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Co-morbidities as Quantitative Traits 
 
 

Abstract 
 

by 
 
 

PAOLA RASKA 
 

 

Complex disease sometimes has system-wide level impact by affecting a constellation of 

physiologically interrelated phenotypes rather than a single phenotype, resulting in a set 

of co-morbidities. The physiological connection between the phenotypes, and the 

consequent co-occurrence of morbidities, varies from individual to individual in a way 

that can affect diseases prognosis. As an example, when obesity and its associated 

morbidities, dyslipidemia, hypertension and insulin resistance, do co-occur, this co-

occurrence increases risk of diabetes and coronary heart disease in a way not explained 

by the presence of each individual morbidity alone. In this work, the physiological 

connections for each individual are characterized by the correlation values that the 

phenotypes present in their repeated measurements throughout the individual’s life. The 

variation in the within-individual phenotypic relationships, from individual to individual, 

can then be studied as a new quantitative trait.  

First, this study shows that traditional genetic approaches which target variation in the 

phenotypic values do not capture the variation in within individual phenotypic 

correlations. Secondly, two approaches designed to specifically model the new 

quantitative trait are statistically compared. Finally, the biological relevance of the 

phenotypic correlations underlying obesity and its associated morbidities is investigated 
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using the Framingham heart study data (human data) and the C57BL/6J and A/J 

chromosome substitution strain panel (mouse data).  It is found that these phenotypic 

correlations are associated to diabetes and cardiovascular disease in a way not explained 

by the phenotypic values alone. It is also shown that there is genetic variation underlying 

these phenotypic correlations and that it is distinct and independent from that underlying 

the phenotypic values.  

This work concludes that approaches that exclusively model phenotypic values when 

studying the genetics of co-morbidities in complex disease may be missing out on the 

biologically novel and relevant information contained in their correlations. Pursuing the 

genetics of phenotypic correlations as a new quantitative trait is therefore a worthwhile 

endeavor. 
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INTRODUCTION 

 

Can genetics help us understand what ties the system of traits that underlie complex 

disease together?  

 

Modern genetics provides us with a tool for getting at unknown biology underlying 

human variation. As long as this human variation has a heritable (hopefully meaning  

genetic) component to it we can use today’s advanced computational and genotyping 

technology to localize loci that are associated or linked to the variation. Once these genes 

are localized or “mapped”, functional studies can then determine the role they play in the 

variation being studied, opening a window into the biological mechanisms behind this 

variation. In this way, genetics can provide a very powerful tool for biological inquiry. 

For instance, when applied to human disease, it can pave the way for new possibilities in 

interventions and for the ability to predict individual risk. Hence the holy grail of 

genetics: the promise of personalized medicine. 

 

Complex disease poses a special challenge for this investigative framework and it is the 

reason it is qualified as complex. The complexity lies in the multifactorial nature of this 

type of disease. It is multifactorial on two counts. First, unlike “simple” mendelian 

disease where one or two major loci account for the majority of the genetic variation, 

complex disease is typically characterized by having multiple associated loci with small 

effects. This makes finding them much more difficult and it is one of the reasons the 

ability to replicate findings has been rather limited, creating much discouragement. 
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Methods that take into account this aspect of complex disease are imperative. There have 

been some promising developments along this line such as multifactor dimensionality 

reduction (MDR) (Moore et al. 2006) which  takes into account epistatic interactions 

between loci, or gene set enrichment analysis (GSEA) (Subramanian et al. 2005) types of 

methods, which incorporate biological pathway knowledge into the mapping effort and in 

so doing take into account the joint action of loci. Although this is an important problem 

facing the study of complex disease, it is not the one this body of work will be focusing 

on. 

 

This work will focus instead on the second aspect that makes complex disease 

“complex”, and that is its phenotype. Some complex diseases are characterized by having 

a system level impact on the individual. This means that when present it has an effect on 

numerous phenotypes, not just one. Sometimes all the phenotypes are present together 

and sometimes only a subset of them are. What is invariably true is that the phenotypes 

that do appear in the individual influence each other through, and serve as indicators for, 

their physiological interconnections. Sometimes their interactions may have an important 

impact on the individual’s prognosis and disease development. This makes the definition 

of complex disease fuzzy and difficult. Some examples of this are mental illnesses such 

as schizophrenia, the constellation of autoimmune disorders related to arthritis, and the 

group of metabolic related morbidities that are associated to obesity and which are 

sometimes called metabolic syndrome. 
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When faced with such complexity, what can we hope to gain from this genetics tool we 

described above? How should we approach the problem of finding the important genes 

underlying these fuzzy constellations of phenotypes? Two approaches come to mind. 

First, we may try to simply ignore the complexity by analyzing each phenotype 

individually.  There is value in this in that it will be sure to paint at least a partial picture 

of the biology underlying the disease as a whole. But it will certainly not be the complete 

picture. In order to get at the complete picture we have to somehow use the tool of 

genetics to get at an understanding of the physiological interconnections behind the 

phenotypes. How and why are these phenotypes coming together? Could this provide 

clues as to how they are compounding risk for the individual, and how in turn, the 

individual’s risk could be lowered and his prognosis improved? 

Herein lies the objective of the present work. I will provide a framework with which 

genetics can be used to help us understand the physiological connections between 

complex disease co-morbidities. 

 

In order to do this I will use obesity and its associated morbidities as an example of 

complex disease with which to test the ideas presented in this work. I will begin by 

showing through results from the literature that the first prerequisite for being able to 

apply genetics as a study tool is fulfilled in this disease, this being that our object of study 

varies.  Again, the object of study here is not the individual phenotypes in themselves, 

but rather the physiological connections between them. It is this connection which must 

vary from individual to individual. I will continue by going through how genetics has 

been used for the most part in tackling this disease’s phenotypes, how they have been 
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mapped individually, but also how the problem of connection between them has been 

addressed until now.  

 

As my first aim I will present the genetic epidemiological context of studying 

physiological connections between phenotypes. We will see how current genetic methods 

do not generally target this variation and how this is just one consequence of the general 

lack of distinction made between within individual and across individual processes. This 

lack of distinction will be shown to be a source of wider methodological issues in some 

of these approaches. 

 

In my second aim I will propose two methods that do target the variation of interest by 

making the within and across individual distinction. I will compare their behavior 

through simulations and contrast their assumptions to the assumptions made by other 

methods. 

 

In my third aim I will again address the existence of variation in the physiological 

connections between traits and the relevance of this variation to disease, but in a more 

direct way by inquiring real data. I will also explore whether this variation fulfills the 

second prerequisite for being able to use genetics as a research tool and that is, of course, 

whether it has a genetic component to it. I will additionally consider the question of 

redundancy of this new type of variation with the variation in phenotypes that has been 

targeted before with other methods, and finally, I will explore the benefits of conducting 

an integrated analyses of the system of phenotypic connections as a whole. 
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Organizational comment 

 

I will set up these three aims more fully in the section following the literature review 

(section 3). After this, the three papers corresponding to the three aims will be attached. 

Some redundancy between the rest of the dissertation and the first paper will be observed 

because it is a paper that has already been written to stand on its own and to be ready to 

be submitted. The second and third papers on the other hand still rely on the rest of the 

dissertation to serve as their introduction. 
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Section 1. PHYSIOLOGY 

 

The purpose of this section is to: 

1. Show that the physiological connections between obesity and associated 

phenotypes vary from individual to individual 

2. Show how this variation may be relevant in the individual’s prognosis 

3. Show an example of a plausible, yet not necessarily proven, mechanistic 

explanation underlying this type of variation 

4. Challenge the concept of causal direction between the phenotypes 

 

1.1  Obesity and associated phenotypes 

 

As we mentioned in the introduction, complex disease generally consists of a 

constellation of phenotypes. This led the field of phsychiatric genetics to develop the 

concept of “endophenotype” as a way of facilitating the etiological dissection of complex 

disease. The idea is to divide the disease into more stable, measurable phenotypes with a 

clear genetic connection. In their review, Gottesman and Gould list the characteristics 

that an endophenotype should have: it should be associated to the disease, it should be 

heritable and co-segregate with the disease in families and it should be present in healthy 

and diseased individuals (Gottesman and Gould 2003). Other terms that have been used 

to refer to endophenotypes are biological markers and subclinical traits. 
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One example of a complex disease that is best studied as a collection of multiple 

endophenotypes is obesity and its associated morbidities. Obesity is defined as having a 

body mass index (BMI) of 30 or more. Globally, there are more than 300 million obese 

individuals and obesity rates have risen three-fold or more since 1980 in some areas of 

North America with 35.1% of adults now being classified as obese in the United States 

(Catenacci, Hill and Wyatt 2009).  Its increasing burden on public health and health costs 

makes it an extremely relevant disease. In fact, the Plain Dealer recently reported that “if 

current trends continue, more than 50% of Ohio’s adults will be obese by 2018 and the 

cost to the state’s health system could be as much as 21.7 billion annually” (Sarah Jane 

Tribble, The Plain Dealer, November 17, 2009).  

 

This impact on health is only true because obesity generally presents itself with three 

other morbid conditions: 

1. Dyslipidemia: abnormal levels of lipoproteins in the blood  

2. Insulin Resistance: normal levels of insulin do not produce normal glucose uptake by 

muscle, liver, fat and other tissues, leading to high glucose levels in the blood 

3. Hypertension: high blood pressure 

 

When these conditions co-occur in the same individual they increase the risk  for cardio-

vascular disease events two-fold and they increase the risk for diabetes five-fold (Eckel, 

Grundy and Zimmet 2005). 
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Because of their co-occurrence and their joint effect on disease, the collection of 

morbidities are sometimes referred to as a “Metabolic Syndrome” or a “Metabolic 

Disease”. There are many differing criteria for defining this disease and these definitions 

and their clinical use are beyond the scope of this work. Despite this, I will be reviewing 

how these morbidities present themselves separately or together in individuals and in 

order to do this I will be using studies that refer to individuals that present some of the 

morbidities together as “metabolically diseased”. For these instances I will make clear the 

critieria that the particular study used when applying this label.  

 

The endophenotypes as defined by Gottesman and Gould, or the biological markers for 

all of these morbidities are, cholesterol (CHOL), triglyceride (TG) and high density 

lipoprotein (HDL) levels in the blood for dyslipidemia, fasting blood sugar (BLSUG) and 

insulin levels for insulin resistance (INS), systolic (SBP) and diastolic blood pressure 

(DBP) for hypertension and  body mass index (BMI) for obesity. From now on I will be 

referring to these markers as traits, or “obesity related traits”.  

 

These traits influence each other within the individual through their physiological 

connections. Before getting into how these trait relationships vary from individual to 

individual it is desirable to paint a picture of what these relationships are generally 

thought to be. So the following may be, as we will see later, an oversimplified description 

of how these traits are physiologically connected as described in the Lusis et al. review 

(Lusis, Attie and Reue 2008).  

 

. 
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Fig. 1.1  Relationships between metabolic traits. Adapted from Box 1, in Lusis, Attie and Reue 
2008, Adapted by permission from Macmillan Publishers Ltd: Nature Genetics Reviews, 
copyright 2008. 
 
 

Legend for Figure 1.1  

1. Increase in fat influences lipoprotein levels, for instance, increased flux of free 

fatty acids to the liver stimulates production of triglycerides 

2. The increase in fatty acids and cytokines causes increased insulin resistance. 

3. Hepatic insulin resistance causes increased production of triglycerides, while 

elevated fatty acids cause increased insulin resistance. 

4. The proinflammatory state cause by excessive fat contributes to insulin resistance. 

5. Activation of sympathetic nervous system by obesity and insulin resistance causes 

hypertension. 

 

From this synopsis it seems that all of these conditions follow from increased fat due to 

excessive caloric intake and reduced physical activity. There appears to be a clear 

unidirectional causal connection, where it is all downstream from obesity. But it is in 

reality much more complex than this for two reasons: 
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1. Individual variation: for example there are healthy obese and morbid normal 

weight individuals. 

2. Chicken and egg problem: determining which condition must be present first for 

the other to develop, what can be an indicator of causality, is not straightforward. 

 

1.2  Heterogeneity in obesity and its relationship to other phenotypes 

 

Obesity can be present in the absence of dyslipidemia, hypertension and insulin 

resistance and these three conditions may also be present in the absence of obesity. In 

fact, 31.7% of obese individuals are metabolically healthy and 23.5% of normal weight 

individuals (BMI < 25) are metabolically abnormal according to the analysis of the 

National Health and Nutrition Surveys 1999 – 2004 (Wildman et al. 2008). Metabolic 

abnormality in this study was defined as having 2 or more of the following: hypertension, 

elevated levels of triglycerides, glucose or insulin resistance, low HDL and high systemic 

inflammation gauged by level of high-sensitivity C-reactive protein. Figure 1.2 shows the 

Wildman et al. data broken down by gender. 
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Fig. 1.2  “Age standardized prevalence of cardiometabolic abnormalities by body size and sex, A = women, 
B = men, *P<0.001 for proportion metabolically abnormal vs. normal weight.” Taken from figure 2 in 
Wildman et al 2008. Reprinted with permission from the American Medical Association, copyright 2008. 
 

 

The review by Sims also serves to show the heterogeneity in the co-occurrences of 

obesity and related conditions (Sims, 2001) (see figure 1.3). Although it is evident that 

obesity and insulin resistance tend to present themselves along with other conditions and 

when not present, individuals tend to be metabolically healthy, there is also substantial 

variation around this trend. All of the studies in this section provide evidence that one of 

the morbidities, obesity, can be separated from the rest. This is especially unexpected of 

obesity in particular because of its apparent causal role behind all the other conditions. 

But in addition, these studies show that like obesity, dyslipidemia, insulin resistance and 

hypertension can all present themselves independently of the rest within the individual. 
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The entire gamut of possible combinations of these four morbidities can be found in the 

population despite the fact that there is a general tendency for all of them to co-occur. 

What factors make them present themselves together or independently from individual to 

individual are unknown.  

 

 

Fig. 1.3  Prevalence of insulin resistance on the y axis  and number of comorbid conditions on the 
x axis.  Comorbid conditions included are impaired glucose tolerance, T2D, dyslipidemia, 
hyperuricemia and hypertension. Taken from figure 1 in Sims, 2001. Reprinted with permission 
of Elsevier, copyright 2001. 

 

 

In this section I am focusing on the link between obesity and the other morbidities 

because of the huge role that it is generally given in the whole of metabolic disease. 

Despite this, the arguments apply to the relationships between all the other phenotypes as 

well. The variation underlying all of these relationships has the potential of having a 

genetic component and of being biologically informative. 
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1.3   Importance of heterogeneity in disease prognosis 

 

How exactly can this type of variation be informative? Let’s take for instance the 

occurrence of the healthy obese individuals. It brings into question the directional 

physiological relationships described above. Why does obesity causally contribute to the 

occurrence of the other morbidities in some individuals and not in others? What is it in 

their physiology that disconnects these phenotypes? Why is it that they can gain weight 

and maintain an otherwise healthy metabolism? Understanding how these individuals are 

genetically different from others may help give mechanistic/functional explanations to 

these questions. This in turn could potentially lead to the design of interventions for 

morbid obese individuals.  

 

Additionally, simply knowing the individual’s value for a trait can sometimes not be 

enough in terms of determining his or her prognosis and the proper course of care.  For 

example, Sims explains that “treatment” of a healthy obese individual can have negative 

effects that are similar to those that starvation would have in a normal weight individual 

(Sims 2001). Knowing how they are genetically different can therefore serve to predict 

what type of treatment may be more in line with the individual’s physiology regardless of 

obesity thereby providing an avenue for more personalized medicine.  

 

Meigs et al. uses the Framingham study offspring generation data to look at how the 

presence of these morbidities influences the risk of type 2 diabetes (T2D)  and cardio 

vascular disease events (CVD). They particularly look at whether obesity confers a 
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higher risk on its own or whether it needs the other morbidities. Like the previous studies, 

Meigs et al. show that there is a prevalence of metabolically diseased normal weight 

individuals. Moreover, they show how these individuals are at more risk for CVD than 

the obese with metabolic disease (see figure 1.4). (They use the ATPIII criteria for 

determining metabolic disease, see Appendix A)(Meigs et al. 2006). Again, this is a case 

in which proper prognosis and treatment cannot be gauged by the levels of the traits on 

their own but rather by how the phenotypes combine and relate within the individual. 

 

 

 

Fig. 1.4   Seven year age-sex adjusted cumulative incidence of type 2 diabetes T2D and 11 year adjusted 
cardio vascular disease (CVD) stratified by BMI and the absence of metabolic syndrome as defined by the 
ATP III criteria. MHO are obese subjects with metabolic syndrome and MONW are normal weight subjects 
with metabolic syndrome. Taken from figure 1 in Meigs et al., 2006. Reprinted with permission from The 
Endocrine Society, copyright 2006. 
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1.4   Plausible mechanistic explanation underlying heterogeneity 

 

Chandalia and Abate find one genetic factor underlying this heterogeneity by studying a 

subpopulation which is predisposed to presenting metabolic morbidity in the absence of 

obesity, the Asian ethnic group. They determined that a point mutation in the gene 

encoding for ENPP1, a type II transmembrane glycoprotein which when overexpressed in 

cells impairs insulin receptor signal transduction, is much more common in migrant 

South Asians. They suggest this mutation may explain the development of insulin 

resistance and adipose tissue dysfunction in this group. They also show how this mutation 

predicts T2D in a different ethnic group as well as in the same ethnic group but in a 

different environment, providing support for its functional role. They conclude in their 

study that adipose tissue dysfunction, not quantity is what may underlie metabolic 

morbidity (Chandalia and Abate 2007). 

 

Following up on the idea of a predisposition to either adipose tissue dysfunction or 

robustness, one explanation for the Meigs et al. finding is that for an individual to present 

metabolic disease without obesity they must have some predisposition to adipose tissue 

dysfunction that all obese individuals do not necessarily have. Having this dysfunction 

may be what truly increases the risk for cardiovascular disease event.  

 

While Chandalia and Abate provide an example of a genetic factor that may underlie the 

existence of individuals that are metabolically diseased but have normal weight, a 

potential mechanistic explanation behind the metabolically healthy obese and the concept 
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of adipose tissue dysfunction, is given by Le Lay et al. (Le Lay, Ferre and Dugail 2003). 

In their paper the authors explain how there is a strong correlation between adipocyte 

cholesterol content and fat cell size despite the fact that the ratio of cholesterol content to 

triacylglycerol in the adipocyte is independent of BMI. Target genes of the SREBP 

transcription factors which are those responsible for regulating the transcription of genes 

needed for the uptake and synthesis of cholesterol, show an increased expression in the 

adipose tissue of obese individuals and rodents where adipocytes present a high 

cholesterol content and are enlarged. What these authors interestingly found is that these 

genes present a normal expression level in a transgenic obese mouse in which fat cell size 

was normal. An increase in fat cell number as opposed to fat cell size is one potential 

explanation for how some individuals can gain weight without the metabolic effects 

associated with obesity. 

 

This is an illustrative example of a potential mechanism that may separate obesity from 

the other morbidities. It may or may not be the real or only explanation behind the 

healthy obese and the morbid normal weight individuals, but regardless, what it does 

provide is a way to showcase the relevance that the type of biological variation pursued 

in this work may have. It also provides a clue as to why finding associated genes pose a 

special challenge. In this example, an individual’s adipose tissue may have a tendency 

towards dysfunction or robustness. Some individuals like the southern Asians in 

Chandalia’s study may be more predisposed to adipocyte dysfunction independent of 

BMI while others may be predisposed to augmenting number of cells rather than size of 

cells and therefore maintaining a healthy adipose tissue independent of BMI. This is an 



26 
 

example of a factor that would not be found through searching for associations to BMI 

directly or any of the other morbidities. 

 

1.5 Challenging unidirectional relationships 

 

An additional challenge in determining how these phenotypes relate becomes apparent 

when the causal direction between them within the individual is studied more closely. 

 

1.5.1  Hypertension causing metabolic disease 

Of all the morbidities, hypertension is probably the one that can be least thought of as 

being potentially causal of the rest, and yet even this directionality can be put into 

question. Julius and Jamerson do just this in their hypertension review paper. It has been 

shown that slight elevations in blood pressure in 40 + year olds were already apparent 

since their seventh year of age (Julius et al. 1990).  The fact that hypertension is such a 

slow and gradual process combined with the fact that it has quick and systemic wide 

effects in the organism led them to ask the chicken and egg question: what comes first, 

insulin resistance and/or dyslipidemia which then cause hypertension, or does the 

enhanced sympathetic drive that causes hypertension then contribute to insulin resistance 

and dyslipidemia? Julius and Jamerson propose the latter to be the case (Julius and 

Jamerson 1994) and they provide three alternative pathophysiological mechanisms that 

have experimental support. Granted, all of these mechanisms can apply as the initial 

cause of morbidity only in those individuals that present an early sympathetic 

overactivity, which does not include the majority of hypertensive individuals (does not 
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explain it in ~70% of individuals). But this demonstrates how looking for simple cause 

and effect relationships between interrelated physiological traits may be as futile as the 

chicken and egg question. Regardless of which comes first, as this may vary from 

individual to individual, what remains true is that once morbidity in one trait is 

established it can contribute to morbidity in the others and vice-versa, and this back and 

forth relationship can continue throughout the individual’s life. 

 

1.5.2   Insulin resistance causing obesity 

As already stated, one of the most unquestioned directional relationships in the picture of 

obesity and its related morbidities is that of obesity being causal of all the rest. Even 

though we have shown with the existence of the healthy obese and the metabolically 

morbid normal weight individuals, that obesity is not necessary or sufficient for the 

development of insulin resistance, hypertension and dyslipidemia, it may still be argued 

that when all four morbidities are present, obesity can be contributing to the other three 

morbidities but not the other way around. The Lazarus et al. study brings this assumption 

into question. They studied the temporal relations between obesity and insulin resistance 

using longitudinal data in order to determine a causal relationship between the two 

(Lazarus, Sparrow and Weiss 1998). Although weight was found to be a significant 

predictor of insulin, insulin was also found to be a significant predictor of weight. As the 

authors state, this suggests that the relationship between these two traits may constitute a 

complex bidirectional feedback rather than unidirectional causality. The carbohydrate 

craving produced by insulin resistance has been proposed as a potential mechanism by 

which insulin resistance may cause obesity and it has some experimental support in 
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humans. Interestingly, the authors point out: “Physiologic counter-regulatory mechanisms 

must also be operating, because otherwise there would be a vicious cycle of increasing 

insulin levels and increasing obesity.” 

