the empty positions in the

buffer are filled, the peer is able to playback the media content in the buffer window. In

the P2P networks, all peers form a community. Every peer is a requester who requests

and downloads the chunks from its neighbors. Meanwhile, it is also a provider who is

willing to upload its available chunks to other requesters. As a result, chunk scheduling

can be generally modeled as a pull process, in which each peer selects another peer as a

neighbor to download chunks which are not available in its local buffer window.

Chunk scheduling algorithm determines the order of the demanded chunks from W(1) to

W(n). Simply it means that chunk scheduling algorithm determines which chunk will be

downloaded first, and which chunks will be downloaded next. There are several popular

chunk scheduling algorithms.

Greedy algorithm aims to fill the empty chunks in the buffer closest to the playback

deadline in the first order. It means that a peer will request and download the chunks

which are closest to playback deadline in the top priority.

13

From a single peer’s point of view, greedy algorithm is intuitively the best algorithm for

streaming. Since peers are focusing on the short-term playback needs, it has a significant

advantage in minimizing the startup latency. However, from a system wide view,

especially when the peer population is large, greedy algorithm has its disadvantages. For

example in improving the playback continuity, greedy algorithm is worse than rarest first

algorithm. To be described below, here we present the pseudo-code of greedy:

Greedy (W)

FOR 1i  to n // n is the buffer size
 IF ()W i is empty // ()W i is the ith position of buffer window
 Select ()W i ;
 Return;

Table 3.2.1 Greedy Algorithm

Rarest First algorithm selects a chunk which has the minimum number of holders among

the neighbors in the first order. The rarest first algorithm works as follows. Each peer

maintains a list of the number of copies of each chunk in its peer set. It uses this

information to pick out the rarest chunks. Let m be the number of copies of the rarest

chunk, then the index of each chunk with m copies in the peer set is added to the rarest

chunk set. The rarest chunk set of a peer is updated periodically. Each time a peer selects

the next chunk for downloading randomly in the rarest chunk set [16]. Rarest First

algorithm ensures high diversity and availability of the chunks, such that it is effective in

improving system-wide playback performance. The following is the pseudo-code of

Rarest First algorithm.

14

RarestFirst (W)

FOR i n to 1 // n is the buffer size
 IF ()W i is rarest // ()W i is the ith position of buffer window
 S  ()W i ; // S is the rarest chunk set
random-select (S)
Return;

Table 3.2.2 Rarest First Algorithm

Mixed algorithm [9] is a combination of rarest first and greedy algorithms. In mixed

algorithm, the buffer window W will be partitioned by a demarcation point m. Initially

the Rarest First policy will be used in first-order on the right part of buffer which is

divided by the demarcation point. If no chunk can be downloaded using rarest first policy,

the Greedy is used on the left part of buffer in the second order. Mixed algorithm can take

advantage of both rarest first and greedy. By devoting a fraction of the buffer, it can

achieve better continuity and lower startup latency.

Mixed (W)
FOR i n to m // m is the mixed point
 IF ()W i is rarest // ()W i is the ith position of buffer window
 S  ()W i ;
IF S is not empty
 Return random-select(s);

FOR 1i  to 1m 
 IF ()W i is empty
 Select ()W i ;
 Return;

Table 3.2.3 Mixed Algorithm

Random algorithm, as indicated by the name, randomly selects the index of empty

chunks in the buffer. We present the pseudo-code of random algorithm.

15

Random (W)

While(true)
 ()i random n ;
 IF ()W i is empty // ()W i is the ith position of Buffer Window
 Select ()W i
 Return

End While

Table 3.2.4 Random Algorithm

So far we discuss 4 different chunk selection algorithms. There are two basic aspects they

are dealing with, one is to reduce startup latency, and the other one is to improve

playback continuity. Rarest First algorithm is much better in dealing with scale, and

greedy is better in playback performance in small scale networks. Both of them have their

advantage and focuses. The intuition of their different advantage inspires us to propose a

new chunk selection algorithm: Alternate algorithm. In alternate algorithm, we utilize

greedy policy and rarest first policy in an alternate order. Firstly, alternate algorithm

selects the next empty-chunk which is closest to the playback deadline. In the next time,

it selects the rarest chunk for downloading. Secondly, alternate algorithm goes back to

the first step and starts the loop again. The idea of alternate algorithm is to use buffer

space to improve startup latency and playback continuity performance simultaneously.

The following is the pseudo-code of alternate algorithm.

16

Alternate (W)

Initiation
1i  ; // for Greedy

j n ; // for Rarest First
AlgType = Greedy;
Iteration:
While(true)
 IF AlgType == greedy
 IF ()W i is empty // ()W i is the ith position of buffer window
 Select ()W i ;
 1i i  ;
 AlgType = Rarest First;
 Return;
 ELSE 1i i  ;
 ELSE IF ()W j is rarest
 Select ()W j ;
 1j j  ;
 AlgType = Greedy;

Table 3.2.5 Alternate Algorithm

3.3 Evaluation of Chunk Scheduling Algorithms

Users often rates a system based on some basic qualities: playback continuity, delays,

transmission speed and media quality. Since users care about transmission speed mostly

by evaluating buffering time, startup delay and continuous playback, here we use two

major metrics to evaluate the performance of a P2P streaming application:

Startup Latency: startup latency refers to the delay time a user should wait before starting

playback.

start-up latency = (the time of 1st playback)- (start time)

17

Continuity: continuity means the degree of interrupt (delay) during playback. We define

it as the percentage of delay time in total playback time:

playback continuity = (1-(total delay time/finish time)) *100%

Note: the total delay time does not count in the first chunk’s delay.

To study the performance and impact of a variety of chunk scheduling algorithms, we

implemented these algorithms in the simulator which we programmed in C++. To

simplify the design, in our simulator the network topology is generated by a uniform

distribution model. That means the neighbors of a peer is uniformly assigned for that peer

initially.

The following is the design of our simulator. In the simulation, there is a group of hosts,

which represent peers. Each peer maintains a list of available and demanded chunks.

Server serves as the Tracker in the P2P system. Metrics are used to collect information

from the server and all peers. TestParameter is used to conduct simulation experiments.

18

Table 3.3.1 Class relationship in simulator design

Table 3.3.2 shows the testing configuration in our simulations.

Parameter value
Peers 100
Chunks 1000
Demarcation Mid-point of buffer
Buffer size 20 ~ 100

Table 3.3.2 simulation configuration for evaluating scheduling algorithms

First, we start our simulation with different peer’s population. In this simulation, two

scenarios are used to study the efficiency of chunk scheduling algorithms and impact on

overall network performance on different network size. With the same simulation

Metrics

Metrics()
outputMetrics()
getAvgContinuity()
getAvgLatency()
output_All_Metrics()

Server

Server()
occupyPeer()
executeJob()

TestCase

TestCase()
setParameter()
createHostList()
getNeighbourList()
runJob()
randomGreedyTest()
randomRarestTest()
main()

Chunk
filled
selected

TestParameter
windowSize
totalChunk
totalHost
uploadCapacity
neighboutListFile

-$instance

ChunkSelectionAlgo
(from SelectionAlgorithm)

Host

Host()
setNeighbour()
setStartTime()
occupyPeer()
executeJob()
setBusy()
releaseBusy()
getBusy()

chunkList[]

PeerSelectionAlgo
(from SelectionAlgor...)