 

These counter-regulatory mechanisms must also be present in the sympathetic drive – 

insulin resistance/dyslipidemia back and forth described above. In fact, they should be 

there for all the traits. They are what keep an individual’s metabolic homeostasis. Some 

individuals seem to have systems that are more robust to environmental perturbations (for 

example, instances of higher caloric intake) while others are more predisposed to having 

these positive feedback relationships take over more readily, pushing the individual’s 

system into a morbid metabolic state. It can be hypothesized that in the first case 

scenario, the traits will tend to present less variation and there will be less association 

between the traits. In the latter individuals, the traits will present higher variation and 

higher association levels, or correlations. This reveals the first clue as to how we may go 

about capturing the type of biological variation that has been showcased in this section. 
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Section 2. GENETICS 

 

 

Now that we have a better idea of the complexities that underlie a real system of 

morbidities with physiologically interrelated phenotypes, we can better gauge the 

effectiveness of applying particular methodologies to the study of the genetics behind the 

system of traits.  

In the introduction we mentioned that two questions may be asked: 

1. What are the genetics underlying each and every single trait? 

2. What are the genetics underlying the physiological connections between the 

traits? 

This work is concerned with addressing the second question. We will begin by describing 

studies that have been conducted with the first question in mind. We will start out with 

univariate studies which look at each trait individually, continue on with longitudinal 

studies, which look at what each trait is doing through time, and we will end with 

multivariate studies which analyze all the traits together but still only look to answer that 

first question: what genes underlie each and all the traits.  

Then we will focus on the problem of connection between the traits and how genetics has 

been used to address this question. 
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2.1   Mapping each and every trait  

 

2.1.1  Univariate studies 

The purpose of this section is not to give a thorough review of all the genetic studies 

carried out on obesity and related phenotypes. Rather I will show some univariate results 

for each of the phenotypes and illustrate some of the limitations involved in not taking 

into account the relationships between the traits when studying their genetics. Because it 

is the data set that this work will be analyzing, I will focus on, yet not completely restrict 

myself to, studies conducted on the Framingham heart study data set.  

 

The Framingham heart study data set has spurred just under 2000 articles to date. The 

study began in 1948 led by the National Heart, Lung and Blood Institute. It is still 

carrying on today in collaboration with Boston University (Cupples et al. 2009).The 

objective of the study is to understand the factors underlying cardio vascular disease. So 

far three generations from Framingham, Massachussettes have been recruited and are 

currently being referred to as the cohort, the offspring and the Gen 3 generations 

(n=5209, n=5124, n=4095). The cohort generation has been given a physical examination 

and laboratory test every 2 years since recruitment, while the offspring generation has 

had examinations every 4 years. The third generation has only had one examination. 

These individuals span over 900 pedigrees. For the offspring generation spouses were 

recruited while for Gen3 they were not. Dense genotyping, ~550k SNPs, was also 

performed in approximately 10775 samples across the three generations (GeneChip® 

Human Mapping 500K Array Set and the 50K Human Gene Focused Panel). Included in 
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the  physical examination and laboratory testing data are the endophenotypes of interest 

in this study as well as covariates of interest such as use of medications, smoking, alcohol 

use, physical activity, age and sex (Cupples et al. 2009) 

(http://www.gaworkshop.org/README_Prob2_FHS_031908.pdf). 

 

Standard analyses for getting at the genetics underlying obesity and related phenotypes 

are univariate in nature.  Their objective is to map genes that associate to one of the 

phenotypes irrespective of the others, and as mentioned in the introduction, this is a 

worthwhile objective in that it tells part of the story. I will go through examples for each 

one of the morbidities, starting with the dyslipidemia traits, following with blood pressure 

and ending with insulin. I have reserved the study on BMI for the longitudinal section 

that follows because it serves to illustrate a point here. 

 

For instance, Kathiresan et al. looked for associations to the blood lipid phenotypes of 

triglycerides (log transformed), HDL and LDL individually (Kathiresan et al. 2007). 

They used the mean values of these phenotypes for individuals having 4 or more 

measurements in the Framingham data set for the offspring generation. Two models and a 

3 stage replication strategy were used. In the first model they only adjusted for age and 

age^2 and used the sex specific residuals to select a subset of most significant SNPs. 

They carried these along to the second stage in which they then used unrelated 

Framingham individuals for replication. For the third stage they selected yet another 

subset from stage 1 and 2 combined, and then use the GOLDN and MDC-CC data sets 

for replication. Here they switched to the second model where in addition to age they 
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adjusted for smoking, alcohol, menopausal status and hormone replacement therapy and 

BMI. After their three stages of replication there was no convincing statistical evidence 

for association.  

 

A pattern that we will see in these studies is their difficulty in being replicated. As stated 

in the introduction, this is in large part due to the small, single gene, marginal effect sizes 

associated with complex disease as well as genetic and environmental heterogeneity. 

Unfortunately addressing this issue is beyond the scope of this work and we will be 

subject to the same limitations when analyzing the data in a SNP by SNP fashion. Even 

though, we may still be able to find associations that at the very least only apply to this 

data, and we will be able to make the necessary comparisons to previous results using 

other methods. We will also see how these studies consistently “control” for BMI. BMI 

then is treated as an environmental variable that can lead to heterogeneity rather than a 

physiologically interrelated trait that has a genetic component of its own. We will explore 

this aspect more as we go along. 

 

Levy et al. conducted a linkage analysis on the Framingham cohort and offspring 

generations (Levy et al. 2000). They used mean blood pressure measurements for 

individuals with at least 4 separate measurements and with at least a 10 year span 

between their first and last measurement. They adjusted this phenotype for age, and BMI 

and analyzed the sex and generation specific residuals. They obtained a LOD score of 4.7 

for an interval on chromosome 17 and list as corroborating evidence for this interval 

results from previous human studies of hypertension and the fact that it contains rat and 
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mouse homologues and good candidate genes. Levy et al. repeated this analysis in the 

Framingham study 100 K Project, a project developed to provide a web based resource to 

genome-wide (100 thousand SNPs) analysis results on the 987 phenotypes collected in 

Framingham throughout its 56 years (Levy et al. 2007). Thet could only replicate Levy et 

al.’s  original result on chromosome 17 when modifying their long-term systolic blood 

pressure definition to include earlier cohort generation values and exclude later offspring 

generation values. Levy et al.’s earlier result was therefore contingent on the subset of the 

Framingham data that was used for the analysis. None of the associations in this new 

study reached genome-wide significance. Again in 2009 the search for a genetic 

association by Levy et al. was conducted, this time using the CHARGE consortium (n = 

29,136), which includes the Framingham data, and then combining this in a meta-analysis 

with the Global BP gen consortium (n=34,433) (Levy et al. 2009). They identified 13 

SNPs for SBP, 20 for DBP and 10 for hypertension in CHARGE and these were reduced 

to 4,6 and 1 SNP respectively after the meta-analysis.  This progression of studies shows 

the brute force approach of conducting simple univariate analyses in bigger and bigger 

data sets all in an attempt at replication. In all studies the phenotype itself did not vary 

and in all the phenotype was controlled for BMI. 

 

Kathiresan et al. also conducted a posterior GWAS and they were able to determine after 

using extensive sample sizes replication (n = 19,840 for first round, n = 20,623 for 

replication) 30 distinct loci involved with polygenic dyslipidemia. They did not adjust for 

BMI this time although they do not explain why, instead only controlling for age, age^2, 
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population stratification using principal components and stratifying by sex. (Kathiresan et 

al. 2009) 

 

Panhuysen et al. conducted a genome-wide scan to look for loci linked to insulin traits in 

non-diabetic Framingham offspring generation individuals (Panhuysen et al. 2003). They 

found suggestive evidence of linkage on chromosomes 9, 11, 17 and 19. They conducted 

their analyses on four models, one including BMI as a covariate and another model 

excluding it, both with and without full adjustment for other covariates. This study is the 

only study out of those researched for this dissertation where the author gives a 

thoughtful account of what the consequences of controlling for BMI may be. The LOD 

scores on chromosomes 9 and 11 decreased dramatically when adjusting for BMI and the 

authors hypothesized that the linkage to these regions is mediated in part by obesity. 

Adjusting for BMI in these cases may or may not be desirable depending on whether or 

not you want to control for these mediating effects so that only loci with marginal effects 

on insulin are detected. The authors pointed out though that there may be genes that have 

independent effects on both insulin and BMI and that in this case adjustment would 

obscure linkage signal. A third possibility arises in the evidence they presented for 

linkage to insulin on chromosome 11 which also drops upon adjustment with BMI. The 

authors stated that although independent studies have linked this region to BMI, it is not 

clear in their case “whether obesity leads to insulin resistance, or whether 

hyperinsulinaemia leads to obesity”. The iddm4 locus for T1D is close to this signal they 

argued, suggesting that a gene in the region can be causing both T1 and T2 diabetes 

instead of obesity.   
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BMI can therefore be a mediator in effect, it can be affected independently or it can 

instead be caused by insulin. We will see these three possibilities more closely in the 

methodology section. The other univariate studies do not take these possibilities into 

account. It is of special note how the first Kathiresan study attempted to replicate SNPs 

that had been obtained without BMI adjustment in a separate data set using BMI 

adjustment, without realizing that they may have been mapping different genes in both 

cases, greatly reducing their chances of replication.  

 

Herbert et al. shows yet another level of complication that can come about when 

considering the genetics of correlated phenotypes (Herbert et al. 2006). They looked at 

the interleukin (IL) – 6 gene polymorphism and its association to insulin resistance in the 

offspring generation. They found that the effect of BMI on insulin resistance in men 

depended on the IL-6 genotype, with higher insulin resistance in individuals with the CC 

instead of the GG genotype for high BMI (>27 kg/m^2), while at low BMI the CC 

genotype had lower insulin resistance than the GG genotype. They likewise found that 

genotype at this locus modulates association of BMI with diabetes prevalence, with the 

GG and GC genotypes being less affected by high BMI. This study then showed a fourth 

possibility with BMI, that of an interaction between BMI and the associated locus. We 

will revisit this possibility in our first aim. 

 

What can be concluded from this section through our focus on issues with BMI, is that in 

general, it is important to take into account the relationships between physiologically 
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connected traits even when conducting genetic studies in which the only interest lies in 

mapping genes associated to one of the phenotypes. The only way to do this is via the 

multivariate approaches which we will see in the integrative methodology section. We 

will outline several reasons for taking these relationships into account. 

 

2.1.2   Longitudinal studies 

As previously mentioned, the Framingham cohort and offspring generations have data 

from periodic examinations. This means that not only are there measures of blood 

pressure, blood lipids, fasting insulin and glucose and BMI for each individual, but there 

is also information on how these measures change through time as the individual ages. 

One analysis that exploits this type of information is longitudinal analysis. Because it is a 

methodology that has been applied to the data and the phenotypes of interest, and because 

it presents apparent similarities with the methodology that will be proposed, I will use 

this section to describe previous longitudinal study results on obesity and related traits in 

the Framingham data. By doing this I hope to give a sense of what types of inquiry the 

methodology is generally used for. A more in depth contrast to the methodology being 

proposed in this work will be offered in the first aim. Like the univariate studies 

described above, the following studies analyze each trait independently of the other. 

 

For example one longitudinal study conducted on the Framingham data is by Franklin et 

al. (Franklin et al. 1997). They looked at patterns of change of SBP and DBP throughout 

life using the cohort generation. They found a linear rise in SBP all throughout life (30 -

84 yrs) as well as an increase in DBP up until ~60 yrs of age after which there is a 
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decline. They found that this pattern of having a late decline in DBP is magnified in 

individuals with overall high SBP. This led them to hypothesize that this decline may be 

caused by large artery stiffness that results from high SBP.  

 

Here we see a longitudinal study that looks at two traits individually and how they relate 

through time. At a first glance then, it seems to fit well with our stated objective of 

wanting to capture variation in the relationships between traits. All that is missing is a 

search for a genetic component to the observed variation. 

 

Another example of a longitudinal study but that in addition incorporates genetics is 

Strug et al. (Strug, Sun and Corey 2002). They conducted a linkage analysis on both 

mean BMI, which collapses the longitudinal information into one single measure (which 

is what many of the univariate studies mentioned above did), and on slope of BMI and 

mean gain of BMI,  which summarizes the individual’s weight gain throughout life (they 

excluded the period towards the end of life where some weight loss is encountered for 

their slope calculation.) They found a strong signal (LOD = 3.52) for their mean gain of 

BMI measure on chromosome 4 but failed to find anything with a LOD score greater than 

3 for mean BMI. This study seems to suggest that what a trait does through age is a 

distinct trait from what it is on average for any particular individual and that it is a trait 

that may be worth looking at genetically. 

 

Let’s look at this concept more carefully. In contrast to the longitudinal approach, 

analyses that use the average value of the trait across all time-points, such as those 
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summarized in the univariate analysis section, exploit the repeated measures aspect of the 

data in a different manner. Instead of considering each time point as a separate piece of 

information on its own, where the measure for your trait at time-point A is for a distinct 

quantity to that being measured at time-point B, these studies consider the values of the 

trait at all the time-points in the individual’s life to be measures of the same quantity, 

only differing due to measurement error.  

 

Which approach to take with repeated measures data may simply depend on the question 

of interest. But the data may also be inquired in this regard. For instance, we can compare 

the information at different time-points and evaluate how redundant or distinct they are 

before deciding whether to treat them as separate estimable quantities or not. The 

following studies offer such comparisons. 

 

Havill and Mahaney looked at blood pressure (SBP), cholesterol and weight to see how 

much genetic variance was shared between two different age groups (30-39 yrs and 50-

59 yrs) (Havill and Mahaney 2002). They found that the age groups shared 96% of 

genetic variance for weight, 57% for cholesterol and 20% for blood pressure. Only the 

heritability of SBP changed significantly with greater heritability in the older age group. 

In summary, there appeared to be a difference in which genes affect each age group and 

the level of expression of these genes across the two age groups for blood pressure. 

 

Kraft et al. focused exclusively on blood pressure measurements across time-points in the 

Framingham data. They also found evidence that different genes affect blood pressure at 
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different ages but unlike Havill and Mahaney’s 20% shared genetic variance, they find 

82% shared genetic variance between age groups 35-50 and 50-65 (Kraft et al. 2002). 

They also found that considering the two age groups in the linkage analysis (bivariate 

analysis) does not increase their power for identifying loci compared to using only one 

age group measure; both approaches peak at a LOD~ 2.2-2.4 and at the same location. 

They repeat Levy’s linkage result on chromosome 17. 

 

Atwood et al. looked for linkage to six separate measurements of BMI in the offspring 

generation. They found substantial evidence for linkage on chromosome 6 and 

chromosome 11 for all six measurements (Atwood et al. 2002). They concluded that 

linkage studies of BMI are robust to measurement error although there was some 

variation in LOD scores for the six measurements. 

 

Some of the studies that used long term averages of the traits compared the heritabilities 

for single measurements with heritability for the average (Levy et al. 2000) (Kathiresan et 

al. 2007). The average SBP and DBP phenotypes had heritabilities of 0.57 and 0.56 while 

single examination heritabilities were 0.42 and 0.39 respectively. Average LDL, HDL 

and triglycerides were 0.66, 0.69 and 0.58, while they were 0.59,0.52 and 0.48 

respectively for a single time point.  

 

In summary, heritability is improved when looking at the mean of the traits rather than 

the individual time points, and different time-points tend to provide linkage to the same 

regions. These results may serve as support for looking at the repeated measures of the 
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Framingham data as measurements of one single heritable quantity with added error 

variance across time-points. 

 

Furthermore, revisiting the Strug et al. study described above, although they emphasized 

the stronger LOD score for their mean gain of BMI measure, looking at their paper more 

thoroughly reveals that the mean BMI presents a suggestive LOD score for the same 

region. Additionally, their BMI slope, which is the only measure they use that actually 

incorporates time in some manner, has LOD scores that are lower than mean BMI. In 

conclusion, the Strugs et al. results may also be taken as support for the error variance 

model over the distinct time-point model, albeit with possibly greater error at the latter 

period of the individual’s life. 

 

2.1.3   Multivariate studies 

We mentioned in the univariate section how even when mapping individual traits it may 

be wise to take phenotypic relationships into account. Here we will see two reasons why 

not doing so may be problematic: 

 

1. Power: Taking the multivariate structure of multiple phenotypes into account may 

enhance the power to detect genetic associations to any and all of the individual 

traits. 

2. Knowing what is being mapped: associated loci may in reality be primarily 

associated to one of the correlated phenotypes not being taken into account. 
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We will look at multivariate approaches designed to address the issue of power and then 

we will look at how the relationships between the traits may affect studies that are only 

concerned with mapping the individual traits. This will provide a good sedgeway into 

methods that directly model these relationships when we switch our discussion to the 

study of the genetics underlying the connections between traits. 

 

2.1.3.1  Power 

To understand why a multivariate approach may enhance power we should look at a 

graphical example: 

 
Fig. 2.1 Multivariate analysis, a graphical representation 
 

Suppose x and y represent two correlated random variables and we are looking for 

evidence of their association to a SNP. (For the sake of simplicity we assume that the 

SNP is for a dominant gene with only two phenotypes, so for example, SNP=1 would 

refer to genotype CC while SNP=2 would refer to genotypes CG and GG). This 

hypothetical example is plotted in figure 2.1. If you look only at the values of x you will 
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see how they completely overlap for the red and black groups representing alternative 

alleles for the SNP. This also happens for the values of y. This shows how in a univariate 

analysis of traits x and y the effect of this SNP would be undetectable. Yet from viewing 

the plot it is obvious that there are two distinct groups for alternative SNP alleles. In fact 

they do not even overlap, so there is clearly a SNP effect.  

 

A bivariate analysis of this data on the other hand would reflect this separation between 

groups and would present high significance. An intuitive way of understanding this is to 

think of a line that can separate the two groups. In the univariate case you can only use a 

line along the x axis or along the y axis for x and y respectively. In both cases, the two 

groups as we said are not easily separable. In a bivariate analysis you are free to draw the 

line in any direction within the x-y plane. A line along the x=y axis can separate the two 

groups perfectly.  

 

This is the reason multivariate analyses have increased power compared to univariate 

analyses when the phenotypes being studied present a correlation. For instance, in the 

case of obesity and associated phenotypes, their physiological connections produce a 

multivariate structure that can be exploited for power. 

 

One example which showcases this increase in power is Arya et al. They conducted 

univariate and bivariate analysis of HDL levels and BMI in data from 1702 subjects 

distributed of both the cohort and offspring generations, using data from one examination 

for each. Their univariate analyses implicated a ~8cM region on chromosome 6q that 
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influences both ln BMI and ln HDL (measures were transformed to minimize problem of 

non-normality). They found that the bivariate analysis improved power to co-localize the 

two phenotypes more precisely within this region. 

 

One Important distinction that has to be made is that of using multivariate data to 

increase mapping power and using it to test for pleiotropy (Allison et al. 1998) which is 

defined as one gene having an effect on more than one phenotype. The Arya et al. study 

did both but here we are strictly referring to the power advantage offered by their 

multivariate approach. More about their testing for pleiotropy will be discussed below in 

the “genetics: trait connections” section. 

 

Methods have been developed that also exploit the multivariate structure but without the 

need of a full multivariate analysis. They are all variations on the same idea which 

consists of coming up with a composite univariate trait or several composite traits that 

can then be analyzed univariately. To continue with our graphical example, a line in the 

x-y plane is in effect a “linear combination” of the two traits. We can analyze how the 

data is distributed along any line, or linear combination of the two traits, i.e. “using a 

composite trait”, just as well as we generally do so by using the x and y axes, i.e. “the 

original traits”.  By allowing the freedom to choose any line on the x-y plane, this method 

although univariate, is able to exploit the multivariate structure in the data. 

 

Variations on this idea differ on the criterion used to choose the line (or lines). For 

instance, one approach called principal component analysis (PCA) uses the direction of 
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maximum variance in the data to choose the line – the first composite trait, or “principal 

component”. Subsequent lines, or principal components are chosen with criteria of 

maximum variance and perpendicularity to previous principal components.  

 

Two examples of PCA analysis for the study of the genetics underlying obesity and its 

related traits that were conducted on different populations are Arya et al., on non-diabetic 

Mexican Americans (Arya et al. 2002), and Cox  et al. on a Norfolk isolate (Cox et al. 

2009). The first study included eight phenotypes: fasting glucose and insulin, BMI, 

systolic and diastolic blood pressure, HDL and triglycerides and leptin. The first factor or 

composite trait they analyzed, composed mostly by BMI, fasting insulin and leptin had 

significant linkage on chromosome 6 while their third factor, composed by triglycerides 

and HDL showed significant linkage in chromosome 7. The second factor was mainly 

composed by the blood pressures. The second study found a first factor for body size, a 

second one for cholesterol and triglycerides, a third for blood pressures and a fourth for 

cholesterol and LDL. They found suggestive linkage for the second factor only on 

chromosome 5.  

 

Finally, and example of this approach using the Framingham data is the Liu et al. study. 

Their three factors grouped as BMI, systolic blood pressure and glucose for the first, 

HDL and triglycerides for the second and cholesterol and triglycerides for the third. They 

found significant linkage for the third composite trait on chromosome 2. When they ran 

the analysis on the original triglycerides and cholesterol traits separately the signal was 
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lost, showing how taking into account the multivariate structure of these traits into the 

analysis increased power. 

 

Another approach selects the composite trait, or the direction of the line, according to 

how it is maximally genetically associated.  Going back to our graphical example in 

figure 2.2, the line that would best differentiate between the two SNP allele groups 

instead of the one that maximizes variance would be selected. 

 
Fig. 2.2  Linear combinations 
 
 
For example, Ott and Rabinowitz did this by optimizing according to overall heritability 

(Ott and Rabinowitz 1999). They explored this approach through simulations and 

determined that there is an increase in power when compared to a linear combination that 

simply maximizes variance as in principal component analysis. The limitation of this 

approach is that although the composite trait that it derives may be the most heritable 
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choice, it may not be associated to any particular locus but rather to a large combination 

of loci.  

 

Pedigree discriminant analysis looks to resolve this by looking for the linear combination 

that maximizes segregation (Miller et al. 1979, Elston et al. 1976).  

 

This idea can be traced back to the proposed “ genometric approach” where instead of 

looking for a gene that associates to a given phenotype, the search is instead for 

phenotypes that associate to a gene (Elston and Wilson 1990). The limitation with this 

approach is that “it is not possible for a single linear combination of traits to be powerful 

for all relevant loci” (Morris 2009) and to assume that there is a single genetic locus 

underlying complex disease is not believable. 

 

In conclusion, the advantage of optimizing genetic association through linear 

combinations of the phenotypes is offset by the fact that it will either be artificially too 

localized or not localized enough in the absence of knowing the true genetic architecture 

that underlies the phenotypes.  

 

Another general disadvantage to this group of methods is that reduction of the 

phenotypes into a composite trait compromises understanding how the traits are related. 

In other words, although they exploit the multivariate structure for power, they ignore it 

as a source of information of its own.  Carrying out a full multivariate analysis is 

preferable if one wants to garner the additional advantage that may come from 
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considering multiple phenotypes, such as, insight into the genetics underlying their 

relationships.  

 

2.1.3.2   Knowing what is being mapped 

We saw in the univariate section through examples in which BMI was controlled for 

when mapping one of its correlated traits, that many different things can occur if the 

relationships between the traits and the associated loci are not taken into account. For 

instance, the loci found to associate to the trait of interest may in reality be primarily 

associated to one of the correlated phenotypes not being taken into account. What’s more, 

if the locus is primarily associated to BMI and BMI is controlled for, this will create a 

spurious association to the trait being studied! Moreover these relationships are also 

relevant when conducting studies on the individual traits because the power advantage 

that may be garnered by conducting a multivariate analysis depends on them.  

 

Allison et al. usefully outlined all the possible case scenarios for the simplest of 

relationships: one gene and two traits. They also explained which models provide an 

improvement in power through multivariate analyses. Here we will concentrate on four 

different models (Allison et al. 1998): 

 

1. Relational Pleiotropy: The gene is associated to one of the traits directly and to 

the other trait indirectly through its relationship with the first. Joint analysis in this 

case will improve power over univariate analysis only in particular circumstances. 

One classic example of this type of pleiotropy is the FTO gene and its association 
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to BMI and Insulin Resistance. Although it was initially thought to directly 

influence diabetes prevalence, this association disappeared as soon as BMI was 

controlled for.  The studies that we saw in the univariate section exclude loci that 

have this indirect influence on the trait of interest in their search when controlling 

for BMI. 

 

2. Latent Variable: This is actually just another model for relational pleiotropy and I 

am including it here to make the point that the relationship between the two traits 

themselves does not have to be direct. It can be caused by a latent, or unobserved 

variable that affects the two traits independently. This other variable could be 

environmental but it can also be another genetic (gene that is not being modeled). 

It is important to point this out because it brings into question any assumption 

about the directionality that we may want to make regarding the association 

between the two traits. For instance, as we saw in the univariate section, BMI is 

often taken as an independent variable that influences the rest of the traits and that 

has to be controlled for, potentially because of the downstream physiological 

causality that is often assumed. Although it may be difficult to imagine how 

insulin can directly be affecting BMI (despite the discussion about this in 

physiology section), it may be easier to see how this arrow may be pointing from 

insulin to BMI instead of the other way around through this latent variable model. 
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It only takes for the unobserved variable to be slightly more associated to insulin 

than BMI for the arrow to be pointing in this direction. 

 

3. Mosaic Pleiotropy: The gene is associated to both traits directly. Joint analysis in 

this case will always improve power over univariate analyses. This is the only 

type of pleiotropy that is responsible for genetic correlations between the traits 

(relational pleiotropy cannot cause genetic correlations). If a locus is associated in 

this way to both BMI and another trait, controlling for BMI will as Panhuysen et 

al. points out “inappropriately obscure evidence for genes” that influence other 

obesity related traits (Panhuysen et al. 2003). 

 

4. Exogenous Phenotype:  The gene is only associated to one of the traits. The 

second trait (the exogenous one) also influences the first trait but is independent 

of the gene. This is not pleiotropy but including the two variables in a joint 

analysis will improve power. This is probably the model that explains the desire 

to control for BMI in many univariate studies. The reason taking into account the 
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exogenous variable improves power is that it controls for heterogeneity in the 

associated trait. But this model also showcases why much care has to be taken 

with this approach of controlling for BMI. For genes in which BMI is the 

associated variable, and the trait of interest is the exogenous one, controlling for 

BMI will cause a spurious association of the trait to the gene even though they are 

independent! 

 

 

2.2  Trait Connections 

 

We finally get to the question that is of interest in this work: what is the genetics 

underlying the connection between associated phenotypes? The methods that address this 

question are all by necessity multivariate in nature.  

 

2.2.1   Connections through mosaic pleiotropy 

One way in which these ties arise is, as mentioned above, through mosaic pleiotropy in 

which a gene influences two or more of the traits directly. For example, it may be the 

case that individuals with one genetic variant  present all high mean values for the traits 

while individuals that have a different  variant present all low mean values in the traits. If 
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we look at trait values across individuals in a population, this will manifest itself as a 

correlation of these trait values. In the graphical example presented as figure 2.3 the red 

and black points represent individuals with alternative genetic variants. The individuals 

represented in red have mean low values for the two traits plus or minus some error while 

the individuals represented in black have mean high values also with some residual 

variance. The result of this grouping of trait values across individuals is a net correlation 

between the two traits. 

 
Fig. 2.3  Correlation caused by mosaic pleiotropy 

 

A  classic example of mosaic pleiotropy is the PKU (phenylketonuria) mutation, which 

produces a deficiency of the enzyme needed to convert phenylalanine to tyrosine.  This 

mutation affects the synthesis of melanin, which results in a high percentage of 

individuals with blue eyes. Independently of this, the accumulation of phenylalanine 

causes mental retardation. Given a population with a high enough frequency of the 

mutation, the genetic connection between the two traits would cause them to correlate 

across individuals, i.e. present a genetic correlation.  
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2.2.2   Concept of genetic correlation 

The following model was proposed by Fisher in 1918 in a paper that formed the basis of 

modern quantitative genetics and it shows how the phenotypic value of a trait (z) can be 

decomposed into the genetic (G) and environmental (E) value. The genotypic value is the 

average value for one genotype across the universe of environments (Balding et al. 2007, 

p534). 

z = G + E         (eq. 2.1) 

The phenotypic variance-covariance likewise can be decomposed into genetic and 

environmental variance-covariance. For instance, in figure 2.3, if the genetic variants 

were not for just one gene but for all genes, for example strains of mice, then the genetic 

variance covariance would be given by the means of the groups while the environmental 

variance covariance would correspond to the residual deviations from the means within 

the groups. 

For strains of mice where we have genetically homogeneous populations measuring 

genetic variance and covariance is straightforward. In humans this is a bit trickier. Instead 

of populations of genetically identical individuals we have groups of individuals that are 

genetically similar to varying degrees. We can still get an estimate of genetic variance-

covariance by using known similarity measures.  For instance sibs and parent-offspring 

share half of their genes and therefore twice their phenotypic variance-covariance 

provides an estimate of the underlying genetic variance-covariance (confounding factors 

such as shared environmental and maternal effects have to be taken into account). 

(Balding et al. 2007, p.535) 
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2.2.3   Localized genetic correlation 

Genetic correlations are simply the standardized genetic covariances. Estimating genetic 

correlations in this way gives an idea of how the traits are genetically linked 

genomewide, that is, in a non-localized way. There are also ways of localizing pleiotropic 

genes through full multivariate analysis.  

We already cited Arya et al. above as an example of a bivariate analysis that increased 

the power to map the two traits to a region more precisely than when analyzed 

individually. This paper also serves to show how particular loci can be tested for 

pleiotropy (Arya et al. 2003). In variance component linkage analysis the variance 

components for major gene effect, polygenic effect and environmental variance are all 

estimated simultaneously via maximum likelihood along with their respective 

correlations (Almasy et al). The following shows all the components modeled: 

 

iσ2
qi + 2Φσ2

g + Iσ2
e       (eq. 2.2) 

  

Let’s see how it relates to our equation 2.1; phenotypic value = genotypic value + 

environmental noise. In variance component analysis, as the name implies, we model the 

variance-covariance matrices instead of the values themselves but the model still reflects 

the same components: Ω is the variance-covariance matrix of the phenotype, σ2
q is the 

variance-covariance due to a major gene, σ2
g is the variance covariance due to all other 

genetic effects and σ2
e is the variance covariance that is left over, or that is due to 

environmental noise. The terms that precede the genetic variance covariance matrices are 
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just the genetic similarity measures between the individuals that are needed for 

adjustment, since as we saw above, in humans we have varying degrees of relatedness 

instead of homogenous genetic groups. Although we present the model here in its 

univariate form, the extension to multivariate is straightforward. The genetic correlation 

values (ρ) can then be obtained by standardizing the covariance estimates.  

 

This correlation value can be used to test whether there is a common major gene that 

affects both traits or whether it is one of two other possibilities: two linked genes may be 

affecting either trait, a situation called “co-incident linkage”, or the two traits may be tied 

through another unobserved factor (latent variable model above). As a first step a gene 

that is associated to both traits must be found. Then, in order to discard the other two 

possibilities mentioned, the hypotheses that ρ = 0 (no pleiotropy) and  ρ = -1 or 1 

(complete pleiotropy) are tested against the model in which this parameter is left free to 

vary (Almasy, Dyer and Blangero 1997). Arya et al. found that both ln BMI and ln HDL 

were associated to the same region on chromosome 6 and they rejected the null 

hypothesis of ρ = 0 for no pleiotropy but they also rejected ρ=-1. This is indicative of 

incomplete pleiotropy as defined by Almasy. More about what this incomplete pleiotropy 

may be indicating will be discussed in the first aim.  

 

The two following studies search for common genetic factors underlying all the obesity 

related traits but using a structural equation modeling (SEM) framework: 
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1.   Hong et al.  examined a population of elderly twins from the Swedish Adoption/Twin 

Study of Aging (Hong et al. 1997). Because they had twin pairs reared together and 

reared apart they were able to add an additional component to the SEM model called 

“shared environment” (Es). The residual environmental effect (Ens) consisted of the 

individual deviations left over after the genetic effect (G) and the shared environmental 

effect (Es) were taken into account. Again, the common (c) and individual (i) influences 

on the phenotypes were modeled for each of these components. 

 

Fig 2.4  Example 1 of structural equation model (SEM). Taken from figure 1 in Hong et al. 1997. Reprinted 
with permission from Elsevier, copyright 1997. 

 

Table 2.1.  Results using SEM model. Taken from table 6 in Hong et al. 1997. Reprinted with permission 
from Elsevier, copyright 1997. 
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There is some evidence for genetic correlations amongst obesity and related traits. The 

Hong et al. study showed 52% of variation in BMI to be due to a genetic influence that 

also directly accounts for considerable percentages of variance in the other traits (39% 

IR, 11% TG, 10% HDL, 6% SBP) (Hong et al. 1997). On the other hand, accounts of the 

importance of these genetic correlations differ across studies. Havill et al. reported an 

average of 10% of shared genetic effects for trait pairs for the traits of weight, 

triglycerides and SBP – this is for trait pairs, which means that only equal or less genetic 

variance could be shared by the three traits (Havill and Mahaney 2002). Benyamin et al. 

concluded no significant shared genetic or familial environmental effects on obesity and 

related traits in their twin study (Benyamin et al. 2007). 

 

2.  Stein et al. analyzed data from 5th exam of the offspring generation in the Framingham 

study. Gc stands for common polygenic effects on all the traits, QTL stands for common 

major gene effects and Ec stands for common environmental variation. Each phenotype’s 

individual genetic and environmental components are also modeled (Stein et al. 2002). 

This particular SEM model allows for the search of direct major gene effects on the five 

phenotypes. Although no statistical significance was reached for any region, the study 

found tentative evidence for linkage on chromosomes 2, 3, 11, 13, and 15.  
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Fig. 2.5 Example 2 of structural equation model (SEM). Taken from figure 1 in Stein et al. 2002. 

 

The difference in design between both models shows an adaptation to the available data:  

Hong et al.’s unique ability to factor environmental variance into shared and non-shared 

was afforded by his twin/adoption design and is not possible with most existent human 

data sets. On the other hand, their lack of genetic data precluded them from incorporating 

a common major gene effect as observed in Stein et al.’s study and as a consequence 

even if their results show an important genetic component underlying all the phenotypes, 

it would say little about the possibility of actually being able to map a common QTL. 

 

2.2.4   Confounding with relational pleiotropy 

Mosaic pleiotropy is therefore one way in which genetics can connect traits across 

individuals and, as we have seen, it can be detected and localized through its production 

of genetic correlations. When the traits are independent, such as in the PKU example 

provided above, this is a very useful tool. For instance, continuing this example, by 

localizing the gene responsible for the observed correlation between blue eyes and mental 

retardation, and following up with a functional study, the PKU mutation would in effect 
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answer the question of “what is connecting these two traits across individuals?” But what 

happens when the traits are physiologically connected? Here enters the concept of 

relational pleiotropy. Conceivably, if a gene affects one of the traits, for instance BMI, 

this trait will be affecting the other traits it is physiologically tied to, creating an indirect 

link between the gene and the other traits. When this happens, the connection between the 

traits does not necessarily have anything to do with the associated gene, and yet this gene 

would also be picked up as causing a genetic correlation. Because the studies described 

above do not take trait relationships into account, they have no way of differentiating 

between relational pleiotropy, where the gene only affects one of the traits directly, and 

mosaic pleiotropy in which the gene is directly affecting both traits and thereby 

connecting them across individuals. 

Structural equation modeling (SEM) is an extremely flexible modeling framework, rather 

than an actual model or a method. It allows for taking into account and modeling direct 

relationships between traits, such as those present in relational pleiotropy, and indirect 

relationships between the traits including but not exclusive to those that are due to a 

common gene, such as in mosaic pleiotropy. One challenge that comes with this 

flexibility is that “The selection of the actual model cannot always be entirely guided by 

the data…”(Todorov et al. 1998). To address this problem, what is generally attempted is 

that very general models are constructed. These models contain a wide range of more 

specific submodels that can then be compared against each other. Sometimes this means 

that certain complexities have to be overlooked. For instance, SEM studies described 

above partition phenotypic variance into all of its components in a way similar to the 
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variance component linkage approach and they do not incorporate direct trait 

relationships.   

Todorov et al. introduced an SEM framework in which to model both these trait to trait 

relationships and their genetic linkage. In his words: “One advantage of the present 

approach is that it enables us to test whether a certain gene influences a given phenotype 

directly, or only indirectly through other intervening phenotypes.” (Todorov et al. 1998) 

We can see how this is accomplished by comparing Todorov’s model with our general 

model, equation 2.1: 

xi = Bxi + Λgi + ei        (eq. 2.3) 

z =    ?      G  +  E 

Here again x represents the vector of phenotypes, g the genetic effects and e the 

environmental residuals. What is different in this model is the term Bxi. It represents the 

linear relationships between the phenotypes being modeled. In Todorov’s model they are 

assumed to be causal relationships and as such, unidirectional, making the matrix B a 

lower diagonal. This just means that if trait A influences trait B, it is assumed that trait B 

does not influence trait A. If for instance, we were looking at the phenotypes of insulin 

and BMI, this model represented as a system of equations (instead of representing them 

in matrix form) would look like: 

Insulin = b*BMI + λg + e       (eq. 2.4.1) 

BMI     =  λg + e        (eq. 2.4.2) 
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In this way, a gene will be considered to have an effect on insulin, only if this effect is 

present when controlling for BMI. Genes that truly influence both BMI and insulin 

independently can then be separated from those that only influence BMI directly. 
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Section 3.  DESCRIPTION OF SPECIFIC AIMS 

 

3.1  AIM 1:  The context 

 

We have reviewed what has been generally done in the study of the genetics underlying 

physiologically connected traits in general and we have also seen methods specifically 

designed to study the genetics behind the connections between these traits. But do the 

latter really capture the biological variation in the connections that we have described to 

be of interest, for instance, the variation in the connections between obesity and related 

traits that we have seen from the literature to be relevant to disease prognosis?  

This is the subject of Aim 1 in this dissertation. Within this objective the study of the 

biological variation that has been described to be of interest is put into context by 

contrasting it with what is generally pursued in the field of genetic epidemiology. The 

paper corresponding to this objective is entitled “The within and across individual 

distinction in the genetics of correlated traits” and we will be referring to it in this section 

as “the context paper”. 

 

3.1.1 Uncaptured biological variation 

Let’s begin by revisiting the mechanistic example proposed in the physiology section that 

is representative of the biological variation that we wish to study to then examine if we 

can indeed capture this variation with the methods that we have outlined.  
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Le Lay et al’s study showed how normal sized fat cells of a transgenic obese mouse 

present normal expression levels of a transcription factor important in regulating 

cholesterol uptake (Le Lay et al. 2003). These normal sized fat cells may likewise present 

normal adipocyte function while their enlarged counterparts present adipocyte 

dysfunction along with all the co-morbidities that this entails. A gene that somehow 

predisposes to accumulation of normal sized fat cells, rather than an increase in size of 

existing fat cells, with increasing BMI, would affect the relationship between BMI and 

the other traits within the individual.  Let’s look at what this can imply a little closer. 

 

An individual with fat tissue that is predisposed to increasing in total size through number 

of fat cells rather than through size of individual fat cells may go through life gaining and 

losing weight without this having a direct impact on the individual’s obesity related traits. 

This individual will not develop high blood pressure, blood sugar or dyslipidemia when 

they gain weight. Notice how this has no bearing on whether or not the individual is 

predisposed to obesity or to high blood sugar or any of the other morbidities. This type 

of biological variation only has to do with whether or not BMI and the other traits are 

connected, and thereby associated throughout the individual’s life irrespective of whether 

or not the values of these traits for the individual are high or not. 

 

The methods that we have encountered focus on studying the genetics underlying the 

individual’s values for the traits, without regard to the relationship that these traits 

present throughout the individual’s life, i.e. the relationship between the traits within 

individuals. These physiological relationships or ties will manifest themselves as 
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correlated measures for the traits throughout the individual’s life.  Even those methods 

that look at trait connections or correlations, do so by looking at the correlations between 

the values for the traits for each individual. As will be explained below, this results in a 

characterization of these relationships across individuals.  

 

 

3.1.2 The within and across individual distinction 

In statistics this within and across distinction is made in order to take into account non-

independence between observations. If there is some level of redundancy between 

observations, it is important to take into account when evaluating degree of evidence, i.e. 

significance, since redundancy means there is less independent evidence. Biologically 

speaking it is also important to make this distinction because across processes may be 

very different from within processes. The physiological connections between BMI and 

associated traits are within level processes. High BMI in one individual will only cause 

an effect on other traits within that same individual. Genotypic effects on the other hand 

are across level processes. Genotypes do not vary within the individual and they can 

therefore not explain variation within the individual. So although genotypic variation can 

cause associations between traits across individuals this says nothing about how the traits 

are relating within, i.e. physiologically. 

 

Physiological causation is inferred in some instances in studies that only look at across 

individual patterns because these across relationships between traits are assumed to be a 

reflection of the within individual relationships. Rarely is the distinction between across 
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and within relationships made, a lot of the times because having only one measurement 

of the trait per individual restricts us from doing so.  Within individual variation can be 

captured only through repeated measurements on the same individual. 

 

 

3.1.3 Methods that have been described 

All of the methods that we have described, whether univariate or multivariate, those that 

look for mosaic or relational pleiotropic genes, strictly look at genotypic variation that 

has an effect on the mean trait values for each individual. The type of variation described 

by the mechanistic example above would thereby go undetected by all of these methods. 

Let’s see what additional limitations the methods involve more specifically. 

 

The univariate methods to start with simplify away the multivariate relationships that 

may be present between traits altogether and in so doing are most proper for traits that are 

for the most part independent both across and within individuals (or those for which 

dependencies are unimportant or unobserved). When used to study physiologically 

connected traits univariate analyses do not capitalize on the statistical power that can be 

afforded by studying the traits together, and, as we saw in the methodology section, they 

run into the issue of uncertainty regarding what exactly is being mapped. 

The multivariate methods that look for common genetic effects without taking into 

consideration direct relationships between traits (their physiological connections), can be 

thought of as assuming only within individual independence. The PKU mutation is a 

good example of a case for which these methods are most appropriate since traits like eye 
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color and IQ do not covary within the individual, only across. Mosaic pleiotropic genes 

would capture most variation of interest here when looking for factors that connect the 

traits and that is what these methods find given that there aren’t any within associations 

confounding them. When used to study physiologically connected traits multivariate 

methods that look for common genetic effects may end up finding genes that only really 

have an effect on one of the traits and then affect the other traits through their 

physiological connections with the first. In this case although it could be considered a 

common gene for both traits, it could not be considered a gene responsible for connecting 

the traits. 

Todorov’s approach, and in general multivariate methods that include direct trait 

relationships in what is being modeled, do not assume across or within individual 

independence of traits. What they do assume is that the within relationships are the same 

across individuals and that they are unidirectional. This means that there is no need to 

differentiate across from within associations. When this assumption is not met and there 

is variation in the within relationships between traits from individual to individual this 

approach can run into problems. By ubiquitously controlling for one trait, for example 

BMI, while looking for associations to another trait, for example insulin, there is the risk 

of picking up spurious associations to loci that are only associatied to BMI, on the one 

hand, and of interfering with the signal for loci independently associated to both BMI and 

INS on the other. 

This assumption of non-varying within relationships across individuals is also required 

for studies that use the mendelian randomization paradigm. In this paradigm the causal 

effect of a modifiable exposure on disease is studied non-experimentally by making use 
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of their known association to a gene and using mendelian segregation as a randomization 

process (Smith and Ebrahim 2003). Variation in the relationship between the exposure 

and the disease from individual to individual would compromise power in these studies.  

The context paper discusses these issues with methodologies that assume non-varying 

within relationships, and that do not make the within and across distinction when 

studying physiologically connected traits, in more detail, in addition to addressing the 

benefit of capitalizing on the variation of the within relationships as novel biological 

variation with relevance to disease.  

 

3.2   AIM 2:  The methods 

 

How exactly can we capitalize on this biological variation? How can we pursue the 

genetics underlying it and through the genes discovered potentially arrive at new clues 

into disease mechanism? 

This is the subject of Aim 2 in this dissertation. Within this objective a new approach 

designed to study the biological variation we are interested in targeting is proposed.  The 

paper corresponding to this objective is entitled “Methods for testing genetic effects on 

within individual correlations” and we will be referring to it in this section as “the 

methods paper”.  

As we have mentioned before, within individual relationships can only be characterized 

through repeated measurements data. The methods paper therefore jumps off a random 
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effects model which is a model designed to deal with repeated measurements data and 

which can be used to make the within from across individual distinction. The way the 

random effects model is usually used for repeated measurement data differs a bit from 

how we are interested in using it for our particular application, mainly because of 

differing assumptions designed for asking different biological questions. Let’s look closer 

at these underlying assumptions. 

 

3.2.1  Assumptions of longitudinal study 

It is useful to contrast the approach proposed in the methods paper as a way of capturing  

variation in within individual trait relationships to longitudinal type of approaches since 

longitudinal studies also partition within from across variation and require estimates of 

within correlations. In longitudinal studies homogeneity of trait correlations at one time-

point across individuals is assumed. They are therefore estimated by calculating trait 

correlations across individuals at each time-point and this allows us to see how these trait 

correlations change through time.  The variation that is observed across individuals is that 

of time-point correlations, i.e. patterns through time, not that of trait correlations. In our 

approach on the other hand, since the focus is on trait relationships independent of what 

these may be doing through time, homogeneity of correlations across time-points for each 

individual is assumed instead. In this way the trait correlations for each individual can be 

estimated by using measurements across time-points and the variation observed across 

individuals is in the correlations between traits. 
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Suppose that we have two individuals that are predisposed to keeping normal levels of 

insulin despite any gain in weight, and a third individual that, as is more common, 

develops insulin resistance with gain in weight. For the biological variation that we want 

to capture, we would hope that the methodology used would group the first two 

individuals together and separate them from the third. In longitudinal analyses this would 

entirely depend on the pattern of weight gain and loss throughout these individual’s 

lifetimes. If the first individual gains weight in his teenage years and then loses the 

weight, while the second individual gains weight as an adult, this difference is going to 

be the focus of a longitudinal approach. The fact that they were both healthy obese would 

be missed unless specifically inquired. What’s more, if the third individual also gains 

weight during the teenage years and then loses it, he would be looked at as being more 

similar to the first individual. Even though their insulin profiles would differ (the third 

individual develops insulin resistance during the weight gain while the first one doesn’t), 

they would still be considered more similar because of their shared weight profile 

through time when compared to the second individual.  