19

configuration, one scenario is used to study the startup latency in different chunk

scheduling algorithms. The other scenario is used to study the continuity. In each

scenario, the buffer size of every peer is the same, which is equal to 20. The unit of buffer

size is not actual data size, but a relative one. Here, it means that the buffer is able to

contain 20 chunks in total. The sliding buffer window only slides when all chunks in the

window are filled. To guarantee the fairness, every peer requests and playbacks the same

media file, which has 1000 chunks of size in our simulation, and all peers start

downloading at the same time. To simulate a distributed system using a single thread

program, the running order of peers is randomly shuffled at each time slot.

Figure 3.3.1 shows the average startup latency of chunk scheduling algorithms for the

experiments with different peer population in the networks. In Figure 3.3.1, we observe

that Greedy algorithm’s startup latency is very low since it is focused on satisfying the

immediate playback demand.

Theoretically, Alternate algorithm deals with most-demand chunks and rarest chunks in

alternate order, so it handles the startup latency in half of its effort. As we observe in the

figure, Alternate algorithm’s startup latency is also very low, and its performance is

almost the same as the Greedy algorithm.

Rarest First algorithm has the worst performance on startup latency. Because Rarest First

is not focused on the most-demanded chunks, but on the rarest chunks in the networks

with the first order, so it is better in improving the overall performance of the networks

and average continuity at each peer. In the Figure 3.3.1 and Figure 3.3.2 we can observe

such expectation that Rarest First’s startup latency is worst when it is compared with the

20

other four chunk scheduling algorithms. Moreover, the startup latency increases with the

increasing number of peers. The reason is that all peers start up at the same time slot and

only server has the complete media source at the beginning, so more peers in networks

will induce severer competition. As a result, the total time of successfully filling the

whole buffer window will be much longer.

In the Mixed algorithm, we set its demarcation point at the middle of buffer window in

our simulation. It also shares the same network configurations which are used in the

simulations for Greedy and Rarest First. We observe in Figure 3.3.1 that the average

startup latency with mixed algorithm is nearly half of Rarest First algorithm, and the

trend of curve is also similar. Since Mixed algorithm is a pure combination of Greedy and

Rarest First algorithms, Mixed algorithm’s startup latency is between Greedy and Rarest

First.

Compare with the other four chunk scheduling algorithms, the average startup latency

with Random algorithm is not stable, but it is better than Rarest First and Mixed in

dealing with the startup latency. However, when we evaluate the Random algorithm from

the aspect of continuity, Random algorithm is also a good algorithm.

21

Figure 3.3.1 Average startup latency comparison in different network size

Figure 3.3.2 Average continuity comparison in different network size

In the second scenario, we study the performance and efficiency on continuity of

different chunk scheduling algorithms. In this scenario, the simulation configuration is

the same as we test in the first scenario. Buffer window size is 20 chunks, and the media

source size is 1000, and every peer requests, downloads and playbacks the same media

source. In Figure 3.3.2 we observe that, for most chunk scheduling algorithms, except

Random algorithm, the quality of continuity slowly becomes better with the increasing

0
20
40
60
80

100
120
140
160
180
200

0 25 50 75 100 125

St
ar
t‐
u
p
 L
at
en

cy

Network size

Greedy

Rarest

Mixed

Random

Alternate

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 25 50 75 100 125

C
o
n
ti
n
u
it
y

Network Size

Greedy

Rarest

Mixed

Random

Alternate

22

number of peers. As we mentioned before, all peer start up at the same time and use same

chunk scheduling algorithm. More peers in networks will increase the diversity of chunks

and improve the availability of chunks. As a result the general continuity will increase.

It is very interesting that Random algorithm’s performance is very good, especially for

small-size networks. It seems there is contradiction that, if we evaluate continuity,

Random algorithm is better than Rarest First algorithm which should be theoretically

better than Random. It is probably due to our simulation configuration. Since in our

simulations the networks size is not very large, in each time slot if the chunks a peer

select fail to be filled, the peer will try next chunk until success. Therefore the continuity

of Random algorithm is possible to overcome other algorithms, because Random is able

to increase the diversity of chunks. However, if we set the network size to be large

enough, i.e., there are more diversity and plenty of chunks, the performance of Rarest

First is better than Random algorithm.

For Greedy algorithm, its performance is the worst, because Greedy always focuses on

the most-demanded chunks, not the continuity. However, with the increasing number of

peers, its performance increases more rapidly than the other chunk scheduling algorithms.

The competition among peers will not become stronger and it is more likely that each

peer can successfully download the chunk it requests in Greedy.

Alternate algorithm’s performance is better than Greedy algorithm, because it tries to

download the most-demanded chunk for once in every two time slot. It is very interesting

that Rarest First algorithm and Mixed algorithm’s continuity are very similar. Mixed

algorithm does not improve continuity as well as we expect.

23

Based on our experiments, generally we can conclude that Rarest First algorithm and

Mixed algorithm have no advantages on startup latency in either large or small networks.

Alternate algorithm and greedy algorithm are best evidently.

Second, we study the performance of chunk scheduling algorithms in the conditions of

changing buffer window size. In these simulations, we also test these algorithms in two

scenarios as we use in testing different network size. One scenario is focused on the

startup latency, and the other scenario is focused on continuity. Since in this set of

simulations we are focused on evaluating the performance with different buffer size, so

the network’s configuration is the same, that peer’s population is the same in all

simulations. Furthermore, the media source keeps the same in order to guarantee the

fairness, whose size is always 1000 chunks. The sliding buffer window only slides when

all empty positions are filled. All peers start their jobs at the same time. To ensure the

fairness, the running order of peers is still randomly shuffled at each time slot.

Figure 3.3.3 shows the average startup latency of different chunk scheduling algorithms

with changing buffer size. Since chunk scheduling algorithm is used to fill empty

positions in the buffer window, by changing the buffer we evaluate the efficiency and

performance of these chunk scheduling algorithms. In Figure 3.3.3 we observe that

Greedy algorithm is always the best algorithm in handling startup latency, since its first

priority is to download the most-demanded chunks in the buffer. We also observe that

Alternate algorithm is almost as good as Greedy algorithm. In this Figure we can see that

Rarest First algorithm has the worst performance on startup latency, as we expect Rarest

First algorithm is not good at reducing startup latency. Since Mixed algorithm is a

combination of Greedy and Rarest First, its performance is between them. For Rarest

24

First algorithm and Mixed algorithm the latency increases with the increasing buffer size

linearly. The number of chunks which are downloaded before the user starts the first

playback depends on the buffer size in Rarest First algorithm and in Mixed algorithm,

and the startup latency for the first played chunk also depends on buffer window size. If

the buffer size is bigger, then the startup latency could be longer. Compared with Rarest

First and Mixed algorithms, the startup latency of Greedy/Alternate/Random algorithms

is independent of the buffer window size.

Figure 3.3.3 Average startup latency comparison in different window size

Figure 3.3.4 Average continuity comparison in different window size

0
50

100
150
200
250
300
350
400
450

0 20 40 60 80 100 120

St
ar
t‐
u
p
 L
at
e
n
cy

Window Size

Greedy

Rarest

Mixed

Random

Alternate

AvgContinuity~ winSize

5.00%

15.00%

25.00%

0 20 40 60 80 100 120

Window Size

C
o
n
ti
n
u
it
y

Greedy

Rarest

Mixed

Random

Alternate

25

The experiment result of continuity is similar as we study in evaluating startup latency.

For most of the algorithms except for Random, their continuity keeps constant when the

window size is increasing. It means the continuity is independent of the window size.

Considering the evaluations on changing network size, we notice that network size has a

significant impact on continuity. Because if there are more peers in the networks, they

increase the diversity of chunks, but the buffer window size is not relative with the

continuity.