 

This focus on patterns of change through time is therefore not something we desire. 

Instead, we want the focus of our analysis to be the relationships between our traits 

independent of what they happen to do through time for any particular individual.  

 

3.2.2  The perturbation framework 

This does not necessarily mean that we want to factor out what the traits are doing 

through time because this could mean controlling away part of the information we are 
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after. If the trait relationships also happen to be tied to time, i.e. they happen to all 

increase through time, controlling for time will also do away with the physiological tie 

between the traits. There is no way to separate the two and there is no need to because 

time can be looked at as a perturbing factor within the individual, a perturbation that 

allows us to see how the traits relate within the individual. Whether time is causing an 

effect on one of the traits or all of them, these effects will still be reverberating through 

the system of traits as a whole. So although in longitudinal studies each time-point for 

each trait is considered a distinct estimable quantity, for our application we can 

conceptualize each time-point as perturbations to the same quantity, as perturbations to 

the wiring, the physiological connections within the individual system.  

 

Every individual’s system comprises a set of physiologically interconnected traits that 

respond in a coordinated manner to perturbations, whether these perturbations are 

contingent on time and development or if they are simply environmental perturbations. 

These coordinated responses will manifest themselves as correlations between the traits 

and these are what we can call physiological correlations.   

With this new assumption we can conceive of the following model for within 

relationships. The blue line represents a non-directional tie between the traits within the 

individual and z represents all of the environmental and developmental/time factors that 

perturb the traits for this one individual. These perturbations only serve to show how it is 

that the traits are associated within the individual.  
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For instance, if an individual has periods in his or her life where they are more prone to 

overeating, this will cause a gain in weight during those times. We are not concerned 

with this change in trait value, but rather what happens with the second trait, for instance 

insulin, when this change occurs, that is, we focus only on the blue line. It is a non-

directional association. So for example, if insulin resistance causes a carbohydrate 

craving that leads to a gain in BMI this phenomenon too is being modeled. The idea is 

that regardless of the factors that the individual encounters throughout life, whatever z 

may be, and however these factors may affect either of trait values, the traits are wired to 

respond to each other in a certain way within this individual’s organism throughout his 

life.  

It is true that these relationships may change through life, or that they may be dependent 

on the perturbing factors. This assumption of no change is what allows us to focus on the 

part of these relationships that does not change, the wiring so to speak that is present 

despite fluctuations. We make the same assumption when mapping a single trait like BMI 

which is a quantity that fluctuates all throughout life. With BMI we often take one 

measurement per individual (one random point in time) and proceed to make inferences 

on the genetics underlying it. 
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Some individuals will be more capable of a buffered response to perturbations, keeping 

their system under a homeostatic state more effectively. Other individuals may be more 

susceptible to positive feedback loops between the traits. The physiological correlations 

that the individual exhibits throughout his life should capture this system characteristic.  

A very similar concept was used in Nadeau et al. to map the physiological correlations 

underlying a set of cardiovascular (CV) traits in mice (Nadeau et al. 2003). In place of 

environmental perturbations, they used the genetic perturbations present in a genetically 

randomized population of mice. In effect, what they did was use relational pleiotropy to 

get at the physiological relationships. The genetic perturbation on each individual trait, 

causes, through relational pleiotropy, an effect on a second, physiologically related trait. 

This in turn causes the two traits to cosegregate. Nadeau et al. were then able to map the 

system of physiological relationships on the basis of the observed patterns of co-

segregation.  

This study then compared the physiological relationships observed in normal mice to 

those present in mutant and pharmacologically treated (anesthesized) mice with 

compromised CV function. In Nadeau et al.’s words: “Trait relationships (correlations) 

may be maintained or lost depending on the way in which each component trait responds 

to the perturbation. With homeostatic responses, combinations of functionally related 

traits respond in correlated manners in an attempt to compensate for the effects of the 

perturbation. Alternatively, traits in mutant or treated individuals may change in manners 

opposite to those in the reference network because the nature of the perturbation 

compromises homeostasis.” (p. 2086)  
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Similar to Nadeau’s approach, the approaches described in the methods paper allow us to 

compare observed trait relationships, or physiological correlations, across different 

groups of individuals, whether they be different genetic groups, which would allow us to 

find associations to genome-wide SNPs for instance or differentially affected groups such 

as those with and without diabetes.  

The perturbation frame-work just described explains why for our application there is no 

interest in controlling for covariates at the within individual level. Instead the approaches 

described in the methods paper provide a way for controlling at the across individual 

level which is where confounders for tests of association to differences in physiological 

correlations from individual to individual would lie. 

 

3.2.3  Correlations vs. slopes vs. covariances 

The following equation shows the relationship between correlations (ρ) and slopes (b):  

ρ2=b2*σ2(x)/σ2(y)        (eq. 3.1) 

Slopes and correlations will differ between individuals when the ratio between the 

variances (σ^2) of the two traits change from individual to individual. Individual B can 

have the same correlation value as individual A, but if one of the traits varies more in 

individual B while the other trait’s variance stays the same then the slopes between the 

two individuals will differ. Insulin for instance may be tracking BMI values just as 

closely in both individuals, but if individual B’s insulin increases more per unit increase 

in BMI, then his slope will differ. Going back to our hypothetical biological model, the 

individual that increases BMI by increasing number of fat cells rather than their size will 
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likely cause a disassociation between the two traits (a change in correlation) rather than a 

lower increase in insulin level per unit increase in BMI. This is why we focus on 

correlations and the methods paper describes a way of capturing variation in correlations. 

The methods described could be easily modified for studying variation in slopes as well if 

this were decided to be a better fit to the biology of interest. 

 

Similarly, looking for associations to both correlations and covariances may be desired, 

depending on the hypothesis. If it is hypothesized that lower correlations are linked to 

lower variance because it is believed that individuals that have more stable traits (low 

correlations) may also have less variance in the traits, then weighting the correlations by 

variance would be detrimental since correlations from measurements with low variation 

would be deemed just as informative as correlations from highly variable measurements. 

If on the other hand it is hypothesized that variance is independent of correlation, for 

instance, if it is believed instead that those that have higher variance are more perturbed 

and therefore more informative in terms of their correlations, then weighting the 

correlations by their variance, i.e. using covariance instead, might be desirable.  

 

 

3.3   AIM 3:  The data 

 

We have seen results from previous studies that provide indirect evidence for the 

existence of the biological variation that we are targeting in this dissertation and for its 

relevance to disease. The literature also provides some indirect evidence that there are 



74 
 

genetic underpinnings to this biological variation (see context paper). In order to 

determine if there is more direct evidence for both we need to inquire real data. 

This is the subject of Aim 3 in this dissertation. Although some data analysis was also 

conducted within the context and methods papers, it was not their main focus and it was 

therefore not as comprehensive as what is attempted in the third paper entitled 

“Association to disease and genetic architecture of metabolic trait correlations”. We will 

refer to it in this section as “the data paper”.  

In addition to trying to find direct evidence of the existence and relevance to disease of 

the within individual correlations of obesity and its associated traits, and to exploring the 

genetic architecture of the system of correlations in a comprehensive manner the data 

paper allows us to ask a third and equally important question about the biological 

variation in these correlations. How redundant is this variation with the variation in the 

trait values themselves? As we see in the methods paper, correlations can be thought of 

as latent variables – variables that are not directly measurable the way more standard 

traits like BMI and insulin or blood glucose are. So although, as we see in the context 

paper, the variation in trait correlations is theoretically independent from variation in the 

trait values, we still need to establish empirically if this is the case in the existing 

variation. If in reality the trait values prove to predict disease in the same way that their 

correlations do and more effectively so, and if the trait correlations prove to only be 

associated to genes to which the trait values themselves are associated, the existence of 

genetic and disease relevant variation in trait correlations will be of little value. In the 

data paper we tackle this redundancy question by comparing our correlation results with 

that of the trait values. 



75 
 

 

The data paper also addresses the multivariate analysis of trait correlations, subject that 

this dissertation does not touch upon up to this point. One benefit that mapping the 

connection between traits brings with it is the potential of getting at the hubs that 

modulate the system of traits. This is a distinct advantage over mapping the trait values 

themselves. For instance, although mapping BMI brings with it a convenience of its own, 

which is its being considered a more easily measurable and reliable quantity, once loci 

underlying BMI are found, they can be anything ranging from a molecular phenotype to a 

behavioral trait. BMI is influenced by so many factors within the individual that the real 

question may be what doesn’t influence BMI. Mapping BMI may therefore not bring us 

any closer to understanding the system of phenotypes associated to it. On the other hand, 

the number of factors that connect BMI and insulin can only consist of a much smaller, 

more system relevant set of factors, than the list of those that influence BMI and insulin 

independently. We would likewise expect the list of factors that influence the connection 

between BMI, insulin and dyslipidemia to be a subset of those that underlie the 

connection between BMI and insulin alone, and for the factors that connect the four 

morbidities to be a subset of this subset, each step further narrowing down the list to 

factors that have more of a system-wide relevance. A multivariate approach to the study 

of trait correlations would capitalize on this idea and possibly better target the hubs that 

modulate a system of physiologically connected traits or morbidities as a whole. 

 

The data paper also describes additional benefits to a multivariate analysis of 

correlations. Biological insight can be garnered from the different multivariate 
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phenotypes proposed. Which multivariate phenotype the disease or the genetics is 

associated to can give an idea as to the type of system-wide variation that is important in 

the prediction of the disease and that is influenced by the gene. There is also a strictly 

statistical motivation to carrying out multivariate analyses of correlations. Since the set of 

all pairwise correlations are necessarily not independent, this means that the multivariate 

analysis can capitalize on the additional power that taking into account their multivariate 

structure affords. We see the results of this increased power in the comparison of 

univariate and multivariate correlation analysis in the data paper. 

 

 

  



77 
 

Section 4. THE CONTEXT 

 

The within and across individual distinction 

in the genetics of correlated traits 

 

Abstract 

Objective: Making a distinction between within individual and across individual trait 

correlations may be useful on two counts. First, whether the two correlations differ may 

be informative regarding how much the across pattern of variation is a reflection of 

within individual processes. Only within individual processes can account for a direct and 

causal, physiological connection between two traits. This has implications for methods 

that rely on the relational pleiotropy model which requires that the across correlation 

reflect the within individual causal connections. It is also useful because it allows for the 

treatment of the within correlations as a quantitative trait. This opens up the possibility of 

targeting genes underlying variation that may be biologically relevant and that are 

generally not captured. This study examines both potential uses of making the within and 

across distinction using real data. 

Methods: This within and across distinction is made for correlations between BMI and 

its associated traits, cholesterol, triglycerides, blood glucose, SBP, DBP and HDL using 

the Framingham heart study data. The implications of each of the trait pairs’ within-

across correlation profile on mendelian randomization tests and genetic association tests 

that systematically control for BMI, is examined through simulation. The association of 
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the BMI – blood glucose within correlations (ρbmi-gluc) to an interleukin-6 polymorphism 

(rs1800795) and to diabetes status is tested using this data via permutation testing and 

logistic regression. 

Results: There was variation of within-across correlation profiles for BMI and associated 

traits. Profiles in which the across correlation is lower than the within correlation were 

found to decrease power in mendelian randomization studies while those in which the 

across correlation is higher than the within correlation were found to increase the false 

positive rate in genetic association tests that control for BMI. The correlations of BMI 

with triglycerides and cholesterol fit the former profile while its correlations with blood 

glucose, SBP, DBP and HDL fit the latter. A suggestive p-value (p<0.1) was found for 

the effect of the IL-6 polymorphism on ρbmi-gluc in women but not in men. ρbmi-gluc was 

significantly associated to diabetes status even after controlling for BMI and blood 

glucose levels (p<0.05). 

Conclusion: The within and across individual trait correlation profiles may inform on the 

risk of increased false positive and negative rates when conducting genetic studies that 

rely on the relational pleiotropy model and should be taken into account upon the 

availability of repeated measurement data. Variation in within individual trait correlations 

has the potential of being biologically relevant (predictive of disease) and non-redundant 

with the variation present in the trait values. Because of this, this variation should 

likewise be explored in genetic association studies. 
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4.1  Introduction 

 

There are complex diseases with system-wide impact that affect a constellation of 

physiologically interrelated phenotypes rather than a single phenotype. Some examples of 

this are mental illnesses such as schizophrenia, the constellation of autoimmune disorders 

related to arthritis, and the group of metabolic related morbidities that are associated to 

obesity and which are sometimes called metabolic syndrome. The genetics underlying 

this type of complex disease can be uncovered by mapping biological markers underlying 

each of the phenotypes.  

The correlations present between these biological markers, or traits, merit special 

consideration when searching for genes associated to the disease as a whole or to 

individual phenotypes. In particular, it is useful to distinguish between the patterns of 

these correlations within and across individuals. We will see two reasons for this: 

1. Unraveling causality: where the correlation pattern lies may be indicative of the 

type of biological process that is responsible for it and whether or not it involves a 

causal relationship between the traits. 

2. Unexploited biological variation: within correlations vary from individual to 

individual and this variation may be informative regarding disease. 

 

 

 



80 
 

4.1.1  Unraveling causality 

When studying the genetics of a set of physiologically interconnected traits we often 

want to unravel the causal relationships underlying the traits and their correlations, and 

their connections to the genes. 

 For instance, we may only want to pursue through functional studies, those genes that 

have a direct influence on the trait of interest. In this case it is necessary to filter out 

genes that only affect the trait of interest via their effect on a second trait and its 

physiological ties to the first. An example of this indirect influence on a trait is the FTO 

gene and its effect on diabetes incidence (Xi and Mi 2009). This effect is entirely 

mediated through FTO’s influence on BMI. Once BMI is controlled for, the association 

between FTO and diabetes incidence disappears. This process of filtering out indirect 

genetic relationships by controlling for one of the traits is a common practice in genetic 

association studies (Levy et al. 2009, Kathiresan et al. 2007, Duggirala et al. 2001). 

Another example of when we may wish to understand causality is when the goal is to 

design an intervention that targets one of the traits. It may be that a second, correlated, 

trait is more easily modified. If this is the case, it would be of interest to know if the 

correlation between the traits represents a causal connection between the two that can be 

exploited in the intervention.  Using BMI as an example again, if it were determined that 

the correlation between BMI and insulin resistance is causal in nature, then this would 

open up the non-pharmacological possibilities for regulating BMI, such as diet and 

exercise, as potential preventative and treatment measures for insulin resistance. Genetic 
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associations to the traits provide a tool with which to gauge this causality through the 

process termed mendelian randomization. 

 

4.1.1.1 Causal relationships, a within individual process 

When two physiologically interconnected traits present a causal relationship between 

them, a change in the value of one of the traits causes a change in the value of the second 

within an individual organism. If an increase in BMI has the physiological consequence 

of an increase in blood glucose, and a decrease in BMI likewise produces a drop in blood 

glucose, then one expects these two trait values to track each other throughout an 

individual’s life. This within pattern of correlation between the traits is therefore a 

necessary condition for inferring a causal relationship between them. Note though, that 

although this relationship is a necessary condition for causality, it is not sufficient. For 

instance, if a third trait is causal to both x and y, a relationship will be present between 

the two even though there is no causality between them. 

The following equation shows how the within individual relationship between two traits 

may be depicted: 

Y1 = β1 + β2*Y2 + ε        (eq. 4.1) 

Although the real relationship may be non-linear, this simple linear equation can be 

applied by finding a proper transformation for the traits. Repeated measurements of Y1 

and Y2 throughout the individual’s life should present a “β2” parameter that is different 

from zero for potential causality to be inferred. If the Y1 and Y2 measurements are 
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standardized, then this β2 parameter represents the within individual correlation between 

the two traits. Keep in mind that this relationship can hold irrespective of whether or not 

the traits present a pattern through time, i.e. whether or not they are associated to age.  

 

4.1.1.2  Across individual correlations can reflect within processes 

We seldom get to observe and measure these within individual relationships between 

traits because of the cohort study design it requires. Taking repeated measurements on the 

same individual for many individuals requires years of follow-up study that demand 

resources that are often not available or that simply do not outweigh the benefits in 

precision afforded by a cohort design (Feldman and McKinlay 1994). Because of this, 

many of the available data sets provide only one measurement per individual.  

Despite not being able to directly observe the within individual correlations with only one 

measurement per individual, the observed correlation pattern can still reflect the within, 

potentially causal, relationship between traits. If the correlation across individuals, ρ(real 

across), which corresponds to the correlation of the individuals’ trait expectations, is 

equivalent to the correlation within individuals, ρ (real within), which corresponds to the 

correlation of the repeated measurements of the traits within each individual, then the 

correlation observed using a single set of measurements per individual would likewise be 

the same (see equation 4.2). If on the other hand the across and within correlations differ 

then the single observed correlation is a weighted average of the across and within 

correlations (Snijders and Bosker 1999): 

ρ (observed) = λ * ρ (real across)  +  (1 – λ) * ρ (real within)  (eq. 4.2) 
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λ is the intraclass correlation coefficient: 

λ  =  τ2  /  (τ2 + σ2)        (eq. 4.3) 

where (τ2) refers to the across individual variance for the trait and σ2 represents the within 

individual variance (we assume the same  τ2 for both traits and the same σ2 for both traits 

in order to simplify equation 4.2).  

Within individual and across individual correlations between traits can differ because 

they can be product of entirely different processes (Snijders and Bosker 1999). Figure 4.1 

presents simulated data used to show this independence between within and across 

correlations. A single individual (top left panel) consists of a set of repeated 

measurements (in black) and a mean for these measurements (in red).  In this way the 

within correlations are depicted in black as the patterns created by the repeated 

measurements within individuals, and the across correlations as the patterns in red 

created by the means of these repeated measurements across individuals.  Although the 

across pattern can entirely be a reflection of the within individual processes (bottom left 

panel), this is not necessarily the case. Across processes can disassociate two traits that 

have a within association or even associate the two traits in a manner opposite to that of 

how they are associated by within processes (top right panel). Likewise, across processes 

can create a correlation between traits even in the absence of any within and potentially 

causal relationship between them (bottom right panel). 
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Fig. 4.1  Within and across correlations are free to vary independently. Red represents trait means for the 
individual while black represents repeated measurements for each individual. The top left panel shows a 
single individual and their “within” correlation between Y1 and Y2. The bottom left panels shows multiple 
individuals and how the correlation across, shown by red, can be strictly a reflection of within processes. 
The right panels show when across processes keep the across correlation from reflecting the within 
processes. In the top right the correlation across is negative even when all the within correlations are 
positive. The bottom right shows when across processes create a correlation despite the absence of any 
within relationship between the traits.  

 

   

When we only have access to one measurement per individual we cannot tell whether the 

across correlation is reflecting the within potentially causal processes or not. But upon the 

availability of repeated measurements data, the across – within correlation profile can be 

obtained and used to infer this. The across correlation pattern will reflect the within 

processes when the across correlation and the within correlation are equivalent and the 

following two assumptions hold: 
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1. There is no variation in the within relationships from individual to individual, that 

is, that the β1 and β2 parameters of equation 4.1 remain the same from individual 

to individual. 

2. There is no factor creating an association between the traits across individuals 

while not creating it within (for example a gene with a direct influence on both 

traits).  

If only assumption 1 does not hold, then the across correlation is less than the within 

correlation and if only assumption 2 does not hold, then the across correlation is greater 

than the within correlation. If both assumptions do not hold, then the across correlation 

can be greater than, less than or coincidentally the same as the within correlation without 

being a reflection of the within processes. In the latter case the within-across correlation 

profile will be less informative. 

 

4.1.1.3  Implications for methods based on causal model 

This has implications for methods for which inference is based on the existence of a 

causal relationship between the traits and yet observations of the traits are necessarily 

only made across individuals. It becomes of interest to know how much of the correlation 

between traits across individuals is product of a within, and potentially causal, process. 

Such is the case for methods that rely on the relational pleiotropy model of figure 4.2A. 

What is particular about this model is that it combines a within individual process with an 

across individual process. Here, the gene or SNP has an effect on the second trait only 

through its influence on the first, meaning that a causal relationship, which is a within 
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level biological process, must exist between the two traits.  Because genotypes do not 

vary within individuals, a gene can only have an effect on a trait value across individuals 

and this effect can only be gauged through its measurement across individuals. Genotypic 

effects are therefore strictly due to across level biological processes. Methods that are 

based on this model will therefore be prime examples of where the degree to which the 

across pattern of correlation between traits reflects the within pattern becomes important. 

It is only when this reflection exists that both the within and the across processes can be 

studied at the same across level and that the relational pleiotropy model can make sense. 

In particular, the two approaches mentioned above, the mendelian randomization method 

and the common practice of systematically controlling for one trait while conducting a 

genetic association analysis on a primary trait, rely on this model.  

 

 

Fig. 4.2 Different models relating a SNP to two traits. Arrows represent a causal relationship. 

 

In mendelian randomization, genes that are known to be associated to the trait that is 

amenable to intervention (Y1 in figure 4.2A) are used to test causality between this trait 

and the trait for which a treatment is being sought (Y2 in figure 4.2A) by using 
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mendelian segregation of the gene as an in situ process of randomization (Lawlor et al. 

2008). For example, in the case of BMI and insulin resistance, if the genes that are known 

to be associated to BMI also show an association to insulin resistance, a causal 

relationship from BMI to insulin resistance is inferred. The mendelian segregation 

method would therefore consist of testing for an association between the gene and insulin 

resistance. 

Mendelian randomization studies would suffer from a loss of power in the case in which 

the β1 parameter, the intercept, varies from individual to individual and the correlation 

across is less than the correlation within. The reduced across correlation would mask the 

real within individual correlations produced by the causal relationship between the traits. 

The following equations show why this reduction in power takes place. Y1 represents the 

trait that is known to be associated to the gene and the association between Y2 and the 

gene is the mendelian randomization test of causal relationship between Y1 and Y2. 

Y 1(means) = β0 + β1* SNP + ε1      (eq. 4.4.1) 

Y2 =  β00 + β11* Y 1 + ε2       (eq. 4.4.2) 

E[Y 2 ]= β00 + β11* E[Y 1]       (eq. 4.4.3) 

Y2(means) = β00 + εintercepts + β11* (β0 + β1* SNP + ε1)   (eq. 4.4.4) 

 

In the above equations “means” refers to the expected values for the trait for each 

individual throughout their lifetime, for a group of individuals. Y1(means) are therefore a 

collection of E[Y1]’s and Y2(means) are a collection of E[Y2]’s. These expected values 



88 
 

are those upon which the SNP may have an influence on as an across individual process 

as shown in equation 4.4.1. The β’s with a single subscript describe relationships across 

and the β’s with double subscripts describe relationships within individuals. Equation 

4.4.2 then shows the relationship between repeated measurements of the traits for a single 

individual. In equation 4.4.3 we take the expectation at either side of equation 4.4.2 to 

show the relationship between the trait expectations for this one individual (the 

relationship between two single values) while equation 4.4.4 shows the relationship 

between these expected values across individuals. If there is variation in the intercepts β00 

from individual to individual, this will come up as an additional error term that can 

swamp the signal of association between the SNP and Y2. 

In genome-wide studies that systematically control for one of the traits while testing 

association to the other trait, an across correlation that is greater than the within 

correlation can increase the false positive rate. A higher across correlation occurs when a 

factor exists that associates the two traits across individuals, although it does not do so 

within the individual, thereby creating a non-causal tie between the traits. An example of 

such an “across” factor could be a mosaic pleiotropy gene (see figure 4.2B), that is, a 

gene which has a direct influence on both traits. Figure 4.2C also shows a non-causal 

relationship between the two traits: Y1 is associated to both the SNP and Y2 while Y2 is 

not associated to the SNP. This type of relationship has been previously termed the 

correlated phenotype model (Allison et al. 1998). In the correlated phenotype model, an 

association test between Y2 and the SNP that is conducted controlling for Y1 can result 

in a spurious significant association. The graphical example depicted in figure 4.3 serves 
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to show how this occurs. Although Y2 is clearly not associated to the SNP in this figure, 

because Y1 is, the residuals of Y2 after regressing it on Y1 are associated to the SNP.  

 

 

Fig. 4.3 A spurious association. The residuals of Y2 after regressing on Y1 are associated to the SNP even 
though Y2 is not associated to the SNP. The filled circle and triangle represent the means for the “GG and 
GC” and the “CC” genotypic groups respectively. They show an association of the SNP to Y1 and no 
association to Y2. The red line represents the regression line of Y2 on Y1 and the vertical distances from 
the points to the red line represent the residuals of Y2.  Most distances from the triangles to the red line are 
positive while the distances from the circles to the red line a negative, resulting in an association of the 
residuals to the SNP.  

 

 

4.1.1.4 Evidence for need of within and across individual distinction 

Although it has been shown how across patterns of correlation in theory may not reflect 

within individual and potentially causal processes, and how this would have implications 

for methods that rely on the relational pleiotropy model, it is still possible that there is no 

need for this distinction in real data.  
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In order to test this, real repeated measurement data on obesity and physiologically 

related traits for which causal connections are biologically plausible was used. The within 

and across correlations for BMI with the traits of fasting blood glucose, triglycerides, 

cholesterol, high density lipoproteins (HDL), systolic blood pressure (SBP), and diastolic 

blood pressure (DBP) were estimated using the Framingham heart study data. 

Simulations were then conducted using real data parameter values in order to show the 

potential for a reduction in power for mendelian randomization tests used to gauge a 

causal relationship between BMI and associated traits, and for an increased false positive 

rate in genetic association tests that systematically control for BMI. 

 

 

4.1.2  Unexploited Biological Variation 

We have described how genes are exclusively across processes by virtue of the fact that 

they can only vary from individual to individual. For instance, they can be responsible for 

the correlation of trait expectations across individuals even in the absence of any 

connection between the traits within individuals, by means of a direct influence on both 

traits. Genes can also potentially explain the existence of variation in intercepts in the 

within trait relationships from individual to individual, despite an unchanging within 

correlation, or b parameter. These would correspond to genes that have an effect on one 

of the traits but not the other, regardless of any within causal relationship. Along with 

genes like FTO where there is an effect on diabetes via BMI, there are examples of genes 

that have an effect on BMI without having any effect on blood sugar or other related 

traits (Lusis et al. 2008).  
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A third type of across individual variation for which genes may be responsible is 

variation in within correlations or slopes, parameter b in equation 4.1, from individual to 

individual. There is evidence for the existence of this type of variation. For example, 

although most individuals have a high within correlation between BMI and metabolic 

traits like cholesterol, blood sugar and blood pressure, where an increase in BMI raises 

the levels in these traits, while loss of BMI decreases these levels, there is also a subset of 

individuals, in which fluctuations in BMI do not cause the same effect on the related 

metabolic traits. They have been termed “the healthy obese”, because of their tendency to 

remain healthy despite high BMI level (Sims 2001, Meigs et al. 2006). It has also been 

shown that this type of variation is an important marker for disease prognosis and for the 

proper course of treatment (Wildman et al. 2008). Genes that underlie this type of 

variation would therefore be valuable for prediction. Their functional study may also 

provide a novel source of biological insight into disease mechanism. 

 

If these genes exist, they are not those generally targeted by traditional methods. To 

understand this let’s look closer at how they compare to genes for which traditional 

methods are designed. Figure 4.2D is a graphical representation of how the new type of 

gene relates to the two traits. Such a relationship may be termed associative pleiotropy in 

order to distinguish it from relational (Figure 4.2A) and mosaic pleiotropy (Figure 4.2B). 

These genes do not have an effect on the trait values as can be seen by the lack of arrows 

connecting the gene and the traits themselves. Instead, they have an effect on the trait 

relationships or correlations within individuals. Because these correlations are 
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independent of trait values, genes that only have an effect on correlations can be easily 

missed by methodologies where only the genetic effects on trait values are modeled.  

 

Even in the case in which the gene causes an across individual correlation between two 

traits through its influence on expected trait values across individuals (mosaic pleiotropy) 

the resulting across correlation is not a function of the gene. Box 4.1 shows how this is 

the case mathematically:  a gene that influences two traits directly is modeled and then its 

independence to the trait correlations is demonstrated. 

Box 4.1  Trait correlations are independent of trait values. Even though the SNP is associated to both traits, 
the correlation between the two traits is not a function of the SNP.  

 

 

Although repeated measures data are sometimes used to search for genetic associations to 

slopes, the slopes used tend to model the relationship between individual traits and time 
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rather than the relationship between the traits themselves (Strug et al. 2002). Trait 

correlations may be present regardless of whether or not the traits are associated to time 

so these studies do not capture the variation in trait associations that we are describing. 

Making the within vs. across distinction therefore allows us to bring focus on what may 

be an underexploited and valuable source of biologically informative variation, i.e. 

variation in the within individual correlations. If genetics proves to be a factor behind this 

variation then the treatment of within individual correlations as quantitative traits would 

be a worthwhile pursuit. Indirect evidence that genes underlie variation in within 

individual correlations can be obtained from the literature. 

 

Herbert et al. concluded in their study that BMI modifies the association between 

interleukin-6 (IL-6) genotype and insulin resistance (Herbert et al. 2006). Instead, this 

could be looked at as an example of associative pleiotropy, where IL-6 genotype modifies 

the association between BMI and insulin resistance. Because this study only uses one 

measurement (exam 5, offspring generation in Framingham data) per individual and does 

not partition within from across variance, it cannot be determined if what is being 

observed is in fact associative pleiotropy. It can also be a gene-gene interaction with IL-6 

that only affects one of the traits. In other words, what is being observed may entirely be 

an across process where the genes affect the expectation of trait values in individuals 

rather than how the traits associate within an individual.  
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The left panel of figure 4.4 shows a hypothetical example with two separate dominant 

genes where each only produces two phenotypes: A and a for the first gene and B and b 

for the second gene. We can see how, independently from the within correlations, the 

interaction effect between these two genes on the trait means, can result in different 

across correlations for A vs. a. The gene for IL-6 can similarly  be showing different 

across correlations for different genotypes. The right panel of figure 4.4 shows how a 

similar difference between A and a could be observed with a change of within 

correlations by a single gene. One way to determine if it is in fact an example of 

associative pleiotropy is to see if the same effect occurs when looking only at the within 

associations of BMI and insulin resistance.  

 

 

Fig. 4.4  Gene by gene interaction (left panel) vs. the effect of an associative pleiotropy gene (right panel). 
Red represents trait means for the individual while black represents repeated measurements for each 
individual. Big A and little a represent alternative genotypic groupings at one locus while big B and little b 
represent groupings at a different locus.  
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Another example from the literature of where this type of genetic variation may have 

been encountered is by Arya et. al. which described a case of “incomplete pleiotropy” of 

a SNP on the traits of BMI and HDL. Almasy et al.  gave their interpretation of 

incomplete pleiotropy: “had there been epistatic or gene by environment interactions 

affecting the action of MG4 [the gene in their simulation] on one of Q4 or Q5 [the two 

traits in their simulation], but not both, the genetic correlation between Q4 and Q5 would 

have appeared incomplete…” (Almasy et al. 1997). The Arya et al. SNP may very well 

belong to a gene like gene B in the first plot which fits this Almasy et al. explanation. 

Alternatively, the SNP could belong to a relational pleiotropy gene, where the gene has 

an effect on one of the traits directly and the second trait only through its effect on the 

first.  If this kind of gene interacts with an associative pleiotropy gene such as the one 

depicted in the second plot, then how closely it affects the second trait will depend on this 

interaction and this too will come through as incomplete pleiotropy. 

 

In order to determine whether IL-6 is truly an associative pleiotropy gene, we revisited 

the Framingham heart study data and explicitly looked at the effects of this gene on the 

within individual correlations between blood sugar and BMI. We also evaluated the 

potential that this variation in the within correlations has for prediction of disease 

prognosis, with and without accounting for trait values. 
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4.2   Data 

 

4.2.1   Increased false positive and false negative rates 

The within individual and across individual correlations (ρ) for BMI and its associated 

traits were estimated using a subset of 777 unrelated individuals from the offspring 

generation of the Framingham study data. This subset was created by choosing the eldest 

individual from each pedigree with complete phenotype data. Measurements of fasting 

blood glucose, cholesterol, triglycerides, HDL, SBP, DBP, weight and height taken for 

each subject at Exams 1, 3, 5 and 7 were used.  

 

The Framingham heart study was approved by the Boston University Institutional 

Review Board and every subject provided informed consent. The author’s use of this data 

was also subject to approval by the Case Western Reserve University Institutional 

Review Board. 

 

4.2.2  The IL-6 gene: associative pleiotropy 

Of these 777 unrelated individuals, 723 had complete genotype data for the SNP 

rs1800795. This data was used for the within individual BMI – blood glucose correlation 

analysis of the IL-6 polymorphism. Participants were genotyped with the Affymetrix 

500k SNP array. Measurements of fasting blood glucose, weight and height and their 

diabetes status in exams 1, 3, 5 and 7 were used for this analysis.  
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4.3  Methods 

 

4.3.1  Increased false positive and false negative rates: data analysis 

The intraclass correlation coefficients λ for BMI (λ1) and its associated traits (λ2) were 

estimated using equation 4.3. Each individual parameter estimate is given by: 

 

τ2 = τ2 (observed) – σ2 (observed)/n      (eq. 4.5.1) 

σ2 = σ2 (observed)        (eq. 4.5.2) 

 

where τ2 (observed) and σ2 (observed), are the variance of the individual means and the 

mean within individual variance respectively. 

 

The within individual correlations (ρ (within real)) estimate is given by the observed 

within correlations (R (within observed)) which correspond to the Pearson correlation of 

the individual deviations for each associated trait with the individual deviations for BMI. 

The total observed correlation R (total) corresponds to the Pearson correlation of all the 

measurements across all individuals. Finally, the across individual correlations (ρ (across 

real)) were estimated using the observed total correlation, R (total) and R(within 

observed) through the following equation (Snijders and Bosker 1999): 

 

ρ (across real) = 
– –

   (eq. 4.6) 
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4.3.2  Increased false positive and false negative rates: simulations 

Using the parameter estimates of within and across correlations for BMI and associated 

traits, the following were gauged through simulation: 

1. The effect of an across correlation that is lower than a within correlation on the 

power to detect a causal relationship between BMI and the associated trait 

through a mendelian randomization test. 

2. The effect of an across correlation that is higher than a within correlation on the 

false positive rate when controlling for BMI in a genetic association test. 

 

As a first step measurements of BMI were simulated with a fixed correlation to a SNP. 

Measurements of the second trait (cholesterol, triglycerides, blood sugar, SBP, DBP or 

HDL) were then generated with the known within correlation between BMI and the trait: 

BMI = SNP + ε1        (eq. 4.7.1) 

Second trait = BMI + ε2       (eq. 4.7.2) 

The desired correlations are produced by manipulating the variance of the error terms ε1 

and ε2. Given an explanatory variable with a variance of 1, the variance that is needed in 

the error term to produce a correlation of ρ is given by:  

Var(ε) = (1-ρ)2/ ρ2        (eq. 4.7.3) 

This first step represents the relational pleiotropy model depicted in figure 4.2A.  The 

SNP is associated to the second trait only through the second trait’s within relationship 

with BMI. This first step was conducted for both simulations. This makes the across 
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correlation equal to the within correlation between the two traits. Because the estimated 

across correlations differ from the within, a second step is required to account for the 

difference. 

For the cases in which the across correlation is less than the within correlation, 

perturbations of the second trait that are not associated to BMI or the SNP are generated 

and added on to the initial data set. The variance of these perturbations is controlled in 

order to make the total across correlation equal to the estimated across correlation for the 

two traits. Traits with a lower across correlation with BMI relative to their within 

correlation will have a greater proportion of the perturbations, lowering the power to 

detect the influence of the SNP on the second trait through its effect on BMI. 

For the cases in which the across correlation is greater than the within correlation, 

perturbations of BMI and the second trait that themselves have a correlation of 0.7 are 

added to the initial data set. The BMI perturbations have the same fixed correlation to the 

SNP while the second trait is not associated to the SNP. This corresponds to the 

correlated phenotype model in figure 4.2C. Again, the variance of these perturbations is 

controlled in order to make the total across correlation equal to the estimated across 

correlation for the two traits. In this way, traits that have a lower within correlation with 

BMI relative to their across correlation will need a greater proportion of the correlated 

phenotype model in order to attain their total estimated across correlation. The greater the 

proportion of the correlated phenotype model is relative to the relational pleiotropy 

model, the greater the increase in spurious associations of the second trait to the SNP. 
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These data sets were simulated 1000 times with n=800 and the following tests were 

conducted: 

1.  Y2 = β1*SNP + ε        (eq. 4.8.1) 

The proportion of the 1000 tests that give a significant p-value for β1 at the 0.05 

level is equivalent to power since there is a true association between the second 

trait (Y2) and the SNP through the causal influence of BMI (Y1) on the second 

trait (Y2). 

2. Y2 = β1*SNP + β2*Y1 + ε       (eq. 4.8.2) 

The proportion of the 1000 tests that give a significant p-value for β1 at the 0.05 

level is equivalent to the type I error rate since there is no real association 

between the second trait (Y2) and the SNP that would remain after controlling for 

BMI (Y1). 

For the traits that have a lower across than within correlation with BMI, and therefore a 

reduction in power to detect its causal relationship to BMI, a hypothetical trait was 

simulated with an across correlation equivalent to the within (the most power given the 

within, i.e. no perturbations) to serve as a point of comparison. For both cases, the 

simulations were repeated for different values of correlation between BMI and the SNP 

(range: 0.16-0.85).  

 

4.2.3  The IL-6 gene: associative pleiotropy 

Within individual Pearson correlations for BMI and fasting blood glucose were computed 

for each individual using their four repeated measurements. The difference between the 
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mean of these correlations for individuals with the “CC” genotype for the IL-6 gene 

polymorphism and the mean of the correlations for individuals with the “GC” or “GG” 

genotype was computed. The significance of this statistic was evaluated via permutation 

testing. Specifically, the correlations were permuted across the 723 individuals while 

holding the order of the genotypes 1000 times and a new statistic was calculated each 

time. Where the observed statistic lies with respect to the empirical distribution obtained 

from the permutation statistics, gives a measure of its significance. This analysis was 

stratified by sex. 

 

The association between diabetes status and the within individual correlations for BMI 

and fasting blood glucose (ρbmi-gluc) was evaluated using logistic regression. The 

generalized linear model (GLM) function was implemented using a binomial error 

distribution in R. First diabetes status was regressed on  ρbmi-gluc alone and then BMI and 

fasting blood glucose levels were controlled for. The two respective models were: 

 

logit ( diabetes status) = β0 + β1* ρbmi-gluc     MODEL 2.1 

logit ( diabetes status) = β0 + β1* ρbmi-gluc + β2 *BMI + β3 *blood glucose MODEL 2.2 
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4.4   Results 

 

4.4.1  Increased false positive and false negative rates: data analysis 

Triglycerides and cholesterol levels present a higher within than across correlation to 

BMI while, SBP, DBP, HDL and blood glucose all present higher across than within 

correlations (see table 4.1). This variation in within and across correlation profiles 

allowed for a comparison on their effects on power and type I error via simulation. 

 

 
 
Table 4.1 Parameter estimates for the within, across and total observed correlations of traits with BMI.   

 
 

 

4.4.2  Increased false positive and false negative rates: simulations 

Triglycerides and cholesterol were the only traits for which there was a reduction in 

power to detect their causal relationship to BMI (see figure 4.5). Triglycerides present a 

much more modest reduction relative to cholesterol. In fact, cholesterol, with the lowest 

across correlation with BMI (ρ = 0.035), has no power beyond the 0.05 alpha level 

regardless of increases in SNP signal and despite its potentially causal within relationship 
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with BMI (ρ = 0.210). Its curve is no different to that of DBP which has the lowest 

estimated within correlation (ρ = 0.047). The power curves for SBP, DBP, HDL and 

blood glucose are a reflection of their total within correlations to BMI since all of the 

within correlation could be translated to across correlation and no perturbations had to be 

added. Among these, SBP and DBP have the highest and lowest within correlations with 

BMI respectively (ρ = 0.264 and ρ = 0.047) and therefore the highest and lowest potential 

for power in a mendelian randomization test among the four traits. 

 

 
Fig. 4.5 Power when testing causality between a trait and BMI through the mendelian randomization 
paradigm. The x axis shows the SNP’s correlation to BMI.  The solid lines represent the power observed 
when simulating the estimated within and across correlation for the trait with BMI. The dotted lines 
represent what the power would be given an across correlation that is equal or greater to the estimated 
within correlation. These only appear for triglycerides and cholesterol, traits in which the estimated across 
was less than the within. 
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Triglycerides and cholesterol presented no increase in the false positive rate beyond the 

0.05 alpha level when testing their association to the SNP while controlling for BMI 

since their across correlation can be entirely attributed to within and potentially causal 

processes (see figure 4.6). SBP, DBP, HDL and blood glucose on the other hand all 

necessarily have a mix of the relational pleiotropy model with the correlated phenotype 

model and therefore an increased false positive rate.  DBP has the highest across 

correlation and the lowest within correlation with BMI, giving it the highest potential for 

spurious associations. 

 

 
Fig. 4.6  False positive rate when testing for associations between the SNP and the trait while controlling 
for BMI. The SNP is only directly associated to BMI and its correlation to BMI is represented by the x 
axis. 
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4.4.3  The IL-6 gene: associative pleiotropy 

The sample of unrelated individuals was comprised of 375 men and 348 women, with 49 

men and 44 women having the “CC” genotype.  There was a suggestive difference (p-

value < 0.1) between the within individual correlations for females with the IL-6 

genotype “CC” (mean = 0.165) and females with the “GC” or “GG” genotypes (mean = 

0.011). Males presented no significant difference.  

 

The density plots show a bimodal distribution of these correlations, with a subset of 

individuals having a positive within correlation and the other subset having a negative 

within correlation (see 4. 7). This is particularly evident in individuals with an IL-6 

genotype of “CC”. Males are evenly distributed among the two modes while females 

show a higher frequency of individuals with a positive within correlation. 

 

 
Fig. 4.7  Density plots of within individual correlations for BMI and blood glucose for males and females 
separated by genotypic group for the IL-6 polymorphism. The x axis shows the within correlation.  
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The association of  ρbmi-gluc to diabetes status was very significant (p<0.01) (see table 4.2) 

and retained significance (p<0.05) after controlling for both BMI and blood glucose. 

 

Table 4.2 Associations of BMI and blood glucose within correlations to diabetes status, with and without 
controlling for the trait values.  
 

 
 

 

4.5   Discussion 

 

4.5.1  Unraveling Causality 

The variation in within and across correlation profiles for BMI and its associated traits 

serves to illustrate the implications that particular profiles can have on methods that 

assume the relational pleiotropy model. In order to show this the simulations assume that 

the within correlations are entirely due to a causal influence of BMI on the trait and that 

if the across correlation is less than the within correlation, then it can entirely be 

accounted for by this within causal relationship. Both of these assumptions represent the 

best case scenario for making the relational pleiotropy assumption. If either of these 

assumptions do not hold, then the power to detect causality will be even less than that 
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simulated and the false positive rates in association tests will be even greater. The results 

of the simulations therefore contrast the BMI associated traits by showing the highest 

power and the lowest false positive rates possible given their within and across 

correlation estimates with BMI. 

 

For instance when the across correlation is the same as the within correlation there is the 

potential that the across pattern is entirely a reflection of within individual processes. 

This is the ideal situation for implementing the relational pleiotropy model methods. 

Triglycerides and SBP correlations with BMI have the closest within and across values. 

Consequently triglycerides show the lowest reduction in power in mendelian 

randomization tests and SBP shows the smallest increase in false positives when testing 

its genetic associations while controlling for BMI (see figures 4.5 and 4.6).  

 

The cholesterol-BMI relationship exemplifies the danger that can underlie implementing 

the mendelian randomization model without considering the within and across correlation 

distinction. The within correlation of cholesterol with BMI, ρ = 0.210, can very well be 

due to a causal influence of BMI on cholesterol, and yet, because of the very low across 

correlation it would go undetected by mendelian randomization regardless of the strength 

of BMI’s association to the SNP and/or sample size (see 4. 5). A high within correlation 

and low across correlation profile can easily occur if there are genes that influence one of 

the traits without influencing the other. Some genes may cause variation in cholesterol 

directly without influencing BMI, disrupting the tie of cholesterol with BMI across 

individuals. Other genes may cause variation in what constitutes the baseline, healthy 
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BMI from individual to individual (Sims, 2001) so that some individuals are genetically 

predisposed to having a high BMI without this having an influence on their cholesterol 

level (normal cholesterol).  