All of above testing cases observe the metrics when jobs of all peers are finished. Now

we study the metrics during the playback. In this simulation, the population of peers is set

to be 100, media source size is 1000 chunks, and we set buffer window size to be 40.

Since startup latency only determined by the time slot of first playback, so here we only

evaluate the continuity curve at different time slot in Figure 3.3.5. In this figure, we find

that all algorithms’ trends are similar. The continuity increases with time, and the

continuity become stable after a particular time. Therefore, we discover that when the

number of chunks achieves a particular number, the continuity will stay on a stable and

good value.

26

Figure 3.3.5 Continuity during playback

3.4 Chunk Delivery Methods: Push versus Pull

In order to improve the transmission efficiency in P2P live streaming system, in this

section we study two delivery methods: Push method and Pull method. As we discuss in

section 3.3, chunk scheduling algorithms are typically data-driven methods, which are

also pull-based protocols. In this type of protocols, media content is divided into chunks

for transmission. Each peer periodically exchanges content-map notifications with its

neighbors. Meanwhile, this peer explicitly requests empty chunks from its neighbors

based on the information in the content map. Obviously, the major drawback of pull

method is the control overhead and delay. Each peer needs to notify its neighbors of the

chunks it has. Based on the notifications its neighbors receive, they are able to download

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

100 600 1100 1600 2100 2600 3100 3600 4100

C
o

n
ti

n
u

it
y

TimeSlot

Alternate

Greedy

Mixed

Random

Rarest

27

demanded chunks. These communication messages incur some control overhead.

Meanwhile, it becomes the source of delay.

A good solution for these problems is to integrate the push method with the pull method.

A brief description about Push-Pull delivery method is as follows:

 First, each peer uses the pull method as a startup,

 Second, after a startup when chunks are received, a peer will receive the next

chunks from its neighbors without explicit demand.

 Third, when a peer receives a chunk, it will relay/push this chunk to those

neighbors who might be interested with this chunk.

To improve transmission efficiency and reduce delay, Push method has significant

advantages compared again Pull method: since a peer is no longer to send a request for

every chunk in the Push method, the provider positively sends continuous chunks to the

requester based on requester’s previous demand information, instead of waiting for

arrivals of every demand. In this way the delay can be reduced and the diversity of

chunks are also improved. Furthermore, by reducing the number of explicit requests

between peers, the system reduces the control overhead, and push method efficiently

utilizes the remaining bandwidth. Hence, the transmission delay will be reduced and

playback continuity can be improved. Meanwhile, push method ensures high diversity

and availability of the chunks. It means more copies of media content are distributed into

peers.

28

3.5 Evaluation of Delivery Methods

To study the performance of Push and Pull delivery methods, we use playback continuity

we define in section 3.3 as our major metric. Since Push method utilizes the Pull method

as an initial step, Push method is the same as Pull method in reducing startup latency. As

a result, we do not consider the startup latency in this scenario. In our experiment, there is

one tracker, peers and one log-server used for collecting data for analysis.

Initially, tracker is supposed to connect with all peers, and each peer has several

neighbors (20% of population and randomly picked), and sources (a complete copy of a

file) are distributed randomly to some peers. Although at an initial step each peer has

randomly-picked neighbors, in our simulation each experiment for testing different

strategies share the same overlay. This guarantees the correctness of comparisons. In the

following set of test cases, the peer’s population increases, the fluency is evaluated in pull

and pull-push mode. Following figures are the experiments results.

Figure 3.5.1 Average continuity in Pull method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 20 30 40 50 60 70 80 90 100

A
vg
 C
o
n
ti
n
u
it
y

population

Greedy

Alternate

Mix

Random

RarestFirst

29

Figure 3.5.2 Average continuity in Push method

Figure 3.5.3 Comparison of Pull and Push methods

From Figure 3.5.1 we observe that, with the increase of peer’s population, the playback

continuity stays almost constant. It means the efficiency and performance of transmission

of chunks do not become much better in Pull mode. In Figure 3.5.2, we use Push method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

A
vg
 C
o
n
ti
n
u
it
y

population

Greedy

Alternate

Mix

Random

RarestFirst

100.0%

36.7%

49.7%

26.5%

36.7%

91.4%
100.0% 96.2%

91.4%

0

0.2

0.4

0.6

0.8

1

1.2

Greedy Alternate Mix Random RarestFirst

A
vg
 C
o
n
ti
n
u
it
y

Continuity Performance

NO Push

Push

30

instead of pure Pull method. Figure 3.5.2 shows that when the peer’s population is

increased, the average continuity will also increase constantly till up to almost 1 (the best

playback continuity). We observe that Push method has a significant impact in improving

playback continuity, since Push method helps chunks distributed more broadly and

rapidly. Figure 3.5.3 shows a comparison of Push method and Pull method: Push mode

can increase the playback continuity. From the point view of the whole system, system

has better performance in Push mode. Take Rarest First for example (in Fig. 3.5.3), the

average Fluency can be increased by 149%. This is an amazing improvement for

playback.

3.6 Summary

The efficiency of chunk selection algorithm plays a significant role in the P2P live

streaming system. We evaluate the performance of different chunk scheduling algorithms.

We observe that Greedy has the lowest startup latency, Rarest First is much better in

scalability, and Greedy is much better in a small scale networks. Mixed has better

efficiency in playback continuity. We designed a new algorithm – Alternate algorithm.

Compared with other chunk selection algorithm, Alternate algorithm presents a

comprehensively good performance.

Meanwhile, Push method is also able to improve streaming efficiency. It reduces the

latency, increases the fluency, and increases the diversity of media chunks. The

simulation shows that Push method has better performance in utilizing bandwidth

31

capacity. It can distribute media content rapidly and broadly, that indicates system has

smaller overhead and users have lower delay.

32

Chapter 4

Improving Scalability for P2P Live Streaming

4.1 Problem Description and Motivation

In chapter 3, we discussed scheduling algorithms and delivery methods in P2P live media

streaming. Based on the evaluation and study of scheduling algorithms and delivery

methods, we are able to improve the transmission efficiency of P2P live streaming. In this

chapter we present an incentive model to improve the scalability for P2P live streaming

system.

We use an example to illustrate the scalability problem in P2P live media streaming

system. For example, there are 10000 active users in the system, and all of them are

streaming videos based on 360p resolution. To support their real-time demand, we

calculate that the system needs about 7 Gbps uploading throughput. If the video quality

increases, the system requires higher upload throughput to support all users. According to

our definition:

System Efficiency Ratio = Total Upload Capacity / (#users * min Bandwidth Demand)

Except the improvement of transmission efficiency, another challenge for the P2P

systems is that the support capacity depends on the overall upload throughput in the P2P

live streaming system. The larger the overall upload throughput is, the more users and

higher streaming quality the system can support. To improve the scalability, we need to

design an effective incentive strategy which is able to encourage peers to make more

uploading, so that the system can get more upload throughput.

33

In P2P file sharing systems, typical incentive strategies focuses on the fairness and free-

rider problems, while incentive strategies should focus on encouraging peers to make

contribution and offering extra benefits to good-reputation peers in P2P live streaming

system. In this chapter, we present an incentive model, a bank incentive model.

4.2 Introduction to Bank Incentive Model

The idea of reputation based on a peer’s contribution and consumption is widely used as

a common incentive solution in many P2P systems for incentive purposes. However,

most of these works focus on fairness and free-rider problems. There is no such a work so

far, which provides an incentive solution especially for P2P live streaming. Our work

focuses on designing incentive solution for P2P live streaming system.