 

BMI and DBP represent a good example of traits in which the across pattern of variation 

that is observed cannot be reflecting the within pattern of correlation because the across 

correlation is higher than the within. When this occurs, there must necessarily be across, 

non-causal processes accounting for the additional across correlation. We have described 

how this can cause false positives: if the gene is associated to BMI, then controlling for 

BMI while testing the association of the gene to DBP will result in a spurious association.  

But traits like these may also tend to have genes that directly affect them both since this 

would serve to explain their across correlation, i.e. genes that have a direct influence on 

both BMI and DBP would cause an increased across correlation pattern regardless of 

their within relationship. Such genes would result in false positives in mendelian 

randomization studies of BMI and DBP. They could also result in false negatives if BMI 

is controlled for in their test of association to DBP. This type of within and across 

correlation profile can therefore result in more pitfalls when implementing the relational 

pleiotropy model than the increased false positive rate depicted in figure 4.6. 

The point estimates afforded by the limited sample size used (n=777) in the present study 

for the within and across correlations between BMI and associated traits could be greatly 

improved by incorporating not only more of the data offered by the Framingham heart 

study (using methods that take into account family structure), but also by taking 

advantage of how extensively this set of traits has been addressed in the literature and 
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integrating additional data through meta-analysis. The present estimates still serve the 

purpose of this study in depicting the utility of making the within and across distinction 

in the genetics of correlated traits. Table 4.1 shows how not making this distinction and 

simply looking at the correlation between single measurements of the traits across 

individuals, i.e. the total observed correlation, completely misses the variation that exists 

in the within and across correlation profiles for this set of traits. 

Although we are often constrained by the nature of the data to not making a within and 

across distinction simply because one measurement per individual is all that is available, 

it is also true that this distinction is generally overlooked even in the face of repeated 

measurements data. The Framingham heart study data provides examples of genome-

wide association studies that systematically control for BMI, and of mendelian 

randomization studies, where this is the case (Levy et al. 2009, Kathiresan et al. 2007, 

Morris, Gray-McGuire and Stein 2009, (Freathy et al. 2008). A simple look at the within 

and across patterns of trait variation may be informative when interpreting the results of 

these studies and any other study that may rely on the relational pleiotropy model. A 

substantial difference between the across and within correlations, would warn against the 

implementation of this model. 

 

4.5.2  Unexploited biological variation 

By looking at within individual correlations we were able to distinguish whether the IL-6 

genotype has an effect on the within individual correlation between BMI and blood 

glucose, that is, whether it changes this within correlation for a subset of individuals, or if 
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it instead has an effect on the across correlations of the traits via, for instance, a gene by 

gene interaction. Although these results are not quite significant at the alpha = 0.05 level, 

females do show a suggestive p-value (p < 0.1). If Herbert et al.’s result had been due to 

strictly effects on across correlations, it is unlikely we would have been able to pick up 

any level of genetic effect after factoring out all of the across variation in the trait values. 

These results therefore suggest that IL-6 may represent an example of an associative 

pleiotropy gene. 

 

Females with the CC genotype tend to have a greater correlation between BMI and blood 

glucose throughout their lives (see figure 4.7).  This may mean that they are 

metabolically less resilient to changes in BMI. This interpretation of higher within 

correlations would in turn explain why higher within correlations are associated to higher 

diabetes risk (see table 4.2). An individual whose blood glucose levels remain stable 

despite increases in BMI will be more resistant to developing diabetes than an individual 

whose blood glucose levels tend to spike with the slightest BMI increase.  This kind of 

metabolic robustness or fragility is a system level characteristic that is not captured by 

BMI levels or blood glucose levels alone. Making the within and across distinction in the 

correlations between the two trait values is what allows us to target this system level 

characteristic in the form of within correlations. As a quantitative character that varies 

from individual to individual, the within correlations provide us a window into the 

genetics that may underlie system robustness or fragility.   
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Although ρbmi-gluc represents a character that is distinct from BMI and blood glucose 

levels, it could still be the case that it varies in accordance to BMI and blood glucose 

levels (that the three are correlated) and that it therefore contributes no new information 

with respect to disease risk. Within correlations, become of particular interest if they 

prove to be relevant to disease prognosis, i.e. diabetes status, in a way that cannot be 

explained by the trait values alone. We showed this to be the case with the within 

correlations for BMI and blood glucose (ρbmi-gluc) (see table 4.2). This gives associative 

pleiotropy genes for these within correlations the potential of leading to understudied and 

possibly unknown disease biology. For example, even if  connections between the IL-6 

polymorphism and BMI and blood glucose levels are made, as have been made by some 

studies in the past (Wernstedt et al. 2004, Herbert et al. 2006), follow-up functional 

studies would be designed to pursue these connections to trait values. How this gene 

modulates the traits’ within individual correlations would involve an entirely different 

biological inquiry that would not necessarily be included in these follow-up studies. What 

is more, in reality, the associations of the gene to BMI and blood glucose values in the 

literature have been equivocal at best (Huth et al. 2009), with many studies that are 

unable to replicate previously found associations or that instead find the opposite 

associations. There may likewise exist other associative pleiotropy genes that are not at 

all associated to the BMI and blood glucose values in themselves (see box 4.1) and that 

have therefore until now gone undetected. It would be of interest to see what other genes 

underlie this understudied type of variation, as well as variation in other trait-pair 

correlations relevant to metabolic disease as a whole.  
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4.6   Conclusion 

 

Faced with the opportunity of analyzing repeated measurements data, it is of value to 

study the patterns of within and across variation of the traits of interest and to make a 

distinction between the across and within biological processes that can be generating 

these patterns. In particular, it should be kept in mind that genes underlying trait variation 

are in essence across processes. When trying to unravel causal relationships between the 

traits and associated genes, this underlines the need to check whether the observed across 

trait relationships are reflecting the within relationships. Making this distinction also 

brings to bear that genes may not only be underlying the variation in trait values across 

individuals, but also variation in the slopes (correlations) of the relationships between 

traits from individual to individual. This variation in within individual correlations may 

provide a way of targeting potentially biologically informative genes that are not 

generally captured by traditional approaches. 
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Section 5. THE METHODS 

 

Methods for testing genetic effects 

 on within individual trait correlations 

 

5.1  Introduction 

 

Faced with a disease that is characterized by the co-occurrence of a collection of traits 

rather than a single trait  we generally conduct univariate or multivariate genetic 

association studies of the trait values to try to get at the genetic variation underlying the 

disease. These studies do not target the genetic variation that may be underlying the 

physiological ties between the traits within the individual. These ties can be thought of as 

within individual correlations. These within individual correlations have been shown to 

be free to vary independently from the trait values and to have the potential to predict 

disease in a way not explained by trait values. They have also been shown to have 

underlying genetic variation that is different from that underlying the trait values. How 

then can we capture this genetic variation and in so doing open a window into potentially 

new disease biology? This paper proposes two methods by which to study the genetic 

variation behind within individual correlations.  

Genetic variation in trait correlations may be looked at as genotype by environment 

interaction problem.  For instance, if the trait correlation of interest is between BMI and a 
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metabolically associated trait Y, then BMI can be considered to be part of the internal, 

physiological “environment” (Panhuysen et al. 2003, Herbert et al. 2006). The 

corresponding model is: 

Y= β0+ β1BMI + β2G + β3G* BMI + ε      (eq. 5.1) 

If variation in genotype changes the slope between BMI and Y, then the interaction term 

β3 will be significant. Given variables standardized within each genotypic group, a 

change in slope is equivalent to a change in correlation between BMI and trait Y. Herbert 

found the interaction between BMI and genotype at the interleukin-6 locus to have a 

significant effect on insulin resistance (Herbert et al. 2006). This can be just as easily 

interpreted as the interleukin-6 locus having a significant effect on the slope between 

BMI and insulin resistance. 

 

5.1.1  Relationships within vs. across individuals 

The model of equation 5.1 confounds within individual correlations with the pattern of 

correlation observed across individuals. The within individual correlations refer to the 

correlations between the traits observed throughout each individual’s life while the across 

individual correlations refer to the correlations between the expected values of the traits 

for each individual. Since what we are interested in capturing is the genetic effects on the 

physiological relationship between the traits it is important to make this distinction (see 

paper 1, section 4). Only repeated measurement data can help us differentiate between the 

two by allowing us to model within and across individual effects independently. 
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The following equation represents a single individual’s relationship between BMI and 

trait Y. We are able to characterize this relationship for this individual through the 

repeated measurements denoted by subscript i: 

Yi = β0 + β1BMIi + ε         (eq. 5.2) 

The β0 and β1 parameters are free to vary from individual to individual. What we are 

interested in biologically is how genetics may underlie variation in the β1 parameter, the 

slope, from individual to individual. Once again, since our interest lies in the correlations, 

this parameter can serve to study these correlations if the trait values are standardized. 

The random effects model as described by Snijders allows us see how these within 

individual relationships can be modeled while factoring out any across individual effects.  

Modifying the notation from Snijders (Snijders and Bosker 1999), the following 

describes a model with random effects at both the repeated measurement level and 

individual level. The explanatory variables at the measurement level are denoted by 

X1,…, Xp. Examples of this would be BMI and age since they vary within the individual 

and could have an effect on the repeated measurements of other within individual time –

varying traits such as fasting blood glucose. Those at the individual level are denoted by 

Z1,… Zq. An example of such a variable would be genotype since it only varies across 

individuals. U0j represents the random effects at the individual level, with j being the 

index for individuals, and Rij represents the random effects at the repeated measurement 

level with i being the index for measurements. Both are assumed to be independent and 

normally distributed with a mean of zero. Finally, β10,…, βp0 and β01,…, β0q are the 
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parameter estimates for the p measurement level variables and the q individual level 

variables respectively. 

Yij = β00 + β10 X1ij + … + βp0 Xpij  + β01 Z1j + … + β0q Zqj  +  U0j +  Rij (eq. 5.3) 

Another possibility for an across level variable is the aggregate of a within level variable. 

An aggregate measure such as the mean for each individual can only vary across 

individuals and can be modeled to have its own independent effect on the outcome 

variable (Snijders and Bosker 1999).  In order to allow the within individual slope 

parameter estimate to be different to the across individual slope we must include this 

aggregate measure of the variable, .j, within the model. The following equations show 

why this is the case:  

Yij = β00 + β10 xij + U0j + Rij       (eq. 5.4.1) 

Yij = β00 + β10 xij + β01 .j + U0j + Rij      (eq. 5.4.2) 

.j= β00 + β10 .j + β01 .j + U0j + .j      (eq. 5.4.3) 

.j= β00 + (β10 + β01) .j + U0j + .j      (eq. 5.4.4) 

Equation 5.4.1 shows the model without the aggregate across level variable, while 

equation 5.4.2 shows a slope parameter that is modeled separately for all of the 

measurements xij and for the mean of x for each individual .j, (parameters β10 and β01 

respectively).  β10 corresponds to the within individual slopes between x and Y, or said 

differently, the effects of measurements of x on measurements of Y. By taking the means 

for each individual on both sides of the equation and rearranging terms (equations 5.4.3 

and 5.4.4) we can see how β10 + β01 is the effect of the means of x on the means of Y. β01 
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therefore corresponds to the difference between the within individual slopes and the slope 

across individual means of x and Y(equation 5.4.4). By not including this β01 parameter 

you are in effect making it zero and forcing the within and across individual slopes to be 

the same. If these are in reality different, forcing them to be the same subsumes the 

effects of across processes in the parameter estimate for the within individual slopes. 

Since our interest lies in properly estimating the within individual physiological 

relationship between the traits it is necessary to factor out the across processes when they 

exist. 

 

5.1.2  Adding the within and across individual distinction to the genotype interaction 

model 

Going back to our interaction model of equation 5.1, we can modify it in order to 

differentiate between within and across individual effects on slopes. First we must add 

the random effects component which allows for individual variation in the within 

individual relationships between BMI and trait Y.  

Yij = β00 + β10 BMIij  + β01 Gj + β11 Gj BMIij  +  U0j + U1j BMIij +  Rij  (eq. 5.5) 

In equation 5.5 we have added another independent and normally distributed random 

effects term, U1j BMIij , to account for differences in slope between BMI and Y from 

individual to individual. The interaction term β11 Gj BMIij gauges the effect of genotype 

(G) on this individual variation in slope. But once again, this model does not differentiate 

between across and within effects of BMI on Y thereby restricting them to be the same.  
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If we add the aggregate measure of mean BMI ( .j ) we get: 

Yij = β00 + β10 BMIij  + β01 Gj + β02 .j  + β03 .jGj + β11 Gj BMIij  + U0j + U1j BMIij +  Rij (eq.5.6) 

Equation 5.6 differentiates between the effect of the genotype on the slope across 

individuals (β11+β03) and the effect of genotype on differences in within slopes from 

individual to individual β11. Regrouping the terms in this equation we can see which have 

an effect on the individual intercepts for the relationship between BMI and Y (equation 

5.7 first parenthesis) and which have an effect on the individual slopes (equation 5.7 

second parenthesis): 

Yij = (β00 + β01 Gj + β02 .j  + β03 .jGj + U0j ) + (β10  + β11 Gj  + U1j )BMIij +  Rij               (eq. 5.7) 

This allows us to see that the interaction term between mean .j and genotype only 

affects the intercepts of the within individual relationships without having any effect on 

the within individual slopes. By not allowing for the within and across individual 

distinction, it is entirely possible for the Herbert et al. result to have been product of this 

type of across level interaction. For instance, an interaction between the interleukin 6 

gene (IL-6) and another gene could account for the difference in slopes across individual 

means without this pertaining to any change in the physiological relationship between 

BMI and insulin resistance from individual to individual. 
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5.2   Models 

 

5.2.1  Interaction Model 

Equation 5.7 also allows us to see how we can greatly simplify the model while still 

factoring out the across processes from the within individual slope estimation. By 

centering the traits BMI and Y for each individual, all the random and fixed effects on 

intercepts of the first parenthesis drop out without this having any effect on the terms for 

the within individual slopes in the second parenthesis. The within individual deviations 

can therefore replace the actual trait values giving the following equation:  

(Yij – .j) = β10 (BMIij- .j) + β11 Gj (BMIij- .j)   + U1j(BMIij- .j)   +  Rij      (eq. 5.8) 

U1j  corresponds to the random effects in slopes that are not explained by the gene. Since 

we are not interested in estimating this parameter separately we can subsume U1j into a 

general error term with Rij to be left with: 

(Yij – .j) = β10 (BMIij- .j) + β11 Gj (BMIij- .j) + ε            (eq. 5.9) 

 It is very similar to the simple gene by environment interaction model of equation 5.1 

but minus the effects of the across processes. Note that the marginal effects of the gene 

on trait Y are also lost since these correspond to an effect on the intercept of the BMI – Y 

relationship for the individual. Finally, as mentioned previously, in order to apply the 

model in a way that actually captures the within correlations between the traits through 

the estimation of slopes, the traits must be standardized for each individual.  
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Model inference: As with any simple regression, the interaction parameter β11 can be 

tested for significance through a marginal t-test where the parameter estimate is divided 

over its standard error in order to obtain the test statistic. 

Controlling for covariates: We are not interested in controlling for covariates at within 

individual level. The reasoning behind this is that the more the traits are perturbed within 

an individual’s life the better estimate we should be able to obtain on their physiological 

correlation or tie. We instead want to control for across level covariates that can be 

having an effect on the within individual relationships, covariates that can cause variation 

in slope from individual to individual and can thereby confound the genotypic effects on 

the slopes that we want to detect. We can control for these covariate effects by including 

additional interaction terms of the covariate with BMI. For instance, the effects of sex 

and age on slopes can be controlled for by adding an interaction term of BMI with sex 

and of BMI with the aggregate variable mean age.  

 

5.2.2   Correlation model 

Another approach to getting at just the within relationships between the traits is a 

departure from the usual genotype by environment approach and from modeling of the 

trait values altogether. It consists of modeling the individual trait correlations directly.  

Correlations range from -1 to 1 and can have multi-modal distributions making it 

impossible to model them directly as the response variable in a linear regression model 

where the assumption of a normally distributed error term must hold. A solution to this is 

provided by the Fisher-Z transformation which effectively makes correlations normally 
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distributed (Fisher 1915, Ramasundarahettige, Donner and Zou 2009). The following is 

Fisher’s Z transform (F(r)) where r is the correlation value and ln is the natural logarithm 

function: 

F(r) = ½ * ln ((1+r)/(1-r))        (eq. 5.10) 

The transformed within individual Pearson correlation values (ρBMI-Yj ) can then be 

modeled with the following simple linear regression, where j is the individual, and G is 

the individual’s genotype. 

 

ρBMI-Yj  = β1Gj + εj         (eq. 5.11) 

Model Inference: marginal t-test of the β1  parameter. 

Controlling for covariates:  Both across level and aggregate within level covariates can be 

straightforwardly added to the model as is done with any simple linear regression. 

 

5.3   Methods 

 

5.3.1  Simulations 

Yij and xij data were simulated with a distribution of N(0,Σ), where   and i and 

j are the indexes for the repeated measurements and individuals respectively using the 

mvrnorm function in R. This resulted in Y and x data with a bivariate standard normal 

distribution and a within individual correlation of ρ between Y and x. For testing type I 

error, k repeated measurements and n individuals were simulated for correlation values, ρ 
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= 0.1, 0.3, 0.5 and 0.7 and were compared to another identically generated data set using 

the interaction and correlation methods described (effect size = 0). A dummy variable (g) 

was used to keep track of which generated set the data originated from.  In order to asses 

power, k measurements and n individuals were simulated for correlation values of ρ = 

0.1, 0.3, 0.5 and 0.7  and compared to another set with correlation values of ρ = 0.2, 0.4, 

0.6 and 0.8 (effect size = 0.1). For 8 repeated measurements per individual these 

simulations were repeated for total sample sizes of  n = 800, 1000, 1200 and 1400. For 4 

repeated measurements per individual these sample sizes were doubled and for 16 

measurements halved so that the total number of data points remained the same across 

repeated measurements.  

 

The interaction method was applied by first centering and scaling the individuals 

generated and then using the lm function in R to test for significance of the interaction 

term at the 0.05 alpha level (the interaction of x  with the dummy variable g, through a 

marginal t-test (see equation 5.9).  

 

The correlation method was applied by computing the Pearson correlation for each 

individual generated, fisher z transforming them and then using the lm function in R to 

test for significance of the dummy variable g through its marginal t-test, also at the 0.05 

alpha level (see equation 5.11). 

 



123 
 

5.3.2   Data analysis  

Both methods were applied to real data using the Framingham heart study. A subset of 

777 unrelated individuals were selected from the offspring generation by choosing the 

eldest individual from each pedigree with complete data. Repeated measurements on 

BMI and fasting blood glucose from Exams 1, 3, 5 and 7 were used. The individuals were 

genotyped using Affymetrix 500 SNP array. The effect of ~25 k SNPs on chromosome 7 

on within individual BMI - blood glucose correlations were evaluated using the described 

methods while controlling for sex, age and age^2. 

The Framingham heart study was approved by the Boston University Institutional 

Review Board and every subject provided informed consent. The author’s use of this data 

was also subject to approval by the Case Western Reserve University Institutional 

Review Board. 

 

5.4   Results  

 

5.4.1  Type I error 

The interaction method displayed a departure from the nominal type I error of 5% with a 

low number of repeated measurements per individual (k = 4) (see figure 5.1, left panel). 

This was not apparent at the higher repeated measurement sizes of 8 and 16 even though 

the total number of data points was kept constant across all correlations (see figure 5.1, 

center and right panels).  This increased type I error became more pronounced for higher 
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correlation values (9.3% at ρ = 0.1 to 37.1% at ρ = 0.7). The correlation method 

presented the appropriate type I error rate across all parameter variations. 

 

5.4.2  Power 

Only k= 8 and 16 can be used to compare power between the methods since the deviation 

in type I error at the k = 4 level renders its power results meaningless. The correlation 

method appeared to have greater power than the interaction method for higher 

correlations and lower power than the interaction method for lower correlations with 

constant effect size (effect size = 0.1) (see figure 5.1 center and right panels). The 

difference in mean power across all n sample sizes between the correlation and the 

interaction methods for correlations ρ = 0.1, 0.3, 0.5, 0.7 with an effect size of 0.1, were -

6.0, -2.3, 3.0 and 8.2 for 8 repeated measurements, -4.1, -1.0, 5.0 and 5.4 for 16 repeated 

measurements and the same total number of data points and -3.8, -0.22, 1.8, and 0.32 for 

16 repeated measurements and double the number of data points. This shows that the 

influence of correlation level on the difference in power between methods was less 

pronounced for higher number of repeated measurements, and that given the same 

number of repeated measurements it was less pronounced for greater number of 

individuals. 
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Fig. 5.1 Comparison of type I error and power for correlation and interaction methods. The y axis shows 
the percentage of tests that showed a significant difference in correlations at the 0.05 level between Y and x 
for the two data sets generated. The x-axis represents the correlations levels at which effects were 
simulated. For the bottom curves an effect size (difference in correlations between data sets) of 0 across all 
correlation values were simulated, making them the type I error curves, while the top curves show an effect 
size of 0.1 across all correlation values and correspond to the power curves. A total of 6400, 8000, 10600 
and 11200 data-points were simulated across all plots distributed differently in terms of number of repeated 
measurements and number of individuals (n). 

 

 

5.4.3  Analysis of real data 

The mean within individual BMI – blood glucose correlation for the Framingham data 

was found to be 0.06 with a standard deviation of 0.57. Its showed close to a uniform 

distribution with a -1 to 1 range but was effectively transformed into a normal 

distribution via Fisher’s Z transform (see figure 5.2). 

QQplots were generated in order to explore the distribution of the p-values obtained for 

chromosome 7 SNPs when testing their effect on the within individual correlations of 

BMI and blood glucose (see figure 5.3). The interaction method clearly shows an overall 

departure from the uniform distribution, evidence of an increased false positive rate. The 
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correlation method shows better adherence to the uniform distribution but no sign of a 

significant SNP (a p-value smaller than that expected for the uniform distribution). 

 

 

Fig. 5.2  BMI- blood glucose within individual correlations for the Framingham heart study data (n=777, 
k=4), before (left panel) and after (right panel) applying Fisher’s Z transformation. 

 

 

Fig. 5.3 QQ-plots of p-values obtained for the effect of chromosome 7 SNPs on within individual BMI – 
blood glucose correlations using the correlation and interaction methods. 
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5.5   Discussion 

 

5.5.1  Type I error and power comparisons 

5.5.1.1   Simulations 

Although the interaction method presents an inflated type I error rate at a low number of 

repeated measurements (k=4), the power comparisons show it may still be preferable to 

the correlation method given sufficient repeated measurements when working with lower 

correlation values. This improvement in power of the interaction model goes away with 

increasing repeated measurements given a constant total number of data points and/or 

overall increasing number of data points. This means that there may be a small window 

of k and n (sample size) in which this increased power in the interaction method can be of 

benefit. 

The type I error problem for the interaction method may at first glance be attributed to a 

lack of independence in the error terms that is usually associated to repeated 

measurement data. It has to be pointed out that this problem cannot in itself explain the 

type I error observed in the simulations where all the individuals within the same group 

were simulated as having the same means for x and y and the same slopes. In other 

words, all the measurements simulated were sampled independently from the same 

distribution with no individual random effects.  

Furthermore, when type I error problems do occur due to non-independence of repeated 

measurement data, they do not subside upon increasing the number of repeated 
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measurements per individual. This is what is observed in our simulations and it points to 

where the origin of the problem may lie. It may be that with very low number of repeated 

measurements a spurious non-independence is created as a by-product of the sampling 

procedure.  

The correlation method presents adequate type I error rates across the board and this in 

itself may outweigh the increase in power evident in the interaction method for lower 

correlations.  Even applying the full random effects model to the interaction model as a 

way of addressing the type I error problem would entail making assumptions about the 

covariance matrix for the error term that are difficult to justify. With the correlation 

method, having to make this type of assumption is by-passed.  If working with high 

correlations (ρ > 0.5) the correlation method should be the method of preference.  

 

5.5.1.2  Data 

The Framingham data’s within individual BMI – blood glucose correlations presented a 

low overall mean (0.06) which would indicate a potential benefit in using the interaction 

method. Because of the limited number of repeated measurements available (k=4), this 

method provides instead an increased false positive rate that is apparent in the qq-plot of 

the p-values obtained for chromosome 7 SNPs (see figure 5.3 left panel). The absence of 

any significant results for chromosome 7 when using the correlation method (see figure 

5.3 right panel) may be the result of the low power afforded by the sample size of 777 

individuals. For a k=4, this power does not exceed 40% (see figure 5.1, left panel). 
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Population stratification is a common source of inflated type I error rates in association 

studies and is caused by a systematic difference in allele frequencies between subsets of 

the population being studied due to non-random mating. Methods such as genomic 

control and structured association methods have been used to control for population 

stratification (Zhu et al. 2008, Devlin and Roeder 1999, Pritchard and Rosenberg 1999). 

Although population stratification was not controlled for in these analyses it is unlikely 

that it could justify the increased type I error rate observed in the interaction method. The 

Framingham study population is very homogeneous and the degree of stratification it 

does present could not cause the level of departure from the uniform distribution 

observed in the interaction qq-plot. Furthermore, the same type I error problem would 

have been observed in the application of the correlation method. 

 

5.5.2  Comparison of methods aside from type I error and power considerations 

Modeling the correlation between traits may go against the natural inclination towards 

modeling trait values directly, an approach that is still afforded by the interaction method 

and which may be seen as an advantage.  Trait values such as BMI and blood glucose are 

real physical quantities that can be measured directly. The within individual correlations 

on the other hand can only be measured with the sampling error imposed by the limited 

number of repeated measurements on the traits that can be taken for each individual. Real 

within individual correlations are therefore not directly observable or measureable 

quantities, a characteristic that qualifies them as a latent variable. By not modeling the 

within individual correlations as the latent variable they really are but rather taking the 
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observed correlation as the real parameter value for each individual, the correlation 

method confounds sampling variation with individual variation in the real parameter 

values, i.e. variation in the real underlying correlations.  

In the simulations presented here this issue was not addressed. All individuals were 

simulated as having the same correlation value with no variation from individual to 

individual. The only variation present was therefore due to sampling. It would be 

interesting to study the effects of real parameter variation from individual to individual 

when making inferences with the correlation method via simulation in future work. The 

increased variation will likely have the effect of lowering power. 

 

The interaction method, on the other hand, presents a disadvantage in that it models a 

random variable as an independent variable that is being held fixed or measured without 

error. In our application, where we are interested in modeling the relationship between 

physiologically tied traits within the individual, the traits in question are by definition all 

random variables. For instance, in our equations we have considered BMI to be the 

internal, physiological environment that is interacting with genotype and in so doing we 

are assuming that we are measuring BMI without error. For linear models this assumption 

leads to an underestimate of the effect of the predictor variable on the response variable, a 

situation known as attenuation bias (Chesher 1991). A more appropriate approach would 

model the real BMI value as a parameter separate from the observed, error containing 

BMI value as is done in measurement error models. This is very similar to the limitation 

described for the correlation method. In both methods the variance of what is being 
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modeled, be it the latent correlation for the correlation method or the predictor variable 

for the interaction method, is being underestimated. The fact that the trait values are 

being modeled directly in the interaction method does not get around what in the end 

amounts to a variance underestimation issue. 

Furthermore, this limitation may be considered especially problematic in the interaction 

method where it manifests itself in one of the traits being considered and not the other. 

Only the predictor variable is assumed to be measured without error. This can lead to 

issues with interpretation. For example, an interaction can appear to be significant when 

one of the traits is used as the predictor but not the other. It would be unclear what should 

be concluded in such a case since choice of predictor should not have a bearing on 

inference on the relationship between the two traits. The real difference in the within 

individual relationships, the parameter being estimated, does not change with choice of 

predictor. 

The correlation method does not present the asymmetry just the described for the 

interaction method. Although both methods involve assumptions that disregard existing 

variance in the data, the correlation method cannot give two contradictory results as can 

occur with the interaction method. Simulations designed to study the attenuation bias 

effect on inferences on interactions and how to circumvent the problem with 

measurement error modeling will be the subject of future work. 

In addition to all of the advantages already listed for the correlation method, unlike 

modeling the interaction, the approach of modeling the correlation value is easily 

extendable to the large diversity of genetic epidemiological methods used to study 
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variation in trait values. As with the simple regression model shown here, all that is 

required is to model the within individual correlations as the new quantitative trait after 

applying the fisher’s Z transformation to them to assure normality.  

 

5.6    Conclusion 

 

The correlation method provides a clear advantage over the interaction method for 

modeling effects on within individual trait correlations. First, it circumvents type I error 

problems and the assumptions on the error covariance matrix that would have to be made 

in the interaction method in order to avoid them. Additionally, although the correlation 

method assumes away the underlying unknown variance in the real within individual 

correlations from individual to individual, this does not incur the problems in 

interpretation that the interaction method does when it assumes that there is no 

underlying unknown variance in the trait used as a predictor. Finally, unlike the 

interaction method, the correlation method is extendable to the variety of existing genetic 

epidemiological methods in a straight forward fashion. All of these factors taken together 

suggest that even though modeling correlations may not have the appeal that many 

investigators find in modeling tangible physical quantities, it should be the approach of 

preference when targeting variation in the physiological connections between traits from 

individual to individual. 
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Section 6. THE DATA 

 

 

Association to disease and genetic architecture 

 of metabolic trait correlations 

 

6.1   Questions addressed 

 

1. Is variation in  metabolic trait correlations (correlations between obesity and its 

associated traits) relevant to disease? 

2. Are there genes underlying this variation? If so, what is the genetic architecture? 

3. Is variation in trait correlations redundant to variation in the traits themselves in 

explaining disease and/or in their genetics? 

4. Can the system of trait correlations be studied in an integrated manner and is there 

an advantage to doing so? 

We need to analyze real data in order to answer all of these questions. For the first 

question it is ideal to use human data where there are clear definitions of what constitutes 

the disease of interest. The Framingham heart study data will be analyzed with the first 

question in mind. For the second question human data can have its limitations, the main 

one being how it can be significantly underpowered. The Framingham heart study data 

available for these analyses (777 unrelated individuals and 4 repeated measurements) in 
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particular was shown to not exceed 40% power for low correlations in paper 2.  A 

negative answer to question 2 using this data would leave the question unanswered since 

undetected genetic variation may still exist. Additionally, even if significant associations 

were found using human data in general, getting at the overall genetic architecture would 

be a challenge because of the complexity that is characteristic of human data. 

Chromosome substitution strains of model organisms have been designed with these 

limitations in mind (Nadeau et al. 2000, Singer et al. 2004). The A/J – C57BL/6J 

consomic panel will be used for answering the second question. Both sets of data will be 

used for answering questions 3 and 4. 

 

6.2   Data 

 

For the human data analysis, the Framingham heart study data was used. A subset of 777 

unrelated individuals were selected from the offspring generation by choosing the eldest 

individual from each pedigree with complete data. Repeated measurements on BMI, 

fasting blood glucose, cholesterol, triglycerides, systolic blood pressure (SBP), diastolic 

blood pressure (DBP) and high density lipoproteins (HDL) from Exams 1, 3, 5 and 7 

were used for obtaining the set of 21 pair-wise correlations for each individual. 

Information on the use of cholesterol and hypertension medication at each exam and the 

presence or absence of diabetes and hard coronary heart disease event was also obtained 

for each individual. The Framingham heart study was approved by the Boston University 

Institutional Review Board and every subject provided informed consent. The author’s 
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use of this data was also subject to approval by the Case Western Reserve University 

Institutional Review Board. 

 

For the mouse data analysis, 21 chromosome substitution strains, also referred to as 

“consomics” and their host strain, C57BL/6J, and donor strain A/J were used. 

Chromosome substitution strains consist of a homozygous genome in which one 

chromosome is entirely derived from A/J while the rest of the genome is identical to 

C57BL/6J. How these chromosome subtitution strains (CSSs) were created is described 

elsewhere (Singer et al. 2004). An average of 37 mice per strain were weaned and started 

on a high fat and high sucrose diet (Surwit diet) at 5 weeks of age, with a total of 849 

mice. After 16 weeks on the diet, at 21 weeks of age, measurements on BMI, liver 

weight, plasma glucose, insulin and cholesterol and liver triglycerides per gram of liver 

were taken on the mice. The homeostasis model assessment method quantifies insulin 

resistance (HOMA-IR) by estimating it with the product of blood glucose and blood 

insulin measurements divided by a constant. Matthews et al. developed the HOMA model 

on the basis of physiological studies that described glucose regulation (Matthews et al. 

1985).  
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6.3   Methods 

 

6.3.1  Association to disease 

6.3.1.1  Univariate 

Within individual pair-wise correlations were obtained from the human data by using the 

4 repeated measurements for each individual to get at a distinct Pearson correlation value 

for each individual. The 7 phenotypes of BMI, blood glucose, cholesterol, triglycerides, 

SBP, DBP and HDL resulted in 21 pair-wise correlations for each of the 777 individuals. 

Each of these correlations was first transformed using Fisher’s Z transformation (F(r)) in 

order to obtain normality (equation 6.1) and then tested for association to coronary heart 

disease and diabetes through logistic regression. The generalized linear model (glm) 

function in R was implemented with a binomial error distribution. 

F(r) = ½ * ln ((1+r)/(1-r))        (eq. 6.1) 

Association to coronary heart disease was also tested while controlling for medication 

use. A dummy variable was constructed to indicate which individuals reported using 

either cholesterol or hypertension medication during any of the exams. 

In order to assess whether or not the association to disease observed for the correlations is 

accounted for by the associations of the trait values to the disease, multiple logistic 

regression was conducted on the correlations that showed a significant association to 

disease while controlling for its corresponding trait values to see if this significance was 

retained.  
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6.3.1.2   Multivariate 

An integrated approach to analyzing the set of 21 correlations was taken by making each 

individual a vector in p = 21 dimensional space. The vectors could then be grouped and 

compared according to Euclidean distance in this space, to overall magnitude of 

correlations and to difference in angle between the vectors. The last two measures are 

components of the first as can be seen in figure 6.1. In this way we obtained three 

separate multivariate correlation phenotypes for each individual that we could then test 

for association to disease. The magnitude phenotype corresponds to overall magnitudes 

across all pair-wise correlations while the difference in angle corresponds to a “shape” 

phenotype, where what is being characterized is which correlations are stronger relative 

to other correlations. The Euclidean  phenotype is simply a composite of magnitude and 

shape (see figure 6.1) and corresponds to the vectorized original correlation values. 

Magnitudes for each individual were obtained by summing the absolute values of each of 

the correlations. The shape phenotype for each individual was obtained by standardizing 

each of the correlations by the overall magnitude for that individual.  
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Fig. 6.1 Multivariate analysis of pair-wise correlations. The vectors are composites of pair-wise correlation 
1 and 2. An integrated analysis of 2 or more pair-wise correlations is possible through the comparison of 
these vectors. 3 distinct ways of comparing them are shown. Euclidean distance can be decomposed into a 
difference in the magnitude and angle. Subjects 1 and 2 can represent different individuals or different 
strains of mice. 
 

The magnitude phenotype is unidimensional and so was tractable to the same analysis 

applied to the univariate pair-wise correlations for testing association to coronary heart 

disease and diabetes: logistic regression. The shape and the Euclidean phenotypes are 

multidimensional and cannot be analyzed in the same way. Instead, hierarchical 

clustering was conducted on the 777 individuals using both phenotypes as a way of 

collapsing their dimensionality into more tractable categorical variables. In hierarchical 

clustering initially, each individual is assigned to its own cluster and then the algorithm 

proceeds iteratively, at each stage joining the two most similar clusters (the two most 

distant individuals in the two clusters are compared, i.e. complete linkage method), 

continuing until there is just a single cluster. In this way the resulting dendrogram 

organizes all of the data according to Euclidean distance in multidimensional space. The 

top most clusters in the dendrogram are therefore indicative of the macro-structure of the 
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data if this structure exists, and cluster assignment for each individual can be used as a 

categorical variable indicative of this macro-structure. The association to coronary heart 

disease and diabetes of both the top 3 and the top 4 clusters (k= 3 or 4) formed by each of 

these phenotypes was tested using a chi-square test or a Fisher’s exact test where 

appropriate. The reasoning behind this being that if these phenotypes are of relevance to 

disease, then they should group individuals in a way that is non-random with respect to 

disease and the tests conducted should give significant p-values. 

 

6.3.2  Genetic architecture 

The five phenotypes of BMI, liver size (liver), HOMA, cholesterol (chol) and liver 

triglycerides per gram of liver (livertri) resulted in 10 pair-wise correlations for each of 

the 23 strains of mice. The non-linearity of these correlations was easily improved upon 

via transformations of three of the variables: -1/liver, log(HOMA) and log(livertri). These 

transformations also improved the distribution of the original traits by making their 

distribution closer to normal (see figure 6.2). Because of this these transformations were 

implemented prior to all analyses of the mouse data. 
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Fig. 6.2  Results of variable transformations. The matrix on the left panel shows variables plotted against 
each other, before the transformation above the diagonal and after the transformation below the diagonal. 
The right panel shows the histograms for the variables liver and HOMA before and after their 
transformations. 
 

6.3.2.1  Univariate 

Each of the 10 pair-wise correlations was tested for a significant difference to the host 

strain C56BL/6J for each of the 22 remaining strains (21 CSSs and 1 donor strain A/J) of 

mice. Each of the 5 original traits were tested in the same way for a total of 15 variables 

by 22 strains = 330 tests. A false discovery rate of 5% was implemented for gauging 

significance over the 330 tests. Significant tests are interpreted as evidence of a single or 

of multiple QTLs in the genomic segment in which the strain differs from C56BL/6. For 

each of the CSSs this corresponds to the single chromosome they have from the donor 

strain A/J for which they are named.  

The traits were tested through a t-test conducted with the lm function in R. The 

correlations were first Fisher’s Z transformed (see equation 6.1) and the known standard 
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error of the new normally distributed values were used for their testing. The standard 

error for a Fisher Z transformed variable is 1/ , where n is the sample size.  

The overall genetic architecture of these correlations was explored in a manner which has 

been implemented before for standard traits (Shao et al. 2008). The effect sizes across 

CSSs were standardized with the effect size of A/J for each individual pair-wise 

correlation in which A/J presented a significant effect. This allowed the aggregation of all 

the test results into a single histogram that serves to show the distribution of both 

significant and non-significant effects for all 10 pair-wise correlations across CSSs. The 

total effect sizes for each pair-wise correlation was computed by summing the effect sizes 

across the 21 CSSs. 

Redundancy between genetic variance for trait values and trait correlations was explored 

by plotting the pair-wise correlation values for all the strains against the means of the trait 

values of the strains for the two component traits. For example, the values of the BMI-

HOMA correlations for the strains were plotted against the mean values of BMI for the 

strains, and the mean values of HOMA. The corresponding correlations between the pair-

wise correlations and each of its component traits were then tested for significance using 

the cor.test function in R which uses Fisher’s Z transform to compute the confidence 

interval. This was done for all pair-wise correlations. 

 

6.3.2.2   Multivariate 

Euclidean, magnitude and shape phenotypes as described in the human data section were 

also tested for in all 22 strains for a significant difference to C57BL/6J. The significance 
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of the difference between strains was assessed through permutation testing. The 

differences for each of the multivariate phenotypes between each consomic and 

C57BL/6J were computed. For the one-dimensional magnitude phenotype this entailed a 

simple subtraction, while the difference in multidimensional Euclidean and shape 

phenotypes consisted of Euclidean distance for the former and a correlation value for the 

latter. The significance of these differences was evaluated via permutation testing. First 

the data for each consomic was grouped with that of C57BL/6J. Then the rows of trait 

values were permuted 1000 times in this grouped data while holding the order of the 

strain labels. New pair-wise correlations for each strain and new multivariate differences 

were calculated each time. Where the true difference lay with respect to the derived 

empirical distribution gave a measure of its significance. 

Venn diagrams were constructed to show which CSSs show evidence of at least one QTL 

for all the univariate pair-wise correlations combined, and for each of the multivariate 

phenotypes in order to compare all approaches as alternative ways of studying the system 

of correlations as a whole. A bonferroni correction for the 22 strains * 10 correlations = 

220 tests was applied to the pair-wise correlations approach and a bonferroni correction 

of 22 tests was applied to each multivariate phenotype approach. The comparison was 

repeated using an FDR of 5% as the measure of significance for each approach. 
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6.4  Results 

 

6.4.1  Association to disease 

6.4.1.1  Univariate 

Although only one of the 21 possible pair-wise correlations for the human data should 

appear to be significant at the 0.05 alpha level out of chance alone, 9 of them showed this 

level of significance when testing their association to diabetes. These included the 

correlations of blood sugar with SBP, DBP, HDL, triglycerides and BMI and the 

correlations of HDL with SBP, cholesterol, triglycerides and BMI. With bonferroni 

correction only 3 of these correlations retained significance:  SBP - HDL, HDL - 

triglycerides and BMI - blood glucose. These correlations all showed an increase in 

diabetes risk with an increase in level of association between the traits; for HDL 

correlations this means the more negative the correlation the greater the diabetes risk. Of 

these 3, SBP - HDL and BMI – Blood glucose retained significance at the 0.05 level after 

controlling for the component traits. HDL – triglycerides was only marginally significant 

(see table 6.1, right panel).  
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Table 6.1  Pair-wise correlations that retained significant association to coronary heart disease and diabetes 
after accounting for the effects of the respective trait values. For coronary heart disease, additional analyses 
that take into account the effect of hypertension and cholesterol medication were also conducted.  
 

 

 

When testing associations to coronary heart disease only 3 correlations presented 

significance at the 0.05 level, the correlations of cholesterol with BMI, triglycerides and 

SBP. Only 2, cholesterol with BMI and DBP retained significance after bonferroni 

correction. The same results were obtained when controlling for medications. All three 

correlations retained significance at the 0.05 level after controlling for their component 

traits (see table 6.1, left panel). Cholesterol – DBP showed an increased risk of coronary 

heart disease with an increase in association but cholesterol – BMI and cholesterol – 

triglycerides showed the opposite effect, an increase in risk with a lower level of 

association between the traits. 
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6.4.1.2  Multivariate 

 

The shape phenotype showed a significant association to coronary heart disease while the 

Euclidean and magnitude phenotypes showed significance in relation to diabetes risk (see 

table 6.2). The tests for Euclidean and shape phenotype associations were not contingent 

on choice of number of clusters (choice of k = 3 or 4). The significant association of the 

magnitude phenotype with diabetes shows that the overall strength of association 

between traits across all pair-wise correlations results in an increase in diabetes risk. 

 

Table 6.2 Association of multivariate correlation phenotypes to coronary heart disease and diabetes. The 
phenotypes that were significantly associated to disease are highlighted in yellow. 
 

 

 

6.4.2   Genetic Architecture 

6.4.2.1   Univariate 

Out of the 21 CSSs and A/J, 13 strains were found to contain QTLs for at least 1 pair-

wise correlation (see table 6.3). All correlations presented at least 2 significant CSSs, 

with HOMA – livertri, liver – HOMA and liver - livertri at the top of the range with 7 
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significant CSSs each. An average of 4.5 significant CSSs were found for each 

correlation while the average number of significant CSSs for the component traits was 10 

(p-value<0.001). The CSSs with QTLs for the greatest number of correlations were 

B6.A17 with QTLs for 5 correlations, and B6.A02, B6.A10, B6.A07 and B6.A08, each 

with QTLs for 4 correlations.  

Although there was a suggestion of an association between genetic susceptibility to 

obesity and harboring QTLs for correlations, where 4 out of the 10 obese CSSs and 8 out 

of the 11 lean CSSs show a significant effect on at least one correlation, this association 

was not significant (p = 0.2).  

There was no evidence for redundancy between significance of CSSs for correlations and 

significance of CSSs for their respective component traits. Although the traits presented 

the most CSSs with significant effects (average of 10 out of the 13 CSSs that showed 

significant effects for correlations), it was still possible to find instances in which the 

traits presented no QTLs in the CSS while the correlations for the traits did. Specifically, 

HOMA and liver triglycerides do not present QTLs in B6.A04 and yet this CSS presents 

a QTL for their correlation. The same occurs for B6.A14 and B6.AY and the traits 

HOMA and cholesterol. The opposite, where there are QTLs for the traits but not for the 

correlations, was also true and more common given the higher average of significant 

CSSs for the traits compared to the correlations. 
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Table 6.3 CSSs with at least one QTL for one of the 10 pairwise correlations analyzed. The corresponding 
trait value significant CSSs are also displayed. The positive 1s represent a CSS with an effect towards that 
of the donor strain AJ and negative 1s represent an effect towards the host strain C57BL/6J. Both the CSSs 
and the pair-wise correlations are sorted according to total number of significant effects. The obese strains 
are highlighted in yellow. 
 

 

 

A/J presented QTLs for 9 out of 10 pair-wise correlations, the most out of all the strains 

compared. The only correlation that presented no significant difference between A/J and 

C57BL/6J was BMI – livertri. CSSs B6.A17 and B6.A10 were found to contain QTLs for 

this correlation.  

All of the significant genetic effects for the correlations in which A/J did present QTLs 

were found to be in the direction of the donor strain A/J, with all effects in the C57BL/6J 

direction being non-significant. Most effects are bounded by the A/J and C57BL/6J 

phenotypes. The non-significant effects show a distribution that is shifted from a mean of 

zero, suggesting that there are more significant effects that are not being accounted for 

(see figure 6.3).   
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Fig. 6.3 Histogram of effect sizes presented by 21 CSSs standardized by effect size of AJ, for all 10 pair-
wise correlations (CSSs by correlations = 210 effect sizes) that were significantly different in AJ compared 
to C57BL/6J. The smoothed density curves overlaid on histogram are for both significant and non-
significant effect sizes. 
 