Nowadays H.264/AAC codecs which can support high resolution videos are widely used

in the Internet streaming. The resolution of videos varies from lower-to 360p to up-to

1080p. High resolution videos have higher real-time requirements. It is a challenge for a

P2P system to support high quality video streaming, because it needs to effectively utilize

remaining bandwidth at peers. To encourage peers for more contribution and utilize

remaining bandwidth at peers, we propose a banking system which can be used as an

incentive solution.

In this chapter, we present the advantage and features of our incentive model. First, it

improves the scalability in P2P live media streaming. Second, it deals with not only

system performance issues, but also non-system issues. Third, we present how to use this

34

model in different platforms/systems, and how to extend incentive strategies in this

model.

Here we present the components of our bank incentive model, it has 3 major components:

I Peer’s Bank Account:

 Deposit Account (balance);

 Credit Account (credit-in-use / credit limit);

 Credit Level

 Factors that affects a peer’s the Bank Account

II Bank Working Model:

 How to support credit query

 How to maintain peer’s account

III Credit Level Rate Model;

 Credit Level Hierarchy

 Credit Rating: How to evaluate a peer’s credit level

The first component is the bank account of each enrolled user in the system. Every peer is

encouraged to register a user ID. Otherwise, a guest has only basic benefits and

functionalities, and the system will constrain a guest in many online activities. A peer’s

bank account includes a deposit account, a credit account, and a credit level which is

considered as a peer’s reputation. The bank account is relative with a peer’s downloading

and uploading activities. The second component is the working model which is

responsible for managing and utilizing a peer’s bank information. The third component is

credit level rating model which is used to manage a peer’s reputation.

35

4.2.1 Peer’s Bank Account

Every registered peer (user) has an associative bank account in our model, and the

account composes of three parts: Deposit Account, Credit Account, and Credit Level.

A Deposit Account stands for a peer’s available balance which highly depends on a peer’s

income, and the income is computed based on a peer’s contribution.

Credit Account includes two parts: credit-in-use and credit-limit. Credit-in-use has the

meaning of consumption, which indicates the volume of chunks a peer has downloaded

from its neighbors. Credit-limit, as indicated by the name, constraints the overall credit a

peer can finally use. In another words, if the credit-in-use is greater than credit-limit, this

peer cannot download any more from its neighbors until it pays off its credit-in-use.

Credit Level has the meaning of reputation. If a peer has higher credit level, it can be

accepted by more neighbors in the P2P community and it can get more benefits from the

system. The Credit Level is the core that drives the incentive strategies.

We take an example to illustrate how a peer’s bank account is working. For example,

when a peer named Alice joins the system, her available balance is 3000 points in her

Deposit Account. Meanwhile, her credit-in-use is 800 with the credit-limit of 1500 in

Alice’s credit account. It means Alice has accumulated 800 point for her downloading

activities, and she can continue to download (consume) 700 point until she use off all her

credit-limit of 1500.

For a peer’s bank account, we further define:

36

Account Balance = DepositBalance + Income*(1+bonus) – CreditInUse (1-reward)

When a new-comer with both of bonus and reward being zero consumes 100MB content,

the incentive model requires that the new-comer needs to contribute approximate 100MB

content to its neighbors in order to keep the account balanced. If the new-comer fails in

its contribution, its available account balance will decrease.

When a user regarded as a good credit peer with bonus and reward being greater than

zero downloads 100MB content, it could upload less than 100MB content to balance its

account. To simplify description, we take Alice for the example and we assume bonus =

reward = 0. Alice’s Bank Account:

Alice’s Status Credit Deposit

Initial Status 0 / 1500 0

Hours later 450 / 1500 +600

Pay credit 0 / 1500 150

Credit limit increase 0 / 1700 150

Alice’s Account Balance

 = DepositBalance + Income*(1+bonus) – CreditInUse (1-reward)

= 0 + 600 – 450

= 150

37

Initially, Alice’s credit-limit was 1500. She downloaded nothing, and her saving was zero.

After she downloaded 450MB content, her credit-in-use was 450. At the same time, she

also uploaded 600MB content to her neighbors (making contributions). Because of her

contribution, her income was 600 during this process. Later on she used her income to

pay for her credit. Finally because of her contribution, she was rewarded for 200 points of

credit limit add-up. As a result, Alice played back media of 450MB, and contributed

600MB media to neighbors. Her credit line increased by 200 points, and kept 150 points

deposit for future usage.

Table 4.2.1 presents a variety of factors that affect a peer’s bank account.

For the income, income is computed directly based on a peer’s uploading (contribution).

If a peer is willing to perform as a helpmate for the system, for example it provides

additional service to other peers, which is supposed to be taken care of by the system.

This peer gains income for its helpmate activities. If a peer is willing to be a Push-method

helpmate, it also gains income for its kindly contributions.

For credit-in-use, obviously the downloading is used to compute a peer’s consumption

(credit-in-use). If a peer is willing to provide debit to its neighbors, it is also considered

as consumption.

For credit-limit, it is directly associated with the credit level. The higher the credit level is,

the higher credit limit a peer can get to.

38

Income (deposit) Credit-in-use Credit Limit Credit Level

Contribution
(Upload)

Consumption
(Download)

Historical
Contribution

Historical
Contribution

System Helpmate Debit Historical Loan

Push Helpmate Historical System
Help

 Historical Pull-Push
Help

Table 4.2.1, Factors affecting a peer’s bank account

4.2.2 Bank Working Model

Section 4.2.1 presents the major components of the bank incentive model. In this section,

we present the corporation of the components of our bank incentive model.

There are three general steps. In the first step, peers make queries and answer queries in

the system. In the second step, peers download chunks based the availability of media

chunks and upload chunks based the requests of their neighbors. In the final step, peers

send report, and the Bank Server updates the accounts of peers. Figure 4.2.2 displays the

communication flows between peers in the banking system.

39

Figure 4.2.2 Communication message flow in bank working model

The following example presents how this model works out between peers. Alice wants to

playback a movie, she connects to Bob as her neighbor. Then Alice sends a request to

Bob, saying “I want to download some content from you”. When Bob receives her

request, Bob sends a credit query to Bank Server, saying “I want to check Alice’s credit

level”. Bank Server responds to Bob the credit report of Alice. When Bob receives the

credit report, he will make a decision whether or not to accept Alice’s request based on

Alice’s credit report. If Alice’s request is accepted by Bob, Bob will send media chunks

to Alice. Otherwise Bob could deny Alice’s request if Alice’s credit level is not

acceptable for Bob. Both Alice and Bob will report to the Bank Server periodically the

40

transaction information between them. Based on this information, the Bank Server will

update Bob and Alice’s bank account and credit level.

4.2.3 Credit Level Rating Model

After sorting and organizing the peers based on their credit levels in our bank incentive

model, our model establishes a Credit Level Hierarchy which is the core of implementing

incentive strategies in the system. With the corporation of the Credit Level Hierarchy, the

bank incentive model is able to support credit query and identification by managing the

credit levels in the Bank Server, which form a bottom-up hierarchy in the Bank Server.

Compared with users at bottom who are identified as bad credit peers, those at top have

highest credit level who are considered as good credit peers.

Figure 4.2.3 presents a general hierarchy of the credit levels of peers.

|------------------------------------- Top Credit Level
|
|
|-------- Alice’s Credit Level (eg. 800)
|
|
|
|
|
|
|-------- Bob’s Credit Level (eg. 200)
|
|------------------------------------- Bottom Credit Level

Figure 4.2.3 Credit level rate of peers

41

The Bank Server is responsible for organizing all peers into a hierarchy, so that this

hierarchy can be used as the core of incentive strategies. For example, Alice’s credit level

is higher than Bob. If Bob wants to download chunks from Alice, Alice could deny his

request as an option or Bob will be put behind in Alice’s service queue, just because

Bob’s credit level is lower than Alice’s. So for any peer, if it wants to obtain more

benefits from its neighbors, it has to contribute. That’s the reason this credit hierarchy can

be used to encourage a peer’s contribution as an incentive factor.

Another incentive reason is that, many bonus benefits and functions will be unlocked

with the increase of Credit Level.

4.3 Improving Streaming Performance

4.3.1 Query ACK and Deny

As we present the working model at 4.2.2, a peer can deny a requester’s demand if the

requester has a lower credit level after the peer looks up the credit information at the

Bank Server which is responsible for managing a peer’s credit.

For example, Alice connects Bob as her neighbor. She sends a request to Bob in order to

download chunks from Bob. When Bob receives her request, Bob will check Alice’s

credit level at the Bank Server. If Alice’s credit level does not meet Bob’s expectation (in

our model, this expectation is ranged based on Bob’s self-credit-level by a lower-bound

threshold), Bob will deny Alice’s request.

42

In this scenario, a peer is encouraged to improve its credit level by making contributions

(uploading) in various ways. Otherwise its credit level will be far away behind its

neighbors’ credit level, and most of its neighbors could deny its request.

4.3.2 Priority in Service Queue

In our bank incentive model, we utilize priority policy as another incentive strategy,

which is the most important incentive strategy in our model, since priority policy is also

widely used even in the real world, for example vip customer in shopping or waiting

room. A user with better credit level is considered as the one that has higher priority in

our incentive model, and it could be served by its neighbors in first order. Normally, a

peer has a limit of the maximum number of peers which it can support in a unit time, (no

matter it’s a software-default value or a user-customized value). Priority policy does not

concern about the arriving order of the requesting messages, but concern about the credit

level of the peer who sends this request message. This feature ensures that a request could

be processed in a first order even it arrives in a later order. Every peer maintains a service

queue which keeps the requesting messages from its neighbors.

For example, Alice is a provider, and she provides chunks to her neighbors: Bob, Charlie,

and Daisy. Suppose, credit_level(Daisy) > credit_level(Bob) > credit_level(Charlie).

Alice receives Bob’s request and Charlie’s request in 1st order and 2nd order respectively.

Alice receives Daisy’s request in the last order. However Daisy’s credit level is the

highest. Even though Daisy’s request is the last-come, her request will be processed in a

first order by Alice. If Alice receives the requests which exceed the maximum number

43

that Alice can support, the requests from those lower-credit-level peers will be suspended

till next time.

In this scenario, if a peer is always keeping a lower credit level, its request message could

fall behind others in its neighbor’s service queue. Furthermore, if a request message is

timed out in the service queue, this message will be dropped. Priority policy formulates a

competition scenario, which encourages every peer to make more contribution in order to

increase its credit level.

4.3.3 Group Selection

The bank incentive model, providing query ack/deny and priority policy as incentive

strategies we have discussed in previous sections, also supports group selection that is

another incentive strategy in our model. Group selection can block unexpected neighbors

and select better neighbors for a peer. Take Alice as an example (Figure 4.3.3).

Alice has a good credit level. When Alice sends requests to the Tracker, the Tracker

answers to Alice, and provides the neighbor information to Alice, or when Alice receives

gossip message from her neighbors directly, typically a set of random neighbors is

selected. However, in our model group selection can help Alice to select a range of

neighbors which could be better than random selection. For example, this range could be

(1 + 20%) of Alice’s credit level. In this way, some unexpected neighbors for Alice will

be filtered out.

As a reversed-side example, if Bob’s credit level is always bad, then the kind of the

neighbor information he can get is always comparatively bad group. Or we can rule that,

44

Bob is able to fetch all kinds of neighbor information. However, if Bob’s credit is not

located at a given-range of Alice’s credit, Alice will deny Bob’s request.

In this scenario, the banking (incentive) system encourages peers to contribute to improve

their credit scores.

|------------------------------------- Top Credit Level
|
|-------- + 20% Alice’s credit line (960)

|-------- Alice’s Credit line (eg. 800) Range of Alice’s neighbors
||
|-------- - 20% Alice’s credit line (640)

|-------- Bob’s Credit Line (eg. 200)

|------------------------------------- Bottom Credit Level

Figure 4.3.3 Group selection

4.3.4 Push Helpmate

In chapter 3, we discussed Pull delivery method to Push delivery method. Compared with

Pull method, a peer using Push method is able to play a good role in helping its neighbors,

which is the major advantage of Push method. In our incentive model, a peer will be

awarded if it is willing to help its neighbors. To illustrate how a peer could be rewarded

for its contribution as a push helpmate, we take an example. As a push-method helpmate,

Alice receives packets from Evan, and then Alice will forward these packets to her

45

neighbors (Bob, Charlie and Daisy). However these packets are not those ones that Alice

is explicitly requesting for herself. Alice is helping with pushing packets to her neighbors,

and improving system performance.

In this scenario, although Alice is downloading content from Evan, she does not need to

pay for this consumption. Meanwhile, Alice is uploading (forwarding) packets to

neighbors, so she is able to accumulate her income.

Figure 4.3.4 Push helpmate

4.3.5 Contribution Bonus and Consumption Reward

The bank incentive model is running on top of the P2P live streaming system by

monitoring a peer’s downloading and uploading activities, establishing a consumption

and payment system, and integrating incentive strategies with itself. When a peer is

downloading chunks from its neighbors, it is actually consuming its credit. In the

opposite side, a peer is earning income when it is uploading chunks to its neighbors. A

peer uses its income to pay off its consumption. When a peer’s credit level increases

46

because of its contribution, it will get higher bonus which makes the peer earn more

income based on the same amount of contribution, and meanwhile get higher reward

which helps the peer make less payment for the same amount of consumption. Here we

can image both of these incentive functionalities in the scenario of using a credit card in

our daily life.

Figure 4.3.5 presents a general relationship between credit level, bonus and reward:

Figure 4.3.5 Changes of Bonus and Reward based on credit Level

Peers are encouraged to increase their credit level by contribution, in order to get more

benefits in terms of Bonus and Reward.

0%

20%

40%

60%

80%

100%

120%

50 100 200 300 400 500 600 700 800 900 1000

B
o
n
u
s

Credit Level

bonus

0%

2%

4%

6%

8%

10%

12%

14%

16%

50 100 200 300 400 500 600 700 800 900 1000

R
e
w
ar
d

Credit Level

reward

47

4.4 Improving E-commerce Functionalities

In Section 4.3, we present typical incentive functionalities for our incentive model that

can encourage peers to make more contribution, which improves the system’s scalability

and efficiency to support a large number of users. In this section, we present that our

model can be also used as an incentive in the non-system issues, commercial

functionalities.

Various user-customized functionalities are supported in many live streaming

applications, for example, vip user and advertisement during playing. Based on the

research of some popular streaming applications, we summarize their functionalities for

non-system-performance issues. We present that our bank incentive model can be utilized

for e-commerce purpose.

Streaming Applications E-commerce Functionalities

easyMule Advanced search

Share personal file

Youtube Ads in buffering

PPStream

PPLive

Ads in buffering (non-vip)

NO Ads (VIP)

VIP movie

Broadcast personal media

Support third-party application

Personal setting for VIP

Real’s Helix File conversion for multiple devices (not free)

Apple’s Darwin File conversion for multiple devices (not free)

Table 4.4.1 E-commerce functionalities in popular commercial streaming applications

48

Besides supporting incentives to improve scalability, the bank incentive model can be

used in the area of E-commerce functionalities, which is another contribution for

encouraging peers for wide online activities. For example, Table 4.4.1 demonstrates

various functionalities in different live media streaming applications. PPStream provides

registration and purchase for vip users who have special benefits and bonus. Inspired by

this feature, we can build a special-benefit switch-on hierarchy based on the credit level

of the peers. With the increment of credit level, special benefits and functionalities will

be unlocked, which means that the higher the credit line is, the more functionalities a peer

can get.

These live streaming applications categorize users by user’s level or by user’s payment

type. Typically a user registered as a payment user or a user with higher level, gets more

benefits. In our model, extra benefits are associated with different credit levels. Figure

4.4.2 presents this organization. While the credit level is increasing, more functionalities

are unlocked which are supposed to be locked at lower level. If a peer is trying to

increase its credit level, it obtains extra functionalities.

|------------------------------------- Top Credit Level
|
|-------- broadcast personal media (unlock)
|
|-------- VIP movie (unlock)
|
|-------- high definition movie switch-on (unlock)
|
|-------- advanced search (unlock)
|
|--------
|
|-------- remove Ads in buffering (unlock)
|
|------------------------------------- Bottom Credit Level

Figure 4.4.2 Unlock functionalities based on credit level

49

4.5 Extension of Bank Incentive Model

4.5.1 Share Credit in Different Platforms/Systems

Since the bank incentive model is a centralized model, in which every user is encouraged

to register a unique ID, so its information can be kept in the server and used in a wide

area of platforms or systems. For example, a peer’s credit can be used in a mobile system.

If multiple machines are associated with the same user id, the user can choose one

machine as the major source of its contribution, and select another one for more

consumption. For example, user can use the desktop PC for major uploading activities,

and choose the mobile device as the major consumption device since the bandwidth at the

mobile device is more valuable.

4.5.2 Extend Incentive Strategies

Not only the bank incentive model is compatible in different platforms, but we can also

extend its incentive strategies when we need to re-design or add incentive strategies. Here

we mimic the idea of Strategy Design Pattern to extend the incentive strategies for our

bank incentive model. Since our model built on top of P2P system inherits to be open, we

can add or modify incentive strategies in the ways of affecting a peer’s credit level. For

example, when Alice communicates with Bob, or Alice is a system helpmate, or Alice

works as a Push helpmate, changes on Alice’s credit depends on the methods that are

used to evaluate a peer’s credit. Although the communications are fixed, we can still

50

modify or add the methods of How-to evaluate a peer’s contribution, consumption and

reputation level.

Figure 4.5.2 Extend incentive strategies in the Bank Incentive Model

4.6 Simulations and Results

To study the performance and impact of this incentive model on P2P live media

streaming system, we implemented a simulator in Visual Studio C++ 2008, in which we

simulated a group of peers which connect with randomly-picked neighbors of a given

number, a Bank Server which is responsible for managing the banking information of

every peer and answering queries from the peers, and a Track Server which provides

media and peer information. Table 4.6 shows the network configuration for incentive

strategy experiments in our simulations. Instead of the actual units, the unit of these

parameters and settings are relative units but constant. For example, buffer size is 100. It

51

means the buffer window can hold 100 chunks in total. The download speed is 60. It

means the speed is 60 chunks per time slot. The timing is not an actual time unit, but time

slot.

Peer’s Configuration
Peers Population 30 ~ 300
Buffer Size (chunks) 100
Download Speed Range 1 ~ 100
Upload Speed Range 1 ~ 100
Media Size 10000
Running Time Slot 1 ~ 100

Peer’s Account Configuration
Credit Limit 1000
Credit Level 500
Deposit 500
Income 0
Credit-in-use 0
Bonus 0 ~ 100%
Reward 0 ~ 15%

Table 4.6 Simulation configuration for evaluating bank incentive model

4.6.1 Impact of Upload Bandwidth

In this simulation, we intend to find the impact of upload bandwidth on the download

bandwidth at each peer when we utilize the incentive model in P2P live media streaming

system. Theoretically we expect that, a good incentive model has a critical feature of the

capability of encouraging peers to obtain better download bandwidth by making more

contribution.

In our experiments, a group of peers with the same download bandwidth configuration

but different upload bandwidth are deployed in the P2P system which provides a basic

P2P environment. For this group of peers, we configure their download bandwidth at 50

chunks per time slot along with different upload bandwidth.

52

Figure 4.6.1-1, Actual download bandwidth with increasing upload bandwidth

Figure 4.6.1-1 shows the changing curve of actual average download bandwidth when we

increase the upload bandwidth. We observe that the peers with very low upload

bandwidth can only get approximately 65% download bandwidth of configuration level.

Even when we actually set the configuration level of the download bandwidth at a higher

value, the peers with low upload bandwidth cannot have better download bandwidth. The

reason is that when we utilize the incentive model in the P2P system, if a peer constraint

its upload bandwidth at a low level and meanwhile it is downloading content from its

neighbors, its credit level will finally fall behind others. When its neighbors receive its

demand requests for downloading chunks, these neighbors will check its credit level by

querying at the bank server. If this peer’s credit level is not in the expected range, its

neighbors could possibly deny its request. As a result, not matter how this peer configures

its download bandwidth. Its actual download bandwidth is actually relative with its

0

10

20

30

40

50

60

3 4 5 7 8 9 1011131415161718192024252627282930313233343536373839

A
ct
u
al
 D
o
w
n
lo
ad

 B
an

d
w
id
th

Upload Bandwidth

Download Bandwidth (incentive)

53

upload bandwidth. If a peer constraints its upload bandwidth at a low level, it cannot get a

better download bandwidth. When we increase the upload bandwidth constantly, the

actual download bandwidth stays at a constant level when the upload bandwidth gets to a

specific level. In this simulation, when a peer’s upload bandwidth can get to 24 chunks

per time slot, it is able to get a full configured download bandwidth. It indicates that a

peer should keep a good upload-download ratio in order to get an optimal download

bandwidth (configured download bandwidth).

Figure 4.6.1.-2, Actual download bandwidth with incentive and without incentive

Figure 4.6.1-2 shows the difference between a P2P live media streaming system with and

without incentive model. In this figure we observe that, if we utilize the incentive model

in networks, peers are able to get to their optimal download bandwidth (100% configured

download bandwidth) if they are willing to increase upload bandwidth and keep a good

0

10

20

30

40

50

60

3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

A
ct
u
al
 D
o
w
n
lo
ad

 B
an

d
w
id
th

Uploading Bandwidth

Download Bandwidth (incentive)
Download Bandwidth (No Incentive)

54

upload/download ratio. However, if we do not utilize the incentive model in the networks,

the actual average download bandwidth of peers can only get to 42% of configured

download bandwidth. Even if we increase the upload bandwidth of a peer, this peer is

probably not able to get to a good download bandwidth. The reason for the performance

degradation can be found in Figure 4.6.1-3. Without incentives peers constraint their

contribution (uploading), this results in the decrease of total upload volume, so that the

average download bandwidth will decrease. If we do not utilize the incentive model in

the networks, there is another degradation: a peer is not able to get appropriate benefits

even if it has a good contribution, since without incentives the system cannot guarantee

extra benefits.

Figure 4.6.1-3, Actual upload bandwidth with incentive and without incentive

0

5

10

15

20

25

30

35

40

45

3 4 5 7 8 9 1011131415161718192024252627282930313233343536373839

A
ct
u
al
 U
p
lo
ad

 S
p
e
e
d

Upload Speed

AvgUploadBandwidth (Incentive) AvgUploadBandwidth (No Incentive)

55

Figure 4.6.1-3 shows how the actual upload bandwidth changes in networks with the

incentive model and without incentives. We observe that actual upload bandwidth will

gradually increase with the increasing of configured upload bandwidth. However, in the

incentive model this increase becomes much more rapid. In the figure we observe that, in

the incentive model the average upload bandwidth is increased by 23%, and the average

download bandwidth is increased by 118%. Since the average download bandwidth is

increased, the average startup latency can be reduced by 65%, which is shown in Figure

4.6.1-4.

46.25

23.53
21.22

19.14

0

5

10

15

20

25

30

35

40

45

50

Avg Download Bandwidth Avg Upload Bandwidth

B
an

d
w
id
th

Incentive

No Incentive

91982

47072
42577

38374

0

20000

40000

60000

80000

100000

Downloading Uploading

V
o
lu
m
e

Incentive No Incentive

56

Figure 4.6.1-4 Comparison in incentive mode and non-incentive mode

From the results of this simulation, we can see that the actual download bandwidth and

startup latency is highly related to the upload bandwidth in the incentive model. Because

a peer with higher upload bandwidth has a better credit level, its download bandwidth is

higher. This guarantees that the peer has low startup latency.

4.6.2 Impact of Download Bandwidth

In this simulation, we study the impact of download bandwidth, which leads us to

simulate a group of peers with the same upload bandwidth but variable download

bandwidth configuration.

Figure 4.6.2-1 shows the average download bandwidth increases gradually to a peak

point. This peak point is highly related to the upload bandwidth. When the actual average

download bandwidth get to the peak, and we continue to increase the configured

download bandwidth, its actual downloading speed will decrease a little until it stays at a

constant level. It means the peer will stay in the constantly balanced state. In this state,

download bandwidth is balanced with the upload bandwidth.

2.3

6.6

0

1

2

3

4

5

6

7

Startup Latency

Ti
m
e
 S
lo
t

Incentive

No Incentive

57

Figure 4.6.2-1, Actual download bandwidth in different configuration

Figure 4.6.2-2, Startup latency with different download bandwidth

0

5

10

15

20

25

30

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95

A
ct
u
al
 D
o
w
n
lo
ad

 B
an

d
w
id
th

Download Bandwidth Configuration

Avg Download Bandwidth

0

5

10

15

20

25

30

35

40

1 4 7 101316192225283134374043464952555861646770737679828588919497

Ti
m
e
 S
lo
t

Download Bandwidth

StartupLatency

58

Figure 4.6.2.-2 shows that, when the download bandwidth is increasing, a peer’s startup

latency is decreasing rapidly. However, there is a constraint for the rapid decrease of

startup latency. The constraint is the upload bandwidth. If the peer does not increase the

upload bandwidth, it cannot further improve its startup latency. Finally the startup latency

will be kept at a balanced level which is highly relative with a peer’s upload bandwidth.

Figure 4.6.2-3, Actual download bandwidth with incentive and without incentives

Figure 4.6.2-3 shows how the actual download bandwidth changes with the incentive

model and without incentives. We observe that, in both modes the actual download

bandwidth increased gradually and rapidly. In the incentive mode, the download

bandwidth will get to a balanced state, in which a peer’s download bandwidth is highly

relative with its upload bandwidth. If the peer constraint its upload bandwidth, its

download bandwidth will be constrained too. However, in the No-Incentive Mode, no

matter how we configure a peer’s upload bandwidth, we observe that a peer’s download

0

10

20

30

40

50

60

2 6

1
0

1
4

1
8

2
2

2
6

3
0

3
4

3
8

4
2

4
6

5
0

5
4

5
8

6
2

6
6

7
0

7
4

7
8

8
2

8
6

9
0

9
4

9
8

A
ct
u
al
 D
o
w
n
lo
ad

 B
an

d
w
id
th

Download Bandwidth Configuration

Avg Download Bandwidth (Incentive) Avg Download Bandwidth (No Incentive)

59

bandwidth will always gradually increase if we increase its configuration of download

bandwidth. That means a peer can get a higher download bandwidth with a very low

upload bandwidth, which can easily result in free-rider behavior. If this bad

upload/download ratio is allowed in a P2P networks, the performance of many peers

would be impacted.

4.7 Summary

In this chapter, we introduced an innovative incentive model, a bank incentive model.

This model effectively encourages peers to make more contributions and improves the

scalability of the P2P live streaming system. This is the most important goal we propose

this model for. Table 4.7 summarizes the functionalities of this model.

Streaming

Performance

E-commerce Functionalities Flexibility and Scalability

Query ACK and Deny

Priority in Service

Queue

Advanced Search

Pull-Push Helpmate

Peer Group selection

Bonus and Reward

Advanced search

broadcast personal media

Ads in buffering

VIP movie

Support third-party application

File conversion for multiple

devices

Support multiple platform

Banking Credit strategy is

scalable

Table 4.7 Summary of the Bank Incentive Model

60

Our simulation demonstrates that our bank incentive model can solve free-rider problems,

apply a balance between a peer’s upload bandwidth and download bandwidth, and

encourage contributions by utilizing and managing credit level of the peers. Besides the

improvement of scalability, our model is designed to support multiple platforms and the

extension of incentive strategies.

61

Chapter 5

Conclusion and Future Work

In this work, we studied the methods for improving transmission efficiency and

scalability in the P2P live streaming system.

For the goal of improving transmission efficiency, we present the chunk scheduling

algorithms and delivery methods which manage the requesting and transmission of

chunks respectively. Furthermore, we proposed an incentive model named bank incentive

model to improve the scalability for P2P live streaming system. For the scheduling

algorithms which are considered as the core of data-driven protocols, Greedy has the best

performance on reducing startup latency while Rarest First is much better in improving

streaming continuity. Instead of Mixed which is a combination of Greedy and Rarest First,

we propose a new chunk scheduling algorithm named Alternate algorithm that integrates

the advantage of Greedy and Rarest First and presents a better comprehensive

performance in both startup latency and continuity.

Besides the improvement of chunk scheduling, we also study chunk delivery method to

improve the transmission efficiency, which include the evaluation and comparison of Pull

method and Push method. Our simulation shows that Push delivery method is much more

powerful than pure Pull method, and it can greatly reduce the latency and increase the

playback continuity.

Inspired by a common idea of establishing reputation for a peer based on its contribution

and consumption, we propose an incentive model to encourage contribution especially for

62

P2P live streaming system as the major incentive purpose besides ensuring fairness in

traditional P2P file sharing, which is named bank incentive model. Our incentive model

demonstrates a good performance and efficiency in solving free-rider problems,

encouraging peers for more contribution, improving system’s scalability, and

encouraging peers for broader online activities. In future, a challenge for our bank

incentive model, the collusion problem needs to be solved.

63

References:

[1] Jani Suomalainen, Anssi Pehrsson, and Jukka K. Nurminen. A security analysis of

a P2P Incentive mechanism for mobile devices. The Third International

Conference on Internet and Web Applications and Services (ICIW 2008), 2008.

[2] International workshop on peer-to-peer systems (IPTPS). 2008 & 2009

http://www.iptps.org/papers.html

[3] “PPLive”, http://www.pptv.com/

[4] “PPStream”, http://www.ppstream.com/

[5] Bin Yu and Munindar P. Singh. Incentive mechanism for peer-to-peer systems. In

Proceedings of the 2nd International Workshop on Agents and Peer-to-Peer

Computing, 2003

[6] Michal Feldman, Kelvin Lai, Ion Stoica, and John Chuang. Robust incentive

techniques for peer-to-peer networks. ACM E-commerce Conference (EC’04),

May

[7]

Bridge Q. Zhao, John C.S. Lui, and Dah-Ming Chiu. Analysis of adaptive

incentive protocols for P2P networks. In Proceedings of IEEE INFOCOM 2009

[8] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-

conditioned, scalable Internet Services. In Proceedings of the Eighteenth

Symposium on Operating Systems Principles (SOSP-18), 2001

[9]

Yipeng Zhou, Dah-Ming Chiu, John C.S Lui. A simple model of analyzing P2P

streaming protocols. International Conference on Network Protocols (ICNP), In

Proceedings of IEEE 2007

[10] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for end

system multicast. In Proceedings of ACM SIGMETRICS, June 2000.

64

[12] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum.

CoolStreaming/DONet: A data-driven overlay network for efficent media

streaming. In Proceedings of IEEE INFOCOM’05, March 2005.

[13] Vikash Agarwal and Reza Rejaie. Adaptive multi-source streaming in

heterogeneous peer-to-peer networks. In Multimedia Computing and Networking

2005 (MMCN), 2005

[14] Chuang, J.. Designing incentive mechanisms for peer-to-peer systems. Grid

Economics and Business Models,

[15] Helix Streaming Server, RealNetworks, https://helixcommunity.org/

[16] Arnaud Legout, G.Urvoy-Keller, and P.Michiardi. Rarest first and choke

algorithms are enough. In Proceedings of Internet Measurement Conference 2006

[17] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, and Alexander

E. Mohr. Chainsaw: Eliminating trees from overlay multicast. In Proceedings of

IPTPS 2005, 2005

[18] Darwin Streaming Server, Apple, http://developer.apple.com/

[19] youtube, http://www.youtube.com/

[20] Meng Zhang, Jian-Guang Luo, Li Zhao, and Shi-Qiang Yang. A peer-to-peer

network for live media streaming using a push-pull approach. In Proceedings of

ACM Multimedia 2005, November 2005

[21] Nazanin Magharei and Reza Rejaie. Prime: peer-to-peer receiver-driven

meshbased streaming. In Proceedings of IEEE INFOCOM 2007

[22] Stephen E. Deering and David R. Cheriton. Multicast routing in datagram Internet

works and extended LANs. ACM Transactions on Computer Systems, 1990,

8(2):85–110.

65

[25] Ayman EL-Sayed, Vincent Roca, INIRIA Rhone-Alpes, and Laurent Mathy. A

survey of proposals for an alternative group communication service. IEEE

Network, 2003. 46–51.

[26] Paul Francis. Yoid: extending the internet multicast architecture.

http://www.icir.org/yoid/. 2006.

[27] Dimitrios Pendarakis and Sherlia Shi. ALMI: an application level multicast

infrastructure. In Proceedings of the 3rd USNIX Symposium on Internet

Technologies and Systems (USITS), 2001.

[28] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable

application layer multicast. In Proceedings of ACM Sigcomm 2002, 2002.

[29] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. Distributing

Streaming Media Content Using Cooperative Networking. In Proceedings of ACM

NOSSDAV 2002, Miami Beach, FL, USA, 2002.

[30] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony

Rowstron, and Atul Singh. SplitStream: high-bandwidth multicast in cooperative

environments. In Proceedings of Symposium on Operating Systems Principles

(SOSP) 2003

[31] Napster: http://www.napster.com/.

[32] Napster: http://en.wikipedia.org/wiki/Napster.

[33] Yi Cui and Klara Nahrstedtt. Layered peer-to-peer streaming. In Proceedings of

NOSSDAV, June 2003

[34] Yi Cui, Baochun Li, and Klara Nahrstedt. oStream: asynchronous streaming

multicast in application-layer overlay networks. IEEE Journal of selected areas in

Communications (JSAC) special issue on recent advances in service overlay, 2004,

22(1)

66

[35] Cheng Huang, Jin Li, and Keith W. Ross. Can Internet video-on-demand be

profitable?. In Proceedings of ACM SIGCOMM, 2007, 133-144

[36] George Iosifidis and Iordanis Koutsopoulos. Reputation-assisted Utility

Maximization Algorithms for P2P Networks. 16th International Workshop on

Quality of Service, pp. 20-29, Jun. 2008.

[37] “Emule”, http://www.emule-project.net

[38] “Kazaa”, http://www.kazaa.com/

[39] Sonja Buchegger and Jean-Yves Le Boudec. A Robust Reputation system for P2P

and mobile ad-hoc networks. Technical Report IC/2003/50, EPFL-IC-LCA, 2003.

[40] Sergio Marti and Hector Garcia-Molina. Limited reputation sharing in P2P

systems. In Proceedings of ACM 2004 (EC 04), ACM Press, 2004, pp. 91–101.

[41] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. Incentives

for combating freeriding in P2P Networks, Technical report, Stanford University,

2003.

[42] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia Molina. The

eigentrust algorithm for reputation management in P2P Networks. In Proceedings

of the Twelfth International World Wide Web Conference, Budapest, May 2003.

[43] B. Mortazavi and G. Kesidis. Incentive-compatible cumulative reputation systems

for peer-to-peer file-swapping.

[44] Thanasis G Papaioannou and George D Stamoulis. Effective use of reputation in

peer-to-peer environments. 4th IEEE international symposium on cluster

computing and the grid (CCGrid'04), 2004

[45] Yi Hu, Min Feng, Laxmi.N.Bhuyan, and Vana.Kalogeraki. Budget-based self-

optimized incentive search in unstructured p2p networks. In Proceeding of IEEE 2009

67

[46] Alberto Blanc, Yi-Kai Liu, and Amin Vahdat. Designing incentives for peer-to-

peer routing. Workshop on Economics of Peer-to-Peer Systems

[47] Emmanuelle Anceaume, Maria Gradinariu, and Aina Ravoaja. Incentive for P2P

fair resource sharing. In Proceedings of 5th IEEE international conference on P2P

computing (P2P’05), 2005

[48] Bin Yu and Munindar P. Singh. Incentive mechanisms for peer-to-peer systems. In

Proceedings of the 2nd International Workshop on Agents and Peer-to-Peer

Computing, 2003

[50] Jiangchuan Liu, Sanjay G. Rao, Bo Li, and Hui Zhang. Opportunities and

challenges of peer-to-peer Internet video broadcast. In Proceedings of IEEE 2007,

Special Issue on Recent Advances in Distributed Multimedia Communications,

2007.

[51] Meng Zhang, Li Zhao, Yun Tang, Jian-Guang Luo, and Shi-Qiang Yang. Large-

scale live media streaming over peer-to-peer networks through global Internet. In

Proceedings of ACM workshop on Advances in peer-to-peer multimedia streaming

(P2PMMS), 2005, 21-28

[52] SaurabhTewari and Leonard Kleinrock. Analytical model for bittorrent-based live

video streaming. in IEEE NIME Workshop, Jan. 2007.

[53] Chuan Wu and Baochun Li. Optimal peer selection for minimum-delay peer-to-

peer streaming with rateless codes. In Proceedings of ACM Workshop on

Advances in P2P Multimedia Streaming, 2005.

	signature
	Zemeng Li_Master Thesis