The overall average effect size for all significant effects was 71.3% which resulted in 

total effect sizes of over 100% for all correlations except BMI – chol and liver – chol 

which presented only 1 significant CSS each. These significant CSSs had an effect size of 

~ 75% which suggests that additional significant effects may have likewise resulted in a 

total effect size greater than 100% (see table 6.4).  
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Table 6.4 The average significant effect size for each pair-wise correlation that showed a significant 
difference between A/J and  C57BL/6J  and the total effect size summing across all significant CSSs. 
 

 

 

There is also a lack of evidence for redundancy between correlations and traits when 

looking at both significant and non-significant genetic effects. The only significant 

correlations between the pair-wise correlations and their respective component traits were 

found for liver – liver triglycerides and for BMI – liver (see figure 6.4). The plots in 

figure 6.4 also show the distribution of effect sizes for each individual correlation, for 

instance, for liver – HOMA there are effect sizes that are close to A/J’s for both the traits 

and the correlations, while for BMI – HOMA there is a clear separation of A/J from the 

rest of the group. Here too we can see some differentiation between what occurs for 

correlations and for their respective component traits. For example for liver – HOMA 

there is a phenotypic separation between A/J and the rest of the strains when looking at 

the trait liver but not the correlation, while for HOMA – cholesterol the separation exists 

for the trait HOMA but not for the correlation. 
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Fig. 6.4 Plots of the 10 pair-wise correlations against their respective composite traits using their mean 
values across all genetic groups (CSSs as well as A/J and C57BL/6J). The only significant correlations at 
the 0.05 level are highlighted in yellow. 
 

6.4.2.2  Multivariate 

Both the bonferroni corrected and the FDR controlled Venn diagrams (see figure 6.5) 

show that conducting an analysis of all pair-wise correlations can miss significant CSSs 

when studying the system of correlations as a whole and that this result is not due to 

being overly conservative or not conservative enough when dealing with the multiple 
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testing issue.  In the bonferroni case, the univariate approach captures 3 out of the 10 

significant CSSs while in the FDR case it captures 10 out of the 14 detected. All of the 

multivariate phenotypes manage to capture CSSs not detected by the univariate method 

but the Euclidean phenotype method is the one that captures them all. Shape and 

magnitude phenotype methods are complementary in that they both manage to capture 

CSSs not detected by the other. B6.AY has an effect on overall magnitudes of the 

correlations while B6.A04 presents more of a difference from C57BL/6J in the relative 

strengths of the correlations. 

 

Fig. 6.5 Venn diagrams that compare approaches to finding significant CSSs for a system of correlations. 
The 4 approaches include testing for differences of the Euclidean phenotype, of the shape phenotype, of the 
magnitude phenotype and of all the possible pair-wise correlations. The panel on the left shows the CSSs 
found to have significant QTLs with each method after Bonferroni correction for the total number of tests 
conducted for each method and the panel on the right shows these while maintaining FDR at ~5%. 
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6.5   Discussion 

 

6.5.1   Association of correlations to disease 

The results of the association analyses of pair-wise correlations to disease provide 

evidence that there is disease relevant information contained in within individual 

correlation variation. The significance at the 0.05 level for 9 out of the 21 tests showed a 

considerable enrichment over the single test expected to be significant out of chance 

alone. This serves to underline the conservativeness of the bonferroni correction when 

applied to the diabetes analyses. Out of these 9 pair-wise correlations, the three 

correlations that did retain bonferroni significance also showed a non-redundancy with 

how the trait values associate to diabetes (see table 6.1, right panel). Even though HDL 

and SBP are highly associated to the disease, their correlation maintained a highly 

significant association after controlling for the traits themselves. Blood glucose explains 

such a high proportion of the risk for diabetes that BMI is no longer significantly 

associated to the disease when controlling for blood glucose. The BMI - blood glucose 

correlation on the other hand retains its significance after controlling for both blood 

glucose and BMI. This suggests that although the individual’s mean value of BMI may 

consist of redundant information regarding diabetes risk once blood glucose level is taken 

into account, how these two traits track each other throughout the individual’s life is not. 

Something similar happens with the HDL – triglycerides correlation which retains 

marginal significance even though HDL loses it after controlling for triglycerides, a trait 

highly associated to diabetes. All of this points to the relevance of looking at trait 
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correlations in the individual rather than just the actual trait values when considering risk 

for diabetes. 

 

The positive effect of these 3 trait correlations on risk for diabetes indicates that with 

greater tracking of the traits throughout the individual’s life, the greater the risk for the 

disease. This is in agreement with the result for the multivariate tests (see table 6.2) 

where diabetes is associated to the magnitude phenotype, the overall magnitude of the 

correlations, rather than the shape phenotype. The magnitude phenotype is a measure of 

how strongly the 7 metabolic biological markers considered here as a whole, track each 

other. A high value in the magnitude phenotype may be indicative of a lack of resilience 

in the organism’s system towards fluctuations in individual trait values. For instance, a 

spike in BMI may tend to throw the entire system of traits into a positive feedback loop 

that increases the values of all the traits together, more so in some individuals than in 

others, putting them at a higher risk for diabetes. The significant association of overall 

trait correlation magnitudes to diabetes may be indicating that such a susceptibility to 

positive feedback loops is characteristic of this disease’s etiology. 

 

Coronary heart disease did not present the same enrichment of significant associations to 

pair-wise correlations that diabetes did. Only 3 out of the 21 tests were significant at the 

0.05 level, but 2 out of these 3 retained bonferroni significance. All 3 associations 

retained significance at the 0.05 level after controlling for the trait values and medication. 

Furthermore, 2 of these pair-wise correlations do a better job at predicting coronary heart 

disease than the trait values themselves after controlling for medication (see table 6.1, left 
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panel). Both triglycerides and BMI lose their association to coronary heart disease while 

their correlations to cholesterol do not.  

Cholesterol itself was not associated to coronary heart disease in any of the tests shown 

and yet all the significant pair-wise correlations for coronary heart disease involved the 

connection between cholesterol and another metabolic biological marker. Not only are 

trait correlations not redundant to the trait values themselves in explaining coronary heart 

disease, but in some cases they prove to be more informative than the trait values.  

 

Unlike what happens with diabetes where the overall magnitude of the correlations 

increases disease risk, for coronary heart disease the direction of the effect on risk 

depends on the particular pair-wise correlation. For the DBP – cholesterol correlation, a 

higher correlation does imply a higher disease risk, but for cholesterol’s connection to 

BMI and triglycerides, lower correlations increase disease risk. This is in agreement with 

the result of the multivariate analysis where there was only a significant association to the 

shape phenotype and not to magnitude phenotype. What is relevant to coronary heart 

disease is how the traits relate to each other relative to other traits rather than the overall 

strength of all associations (see table 6.2). One interpretation of this is that the dis-

regulation in the physiological connections between particular biological markers plays 

more of a role in coronary heart disease etiology. This is in contrast to the result for 

diabetes where overall higher correlations increase risk of disease. 
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6.5.2  Mouse data vs. human data 

Mouse data provides distinct advantages to the human data when used to explore the 

genetics underlying metabolic trait correlations. It optimizes power by providing the 

possibility of controlling for environment and other confounders, and it allows for the 

analysis of the correlation’s genetic architecture on a genome-wide basis, by providing a 

way of partitioning the genome into individual chromosomes through engineered 

chromosome substitution strains.  

 

The mouse data differs from the human data in another very important way that needs to 

be taken into account when interpreting the results: it does not consist of repeated 

measurements for a single individual as does the human data. Instead, many genetically 

identical mice, raised under a controlled environment, are measured at a single time-

point. One objection that may be raised is whether the correlations observed across such 

mice can qualify as a characterization of the physiological connections between the traits. 

Paper 1 (section 5 in this dissertation) describes how these connections can only be 

inferred from the within individual trait correlations. But it also shows how the across 

individual correlations reflect the within individual processes when there is no variation 

in the within individual relationship between the traits from individual to individual. This 

is the assumption that needs to be made when analyzing the mouse data for physiological 

trait connections. The connections, or trait relationships, within each mouse should not 

differ from mouse to mouse when considering genetically identical mice reared in the 

same environment. Under this assumption, the correlations across mice within the same 

strain should reflect the within physiological relationships between the traits within 
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individual mice for that strain. Each strain of mice can in this way represent what a single 

human being did in the human data analysis: a genetically non-varying entity for which 

multiple measurements on the traits exist. 

 

Another difference to the human data follows from this and that is that the number of 

measurements used to gauge a single “entity’s” trait correlation. In the case of the human 

data, 4 repeated measurements were obtained for each individual, while for the mouse 

data and average of 37 measurements were obtained per strain. One possibility that this 

opens up for the mouse data and that was not present in the human data is the use of 

transformations to optimize linearity in the trait relationships. 37 points, unlike 4, can be 

considered an adequate number for establishing whether there is some non-linearity 

occurring in the within entity trait relationship. Transformations can then be applied in 

order to optimize linearity. It is important to point out that the transformations are not 

conducted in such a way as to optimize the significance of the correlations being studied. 

In fact, highly significant correlations can occur for completely non-linear relationships 

where the correlation values are meaningless. This is why it is important to inspect the 

data and conduct these transformations when studying trait correlations whenever 

possible, as was done for the mouse data analyses in this study.  

 

6.5.3   Genetic variation underlying correlations 

The CSS panel shows trait correlations to have a substantial amount of potential genetic 

variance underlying them. It remains to be seen how much of the genetic variance 

represented in the consomic panel is also present in the human population. Nevertheless, 
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the evidence of significant effects on correlations by the CSSs does provide evidence of 

genes whose biology can have an effect on trait correlations. The gene’s biology is very 

likely to translate from the mouse model to humans even if its variation does not.  All 

pair-wise correlations investigated showed at least two CSSs with significant effects.  

Three of the correlations, the correlations between the traits HOMA, liver and livertri, 

presented 7 significant effects each, the highest number of significant effects for any pair-

wise correlation. These are very promising results that should spur optimism when 

considering using genetics as a tool for studying the biology underlying variation in trait 

correlations.  

 

Although the average number of significant effects for correlations (4.5 per correlation) 

was significantly lower than the average for the component traits (10 per trait), these 

effects were not redundant between correlations and traits. Studying the genetic variation 

underlying the trait values will therefore not capture the same genes that underlie 

variation in the trait correlations. Considering that there is also evidence that the trait 

correlations may be of biological relevance to disease in a way not explained by the traits 

themselves, this suggests that specifically looking for the correlation genes and not just 

the trait genes may provide novel biological insight into disease etiology. 

 

6.5.4   Advantages of multivariate analyses 

One advantage in conducting an integrated analysis of the system of metabolic trait 

correlations, and in particular, of decomposing the multivariate Euclidean phenotype into 

the phenotypes of shape and magnitude was already shown. These multivariate 
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phenotypes proved to relate in different ways to coronary heart disease and diabetes in 

the human data, providing insight into what could be differences in disease etiology. An 

additional advantage to this decomposition can be pointed out in table 6.2. If only 

Euclidean phenotype had been tested for an association to disease, no significant 

association would have been found for coronary heart disease. The variation in overall 

magnitudes of correlations across individuals which does not seem to be associated to 

coronary heart disease, was enough to drown out the association to variation in shape 

when both phenotypes were clumped together as a single Euclidean phenotype. This 

phenotype’s decomposition allowed for more power to detect the coronary heart disease 

association to the shape phenotype. 

The method used to test for associations of the Euclidean and shape phenotypes to 

disease is unconventional but based on solid reasoning. Unlike the magnitude phenotype 

where individuals can only differ from one another in one dimension (either greater or 

lower overall magnitudes), individuals can differ in multiple dimensions for the 

Euclidean and shape phenotypes. Hierarchical clustering allows us to see the structure of 

the data in all dimensions by organizing the individuals into groups and hierarchies of 

these groups according to how close or distant they are. If individuals that have the 

disease of interest tend to be closer to each other than to individuals that do not have the 

disease in this multidimensional space, there will be a greater frequency of them is some 

of the clusters than that expected by chance alone. This is what the association test 

between cluster assignment and disease status tests for. Although the number of clusters 

used for the analysis is completely arbitrary, only k=3 and k=4 were tested and both gave 

a positive result. Even if k=3 or k=4 are not statistically adequate ways of grouping all of 



159 
 

the individuals, that is, even if there is too much heterogeneity within these clusters to 

justify making them single groups, the fact remains that as groups they were found to be 

enriched for individuals with disease in a way not explained by chance. Disease relevant 

structure therefore was shown to exist in the data for the Euclidean and shape phenotypes 

at the macro level, the top 3 and 4 groups of the individuals’ hierarchical organization 

according to the phenotype.  

Multivariate analysis was also shown to provide statistical benefits over the analysis of 

each pair-wise correlation individually in the mouse data (see figure 6.5). The bonferroni 

and FDR comparison simply shows that this result is not contingent on the level of 

conservativeness of the tests. The Euclidean phenotype in particular allows for the 

detection of more QTLs than any other method alone. The shape and magnitude 

phenotypes also allow for greater power in addition to their offering clues as to the type 

of effect the CSS may have on the system of trait correlations as a whole, similarly to the 

way they did for disease. 

It is important to note that for the CSS analyses the comparisons being made in multi-

dimensional space for the Euclidean and shape phenotypes were necessarily in the 

direction in which each CSS and A/J differed from C57BL/6J. All of these comparisons 

could have been made in different directions. For instance, although A/J, B6.A10 and 

B6.A17 all presented significant effects for shape, the three may differ from C57BL/6J in 

completely different ways. The traits that are more highly correlated relative to other 

traits in A/J when compared to C57BL/6J, may not be the same  for the B6.A10 and 

B6.A17 comparisons to C57BL/6J . It would be of great use to develop a way of 

characterizing these phenotypes in a way that would allow their qualitative comparison as 



160 
 

well as their quantitative, so that we could see not only when there is a significant 

difference but also what changes in particular correlations these differences entail.    

 

6.5.5  Other considerations allowed by CSS panel 

The A/J and C57BL/6J consomic panel allows for additional insights into the genetics of 

trait correlations. First it shows that despite the unconventionality of correlations as 

quantitative traits, the similarities of their genetic architecture when compared to that of 

more standard traits in chromosome substitution strains, is substantial. The CSSs showed 

an effect size distribution for the correlations that is largely bounded by the phenotypes of 

the host and donor strains and with most effects in the direction of the host strain. These 

results are shared with those of Shao et al.’s when conducting similar analyses on 41 

standard traits in the same consomic panel (Shao et al. 2008). The average significant 

effect size for all correlations was found to be 71.3%, also not far from the 76% figure 

found by Shao et al. for the standard traits. In correlations, as in traits, there is evidence 

of pervasive epistasis throughout the entire genome with average cumulative effect sizes 

of 260% for the correlations.  

The relationship between genetic predisposition to obesity and metabolic trait 

correlations is also something this particular CSS panel allows us to gauge since an 

important part of the genetic variance segregating has to do with susceptibility or 

resistance to obesity in the presence of a high fat diet. Because obesity is often thought of 

as having a causal effect on metabolic traits it would be reasonable to hypothesize that 

genetic susceptibility to a gain in BMI in the presence of a high fat diet would in turn 

result in increases in the associated metabolic traits, thereby causing greater correlations 
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between all the traits. This would explain the significantly higher values for all the 

correlations (with the only exception being the BMI – livertri correlation ) in the obesity 

susceptible strain C57BL/6J when compared to the correlations observed in A/J, an 

obesity resistant strain.  The data did not support this hypothesis. No evidence for an 

association between obesity susceptible strains and higher correlations was found (p-

value = 0.2). Additionally there was a lack of redundancy between the genetic variance 

for BMI across all the CSSs and A/J when compared to the genetic variance for its 

correlations, as presented in figure 6.4. Only the BMI-liver correlation presented a 

positive correlation to the expected value of BMI for each strain. 

 

 

6.6   Conclusion 

 

 

Although at first glance studying the genetics underlying variation in trait correlations 

may seem like a roundabout way of getting at the genetics underlying the traits, the two 

endeavors are clearly distinct and complementary. Trait correlations, and furthermore, the 

system of trait correlations are currently an underexploited source of biological variation. 

Considering that this disease relevant variation in correlations exists and that there are 

unexplored genetics underlying it, as we have shown in this paper, it would be misguided 

to not pursue correlations as sources of novel insight into disease mechanism.  
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Section 7.  FUTURE WORK 

 

 

7.1   Interaction and correlation methods 

 

Simulations will be used to narrow down the window in which the interaction method 

provides greater power than the correlation method without an increased type I error rate. 

Simulations will also be conducted to explore the effect of assuming away real variance 

in the data in both methods.  

In the correlation method this will involve simulating variation in real correlations across 

individuals. In the interaction method different measurement errors will be simulated for 

both traits and then type I error and power will be compared when using either trait as 

predictor. 

Evidence of the asymmetry that ensues from the assumption of no measurement error in 

the predictor variable for the interaction method was found in the study of the CSS data. 

Consomic B6.A11 shows that the significance of its interaction term for strain by trait 

when compared to C57BL/6J depends on the choice of trait as predictor.  

For the mice data we do not use a random effects model, instead, within strain variation is 

analogous to our within individual variation for humans. The model simplifies to:  
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ZBMI = GSTRAIN + ZINS + GSTRAIN * ZINS    (eq. 7.1) 

or  

ZINS = GSTRAIN + ZBMI + GSTRAIN * ZBMI    (eq. 7.2) 

 

If what is of interest is to test the significance of the difference in the slopes between the 

two strains, both models should provide the same result. Instead what we find is that the 

interaction term is highly significant only when using BMI as the predictor variable. 

 

Table 7.1 Interaction test with insulin as the predictor (above) and with BMI as the predictor (below) using 
C57BL/6J and B6.A11 strains of mice. Significance of test is only observed using BMI as the predictor 
variable. 

 

 

It seems that the trait that is more closely associated to the genetic effect, even if not 

significantly so, is more likely to give a significant interaction term if used as predictor. 

The simulations will be geared towards shedding light on this aspect as well. 
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7.2  The multivariate shape phenotype  

 

A better description of how the shape phentoype contrasts to the magnitude phenotype is 

required to explain the objective of the future work. Suppose (0.2, 0.5, 0.8) represents the 

vector of correlations for 3 traits (a total of 3 pair-wise correlations). One possible type of 

difference can be seen when compared to another vector (0.1, 0.25, 0.4). The difference 

lies in the extent of the correlations, where the second vector has correlations that are half 

the size of the first. The magnitude phenotypes for these vectors are accordingly different 

(1.5 and 0.75 respectively). On the other hand there is no difference in which traits group 

the most or the least, i.e. the third pair-wise correlation is the greatest in both, and the 

first is the lowest. In fact, the correlation between these two vectors is exactly 1, which 

shows that they are exactly the same. A second type of difference can be seen when 

compared to (0.8, 0.2, 0.5). The overall extent of the correlations is exactly the same, i.e. 

the magnitude phenotype of both vectors is 1.5. What differs is which traits have the 

higher correlations and which the lower which makes the correlation between the two 

vectors less than 1.  

 

When the correlation between the 2 vectors is less than 1, some way of understanding 

which traits are closer and which are farther apart in one group compared to the other is 

required. A low correlation between the groups’ vectors of pair-wise correlations only 

serves to know that they are different, but it says nothing about where the differences lie 

in terms of the traits. The values for the individual correlations can also be inspected, but 

it would become too difficult to synthesize what the overall change is as the number of 
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traits being analyzed goes up. For instance, for 3 traits, only 3 pair-wise correlations 

would have to be inspected, but for 8 traits, 28 values would have to be mentally 

compared.  

 

A visual aid to understanding where the differences lie can be borrowed from the shape 

analysis field. Thin plate spline (TPS) software was designed by Rohlf at Stony Brook 

University to aid in the analysis of landmark data in morphometrics, the field of statistics 

that studies shape. With this software two or more shapes can be visually compared. 

When there are more than two shapes, it allows the visualization of their single axis of 

major shape variation (their first shape principal component). In order to get at this 

principal component, the software first uses the tangent space approximation to shape 

space, process which requires certain assumptions to be met by the data. We can use the 

TPS software to visually compare two vectors of correlations and we can do this by first 

converting our vectors into shapes. 

 

Correlations are measures of association, but as such they can also be thought of as 

measures of closeness, a distance measure. Correlation matrices can therefore be 

conceptualized as summarizing the relative distances between traits. A two dimensional 

approximation to a vector of correlations could then entail a plot where each of the traits 

is represented by a point and the relative distances between the points represent their 

correlations. This two dimensional lay-out of points makes up a shape. A different shape 

would consist of the same number of points with a different lay-out: different points are 

closer relative to others. This is exactly the type of information that we want to compare 
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and it is the reason that the shape application works. We are not concerned here with 

differences in absolute distances between vectors since that aspect is already being 

compared separately through the magnitude phentoype.  

 

Exactly such a graph can be created by taking the first two principal components of 

variation across measurements of the traits and plotting the traits through their scores on 

these two components. The traits that tend to vary together across measurements will be 

plotted closer together in the two dimensional graph.  

 

Below is an example of two vectors of correlations represented in this way. The green 

grids serve to show which directions contracted and which expanded between the two 

vectors. This helps to spot where the major changes occurred. In figure 7.1 a vector of 

pair-wise correlations is represented by the shape on the right and shows how blood 

glucose (GLUC) has become much more distant (lower pair-wise correlations) to all the 

other traits, when compared to the first vector, the shape on the left. The blood pressure 

traits (SBP and DBP) are tracking age much more in the second vector, as are the other 

grouped traits, cholesterol (CHOL), triglycerides (TRIG) and weight (WGT) (we have 

not used age as a trait before in this dissertation but it is an option especially when we 

want to understand where differences between systems of traits lies). It is much more 

difficult to discern these patterns by visual inspection of the 28 values making up the 

each correlation vector. 
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Fig. 7.1 Visualization of shape change across two vectors of pair-wise correlations. 

 

These shapes can also be plotted in shape space which allows for one-dimensional 

comparisons across CSSs and establishing what type of change is occurring in a single 

dimension, an otherwise untractable problem for the multidimensional shape phenotype. 

 

More simulations have to be pursued for this application. One issue that was recently 

discovered is that the method induces a variation in shape that is picked up by the TPS 

software and that is not real or meaningful and that is the different mirror images of the 

same shape. 
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APPENDIX A:  Metabolic Syndrome Criteria 

Taken from table 1 in Eckel et al 2005. 
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	One example of a complex disease that is best studied as a collection of multiple endophenotypes is obesity and its associated morbidities. Obesity is defined as having a body mass index (BMI) of 30 or more. Globally, there are more than 300 million o...
	This impact on health is only true because obesity generally presents itself with three other morbid conditions:

