
ROBOTIC MODELS OF

NEUROMECHANICAL STEP GENERATION

IN INSECTS

by

BRANDON LEWIS RUTTER

Submitted in partial fulfillment of the requirements

For the degree of Doctor of Philosophy

Dissertation Adviser: Dr. Roger Quinn

Department of Mechanical and Aerospace Engineering

CASE WESTERN RESERVE UNIVERSITY

May, 2010

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

candidate for the ______________________degree *.

(signed)___

 (chair of the committee)

 __

 __

 __

 __

 __

(date) _______________________

*We also certify that written approval has been obtained for any

proprietary material contained therein.

July 24, 2009

Brandon Lewis Rutter

Doctor of Philosophy

 Roger D. Quinn

Roy E. Ritzmann

Kiju Lee

Mark Willis

Robert Kirsch

 i

Table of Contents

LIST OF TABLES .. III!

LIST OF FIGURES ...IV!

ACKNOWLEDGEMENTS .. XV!

LIST OF ABBREVIATIONS .. XVII!

ABSTRACT...XVIII!

1! INTRODUCTION... 1!

1.1! THE INVESTIGATION OF WALKING... 3!

1.2! GOALS OF THE BROADER PROJECT .. 6!

1.3! THE STATE OF THE ART IN 2005 ... 9!

1.4! PROJECT GOALS... 11!

1.5! DESCRIPTION OF CONTENTS... 12!

2! ESSENTIALS IN ROBOTIC MODEL DEVELOPMENT .. 14!

2.1! ELEMENTS OF A USEFUL MODEL ... 14!

2.2! MODEL SCOPE.. 18!

3! BACKGROUND ... 20!

3.1! THE WALKING TASK.. 20!

3.2! INSECT WALKING BEHAVIOR .. 22!

3.3! THE DESCENDING CONTROL PROBLEM ... 25!

3.4! STICK INSECT LEG CONTROL ... 27!

3.5! STEPPING CONTROL METHODS IN ROBOTS.. 32!

3.6! ROBOTIC CONTROL ARCHITECTURES ... 34!

3.7! ROBOTIC MODELS OF BIOLOGICAL SYSTEMS .. 37!

4! SENSORY COUPLED ACTION SWITCHING MODULES .. 41!

4.1! THE BASIS IN BIOLOGY ... 41!

4.2! GENERAL SYSTEM CONCEPT... 43!

4.3! THE SCASM COMMAND AND CONFIGURATION INTERFACE LANGUAGE SPECIFICATION 59!

4.4! EXAMPLES: SYNTHESIS AND RESTRUCTURING .. 66!

4.5! TRANSLATING BETWEEN SYSTEMS AND REPRESENTATIONS... 77!

5! FUNCTIONAL COCKROACH LEG KINEMATICS ... 86!

5.1! INTRODUCTION .. 86!

5.2! MOTIVATION.. 87!

5.3! METHODS... 89!

5.4! RESULTS .. 91!

5.5! APPLICATIONS AND CONCLUSIONS .. 96!

6! NEUROMECHANICAL ROBOTIC MODELS.. 99!

6.1! INTRODUCTION .. 99!

6.2! THE NEUROMOD ENGINE CONTROL ARCHITECTURE.. 99!

6.3! CONTROL HARDWARE .. 108!

6.4! PHYSICAL MODELS .. 109!

7! EXPERIMENTS ... 114!

7.1! INITIAL TESTING AND FUNCTIONALITY.. 114!

7.2! EFFECTS OF MUSCLE MODELS ON STEPPING BEHAVIOR .. 122!

7.3! CHANGING SPEED... 131!

7.4! TRANSITIONS FROM WALKING TO TURNING ... 133!

 ii

8  CONCLUSION ..163 
8.1  SUMMARY...163 
8.2  MODEL DEVELOPMENT ..164 
8.3  EXPERIMENTS ...165 
8.4  INITIAL WORK ON DESCRIPTION AND STANDARDIZATION OF SCASM..169 

9  FUTURE WORK...174 
9.1  CONSULTATION AND CHOOSING WHAT TO DO ..175 
9.2  BIOLOGICAL MODEL DEVELOPMENT..178 
9.3  MODEL-DRIVEN & MODEL EXPERIMENTATION..198 
9.4  CENTRAL PATTERN GENERATORS ..206 
9.5  MODEL USER INTERFACE AND DATA REPRESENTATION ..214 
9.6  THEORETIC UNDERSTANDING AND DEVELOPMENT OF SCASM ..218 
9.7  SCCILS GENERALIZATION...221 
9.8  USE OF SCASM IN OTHER SYSTEMS..222 

10  APPENDICES..226 
10.1  NEUROMOD ENGINE CODE DOCUMENTATION ..226 
10.2  SCCILS 0.1 ..259 
10.3  THE SCCILSTOOLBOX MATLAB DATA ANALYSIS PACKAGE..315 
10.4  NEUROMOD OPERATION MANUAL ..335 

11  BIBLIOGRAPHY..399 

 iii

List of Tables

Table 7-1 Action switching event conditions for forward walking in three legged systems.
* Special, unreachable values when the other leg is in swing; prevents more than one leg
being in swing at a time. † Additional state added to improve performance (see section
7.2). ... 120 

Table 7-2 Action switching event conditions. * Condition differs between restricted and
forward stepping. † Additional state implementing the piecewise-constant muscle model.
This state is only enabled for tests of that model.. 124 

Table 7-3 Muscle activation levels for the various joint actions. 125 

Table 7-4 Activation function parameters .. 125 

Table 7-5 Muscle model parameters. In sideways stepping, the same parameters are used
for the null and piecewise-constant models; only the EXT2 state is added.................... 126 

 iv

List of Figures

Figure 2-1 “Models and the process of explanation”, Figure 1 from (Webb, 2001). There,
“model” refers to the “simulation” block above; I attempt to use the same convention.
This figure more or less represents the usage of a simulation model to test hypothesis
sufficiency in reproducing behavior. The grey box includes many of the elements
necessary to actually make use of the simulation, several of which were explicitly
addressed in this work along with the development of the simulation model itself. 14 

Figure 2-2 Reverse-pathway model usage; adapted from (Webb, 2001). This represents
the use of a model and associated tools to generate hypotheses that are testable in the
target system. .. 17 

Figure 3-1 The insects and legs modeled. Top left: the stick insect Carausius morosus;
Top right: the cockroach Blaberus discoidalis, ventral view. Bottom left: joints of the
stick insect leg: Thorax-Coxa (ThC), Coxa-Trochanter (CTr) and Femur-Tibia (FTi).
Bottom right: segments and joints of the cockroach left middle leg. Not labeled in either
figure is the Trochanter-Femur (TrF) joint. In the stick insect this is fused but provides
an autotomization (leg disconnect) point; in the cockroach it is a functioning joint only
actuated in one direction (James T. Watson, et al., 2002). ... 22 

Figure 3-2 Fig. 1 from (Mu & Ritzmann, 2008b), described as “A schematic figure of the
reflex cascade hypothesis on how descending inputs generate inside turning motor
pattern.” In that work, the “low resistance during extension” signal is physically induced
by substrate removal and results in searching behavior of the leg, which is similar to
inside turning. ... 27 

Figure 3-3 Figure 1 B and C from (Ekeberg, et al., 2004). The caption is as follows:
“…The two possible states are represented by the two circles. Motoneuron pools are
represented by the rectangular components. (B) The used notation scheme demonstrating
the influence of a sense organ (SO) on state transitions of a neural circuit, referred to as
‘timing influences’. In the example shown, signals (movement, position or strain)
detected by the SO initiate or assist a fictive state A. The positive arrow means that the
system will react to the signal with an (immediate) transition into state A. If necessary it
will therefore leave state B. (C) This figure shows an example for the second class of
influences described, here called ‘magnitude influences’. Signals from the sense organ
(SO) affect the output activation level of the joint controlling system in a specific way:
Proprioceptive information from a sense organ (SO) e.g. movement or position data, will
in this case increase the state A effector activity and decrease the magnitude of effects
associated with state B.” ... 30 

Figure 3-4 Figure 3B from (Ekeberg, et al., 2004). Their description of the figure is
summarized as follows: “Diagrams showing the sequence of events … (B) Normal
walking of the middle leg. … time progresses from left to right and dashed vertical lines
indicate when feedback from sensors causes a state transition. The stick figure on top
illustrates the mechanical situation whenever a state transition in the neural circuits

 v

occurs, with arrows indicating movement direction and a red circle indicating the sensed
event. At the bottom of the dashed line the sensed signal along with the relevant receptor
is named. The arrows horizontally passing these dashed vertical lines show how the
bistable circuits are affected by the sensed event … Notice that these influences originate
from rectangular boxes, illustrating effectors (motoneurons/muscles), and terminate on
circles, illustrating the bistable circuits … Colors are used to denote joints: TC is blue,
CT is red and FT is green.”... 31 

Figure 3-5 Schematic of a three-layer architecture. Sensory and control data can pass
between layers, and is usually more compressed or symbolic at higher levels. Usually all
three levels are processing simultaneously. Note that this is not the same as either of the
control architectures shown in Figure 3-6. ... 34 

Figure 3-6 Reproduction of Fig. 2 from (Brooks, 1991). Top: a sense-plan-act
architecture of functional modules; bottom: a subsumption architecture of task-achieving
behaviors. .. 36 

Figure 3-7 Reproduction of Fig. 4 from (Brooks, 1989). The 57 augmented finite state
machines in the subsumption network for controlling Genghis. Elements with solid bands
are unique; striped bands are repeated twice for specific legs, and the rest are each
repeated six times; once for each leg. ... 37 

Figure 3-8 Dimensions of model description, each expressed from identity to loose
association with the target system. Reproduction of Figure 2 from (Webb, 2001). 38 

Figure 4-1 Diagram of geometry and control of the simulated stick insect middle leg,
showing ThC (Thoraco-Coxal) protraction and retraction, CTr (Coxa-Trochanter)
levation and depression, and FTi (Femur-Tibia) flexion and extension. The conditions
used by Ekeberg et al. for transitions between states are shown adjacent to each transition
arrow. The leg segments, from the body outward, are the coxa, femur and tibia. Taken
from (Lewinger, Rutter, Blümel, et al., 2006) .. 42 

Figure 4-2 A) The Femur-Tibia Action Switching Module on the stick insect middle leg
(entire animal shown in inset). B) Sensory-flow diagram of the entire leg (as
implemented in this work). Though the control actually takes place in the thoracic
ganglion or computer, conceptually the action switching modules are considered to be
located at their associated joints. .. 43 

Figure 4-3 Interaction of neural-level and mechanical-level dynamics at a single joint.
The neuromuscular transform (Brezina, Orekhova, & Weiss, 2000; Hooper, Brezina,
Cropper, et al., 1999) and sensory transduction are where the two regimes meet. Neural-
level dynamics can be modified by, e.g., interneuron function. Mechanical-level
dynamics can usually be considered constant; but are modified by environmental
interaction. .. 44 

Figure 4-4 Event space diagram for forward stepping, stick insect left middle leg. The
double-line actions specify system dynamics which lead to the double-line sensory
events, and solid-line actions likewise lead to solid-line events. Color encodes the module

 vi

most directly involved in generating each sensory event; the sensory events are also
labeled by the sensors involved. For example, FTi FLX (blue module, FTi angle, double-
line action) leads to the “FTi Posn Flex” event, whereas EXT (blue, FTi angle, solid-line)
leads to “FTi Posn Extend”. The compounded events are labeled with the complex
sensory event or state they represent; e.g. retracted ThC or flexed/ing FTi represent an
extreme of motion towards the end of stance, combining into the Posterior Extreme
Position (PEP) event. .. 46 

Figure 4-5 In biological systems there can be multiple competing signals as shown here,
whose strength can be modulated. The dashed lines represent a load reflex reversal at this
module, when compared to the solid lines. In the event-space representation of circuits
and behavior, we have only drawn the influences dominant in a behavior. Those can then
be translated into Boolean transition rules.. 48 

Figure 4-6 A generic event-space diagram. Sensory events, which may be compounded,
influence the transition between actions in the action switching modules. Sensory
coupling occurs when the action at one module affects the sensory events which
influence transitions in a different module. Events 1 are results of the actions in Module
1; all lined in blue and shaded dark at the bottom. The line style reflects which action
tends to lead to which sensory event: action 3 tends to produce sensory event 1C.
Likewise events 3 are generally the result of actions in Module II. Sensory events 2 are
more “exteroceptive” in nature, a sensation of the environment which is not necessarily
directly dependent on current module actions. For this diagram to function, events within
a particular class (1, 2, or 3) are mutually exclusive. ... 49 

Figure 4-7 Swing-Stance events and action switching for stick insect middle leg forward
stepping. A) In swing, ThC is in protraction, CTr in levation and FTi in extension. FTi
extension leads to the “FTi Posn Extend” sensory event. B) “FTi Posn Extend” then
directly causes transition from levation to depression at CTr, and fulfills part of the
“Early Stance” compound event. C) CTr depression then leads to the “Leg Load” sensory
event. D) “Leg Load” then directly causes transition from protraction to retraction at
ThC, and completes the “Early Stance” compound event which causes transition from
FTi extension to flexion. The leg is now in retraction, depression and flexion; this is full
stance... 51 

Figure 4-8 Global state diagram for stick insect middle leg forward stepping. The three
module state machines are shown below to aid in making sense of the global states. The
global state progression shown is the nominal progression for forward stepping............ 54 

Figure 4-9 Examples of action switching rules which might be used at a module with two
actions. A finite state switcher goes directly from one state to the other at thresholds of
influence, which may be different. A more general bi-stable switcher might look similar
to the finite-state case, or it may differ significantly within the switching region(s). A
linear “switcher” would have behavior quite different from the others within the
“switching region”, but could still be treated as switching actions if the switching
influence goes far enough towards its extremes. .. 56 

 vii

Figure 4-10 The discrete action switching rule for the femur-tibia action switching
module in the stick insect for forward walking. A load greater than FT_flx_CTr_load
(“leg load”) AND an angle less than FT_flx_FTang (“FTi Posn Extend”) will cause
transition to the FLX action. ... 58 

Figure 4-11 The basic layout of a system using SCCILS. “Engine” is “The model”- robot
& dynamic control software, or simulation. Once configured the engine can operate by
itself. Interface- something which sends configuration & command information. 62 

Figure 4-12 Romod_GUI representation of elements associated with the FTi Extension
action. Handy Data Storage Object (HDSO) elements 129 and 130 are muscle
activations; a part of the dynamics of this action, which may be modified online. 165 is
the Boolean entry rule Enter_FT_Extension; its arguments are the IDs of the HDSOs
shown below it. It says ((ThC1 load > FT_EXT_TC1_load) AND (FTi angle >
FT_EXT_FTang)). The parameter HDSOs (106 & 107) below may be modified in order
to change the strength/thresholds of those influences. Sensor HDSOs report robot state.
Modification of transition parameters or activation parameters can drastically affect
system performance, but the entry rule is what determines the connections in the sensory
flow and event space diagrams, and defines the nominal behavioral progression in the
global state diagram. The conceptual location of the HDSO parameters here are shown in
Figure 4-25.. 63 

Figure 4-13 The contents of a SCCILS joint. The green elements are useful for user
interfaces and data handling, but are not descriptors of the SCASM action switching
module represented by the joint. ... 64 

Figure 4-14 The Handy Data Storage Object; an N-dimensional data store with a set of
identifiers and descriptors. .. 65 

Figure 4-15 The minimal stepper; top view on the left showing the protraction-retraction
DOF. Rear view on the right showing the levation-depression DOF. The open-circle foot
shows the protracted, levated leg at the end of swing (for forward stepping); closed-circle
shows the retracted-depressed leg at the end of stance... 67 

Figure 4-16 Some possible sensory events that could result from the depression action at
the CTr joint or the protraction action at the ThC joint. ... 70 

Figure 4-17 Global state diagram for minimal SCASM stepper 71 

Figure 4-18 Global state progression for forward stepping, minimal SCASM stepper.... 72 

Figure 4-19 Event space diagram for forward stepping in the minimal SCASM stepper.
The switching event lines are labeled according to the construction steps in the text...... 73 

Figure 4-20 Event space diagram for cockroach forward stepping. 76 

Figure 4-21 Possible vagueness in the relationship between sensors and sensory events in
the stick insect. The event space diagram makes the sensory events look discrete and well

 viii

organized; in the animal they may be transduced by multiple sensors in multiple
locations. The “leg load” events in particular might be represented by a multitude of force
and contact sensors throughout the leg. The “sensory” leg and the “motor” leg actually
represent the same physical leg; they are separated here to reduce the tangling of arrows.
... 78 

Figure 4-22 Stick insect event-space diagram showing references to the biological work
used to construct it. These influences are those described in Table 1 of (Ekeberg, et al.,
2004); it does not include all related references in the text, or any of the documented
magnitude influences. For complete references, see (Ekeberg, et al., 2004) pp. 288-290.
1) (Akay, Bässler, Gerharz, et al., 2001) 2) (Akay, Haehn, Schmitz, et al., 2004) 3)
(Bässler, 1988) 4) (Bucher, et al., 2003) 5) (Cruse, 1985) (behavioral) 6) (Hess &
Büschges, 1999).. 80 

Figure 4-23 Implementation-specific sensory flow diagram for the stick insect middle
leg; Boolean switching rules are shown next to the state switch they trigger. 82 

Figure 4-24 Cockroach middle leg forward stepping implementation-specific sensory
flow diagram. .. 83 

Figure 4-25 Cockroach forward stepping event space diagram. Circled numbers label the
lines determined through the mapping step (above). Boxed numbers show the conceptual
location of the HDSO parameters shown in the UI screenshot of Figure 4-12. 85 

Figure 5-1 Left: ventral view of Blaberus discoidalis. Right: Diagram of the segments of
the B. discoidalis left middle leg, with points used for 3D kinematic digitization. Not
labeled in either figure is the Trochanter-Femur (TrF) joint, which is a functioning joint
only actuated in one direction (James T. Watson, et al., 2002). Figure from (Bender,
Rutter, Simpson, et al., 2008) ... 87 

Figure 5-2 In many multi-DOF arthropod joints (on the left: ventral view of cockroach T2
left ThC joint), the cuticular plates and folds form a linkage that can be approximated as a
series of hinges. This is not equal in function to a ball-and-socket joint. From (Rutter,
Taylor, et al., 2007)... 88 

Figure 5-3 The two rotations from the body coordinate system (1) to the ThC1 frame (3)
used in the cockroach robot. There is first a rotation of Thetax = 130° about x1, then a
rotation Thetay = -20° about y2, resulting in the coordinate system (x3, y3, z3). The
ThC1 DOF rotates about z3, which points medially and slightly ventrally and caudally. 92 

Figure 5-4 Demonstration of T2 ThC degrees of freedom. Top: ThC1 remoted (left) and
promoted (right). Bottom: ThC2 adducted (left) and abducted (right). These
manipulations are similar to some of those used in the first step of estimating joint DOFs.
From (Rutter, Taylor, et al., 2007).. 94 

Figure 5-5 T2 B. Discoidalis left coxa, ventral view. The body midline is vertical just left
of B, and rostral is up. The plane of the leg and coxa are coincident with the page; this is
the “standard coxal pose” also used in Figure 5-6. The first DOF, ThC1, is along line AB.

 ix

The second DOF, ThC2, is about an axis straight out of page through point A. From
sketch on p 79 of Rutter biorobotics lab notebook #1. ... 94 

Figure 5-6 The apparent functional degrees of freedom at the T1 and T3 ThC joints, in
the standard coxal pose described in Figure 5-5. Left: T3; similar to T2 but with the first
AB DOF (ThC1) pointed more away from the body center line. Right: T1, which differs
significantly from T2 and T3. The AB’ line defines ThC1, which in this case has moved
away from the anatomical thorax attachment line AB. ThC2 is still about a line through A
perpendicular to the plane of the leg, A degree of freedom has apparently been introduced
between these two, very approximately along AC. .. 95 

Figure 5-7 Left: physical model used in demonstration of the degrees of freedom in the
mesothoracic leg. (built by Brian Taylor) Right: diagram of the DOFs used in the robotic
model, and kinematic model of (Mu, 2007; Rutter, Taylor, et al., 2007), from (Bender,
Rutter, et al., 2008). .. 97 

Figure 6-1 Location of real-time threads on the three-layer architecture backdrop. High-
level control influences SCASM via descending commands; SCASM specifies motor
patterns for lowest-level control. All arrows represent the flow of information between
system elements. White rectangles are threads in the engine module; the state transition
thread initiates state transitions and sets muscle activations and any low-level reflex rules,
making it the thread that actually enacts SCASM. The light grey boxes are threads in the
script module and handle SCCILS HDSO I/O: the script handler takes parameter
modifications from the high-level (interface) and enacts them in lower levels. The HDSO
server provides low-bandwidth access to most of the sensory data and parameter values
in the lower levels of control. ... 101 

Figure 6-2 Approximate location of real-time threads in the context of the
neuromechanical joint system. The script handler and HDSO server threads process
higher-level interaction. The state transition thread implements SCASM, modeling the
joint pattern generators. The muscle conversion thread models muscle and joint
dynamics. The motor action thread handles low-level physics modeling and physical I/O.
The “motor conversion” thread implements low-level sensory filtering and processing.
... 101 

Figure 6-3 Enginemod thread event relationships. State Transition and Motor Action
threads run at their own periodic timebases, and kick the conversion threads when
necessary. All four threads access shared memory and produce output that goes through
the data/info FIFOs. Many shared memory variables may be considered the “output” of
one thread and the “input” for another. Scriptmod interacts with the controller through its
connection to this shared memory. ... 102 

Figure 6-4 Scriptmod data flow. The script handler takes HDSOmod config changes via
the Script FIFO, implements them at the desired time, and records actual implementation
via the Scriptlog FIFOs (to Scriptlog.xml). The HDSO data server takes requests for
HDSO data via the request FIFO, then looks up the specified data and writes it to the
HDSOlog FIFOs in HDSOmod form. The “Shared Memory” in this figure is the shared

 x

memory HDSO store, a subset of the “Shared memory” block in the enginemod
diagrams; thus the “connection” with enginemod. ... 107 

Figure 6-5 Robotic scale model of the stick insect right middle leg. This view is from the
front; the bar extending to the bottom right indicates the orientation of the thorax in the
horizontal plane... 111 

Figure 6-6 Sensory flow diagram valid for all stick insect modeling done in this work.
Signs & strengths of connections can change, but this figure represents which signals can
have any effect on each action switching module. ... 111 

Figure 6-7 Cockroach left middle leg model, ventral view. ... 112 

Figure 6-8 Sensory flow diagram for all cockroach modeling done in this work. 113 

Figure 6-9 Cockroach leg on mount and ready for an experimental run (image taken from
experimental video data. The base element pointing down and to the right is parallel to
the simulated body center line, and pointing caudally.. 113 

Figure 7-1. Path-state plot and joint trajectories of restricted stepping in the stick insect
robot model, with the third FTi “Post Extension” state. In this example the system
quickly stabilizes. The path-state plot is a plot showing simultaneous foot path and joint
states, and is used in several of the following figures. Each line represents the state of one
joint, styled as shown in the legend. The foot path calculated from joint angle data is
represented by the line which starts at the circle and terminates at the triangle; in this case
that is the line representing CTr joint state. In this and in Figure 7-8, negative Y is away
from the body since the model is a right leg (see Figure 4-1). The origin is at the ThC
joint, and this is a projection of the already nearly planar restricted stepping motion is
therefore onto a transverse plane. ... 116 

Figure 7-2 Differences between a deafferentation and a mechanical dissociation, shown
in the context of the neuromechanical joint. The shown deafferentation stops the flow of
sensory information from receptors in that section of the leg to the local ganglion.
Mechanical dissociation at the point shown stops the flow of mechanical information, in
the form of force, in both directions- sensors in the more proximal segment which may
have responded to forces induced there by environmental interaction will no longer have
such input. The dynamics of the environmental interaction that both the proximal and
distal segments experience during dissociation may be dramatically different from the
usual arrangement. .. 117 

Figure 7-3. Disruption of the restricted stepping pattern by disconnecting part of the leg
structure. Disconnection starts at the first arrow, and reconnection ends at the second
arrow. .. 118 

Figure 7-4 Path-state plots of forward stepping in three legged systems. The path which
starts at the circle and terminates at the triangle represents the foot path as computed from
recorded joint angle data. Each of the three lines along the path represents the action of

 xi

one joint at that point, styled as shown in the legend. Coordinates are relative to the body;
the origin is at the ThC joint. From (Rutter, et al., 2006) ... 119 

Figure 7-5. Sample data from forward walking in the single- leg platform with piecewise-
constant FTi extensor muscle model, intended to parallel the presentation in Fig. 4B of
(Ekeberg, et al., 2004) Shaded portions represent time the foot is touching the ground.
Positive X is forward, negative Y is away from the body, and Z is up; dimensions are in
centimeters. Origin is the point of the Thoraco-Coxal (ThC) joint. Note the differences
between start of ThC retraction and start of FTi flexion, due to differing thresholds for the
CTr load representing ground contact for those state changes. Also note the considerable
lag between changes in stance-swing activity (i.e. FTi flexion to extension) and the time
when the foot actually leaves the ground. From (Lewinger, et al., 2006) 121 

Figure 7-6. Path-state plot for a single step cycle in forward stepping of the single-leg
platform. Positive X is forward; this is a projection of the 3-D foot path onto the sagittal
plane.. 122 

Figure 7-7 Torque vs. angle for various muscle model types. These graphs represent what
would happen as angle changes if the muscles at the joint have a constant activation
applied; this is the case for the ThC and FTi joints in the stick insect. 123 

Figure 7-8 Path-state plot (left) and joint trajectories in degrees (right) of sideways
stepping with null muscle model. This system ceases motion after one second due to
postponed detection of ground contact, and must be brought back to the feasible range of
joint angles by hand. It again detects ground contact too late at about 11.5 seconds..... 127 

Figure 7-9 Path-state plot and joint trajectories with the piecewise-constant muscle
model, implemented using a third FTi “Post Extension” (EXT2) state. In this example the
system quickly stabilizes, although “ground contact” was apparently detected before
actual foot contact during two of the first three step cycles, which are depicted in the top
plot. ... 128 

Figure 7-10 (Left) Histograms showing the distributions of durations of the entire step
cycle, as measured from one minimum of ThC angle to the next. The medians do not
differ significantly according to the Wilcoxon test (p=0.22), and the distributions differ
with p = 1x10-8 according to the Kolmogorov-Smirinov test. Note the bimodal behavior
in the piecewise-constant data. (Right) Histograms showing the distributions of
difference of the minimum ThC angle from step to step. The medians do not differ
significantly according to the Wilcoxon test (p=0.14), but the distributions differ with p =
3.7x10-5 according to the Kolmogorov-Smirinov test. Additionally, the runs test indicates
that all of the underlying distributions are most likely random (rather than consisting of
alternating highs and lows) for all but the min-min delta for the linear muscle model (p <
0.001). The lack of the wide tails on data taken using the linear muscle model indicates a
more consistent placement of the foot at transition from stance to swing...................... 129 

Figure 7-11 Muscle Activations vs. Step Period. Note that the appropriate increase in
drive is not generally proportional between muscles, and that for each muscle pair a

 xii

greater increase in activation was required for the stance agonist. As presented in (Rutter,
Bender, Taylor, et al., 2008) ... 132 

Figure 7-12 Cockroach middle leg Forward (FWD) global state diagram (left) and
behavior (right). Beginning of stance shown in grey, end in black; foot path and CTr
angle change are marked with the red arrows. Coxa motion ignored. The actions for the
ThC1 and CTr modules are double-labeled as described in section 4.4.2; labels in
parentheses indicate the actual effect of this action on the leg. 134 

Figure 7-13 Event space diagram for cockroach forward stepping. This configuration is
described in detail in section 4.4.2.. 135 

Figure 7-14 Cockroach middle leg Inside Turn, Forward (ITF) global state diagram (left)
and behavior (right)... 136 

Figure 7-15 Event space diagram for cockroach ITF behavior. Changed switching events
are marked with a yellow highlight; all changed HDSO parameters are noted in boxes
attached to switching event lines or transition paths. The effect of load on FTi and the
effect of FTi angle ThC have both been reversed... 136 

Figure 7-16 Cockroach middle leg Inside Turn, Backward (ITB) global state diagram
(left) and behavior (right).. 137 

Figure 7-17 Event space diagram for cockroach ITB behavior. Switching events which
have changed from ITF are marked with a yellow shadow; all changed HDSO parameters
are noted in boxes attached to switching event lines or transition paths. The effect of load
on CTr and the effect of CTr angle ThC have both been reversed. 138 

Figure 7-18 Diagram of experiments A, B and D. The path on the right side consists of
the three behaviors and change sets listed above. This progression on the right is
experiment A. The path down the middle applies both changesets simultaneously, and is
experiment B. The path on the left reverses the order of application of the changes, and is
experiment D... 139 

Figure 7-19 Diagram of changesets applied in experiments F. 140 

Figure 7-20 Diagram of change sets applied in experiments G. ΔITFthresh is applied in
equal increments once per second; ΔITFtrans is applied at the beginning, middle, and after
the end of this gradual application. ... 141 

Figure 7-21 Diagram of change sets applied in experiments E. ΔITBact is applied in equal
increments once per second; ΔITBtrans is applied at the beginning, middle, and after the
end of this gradual application.. 142 

Figure 7-22 Joint angle data for experiment A1, as well as state for the Thorax-Coxa1
DOF; remotion is highly correlated with swing. Top is the full experiment, starting
forward stepping from a standstill. The changeset ΔITF is applied at 20 s, and brings the
system to the inside turn-forward behavior. ΔITB is then applied at 40 s, leading to inside

 xiii

turn-backward behavior. The lower two plots show detail of these transitions, with the
shaded regions covering behavior after the configuration change. Note the changes in
phase between joint angles in each case. There is transient behavior at the startup and
switching points, but under experimental conditions these configurations led to stable
stepping behavior. ... 144 

Figure 7-23 Path state plots of all data and each of the stable behaviors: Forward, inside
turn-forward (ITF) and inside turn-backward (ITB). Data from the same experimental run
as in Figure 7-22. These paths are viewed from above; the virtual animal would be facing
right, with the body midline near and parallel to the x axis. TC1_retractionLEV is
strongly correlated with swing phase. There are four parallel lines in these path-state plots
because there are four motors, even though the line for the ThC2 “joint” is meaningless
and constant in a fake “TC1_protractionDEP” state... 145 

Figure 7-24 A1- FWD to ITF (18 s to 22 s). Largest and smallest arrows indicate path
direction, labeled arrows point to the stable behaviors and the location of the foot at 20s
when ΔITF is applied.. 146 

Figure 7-25 A1- ITF to ITB (t=38s-44s). Largest and smallest arrows indicate path
direction, labeled arrows point to the stable behaviors and the location of the foot at 40s
when ΔITB is applied. .. 146 

Figure 7-26 Joint angle data for experiment B2: forward to inside turn-backward. The
transition is successful; note the change in the range of motion of the CTr angle, and the
phase of ThC1with respect to the other joints. ... 147 

Figure 7-27 Joint angle and state data for experiment D3. Applying ΔITB to the forward
behavior (at t=20s) does not produce stepping behavior; arrows point to external
disturbances that triggered a still-nonfunctional short sequence of behavior. Note the
rapid state switching during this period, probably indicating overlapping sensory event
thresholds. Applying ΔITF at 40 s does bring the full behavior to inside turn-backward as
hypothesized. .. 148 

Figure 7-28 Data from experiment Fa3– ΔITFFTi first. Does not produce cyclic behavior
during the interim- though all modules experience rapid, useless action switching during
this period.. 149 

Figure 7-29 Fb1– ΔITFThC1 first. Does not produce cyclic behavior during interim
configuration. First arrow- kick-start of interim configuration failed. Second arrow- kick-
start of final (ITF) configuration successful. .. 150 

Figure 7-30 Ga3. Transition rule change before threshold change causes inappropriate,
uncoordinated behavior; gradually changes to ITF with threshold changes................... 151 

Figure 7-31 Gb1 Transition rule changes in the middle of threshold changes. Two
repetitions, both completed transition successfully but with a spastic-looking phase near
the transition rule change. This is apparently related to a short period after the application

 xiv

of ΔITFtrans at 15 s where the threshold values have not “caught up” with the new
arrangement of transition rules. .. 152 

Figure 7-32 Gc1 oscillatory behavior stops after transition thresholds have changed
beyond a certain point (about halfway to complete change). Transition rule change at
t=25s brings system to ITF. Here, se see that gradual change keeps working slightly past
15 s before behavior breaks down. ... 153 

Figure 7-33 Ea1. The behavior switches to backward walking (except the foot doesn’t
actually leave the ground) when the transition rules are changed at t=10. This slowly
changes to inside turn-backward (ITB) behavior as the muscle activations are changed.
... 154 

Figure 7-34 Eb1 Behavior continues as ITF until transition rule change at 15s. Then is
backward for a few steps before the changing muscle activations bring the system to ITB.
... 154 

Figure 7-35 Ec1 Behavior continues even past activation changes, but reaches a nearly
useless behavioral state (generating sweeping arcs during stance) before the transition
parameter change at t=25s brings the system to ITB.. 155 

Figure 9-1 A small magnet will be affixed to the end of the tibia of the middle leg. An
electromagnet will then be used to modulate the force applied at the tibia. This
experiment should be used to test the hypothetical reversal of load influences at the FTi
joint controller between inside turning and forward walking... 200 

Figure 9-2 Global state diagram and behavioral sketch of the “outside turn, backward”
behavior... 201 

Figure 9-3 Median Absolute Dispersions of stance excursions for x-position of the tibia-
tarsus joint in the cockroach, and for the closely related femur-tibia angle in the robot.
The robot is not capable of periods smaller than about 200 ms, due to limits on motor
speed. .. 204 

Figure 9-4 Left: a version of Marcus Blümel’s stick insect simulation. Right: Bill
Lewinger’s two-leg test platform. Both from (Rutter, et al., 2006)............................... 223 

 xv

Acknowledgements

I acknowledge my fallability.

Also, everybody in the broadly defined Biorobotics group for the past five years at

least. The collegial and social support of these people is outstanding, heavy use of

sarcasm notwithstanding. In particular, my primary advisor Dr. Roger Quinn, biological

advisor Dr. Roy Ritzmann, close colleague and friend Brian Taylor, Marcus Blümel,

Laiyong Mu, William Lewinger, Dr. John Bender and Nicole Doorly have all provided

substantial material contributions to this work, and those underlined deserve a cookie

and/or shot of whiskey for being exposed to the entire first draft.

Doctors Roger Quinn and Roy Ritzmann both deserve additional thanks for the

support, advice and guidance provided in the development both of myself and this work

through the past several years. They really care, both about the teaching and the science,

and it shows.

I would like to thank Dr. Mark Willis, Dr. Robert Kirsch, and Dr. Kiju Lee for

providing valuable revision suggestions and putting up with my less-than-perfect

scheduling as members of my dissertation committee.

I thank Ansgar Büschges and his entire lab at the Institute for Animal Physiology at the

University of Cologne for training, intellectual access, and outstanding hospitality. This is

also where Marcus Blümel actually works.

I would additionally like to express gratitude to: my family for unconditional support.

The faculty and staff of the Department of Mechanical and Aerospace Engineering, who

 xvi

do an excellent job of shielding students from the general insanity of university

administration. The organizers of the NSF Integrative Graduate Education and Research

Training grant in Neuromechanics at Case Western Reserve, who developed a truly

outstanding incubator for novel interdisciplinary research.

And, of course, the financial support provided by the National Science Foundation for

that program through award DGE 9972747, the Case Prime fellowship, Elgin Air Force

Base grant F08630-03-1-0003, and particularly the U.S. Air Force Office of Science and

Research grant FA9550-07-1-0149, have made it feasible to do all of this very interesting

work.

Many of those mentioned above, and more to whom I apologize for the omission, have

made substantial contributions to the content and clarity of this document. None of them

can be held responsible, however, for the inevitable errors it contains. Those are all mine.

 xvii

List of Abbreviations

CPG central pattern generator, CTr coxa-trochanter, DH Denavit-Hartenberg,

DOF degree of freedom, EMG electromyogram, FCO femoral chordotonal organ,

FTi femur-tibia, GUI graphical user interface, HDSO handy data storage object, MN

motor neuron, PG pattern generator, RT real-time, SCASM Sensory Coupled Action

Switching Modules, SCCILS SCASM Command and Configuration Interface Language

Specification, T1 prothoracic, T2 mesothoracic, T3 metathoracic, ThC thorax-coxa, ThC1

thorax-coxa first degree of freedom, TrF trochanter-femur, UI user interface, XML

extensible markup language

 xviii

Robotic Models of

Neuromechanical Step

Generation in Insects

Abstract

by

BRANDON LEWIS RUTTER

Walking is a means of locomotion that is ubiquitous among terrestrial animals and the

matter of considerable technical inquiry; both for biological understanding and

description, and engineering construction and control. Although wheels and treads have

numerous advantages over legs for low-complexity terrain, the promise of adept legged

locomotion in a much broader range of rugged environments is eloquently demonstrated

in the animal kingdom. Of primary interest in the understanding of such agility is the

ability of animals to smoothly transition between behaviors requiring substantially

different local behavior of locomotor appendages.

Recent developments in our understanding of insect walking systems, encapsulated in

the study of the neural mechanisms of stick insect leg coordination by (Ekeberg, Blümel,

& Büschges, 2004), have made it possible to construct models of local leg control based

on known properties of biological systems. Such models can provide the appropriate

“ports” to investigate and predict the effects of descending commands in the transition

between and generation of different local behaviors.

 xix

This dissertation describes the development and use of robotic models of step

generation to address questions about descending control. Robotic models were desired

both for the ease of experimental interaction and the fidelity of physical modeling they

can provide. The NeuRoMod software suite was developed, and provides interactive

operation and experimental scripting for the robotic models.

The local control methods of the stick insect described by Ekeberg et al. are

standardized as Sensory Coupled Action Switching Modules (SCASM), and tools for the

use of this concept in modeling are developed and demonstrated. The apparent generality

of SCASM as a computationally simple control concept is also addressed.

Experiments were conducted to demonstrate model usage, in the testing and generation

of biologically relevant hypotheses. The basic function, neuromechanical nature, and

resilience of SCASM-controlled steppers is demonstrated. Simple muscle models are

found to provide significantly improved, reliable stepping. Control methods for forward

walking and inside turning in the cockroach model are presented, and experiments are

conducted investigating how descending influences can cause transitions between these

behaviors. The results support the general reflex cascade hypothesis presented by (Mu &

Ritzmann, 2008a).

 1

1 Introduction

I started my graduate study with a keen interest in working on the basic problems of

how to get around in the world. In my undergraduate experience I had spent time working

with a few of the standard robots used for AI research, most of which at that time looked

like a garbage can on wheels (Maxwell, Meeden, Addo, et al., 2001). A glorified garbage

can on wheels, sure- but still completely incapable of taking the stairs, “navigating a

curb”, or in most cases just plain going outside.

I think I found this lack offensive for a couple of reasons. Quite possibly my own farm

upbringing and affinity for the outdoors had something to do with it. More to the point

for my academic goals, I’d been interested in exploration robotics for quite some time,

mostly related to my interest in space exploration. Though we’d had some good examples

of exploration robots used in an essentially tele-operated fashion such as Sojourner

(Shirley & Matijevic, 1995), the ideal explorer needs to be able to survive on its own.

The broader issue of survival has many facets, of course, including appropriate response

to things and events both “good” and “bad” for the agent, but at that point I had come to

believe that the “low-level” task of just physically getting from one place to another

along a known route was among the most severe limitations on exploratory robots. So I

found myself with the choice of going to Carnegie Mellon University and working on

some of the most advanced, mostly wheeled, field-operating exploratory robots then

available, or coming here to the Biologically Inspired Robotics laboratory at Case

Western Reserve to work on basic problems in rugged locomotion; something really

interesting.

 2

It looks like I chose well. The purpose of my doctoral work has been to develop a

neruomechanically-based robotic model system capable of behavioral changes based on

descending commands, and to demonstrate its use in the testing and generation of

biologically relevant hypotheses. The testing of the reflex cascade hypothesis (Mu &

Ritzmann, 2008a) regarding mechanisms of descending control was a specific aim. The

influence of these descending commands is the point between the most basic parts of

walking and the generation of the higher-level behaviors that make legs really useful.

This dissertation describes the development and use of robotic models of step

generation in stick insects and cockroaches to address questions about descending

control. Robotic models were desired both for the ease of experimental interaction and

the fidelity of physical modeling they can provide. The NeuRoMod suite of real-time

model control software was developed, and provides highly configurable interactive

operation and experimental scripting capabilities for the robotic models.

 The control methods of the stick insect described by Ekeberg et al. are standardized as

Sensory Coupled Action Switching Modules (SCASM), and a set of tools for the use of

this concept in modeling are developed and demonstrated. The apparent generality of

SCASM as a computationally simple control concept is also addressed. The SCASM

Command and Configuration Interface Language Specification (SCCILS) for controlling

and describing SCASM systems is developed and presented. SCCILS provides a means

for accessing the ports for descending commands in a SCASM system, and is used in the

modeling software.

A functional kinematic description of the cockroach middle (T2) leg was developed, in

order to support accurate modeling of the thorax-coxa (ThC) joint in that animal. This

 3

new description is fostering a better understanding of leg function in other locomotion

studies as well (Bender, Simpson, & Ritzmann, 2009 (In Prep); Mu, 2007).

A series of experiments was conducted in order to demonstrate model function and

usage, for both the testing and generation of biologically relevant hypotheses. The basic

function, neuromechanical nature, and resilience of SCASM-controlled stepping systems

are first demonstrated. The impact of simple muscle modeling is investigated, and found

to provide significantly improved, reliable stepping. The control of stepping speed using

tonic descending commands was found to be sufficient for generating a range of speeds

in both model legs. Control methods for forward walking and two types of inside turning

in the cockroach model are presented, and a series of experiments is conducted to

investigate various aspects of transitions between these behaviors as commanded by

descending influences. The results support the general reflex cascade hypothesis

presented by (Mu & Ritzmann, 2008a).

The primary goal of this work has been modeling of the biological systems involved,

but as a roboticist the work was always done with an eye towards application in legged

locomotion. The possible application of these lessons to an even broader understanding

of environmentally appropriate system behavior has presented itself as well.

1.1 The Investigation of Walking

Take a hike. If you want maximum agility in the broadest range of terrestrial settings,

you most likely need to use legs. For low-complexity and continuous terrain, wheels and

treads are likely to be faster, more efficient, more robust and simpler to implement than

legged systems. But, there is a broad range of terrains and situations where, if you

 4

wanted to do something or get somewhere, you would have to get off the bicycle, or get

out of the car, or even leave the treaded tank, and use your legs.

Though this line of thought has been clear for some time, even today our walking

machines are generally much more limited in their capabilities than the available wheeled

and tracked vehicles. This was even more obviously the case in the earlier years of this

decade; we simply did not understand walking well enough to build something even

remotely capable of the adept legged locomotion demonstrated in the animal kingdom.

There has been considerable improvement (see BigDog: Raibert, Blankespoor, Nelson, et

al., 2008), but the biological counterpart of a robot using biologically based locomotion

methods can still literally run, climb, swim or fly circles around it.

During my time in high school and college, my thoughts had turned more than once to

biological systems for help in solving problems of dealing intelligently with the world.

I’d talk with friends about how the brain of the fly I was trying (and often failing) to swat

couldn’t possibly have more raw computational power than the computers of the day, yet

it was far more capable of behaving quickly and appropriately in the world than anything

attempting to do so under computer control. The fly must be put together really well for

performing its particular tasks. Years later, I discovered that Rodney Brooks, at least, was

having very similar thoughts at a slightly earlier time (Waibel, Brooks, Hauert, et al.,

2007).

My naïveté regarding the fly’s computational power is now somewhat mitigated; the

insect nervous system is capable of some rather complex computation at a preposterously

high bandwidth. Nevertheless, the idea that a fly is very well constituted for doing the

things a fly does is apparently still a good one. And indeed, in many cases we can find

 5

examples of demanding tasks being accomplished by biological systems which are

constructed just so. So I’ve come to believe even more strongly that if we want to build

machines that are adept at exploration and survival, it will serve us well to consult the

playbook of biology. Life has, after all, been constructed and selected by the demands of

survival.

To the blissfully ignorant, “consulting the playbook of biology” might sound like a

clever and straightforward thing to do. As it turns out, though, reverse-engineering the

full function of something as “simple” as a single neuron is the matter of man-millennia

of effort; a task that is far from complete. Additionally, upon attempts to implement

biological knowledge in engineering systems one often finds critically important holes in

the understanding of what is sometimes considered a well-understood biological system.

To the initiated, then, it will come as no surprise that I found myself working largely on

the problem of consulting this playbook; towards the application of engineering tools and

methods to the greater understanding of walking in biological systems. Through this

experience I have tried more and more to think about these systems in terms of the flow

of information, action and function, rather than the firing of neurons or electrical currents

in servomotors which carry these flows in any particular instantiation. In this respect, I

have certainly become a cyberneticist, at least in the older sense of the term (Wiener,

1948).

In addressing questions such as these, there is the potential to develop a relationship

between biology & engineering which benefits both; it is my hope that this work is an

example of the mutual benefits possible. The engineer of legged systems and the

biological modeler have similar motivations. The primary question for the engineer is:

 6

how do we best make a machine walk? We want suitably agile leg control with minimal

computational requirements. For the biological modeler, the primary question is: how do

animals walk, and how do we find and approximate the animal’s neural and mechanical

systems to get a model that walks that way? We want a system that can test and generate

biologically relevant hypotheses. Ideally the model is an investigative and pedagogical

tool, useful in experimentation and system description. These desires are similar, and can

often be simultaneously addressed by the same effort.

Merely the process of “consulting the playbook of biology” can result in the unveiling

of questions critical to system function which were not previously a matter of

investigation. The joint kinematics work in Chapter 5 is an example of this kind of

interaction. Engineering techniques can also be used for investigations and modeling

“purely for biology’s sake”, as was done for the models developed in this dissertation.

Other examples of this may be found in (Webb, 2001) for instance, and are described

below in section 3.7. Particularly in these cases, however, it can become difficult to

separate the parts where one field is solely benefitting the other, if the synergy of

investigation is strong enough. Such cases are probably the most interesting, since they

represent the discovery of knowledge which may be new to all of the fields involved.

1.2 Goals of the Broader Project

There is a focus of investigation in the Ritzmann and Quinn laboratories on the effects

of descending commands on the lower-level control of basic walking behavior. Within

this context, we wanted a physically manipulable insect leg model, with local neural and

mechanical systems based on known biological properties, capable of transitions between

behaviors such as walking and turning while allowing examination of the progression of

 7

sensory and motor events. Robotic models were desired both for the ease of experimental

interaction and the fidelity of physical modeling they can provide.

The short-term specific aim was to use the system to test, find, and refine hypotheses

about how the system transitions between behaviors. Specifically, a test of the “reflex

cascade hypothesis” (Mu & Ritzmann, 2008a) described in section 0 was desired. A

model with this neural basis presents specific ports for descending activity. We can

establish where the descending commands would have a described effect/change in

behavior. It also allows us the possibility to counteract or mimic some of these changes

via physical manipulation; something that is much more difficult in the animal. With

sufficient accuracy of the neural basis, such a model can act through intentional tinkering

or serendipity as a hypothesis generator, as well as a tester of hypothesis feasibility.

A model capable of doing these things gives us the ability to do experiments and get

data probably not possible in the animal; full state information allows us to read sensor

and motor changes in the evolution of the system from one state to another. We could

then see the interaction between events and subsystems during behavior. This could allow

the observation of a particular reflex or sensory influence within the context of behavior,

as well as the observation of interplay between such system elements, some of which is

extremely difficult or even impossible to observe either in the behaving animal or in

models of subsystems. For example, simultaneously reading the state of the central

nervous system and complete sensory information is very useful in the description of the

progression of leg behavior; subsets of these data are available in biological

experimentation but are rarely, if ever, able to completely describe the state of the animal.

 8

As a tool for guiding biological experimentation, the full state information of the model

might be used to identify the most easily measurable results of some change in the

controller. Using the cockroach model in the more standard capacity as a hypothesis

sufficiency tester, in which the complex interactions of known subsystems is investigated

as was done in (Ekeberg, et al., 2004), is also a definite capability. It is sometimes

possible to predict these interactions analytically or mathematically, but it is very difficult

to convincingly demonstrate physical sufficiency without building a system that interacts

with the real world and is therefore forced to deal with some of the same physical

environmental interactions as the target system.

The ability for experimental manipulation in the model could be beyond anything

possible in the animal. An appropriately constructed model could allow the

strengthening, weakening, reversal, disconnection and reconnection of any single

modeled neural signal or set thereof, at any time, without disturbing other neural

correlates or the physical system.

The roboticists in our group also wanted to develop the ideas from the work of

(Ekeberg, et al., 2004) into a more general understanding of how systems such as these

generate coordinated behavior. Compared to the then-standard methods of generating

walking movement in robots, this had the promise of getting the job done with vastly

lower computational and informational demands. As described above, these desires are

not at odds with one another; one could argue that they are best served when done

together.

 9

1.3 The state of the art in 2005

This section describes the tools and knowledge available at the beginning of the work

in this dissertation. This is covered in more detail in the background section.

Then as now, the stick insect and cockroach were among the most thoroughly analyzed

walking systems. The stick insect was studied most in terms of local sensorimotor

pathways and behavior (Cruse, 1990; Ekeberg, et al., 2004), while the cockroach was

among the most analyzed in terms of mechanical dynamic properties(Jindrich & Full,

1999), with significant knowledge of mechanosensory systems (Zill, Schmitz, &

Büschges, 2004), and agile transitional behaviors (Watson, Ritzmann, Zill, et al., 2002).

The existence of local joint-level central pattern generators was known in the stick insect,

as measured through motor neurons (Büschges, Ludwar, Bucher, et al., 2004).

Here at Case Western Reserve in the Ritzmann lab, experiments were beginning to

address the question: how do higher-level influences interact with local control to

generate the range of behaviors? Specifically, what differs between and what initiates

transition between walking and turning? The specific descriptions of mechanisms that

might be involved in transitions between walking and turning now published in (Mu &

Ritzmann, 2005, 2008a, 2008b) were then being investigated. That work involved the

identification of effects of descending influences on local magnitude reflex reversal, and

the presentation of the “reflex cascade hypothesis” as a method by which a few

descending influences might dramatically alter leg behavior. The general idea of this

hypothesis is that descending commands might alter a few critical local reflexes that start

a cascade of physical changes in leg movement or posture, leading to further alterations

 10

in the overall behavior of the leg. Further description of this is included in the

background; see section 0.

Robotic models of biological walking systems and robots using biological inspiration

were at this point mostly behaviorally based. There were a few which used neurally-

inspired control mechanisms to generate this behavior, e.g.(Dürr, Krause, Schmitz, et al.,

2003). As described in (Webb, 2001), the behavioral approach has drawbacks in terms of

usefulness to biology. Examining a black box doesn’t generally help understanding of the

mechanism, or how the behavior is produced. This understanding of the mechanism

contains the principles of design and control that the engineer would really like to know.

The work which most directly instigated the development of the models in this

dissertation was the synthesis of (Ekeberg, et al., 2004). In the middle leg of the stick

insect Carausius morosus, a number of neural pathways were known which defined

sensory coordinating influences capable of switching the activity in the joint central

pattern generators (CPGs). During stick insect stepping behavior, these CPGs behave as

bi-stable circuits, specifying either flexion or extension in the associated joint. Central

coupling, if present, is weak enough to be ignored under these circumstances. It was

hypothesized that these influences were sufficient to generate stepping. They constructed

a set of state machines whose transition rules implemented these influences, and used that

controller in a dynamic computational model of the stick insect middle leg. The resulting

model generated stepping motion, thus successfully demonstrating the sufficiency of

these combined mechanisms to explain the basic overall behavior of forward stepping in

the biological leg. They modified the controller to successfully generate stepping in

models of the front and rear legs as well. Since the controller was explicitly and

 11

structurally derived from known neural pathways, the changes for front and back legs

represented specific hypotheses regarding the neural function of the animal in those legs.

Their work and that supporting it are covered in more detail in section 3.4.1 of the

background.

1.4 Project Goals

The purpose of this work is to develop a neruomechanically-based robotic model

system capable of behavioral changes based on descending commands, and to

demonstrate its use in the testing and generation of biologically relevant hypotheses.

There are several more specific goals that were involved in the pursuit of this overall

purpose:

1) Implementation of the control methods used in the model of (Ekeberg, et al.,

2004) in a robotic model system. This includes the development of the hardware

and software necessary. One goal was to make the physical robots small, both for

portability and to reduce problems with dynamic scaling. Extensibility was a goal

for the software, in order to allow the addition of elements necessary for this and

later work.

2) Make it useable by and useful to biologists. This includes developing methods for

using these models in experimentation, and understanding their function (see

section 2.1). Interactive modification of the controller was desired, as well as

experimental scripting capability. These requirements dictate the development of

an at least minimally useful user interface.

 12

3) Test and generate biological hypotheses, specifically including the reflex cascade

hypothesis of (Mu & Ritzmann, 2008a), by examining the transitions between

forward and turning behaviors. This includes the generation of these behaviors in

the first place, which embody their own sets of hypotheses. We ultimately wanted

to clarify the resulting hypotheses to arrive at feasibly testable biological

hypotheses. We felt that a cockroach model would best serve this goal.

1.5 Description of Contents

The rest of this document addresses the pursuit and achievement of the goals above.

Chapter 2 is a brief look at essential concepts in robotic model development. A thorough

understanding of the material in that chapter will be most useful to those either building

models or wishing to use them to their fullest extent. A background focused on the

walking task and robotic modeling and control methods is presented in Chapter 3.

In Chapter 4, the control methods of the stick insect described by (Ekeberg, et al.,

2004) are standardized as Sensory Coupled Action Switching Modules (SCASM), and a

set of methods for the use of this concept in modeling are developed and demonstrated.

The apparent generality of SCASM as a computationally simple control concept is also

addressed. The SCASM Command and Configuration Interface Language Specification

(SCCILS) for controlling and describing SCASM systems is developed and presented.

This language provides a means for accessing the ports for descending commands in a

SCASM system.

Chapter 6 describes the robotic models, including The NeuRoMod suite of real-time

model control software, which provides highly configurable interactive operation and

experimental scripting capabilities for these models, using SCASM and SCCILS. Chapter

 13

5 presents a functional kinematic description of the cockroach T2 leg, developed in order

to accurately model the ThC joint. This new description is fostering a better

understanding of leg function in other biological work.

In Chapter 7, a series of experiments is described in order to demonstrate model

function and usage, for both the testing and generation of biologically relevant

hypotheses. The basic function, neuromechanical nature, and resilience of SCASM-

controlled steppers are first demonstrated in the robotic stick insect model. The impact of

simple muscle modeling is investigated, and found to provide significantly improved

stepping. A hypothetical method for the control of stepping speed is shown to be

sufficient. Control methods for forward walking and two types of inside turning in the

cockroach model are presented, and a series of experiments is conducted to investigate

various aspects of transitions between these behaviors as commanded by descending

modification of a few critical local sensory influences. The results support the general

reflex cascade hypothesis presented by (Mu & Ritzmann, 2008a).

This is followed by a summary of formal conclusions and a discussion of future work

in Chapter 8. The future work section provides a more complete, informal treatment of

where further investigation is recommended and expected to proceed from the current

realization of the broader project goals.

 14

2 Essentials in Robotic Model Development

Since the primary goal of my work was the development of models useful to biologists,

it was essential to examine how such models can be used, and what helps make them

useful. This chapter addresses these issues in the manner of (Webb, 2001), and sets

specific goals for model development.

2.1 Elements of a Useful Model

As discussed in detail by (Webb, 2001), there is some confusion and even more

disagreement about the definition of the term “model”. There are a number of common

threads presented there, however, and I will use her work to frame the goals and work

described here.

Figure 2-1 “Models and the process of explanation”, Figure 1 from (Webb, 2001). There, “model”

refers to the “simulation” block above; I attempt to use the same convention. This figure more or less

represents the usage of a simulation model to test hypothesis sufficiency in reproducing behavior.

The grey box includes many of the elements necessary to actually make use of the simulation, several

of which were explicitly addressed in this work along with the development of the simulation model

itself.

tual examples of models (unless one allows there “to be as
many definitions possible to isomorphism as to model,” Co-
nant & Ashby 1991, p. 516). In the vast majority of cases,
models are not (mathematical) isomorphisms, nor are they
intended to be. Klir and Valach (1965) go on to include as
examples of models “photos, sculptures, paintings, films . . .
even literary works” (p. 115). It would be interesting to
know how they intend to demonstrate a strict homomor-
phism between Anna Karenina and “social, economic, eth-
ical and other relations” in nineteenth century Russia. In
fact, it is just as frequently (and often by the same authors)
emphasised that a model necessarily fails to represent
everything about a system. For example, Black (1962) goes
on to warn of “risks of fallacies of inference from inevitable
irrelevancies or distortions in the model” (p. 223) – but if
there is a true isomorphism, how can there be such a risk?
A “partial isomorphism” is an oxymoron; and more to the
point, cannot suffice for models to be used in valid deduc-
tion. Moreover, this approach to modelling obscures the
fact that the purpose in modelling is often to discover what
are the “relevant features” or “essential structures,” so
model usage cannot depend on prior knowledge of what
they are to establish the modelling relationship.

2.2. What use are models?

There are things and models of things, the latter
being also things, but used in a special way

(Chao 1960, p. 564)

Models are intended to help us deal in various ways with a
system of interest. How do they fulfill this role? It is com-
mon to discuss how they offer a convenient/cost-effective/
manageable/safe substitute for working on or building the
real thing. But this does not explain why working on the
model has any relevance to the real system, or provide some
basis by which relevance can be judged, that is, what makes
a model a useful substitute? It is easier to approach this by
casting the role of modelling as part of the process of ex-
planation and prediction described in Figure 1.

Figure 1 can be regarded as an elaboration of standard
textbook illustrations of either the “hypothetico-deductive”
approach or the “semantic” approach to science (see be-
low). To make each part of the diagram clear, consider an

example. Our target – selected from the world – might be
the human cochlea and the human behaviour of pitch per-
ception. Our hypothesis might be that particular physical
properties of the basilar membrane enable differently po-
sitioned hair cells to respond to different sound frequen-
cies. One source of this idea may be the Fourier transform,
and associated notion of a bank of frequency filters as a way
of processing sound. To see what is predicted by the phys-
ical properties of the basal membrane we might build a
symbolic simulation of the physical properties we think
perform the function, and run it using computer technol-
ogy, with different simulated sounds to see if it produces
the same output frequencies as the cochlea (in fact Bekesy
1960 first investigated this problem using rubber as the
technology to represent the basilar membrane). We could
interpret the dominant output frequency value as a “pitch
percept” and compare it to human pitch perception for the
same waveforms: insofar as it fails to match we might con-
clude our hypothesis is not sufficient to explain human
pitch perception. Or, as Chan and Tidwell (1993) concisely
summarise this process, we theorise that a system is of type
T, and construct an analogous system to T, to see if it be-
haves like the target system.

I have purposely not used the term “model” in the above
description because it can be applied to different parts of
this diagram. Generally, in this paper, I take “modelling” to
correspond to the function labelled “simulation”: models
are something added to the “hypothesis-prediction-obser-
vation” cycle merely as “prostheses for our brains” (Milin-
ski 1991). That is, modelling aims to make the process of
producing predictions from hypotheses more effective by
enlisting the aid of an analogical mechanism. A mathemat-
ical model such as the Hodgkin-Huxley equations sets up a
correspondence between the processes in theorised mech-
anism – the ionic conductances involved in neural firing, –
and processes defined on numbers – such as integration.
We can more easily manipulate the numbers than the
chemicals so the results of a particular configuration can be
more easily predicted. However, limitations in the accuracy
of the correspondence might compromise the validity of
conclusions drawn.

However, under the “semantic” approach to scientific ex-
planation (Giere 1997), the hypothesis itself is regarded as
a “model,” that is, it specifies a hypothetical system of which

Webb: Can robots make good models of biological behaviour?

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6 1035

Figure 1. Models and the process of explanation

 15

In order for a model to be useful, i.e. to help the process of explanation, it needs to be

appropriately connected to the other elements of explanation in Figure 2-1. Webb’s

description of this figure includes examples of these elements and is included below:

[Figure 2-1] can be regarded as an elaboration of standard textbook illustrations of

either the “hypothetico-deductive” approach or the “semantic” approach to science

(see below). To make each part of the diagram clear, consider an example. Our target

–selected from the world–might be the human cochlea and the human behaviour of

pitch perception. Our hypothesis might be that particular physical properties of the

basilar membrane enable differently positioned hair cells to respond to different

sound frequencies. One source of this idea may be the Fourier transform, and

associated notion of a bank of frequency filters as a way of processing sound. To see

what is predicted by the physical properties of the basal membrane we might build a

symbolic simulation of the physical properties we think perform the function, and run

it using computer technology, with different simulated sounds to see if it produces the

same output frequencies as the cochlea (in fact [(Von Békésy, 1960)] first

investigated this problem using rubber as the technology to represent the basilar

membrane). We could interpret the dominant output frequency value as a “pitch

percept” and compare it to human pitch perception for the same waveforms: insofar

as it fails to match we might conclude our hypothesis is not sufficient to explain

human pitch perception. Or, as [(Chan & Tidwell, 1993)] concisely summarise this

process, we theorise that a system is of type T, and construct an analogous system to

T, to see if it behaves like the target system.

It should be noted that the expression of a “Hypothetical Mechanism” might also be

evaluated in several of the same dimensions that Webb describes models, as described in

section 3.7 of the background; e.g. level, generality, abstraction, and perhaps structural

accuracy.

 16

Construction of a model, then, in order to be useful, needs to include the process of

ensuring that tools supporting the processes represented by the labeled arrows in Figure

2-1 are present. Ideally, they should also be clear and correct. With this in mind, the

attempt has been made to include the following elements when considering model usage

and construction. Building each of these elements separately can be highly instructive,

but together they can more effectively facilitate the process of explanation.

1) The simulation model itself; in this work, the physical robots and control

programs. Building and refining of this element is covered in Chapter 6

“Neuromechanical Robotic Models” as well as Chapter 5 “Functional Cockroach

Leg Kinematics”.

2) Tools for model operation; supporting ways to demonstrate and generate

simulated behavior. This includes parameter modification, user interface,

experiment scripting and data recording. The development of this element consists

primarily of the development of the SCASM Command and Configuration

Interface Language Specification (SCCILS) described in 4.3, support for SCCILS

in the NeuRoMod engine described in Chapter 6, and the user interface written by

John Bender and described in the model operation manual in Appendix 10.4.

3) Tools for data analysis and representation; facilitating the interpreting, comparing

and possibly even observing processes. Some of these are documented in the

Experiments chapter (7), as well in the description of the MATLAB

SCCILStoolbox package in Appendix 10.3.

4) Tools for system representation; facilitating the theorizing and representing

processes, and possibly also the representation of the “Hypothetical Mechanism”.

 17

This is addressed in the development of Sensory Coupled Action Switching

Modules (SCASM) as a concept, in Chapter 4.

In the building of some models, it is possible that data and system representation

methods are already sufficient. This is sometimes not the case, however, because either

(a) data are available in the model that has not been available from the target (i.e., full

state information), or (b) there are a lot more data available from the model, and methods

developed for analyzing and representing the target cannot cope with this data volume.

Figure 2-2 Reverse-pathway model usage; adapted from (Webb, 2001). This represents the use of a

model and associated tools to generate hypotheses that are testable in the target system.

Of significant interest in this dissertation is the use of a model in a partially-reverse

explanation pathway, shown in Figure 2-2. Once a simulation model has been produced

whose behavior matches well enough with the predicted and target behaviors and where

the structure represents the target accurately enough, one might be able to modify the

model in order to reproduce other system behaviors, for which no explicit hypothetical

method might exist. This can only be done if the methods for model operation and data

representation are sufficient for this task. If the methods for data analysis and

tual examples of models (unless one allows there “to be as
many definitions possible to isomorphism as to model,” Co-
nant & Ashby 1991, p. 516). In the vast majority of cases,
models are not (mathematical) isomorphisms, nor are they
intended to be. Klir and Valach (1965) go on to include as
examples of models “photos, sculptures, paintings, films . . .
even literary works” (p. 115). It would be interesting to
know how they intend to demonstrate a strict homomor-
phism between Anna Karenina and “social, economic, eth-
ical and other relations” in nineteenth century Russia. In
fact, it is just as frequently (and often by the same authors)
emphasised that a model necessarily fails to represent
everything about a system. For example, Black (1962) goes
on to warn of “risks of fallacies of inference from inevitable
irrelevancies or distortions in the model” (p. 223) – but if
there is a true isomorphism, how can there be such a risk?
A “partial isomorphism” is an oxymoron; and more to the
point, cannot suffice for models to be used in valid deduc-
tion. Moreover, this approach to modelling obscures the
fact that the purpose in modelling is often to discover what
are the “relevant features” or “essential structures,” so
model usage cannot depend on prior knowledge of what
they are to establish the modelling relationship.

2.2. What use are models?

There are things and models of things, the latter
being also things, but used in a special way

(Chao 1960, p. 564)

Models are intended to help us deal in various ways with a
system of interest. How do they fulfill this role? It is com-
mon to discuss how they offer a convenient/cost-effective/
manageable/safe substitute for working on or building the
real thing. But this does not explain why working on the
model has any relevance to the real system, or provide some
basis by which relevance can be judged, that is, what makes
a model a useful substitute? It is easier to approach this by
casting the role of modelling as part of the process of ex-
planation and prediction described in Figure 1.

Figure 1 can be regarded as an elaboration of standard
textbook illustrations of either the “hypothetico-deductive”
approach or the “semantic” approach to science (see be-
low). To make each part of the diagram clear, consider an

example. Our target – selected from the world – might be
the human cochlea and the human behaviour of pitch per-
ception. Our hypothesis might be that particular physical
properties of the basilar membrane enable differently po-
sitioned hair cells to respond to different sound frequen-
cies. One source of this idea may be the Fourier transform,
and associated notion of a bank of frequency filters as a way
of processing sound. To see what is predicted by the phys-
ical properties of the basal membrane we might build a
symbolic simulation of the physical properties we think
perform the function, and run it using computer technol-
ogy, with different simulated sounds to see if it produces
the same output frequencies as the cochlea (in fact Bekesy
1960 first investigated this problem using rubber as the
technology to represent the basilar membrane). We could
interpret the dominant output frequency value as a “pitch
percept” and compare it to human pitch perception for the
same waveforms: insofar as it fails to match we might con-
clude our hypothesis is not sufficient to explain human
pitch perception. Or, as Chan and Tidwell (1993) concisely
summarise this process, we theorise that a system is of type
T, and construct an analogous system to T, to see if it be-
haves like the target system.

I have purposely not used the term “model” in the above
description because it can be applied to different parts of
this diagram. Generally, in this paper, I take “modelling” to
correspond to the function labelled “simulation”: models
are something added to the “hypothesis-prediction-obser-
vation” cycle merely as “prostheses for our brains” (Milin-
ski 1991). That is, modelling aims to make the process of
producing predictions from hypotheses more effective by
enlisting the aid of an analogical mechanism. A mathemat-
ical model such as the Hodgkin-Huxley equations sets up a
correspondence between the processes in theorised mech-
anism – the ionic conductances involved in neural firing, –
and processes defined on numbers – such as integration.
We can more easily manipulate the numbers than the
chemicals so the results of a particular configuration can be
more easily predicted. However, limitations in the accuracy
of the correspondence might compromise the validity of
conclusions drawn.

However, under the “semantic” approach to scientific ex-
planation (Giere 1997), the hypothesis itself is regarded as
a “model,” that is, it specifies a hypothetical system of which

Webb: Can robots make good models of biological behaviour?

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6 1035

Figure 1. Models and the process of explanation

 18

representation and system representation are also sufficiently strong, it should then be

possible to reverse-represent and reverse-derive the model and its behavior, arriving at

new hypothetical mechanisms which might then be tested through experimentation in the

target system.

This reverse pathway of model use is to some degree implicit in the process often

referred to as “model refinement”, however the explicit use of this pathway in order to

guide experimentation is rare (as evidenced, partly, by the fact that it doesn’t show up in

Webb’s presentation shown in Figure 2-1). This can only work if there is sufficient

structural accuracy in the simulation model; to the degree that the simulation is a “black

box” model, the tweaks in reverse-demonstration necessary to produce the new behavior

will not have any clear use in reverse-representation, even if the behavioral match is

perfect. Such a system will not be useful in making specific hypotheses about the

function of the target system. Given the hypothesis generation as a specific goal of this

work, all of the elements of model usage listed above need to be present at least to some

extent.

2.2 Model Scope

When building a model of a biological system it is easy to get carried away with the

details. Model builders can spend vast amounts of time in the process of model

refinement, building greater complexity into the model in order to get a better match with

the target system in one way or another. Model builders are sometimes even diverted into

studying the properties of the model itself, never actually using it in the originally

intended role as a tool for explaining function in the target system.

 19

Given this potentially endless process of making a “good” model of a biological

system, my goal was to satisfy each of the elements of model usage described above just

well enough to make a reasonable attempt at the reverse-path hypothesis generation, with

respect to the mechanisms of descending influence on changes in leg-level locomotor

behavior. This introduces the problem at the other end of the scale where simplifying

assumptions are too aggressive, making the structural accuracy or behavioral match of

the model too weak to be useful. These concerns dictated a prototyping process whereby

the necessary tools were built as simply as possible and improved as necessary.

 20

3 Background

The work presented here is, of course, founded on a mountain of previous

investigation. Although it does not go back to first references for all of the work

involved, this chapter should provide a reasonable starting point for investigating the

literature related to questions directly addressed in this dissertation, as well as many

related or derivative questions.

3.1 The Walking Task

Walking is a means of locomotion which is ubiquitous among terrestrial animals, and

the matter of considerable technical inquiry; see for example the advanced class

coordinated by (Pfeiffer & Zielinska, 2003). It is a process which has evolved at least

twice, and which shows a number of task restrictions, at least in the animal world, that

are revealed through convergent evolution (Koditschek, Full, & Buehler, 2004;

Ritzmann, Gorb, & Quinn, 2004)

The word “walking” is also applied to non-biological systems, including some very

simple passive dynamic walkers (Collins, Wisse, & Ruina, 2001; Garcia, Chatterjee,

Ruina, et al., 1998). In fact a considerable amount of robotics research has been devoted

to the development of legged machines (see section 3.5). It has long been recognized that

for low-complexity and non-sparse terrain, wheels and treads are likely to be faster, more

efficient, more robust and simpler to implement than legged systems (Raibert, 1986).

However, in complex terrain such as in rocky regions or in rubble, legs offer superior

capabilities as described in (Ritzmann & Quinn, 2003).

 21

At a higher level of abstraction is the review of coordination of “multisegmental

organs” including legs for walkers and spinal cords for lamprey (Büschges, 2005).

Büschges presents evidence that central pattern generators (CPGs) often can be or are

broken down by physical segment, and mentions that we need to know the internal

organization of these CPGs so that we can target and analyze the neural mechanisms for

task-specific flexibility. A CPG is a network function that generates rhythmic motor

output, even without any peripheral input (Grillner, 1975).

The body and various legs of an agile walking system must coordinate with one

another to produce appropriate effective behavior. Equally important is the coordinated

movement of the individual leg segments to carry and propel the body during stance

phase and return to a desired touch-down position in swing phase.

 22

3.2 Insect walking behavior

Figure 3-1 The insects and legs modeled. Top left: the stick insect Carausius morosus; Top right: the
cockroach Blaberus discoidalis, ventral view. Bottom left: joints of the stick insect leg: Thorax-Coxa
(ThC), Coxa-Trochanter (CTr) and Femur-Tibia (FTi). Bottom right: segments and joints of the
cockroach left middle leg. Not labeled in either figure is the Trochanter-Femur (TrF) joint. In the
stick insect this is fused but provides an autotomization (leg disconnect) point; in the cockroach it is a
functioning joint only actuated in one direction (James T. Watson, et al., 2002).

The stick insects Carausius sp. and Culiculina sp. and the cockroaches Blaberus sp.

and Periplaneta sp. are model systems for the investigation of insect walking. Carausius

morosus and B. discoidalis are the species most used for the work in this dissertation. The

animals and some anatomical terms are shown in Figure 3-1. The six legs of insects are

ThC

CTr

FTi

forward

x
y

z

Thorax

Coxa

T
ib
ia

Fem
ur

 23

attached at the thorax, the central element of the insect body consisting of three fused

segments. These segments are sometimes referred to as T1 through T3, T1 meaning

thorax-1, the front (prothoracic) segment, to which the front legs are attached. T2 is the

middle, mesothoracic segment, and T3 is the hind, metathoracic segment.

During walking, each leg goes through a cyclic motion consisting of “stance phase” or

the “power stroke” while the foot is on the ground, and “swing phase” or the “return

stroke” while the foot is in the air. In forward walking, the swing-stance transition

happens at the anterior extreme position (AEP) and stance-swing happens at the posterior

extreme position (PEP).

An early thorough description of behavioral kinematics and ground interaction forces

of the stick insect C. morosus for walking on a horizontal path, horizontal plane, vertical

path, and hanging from a beam, was presented in (Cruse, 1976). An interesting analysis

of the function of the various legs under different situations can be found there. Later,

(Cruse & Bartling, 1995) described more complete kinematics for C. morosus, on a

treadwheel, oiled glass, and free walking on glass.

Behavioral mechanisms of gait coordination in arthropods were described in (Cruse,

1990), and later even distilled for use in robot control design (Cruse, Dean, Muller, et al.,

1991). These detailed behavioral observations have been the basis for gait coordination in

many walking robots, as described in section 3.5.

There has been considerable analysis of the dynamics of fast running and turning in B.

discoidalis; e.g. (Full & Tu, 1990; Jindrich & Full, 1999). Part of this work has shown

that cockroaches apparently use similar whole-body mechanics for running when

compared to other animals of various sizes and numbers of legs (Full & Tu, 1990).

 24

Associated with this work is coverage of stabilization effects in the mechanics of the

animal (Jindrich & Full, 2002; Koditschek, et al., 2004).

Although the whole-body dynamics of running animals appears to be similar over a

very broad range of sizes, the way the motion is generated may differ between scales.

Scaling effects on locomotion and limb control were described in (Hooper, Guschlbauer,

Blümel, et al., 2009); this is a verification of what the mechanical engineer expects about

damping and passive stiffness becoming more important than gravity and inertia as the

system scale decreases.

There has been a buildup of description of fine locomotor behavior and its control in

the cockroach:

Watson and Ritzmann published descriptions of basic kinematics and muscle activity

for primary muscles active during stance in the T2 and T3 legs for slow and fast running

(Watson & Ritzmann, 1998a, 1998b). The cycle-to-cycle variation of slow motor neuron

frequency and the recruitment of fast motor neurons were shown to affect running speed

and (for the slow motor neurons) directional control.

Following investigation began to address “transitional” behaviors necessary for

navigation in the natural world; in particular climbing and turning. In climbing it was

found that below some threshold of obstacle height, no kinematic change in leg motion is

necessary; above that the T2 leg is redirected by changes in kinematics both at the

“alpha” degree of freedom (DOF) at the Thorax-Coxa joint (this is similar to the ThC-1

DOF described in Chapter 5), and Trochanter-Femur rotation (James T. Watson, et al.,

2002). Apparent reflex adjustments are made in other joints in T2 leg, due to the different

 25

physical environment this change in leg posture provides (Watson, Ritzmann, & Pollack,

2002).

Differing motor patterns between walking and turning were investigated in (Mu &

Ritzmann, 2005). Distinct changes in coordination were observed in the T2 leg. In

walking, the CTr and FTi joints extend during stance and flex in swing; in inside turning

(where the leg in question is on the side being turned towards; e.g. the left leg during a

left turn) this relationship is reversed; both CTr and FTi flex during stance and extend

during swing. There is also a change in the order of extension (CTr depression before FTi

extension in walking; reversed in turning). In (Mu, 2007; Rutter, Taylor, Mu, et al., 2007)

a kinematic model (based on work in Chapter 5) was used to find that this reversal of

order and the pose of the ThC joint are both critical in defining the differences in foot

motion between walking and turning.

Force and contact sensing information carry valuable information about the animal’s

interaction with the environment. A review on force influences in control of posture and

walking for both cockroach and stick insect is presented in (Zill, et al., 2004).

3.3 The descending control problem

Of primary interest in the understanding of agile navigation of varying terrain is the

ability of animals to smoothly transition between behaviors requiring substantially

different local behavior of locomotor appendages.

Local control circuits are occasionally considered “reflex” and the descending control

is “voluntary”, however where to draw this line is not always clear, and some would

argue not a proper thing to do in the first place (Prochazka, Clarac, Loeb, et al., 2000).

 26

Nevertheless, “reflex” is a very common term and is used in this document. To help

clarity, I attempt to adhere to the convention used in (Ekeberg, et al., 2004), shown in

Figure 3-3, which differentiates between “timing” and “magnitude” influences. The term

“coordinating influences” is sometimes used here to mean the same thing as “timing

influences” as defined by Ekeberg et al.; this is because time is not actually explicitly

involved in these influences, just the relative phase or coordination of activity.

Also, there is a range of the complexity of neural involvement in system behavior in

locomotion control, from the physical-only dynamic properties of muscles, to low-level

reflexes, to reactive behaviors, to high-level predictive behavior (Prochazka &

Yakovenko, 2002).

The ability of descending influences to change the gains of and even reverse some local

magnitude influences was shown in (Mu & Ritzmann, 2008a), for both inter- and intra-

joint influences. There was a reversal of CTr slow depressor response to stimulation of

the femoral chordotonal organ in a quiescent state. These experiments were done via

gross removal of descending influences; severing all of the connections between the local

thoracic ganglia and the brain. This paper also posed the general reflex cascade

hypothesis, the testing of which was a specific aim of this work. The idea is that the

alteration of a few local reflexes can lead to a different physical state of the leg, thereby

triggering further changes in local influences, resulting in an overall different leg

behavior.

 27

Figure 3-2 Fig. 1 from (Mu & Ritzmann, 2008b), described as “A schematic figure of the reflex

cascade hypothesis on how descending inputs generate inside turning motor pattern.” In that work,

the “low resistance during extension” signal is physically induced by substrate removal and results in

searching behavior of the leg, which is similar to inside turning.

In (Mu & Ritzmann, 2008b) it was demonstrated that physical manipulation can trigger

a change in behavior in the absence of descending control- this is support for the specific

reflex cascade they hypothesized for inside turning, which is shown in Figure 3-2. This

specific cascade depends on magnitude influence responses to leg load, as well as other

unspecified reflexes.

3.4 Stick Insect Leg Control

The stick insect has been used in substantial investigation of joint-level neural control

and the characterization of specific neural pathways. Evidence in the leg muscle control

system of the stick insect suggests that the neuronal control can be subdivided into

several central pattern generators (CPGs). In the stick insect, each joint CPG can generate

a basic alternating activity pattern in antagonistic muscles of a given leg joint. It is

possible to activate these CPGs either pharmacologically or by tactile stimulation of the

300 J Comp Physiol A (2008) 194:299–312

123

of the locust are innervated by two independent neural
circuits responsible for either walking or Xying (Ramirez
and Pearson 1988) and can be switched between them as
needed. Alternatively, the pattern generators could be modi-
Wed from walking patterns to turning patterns in a process
similar to that seen in the crustacean stomatogastric gan-
glion as elements switch from one pattern generation circuit
to another (Meyrand et al. 1991).

In the companion paper we provided a third possibility.
We hypothesized that the transformation from the walking
pattern to the inside turning pattern is generated through
changes in the thoracic sensory reXexes dictated by
descending commands. We demonstrated that descending
activity is able to inXuence local thoracic reXexes in a man-
ner consistent with this hypothesis. However, the hypothe-
sis does not require that each change in the motor pattern
must be dictated by a descending signal. Rather it is proba-
ble that a smaller set of direct changes initiates a cascade of
reXex adjustments leading to the Wnal pattern. That is, the
descending commands from higher centers could produce a
few very important alterations which generate biomechanical
diVerences in movement that, in turn, are suYcient to cause
other local reXexes to move toward a new stable turning
state. If this is the case, one should be able to produce a
similar Wnal pattern of movement, by moving ahead in the
cascade. That is, if one can mimic the initial change that is
dictated by descending commands then one should be able
to complete the cascade and produce the Wnal pattern of
movement even in the complete absence of any descending
commands. In this paper, we will test this second implica-
tion by determining whether a pattern of movements that is
similar to that which we observed during turning in the
inside T2 leg can be initiated without descending input
from the brain.

During tethered turning, both of the T2 legs change their
motor pattern (Mu and Ritzmann 2005). However, the
changes seen in the inside T2 leg are much greater than
those of the outside T2 leg. While the movements of the
outside leg are similar to a slow walking pattern, both
coxa–trochanter (CTr) and femur–tibia (FTi) joints of the
inside leg extend in the swing phase. This pattern is in stark
contrast to walking where both of these joints extend during
stance. During walking, the T2 leg encounters resistance
when the CTr and FTi joints extend during tarsal contact
with the substrate (stance phase). However, the inside T2
leg experiences very little resistance during turning when
those two joints extend with the tarsus moving in the air
(swing phase). Previous kinematic simulations demonstrate
that the rotation of the thorax–coxa (ThC) joint plays an
important role in the transformation to a turning motor pat-
tern (Rutter et al. 2007). This kinematic simulation was
based upon 3D kinematics and assessed the role of each of
the principle leg joints in re-directing the end point of the

leg during turning. It demonstrated that rotation of the ThC
joint is the major contributor to the directional change of
the leg extension from walking to turning. In addition,
important timing changes occur in the onset of CTr and FTi
joint extension as well as in the magnitude of their move-
ments.

A series of alterations also occurs in cockroach climb-
ing. After identifying and evaluating a large block in its
path, the cockroach must generate descending commands
that rotate the ThC joint so that extension of the CTr and
FTi joints now pushes the insect upwards against gravity
rather than forward. This change in posture indirectly gen-
erates quantitative changes in the sensory reXex that adjusts
muscle activity to the needs of climbing (Watson et al.
2002).

In a similar manner, the direct inXuence of descending
commands in turning could also be limited to inXuence
upon a small set of sensory reXexes such as those of the
motor neurons responsible for the actions of the ThC joint
in the inside leg (Fig. 1). By causing a rotation of the ThC
joint prior to extension, the cockroach now lifts the leg
away from the substrate, leading to extension of the CTr
and FTi joints during swing. This critical change in move-
ment could then generate a cascade of sensory reXexes
started by the experience of low resistance during exten-
sion. As campaniform sensilla report lower strain, even as
position detectors report extension, some motor neurons
may increase Wring rate, while others decrease theirs. These
changes in motor activity would generate further proprio-

Fig. 1 A schematic Wgure of the reXex cascade hypothesis on how
descending inputs generate inside turning motor pattern

Descending Inputs

Sensory Reflexes of
 Proximal ThC Joint

Sensory Reflexes
of Other Joints

 Rotation of ThC joint
prior to the leg extension

 CTr and FTi joints
extend during swing phase

Turning Motor
Pattern of Inside

T2 Leg

Low resistance
during extension

 28

animal (Büschges, et al., 2004; Büschges, Schmitz, & Bässler, 1995). Experiments with

pharmacological activation of the leg control network lead to the conclusion that each leg

joint (ThC, CTr, FTi; see Figure 3-1) can be associated with an individual CPG. This is

based on the observation that the joint motor neurons show alternating activity

(oscillations) under pharmacological activation but do not show complete cycle-to-cycle

coupling between the oscillations of motor neuron pools associated with different joints.

Signals of sense organs can a) change the probability of the CPG to stay in or transition

to a given state (timing influences) or b) shape the amplitude of the motor output

(magnitude influences) (Büschges, 2005).

To generate a stepping movement the activity of these joint control CPGs must be

coordinated. This coupling is achieved primarily by means of sensory feedback (Akay,

Bässler, Gerharz, et al., 2001; Akay, Haehn, Schmitz, et al., 2004; Bucher, Akay,

DiCaprio, et al., 2003; Hess & Büschges, 1999), although central coupling does have

some effect in isolated nervous systems (Büschges, et al., 1995). Any central coupling is

too weak to fully couple the joint CPGs into activity resembling “fictive locomotion”, at

least in these preparations (Ekeberg, et al., 2004). Usually leg proprioceptors can be

attributed to a specific leg segment and therefore be associated with the joint that moves

this segment. If a sense organ influences the CPG of its associated segment, we call this

an intra-joint influence, if it affects the activity in other joints it is an inter-joint influence.

The femoral chordotonal organ (FCO) for example is a stretch receptor inside the femur

in both stick insects and cockroaches. It is able to signal parameters of the joint geometry

like joint angle or angular change (Bässler, 1993). Signals from the FCO in the stick

insect do not only influence the CPG of the FTi joint itself (Bässler & Büschges, 1998)

 29

but also the motor-activation of the adjacent (CTr) joint (Bucher, Akay, DiCaprio, et al.,

2003; Hess & Büschges, 1999). These inter-joint influences are an important mechanism

of segment coordination.

The role of individual leg sense organs in the control of motor output for stepping has

been studied in great detail (Bässler & Büschges, 1998; Büschges, 2005). In order to cope

with the complexity of this topic, many experiments have been performed using so-called

”reduced preparations”. In these preparations one tries to approach operational isolation

of the behavior of interest by inactivation or removal of dispensable biological

functionality. In the case of the stick insect a popular reduced experimental preparation is

the single leg preparation, with only one leg remaining attached to the animal (Bässler,

Rohrbacher, Karg, et al., 1991; Fischer, Schmidt, Haas, et al., 2001). Often the remaining

leg is further limited in its degrees of freedom by preventing forward and backward

movements, referred to as the restricted single leg preparation. This experimental setup

creates a movement that is sometimes referred to as ”sideways walking”.

In order to change the coordination between the joint CPGs, and thereby the resulting

behavior, it is necessary that the sensory coupling be changeable. A load influence on the

timing of the ThC joint CPG has been shown by (Akay, Ludwar, Goritz, et al., 2007) to

reverse between forward and backward walking behaviors.

A synergistic interaction of load and joint angle sensory signals was described in (Akay

& Büschges, 2006). Also a reversal of magnitude reflex/influence between quiescent and

active states; also previously known “active reaction” of (Bässler, 1988).

 30

3.4.1 The Synthesis of Ekeberg, Blümel and Büschges

The biological results above were the basis for the development of a new model of leg

movement control by (Ekeberg, et al., 2004). In the middle leg of C. morosus, a number

of neural pathways were known which defined sensory coordinating influences capable

of switching the activity in the joint CPGs. During stick insect stepping behavior, these

CPGs behave as bi-stable circuits, specifying either flexion or extension in the associated

joint, as generally represented in Figure 3-3. Note in that figure the qualitative difference

between “timing” influences, which affect the selection of the currently active motor

Figure 3-3 Figure 1 B and C from (Ekeberg, et al., 2004). The caption is as follows: “…The two

possible states are represented by the two circles. Motoneuron pools are represented by the

rectangular components. (B) The used notation scheme demonstrating the influence of a sense organ

(SO) on state transitions of a neural circuit, referred to as ‘timing influences’. In the example shown,

signals (movement, position or strain) detected by the SO initiate or assist a fictive state A. The

positive arrow means that the system will react to the signal with an (immediate) transition into state

A. If necessary it will therefore leave state B. (C) This figure shows an example for the second class of

influences described, here called ‘magnitude influences’. Signals from the sense organ (SO) affect the

output activation level of the joint controlling system in a specific way: Proprioceptive information

from a sense organ (SO) e.g. movement or position data, will in this case increase the state A effector

activity and decrease the magnitude of effects associated with state B.” signals during extension that initiate depressor and
terminate levator activity (Table 1 B).

2. Movement (velocity) signals from the fCO elicited by
flexion of the tibia are capable of inducing activity in
flexor tibiae motoneurons and inhibiting extensor tibiae
motoneurons, when the locomotor system is active
(Table 1 C; Bässler, 1976, 1988), thereby generating a
positive feedback signal, which is terminated by position
signals from the fCO signaling a fairly flexed tibiae
position (Table 1 D). Recent studies on another insect
species, the locust (Knop et al., 2001) suggest that this
motor output is mediated via a direct influence of flexion
signals from the fCO onto the central pattern generating
network of the FT-joint.

3. Load or strain on the leg, which occurs during stance
when the leg is on the ground, is detected by the trCS and
cause the neural controller to terminate protractor coxae
and initiate retractor coxae activity (Table 1 E; Akay
et al., 2004). The reverse action is taken when a
decreased load is detected by the trCS (Table 1 F).

4. Load or strain on the leg during stance also stimulate the
fCS which has the effect of terminating extensor tibiae and
initiating flexor tibiae activity (Table 1 G; Akay et al.,
2001). The reverse is true, however, to a weaker extent,
when a decrease in load is detected by the fCS (Table 1 H).

5. Another powerful influence has been described on the
behavioral level (Cruse, 1985), for which the neural
substrate has not been identified yet: The occurrence of
proprioceptive signals from the leg, simultaneously signal-
ling an advanced retraction and decreasing load has the
effect of initiating a transition from stance to swing, i.e. to
activate levator trochanteris and protractor coxae and
extensor tibiae motoneurons, while inactivating retractor
coxae anddepressor trochanterismotoneurons.When either

load receptors or TC-joint position receptors are manipu-
lated to constantly send a signal corresponding to an
ongoing stance, the stance-to-swing transition is blocked
(Bässler, 1977, 1979). This indicates that both signals are
required, but the detailed mechanism of interaction or
weighting of load and position information is still not
known. This influence represents an additional mechanism,
which contributes to the termination of stance and initiates
swing. We decided to include this in the simulation, since
the alternativemechanisms rely on load information, which
is affected by the single leg experimental setup.

The following sensory influences have been identified to
affect specifically the magnitude of motor activity for
particular leg joints:

1. Movement and position signals from the fCO affect the
magnitude of activity in trochanteral motoneurons such
that the activity of the levator trochanteris increases and
the activity of the depressor trochanteris decreases
towards more flexed FT-angles (Table 1 I; Hess and
Büschges, 1997; Bucher et al., 2003). The reverse is true
for extension signals from the FT-joint.

2. Movement and position signals from the sensory
receptors at the CT-joint, e.g. the trochanteral hair plates
(trHP) and one internal levator receptor organ (Schmitz,
1986; Schmitz and Schöwerling, 1992) affect the
magnitude of motoneuron activity of the CT-joint by
negative feedback control: levation of the trochanter-
ofemur increases depressor motoneuron activity and
decreases levator motoneurons activity. The reverse is
true for depression signals. This influence is considered
to be a primary component underlying height control in

Fig. 1. (A) Schematic drawing of the bistable circuits controlling the three simulated leg joint controllers: thorax–coxa, coxa–trochanter and femur–tibia joint

(based on Büschges et al., 1995). The two possible states are represented by the two circles. Motoneuron pools are represented by the rectangular components.

(B) The used notation scheme demonstrating the influence of a sense organ (SO) on state transitions of a neural circuit, referred to as ‘timing influences’. In the

example shown, signals (movement, position or strain) detected by the SO initiate or assist a fictive state A. The positive arrow means that the system will react
to the signal with an (immediate) transition into state A. If neccessary it will therefore leave state B. (C) This figure shows an example for the second class of

influences described, here called ‘magnitude influences’. Signals from the sense organ (SO) affect the output activation level of the joint controlling system in a

specific way: Proprioceptive information from a sense organ (SO) e.g. movement or position data, will in this case increase the state A effector activity and

decrease the magnitude of effects associated with state B.

Ö. Ekeberg et al. / Arthropod Structure & Development 33 (2004) 287–300 289

 31

pattern, and “magnitude” influences, which affect the strength of the associated motor

neuron activation.

Central coupling is weak enough to be ignored under these circumstances. It was

hypothesized that these influences were sufficient to generate stepping. They constructed

a set of state machines whose transition rules implemented these influences, and used that

controller in a dynamic computational model of the stick insect middle leg. The resulting

model generated stepping motion by going through a repeating series of motions as

shown in Figure 3-4. This successfully demonstrates the sufficiency of these combined

mechanisms to explain forward stepping in the biological leg to a large degree. They

modified the controller to successfully generate stepping in models of the front and rear

legs as well, making use of a timing influence reversal to qualitatively change leg motion

Figure 3-4 Figure 3B from (Ekeberg, et al., 2004). Their description of the figure is summarized as
follows: “Diagrams showing the sequence of events … (B) Normal walking of the middle leg. … time
progresses from left to right and dashed vertical lines indicate when feedback from sensors causes a
state transition. The stick figure on top illustrates the mechanical situation whenever a state
transition in the neural circuits occurs, with arrows indicating movement direction and a red circle
indicating the sensed event. At the bottom of the dashed line the sensed signal along with the relevant
receptor is named. The arrows horizontally passing these dashed vertical lines show how the bistable
circuits are affected by the sensed event … Notice that these influences originate from rectangular
boxes, illustrating effectors (motoneurons/muscles), and terminate on circles, illustrating the bistable
circuits … Colors are used to denote joints: TC is blue, CT is red and FT is green.”

 32

in the rear leg. Since the controller was explicitly and structurally derived from known

neural pathways, the changes for front and back legs represented specific hypothesis

regarding the neural function of the animal in those legs.

3.5 Stepping control methods in robots

Biological systems have been a source of inspiration for robotic walking machines at

varying levels of abstraction, ranging from the highly abstracted Whegs! (Allen, Quinn,

Bachmann, et al., 2003) and RHex (Altendorfer, Moore, Komsuolu, et al., 2001) vehicles,

through less abstract but still highly simplified systems like MechaRoach robots

(Boggess, Schroer, Quinn, et al., 2004; Wei, Quinn, & Ritzmann, 2004), to more flexible

and complex systems, including Robot II (Espenschied & Quinn, 1994; Espenschied,

Quinn, Beer, et al., 1996), the TUM walking machine (Pfeiffer, Weidemann, & Eltze,

1994) the Tarry series (Buschmann, 2000a, 2000b), the Lauron series (Gassmann, Scholl,

& Berns, 2001), and BILL-Ant-p (Lewinger, 2005; Lewinger, Branicky, & Quinn, 2005).

These systems use methods of varying complexity for coordination between and within

the legs. In Whegs! and MechaRoach both inter- and intra-leg coordination are

accomplished through mechanical coupling. Indeed, in both Whegs! and RHex systems

the intra-leg coordination problem is solved by using single-link appendages. While these

systems are outstanding in their simplicity and physical robustness, there is a limit to the

complexity of behavior such systems can exhibit, and a corresponding limit to the

complexity of locomotion tasks they can solve.

Coordination between mechanically uncoupled legs to produce gaits has been

successfully implemented (Espenschied, et al., 1996; Espenschied, Quinn, Chiel, et al.,

 33

1993; Lewinger, et al., 2005; Pfeiffer, et al., 1994) using rules based on animal behavior

(Cruse, 1990). Intra-leg coordination in such systems has most typically been done using

inverse kinematics (Choi, Rutter, Kingsley, et al., 2005; Espenschied, et al., 1996;

Lewinger, et al., 2005; Nelson & Quinn, 1999; Pfeiffer, et al., 1994). While this is

conceptually straightforward (unless kinematically redundant as in (Choi, et al., 2005;

Nelson, Quinn, Bachmann, et al., 1997)), dealing with dynamic environments and

perturbations can be a matter of considerable effort; explicit desired foot paths and

explicit handling of obstacles is usually required. In addition, these methods require

trigonometric and other computations that are often beyond the capability of

microcontrollers found in small-scale robots. As a result, such robots are either larger, to

house on-board processors, or require off-board, tethered control systems, which can

limit mobility and usable range of operation. Other solutions for intra-leg coordination

are based on neurally-inspired pattern generators whose action can be modified by

sensory input, e.g. by Wadden & Ekeberg (Wadden & Ekeberg, 1998; Wadden &

Ekeberg, 1999) or more loosely in Walknet (Cruse, Kindermann, Schumm, et al., 1998;

Dürr, et al., 2003). The computational complexity of such systems can also be relatively

high, however, since they may require many simultaneous integrations to simulate the

artificial neural dynamics. Conceptually between these methods are arrangements such as

that used in Genghis (Brooks, 1989) where the computational elements are loosely based

on neural function, and the network organization is arranged in a more engineering-like

decomposition of events and functions.

 34

3.6 Robotic control architectures

It may be useful for the reader to compare the control description presented in Chapter

4 with previously developed robotic control architectures, some of which are described

here.

3.6.1 Three-layer architectures

Somewhere in between the “old fashioned” serial Sense-Plan-Act cycle of control

(Nilsson, 1980) and the “new approach” using reactive agents and subsumption

architecture (Brooks, 1986) are three-layered architectures (Gat, 1998). These typically

consist of a controller/reactive layer on the “bottom” executing low-level behaviors, often

like “go forward” and “avoid obstacle”, a sequencing layer in the middle choosing which

(optional) behavior(s) is/are active for more complex but immediate tasks like path

following, and a deliberative layer for high-level things like path planning, goal selection,

mapping, and so on.

Figure 3-5 Schematic of a three-layer architecture. Sensory and control data can pass between layers,

and is usually more compressed or symbolic at higher levels. Usually all three levels are processing

simultaneously. Note that this is not the same as either of the control architectures shown in Figure

3-6.

High Level

Mid Level

Low Level

Deliberate

Sequencing

Reactive

 35

3.6.2 Subsumption architecture and the use of finite state machines

A finite state machine is a model of computation, in our usage more usefully thought of

as a computational element, which has a set of states, a transition function which maps

current state and input to the next state, an input alphabet, and a start state (Black, 2008).

Systems which are controlled by computers but exist in the physical world are usually

actually “hybrid dynamic systems” (Branicky, 1997; Gollu & Varaiya, 1989). These

systems are often modeled as either a discrete event system or as a continuous system,

but it can be beneficial (and is more strictly correct) to take account of the hybrid nature.

There has been work developing tools for the representation and analysis of such systems

(Branicky, 1995).

An overview of reactive robotics and the use of subsumption architecture is given in

(Brooks, 1991). This includes a description of the concepts of situatedness: an agent

having immediate perception only, or at least having the immediate perception be more

important in choosing actions than abstract models, and embodiment: agent actions are

“part of a dynamic with the world” and produce immediate feedback.

The initial subsumption architecture work is described in (Brooks, 1986); this began a

revolution in mobile robots. The subsumption architecture is a hierarchy of increasingly

complex and lower priority tasks, which can subsume (take over) the behavior of a lower-

level module by suppressing its output or the input it provides to other specific lower-

level modules. Brooks assembled these controllers using augmented finite state

machines; state machines with instance variables and four types of states: output, side

effect, conditional dispatch and event dispatch. A graphical comparison between

 36

subsumption architecture and the more old-fashioned sense-plan-act cycle is shown in

Figure 3-6.

Figure 3-6 Reproduction of Fig. 2 from (Brooks, 1991). Top: a sense-plan-act architecture of

functional modules; bottom: a subsumption architecture of task-achieving behaviors.

Genghis was a vaguely insect-inspired robot demonstrating the use of subsumption

architecture and finite state machine control of walking in a six-legged robot (two DOF

per leg) (Brooks, 1989). Alarm clocks were added to the augmented finite state machines.

Position control was applied at the joints, with higher-level input from force feedback,

collision sensing and tactile sensors. Genghis’ arrangement of augmented finite state

machines for control is shown in Figure 3-7.

Pengi Pengo

central system

-E
o 0a 0

Fig 1) . h eg ytm(1)pae ie aecleeg.Teconro

3 ~~~~uE

systeconsstedof a newrcflgcgae,ognzditoavsaoytm

C c

work and a)abtrsuntok

0 E ~~~~~~~E
..L 0a cu

Cu 0~~~~

Fig. 1. The Pengi system (21) played a video game caled Pengo. The control

system consisted of a network of logic gates, organized into a visual system,
a central system, and a motor system. The only state was within the visual

system. The network within the central system was organized into three

components: an aspect detector subnetwork, an action suggestor subnet-

work, and an arbiter subnetwork.

and arbiters. The system plays the game from the same point of view

as a human playing a video game, not from the point of view of the

protagonist within the game. However, rather than analyze a visual

bit map, the Pengi program is presented with an iconic version. The

VRP implements a version of Uliman's visual routines theory (28),
where markers from a set of six are placed on certain icons and

follow them. Operators can place a marker on the nearest opponent,
for example, and it will track that opponent even when it is no

longer the nearest. The placement of these markers was the only
state in the system. Projection operators let the player predict the

consequences of actions, for instance, launching a projectile. The

results of the VRP are analyzed by the first part of the central

network and describe certain aspects of the world. In the mind of the

designer, output signals designate such things as "the protagonist is

moving," "a projectile from the north is about to hit the protago-
nist', and so on. The next part of the network takes Boolean

combinations of such signals to suggest actions, and the third stage
uses a fixed priority scheme (that is, it never learns) to select the next

action. The use of these types of deictic representations was a key

move away from the traditional Al approach of dealing only with

named individuals in the world (for instance, opponent-27 rather

than the deictic the-opponent-which-is-closest-to-the-protagonist, whose

objective identity may change over time) and lead to very different

requiremc6nts on the sort of reasoning that was necessary to perform

well in the world.

Rosenschein and Kaelbling used a robot named Flakey, which

operated in the regular and unaltered office areas of SRI in the

vicinity of the special environment for Shakey that had been built

two decades earlier. Their architecture was split into a perception

subnetwork and an action subnetwork. The networks were ultimate-

ly constructed of standard logic gates and delay elements (with

feedback loops these provided the network with state), although the

programmer wrote at a much higher level of abstraction-in terms

of goals that the robot should try to satisfy. By formally specifying

the relationships between sensors and effectors and the world, and

by using off-line symbolic computation, Rosenschein and Kael-

blinges high-level languages were used to generate provably correct,

real-time programs for Flakey. The technique may be limited by the

computational complexity of the symbolic compilation process as

the programs get larger and by the validity of their models of sensors

and actuators.

Brooks developed the subsumption architecture, which deliber-

ately changed the modularity from the traditional AM approach.

Figure 2 shows a vertical decomposition into task achieving behav-

iors rather than information processing modules. This architecture

was used on robots which explore, build maps, have an onboard

manipulator, walk, interact with people, navigate visually, and learn

to coordinate many conflicting internal behaviors. The implemen-

tation substrate consists of networks of message-passing augmented

finite state machines (AFSMs). The messages are sent over pre-

defined "wires" from a specific transmitting to a specific receiving

AFSM. The messages are simple numbers (typically 8 bits) whose

meaning depends on the designs of both the transmitter and the

receiver. An AFSM.has additional registers which hold the most

recent incoming message on any particular wire. The registers can

have their values fed into a local combinatorial circuit to produce

new values for registers or to provide an output message. The

network of AFSMs is totally asynchronous, but individual AFSMs

can have fixed duration monostables which provide for dealing with

the flow of time in the outside world. The behavioral competence of

the system is improved by adding more behavior-specific network to

the existing network. This process is called layering. This is a

simplistic and crude analogy to evolutionary development. As with

evolution, at every stage of the development the systems are tested.

Each of the layers is a behavior-producing piece of network in its

own right, although it may implicitly rely on the presence of earlier

pieces of network. For instance, an explore layer does not need to

explicitly avoid obstacles, as the designer knows that the existing

avoid layer will take care of it. A fixed priority arbitration scheme is

used to handle conflicts.

These architectures were radically different from those in use in

the robotics community at the time. There was no central model of

the world explicitly represented within the systems. There was no

implicit separation of data and computation-they were both dis-

tributed over the same network of elements. There were no pointers,

and no easy way to implement them, as there is in symbolic

programs. Any search space had to be a bounded in size a priori, as

search nodes could not be dynamically created and destroyed during

a search process. There was no central locus of control. In general,

the separation into perceptual system, central system, and actuation

system was much less distinct than in previous approaches, and

indeed in these systems there was an intimate intertwining of aspects

0 0

sensors_ -,*'X-actuators
0

C

00

manipulate the world

build maps

sensors explore -*actuators

avoid hitting things

locomote

Fig. 2. The traditional decomposition for an intelligent control system
within Al is to break processing into a chain of information processing
modules (top) proceeding from sensing to action. In the new approach
(bottom) the decomposition is in terms of behavior-generating modules
each of which connects sensing to action. Layers are added incrementally,
and newer layers may depend on earlier layers operating successfully, but do
not call them as explicit subroutines.

13 SEPTEMBER 1991 ARTICLES 1229

 37

Figure 3-7 Reproduction of Fig. 4 from (Brooks, 1989). The 57 augmented finite state machines in the
subsumption network for controlling Genghis. Elements with solid bands are unique; striped bands
are repeated twice for specific legs, and the rest are each repeated six times; once for each leg.

3.7 Robotic Models of Biological Systems

A detailed framework for the description of models, specifically geared towards robotic

models of biological behavior/systems, is provided by (Webb, 2001). The seven

dimensions of model description she presents (as shown in Figure 3-8) are:

1) Biological Relevance: Is the biological target system clearly identified? Does the

model generate hypotheses for biology?

2) Level: What are the base units of the model? (e.g. atoms, individuals, populations)

3) Generality: How many systems does the model target?

4) Abstraction: How many elements and processes from the target are included in the

model? (more detailed models are less abstract)

sesr prowl pic

betam beta
fre balance feeler

trigger ~~~~~ollide

leg ~~~~~~~alpha down
~~~~~advanc 

alpha 
balance a lpha 

Fig. 4. The subsumption network to control Genghis consists of 57 
augmented finite state machines, with "wires" connecting them that pass 
small integers as messages. The elements without bands on top are repeated 
six times, once for each leg. The network was built incrementally starting in 
the lower right corner, and new layers were added, roughly toward the upper 
left corner, increasing the behavioral repertoire at each stage. 

sensors to direct its search. All the AFSMs had sensor values as their 

only inputs and, as output, actuator commands that then went 

through a fixed priority arbitration network to control the arm and 

hand. In this case, there was no communication between the 

AFSMs, and the system was completely reactive to its environment. 

Malcolm and Smithers (36) at Edinburgh report a hybrid assembly 

system. A traditional Al planner produces plans for a robot manip- 

ulator to assemble the components of some artifact, and a behavior- 

based system executes the plan steps. The key idea is to give the 

higher level planner robust primitives which can do more than carry 

out simple motions, thus making the planning problem easier. 

Representation is a cornerstone topic in traditional AI. Mataric at 

MIT has recently introduced active representations into the sub- 

sumption architecture (37). Identical subnetworks of AFSMs are the 

representational units. In experiments with a sonar-based office- 

environment navigating robot named Toto, landmarks were broad- 

cast to the representational substrate as they were encountered. A 

previously unallocated subnetwork would become the representa- 

tion for that landmark and then take care of noting topological 

neighborhood relationships, setting up expectation as the robot 

moved through previously encountered space, spreading activation 

energy for path planning to multiple goals, and directing the robot's 

motion during goal-seeking behavior when in the vicinity of the 

landmark. In this approach the representations and the ways in 

which they are used are inseparable-it all happens in the same 

computational units within the network. Nehmzow and Smithers 

(38) at Edinburgh have also experimented with including represen- 

tations of landmarks, but their robots operated in a simpler world of 

plywood enclosures. They used self-organizing networks to repre- 

sent knowledge of the world, and appropriate influence on the 

current action of the robot. Additionally, the Edinburgh group has 

done a number of experiments with reactivity of robots, and with 

group dynamics among robots using a Lego-based rapid prototyp- 

ing system that they have developed. 

Many of the early behavior-based approaches used a fixed priority 

scheme to decide which behavior could control a particular actuator 

at which time. At Hughes, an alternative voting scheme was 

produced (39) to enable a robot to take advantage of the outputs of 

many behaviors simultaneously. At Brussels a scheme for selectively 

activating and de-activating complete behaviors was developed by 

Maes (40), based on spreading activation within the network itself. 

This scheme was fuirther developed at MIT and used to program 

Toto amongst other robots. In particular, it was used to provide a 

learning mechanism on the six-legged robot Genghis, so that it 

could learn to coordinate its leg lifting behaviors, based on negative 

feedback from falling down (41). 

Very recently there has been work at IBM (42) and Teleos Research 

(43) using Q-learning (44) to modify the behavior of robots. There 

seem to be drawbacks with the convergence time for these algorithms, 

but more experimentation on real systems is needed. 

A number of researchers from traditional robotics (45) and Al 

(46, 47) have adopted the philosophies of the behavior-based 

approaches as the bottom of two-level systems as shown in Fig. 5. 

The idea is to let a reactive behavior-based system take care of the 

real time issues involved with interacting with the world while a 

more traditional Al system sits on top, making longer term executive 

decisions that affect the policies executed by the lower level. Others 

(48) argue that purely behavior-based systems are all that are 

needed. 

Evaluation 

It has been difficult to evaluate work done under the banner of the 

new approaches to robotics. Its proponents have often argued on 

the basis of performance of systems built within its style. But 

performance is hard to evaluate, and there has been much criticism 

that the approach is both unprincipled and will not scale well. The 

unprincipled argument comes from comparisons to traditional 

academic robotics, and the scaling argument comes from traditional 

Al. Both these disciplines have established but informal criteria for 

what makes a good and respectable piece of research. 

Traditional academic robotics has worked in a somewhat perfect 

domain. There are CAD-like models of objects and robots, and a 

modeled physics of how things interact (16). Much of the work is in 

developing algorithms that guarantee certain classes of results in the 

modeled world. Verifications are occasionally done with real robots 

(18), but typically those trials are nowhere nearly as complicated as 

the examples that can be handled in simulation. The sticking point 

seems to be in how well the experimenters are able to coax the 

physical robots to match the physics of the simulated robots. 

For the new approaches to robotics, however, where the emphasis 

is on understanding and exploiting the dynamics of interactions 

with the world, it makes sense to measure and analyze the systems as 

they are situated in the world. In the same way modern ethology has 

prospered by studying animals in their native habitats, not just in 

Skinner boxes. For instance, a particular sensor, under ideal exper- 

imental conditions, may have a particular resolution. Suppose the 

sensor is a sonar. Then to measure its resolution an experiment will 

be set up where a return signal from the test article is sensed, and the 

resolution will be compared against measurements of distance made 

with a ruler or some such device. The experiment might be done for 

a number of different surface types. But when that sensor is installed 

on a mobile robot, situated in a cluttered, dynamically changing 

world, the return signals that reach the sensor may come from many 

possible sources. The object nearest the sensor may not be made of 

one of the tested materials. It may be at such an angle that the sonar 

pulse acts as though it were a mirror, and so the sonar sees a 

secondary reflection. The secondary lobes of the sonar might detect 

something in a duttered situation where there was no such inter- 

ference in the clean experimental situation. One of the main points 

of the new approaches to robotics is that these effects are extremely 

important on the overall behavior of a robot. They are also 

extremely difficult to model. So the traditional robotics approach of 

proving correctness in an abstract model may be somewhat mean- 

ingless in the new approaches. We need to find ways of formalizing 

13 SEPTEMBER 1991 ARTICLES 1231 



 38 

5) Structural Accuracy: Is the model a true representation of the target? How well do 

the mechanisms in the model reflect the real mechanisms in the target? 

6) Match: To what extent does the model behave like the target? 

7) Medium: What is the simulation built from? (e.g. symbolic, computer simulation, 

physical implementation) 

The interested reader should consult this reference for a complete treatment. The 

definition of “model” used here has already been addressed in section 2.1. 

 

Figure 3-8 Dimensions of model description, each expressed from identity to loose association with 

the target system. Reproduction of Figure 2 from (Webb, 2001). 

A compendium of biorobotics models is presented in (Webb, 2001), but a few specific 

examples are provided here:  

Robot I (Espenschied, et al., 1993) was the first robot behavioral model of gait 

coordination, based on the behavioral model of stick insect behavior from (Cruse, 1990). 

This was followed by the TUM robot (Pfeiffer, et al., 1994) and the Tarry series 

models that operate in the same Sahara environment (Lam-
brinos et al. 1997; 2000; Moller et al. 1998). Insects can use
the polarisation pattern of the sky as a compass, with three
“POL” neurons in the brain integrating the response from
crossed-pairs of filters at three different orientations. This
sensor-neural morphology has been duplicated in the robot.
Two different models for extracting compass direction were
considered: a “scanning” mechanism that rotates to find a
peak response which indicates the solar meridian (as had
been previously proposed for the ant); and a novel “simul-
taneous” mechanism that calculates the current direction
from the pattern of neural output. The “simultaneous”
mechanism was substantially more efficient as the robot (or
ant) does not need to rotate 360 degrees each time it wants
to refer to the compass. This compass was successfully used
in a path integration algorithm, reducing the error in the ro-
bot’s return to its starting location.

A further development of the robot allowed the testing
of hypotheses about landmark navigation. A conical mirror
placed above a camera enabled the robot to get a 360 de-
gree view of the horizon comparable to that of the ant. The
“snapshot” model proposed by Cartwright and Collett 1983
was implemented first: this matches the landmarks in a cur-
rent view with a stored view, to create a set of vectors whose
average is a vector pointing approximately in the home di-
rection. The ability of this model to return the robot to a lo-
cation was demonstrated in experiments with the same
black cylinders as landmarks as were used for the ant ex-
periments. Further, a simplification of the model was pro-
posed, in which the robot (or animal) only stores an “aver-
age landmark vector” rather than a full snapshot, and it was
shown that the same homing behaviour could be repro-
duced. Möller (2000) recently implemented this in analog
electronic hardware to provide “insights as to how the vi-
sual homing might be implemented in insect brains”
(p. 243), and successfully tested this implementation on a
robot in reproductions of experiments performed on bees
in which landmarks are moved or removed.

3. A robot model of human motor control: Schaal and
Sternad (2001) present a comparison of human and robot
behaviour to analyse the control of motor trajectories. This
is used to addressed a critical question – does the apparent

“2/3 power law” relating endpoint velocity to path curva-
ture in human movement represent an explicit parameter
implemented directly in the nervous system, or is it merely
the by-product of other control mechanisms? The study
measured humans making cyclic drawing motions, and
modelled the behaviour using a seven degree-of-freedom
anthropomorphic robot arm, with PID control of joint
movements based on simple sinusoidal target trajectories.
The frequency, amplitude, and phase of the sinusoids were
estimated from measurements on the human subjects.
Schaal and Sternad found that “As in the human data, for
small perimeter values [the 2/3 law] was produced quite ac-
curately, but, as in the human subjects, the same deteriora-
tion of power law fits were apparent for increasing pattern
size” (p. 67). Moreover, they could explain these deviations
as a consequence of nonlinearities in the kinematic trans-
form from joint control to end-effector trajectories, and ex-
plain the power law as emergent from mechanisms for en-
suring smooth movement in joint space.

It can thus be seen that useful results for biology have
been already been gained from robotic modelling. But it is
still pertinent to ask: Why use robots to simulate animals?
How does this methodology differ from alternative ap-
proaches to modelling in biology? To answer these ques-
tions it is necessary to understand the different ways in
which models can vary, which will now be examined.

3. Dimensions for describing models

Figure 2 presents a seven-dimensional view of the “space”
of possible biological models. If the “origin” is taken to be
using the system itself as its own model (to cover the view
expressed by Rosenblueth & Wiener 1945) as “the best ma-
terial model of a cat is another, or preferably the same, cat”
p. 316), then a model may be distanced from its target in
terms of abstraction, approximation, generality or rele-
vance. It may copy only higher levels of organisation, or rep-
resent the target using a very different material basis, or
only roughly reproduce the target’s behaviour. Exactly what
is meant here by each of the listed dimensions, and in what
ways they are (or are not) related will be discussed in detail

Webb: Can robots make good models of biological behaviour?

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6 1039

Figure 2. Dimensions for describing models



 39 

(Buschmann, 2000a, 2000b) which uses the more fine-grained behavioral basis of 

Walknet (Dürr, Schmitz, & Cruse, 2004). 

Robot III (Bachmann, Nelson, Flannigan, et al., 1997; Nelson, 2002; Nelson & Quinn, 

1999) was kinematically modeled on cockroach behavior, and gait coordination was 

performed using a generalized version of the rules from (Cruse, 1990). Robot V (Choi, et 

al., 2005; Kingsley, Quinn, & Ritzmann, 2003) was similar in intent to Robot III, but 

powered with braided pneumatic actuators. Robot V was used in some attempts at 

biological modeling of cockroach joint/muscle dynamics in (Rutter, Mu, Ritzmann, et al., 

2007). 

A fairly close implementation of cricket phonotaxis sensory circuits has been used as 

input for gross behavior in robots (Webb & Scutt, 2000). This was later extended to more 

abstract models for outdoor embodiment (Horchler, Reeve, Webb, et al., 2004; Reeve, 

Webb, Horchler, et al., 2005). The reproduction of animal motion in dynamically scaled 

models of wings (Dickinson, Lehmann, & Sane, 1999) was done in order to measure the 

physical processes involved; no neural basis or behavioral modeling was involved.  

Probably the best prior example of a neuromechanically based robot is by (Ijspeert, 

Crespi, Ryczko, et al., 2007). This used biologically based and/or hypothesizing CPG 

control circuits with an abstracted but fairly accurate salamander body. They were able to 

address their specific questions regarding the evolution of walking control using position 

control and no modeling of neural sensory feedback. 

The generation of lamprey swimming by central pattern generators was examined by 

(Ekeberg & Grillner, 1999) in a computational neuromechanical model. This and similar 

work was a precursor to the above work and the AmphiBot lamprey/snake robot (Crespi, 



 40 

Badertscher, Guignard, et al., 2004). The computational model showed distinct 

improvement of behavior when perturbed when segment-level sensory feedback was 

added. This work also investigated mechanisms for generating different behaviors using 

brainstem/descending input (though more of a continuum here than for stepping).  



 41 

4 Sensory Coupled Action Switching Modules 

4.1 The basis in biology 

The implementation of controllers capable of generating insect stepping behavior in the 

same manner as described by (Ekeberg, et al., 2004), namely through a set of sensory-

coupled pattern generators as described in section 3.4.1, led to the development of 

Sensory Coupled Action Switching Modules (SCASM) as a control concept in its own 

right. This chapter first presents the development of the concept from its biological basis. 

A number of examples of the application of these tools for the description and use of this 

concept in modeling and control, particularly with respect to the elements of usage 

described in section 2.1, are then presented. These tools and examples will be used and 

referred to in the later chapters on model construction and experimentation. 

4.1.1 Stick Insect Controller Abstraction 

The model controller from (Ekeberg, et al., 2004) was the basis for developing a new 

system of leg movement control which consists of independent joint control systems. In 

this system each joint controller is a bi-stable pattern generator, and the coordination task 

of each joint pattern generator is to determine whether to be in the joint’s flexion or 

extension state. To make this decision the joint controller has access to specific sensor 

data as in the animal, but it has no direct central information about the state of other joint 

controllers. This reflects the effective lack of central coupling in the biological archetype. 



 42 

 

 

Figure 4-1 Diagram of geometry and control of the simulated stick insect middle leg, showing ThC 

(Thoraco-Coxal) protraction and retraction, CTr (Coxa-Trochanter) levation and depression, and 

FTi (Femur-Tibia) flexion and extension. The conditions used by Ekeberg et al. for transitions 

between states are shown adjacent to each transition arrow. The leg segments, from the body 

outward, are the coxa, femur and tibia. Taken from (Lewinger, Rutter, Blümel, et al., 2006) 

If the joint pattern generators are implemented as finite state machines, as was done in 

(Ekeberg, et al., 2004), it is possible to express each pattern generator’s behavior as a set 

of Boolean decision rules in the following form: 

if (sensor-datax > thresholdx) then 

state = flexion 

else if (sensor-datay > thresholdy) then 

state = extension 

else 

state = previous_state 

 

A graphical representation of these transition rules for each of the joint pattern 

generators in the stick insect model is shown in Figure 4-1. In the case of the stick insect 

the appropriate rules for each joint can be derived almost completely from the literature; 

only the threshold values have to be adjusted to function with a particular leg geometry.  

This description of the stick insect model controller has been variously presented in 

(Lewinger, et al., 2006; Rutter, Lewinger, Blümel, et al., 2007; Rutter, Lewinger, Taylor, 

et al., 2006), and applied to the several robotic legs there in addition to the dynamic 

simulation of (Ekeberg, et al., 2004). The extension of these concepts has led to the 

current understanding of SCASM presented below. 

FLX LEVPRO EXT DEPRET
ThC

ThC Joint FTi Joint CTr JointCTr
FTi

FTi = FTi Angle and Ground Contact

forward

x
y

z

Thorax
FTi < FTi Angle or ThC < ThC Angleno Ground Contact

FTi > FTi Angle or no Ground Contact FTi < FTi AngleFoot Contact



 43 

4.2 General system concept 

A SCASM control system consists of a set of action switching modules, each of which 

has some direct influence on a subset of the entire system to be controlled. In the example 

of the stick insect leg in Figure 4-2 A, the module shown controls the action of the 

Femur-Tibia joint; a subset of the entire leg. Each action switching module has associated 

with it a set of actions. An action describes some effect on the dynamics of the system 

subset associated with its module. In this example, the FTi joint has a single degree of 

freedom, and it is natural to consider one action which flexes the joint (FLX) and another 

which extends it (EXT). The module is then a control unit which switches between these 

actions, making it an Action Switching Module. In order to avoid confusion with the term 

Algorithmic State Machine, action switching modules will be referred to simply as 

“Modules”, rather than “ASMs”. 

  

Figure 4-2 A) The Femur-Tibia Action Switching Module on the stick insect middle leg (entire 

animal shown in inset). B) Sensory-flow diagram of the entire leg (as implemented in this work). 

Though the control actually takes place in the thoracic ganglion or computer, conceptually the action 

switching modules are considered to be located at their associated joints. 

The dynamics of an action can be quite complex. In the FTi joint example, the relevant 

action output is the torque and/or movement that results at that joint.  One can consider 

the dynamics of an action to consist both of the “neural-level” control system defined 



 44 

locally by the action, in concert with the “mechanical-level” dynamic response to the 

neural-level system outputs, as represented in Figure 4-3. The neural-level dynamics of 

the action can include any amount of signal processing and complexity we might 

associate with the term “control system”, including sensory feedback and multiple control 

inputs. The mechanical-level dynamics can be similarly complex, but may not change 

 

Figure 4-3 Interaction of neural-level and mechanical-level dynamics at a single joint. The 

neuromuscular transform (Brezina, Orekhova, & Weiss, 2000; Hooper, Brezina, Cropper, et al., 

1999) and sensory transduction are where the two regimes meet. Neural-level dynamics can be 

modified by, e.g., interneuron function. Mechanical-level dynamics can usually be considered 

constant; but are modified by environmental interaction. 

when the action switches at a module. Mechanical-level dynamics can include simulated 

mechanics as well as a real physical plant. In the FTi joint example, we might expect 

each action to define a set of muscle activation rules for each of the muscles at the joint. 

These rules could then use both sensory inputs and neural-level state information from 

Muscle

Ganglion

Joint

Environmental

Interaction

Sensory Feedback

Motor Commands

Neural-level 

dynamics

Mechanical-level 

dynamics

Higher Level Control



 45 

other parts of the animal in order to generate the inputs to the muscles. Meanwhile, the 

joint geometry, gross muscle properties, leg mass and damping do not change. 

In a SCASM system, the switching between actions at a module is influenced by 

sensory signals, which can be affected by the actions at other modules. These inter-

module influences couple the modules via sensory feedback, making the system a set of 

Sensory Coupled Action Switching Modules. The behavior of the entire system depends 

on the strength and sense of the inter-module connections, together with the neural-level 

dynamics of each action, the mechanical-level dynamics of the entire system (including 

mechanical coupling between modules, which is not explicitly represented in the tools 

developed here but might be addressed by formal representation as a hybrid dynamic 

system), and the environment. In Figure 4-2 B, the arrows between modules represent 

this sensory coupling. The FTi angle sensor signal, for instance, influences the switching 

between actions at both the FTi module and the CTr module. 



 46 

4.2.1 Introduction to the Event-space diagram 

The sensory-flow representation introduced above conveys the basic neural-level 

architecture of the system, but it does not provide enough information to fully describe 

behavior or specify an implementation of control. The sensory arrows represent the direct 

sensory influences between modules, but not which actions are promoted, or what level 

of sensory activity is necessary to do so. We can generate a more explicit representation 

of the sensory connections in a SCASM system using an event-space diagram, shown in 

Figure 4-4. 

  

Figure 4-4 Event space diagram for forward stepping, stick insect left middle leg. The double-line 

actions specify system dynamics which lead to the double-line sensory events, and solid-line actions 

likewise lead to solid-line events. Color encodes the module most directly involved in generating each 

sensory event; the sensory events are also labeled by the sensors involved. For example, FTi FLX 

(blue module, FTi angle, double-line action) leads to the “FTi Posn Flex” event, whereas EXT (blue, 

FTi angle, solid-line) leads to “FTi Posn Extend”. The compounded events are labeled with the 

complex sensory event or state they represent; e.g. retracted ThC or flexed/ing FTi represent an 

extreme of motion towards the end of stance, combining into the Posterior Extreme Position (PEP) 

event. 

Thorax

Fem
ur

T
ib
ia

Coxa

CTr 

Joint Load

DEPLEV

RETPRO

EXTFLX
FTi

angle

ThC

angle

Leg 
Load

FTi Posn 
Extend

AND

OR

OR

FTi Posn 
Flex

Leg 
Unload

ThC Posn 
Retracted

ThC Posn 
Protracted

PEP

Early Stance

Late Stance/

Early Swing

FTi
angle

CTr 
Joint 
Load

ThC
angle

Sensory Events



 47 

The action switching modules are shown as before; a set of modules, each of which 

contains a set of actions. Transitions that may occur between actions are shown by the 

black arrows connecting the actions within a module. Rather than explicit sensory 

signals, the influences on action switching are represented here as sensory events. An 

example from the FTi joint of the stick insect leg would be “FTi joint is 

extended/extending”, which promotes both CTr depression and, in combination with leg 

load, FTi flexion. 

The simplest example of sensory influences in the stick insect leg is the load influences 

at the ThC module. Leg load promotes retraction; meaning that if the leg is loaded or 

loading, i.e. touching the ground, the ThC will rotate the leg backward. Leg unload 

promotes protraction, meaning that if the leg is unloaded/unloading/not touching the 

ground, the ThC joint will push forward.  Retraction while on the ground and protraction 

while in the air produce forward stepping. 

Note: different lines from a single “event” may have different gains or real sensory 

sources in an implementation; in this case these lines don’t represent exactly the same 

sensory event, but similar/related ones, as described in section 4.5.2 and shown in Figure 

7-5. 



 48 

 

Figure 4-5 In biological systems there can be multiple competing signals as shown here, whose 

strength can be modulated. The dashed lines represent a load reflex reversal at this module, when 

compared to the solid lines. In the event-space representation of circuits and behavior, we have only 

drawn the influences dominant in a behavior. Those can then be translated into Boolean transition 

rules. 

The event space diagram is the most general representation of a SCASM system 

behavior yet developed. Note, however, that the actual underlying biological circuitry 

usually has multiple continuously variable elements as shown in Figure 4-5. There is a 

range of systems that can be described or designed in this manner; a generic case is 

shown in Figure 4-6. In the general case, note that there may be no way to directly switch 

between some of the actions. Thus in the generic example Module I can switch into and 

out of Action 1 from any of the other actions, but it cannot switch directly between 

Actions 2 and 3.  

DEPLEV

Leg Load

Leg 
Unload



 49 

 

Figure 4-6 A generic event-space diagram. Sensory events, which may be compounded, influence the 

transition between actions in the action switching modules. Sensory coupling occurs when the action 

at one module affects the sensory events which influence transitions in a different module. Events 1 

are results of the actions in Module 1; all lined in blue and shaded dark at the bottom. The line style 

reflects which action tends to lead to which sensory event: action 3 tends to produce sensory event 

1C. Likewise events 3 are generally the result of actions in Module II. Sensory events 2 are more 

“exteroceptive” in nature, a sensation of the environment which is not necessarily directly dependent 

on current module actions. For this diagram to function, events within a particular class (1, 2, or 3) 

are mutually exclusive. 

At the first level, on the left of Figure 4-6, are “input sensory events”. These are events 

that can be sensed by the system; generally it may be useful to include higher-order 

events that are sensed through multiple actual sensors here.  They might be associated 

with signals mostly internal to the system, such as joint angle. They might also be events 

signifying some interaction with the environment, such as foot contact, or even a non-

interactive environmental event such as visual detection of an obstacle. In order to 

represent more complex sensory events, these events may be combined in the event 

compounding stage. So far we have only used Boolean combinations at this level, but one 

might imagine a more general weighted average or neural network implementation of this 

stage. Any sensory event which promotes switching between actions at a module is a 

AND

OR

AND
Action 1

Action 2 Action 3

Module I

Action 1 Action 2

Module II

Input Sensory 
Events

SCASM Event 
Compounding

Action Switching 
Modules

Generic Action
(Some Kind of 

Dynamic System)

Transfer Function or 

Operation

Output(s)Input(s)

Event 2A

Event 1A

Event 1B

Event 2B

Event 3A

Event 1C

Event 3B



 50 

“switching event”, whether raw “input” or compounded. In Figure 4-6, all the arrows that 

cross the line between SCASM event compounding and the modules are switching 

events. For example, input events 2A and 3A are compounded by a Boolean AND to 

generate the switching event which promotes switching from Action 1 to Action 3 in 

Module I. 

To provide an example flow of information, suppose that the system is doing actions I-

1 and II-1. This would tend to produce sensory event 3A; at some point following this say 

we also have the external sensory event 2A. These two events combine to complete the 

switching event causing Module 1 to go from action 1 to 3. Action I-3 would tend to 

produce input event 1C, which is sufficient to trigger the action switching event from II-1 

to II-2. Action II-2 generates sensory event 3B, which then promotes switching from I-3 

to I-1.  Action I-1 will then generate sensory event 1A, which is the switching event from 

II-2 to II-1. At this point we have completed a cycle of behavior, and are back in actions 

I-1 and II-1. 

Note that without some idea of the system being controlled in this manner, we have no 

idea how long it will take for each action to lead to the following sensory event, or how 

reliably they will do so. It could take milliseconds, hours or years, and it might have a 

tendency to get stuck in global action [I-2, II-1] when the system fails to either produce 

or detect event 1B.  



 51 

 

Figure 4-7 Swing-Stance events and action switching for stick insect middle leg forward stepping. A) 

In swing, ThC is in protraction, CTr in levation and FTi in extension. FTi extension leads to the “FTi 

Posn Extend” sensory event. B) “FTi Posn Extend” then directly causes transition from levation to 

depression at CTr, and fulfills part of the “Early Stance” compound event. C) CTr depression then 

leads to the “Leg Load” sensory event. D) “Leg Load” then directly causes transition from 

protraction to retraction at ThC, and completes the “Early Stance” compound event which causes 

transition from FTi extension to flexion. The leg is now in retraction, depression and flexion; this is 

full stance. 

A graphical representation of the swing-stance transition in the stick insect system is 

shown in the partial event space diagrams in Figure 4-7. It can be seen that in this control 

arrangement this involves the interaction of a number of different signals and system 

components, rather than flipping a central switch from “swing” to “stance”. This figure 

also provides an example of how the event space diagram may be used to predict basic 

system behavior; this same process can be done on the complete event space diagram. 

4.2.2 Relationship with finite state machines 

In the case where switching between actions is an instantaneous transition, the action 

switching module can be considered a finite state machine as described in section 3.6.2, 

Thorax

Fem
ur

T
ib
ia

Coxa

CTr 

Joint Load

DL

RP
EF FTi

angle

ThC

angle

Leg 

Load

FTi Posn 

Extend

Thorax

Fem
ur

T
ib
ia

Coxa

CTr 

Joint Load

DL

RP
EF FTi

angle

ThC

angle

Leg 

Load

FTi Posn 

Extend

AND
Early Stance

Thorax

Fem
ur

T
ib
ia

Coxa

CTr 

Joint Load

DL

RP
EF FTi

angle

ThC

angle

Leg 

Load

FTi Posn 

Extend

AND
Early Stance

Thorax

Fem
ur

T
ib
ia

Coxa

CTr 

Joint Load

DL

RP
EF FTi

angle

ThC

angle

Leg 

Load

FTi Posn 

Extend

AND
Early Stance

A (Swing) B

C D (Stance)



 52 

with each action considered a state. The transition function is implemented by the 

process(es) that detect switching events, with the possible addition of a switching timer 

internal to the module. The input alphabet depends a little on where you draw the system 

boundary for the module; it can consist of input sensory events or the already-

compounded switching events. The start state would be one of the actions; so far the 

legged systems tested here are relatively insensitive to start state. 

More accurately in this case, each module is a hybrid dynamic system, with the 

switching rules representing the finite state machine portion of the system, and the 

physics of the robot or animal and environment comprising the continuous dynamic 

portion. Depending on the level of analysis, action dynamics (e.g. muscle models) 

calculated in a digital computer and periodic servo control loops might be considered 

either part of the discrete event or continuous dynamic portions of the hybrid dynamic 

system. 

Since we might consider the action switching as a state machine, one might ask the 

question: why not use the language of finite state machines to represent these systems, 

rather than inventing a new one? There are two answers to this question: the SCASM 

representation can have advantages over a traditional finite state machine representation, 

and the action switching may not be discrete. 

4.2.2.1  Advantages of the SCASM representation 

Even for cases where the switching between actions can be fully described using finite 

state machines, the SCASM representation can have some specific advantages. In this 

case SCASM is just one way of representing the collection of state machines associated 

with the action switching modules. It is also possible to combine these state machines 



 53 

into a monolithic “global” state machine with states consisting of the combinations of the 

states of each module.  An example of the global state machine for the stick insect is 

shown in Figure 4-8; the global transition events are not shown, however, since the full 

set cannot be concisely represented in this form. This is particularly true for systems with 

more degrees of freedom, since the number of possible global states (whether all are 

reached or not) is the product of the number of actions in each module.  

There are uses for global state diagrams as well. Though the structural meaning of the 

transitions in the global state diagram is not easy to discern, they can be a useful way to 

represent the global behavior of a SCASM system. This diagram can be more descriptive 

than an event-space or other modular SCASM representation in representing the global 

behavior of the system, at least under standard or expected conditions.  This can be 

particularly useful in the design of a SCASM control network, as will be demonstrated 

below in section 4.3. 

It should be noted that unexpected sensory input might cause the global state 

progression to deviate from the usual one marked in Figure 4-8. This diagram might be 

considered a behavioral attractor, but not a full description of the behavioral state 

progression under all environmental inputs. It may be possible to construct such a full 

descriptor in such a diagram, but if so it would pertain only to a specific range of 

transition rules and sensory event thresholds. Also, for cases when certain sensory events 

are detected at different thresholds by different modules, or sensed by different sensors, 

the state progression will have more steps in it and may have several alternative routes 

through global state space. 



 54 

 

Figure 4-8 Global state diagram for stick insect middle leg forward stepping. The three module state 

machines are shown below to aid in making sense of the global states. The global state progression 

shown is the nominal progression for forward stepping. 

The primary advantages of a SCASM representation when compared to a global state 

representation are as follows: 

1) Biological hypothesis representation. 

Since this dissertation is primarily about modeling: Though the 

representation is somewhat abstract and general (in the (Webb, 2001) 

senses), the mapping from elements in the SCASM system representation to 

the associated elements in the animal is straightforward. Each joint action 

switching module represents a joint pattern generator, and each switching 

event represents a combination of thresholds of sensory signals which is 

related to that event. 



 55 

In the global state diagram, the mapping to joint pattern generators is not 

explicit, and the transitions between global states may be associated with a 

number of different possible sensory states. There are no lines indicating the 

flow of sensory information within the system. 

2) Structural relevance & modularity 

The association of each action switching module with some DOF or 

subsystem leads to a clear and explicit conceptual relationship between the 

controller and the physical plant. This also lends itself well to physical 

modularity of control. 

3) Plasticity 

Since the flow of control information is explicit in SCASM and associated 

with the transition influences on the modules, this provides a clear place for 

exterior processes to modify system behavior by changing these influences. 

Such exterior influences could, for example, be from higher-level influences 

or coordinating systems. The global state diagram makes changes in the 

progression of overall system behavior easy to see, but there is no 

expression of underlying mechanisms (unless it were actually a global state 

change control mechanism). Additionally, in SCASM the placement of 

parameters that could change the dynamics of any particular action is easier 

to see, and need not be changed or explicitly linked in the multiple global 

states (e.g. changing muscle activations in FTi Flexion only affects one 

action in SCASM, but has effects on global system dynamics in half of all 

global system states) 



 56 

4) It’s in the name. 

The phrase “Finite State Machine” in connection with biological modeling 

will automatically mislead some people, partly due to historical 

considerations. Language and communication is important, particularly in 

interdisciplinary work such as this. There is something to be said for 

choosing terminology that doesn’t carry incorrect historical connotations.  

4.2.2.2  Module actions may not be discrete 

There may be cases (particularly in biological systems) where the switching between 

actions is not actually discrete, and therefore the module is not really a finite state 

machine. The behavior of such cases might nevertheless be described and understood 

using the SCASM system representation. 

 

Figure 4-9 Examples of action switching rules which might be used at a module with two actions. A 

finite state switcher goes directly from one state to the other at thresholds of influence, which may be 

different. A more general bi-stable switcher might look similar to the finite-state case, or it may 

differ significantly within the switching region(s). A linear “switcher” would have behavior quite 

different from the others within the “switching region”, but could still be treated as switching actions 

if the switching influence goes far enough towards its extremes. 



 57 

One could make the argument that if a system is operating in a way that could be 

described as SCASM, it can then be modeled as finite state machines.  This may be; 

however a SCASM system is arranged so that smooth transitions between actions can in 

some cases have the same effect.  This will at least not be as easy in a global state 

representation/implementation, and might not work at all. For a three-DOF leg with two 

actions per module, the neural-level dynamics might be represented by three graphs 

similar to Figure 4-9. A higher input dimension might be necessary if more sensory 

signals are used for input; e.g. the stick insect FTi joint would have leg load (measured as 

CTr load in this example) and FTi position input influence dimensions, as shown in 

Figure 4-10.  In a monolithic machine the single graph would need to be represented in at 

least three input dimensions and one output dimension; however the meaning of a single 

output dimension for all eight global states is not easily made sensible. Which global 

states should be made adjacent, and which should be at the extremes? One might then 

spend effort decomposing that space into lower-dimension manifolds associated with 

particular inputs– SCASM provides one such representation that is directly related to the 

system’s mechanical structure and based on mechanisms that generate insect behavior. 

Also, if an implementation is organized as SCASM rather than monolithic, it can be 

relatively simple to swap between discrete & continuous influence-action relationships, 

and this might furthermore be done on a module-by-module basis. 



 58 

 

Figure 4-10 The discrete action switching rule for the femur-tibia action switching module in the 

stick insect for forward walking. A load greater than FT_flx_CTr_load (“leg load”) AND an angle 

less than FT_flx_FTang (“FTi Posn Extend”) will cause transition to the FLX action. 

4.2.2.3  Comparison with Subsumption Architecture and Genghis 

For the legged system case, each action in a SCASM module is considerably more 

complex than each state in the state machines of the Genghis controller (Brooks, 1989); 

about 50 of the state machines in that controller (see Figure 3-7) would be replaced by a 

set of 18 action switching modules in hierarchy; 2 at each leg for controlling the joints, 

and another at each leg for the gait coordination, with actions of “stance” and “swing”. 

Though it was a leap in the capability of reactive robotics, there are still a lot of 

“engineering mindset” elements in the Genghis controller, in terms of the low-level 

control being position oriented, and the way the state machines are organized. Rather 

than starting in control design with the parts of a single leg, they start with the control and 

balance of the beta (levation/depression) DOFs of all legs simultaneously. In this kind of 

Coxa-Trochanter Load

F
em

u
r-

T
ib

ia
 A

n
g

le

FT_ext_FTang

F
T

_
ex

t_
C

T
r_

lo
ad

FT_flx_FTang

F
T

_
fl

x
_

C
T

r_
lo

ad

FLX

EX
T



 59 

organization the extent to which higher levels of control can “ignore” lower level 

problems is limited; the subsumption architecture has higher levels taking over local 

control in specific circumstances (through the suppression mechanism), rather than 

providing modifications/inputs to the local control.  Though it would probably be 

possible to redesign that controller using a force-based output to be more fluidly 

adaptable to changing conditions, this method of using subsumption architecture limits 

the amount of abstraction possible in higher levels of control; since the higher levels 

“take over” lower level systems, they must also enact some of the lower level control, 

using some of the same inputs and outputs. 

4.3 The SCASM Command and Configuration Interface Language 

Specification 

The SCASM Command and Configuration Interface Language Specification (SCCILS) 

is an XML specification that formally defines a language for defining and controlling 

SCASM-controlled systems. While definitely still in development and pre-alpha in terms 

of maturity, the current implementation (released as version 0.1 in Appendix 10.2) was 

used for all of the experiments in chapter 7 that include a change in speed or type of 

behavior. 

As discussed in 2.1, there are several model-related elements that can significantly 

increase model usefulness. In the Webb framework, SCASM itself is a concept for 

describing hypothetical mechanism, which can be expressed at various degrees of level, 

generality & abstraction as defined in the dimensional model description of (Webb, 2001), 

as demonstrated in the various system description diagrams presented in this chapter. 



 60 

The SCASM representation has a number of parameters that can act as “ports” for 

changing the system; in modeling this could be described as changing the hypothetical 

mechanism being represented; in any usage the effect can be to change the behavior. 

SCCILS makes use of these ports by developing an explicit representation language. 

Making a model’s representation as explicit as possible can be a useful exercise in itself, 

but SCCILS was first developed with the following benefits of a unified/general standard 

representation of SCASM systems in mind: 

a. One set of tools can be developed for operating (demonstrating), 

configuring (representing), and data representation and interpretation 

(interpreting and deriving) within the modeling framework of SCASM 

systems. 

b. Unified tools for operating a model (demonstrating) might allow: 

i. Use of the same user interface for multiple models (each with 

specific benefits and weaknesses), or use of multiple interfaces 

(each with a specific purpose) to run a model 

ii. representational/experimental portability.  one might run the exact 

same experiment on the target and multiple models, each of which 

might occupy a different location in the dimensional model 

description. 

SCCILS was developed to address these problems, and become an integral part of the 

work addressing elements 2 and 3 of model usage introduced in section 2.1. The idea of 

using one interface to operate different models was present from the very beginning of the 



 61 

wok, from my first meeting with Marcus Blümel discussing using the controller, previously 

used in simulation, in a robot. Initial brainstorming for the actual implementation of 

SCCILS was done with Marcus Blümel and Arndt von Twickel; we wanted to be able to 

control multiple models without rewriting the user interface. Furthermore, we wanted to be 

able to run exactly the same experiment in multiple models with minimal fuss.  

There are a number of reasons one might want to use multiple models to address a 

question. In a computer simulation one can make a good model, but it can be very hard to 

do the physics well; this carries both the blessing and the curse of having total control and 

responsibility for the physics of the world. In a robotic model, you get the real world for 

free. In particular, modeling interaction with the environment is often the most difficult 

task, and such models can behave badly in situations where there is rarely a problem in the 

real world.  Any time the model is touching something, this advantage is in action– and 

interacting with the ground is most of what is behaviorally relevant about walking.  

For insect modeling there can be some specific advantages of computational simulation. 

Very advanced muscle models can work better or more directly in simulation, since this 

environment allows direct force output. A better match of the model system dynamics to 

the target is also possible, since the simulation can be made any size.  In the insect gravity 

and inertia are much lesser influences than for humans, and can in some cases be ignored 

(Hooper, et al., 2009). Both of these are important in robot dynamics, particularly with the 

reflected inertia of electrical motors with transmissions.  

So, you might want to run an experiment in both (or several) models, to see which of 

these things might be important for a particular behavior or experimental regime.  Having 

same interface would be REALLY helpful to the model users. 



 62 

4.3.1 The structure of a SCCILS-capable system 

 

Figure 4-11 The basic layout of a system using SCCILS. “Engine” is “The model”- robot & dynamic 

control software, or simulation.  Once configured the engine can operate by itself. Interface- 

something which sends configuration & command information. 

The structure of a system using SCCILS online has two basic elements which 

communicate using SCCILS, the “interface” and the “engine”, as shown in Figure 4-11. 

The engine is the entity which is actually simulating in the “simulation model” of Figure 

2-1. This could for example be the physical robot and control software, or a 

computational simulation. SCCILS is used for configuration and control of the engine, 

and contains methods for data handling as well. An interface-less engine might still use 

SCCILS for configuration and experiment scripting. 

The interface is something that sends these configuration and control commands, and 

might want data in return. It could be a graphical user interface (GUI) as we’re doing, or 

a higher-level control program, or even a program that could run optimizations or higher-

level experiments.  

The translator is an element that takes in the SCCILS XML commands and translates 

them into the native representation of the engine used directly in control. It is possible 

that a program implementing an engine might also contain translator code, or they might 

be separate programs. Most of the data that can be passed between the interface and the 



 63 

translator is stored in the form of Handy Data Storage Objects (HDSOs), variables that 

may store various types of named, multi-dimensional data. 

 
Figure 4-12 Romod_GUI representation of elements associated with the FTi Extension action. Handy 

Data Storage Object (HDSO) elements 129 and 130 are muscle activations; a part of the dynamics of 

this action, which may be modified online. 165 is the Boolean entry rule Enter_FT_Extension; its 

arguments are the IDs of the HDSOs shown below it. It says ((ThC1 load > FT_EXT_TC1_load) 

AND (FTi angle > FT_EXT_FTang)). The parameter HDSOs (106 & 107) below may be modified in 

order to change the strength/thresholds of those influences. Sensor HDSOs report robot state. 

Modification of transition parameters or activation parameters can drastically affect system 

performance, but the entry rule is what determines the connections in the sensory flow and event 

space diagrams, and defines the nominal behavioral progression in the global state diagram. The 

conceptual location of the HDSO parameters here are shown in Figure 4-25. 

The concepts of SCASM and SCCILS are not tied to implementation in legged 

systems, but since the NeuRoMod control code was originally developed for such 

systems before the development of SCCILS, there are still some portions of that code that 

have not been generalized, and assume implementation in legs. 

The NeuRoMod software (manual in Appendix 10.4) contains a SCCILS graphical user 

interface written by John Bender. This interface is capable of modifying any SCCILS-

aware parameters in the engine it connects to, and automatically arranges its layout based 



 64 

on the configuration of that engine. Examples of usage of this UI are given in the 

NeuRoMod manual, and Figure 4-12 shows the representation of parameters associated 

with a particular action of the cockroach forward walking configuration. 

4.3.2 The Configuration/Data Type Sublanguage 

The jointlist is the root element of a SCCILS model description file, and defines at least 

one leg as a chain of joints. These contain or reference all the data needed to define the 

interface/engine communication in SCCILS for a particular model. A jointlist describes a 

SCASM system to the level of an “implementation-specific sensory flow diagram”, 

representing both the flow of sensory signals represented in an event-space diagram and 

the thresholds and action parameters necessary for a full specification. Numerous 

parameters may be modified online, but the available selection of modules, actions and 

sensors is constant during system operation. 

 

Figure 4-13 The contents of a SCCILS joint. The green elements are useful for user interfaces and 

data handling, but are not descriptors of the SCASM action switching module represented by the 

joint. 

During the initial development of the SCCILS concept, we discovered that much of the 

data we wanted to pass between the interface and the engine was in a similar form. 

Handy Data Structure Objects (HDSOs) are really for data storage, but there are a 

number of things within them for making modification & UI representation more easily. 

Anything represented as an HDSO can theoretically be modified online or changed as 

Joint(ASM)

Descriptors Plotstyle Geometry
States

(actions)
Muscles 

(simulated_actors)
Motor 

(real_actor)

Sense organs
(simulated 
sensors)



 65 

part of an experimental script, though the engine is not necessarily required to be able to 

implement all HDSO changes online. These modifications are accomplished using an 

HDSOscript, which is a timed list of  HDSO data modifications. Most of the SCCILS 

commands are in the form of an HDSOscript. 

The full configuration of a SCASM system is currently specified by three XML files: 

the jointlist, a list of parameter HDSOs, and a list of sensor HDSOs. 

 

Figure 4-14 The Handy Data Storage Object; an N-dimensional data store with a set of identifiers 

and descriptors. 

4.3.3 The Command Sublanguage 

The SCCILS command sublanguage is a fairly simple set of elements: the 

sccils_command, sccils_command_response, and sccils_config_command. The 

sccils_command allows run, stop, data logging configuration, and extended commands. 

In order to be considered SCCILS-capable, an engine or interface must implement and 

respond properly to the run and stop commands, at the very least. A sccils_command may 

contain an HDSOscript for specification of HDSO data having to do with an extended 



 66 

command. The sccils_command_response is used for acknowledging both command and 

configuration messages, and reporting whether these messages were received and 

implemented successfully. 

The sccils_config_command is used to communicate which SCCILS configuration to 

use (if several are available to the engine), as well as to communicate configuration data 

having to do with the configuration of the SCCILS XML communication itself, such as 

setting TCP port numbers for data streaming. 

4.4 Examples: Synthesis and Restructuring 

4.4.1 Synthesis: The minimal SCASM stepper. 

“…What’s still missing in terms of robotics is design methodologies. How to do it 

properly; how can you get the system producing the right behavior…” – Auke Ijspeert in 

(Waibel, Ijspeert, Hauert, et al., 2007). Inspiration from biology can be an effective way 

to gain agility and efficiency. The design of novel controllers using these tools remains a 

difficult problem, however; see discussion in (Ijspeert, 2008; Ijspeert, et al., 2007). The 

synthesis method demonstrated here could be useful both for the exploration of biological 

hypotheses and for the development of novel robot controllers that make use of the 

neuromechanical concepts embedded in SCASM. 

This section presents a set of steps that may be used to specify sensory influences 

which, when combined with appropriate action dynamics, generate a desired behavior for 

a SCASM system. It does not address in detail how action dynamics should be specified, 

which does leave considerable design work left to do. The work on muscle models in 

chapter 7 addresses some of the effects that simple changes in action dynamics can have 

on global system behavior, and as suggested there it is likely that actions which exhibit 



 67 

some sort of output saturation will lead to more stable and better-conditioned overall 

behavior. In any case, work so far has shown that with the proper sensory influences 

specified, reasonable desired behavior can often be achieved with extremely simple 

action dynamics. 

 

For this exercise we will use the minimal leg-like mechanism capable of producing 

forward or reverse motion. While we have used this process for 3-DOF robot legs, and it 

can be used for higher dimensions, we present the minimal case here to support brevity 

and conceptual clarity. 

This minimal stepper has a leg with two degrees of freedom: protraction & retraction at 

a “Thorax-Coxa” (ThC) joint for forward/backward movement of the leg, and levation & 

depression at a “Coxa-Trochanter” (CTr) joint for picking the foot up and putting it 

down.  These are the proximal two degrees of freedom for the stick insect, and also the 

two degrees of freedom used in the single-leg stepper described in (Beer & Gallagher, 

1992). The two degrees of freedom of this minimal leg stepper are shown in Figure 4-15. 

 

Figure 4-15 The minimal stepper; top view on the left showing the protraction-retraction DOF. Rear 

view on the right showing the levation-depression DOF. The open-circle foot shows the protracted, 

levated leg at the end of swing (for forward stepping); closed-circle shows the retracted-depressed leg 

at the end of stance. 



 68 

Synthesis of a SCASM controller can be accomplished by following the set of steps 

listed below: 

1) Structural decomposition rule: Choose modules which represent the physical 

system, as suggested in (Büschges, 2005). A SCASM controller takes account of 

physical plant mechanics implicitly, largely through the choice of modules, 

actions, and sensory events. As is always the case, behavioral success depends on 

the proper combination of controller and plant dynamics. Since coordination is 

generated by sensory-mechanical signals, the line between "controller" and "plant" 

is blurry here. Although different from the classical engineering approach, this is 

not necessarily bad and more accurately represents the way in which these 

problems are addressed in animals. 

In simple systems start with one module per DOF. If the system is sufficiently 

complex that this results in so many modules that later synthesis steps are too 

difficult, choose subsystems to be associated with the modules. For instance, it 

may be useful to use one module for a multi-DOF joint under some circumstances. 

Also keep in mind that it may be best to organize the control of a more complex 

system hierarchically, since an “action” of a higher-level SCASM system can 

itself be an influence which changes the configuration or triggers a state change in 

a lower-level SCASM system. For gait control, one higher-level module per leg, 

used to modify lower-level sensory thresholds triggering swing or stance, could 

work. 

In this simple example, we choose one module per DOF; ThC for the 

forward/backward motion of the leg, and CTr for the upward-downward motion. 



 69 

2) Start with minimal set of actions.  For each module, try to choose as few simple 

actions as possible to control the associated system subset. It is probably a good 

idea to concentrate on “few” to begin with; two is a good goal for a single-DOF 

subsystem. One can often generate more complex behavior by either adding more 

actions or making the dynamics of already-existing actions more complex; see for 

example the piecewise-constant muscle model in chapter 7. It is often easier to add 

more actions, but this is likely to lead to more confusing event-space and global 

state diagrams, and may lead to more free parameters overall when compared to 

an increase in complexity of one or more actions.  In this example it is natural to 

choose Protraction and Retraction as the actions for the ThC module, and Levation 

and Depression for the CTr. These modules are shown at the bottom of Figure 

4-17. 

3) Start with simple sensory events which sense the limits of these actions; i.e. 

sensory events that these actions should eventually produce during the desired 

overall behavioral cycle. Some potential events for two of the example actions are 

shown in Figure 4-16. In many cases, you will get better performance by choosing 

limit events that are related to interaction with the environment. These will lead to 

some degree of automatic sensory-driven adaptation of system behavior to 

environmental variation. The minimal set of sensory events, though, should 

consist of things that are expected to happen in every behavioral cycle.  With this 

in mind, choose “ground contact” for depression. Obstacle collision is not 

something we expect to happen every step, so for protraction let’s instead choose 

“Protracted angle”.  For the other actions in these modules we’ll start with the 



 70 

opposing sensory events, “no ground contact” for levation and “retracted angle” 

for retraction. 

In the controller implementation associated with this design step, one must choose 

specific sensory conditions, usually thresholds operating on raw or processed 

sensory data, that represent these sensory events. To avoid undefined or erratic 

behavior, the real sensory conditions associated with the switching events for a 

module must not overlap one another, and should probably have a deadband in 

sensory space which does not elicit action switching. An appropriate example is 

shown in Figure 4-10.  Additionally, the deadband should not be so large that 

there is an unnecessary risk of “missing” a state transition. Plotting the desired or 

actual sensory state trajectory on a transition rule plot such as Figure 4-10 can be a 

valuable tool in designing, modifying and debugging sensory event definitions. 

 

Figure 4-16 Some possible sensory events that could result from the depression action at the CTr 

joint or the protraction action at the ThC joint. 

4) Construct global state diagram(s), using the combinations of module actions. If 

there are too many modules for this to be easy (this probably means more than 3), 

either start by making a sub-global state diagram using three modules most likely 

to be important, or make a diagram using only the global states nominally 

involved in the desired behavior. It might also be useful to choose a 

decomposition based on one module that is highly involved with global state 



 71 

description. For a 4-module leg, choose to decompose it into two 3-module 

systems; one in which the fourth module is in the “stance” state, and another with 

it in “swing”. Describe and label these global states, or at least the global states 

you want to be in the target behavior.  This has been done in Figure 4-17. 

 

Figure 4-17 Global state diagram for minimal SCASM stepper 

5) Choose a desired progression of global states.  This is done for forward stepping 

in Figure 4-18. To some extent, the use of transient global states, such as pre-

stance and pre-swing, may represent both a more sensory-driven behavior and a 

more robust system overall. Choosing only “swing” and “stance” both represents 

something like central coupling between the modules, and ignores the complexity 

associated with these transitions, thereby perhaps causing the system to deal less 

well with, e.g., changes in substrate height.  One way to express this directive is to 

try to choose global state progressions in which each step changes the fewest 

PRO LEV
(fwd swing)

RET DEP
(fwd stance)

PRO DEP
(fwd Pre-stance)

RET LEV
fwd Pre-swing

SCASM 3-joint Insect Leg 

Monolithic State Machine

RETPRO

ThC

DEPLEV

CTr



 72 

actions possible– preferably just one at a time. This may give you some transient 

global states that don’t seem inherently useful, but is likely to make the system 

behavior more robust and adaptive. 

 

Figure 4-18 Global state progression for forward stepping, minimal SCASM stepper. 

6) Construct the event space diagram. Start in one of the desired global states; 

preferably a non-transient one (i.e., one which takes a large percentage of overall 

behavioral cycle time). Identify the limit sensory events this state will lead to. 

Choose events (ideally at least one that is external or from a module that does not 

change actions in the next global state) to trigger the appropriate action switching 

to reach the next global state.  Iterate until finished, as shown in Figure 4-19 and 

described below. 

Start in stance. Next state changes from DEP to LEV at CTr, choose the ThC 

signal being generated in stance (RET-> ThC Retracted) and have it promote CTr 

Lev.  

(line 1)  



 73 

Now in pre-swing, next state changes RET to PRO at ThC.  Choose CTr signal 

being generated in Pre-swing (No Ground Contact) and have it promote ThC PRO 

(line 2) 

Now in swing. Next state changes LEV to DEP at CTr, choose ThC signal being 

generated in swing (PRO-> ThC Protracted) and have it promote CTr DEP 

(line 3) 

Now in pre-stance. Next state changes PRO to RET at ThC, choose CTr signal 

being generated in pre-stance (DEP -> Ground Contact) and have it promote ThC 

Ret. 

(line 4) 

Now we’re back in stance, and done. 

 

Figure 4-19 Event space diagram for forward stepping in the minimal SCASM stepper. The 

switching event lines are labeled according to the construction steps in the text. 

Cross-module events (events which promote switching in modules different from the 

module(s) causing the event) are the ones that actually generate the sensory coupling, and 



 74 

are likely to give rise to more robust behavior. Compounded events may be more robust 

if properly configured, but the higher input dimensionality makes it easier to accidentally 

overlap transition areas in sensory space, which would produce undefined state switching 

behavior.  This would correspond, for example, to an overlap of the FLX and EXT areas 

in Figure 4-10, which would happen automatically if the FLX rule used OR instead of 

AND. 

An example SCCILS configuration for this minimal SCASM stepper is given in the 

lin_stickmiddle_minimal example in the SCCILS 0.1 specification document in section 

10.2 of the appendices.  

4.4.2 System restructuring: robot to robot. 

Any major modification of the structure of a SCASM system will require steps similar 

to some subset of those used in synthesis. For example, we had a working, neurally-based 

3-module system for controlling a 3-DOF stick insect model leg, and wanted to apply this 

as a hypothetical controller for a (reduced actuation) 3-DOF cockroach leg controller 

with as little modification as possible.  The restructuring here is somewhat constrained 

since it is between robotic model systems, particularly with respect to the sensory signals 

available. The ambiguities of such model signals are addressed in section 4.5, particularly 

in Figure 4-21. In the type of modification where a system is to be applied to a 

substantially different physical system, the primary task is to locate the modules and 

sensors such that they match function in the new system as closely as possible with the 

source system. 

The event space diagram for stick insect forward walking is shown in Figure 4-4. The 

primary kinematic roles of the joint degrees of freedom in this system are as follows: 



 75 

 • Thorax-Coxa (ThC): protraction & retraction of leg. 

 • Coxa-Trochanter (CTr): levation & depression of leg. 

 • Femur-Tibia (FTi): ab/adduction of foot. 

The roles of the sensors are: 

• ThC angle: protraction & retraction for triggering transfer to swing. 

 • CTr load: leg load for detection of ground contact. 

 • FTi angle: foot position, important in swing/stance transitions. 

 

The anatomy of the cockroach mesothoracic leg is substantially different from the stick 

insect, particularly in the kinematic role of the joints, as is described in chapter 5. The 

event space diagram for cockroach forward stepping shown in Figure 4-20. The primary 

kinematic roles of the joint degrees of freedom in the cockroach leg are as follows: 

 • Thorax-Coxa 1 (ThC1): levation (during ThC1 retraction) & depression (during 

ThC1 protraction) of leg. 

• Thorax-Coxa 2 (ThC2): adduction and abduction of leg. 

 • Coxa-Trochanter (CTr): protraction (during CTr levation) & retraction (during 

CTr depression) of leg. 

• Trochanter-Femur (TrF): depression (during TrF reduction) and levation (during 

TrF passive return) of the foot. 

 • Femur-Tibia (FTi): ab/adduction of foot. 



 76 

In some representations of these degrees of freedom in the cockroach leg, the actions 

are double labeled.  In these cases the first label is the anatomical term which corresponds 

to previous work, and the second label describes the effect this motion actually has on the 

leg.  Therefore the ThC1 actions will sometimes be labeled ret(LEV) and pro(DEP) to 

indicate that the leg is levated during “retraction” and depressed during “protraction”.  

Likewise the CTr actions are sometimes labeled lev(PRO) and dep(RET). 

 

Figure 4-20 Event space diagram for cockroach forward stepping. 

Since the ThC2 and TrF degrees of freedom were the least well analyzed and/or hardest 

to build, the other three were chosen for the initial 3-DOF implementation. It can be seen 

that the roles of the ThC1 and CTr joints are switched, when compared to the stick insect; 

so the CTr stick insect module was placed at ThC1, and the stick insect ThC at the 

cockroach CTr.  

The sensor roles in the cockroach robot are as follows: 

 • ThC load: leg load for detection of ground contact. 



 77 

• CTr angle: protraction & retraction for triggering transfer to swing. 

 • FTi angle: foot position, important in swing/stance transitions. 

Thus the detecting sensors for the sensory events were also switched.  The resulting 

system is shown in Figure 4-20. One more change was necessary in order to produce 

forward stepping; due to the different placement of the FTi joint, in this system during 

forward walking it is most appropriate for it to extend during stance rather than flex. 

Therefore, the load influences at the FTi module were reversed. 

This SCASM system represents an entire set of hypotheses regarding the generation of 

leg movement in the cockroach; the process of extracting and describing these hypotheses 

is described in section 4.5.3. 

4.5 Translating between systems and representations 

4.5.1 Methods of representation 

As mentioned in the introduction section 2.1, one important element of model usage is 

the maintenance of a mapping between the model and the target system, supporting the 

theorizing and representing processes in Figure 2-1. Various tools for representing 

SCASM systems have been introduced, this section presents two examples of using these 

tools.  Each translates between two systems, using several representations to do so at 

varying levels of accuracy, generality, detail and medium. These include sensory flow 

diagrams (first introduced above in Figure 4-2), event space diagrams (Figure 4-4),  

global state diagrams (Figure 4-8), and the SCCILS XML model definitions and 

associated NeuRoMod UI elements. 



 78 

There are three types of systems addressed in this work: insect, simulation and robot. 

The translation between insect and robot is one of the broader stretches, so the examples 

given are of that mapping. Once the reader understands these examples the more 

straightforward relationship between simulation and robot, and between different robot 

models, should be relatively easy to accomplish. 

4.5.2 Forward example: stick insect to robot. 

This was originally done directly from neural influences to Boolean transition rules 

(Ekeberg, et al., 2004). This is doable, but lacking in immediate clarity for relation to the 

modeled system.  Also, the Boolean system representation is very specific with respect to 

the model construction and sensory inputs; a less specific representation may be useful 

and may more accurately represent our understanding of the “hypothetical mechanism” 

of the target system. 

 

Figure 4-21 Possible vagueness in the relationship between sensors and sensory events in the stick 

insect. The event space diagram makes the sensory events look discrete and well organized; in the 

animal they may be transduced by multiple sensors in multiple locations. The “leg load” events in 

particular might be represented by a multitude of force and contact sensors throughout the leg. The 

“sensory” leg and the “motor” leg actually represent the same physical leg; they are separated here 

to reduce the tangling of arrows. 

 This translation might instead be done with an event-space diagram as an intermediary 

representation of the hypothetical mechanism; that was indeed the original usage for such 



 79 

diagrams. As shown in Figure 4-21, each input sensory event may represent a range of 

actual sensory signals; this abstract symbolic representation is therefore amenable to 

translating between specific systems and models.  

Building a behaviorally functional event space diagram directly from biological 

knowledge requires a very large amount of said knowledge. In many cases a single line 

(or maybe a pair of lines) requires an entire set of publishable experiments, as shown in 

Figure 4-22. The construction of this figure is an example of the theorizing process 

shown in Figure 2-1. This representation is already significantly abstracted from the 

referenced work; “leg load” refers to signals either from the trochanteral or femoral 

campaniform sensilla, FTi positions “extend” and “flex” refer to both static thresholds, 

and combined static threshold and movement (joint velocity) events. An influence of 

FCO flexion velocity which promotes FTi flexion is not included (as was the case in the 

simulation), partly due to the lack of good velocity data, and partly due to the fact that 

that would lead to cases where “flex” would simultaneously promote opposing 

influences. This would require separating the “flex” sensory event into velocity and 

position components (Bässler, 1988). 

Note: though the input sensory events are a bit fuzzy/general, each line can indicate a 

specific, separate, implementable sensory threshold/event. 

 



 80 

 

Figure 4-22 Stick insect event-space diagram showing references to the biological work used to 

construct it. These influences are those described in Table 1 of (Ekeberg, et al., 2004); it does not 

include all related references in the text, or any of the documented magnitude influences. For 

complete references, see (Ekeberg, et al., 2004) pp. 288-290. 1) (Akay, Bässler, Gerharz, et al., 2001) 

2) (Akay, Haehn, Schmitz, et al., 2004) 3) (Bässler, 1988) 4) (Bucher, et al., 2003) 5) (Cruse, 1985) 

(behavioral) 6) (Hess & Büschges, 1999). 

The representing process of going from the general-input event space diagram to the 

transition rules used in the robot system requires two steps: 

1) Choose the actual sensors used to detect the sensory events. 

In the stick insect robot model, the ThC angle is used to detect ThC Posn Retracted, 

CTr joint load is used to detect Leg Load and Leg Unload, and FTi angle is used to 

detect FTi Posn Flex and FTi Posn Extend. 

2) Derive the Boolean transition rules using these sensor values and the connections of 

the event space diagram. 

a. ThC 

i. Protraction condition: Leg Unload. Actual sensor event: CTr load < 

ThC_Protraction_CTr_load 



 81 

ii. Retraction condition: Leg Load. Actual sensor event: CTr load > 

ThC_Retraction_CTr_load 

b. CTr 

i. Levation condition: (PEP) FTi position flexed or ThC position 

retracted. Actual sensor event: ((FTi_angle > 

CTr_Levation_FTi_angle) OR (ThC_angle < 

CTr_Levation_ThC_angle)) 

ii. Depression condition: FTi position extended. Actual sensor event: 

FTi_angle < CTr_Depression_FTi_angle 

c. FTi 

i. Flexion condition: (early stance) Leg Load and FTi Position Extend. 

Actual sensor event: ((CTr load > FTi_Flexion_CTr_load) AND 

(FTi angle < FTi_Flexion_FTi_angle)) 

ii. Extension condition: (late stance or early swing) Leg Unload or FTi 

Position Flex. Actual sensor event: ((CTr load < 

FTi_Extension_CTr_load) OR (FTi angle > 

FTi_Extension_FTi_angle)) 



 82 

 

Figure 4-23 Implementation-specific sensory flow diagram for the stick insect middle leg; Boolean 

switching rules are shown next to the state switch they trigger. 

These rules are represented within their respective action switching modules in Figure 

4-23. Note that without the Boolean rules, the sensory-flow diagram is a more general 

structural representation than the event-space diagram; It represents the sensory 

influences between modules, but not the sign or strength of these influence, which may 

change for different behaviors. 

Also, the sensory thresholds and action dynamics must be tuned so that the system will 

actually function. Some of these parameters can be determined by inspection; e.g. “make 

PEP here -> CTr_Levation_ThC_angle = -25°” but the entire process is still the subject 

of some finesse. Though we have not developed a method for translating specific values 

of neural excitation to specific sensory thresholds or muscle excitation parameters, 

changes in one have a specific representation as changes in the other. For example, an 

increase in the sensitivity or strength of the leg load influences on promotion of FTi FLX 



 83 

in the animal would correspond to a smaller FTi_Flexion_CTr_load threshold value, 

which would lead to this influence being “tripped” at a lower sensory value. 

4.5.3 Reverse example: robot to cockroach; forward stepping behavior 

In this section we will follow the mapping in the other direction, from the cockroach 

robotic model to the animal system; this is the reverse pathway from simulation to target 

system shown in Figure 2-2. 

Start with the implementation-specific sensory flow diagram. In the case of a model 

using SCCILS, this can be derived directly from the XML configuration; the diagram for 

cockroach forward walking is shown in Figure 4-24. The FTi EXT rules and parameters 

are also shown in the SCCILS graphical user interface representation in Figure 4-12. 

 

Figure 4-24 Cockroach middle leg forward stepping implementation-specific sensory flow diagram. 

This reverse-representation requires the reverse of the steps taken in section 4.5.2. 



 84 

First, map the sensory specific sensory signals to general sensory input events. There 

are several influences of the form (FTi > something) or (FTi < something).  These 

correspond to FTi posn. flexed and FTi posn extend, respectively. Likewise, several 

labeled as “Ground contact” and “no ground contact” but implemented (as seen in the UI) 

as load influences. Let’s keep them as load: “Leg Load” and “Leg Unload”. Finally, there 

is a (CTr < something) influence; this represents CTr position depressed. 

Then, put these five events on the input event side of the event space diagram, and 

derive the lines for each of the switching events: 

1) ThC retraction (LEV): ((FTi < FTi_RET) OR (CTr < CTr_RET)) Switching event: 

OR of FTi Posn Ext and CTr Posn Dep; extended leg; PEP 

2) ThC protraction (DEP): FTi > FTi_PRO Switching event: FTi Posn Flex 

3) CTr levation (PRO): No Ground contact Switching event: Leg Unload 

4) CTr Depression (RET): Ground Contact. Switching event: Leg Load 

5) FTi Flexion: ((FTi < FTi_FLX ) OR (No Ground Contact)) Switching event: OR 

of FTi Posn Ext and Leg Unload (Early Swing) 

6) FTi Extension: ((FTi > FTi_EXT) AND ( Ground contact)) Switching event: AND 

of  FTi Posn Flex and Leg Load (Early Stance) 



 85 

 

Figure 4-25 Cockroach forward stepping event space diagram. Circled numbers label the lines 

determined through the mapping step (above). Boxed numbers show the conceptual location of the 

HDSO parameters shown in the UI screenshot of Figure 4-12. 

This result is shown in Figure 4-25, representing the hypothetical mechanisms for this 

behavior in the cockroach. In order to translate this into specific hypotheses regarding 

animal function, (the reverse theorizing step of Figure 2-2) consider sensors which might 

contribute to the discrimination of these events.  As represented for the stick insect in 

Figure 4-21, this can be a one-to-very-many mapping; one easy guess for FTi position 

would be the femoral chordotonal organ (FCO). 



 86 

5 Functional Cockroach Leg Kinematics 

5.1 Introduction 

We needed to know how the thorax-coxa joint in the cockroach middle leg worked, so 

that we could accurately model critical physical aspects of the leg and make relevant 

hypotheses about its control.  The information in the literature is in some cases sufficient 

to describe leg motion, but the description of the mechanisms for generating this motion 

was insufficient to build a model with a good structural match. So, we proceeded with 

experiments to discover the truth. The work in this chapter is an excellent example of 

useful interactions between engineering and biology. 

A functional kinematic model of the major joints of the Blaberus discoidalis 

mesothoracic (middle) leg was developed using observations of the motion of legs in 

behaving, anesthetized, and dissected specimens. Joint degrees of freedom (DOF) and 

excursions used by the animal were estimated primarily by observing motion (the 

function of the joints), rather than from observation of fine anatomical features (their 

form). These estimated DOF were used to construct a physical kinematic model for 

verification, and the information was then used to construct a mathematical description of 

the major joints using the Denavit-Hartenberg formulation of the kinematic equations for 

a set of linked appendages; see (Asada & Slotine, 1986).  This T2 leg kinematic 

description has 2 DOFs for the thorax-coxa joint and 1 DOF each for the coxa-trochanter  

and femur-tibia  joints.  Initial descriptions are also developed for the T1 and T3 ThC 

joints, and degrees of freedom in the T2 leg which are not yet included in the models.  



 87 

5.2 Motivation 

A diagram of the segments of the cockroach leg is shown in Figure 5-1. The skeletal 

connetion to the body (thorax) is primarily through soft scleral tissue and several small, 

complexly shaped cuticular plates. These include two called trochantins, and two more 

proximal plates called episternums. 

 

Figure 5-1 Left: ventral view of Blaberus discoidalis. Right: Diagram of the segments of the B. 
discoidalis left middle leg, with points used for 3D kinematic digitization. Not labeled in either figure 
is the Trochanter-Femur (TrF) joint, which is a functioning joint only actuated in one direction 
(James T. Watson, et al., 2002). Figure from (Bender, Rutter, Simpson, et al., 2008) 

A detailed and apparently accurate depiction of the T2 ThC joint structure of 

Periplaneta americana is presented by (Dresden & Nijenhuis, 1953), and describes three 

degrees of freedom.  However a) they do not mention kinematic order, which is a critical 

descriptor of kinematic function described below, and b) though these might in fact be 

the DOFs for P. americana, only one of the axes they described (P in that paper, ThC1 in 

this work) appears to correspond to the actual function we observed in Blaberus 

discoidalis middle legs. A detailed description by (Laurent & Richard, 1986) includes the 



 88 

musculature of the pleurocoxal (thorax-coxa) joint in the prothoracic (front) leg of the 

cricket Gryllus bimaculatus. Though they describe three approximate degrees of freedom 

and the muscles that actuate them, they refer to the joint as a “ball-and-socket”. This 

description is more apt at the prothoracic leg than at others, but it is still really not true; 

there are kinematic restrictions introduced by the trochantins and the distinct trochlear 

notch in the pleural joint. 

 

Figure 5-2 In many multi-DOF arthropod joints (on the left: ventral view of cockroach T2 left ThC 

joint), the cuticular plates and folds form a linkage that can be approximated as a series of hinges. 

This is not equal in function to a ball-and-socket joint. From (Rutter, Taylor, et al., 2007). 

Many multi-DOF joints in arthropods consist of a series of cuticular plates and folds, 

and their arrangement can be quite complicated. The cockroach T2 ThC joint is a good 

example of this, as is shown in  (Dresden & Nijenhuis, 1953). This is substantially 

different from the often-used descriptor “ball-and-socket joint”, as visually exemplified 

in Figure 5-2. A true ball-and-socket joint has three independent rotational degrees of 

freedom. Using these, the rod in Figure 5-2 could rotate up and down, side to side, and 

twist along its axis – each without regard for the current pose of the other two DOF. In 

joints or linkages consisting of multiple hinge-like single-DOF elements, the effect of 

motion in outbound DOF will depend substantially on the position of the preceding DOF. 

Therefore the order of these DOF, the kinematic order of the serial mechanical linkage, is 

important in describing the function of the system. For a more thorough introduction to 

these concepts, see (Asada & Slotine, 1986; Greenwood, 1965). 



 89 

If one only wishes to describe the relative pose of the segments on either side of a joint, 

it is entirely sufficient to use an arbitrarily chosen set of Euler angles, as was done by 

(Nelson, et al., 1997). If the order and orientation of these angles do not coincide with the 

actual physical joint DOFs, however, the behavioral description provided by these angles 

will be less useful. Motion that involves only one DOF in the animal would in general 

result in multiple simultaneous changes in these Euler angles. In this case it is harder to 

interpret the control methods being used in the animal system.  

Because of the neuromechanical nature of these locomotor systems, incorrect model 

mechanics can reduce or destroy the validity of the model as a whole. Both the kinematic 

order and orientation of the DOFs in a serial mechanical linkage are a critical part of 

describing system mechanics, so it is reasonable to assume that taking account of these 

joint kinematic properties is a critical part of physical modeling. 

5.3 Methods 

The term “functional kinematics” reflects the fact that we are more interested in how 

the leg works than how it is put together.  Description of anatomy in these joints can be 

very complex; going from this description to the information we needed would require an 

accurate quantitative anatomical model.  Constructing such a model is difficult, and 

might still leave us with inadequate knowledge in the end. What mattered to us at this 

level of modeling was the behavioral output and basic dynamics of the joint, not the fine 

details of the mechanism for producing it. 

The functional kinematic description here primarily involves only the kinematic 

function of the skeleton. No attempt was made to describe the muscles or their functional 

effects. This information would provide a much more complete description of the control 



 90 

of the ThC joint, particularly since it is likely there are muscles that affect multiple DOF. 

There is much more work to be done in this regard to gain a complete understanding of 

functional leg kinematics. 

The estimation of joint function done here consists of several steps. First, limbs of 

anesthetized animals were physically manipulated to estimate skeletal limits of motion, 

preferred directions of motion in the ThC joint (the joint DOFs), and the kinematic order 

of these ThC DOFs. This initial DOF estimate was primarily the result of joint 

manipulation by people with an intuitive understanding of kinematic order. Essentially, 

this process consists of finding axes about which the coxa prefers to rotate, then 

determining which other axes’ position is important in defining the orientation of each 

axis. The axes that help define an axis’ orientation are more proximal (nearer the body) 

than the current axis in the kinematic order; those that do not are more distal. 

The behaving animal was then observed to verify that its self-induced motion was 

within the ranges and constraints estimated above. Visual observation of walking and 

searching behaviors were used in this step, with the naked eye, under a dissecting scope, 

and with the assistance of high-speed video. This was a visual estimation of motion, 

rather than a precise analysis using video digitization. The data presented below are the 

result of myself, Brian Taylor and Richard Bachmann all going through this process 

separately (single-blind), and coming to a consensus. The final step of the process was 

the use of 3D imaging of intact awake animals to better estimate the orientation of the 

coxa and its degrees of freedom in standing animals. 



 91 

5.4 Results 

The kinematic data presented here were obtained with the assistance of Brian Taylor, 

Richard Bachmann and Michael Cohen. 

5.4.1 Apparent Degrees of Freedom of the Mesothoracic Leg 

The apparent degrees of freedom in this leg were as follows; organized by joint from 

proximal to distal. Note that the names of the actions of the joints do not necessarily 

represent what they actually do in the cockroach; these names adhere to standard insect 

anatomical descriptions that address a more stick-insect-like leg anatomy. 

I.Thorax – Coxa (ThC) 

1.Promotion – Remotion 

Shown in the top of Figure 5-4; promotion depresses the entire leg about 

axis AB of Figure 5-5 and retraction levates it.  The range of motion of 

this DOF is approximately 80°. 

2.Adduction – Abduction 

Shown in the bottom of Figure 5-4; adduction brings the leg closer to the 

body centerline about point A of Figure 5-5 and abduction moves it away.  

The maximum range of motion of this DOF is approximately 30°, and 

becomes smaller as coxa protraction increases. 

The orientation of the ThC1 axis used in the robotic cockroach model, based on 

3D image analysis of several animals, is given by two coordinate rotations from a 

body reference frame where positive x is forward with y pointing to the left. The 

first rotation is about body X: Thetax = 130 degrees The second rotation is about 

the new Y: Thetay = -20 degrees. The resulting coordinate system points Z along 

ThC1 into the body, as shown in Figure 5-3.  The complete Denavit-Hartenberg 



 92 

description of each model leg is given in the associated joints.xml configuration 

file; provided in the SCCILS Appendix 10.2. 

 

Figure 5-3 The two rotations from the body coordinate system (1) to the ThC1 frame (3) used in the 

cockroach robot. There is first a rotation of Thetax = 130° about x1, then a rotation Thetay = -20° 

about y2, resulting in the coordinate system (x3, y3, z3). The ThC1 DOF rotates about z3, which 

points medially and slightly ventrally and caudally. 

II.Coxa – Trochanter (CTr) 

1.Levation – Depression 

Levation rotates the trochanter and femur rostrally in the standard coxal 

pose shown in Figure 5-5, resulting in leg protraction. The limit of 

levation results in an overlap of coxa and femur, with the distal end of the 

femur nearly reaching point A of  Figure 5-5. Depression rotates the 

trochanter and femur caudally in the standard coxal pose, resulting in leg 

retraction.  The range of motion of this DOF is approximately 100°. 

 

III.Trochanter – Femur (TrF) 

1.Reduction – Passive Return 

y1

x1,x2

z1

y2,y3

z3

z2

x3

!x 

!y 



 93 

Reduction rotates the femur about the TrF attachment line shown in Figure 

5-1, levating it away from the ground (into the page) in standard coxal 

pose, and re-orienting the plane defined by the femur and tibia. In most leg 

poses encountered during stepping behavior, this results in a slight 

depression of the foot. Passive return brings the femur back towards the 

ground in standard pose, bringing the femur-tibia plane coincident with 

the coxal plane. The mechanism of this motion is described in detail in 

(James T. Watson, et al., 2002). Both the angle of TrF orientation with 

respect to the tibia and the range of motion of this joint were observed to 

be somewhat less than the approximate 45° reported there; perhaps as little 

as 30°. This estimate is still approximate; see section 9.2.2.12  in the 

future work. 

IV.Femur – Tibia (FTi) 

1.Flexion – Extension 

Flexion and Extension are both straightforward descriptors of the motion 

of this joint with respect to the femur. The range of motion here is 

approximately 150°, more or less centered around a pose of 90° from the 

line of the femur.  

V.Tibia – Tarsus (TiTa) 

The motion of the tarsus is complicated. There are at least two actuated degrees of 

freedom at the tibia-pretarsus joint in agreement with (Alsop, 1978), as well as 

active tarsal curl and the passive compliance of tarsal segments. 



 94 

 
Figure 5-4 Demonstration of T2 ThC degrees of freedom. Top: ThC1 remoted (left) and promoted 

(right). Bottom: ThC2 adducted (left) and abducted (right). These manipulations are similar to some 

of those used in the first step of estimating joint DOFs. From (Rutter, Taylor, et al., 2007). 

 
Figure 5-5 T2 B. Discoidalis left coxa, ventral view. The body midline is vertical just left of B, and 

rostral is up. The plane of the leg and coxa are coincident with the page; this is the “standard coxal 

pose” also used in Figure 5-6. The first DOF, ThC1, is along line AB. The second DOF, ThC2, is 

about an axis straight out of page through point A. From sketch on p 79 of Rutter biorobotics lab 

notebook #1. 

A

B

B
o

d
y
 m

e
d

ia
n

, 
R

o
s
tr

a
l

T2 left coxa, 
ventral view

1st DOF

2nd DOF

Coxa



 95 

5.4.2 Apparent Degrees of Freedom in the T1 and T3 ThC Joints 

 
 

Figure 5-6 The apparent functional degrees of freedom at the T1 and T3 ThC joints, in the standard 

coxal pose described in Figure 5-5. Left: T3; similar to T2 but with the first AB DOF (ThC1) pointed 

more away from the body center line. Right: T1, which differs significantly from T2 and T3. The AB’ 

line defines ThC1, which in this case has moved away from the anatomical thorax attachment line 

AB. ThC2 is still about a line through A perpendicular to the plane of the leg, A degree of freedom 

has apparently been introduced between these two, very approximately along AC. 

The degrees of freedom and order of the T3 ThC joint are similar to those in T2. 

Estimated ranges of motion are 70° for ThC1 and 30° for ThC2. As in T2, minimal 

rotation of the coxa in the plane of the thorax is possible, and not dependent on pose of 

the other DOF. This does not appear to be associated with obvious actuation or behavior, 

however. 

The kinematics of the T1 ThC joint are substantially different from the T2 and T3 

joints. The anatomy is much less restrictive; there are more soft tissues and less 

restrictions arising from cuticular plates such as trochantins. ThC1 and ThC2 still exist, 

but ThC1 is now more accurately described as a rotation about the axis of the elongated 

coxa, and has a range of motion of approximately 90°. An intervening DOF has been 

introduced which is approximately about line AC in Figure 5-6. It is suggested that this is 

referred to as ThC1.5, although renaming the ThC2 DOF might also be sensible in this 

case. The range of motion of ThC2 in this leg still varies with ThC1 pose but has a much 

A

B

B
o
d
y
 m

e
d
ia

n
, 
R

o
s
tr

a
l

T3 left coxa, 
ventral view

1st DOF

2nd DOF

Coxa

A

B

T1 left coxa, 
ventral view

(1)

(2)

Coxa

C

B'

(1.5)



 96 

greater maximum excursion (about 90°) than in the other legs, and is used extensively in 

walking and more than ThC1 in searching.  

5.5 Applications and Conclusions 

The functional degrees of freedom and their kinematic order in the B. discoidalis 

mesothoracic leg were estimated. These approximate kinematics were used to construct a 

physical kinematic model for evaluation and instruction, shown in Figure 5-7. 

Additionally, a subset of these DOFs were both used in the construction of the cockroach 

robotic model shown in section 6.4.2, and have been used to guide the further behavioral 

and kinematic analysis (Mu, 2007), (Bender, et al., 2009 (In Prep)). 

The following simplifications were made in both the kinematic mathematical model in 

(Mu, Taylor, Rutter, et al., (in preparation)) and the robotic model: 

1. The ThC1 DOF is in a constant, canonical orientation for all individuals. 

2. Axes of the Thoraco-Coxa DOFs intersect (at the point A in Figure 5-5) 

3. The axes for the Coxa-Trochanter, Trochanter-Femur, and Femur-Tibia 

DOF are all parallel, and the coxa, femur and tibia are co-planar. 

4. The Trochanter-Femur and Tibia-Tarsal DOF are excluded due to 

measurement difficulties and apparent low behavioral relevance. 

 



 97 

 
Figure 5-7 Left: physical model used in demonstration of the degrees of freedom in the mesothoracic 

leg. (built by Brian Taylor) Right: diagram of the DOFs used in the robotic model, and kinematic 

model of (Mu, 2007; Rutter, Taylor, et al., 2007), from (Bender, Rutter, et al., 2008). 

A kinematic modeling system using these kinematic data was constructed (Mu, 2007; 

Mu, et al., (in preparation)), and used to investigate the roles of each joint in generating 

foot motion during walking and turning behaviors. The importance of ThC pose and the 

coordination between CTr and FTi in changing from walking to turning behaviors are 

demonstrated using this kinematic model. 

In the modeling work here, as in nearly all previous work, the action of the TrF joint 

was left out. It was demonstrated in (James T. Watson, et al., 2002) that this joint is 

important in climbing, but it was supposed that it might be ignored for forward walking at 

least. Recent more thorough measurement by (Bender, et al., 2009 (In Prep)) suggests 

that this is not the case, and even that the TrF joint might be the element in the animal 

which primarily controls foot levation and depression, rather than the ThC1 DOF used for 

this purpose in the robotic cockroach model.   



 98 

The model builder should note that the ranges of motion given here are related to 

skeletal limits rather than behavioral observations. Models of biomechanical systems 

should generally be built with these less restrictive physical limitations, unless there are 

clear and well-supported reasons for doing otherwise. The walking animal is dealing with 

this physical system; not one with a more limited range which can produce walking. 

Building a model based on behavioral observations substantially limits the models’ 

usefulness to those behaviors. If artificial muscles such as braided pneumatic actuators 

with a force-length characteristic are used, one must additionally keep in mind that most 

animals are capable of exerting substantial force even at the skeletal limits of their joints. 

Artificial muscles and joint geometry should be chosen, then, where the range of muscle 

contraction during joint motion is substantially less than the maximum that the muscles 

can produce. This is unless, of course, biological data to the contrary is available. 



 99 

6 Neuromechanical Robotic Models 

6.1 Introduction 

This chapter describes the SCASM-controlled robotic leg models as implemented in 

the NeuRoMod control program suite (operating manual in Appendix: 10.4), and the 

physical stick insect and robot models. Both the control program and the hardware used 

to run it are described. Both the hardware and software in these models have gone 

through a prototyping process in which the implementation is begun as simply as possible 

and improved as needed to adequately meet the requirements for reverse-path hypothesis 

generation mentioned in section 2.2. The design requirements for the robotic models 

included “portable” and “electrical actuation”; potential problems with poor dynamic 

match were seen for the electrical actuation requirement, but these have been dealt with 

sufficiently for this initial use. The control software was designed with a significant 

amount of modularity and configurability. The modularity has been necessary for 

straightforward additions when new functionality has been necessary, and the 

configurability has allowed the same control software to deal with different and evolving 

robotic models. 

6.2 The NeuRoMod Engine Control Architecture 

This section describes the engine portion of the NeuRoMod control suite, in the 

SCCILS sense of “engine” described in section 4.3.1. The local control system is 

designed to allow modular addition of muscle models, dynamic muscle activation levels, 

and the continuous modification of activations and state transition conditions based on 

higher-level control inputs. This local control might be thought of as occupying the mid-



 100 

level sequencing and low-level reactive portions of a three-layer architecture like those 

described in 3.6.1. 

This software runs on Pentium III machines using RT-Linux (Yodaiken & Barabanov, 

1997), a real-time operating system which is described in more detail in Appendix 10.4. 

The control code was implemented as a number of concurrently running real-time threads 

contained within two real-time kernel modules. This allows for greater control modularity 

than single-process designs, and is a better structural match to the organization of the 

associated computational processes in the animal. The conceptual location of these 

threads in a three-layer architectural description is shown in Figure 6-1. The same threads 

are shown in the context of a neuromechanical joint in Figure 6-2. 

Documentation for the programs and custom function libraries referred to here is 

automatically generated using Doxygen (van Heesch, 2009, www.doxygen.org) and is 

available in the code repository. Including all 10k+ lines of C code in the appendices 

would be unreasonable, but a summary index of the documentation is included in 

Appendix 10.1. 



 101 

 

Figure 6-1 Location of real-time threads on the three-layer architecture backdrop. High-level control 

influences SCASM via descending commands; SCASM specifies motor patterns for lowest-level 

control. All arrows represent the flow of information between system elements. White rectangles are 

threads in the engine module; the state transition thread initiates state transitions and sets muscle 

activations and any low-level reflex rules, making it the thread that actually enacts SCASM. The 

light grey boxes are threads in the script module and handle SCCILS HDSO I/O: the script handler 

takes parameter modifications from the high-level (interface) and enacts them in lower levels. The 

HDSO server provides low-bandwidth access to most of the sensory data and parameter values in the 

lower levels of control.  

 

Figure 6-2 Approximate location of real-time threads in the context of the neuromechanical joint 

system. The script handler and HDSO server threads process higher-level interaction. The state 

transition thread implements SCASM, modeling the joint pattern generators. The muscle conversion 

thread models muscle and joint dynamics. The motor action thread handles low-level physics 

modeling and physical I/O. The “motor conversion” thread implements low-level sensory filtering 

and processing. 

Script Handler HDSO server

SensoryReflexes and Physics

High Level/Brain

SCASM/Ganglion PGs

Descending 
Commands

Motor Patterns

State 

Transition

Motor 

Action
Muscle 

Conversion

Motor 

Conversion

Muscle

Ganglion

Joint

Environmental

Interaction

Sensory Feedback

Motor Commands

Neural-level 

dynamics

Mechanical-level 

dynamics

Script HandlerHDSO server

State 

Transition

Motor 

Action

Muscle Conversion

Motor 

Conversion



 102 

6.2.1 Enginemod: The Control Real-Time Module 

 
Figure 6-3 Enginemod thread event relationships.  State Transition and Motor Action threads run at 

their own periodic timebases, and kick the conversion threads when necessary.  All four threads 

access shared memory and produce output that goes through the data/info FIFOs. Many shared 

memory variables may be considered the “output” of one thread and the “input” for another. 

Scriptmod interacts with the controller through its connection to this shared memory. 

Enginemod runs four concurrent threads, but control takes place primarily in the Motor 

Action and State Transition threads. The Motor Action Thread handles the feed-forward 

force control and runs up to a maximum rate given by computation and serial 

communication overhead, currently 197 Hz. The second SCASM control thread runs at a 

lower priority and handles the state transition and activation calculations. The update 

rates of these threads are both configurable; currently recommended settings of 100 Hz 

and 40 Hz respectively. All control and sensory data are stored in shared memory 

accessible both from real-time and user space, allowing online modification of the 

control. Each thread logs data every execution cycle via FIFO to a high-priority user 

space program that writes all data, including sensor readings, states and muscle 

activations, to files. 

Mechanical Domain

RT Process Domain

Linux User-Space Domain

Robot 

Dynamics
Actuators

Sensors

Serial Out

Shared 

Memory

Serial in

Command

FIFO Data/Info

FIFOs

engineprog

(SCCILS 

parsing, 

initialization, 

and run)

State 

Transition

Motor Action

Muscle 

Conversion

Motor 

Conversion

Engine Module

monitor

MotorData.txt

MuscleData.txt

SensData.txt

StateData.txt

Scriptmod

Infolog.txt

Debuglog.txt



 103 

6.2.1.1  The Motor Action Thread 

The motor control thread handles low-level hardware I/O, and the feed-forward torque 

control calculations. The system is fast enough that angle feedback can be used in 

conjunction with the servomotors’ proportional control to implement a crude, but stable, 

feed-forward torque control. For a given desired torque output, the servo is commanded 

to go to some delta of position from the current position; the proportional control used by 

the servo then generates a torque proportional to this delta. This system generates smooth 

compliant motion from an electrical motor system with relatively little computational 

overhead.  

This is implemented as follows: in the servomotor, the current/torque command sent to 

the motor coils is at least primarily a proportional control, calculated as in Equations 6-1, 

where !command is the desired angular position and !measured is that reported by the servo’s 

sensing device. In servo delta control, the command angle is calculated at a higher level 

and at a high rate by using Equation 6-2. In this case !err , and thereby the motor 

current/torque, can be controlled as shown in Equations 6-3. 

current _ command = P *!
err

!
err

= !
command

"!
measured  Equations 6-1 

for servo delta control, set 

!
command

= !
measured

+!
servo  Equation 6-2 

then 

!
err

= !
measured

+ "
servo

#!
measured

= "
servo
,

current _ command = P *"
servo  Equations 6-3 



 104 

6.2.1.2  Motor conversion thread: Sensory Processing 

The motor conversion thread actually just does low-level sensory processing and 

filtering on the raw A/D sensory data that the Motor Action Thread records in shared 

memory. Angle data are used both in raw 8-bit form and after having a calibration 

applied, but no sensor filtering is done. The current data are filtered using the following 

IIR filter (after initialization). 

 filt_current = 0.05*current + 0.95 * prev_filt_current Equation 6-4 

6.2.1.3  State transition control thread: SCASM 

The state transition thread sets the state at each joint by checking the sensory thresholds 

described in the Boolean state transition rules. In so doing, this is the thread that 

implements the action switching of SCASM in these programs. It also calculates and sets 

the activations for the muscles at each joint as specified by the current action. Though 

most configurations currently use constant muscle activations, they are dynamically 

calculated and can use any available sensor and any of the generic functions available in 

the utility.c library. 

To simulate sensory-motor control loop delays, the state transition thread is run at less 

than the maximum possible.  A period of 25 milliseconds is used in the cockroach robot, 

corresponding to a hypothesized sensory loop delay of about 7.9 ms in the animal. As 

discussed in section 9.2.4, this method has drawbacks because it also affects the fineness 

of sensory event detection, and the speed (and therefore fidelity) at which muscle 

dynamics are calculated. Motion was not obviously changed by adding the 25 ms delay 

here, however. 

 



 105 

6.2.1.4  Muscle conversion thread: Muscle modeling 

The muscle conversion task handles muscle model calculations, and sets the !servo 

values used by the Motor Action thread. Here, the term “muscle model” refers to a crude 

mathematical model of a biological muscle, where the muscle is represented as a 

contractile element whose force at a particular level of activation is scaled by its current 

length and velocity. The length of the element, in turn, is determined by modeling the 

joint as a constant-radius pulley; an inaccurate but computationally simple joint model. 

This model of muscle activation is simpler than those intended to accurately model 

muscle dynamics (e.g. that of (Hill, 1970)), which can include a more complex 

arrangement of passive nonlinear stiffness and damping elements. 

The servo delta at each joint is computed using the following relationship: 

! servo = r " f[ ]
muscles

#

f = PS + activation "FL "FV " fmax

 Equation 6-5 

where r is the radius of the pulley associated with each muscle, f is the current force of 

that muscle, PS, FL and FV are the values of the muscle’s functions for passive stiffness, 

force-length activation scaling, and force-velocity activation scaling respectively, and fmax 

is a parameter intended to represent the maximum force which can be exerted by each 

particular muscle. PS, FL and FV can be calculated using constant, linear, parabolic or 

hyperbolic relationships, as implemented in generic_function in utility.c. As an example, 

the linear force-length characteristic FL was a function of nondimensionalized muscle 

length l’: 



 106 

  Equation 6-6 

with a and b constant parameters, " the joint angle, l0 the “resting” length of the muscle 

and # the joint angle at which the muscle reaches this length.  

Though it is not modeled explicitly and has not been quantified, there is also a force-

velocity dependence inherent in the force control method used in the Motor Action 

thread. As a joint moves more quickly in the direction it is being driven, the average 

distance between the commanded position and the joint’s actual position will become 

less, reducing the torque applied to the joint. The inverse is also true; decreasing joint 

velocity increases force. In the limit of the static case, !err is always equal to !servo and 

will therefore actually be exerting the associated torque. At high speeds the low-level !err 

may never equal !servo, since the low-level !measured will have moved closer to the 

calculated !command by the time the !servo command reaches the servo. Additionally, there 

is some speed-output torque relationship for any physically existing motor and 

transmission, which also reduces maximum torque output at higher speeds. 

6.2.2 Scriptmod: The SCCILS Interaction Real-Time Module 

The low-level hooks for online SCCILS configuration changes are in the HDSO data 

store in the RT-Linux shared memory, accessed by enginemod. Scriptmod provides timed 

read and write access to these data through its two threads: the script handler and the 

HDSO data server. 

The script handler thread receives HDSOmod data change commands (already 

translated from XML to the native engine representation) and implements them as closely 



 107 

as possible to the times specified. Once an HDSOmod has been applied, the script 

handler puts that HDSOmond on the Scriptlog FIFOs, marked with the time of actual 

implementation. 

The HDSO server thread receives HDSOspec specifiers for requested HDSO data. It 

then reads the associated data from the shared memory HDSO store and writes them to 

the HDSOlog FIFOs, marked with the current time. 

 
Figure 6-4 Scriptmod data flow. The script handler takes HDSOmod config changes via the Script 

FIFO, implements them at the desired time, and records actual implementation via the Scriptlog 

FIFOs (to Scriptlog.xml). The HDSO data server takes requests for HDSO data via the request 

FIFO, then looks up the specified data and writes it to the HDSOlog FIFOs in HDSOmod form.  The 

“Shared Memory” in this figure is the shared memory HDSO store, a subset of the “Shared 

memory” block in the enginemod diagrams; thus the “connection” with enginemod. 

6.2.3 User-space programs 

Although the actual control computations take place in the real-time modules described 

above, there are a number of things that happen in programs in the “Linux User-Space 

Domain” elements of Figure 6-3 and Figure 6-4. This reflects the fact that user 

RT Process Domain

Linux User-Space Domain

Shared 

Memory

Command

FIFO
HDSOlog 

FIFOs

Script loader 

or Translator

Script 

Handler

HDSO server

Script 

FIFO

Request 

FIFO
Scriptlog 

FIFOs

HDSOMod

Config changesHDSOSpec

data requests

HDSOmods as 

actually applied

HDSOmods containing

requested data

Scriptlog.

xml

monitor

HDSOlog

.xml

Change HDSO data

Read current HDSO data

Script Module

Enginemod



 108 

interaction, initial system configuration, and file parsing and I/O are better handled in the 

normal Linux programming environment. 

Parsing and configuration are accomplished primarily by the engineprog command-line 

program. It is used to load and unload the RT-Linux modules, and makes heavy use of 

functions in the userio.c library. The monitor program logs data from RT data FIFOs to 

disk, and is run as a very high-priority user-space task. The datalogging command-line 

program is used to load and unload the daemon-like monitor, and it does some parsing of 

raw FIFO data written to disk by monitor. 

The Python SCCILS translator and the command-line enginecli program are higher-

level programs for running the engine interactively or executing experimental scripts. 

Each of these makes use of engineprog and monitor/datalogging for the services they 

provide. The Python translator, of course, interacts with the graphical user interface via 

SCCILS, and via that SCCILS communication is capable of interacting with higher-level 

control of any nature. 

6.3 Control hardware 

6.3.1 Computers 

Control is implemented on computers running RT-Linux (Yodaiken & Barabanov, 

1997) that also record all state and sensory data for analysis and allow on-line 

modification of all SCCILS-aware system parameters. The computers used for the work 

presented here are  400 & 500 MHz Pentium-III machines. All input/output for these 

prototypes is via RS232 serial communications with the AIMotor actuator/sensor 

packages. 



 109 

6.3.2 AIMotors 

AI-series servomotors from Mega Robotics (Megarobotics Co., Ltd. Seoul, Korea) 

were used in both the stick insect and cockroach model legs. Both the AI-701 and higher-

torque AI-1001 motors were used. Communications with the motors was handled with 

the aimotor.c minimal driver library in the NeuRoMod software. The RS-232 serial line 

from the computer connects to a combination level converter and power board; all motors 

then get power and TTL-level RS-232 serial communications through a four-wire bus. 

These servos are controlled via an RS-232 serial data line, and provide 8-bit angle and 

load feedback to the host controller over the same line. Angle feedback is used in 

conjunction with the servomotors’ proportional control to implement a crude feed-

forward torque control described in section 6.2.1.1  above. Motor current feedback is 

available at a resolution of ~18.4 mA per A/D tick, and position command and feedback 

are both at a resolution of 0.654 degrees per tick.  

6.4 Physical Models 

6.4.1 Stick insect 

The stick insect model, shown in Figure 6-5, is a 14.3:1 scale 3-DOF model of the right 

middle leg of the stick insect Carausius morosus constructed primarily by Brian Taylor. 

The segment lengths are coxa = 22.6mm, femur = 192.8mm, and tibia = 189.0mm, giving 

coxa-relative lengths of 1, 8.58 and 8.41, and a total leg length of 404.4mm. These ratios 

are within the range reported in (Cruse & Bartling, 1995). The orientation of the ThC 

DOF uses the values from (Cruse, 1976); first a rotation of -85° about the body Z axis, 

then a rotation of 40° about the resulting Y axis (see Figure 5-3 for the corresponding 

rotations in the cockroach). Though the animal has more than one DOF at the thoraco-



 110 

coxal joint, only the primary protraction/retraction DOF was used, as in the model of 

(Ekeberg, et al., 2004). A smooth, low-friction foot, constructed using a half of a table-

tennis ball, simulates the frictionless surface used by Ekeberg et al. in their modeling 

when used on a hard, smooth surface. Note that this is the extent of our contact modeling, 

and was not an explicit design issue. The joints are actuated using AI-series servo motors 

described in section 6.3.2. The ThC and FTi joints use model AI-701 while the CTr joint 

uses the higher-torque AI-1001. The femur and tibia segments of this prototype were 

constructed from 9.5 mm diameter plastic coat-hanger shaft, and these are connected to 

the motors using adapters made from Delrin$plastic which interface with the standard 

slide-in connectors of the AI-series servomotors. The motor driving the ThC joint is 

connected to a body link, which is attached to the base on two vertical sliding rails in 

order to adjust the modeled body height.  

In this model, the current load on the CTr motor is used as a measure of leg load, 

instead of directly measuring ground contact. This load sensor is located similarly to 

some of the load sensing organs in the animal which serve the same purpose (Ekeberg, et 

al., 2004) (Hofmann & Bässler, 1982). 



 111 

 

Figure 6-5 Robotic scale model of the stick insect right middle leg. This view is from the front; the 

bar extending to the bottom right indicates the orientation of the thorax in the horizontal plane. 

 
Figure 6-6 Sensory flow diagram valid for all stick insect modeling done in this work. Signs & 

strengths of connections can change, but this figure represents which signals can have any effect on 

each action switching module.  

6.4.2 Cockroach 

The cockroach model, shown in Figure 6-7, is a 10.1:1 scale 4-DOF model of the left 

middle leg of the cockroach Blaberus discoidalis constructed primarily by Tyson Papay 

and Devon Parker, based on original designs by Brian Taylor. The segment lengths are 

coxa = 87.2mm, femur = 93.2mm, and tibia = 74.7mm, giving coxa-relative lengths of 1, 



 112 

1.069 and 0.857. The orientation of the ThC1 DOF is described in Figure 5-3; the rest of 

the leg is articulated within one plane. The coxa, femur and tibia segments are solid 

machined aluminum, while the connection between the motors for ThC1 and ThC2 are a 

plastic-aluminum sandwich beam to increase stiffness. Similarly to the stick insect 

model, a rounded plastic foot simulates the low-friction oiled-plate environment often 

used in animal experimentation (Gruhn, Hoffmann, Dübbert, et al., 2006; Tryba & 

Ritzmann, 2000). There is an AI-Motor at each joint; the ThC1 motor is model 1001, the 

others are model 701. 

Although there is a motor for the ThC2 DOF, this is left in position control mode at a 

fixed angle for all of the modeling work done so far. 

  
Figure 6-7 Cockroach left middle leg model, ventral view. 

ThC-2

ThC-1

CTr FTi



 113 

 
Figure 6-8 Sensory flow diagram for all cockroach modeling done in this work. 

 
Figure 6-9 Cockroach leg on mount and ready for an experimental run (image taken from 

experimental video data.  The base element pointing down and to the right is parallel to the 

simulated body center line, and pointing caudally. 

FTi

angle

LEV DEP

CTr

angle

Joint

load

RET PRO

FLX EXT

ThC

angle 2

ThC

angle 1



 114 

7 Experiments 

This chapter presents experiments that have been performed as examples of the kinds 

of questions that can be addressed using these neuromechanically based robotic models. 

Appropriate experimental practices are introduced, and methods of displaying and 

interpreting the resulting data are also shown. The first section covers basic description 

and testing of model functionality. The second presents a preliminary analysis of the 

effects muscle models can have on overall leg behavior in the stick insect model. The 

next two sections present a series of experiments that begin to address the question: what 

is necessary to modify behavior of the system?  First, a brief example of a method to 

change stepping speed is presented. Then transitions between walking and turning 

behaviors in the cockroach model are addressed. 

7.1 Initial Testing and Functionality 

Some initial demonstration of functionality is shown here for three of the systems 

described in Chapter 6; stick insect simulation (Ekeberg, et al., 2004), stick insect robot, 

and the BILL-ANT two-leg test platform. Many of these results were originally presented 

together in (Rutter, Lewinger, Taylor, et al., 2006), (Lewinger, et al., 2006). The 

inclusion of these systems together is useful in demonstrating the use of SCASM for 

control and modeling in systems that are similar but not identical. To the engineer of 

legged systems, this may be interesting in the demonstration of breadth of applications. A 

biological modeler could find this interesting both in a comparison of the capabilities of 

the various systems (which might be evident in an examination of Figure 7-4), and in the 

examination of which control parameters vary the most or least widely between systems 

(see, e.g., Table 7-1). 



 115 

All three leg systems generated stable forward stepping behavior when appropriately 

tuned through the interactive selection of thresholds for switching events and muscle 

activation or action dynamics parameters. Restricted stepping, in which the ThC joint is 

fixed, was also used in development and some experiments. 

7.1.1 Adaptability demonstrated in restricted stepping experiments 

We first tested the operation of the stick insect robot leg in the restricted single leg 

preparation, which corresponds to a reduced biological preparation in which all legs but 

one are removed and the ThC joint of that leg is immobilized (Bässler, et al., 1991; 

Fischer, et al., 2001). This preparation allows a stepping movement sometimes called 

“sideways walking”.  During sideways stepping tests, the body link was adjusted such 

that the ThC joint was about 16 cm above the ground, corresponding to an insect-scale 

height of about 11 mm. 

One of the most difficult aspects of stepping control in these models is the swing-

stance transition. Initial tests for the stick insect model were done with a null muscle 

model and the leg would sometimes stop movement instead of completing this transition. 

It was believed that a muscle model with a simple force-length characteristic would help 

address this problem, which is described in section 7.2. As an interim measure during 

initial testing and before a muscle model was implemented, a third state was added to the 

FTi joint in which the extensor muscle activation is reduced after extension has 

progressed past a certain point. This made the swing-stance transition much more reliable 

when the appropriate muscle activations and sensory thresholds were properly tuned, as 

shown in Figure 7-1.  



 116 

 
Figure 7-1. Path-state plot and joint trajectories of restricted stepping in the stick insect robot model, 

with the third FTi “Post Extension” state. In this example the system quickly stabilizes. The path-

state plot is a plot showing simultaneous foot path and joint states, and is used in several of the 

following figures. Each line represents the state of one joint, styled as shown in the legend. The foot 

path calculated from joint angle data is represented by the line which starts at the circle and 

terminates at the triangle; in this case that is the line representing CTr joint state. In this and in 

Figure 7-8, negative Y is away from the body since the model is a right leg (see Figure 4-1). The 

origin is at the ThC joint, and this is a projection of the already nearly planar restricted stepping 

motion is therefore onto a transverse plane. 

The adaptability of a SCASM system and its dependence on the environment and 

sensory feedback are readily demonstrated using this preparation. As the height of the 

body link is increased from approximately 16 cm to 26 cm, the leg continues side 

stepping in contact with the ground, without modification of control parameters. The 

control system was not obviously vulnerable to the initial state of the joint control 

modules, and behaved well over a range of initial kinematic poses, including at least 

those contained in whichever behavior was currently configured.  If the structure of the 

leg is disconnected, leaving control connections in place, the motions of the joints do not 

exhibit the same patterns and may stop. Re-connecting the leg structure causes the system 

to resume stepping motion. An experiment demonstrating this, in which the physical 

structure of the leg was temporarily disconnected just below the CTr joint, is shown in 

Figure 7-3. Disconnection and reconnection were done by hand, and each took about two 

seconds. In some cases of this experiment (not shown), the system is trapped in one of the 

plateau regions and motion stops until the leg is externally disturbed.  



 117 

It is apparently necessary for me to point out that although there are some similarities, 

this is not equivalent to a deafferentation experiment, or indeed any experiment where 

neural function is disturbed. Even if the efferent connections to the levators and 

depressors of the trochanter (near the leg disconnection point) were temporarily 

disconnected, it would still not be an equivalent experiment. Physical force information 

would still travel up the leg to the trochanteral campaniform sensilla, and the forces 

applied by the body and ThC joint would still influence the motion of the rest of the leg. 

These physical carriers of information are disrupted in this mechanical dissociation 

experiment. This is shown graphically in Figure 7-2. Once the structure of the robot is 

 

Figure 7-2 Differences between a deafferentation and a mechanical dissociation, shown in the context 

of the neuromechanical joint. The shown deafferentation stops the flow of sensory information from 

receptors in that section of the leg to the local ganglion. Mechanical dissociation at the point shown 

stops the flow of mechanical information, in the form of force, in both directions- sensors in the more 

proximal segment which may have responded to forces induced there by environmental interaction 

will no longer have such input. The dynamics of the environmental interaction that both the 

proximal and distal segments experience during dissociation may be dramatically different from the 

usual arrangement. 

Muscle

Ganglion

Joint

Environmental

Interaction

Sensory Feedback

Motor Commands

Neural-level 

dynamics

Mechanical-level 

dynamics

Higher Level Control

Mechanical 

Dissociation

Deafferentation



 118 

disconnected all neural information travel is unaffected, but the physical information is 

disrupted, and can be reassembled during behavior. 

 
Figure 7-3. Disruption of the restricted stepping pattern by disconnecting part of the leg structure. 

Disconnection starts at the first arrow, and reconnection ends at the second arrow. 

This experiment, which may be impossible in the animal, is perhaps one of the clearest 

demonstrations of the neuromechanical nature of this system, and those like it. The 

mechanics is a critical, integral part of system behavior, not just something to be 

overcome or compensated for by control. This is in contrast to a centrally coordinated 

system. If this experiment were run on such a system, the motor activities of the joints 

might remain in phase. This demonstration is far better shown in a physical robot than it 

would be in a computer simulation. Also, this result was first discovered accidentally as a 

result of a robot “malfunction”; this kind of serendipitous discovery is a benefit of 

working with physical model systems. 

7.1.2 Preliminary forward stepping experiments 

In the forward stepping experiments, motion of the ThC joint is allowed. With some 

sets of parameters, this is the only difference between forward and restricted stepping; all 

other parameters of the control system may remain the same. The three systems were able 



 119 

to successfully generate forward stepping motion as shown in Figure 7-4. The action 

switching event parameters necessary for generating these motions are given in Table 

7-1. In the absence of muscle models or other actuation-limiting control, the stick insect 

robot model tends to drift toward one or the other extreme of ThC movement and ceases 

behavior eventually, though it may operate stably for several minutes. When operating 

well as for the run that produced the data in Figure 7-5 and Figure 7-6, the leg spends 

about 0.8 s in each of stance and swing, and the foot moves about 30 cm rearward during 

each stance phase.  

 
Figure 7-4 Path-state plots of forward stepping in three legged systems. The path which starts at the 

circle and terminates at the triangle represents the foot path as computed from recorded joint angle 

data. Each of the three lines along the path represents the action of one joint at that point, styled as 

shown in the legend. Coordinates are relative to the body; the origin is at the ThC joint. From 

(Rutter, et al., 2006) 



 120 

 
Joint Angles (degrees) 

Joint 
State 

Transition ThC FTi 
Ground 

Contact? 
Original Ekeberg et al. Values 

ThC PRO"RET -- -- yes 
 RET"PRO -- -- no 

CTr LEV"DEP -- < 70 -- 
 DEP"LEV < -25 > 120 -- 

FTi EXT"FLX -- # 105 yes 
 FLX"EXT -- > 105 no 

Single-Leg Platform 
ThC PRO"RET -- -- > 0.5 

 RET"PRO -- -- < -0.5 
CTr LEV"DEP  < 80 -- 

 DEP"LEV < -25 > 115 -- 
FTi EXT"FLX -- # 100 > 0.2 

 FLX"EXT -- > 120 < -1 
 EXT"EXT2† -- < 80 <= 0 

Two-Leg Platform 
ThC PRO"RET -- -- yes 

 RET"PRO -- -- no 
CTr LEV"DEP > 35 < 48 -- 

 DEP"LEV < -35 > 107 -- 
 DEP"LEV* < -90 > 180 -- 

FTi EXT"FLX -- < 46 yes 
 EXT"FLX* -- < 0 yes 
 FLX"EXT -- > 90 no 

Table 7-1 Action switching event conditions for forward walking in three legged systems. * Special, 

unreachable values when the other leg is in swing; prevents more than one leg being in swing at a 

time. † Additional state added to improve performance (see section 7.2). 



 121 

 
 

Figure 7-5. Sample data from forward walking in the single- leg platform with piecewise-constant 

FTi extensor muscle model, intended to parallel the presentation in Fig. 4B of (Ekeberg, et al., 2004) 

Shaded portions represent time the foot is touching the ground. Positive X is forward, negative Y is 

away from the body, and Z is up; dimensions are in centimeters. Origin is the point of the Thoraco-

Coxal (ThC) joint. Note the differences between start of ThC retraction and start of FTi flexion, due 

to differing thresholds for the CTr load representing ground contact for those state changes. Also 

note the considerable lag between changes in stance-swing activity (i.e. FTi flexion to extension) and 

the time when the foot actually leaves the ground. From (Lewinger, et al., 2006) 



 122 

Muscle activation levels are plotted with angle data and foot position in Figure 7-5 for 

the same run as shown in Figure 7-6; they are set similarly to the levels shown in Table 

7-3. The lack of a constant-Z portion during stance in all these runs is due to a large 

amount of flexibility in the leg structure; precise foot position cannot be inferred 

accurately from measured joint angles. This information is not necessary, however, for 

SCASM to function. 

  
 

 
Figure 7-6. Path-state plot for a single step cycle in forward stepping of the single-leg platform. 

Positive X is forward; this is a projection of the 3-D foot path onto the sagittal plane.  

7.2 Effects of muscle models on stepping behavior 

Biomechanical studies strongly indicate that the performance of biological locomotor 

systems not only relies on the dynamic neuromuscular transform between the nervous 

and musculoskeletal systems of a walking animal, but can also profit from the 

contribution of specific muscle properties (Abbas & Full, 2000; Josephson, 1993). The 

control methods used by the nervous system are likely to rely on these complex 

properties of the associated mechanical systems. To the model builder, this presents a 

possibly critical element of structural accuracy in the construction of a leg model. To the 



 123 

engineer of legged systems, it is important to determine what part of the dynamic 

properties of muscle are required for adequate system function.  

As demonstrated in the physical disconnect experiment in the previous section, 

physical properties are critical to overall system behavior in a SCASM system. 

Coordination is a neuromechanical phenomenon, which we might expect to arise from 

the complete dynamics of the constituent modules and actions. Because muscles have 

mechanical substance and dynamics of their own, it is important to ask how accurately 

we need to model the muscle dynamical properties in order to create a sufficient 

behavioral match. This is also a useful question to ask in light of the extensive 

characterization and modeling of insect muscle activation and physical response 

dynamics done by (Guschlbauer, Scharstein, & Büschges, 2007) and many others. 

 

Figure 7-7 Torque vs. angle for various muscle model types. These graphs represent what would 

happen as angle changes if the muscles at the joint have a constant activation applied; this is the case 

for the ThC and FTi joints in the stick insect. 

In this section three types of muscle models are tested on the FTi joint of the stick 

insect robot leg: null, piecewise-constant, and linear, as depicted in Figure 7-7. The FTi 

Null

Piecewise-constant

Linear

Angle

Torque

Pie
cew

ise-
line

ar



 124 

joint was chosen because of its apparent role in instances where the robot failed to make 

the swing-stance transition. In the null muscle model, the motor torque output resulting 

from a model muscle has no relationship with joint angle. In the piecewise-constant 

model, this torque changes discontinuously at a specific angle. In the linear model, motor 

torque decreases linearly as the active model muscle contracts. Results show that adding 

very simple models of muscle properties at a single joint cause marked improvement in 

the performance of a neurally-based step generator for a 3-degree-of-freedom robotic leg. 

Much of this section, including figures, was first published in (Rutter, Lewinger, Blümel, 

et al., 2007) 

The action switching conditions used for these experiments are shown in Table 7-2; 

muscle activations are based on the current state for each joint. These activations, shown 

in Table 7-3, are constant for muscles at the ThC and FTi joints. At the CTr joint the 

activations are dynamically set based on known activation magnitude reflexes, as was 

done in (Ekeberg, et al., 2004).  

JOINT ANGLE CONDITIONS FOR STATE CHANGES 

Joint Angles (degrees) 
Joint State Transition 

ThC FTi 
CTr 
Load 

Sideways Stepping 
ThC "RET -- -- > 0.5* 

 "PRO -- -- < -0.5 
CTr "DEP  < 80* -- 

 "LEV < -25 > 115* -- 
FTi "FLX -- # 100 > 0.2* 

 "EXT -- > 120* < -1 
 "EXT2† -- < 80 <= 0 

Forward Stepping 
ThC "RET -- -- > 0* 

 "PRO -- -- < -0.5 
CTr "DEP -- < 75* -- 

 "LEV < -20 > 120* -- 
FTi "FLX -- # 100 > 0* 

 "EXT -- > 105* < -1 
    "EXT2† -- < 80 <= 0 

Table 7-2 Action switching event conditions. * Condition differs between restricted and forward 

stepping. † Additional state implementing the piecewise-constant muscle model. This state is only 

enabled for tests of that model.  



 125 

 
MUSCLE ACTIVATION LEVELS BASED ON JOINT STATE  

Joint 
 

State 
Agonist 
Activation  

Antagonist 
Activation  

PRO 0.6 0 ThC 
 RET 1.6 0.1 

LEV Eq. (1) 0 CTr 
 DEP Eq. (2) 0 

EXT 0.6 0.09 

FLX 1.3 0.001 

FTi (sideways) 

EXT2 0.2 0.09 
EXT 0.8 0.09 
FLX 6 0.001 

FTi (forward, 
piecew. const.) 

EXT2 0.15 0.09 
EXT 0.8 0.09 FTi (forward, 

linear) FLX 1.7 0.001 

Table 7-3 Muscle activation levels for the various joint actions. 

The variable activations in Table 7-2 are given by: 

K1(FTi_angle)           Equation 7-1 

2*K2(FTi_angle) + K3(CTr_angle)          Equation 7-2 

 Equation 7-3 

p = x-wmin/(wmax-wmin); q=1-p    Equation 7-4 

 

ACTIVATION FUNCTION PARAMETERS 

K a b  c wmin wmax 

1 0 0.8 0.01 61 100 
2 .08 -0.205 0.008 61 100 
3 0 0 0.06 -40 80 

Table 7-4 Activation function parameters 

Three types of muscle model were used in these experiments: null, piecewise-constant, 

and linear. Muscle model computations and force control were done as described in 

section 6.2.1. For all of the modeling in these experiments, force-velocity and passive 

stiffness functions were set to their constant “no effect” values (1 and 0 respectively). 

Thus the muscle models here have only a force-length characteristic, if any. All robotic 

models, of course, have the implicit force-velocity relationship mentioned in the model 

description, as a result of low-level motor and control dynamics. 



 126 

The muscle model parameters for the various tests are shown in Table 7-5. There is no 

FTi_EXT2 muscle. The EXT2 state just sets activations differently for the FTi extensor 

and flexor muscles. The FTi post-extension (EXT2) state is in effect a piecewise-constant 

force-length characteristic for the FTi extensor muscle. This is not precisely correct since 

it is only in effect during extension, but putting it into effect during flexion would likely 

have little effect due to the low extensor activity during that action.  

MUSCLE MODEL PARAMETERS 

Muscle l0 r # fmax a b 

Sideways Stepping 
ThC_RET -- -0.5 -- 10 -- -- 
ThC_PRO -- 0.5 -- 10 -- -- 
CTr_DEP -- -1 -- 10 -- -- 

CTr_LEV -- 1 -- 10 -- -- 

FTi_FLX -- 1 -- 10 -- -- 

FTi_EXT -- -1 -- 10 -- -- 

Forward, Piecewise Constant 

ThC_RET -- -0.5 -- 15 -- -- 

ThC_PRO -- 0.5 -- 15 -- -- 

CTr_DEP -- -1 -- 10 -- -- 

CTr_LEV -- 1 -- 10 -- -- 

FTi_FLX -- 1 -- 20 -- -- 

FTi_EXT -- -1 -- 10 -- -- 

Forward, Linear 

ThC_RET -- -0.5 -- 18 -- -- 

ThC_PRO -- 0.5 -- 15 -- -- 

CTr_DEP -- -1 -- 12 -- -- 

CTr_LEV -- 1 -- 15 -- -- 

FTi_FLX 5 1 95 30 -1.5 2 

FTi_EXT 5 -1 100 14 -1.4 2 

Table 7-5 Muscle model parameters. In sideways stepping, the same parameters are used for the null 

and piecewise-constant models; only the EXT2 state is added. 

7.2.1 Sideways Stepping with different muscle models 

We first tested the operation of the stick insect robotic model in the restricted single leg 

preparation, as described in section 7.1. We compared the operation of this system using 

the null and piecewise-constant muscle models for the FTi joint only. In development of 

the system, it became apparent that one of the most problematic aspects of stepping 

control is achieving a reliable swing-stance transition. 



 127 

 
Figure 7-8 Path-state plot (left) and joint trajectories in degrees (right) of sideways stepping with null 

muscle model. This system ceases motion after one second due to postponed detection of ground 

contact, and must be brought back to the feasible range of joint angles by hand. It again detects 

ground contact too late at about 11.5 seconds. 

On this platform the signal used to detect ground contact and complete this transition is 

load at the CTr joint (See Figure 6-6 and Figure 4-21). Therefore a measurable increase 

in load is critical for switching to the stance phase. However, with the FTi joint 

extending, this increase in torque can be very small, since FTi extension is acting to bring 

the foot up while CTr depression acts to bring the foot down, and the sliding foot does 

not firmly engage the substrate upon contact. As shown in Figure 7-8, this can result in 

delayed detection of ground contact, which disrupts the stepping cycle and eventually 

brings the system to a halt. Introduction of the piecewise-constant muscle model at the 

FTi extensor makes the swing-stance transition much more reliable, because the lower 

FTi extension force around the time of ground contact increases ground contact force and 

decreases likelihood that the FTi joint will overextend. 



 128 

 
Figure 7-9 Path-state plot and joint trajectories with the piecewise-constant muscle model, 

implemented using a third FTi “Post Extension” (EXT2) state. In this example the system quickly 

stabilizes, although “ground contact” was apparently detected before actual foot contact during two 

of the first three step cycles, which are depicted in the top plot.  

7.2.2 Forward stepping with different muscle models 

In forward stepping, motion of the ThC joint is allowed. This is the primary difference 

between this and restricted stepping; most other parameters of the control system can 

remain the same and still produce stepping, though in this case they were tuned to 

produce better behavior as seen in Table 7-2.  

Forward stepping with the null muscle model usually fails to detect the ground and 

transfer to stance muscle activations on the first step; therefore the histograms and 

statistics shown in Figure 7-10 compare only the piecewise-constant and linear FTi 

muscle models. These histograms were generated from analysis of ten minutes of 

stepping for each of the two types of muscle model.  In each case it was possible to 

generate reliable stepping behavior, though it took more effort to find a set of control 

parameters that accomplished this for the piecewise-constant case; this appeared to be 



 129 

due to a higher sensitivity of the system to the transition parameters in that case. 

Additionally, leg motion when using the linear FTi muscle model appears smoother, but 

this has not been quantified. 

 

Figure 7-10 (Left) Histograms showing the distributions of durations of the entire step cycle, as 

measured from one minimum of ThC angle to the next. The medians do not differ significantly 

according to the Wilcoxon test (p=0.22), and the distributions differ with p = 1x10
-8

 according to the 

Kolmogorov-Smirinov test. Note the bimodal behavior in the piecewise-constant data. (Right) 

Histograms showing the distributions of difference of the minimum ThC angle from step to step. The 

medians do not differ significantly according to the Wilcoxon test (p=0.14), but the distributions 

differ with p = 3.7x10
-5

 according to the Kolmogorov-Smirinov test. Additionally, the runs test 

indicates that all of the underlying distributions are most likely random (rather than consisting of 

alternating highs and lows) for all but the min-min delta for the linear muscle model (p < 0.001). The 

lack of the wide tails on data taken using the linear muscle model indicates a more consistent 

placement of the foot at transition from stance to swing. 

7.2.3 Muscle Modeling Conclusions 

In (Lewinger, et al., 2006) it was suggested that the state transition modules of SCASM 

should consist of actions which saturate, or limit actuation capability towards the 

extremes of the range of motion. This was suggested in order to generate the desired 

stable repetitive motion sequence. Here we have demonstrated that a linear reduction in 

actuation force with displacement at only the FTi joint significantly conditions the 

emergent motion of the system. It tightens the distribution of foot liftoff positions, which 

one might expect to be unaffected since that event is most tightly coupled to the ThC 

joint. It also reduces the spread of step durations, while making the distribution of step 



 130 

durations unimodal. It is worth noting that the linear models here which create such 

significant improvements are used only at the FTi joint, while the improvements are 

measured at the ThC joint. This further indicates the inter-joint sensory and mechanical 

influences can carry changes in the dynamics of one joint throughout the behavior of the 

entire system. These linear models are also simpler than the piecewise-linear models used 

in the two-leg platform of (Lewinger, et al., 2006), as depicted in Figure 7-7. 

These results suggest that the required complexity of actuation-limiting models for 

stabilizing and conditioning SCASM-based control may be relatively simple in general. 

This is a further example of the low computational complexity necessary for SCASM 

control, and suggests that application to a broad range of control problems (and 

underlying actuation mechanisms) may be both conceptually and practically 

straightforward for systems which require cyclic sets of coordinated state transitions. 

Additionally, it is apparent that adding complexity or conditioning of the underlying 

plant at one critical module or in one critical action, e.g., by improving the associated 

muscle model, can significantly modify dynamics of the entire system without further 

computational effort associated with other modules. This may simplify the task of the 

system designer, who might identify modules involved in a critical behavioral point, and 

concentrate on those. It also suggests that modulation of overall system behavior such as 

that necessary in turning or climbing could be implemented as modulation of one or a 

few critical modules from a higher-level control mechanism. This ties in very well with 

the project modeling goal of investigating descending influences on local control, which 

is addressed in the next two sections. 



 131 

7.3 Changing speed  

Coordination in SCASM is driven by sensory switching events, and muscle activations 

affect how quickly these events occur following a switching of actions. It was 

hypothesized that tonic changes in these muscle activations would be sufficient to modify 

the overall stepping speed. The representation in SCASM has a different set of muscle 

activation rules for each action; this corresponds to a pattern-generator gating of tonic 

drive to the motor neurons. To generate changes in speed as shown here, only the 

agonistic muscle activations were changed. In the FTi joint, for example, this would be 

the flexor activation during the FLX action, and the extensor during EXT. Note that this 

results in an increase in motor activity during both swing and stance. This is not quite the 

same as what is known from biological observations, which suggest that swing-phase 

motor excitation and limb speed remain the same over a broad range of stepping 

frequencies. This was found to be successful for both the stick insect and cockroach robot 

models. The results for the cockroach model are shown here; this was done using an early 

configuration with null muscle models. 



 132 

 

Figure 7-11 Muscle Activations vs. Step Period. Note that the appropriate increase in drive is not 

generally proportional between muscles, and that for each muscle pair a greater increase in 

activation was required for the stance agonist.  As presented in (Rutter, Bender, Taylor, et al., 2008) 

As seen in Figure 7-11, we modified the agonistic drive to all six virtual muscles, 

producing a decrease in step period; which is an increase in speed.  These changes in 

tonic activation to motor neuron equivalents are sufficient in this reduced system. Note 

that this agrees with prior motor neuron activity descriptions (Gabriel & Büschges, 2007; 

Watson & Ritzmann, 1998b), but those studies do not definitively address whether the 

motor patterns observed are the result of gated tonic drive or changes in local sensory 

magnitude influences. The associated biological hypotheses are fairly difficult to test 

outright in the animal. Such tests would require the ability to modify either the tonic 

signals controlled here or the gating function associated with the joint pattern generators. 

Model failures might be used to more narrowly guide investigation; some preliminary 

work is discussed in section 9.3.3. 



 133 

7.4 Transitions from walking to turning 

Transitions between one stable pattern of stepping motion and another in these models 

can require a set of coordinated changes in the magnitude or sign of the feedback at 

multiple points within the SCASM control system. In the robotic models, these points are 

the Boolean action switching rules and switching event thresholds, which represent 

synaptic strength or neuronal excitability in the animal. This section investigates the 

effects of the relative timing of these changes on the stability of the leg-level behavioral 

output during transitions between forward walking and turning movements in our model 

of the cockroach middle leg. Modulating only a subset of these feedback pathways can 

lead to appropriate intermediate behavioral transitions in some cases. However, it is 

hypothesized that there are some sets of changes in feedback parameters which must 

occur almost simultaneously in order to avoid unstable or inappropriate behaviors. Since 

a primary focus of this work is to use the model to reveal hypotheses regarding the 

biological system, the data from these timing investigations and the configurations for the 

various behaviors are used to provide focused input guiding the selection of the most 

effective biological experiments necessary to test the hypotheses which have arisen from 

this modeling work. 

7.4.1 Behaviors 

These experiments involve transitions between three distinct behavioral regimes of 

stepping. A very coarse description of the differences between walking and inside turning 

in the middle leg was used: “FTi extends during swing and flexes during stance, as 

opposed to the opposite during forward stepping”. In the 3-DOF cockroach model there 

are two qualitative behaviors that fit this; they differ in the phase relationship between the 



 134 

activity of the CTr joint and stance. Though the muscle activations are not known for all 

cases both have been observed kinematically (Mu & Ritzmann, 2005)(Bender, pers. 

comm.) All three behaviors are described below. Note that these are the second-simplest 

behavioral arrangements possible, the stance and swing actions at CTr and FTi switch at 

the same time, which need not be the case (see the stick insect forward walking case in 

Figure 4-8). The simplest behavior would switch between two global states, but this is 

unlikely to represent anything useful about the generation of these leg behaviors in the 

animal. 

7.4.1.1  Forward Stepping 

In forward stepping the FTi joint extends and the CTr depresses during stance, as 

shown in Figure 7-12. The event-space diagram that implements this behavior is shown 

in Figure 7-13. This configuration is described in detail in section 4.4.2. 

   
Figure 7-12 Cockroach middle leg Forward (FWD) global state diagram (left) and behavior (right). 

Beginning of stance shown in grey, end in black; foot path and CTr angle change are marked with 

the red arrows. Coxa motion ignored. The actions for the ThC1 and CTr modules are double-labeled 

as described in section 4.4.2; labels in parentheses indicate the actual effect of this action on the leg. 

PRO LEV EXT

PRO LEV FLX
Early Stance

RET DEP FLX

PRO DEP EXT
Stance

PRO DEP FLX

RET DEP EXT
Early Swing

RET LEV EXT

RET LEV FLX
Swing

PRO

(dep)

RET 

(lev)

ThC1

DEP 

(ret)

LEV 

(pro)

CTr

EXTFLX

FTi



 135 

 

 
Figure 7-13 Event space diagram for cockroach forward stepping. This configuration is described in 

detail in section 4.4.2. 

7.4.1.2  Inside Turn, Forward-type 

The first type of inside turn is Inside Turn, Forward, or ITF. In this behavior, the FTi 

flexes during stance and extends during swing, but the rest of the behavior is qualitatively 

the same as in forward walking. All of the global states therefore just change the FTi state 

from that in forward stepping, as shown in Figure 7-14. The event-space diagram which 

implements this behavior is shown in Figure 7-15, marked with the HDSO SCCILS 

parameters that must change from the FWD configuration in order to accomplish this, 

together comprising the configuration changeset !ITF. The load influences on FTi 

actions and the FTi angle effect on ThC1 actions have been reversed. The thresholds of 

the effects of FTi angle on FTi actions and CTr angle on ThC1 actions have also 

changed. Though not explicitly related to this behavior, reversal and modification of local 

sensory influences via descending commands in B. discoidalis was shown in (Mu & 

Ritzmann, 2008a).  

CTr Posn 
Depressed

Leg 
Load

FTi Posn 
Flex

FTi Posn 
Extend

Leg 
Unload

Ctr Posn 
Levated

 Protraction

ThC-!
1

Retraction

FTi
angle

CTr
angle

L
ev

at
io

n

F
le

x
io

n

ThC-!
2

PRORET

DEPLEV

EXTFLX

ThC 

Joint Load

AND

OR

OR

PEP

Early Swing

Early Stance



 136 

 
Figure 7-14 Cockroach middle leg Inside Turn, Forward (ITF) global state diagram (left) and 

behavior (right). 

 

 
Figure 7-15 Event space diagram for cockroach ITF behavior. Changed switching events are marked 

with a yellow highlight; all changed HDSO parameters are noted in boxes attached to switching event 

lines or transition paths. The effect of load on FTi and the effect of FTi angle ThC have both been 

reversed. 

7.4.1.3  Inside Turn, Backward-type 

The backward type of inside turn, ITB, is shown in Figure 7-16; here the CTr levates 

during stance and depresses during swing. Note that the global state diagram is the 

PRO LEV EXT
Early Stance

PRO LEV FLX

RET DEP FLX
Early Swing

PRO DEP EXT

PRO DEP FLX
Stance

RET DEP EXT

RET LEV EXT
Swing

RET LEV FLX

PRO

(dep)

RET 

(lev)

ThC1

DEP 

(ret)

LEV 

(pro)

CTr

EXTFLX

FTi

CTr Posn 
Depressed

Leg 
Load

FTi Posn 
Flex

FTi Posn 
Extend

Leg 
Unload

Ctr Posn 
Levated

 Protraction

ThC-!
1

Retraction

FTi
angle

CTr
angle

L
ev

at
io

n

F
le

x
io

n

ThC-!
2

PRORET

DEPLEV

EXTFLX

ThC 

Joint Load

AND

OR

OR

"PEP"

Early Stance

Early Swing

165

106

107

166

109

105

103

104

162

161



 137 

reverse of that for forward walking; indeed this diagram describes backward walking as 

well. The configuration difference between backward walking and ITB can be only a 

change in muscle activations. The event-space diagram for this behavior is shown in 

Figure 7-17, along with the parameters which must be changed to go from ITF to ITB: 

!ITB. The changes here are a reversal of load/ground contact influence on CTr, and a 

reversal of CTr angle influence on ThC. 

The CTr position influence has relatively little effect in these experiments; it can 

disrupt the behavior if configured incorrectly, but little change is noticeable if it is 

removed completely. These influences were left intact since they are a product of the 

translation from the stick insect controller, the source of the controller for cockroach 

forward stepping behavior. 

 
Figure 7-16 Cockroach middle leg Inside Turn, Backward (ITB) global state diagram (left) and 

behavior (right). 

 

PRO LEV EXT

PRO LEV FLX
Stance

RET DEP FLX

PRO DEP EXT
Early Stance

PRO DEP FLX

RET DEP EXT
Swing

RET LEV EXT

RET LEV FLX
Early Swing

PRO

(dep)

RET 

(lev)

ThC1

DEP 

(ret)

LEV 

(pro)

CTr

EXTFLX

FTi



 138 

 

 
Figure 7-17 Event space diagram for cockroach ITB behavior. Switching events which have changed 

from ITF are marked with a yellow shadow; all changed HDSO parameters are noted in boxes 

attached to switching event lines or transition paths. The effect of load on CTr and the effect of CTr 

angle ThC have both been reversed. 

7.4.2 Hypotheses and Experiments 

There are many experiments which might be run on the model to look at different ways 

of transitioning between behaviors. Several experiments were chosen as the most directly 

elucidating, and are described below. The building blocks for describing these 

experiments are described above and repeated here: FWD, ITF and ITB are the forward, 

inside-turn forward and inside-turn backward behaviors, respectively. !ITF is the set of 

parameter changes necessary to go from FWD to ITF, and !ITB is the changeset which 

shifts ITF to ITB. The SCCILS HDSOscript which describes experiment A contains these 

elements, and is included in the SCCILS appendix 10.2. 

7.4.2.1  A: Basic Behavioral Transitions 

A simple interesting hypothesis is that the parameters which differ between the 

behaviors can be changed during operation, resulting in transitions between them. This is 

tested in experiment A (the right path of Figure 7-18) which starts in FWD for 20 

CTr Posn 
Depressed

Leg 
Load

FTi Posn 
Flex

FTi Posn 
Extend

Leg 
Unload

Ctr Posn 
Levated

 Protraction

ThC-!
1

Retraction

FTi
angle

CTr
angle

L
ev

at
io

n

F
le

x
io

n

ThC-!
2

PRORET

DEPLEV

EXTFLX

ThC 

Joint Load

AND

OR

OR

"AEP"

Early Stance

Early Swing

164

126
127163

104

162

128



 139 

seconds, applies !ITF and waits for another 20 s, then applies !ITB and waits for 

another 20 s before stopping. 

  

Figure 7-18 Diagram of experiments A, B and D. The path on the right side consists of the three 

behaviors and change sets listed above. This progression on the right is experiment A. The path down 

the middle applies both changesets simultaneously, and is experiment B. The path on the left reverses 

the order of application of the changes, and is experiment D. 

7.4.2.2  B: Combined Changesets 

If A works, the next simple hypothesis is that combined changesets work, and shift to 

the expected final behavior. This simultaneous application of !ITF and !ITB is 

experiment B, shown in the center path of Figure 7-18. 

7.4.2.3  D: Reversal of Incremental Changesets 

This experiment tests two hypotheses: D1) a changeset applied to the incorrect 

beginning behavior may not generate a stable behavior. D2) even if D1 is true, if another 

changeset is applied which then defines a valid combined changeset, the result will be the 

expected final behavior. Experiment D tests these hypotheses by starting in FWD, then 

applying !ITB before applying !ITF, as shown in the left path of Figure 7-18. 

FWD

? ITF

ITB

!ITF

!ITB

!ITB

!ITF

!ITF+!ITB A

B

D



 140 

Note: experiment C, which involves inverting the changesets and running them 

backwards, did not clearly address any novel hypotheses and was not run. 

7.4.2.4  F: Some Subsets Don’t Work 

Hypothesis: For a configuration changeset, there may be subsets of the change which 

do not produce a stable interim behavior no matter what the order; therefore these 

changes must be applied in near synchrony. To examine this, !ITF was broken up into 

subsets associated with each joint affected by the change; !ITFFTi and !ITFThC1. 

Experiments F apply these sub-changesets in both orders as shown in Figure 7-19. 

 

Figure 7-19 Diagram of changesets applied in experiments F. 

7.4.2.5  G: Gradual Changes in Transition Thresholds 

Many of the parameters involved in these behavioral configuration changesets are 

continuously variable. One question is then: can these be changed gradually, and if so, 

under what restrictions and in what relationship to the changes in discrete parameters? 

Based on experience operating the models, hypothesis G states: for continuously 

modifiable parameters associated with defining the switching events, there will be a 

timing relationship of continuous modification and transition rule switching that produces 

stable/appropriate behavior.  Some timing relationships may not produce such behavior. 

FWD ITF!ITF
FTi

!ITF
ThC1

Fa

FWD ITF!ITF
FTi

!ITF
ThC1

Fb



 141 

Experiment G tests this hypothesis by breaking up !ITF into continuous and discrete 

elements. !ITFthresh consists of the continuous thresholds that fully specify the sensory 

events that are part of !ITF. It is applied gradually in 10 linear steps over 10 seconds. 

!ITFtrans consists of the non-continuous Boolean transition rules, and is applied at various 

single times during and slightly after !ITFthresh in experiments Ga Gb and Gc, as shown 

in Figure 7-20. 

 

Figure 7-20 Diagram of change sets applied in experiments G. !ITFthresh is applied in equal 

increments once per second; !ITFtrans is applied at the beginning, middle, and after the end of this 

gradual application. 

7.4.2.6  E: Gradual Changes in Action Dynamics 

In the process of interactive model operation, it was observed that some action dynamic 

properties may be changed significantly and still produce cyclical behavior, however 

there is usually a limit to this range. Based on this experience, hypothesis E states: for 

continuously modifiable parameters associated with the dynamics of an action, in some 

cases it will work and in others it will not. This hypothesis is tested in experiment E, 

shown in Figure 7-21. It is similar to experiment G, but the continuously variable 

changeset !ITBact consists of the muscle activation parameters which change in !ITB. 

!ITBtrans includes the sensory threshold change for the CTr influence on ThC1 in addition 

to all the Boolean transition rules. 

FWD ITF

!ITF
trans

!ITF
thresh

a b cG



 142 

 

Figure 7-21 Diagram of change sets applied in experiments E. !ITBact is applied in equal increments 

once per second; !ITBtrans is applied at the beginning, middle, and after the end of this gradual 

application. 

7.4.3 Experimental Methods 

An important part of preparing for these experiments was finding minimal change sets 

between behaviors. First a configuration that works for each behavior was partially 

derived from the event-space diagram, and then interactively tuned. Configurations for 

each of these behaviors were then recorded as an HDSOscript. The changesets were 

found by locating the differences between these scripts and identifying the associated 

parameter changes.  To generate a script that applies a changeset, that set of HDSOmods 

was entered in the script with the same implementation time.  

To estimate the minimum change set, each of the parameter changes was interactively 

rolled back to the value from the pre-change behavior; each one that substantially 

changed behavior was deemed necessary. Caveats: to be exhaustive all subsets of the 

changes would need to be tested, rather than doing it one by one as described here. Also, 

sometimes rescinding a change will break the post-change behavior, but applying that 

single parameter change to the pre-change behavior has no apparent effect. This may be 

because one behavior is more sensitive to the values of this parameter in this range. To 

minimize the changesets, FWD was modified slightly to avoid the need to change some 

ITF ITB

!ITB
trans

!ITB
act

a b cE



 143 

parameters in the change to ITF. This introduces a trade off between selecting “minimal 

changesets” and the best-tuned behaviors. 

Experiment scripts were generated, then run using the enginecli command line program 

from the NeuRoMod software suite. Video data was taken with a DV camcorder, 

compressed and recorded directly to disk using QuickTime Pro. Data were plotted using 

the SCCILStoolbox set of MATLAB programs, primarily the jlrelegplots and 

jlpathstateplot functions. Notes on the experimental runs are recorded in pages 38-41 of 

the Brandon Rutter Biorobotics Lab Notebook #3. Data is labeled by experimental 

repetition as done there; for example Fa2 is the second repetition of experiment F, sub-

experiment a. 

7.4.4 Transition to Turning Results 

This section contains results and brief discussion for each of the experiments described 

above in section 7.4.2. 

7.4.4.1  A: Basic Behavioral Transitions 

Three repetitions of this experimental script (depicted in Figure 7-18) were run, and 

they all produced results similar to those shown below. Full sensor and state data is 

shown in Figure 7-22, path state plots of the various behaviors in Figure 7-23, and 

transitions between them are shown in Figure 7-24 and Figure 7-25. Transitions between 

behaviors can occur smoothly during system operation by changing the necessary 

parameters all at once. 



 144 

 
Figure 7-22 Joint angle data for experiment A1, as well as state for the Thorax-Coxa1 DOF; 

remotion is highly correlated with swing. Top is the full experiment, starting forward stepping from 

a standstill. The changeset !ITF is applied at 20 s, and brings the system to the inside turn-forward 

behavior. !ITB is then applied at 40 s, leading to inside turn-backward behavior. The lower two 

plots show detail of these transitions, with the shaded regions covering behavior after the 

configuration change. Note the changes in phase between joint angles in each case. There is transient 

behavior at the startup and switching points, but under experimental conditions these configurations 

led to stable stepping behavior.  

C
T

r 
L

e
v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n

Time, s

A
n
g
le

, 
d
eg

re
es

Time, s

Time, s

A
n
g
le

, 
d
eg

re
es

A
n
g
le

, 
d
eg

re
es

C
T

r 
L

e
v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n
C

T
r 

L
e

v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n



 145 

  

  
Figure 7-23 Path state plots of all data and each of the stable behaviors: Forward, inside turn-

forward (ITF) and inside turn-backward (ITB). Data from the same experimental run as in Figure 

7-22. These paths are viewed from above; the virtual animal would be facing right, with the body 

midline near and parallel to the x axis. TC1_retractionLEV is strongly correlated with swing phase. 

There are four parallel lines in these path-state plots because there are four motors, even though the 

line for the ThC2 “joint” is meaningless and constant in a fake “TC1_protractionDEP” state. 

All data t=05-15: FWD

t=25-35: ITF t=45-55: ITB



 146 

 
Figure 7-24 A1- FWD to ITF (18 s to 22 s). Largest and smallest arrows indicate path direction, 

labeled arrows point to the stable behaviors and the location of the foot at 20s when !ITF is applied. 

  
Figure 7-25 A1- ITF to ITB (t=38s-44s). Largest and smallest arrows indicate path direction, labeled 

arrows point to the stable behaviors and the location of the foot at 40s when !ITB is applied. 

A1- FWD to ITF (18-22 s)

Forward

Inside Turn, 

Forward

!ITF 

A1- ITF to ITB (38-44 s)

!ITB 

Inside Turn, 

Forward
Inside Turn, 

Backward



 147 

7.4.4.2  B: Combined Changesets 

Experiment B (depicted in Figure 7-18) was run three times, with a successful 

transition from forward stepping to the inside turn-backward behavior in each case. 

Experimental run B2 is shown in Figure 7-26. This demonstrates that changesets that are 

subsets of another changeset can be added to reach the final behavior. 

 
Figure 7-26 Joint angle data for experiment B2: forward to inside turn-backward.  The transition is 

successful; note the change in the range of motion of the CTr angle, and the phase of ThC1with 

respect to the other joints. 

7.4.4.3  D: Reversal of Incremental Changesets 

Three repetitions were done of experiment D (depicted in Figure 7-18). In each case the 

interim state was nonfunctional, supporting hypothesis D1, and the final state was a 

functional ITB, supporting hypothesis D2, both as shown in Figure 7-27. The external 

disturbances there were done in an attempt to “kick start” cyclic behavior, a process 

described in more detail in the conclusion of this chapter. This shows that changesets 

may produce interim behavior in one order and not in another, but the order does not 

change the final behavior reached if all the necessary sub-changesets are applied. 

Time, s

A
n

g
le

, 
d

eg
re

es



 148 

  

Figure 7-27 Joint angle and state data for experiment D3. Applying !ITB to the forward behavior (at 

t=20s) does not produce stepping behavior; arrows point to external disturbances that triggered a 

still-nonfunctional short sequence of behavior.  Note the rapid state switching during this period, 

probably indicating overlapping sensory event thresholds. Applying !ITF at 40 s does bring the full 

behavior to inside turn-backward as hypothesized. 

7.4.4.4  F: Some Subsets Don’t Work 

Three repetitions were done for each F sub-experiment (shown in Figure 7-19). None 

produced a cyclic interim behavior; this shows that some sub-changesets don’t work 

separately, no matter the order in which they are applied. In Fa, shown in Figure 7-28, a 

kick-start was necessary to induce cyclic behavior for the final inside turn-forward 

behavior in one of the three trials. In Fb, shown in Figure 7-29, all three repetitions 

needed a kick-start to begin ITF behavior after application of the second sub-changeset. 

Time, s

A
n

g
le

, 
d

eg
re

es



 149 

  

Figure 7-28 Data from experiment Fa3– !ITFFTi first. Does not produce cyclic behavior during the 

interim- though all modules experience rapid, useless action switching during this period. 

Time, s

A
n
g
le

, 
d
eg

re
es

C
T

r 
L

e
v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n



 150 

  

Figure 7-29 Fb1– !ITFThC1 first. Does not produce cyclic behavior during interim configuration.  

First arrow- kick-start of interim configuration failed. Second arrow- kick-start of final (ITF) 

configuration successful. 

7.4.4.5  G: Gradual Changes in Transition Thresholds 

At least two repetitions were done for each sub-experiment of G, depicted in Figure 

7-20. In cases where the FWD behavior had to be kick-started at the beginning, an 

additional experiment was run. In Ga, shown in Figure 7-30, inappropriate behavior is 

generated before the gradual adjustment of !ITFthresh brings the system to ITF. However, 

one needed a kick-start to begin ITF after having gotten stuck in a different middle-stage 

failure. One did not start out well due to an unusual initial configuration. The figure 

shows data from a run that was able to complete transitions without assistance. 

Experiment Gb, shown in Figure 7-31, needed no kick-starts and generated relatively 

smooth transitions, though with some apparent instability near the transition rule changes. 

In experiment Gc, shown in Figure 7-32, one of the repetitions needed a kick-start to 

Time, s

A
n
g
le

, 
d
eg

re
es C
T

r 
L

e
v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n



 151 

begin FWD stepping at the beginning.  In all three repetitions, the oscillatory behavior 

died out and eventually stopped, but was restored when !ITFtrans was applied. 

  

Figure 7-30 Ga3.  Transition rule change before threshold change causes inappropriate, 

uncoordinated behavior; gradually changes to ITF with threshold changes. 

Time, s

A
n

g
le

, 
d

eg
re

es

C
T

r 
L
e
v
a
ti
o
n

F
T

i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o
n



 152 

  

Figure 7-31 Gb1 Transition rule changes in the middle of threshold changes. Two repetitions, both 

completed transition successfully but with a spastic-looking phase near the transition rule change. 

This is apparently related to a short period after the application of !ITFtrans at 15 s where the 

threshold values have not “caught up” with the new arrangement of transition rules. 

Time, s

A
n

g
le

, 
d

eg
re

es

C
T

r 
L
e
v
a
ti
o
n

F
T

i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o
n



 153 

  

Figure 7-32 Gc1 oscillatory behavior stops after transition thresholds have changed beyond a certain 

point (about halfway to complete change). Transition rule change at t=25s brings system to ITF. 

Here, se see that gradual change keeps working slightly past 15 s before behavior breaks down. 

7.4.4.1  E: Gradual Changes in Action Dynamics 

Each of the E sub-experiments (shown in Figure 7-21) was run twice. In Ea, shown in 

Figure 7-33, the application of !ITBtrans at 10 seconds shifts to something like backwards 

walking, then gradually shifts to ITB as !ITBact is applied. In Eb, shown in Figure 7-34, 

the behavior is basically ITF until !ITBtrans is applied, then it takes a few backward steps 

shifting rapidly to ITB. In Ec, shown in Figure 7-35, behavior continues throughout the 

entire !ITBact application, but reaches a nearly useless behavioral state before !ITBtrans is 

finally applied. In all cases the final behavior is ITB. 

Time, s

A
n
g
le

, 
d
eg

re
es



 154 

  
Figure 7-33 Ea1. The behavior switches to backward walking (except the foot doesn’t actually leave 

the ground) when the transition rules are changed at t=10. This slowly changes to  inside turn-

backward (ITB) behavior as the muscle activations are changed. 

  
Figure 7-34 Eb1 Behavior continues as ITF until transition rule change at 15s. Then is backward for 

a few steps before the changing muscle activations bring the system to ITB. 

Time, s

A
n

g
le

, 
d

eg
re

es C
T

r 
L
e
v
a
ti
o
n

F
T

i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o
n

Time, s

A
n

g
le

, 
d

eg
re

es C
T

r 
L

e
v
a

ti
o

n
F

T
i 
F

le
x
io

n
T

h
C

1
 R

e
m

o
ti
o

n



 155 

  
Figure 7-35 Ec1 Behavior continues even past activation changes, but reaches a nearly useless 

behavioral state (generating sweeping arcs during stance) before the transition parameter change at 

t=25s brings the system to ITB. 

7.4.5 Discussion 

7.4.5.1  Summary 

Generally, changes between qualitatively different behaviors require a set of changes in 

control parameters that need to happen in close temporal proximity. Sometimes there are 

subsets of these change sets that also work; sometimes not. Unsuccessful subsets do not 

define a functioning post-change behavior; there are of course many configurations that 

do not define functional behavior. The results above address the hypotheses posed as 

follows: 

Transitions between behaviors can occur smoothly during system operation by 

changing the necessary parameters all at once (A). Changesets that are subsets of another 

Time, s

A
n
g
le

, 
d
eg

re
es



 156 

changeset can be added to reach the final behavior (B). Such changesets may work in one 

order and not in another, most likely because the intervening configurations are different 

(D1), but the order does not change the final behavior reached if all the necessary sub-

changesets are applied (D2). Some sub-changesets don’t work, no matter the order in 

which they are applied, and so they must be applied simultaneously or nearly so (F). 

The time over which a changeset is applied has an effect on system function during that 

time, and the coordination of the changes applied usually has a strong effect on system 

output (E, G). There appears to be a difference between sensory event detection 

thresholds and action dynamics parameters in this case. Sensory event thresholds may 

have a narrow range of acceptable coordination with the transition rule changes (G) 

reflecting the possibility that both of these types of parameters may be associated with the 

same neural excitation parameters in an animal system (for example, opposing signal 

strengths as shown in Figure 4-5). The sense of the inequality in the transition rule should 

probably change when that sensory threshold passes through zero. Action dynamics may 

have a broader range of acceptable coordination, reflecting the likelihood that these are 

associated with magnitude influences that are neurally somewhat separate. The interim 

behavior produced may vary significantly from both pre- and post-change behavior, 

however (E), suggesting that production of a specific and reasonable-looking change in 

behavior may still require tight coordination between the neural elements involved in this 

case. 

7.4.5.2  Transient Behavior 

In a number of experimental runs a “kick start”, some disturbance of system state, was 

necessary to get a configuration into a cyclic stepping behavior. Though the causes for 



 157 

this were not analyzed in detail, in most cases it seemed to be due to an ineffective 

detection of the load/ground contact signal. For example, when starting from some poses 

the ThC1 module will enter retraction (leg levation) but not generate a sufficient torque 

sensory signal to send the CTr and FTi joints into their swing states, leaving the robot 

stuck in the usually-transient “early swing” global state. The ThC1 current signal in the 

cockroach robot actually has more to do with the transient current spike generated when 

the ThC1 module changes actions than with the static depression or levation force 

applied. A weak tonic signal is discernable upon ground contact during protraction (leg 

depression) but no discernable tonic signal is detected during retraction (leg levation). 

It is possible that there are also some problems here with ineffective behavior putting 

the leg outside the feasible range of poses for a particular functional behavior. In this 

case, muscle models that are better tuned to condition or limit their joint motion output 

within the generally feasible range of leg poses could help a great deal. It is also possible 

that switching influences could be better tuned to deal with these abnormal poses. 

When the configuration/neural control is changed suddenly, as in the transitions of 

experiment A and others, or at system startup when all muscle activations effectively go 

from zero to the values specified in that behavioral configuration, there is generally a 

transient relaxation of the system output into the new behavioral limit cycle/attractor. 

This has largely to do with the response of the action dynamics; the force-based muscle 

and joint model output may take a few cycles to reach this new stable state. If the action 

dynamics were instead position-based, the global system output would shift to the new 

behavior in a faster and more discontinuous manner. Controlled by SCASM, however, 

such a system might still under some conditions relax into the new behavior through 



 158 

environmental feedback. In a system with the neural-level dynamics being CPG-

controlled (and probably in some arrangements of SCASM control), and position-based 

motion output system, there would be no behavioral transients beyond those required for 

the position control to settle. It would immediately reach the new prescribed output– 

whether it was behaviorally useful or not. This reflects the lesser inclusion of the 

mechanical-level system and environmental dynamics in the generation of behavior in 

such a system. 

7.4.5.3  Suggested Biological Experiments 

There are a number of experiments suggested by the hypothetical SCASM 

configurations used to generate the three stepping behaviors in these experiments. The 

most straightforward tests of the hypothesized sensory influences described in the event 

space diagrams in section 7.4.1 deal with manipulation of the leg load/ ground contact 

sensory events. These might be addressed either by doing substrate drop-out experiments, 

or by varying the load using magnets as in (Zill, et al., 2004). The reaction to leg 

unloading during stance of various behaviors could then be compared to the predictions 

in these event space diagrams; these predictions are indicated by the actions that are 

promoted by the “leg unload” sensory event:  

In FWD, FTi-> FLX and CTr -> LEV.  In ITF, FTi -> EXT (possibly only if FTi is 

flexed enough) and CTr -> LEV. In ITB, FTi -> EXT as in ITF, but CTr -> DEP.  

This is described in more detail in section 9.3.1.1  of the discussion. 

One caveat here is that the loss of ground contact also induces searching behavior in 

the animal, which is not really the case in the model at this point. Due to spurious 



 159 

detection of leg load at ThC1 action switching, the robot may “air walk” for a few steps 

and appear to be searching, but the event-space diagrams do not predict this, and the joint 

phasing will remain in the relationship of the behavior for which the model is currently 

configured. See section 9.3.2.1  of the future work for further discussion on searching. 

This has some specific implications regarding the reflex cascade hypothesis of (Mu & 

Ritzmann, 2008b) as discussed below. It is possible that a magnet load/unload experiment 

might avoid this by involving only load and not foot contact, however it may also be that 

load changes felt in all legs are ignored for the purposes of intra-leg coordination, in 

which case a single-leg substrate drop-out or, if possible, single-leg magnet loading 

would be better. The use of EMGs as well as video kinematics to observe state change at 

a joint may allow finer discernment of those effects as well, since a load-reflexive state 

change might be observable in an EMG even if it is quickly overruled by a conceptually 

higher-level behavioral reconfiguration in reaction to loss of substrate. 

The targeting of specific load sensors might also be a way to get at these questions, 

though the experiments may be more difficult. In particular it might be useful to 

investigate the roles of the proximal tibial canpaniform sensilla (CS) for tonic load, or 

“leg load”, and the distal tibial CS for phasic unloading, or “leg unload”, as in the work 

on Periplaneta americana summarized in (Zill, et al., 2004). From a design point of view 

the phasic unload would be a particularly nice signal to use for the stance-swing 

transition, but it is also possible that it is used only in combination with other signals, or 

only for inter-leg coordination of gait, or even something else entirely. A stimulation of 

the distal tibial CS during stance leading to the predicted swing action in one or more of 



 160 

the appropriate joints would be strong evidence for the existence of that coordinating 

influence. 

There are additionally a number of experiments suggested by the results of the 

behavioral transition experiments in the model. Most of the experiments run on the model 

in section 7.4.4 involve a much finer control over sensory feedback, which would be hard 

to emulate in the animal. Feasible experiments might involve the enabling, delay, or 

blocking of the reversal of sensory influences at one or more joints, probably through the 

manipulation of sensory signals. Ablation of specific fields of campaniform sensilla 

might be possible, but there is a great deal of redundancy in the load signals available in 

the leg (as suggested in Figure 4-21 for the stick insect). Manipulating the effects of 

coordination reversal through stimulation rather than ablation would be less likely to 

produce equivocal results regarding the function of the related sensory event influence. 

Suppose a coordinating load influence between the tibial CS and the CTr pattern 

generator had been found, and this reverses between forward walking and inside turning. 

This could be the case if the animal implements the FWD and ITB behaviors above, 

using tibial CS as a “leg load” sensor. If it were possible to stimulate these CS fields in 

phase with the swing/stance activity of the leg, then it should be possible to disrupt the 

transition between these behaviors by stimulating the CS in antiphase of the signal it 

should be carrying, thereby reversing the reversal. One might in this case get a situation 

similar to the interim behavior of experiment F, where effectively only a sub-changeset is 

applied to the coordinating influences. 

It might also be possible to use a semi-intact preparation in a manner such as that in 

(Akay, et al., 2007) to investigate behavior-specific influence reversals at a single joint. 



 161 

Even if stimulation is done through physical manipulation, when coupled with sensory 

ablation such experiments might also narrow a sensory event signal down to a specific set 

of sensory organs. 

7.4.5.4  Implications Regarding the Reflex Cascade Hypothesis 

These results definitely support the general idea of the reflex cascade hypotheses 

described in (Mu & Ritzmann, 2008b), in that only a few changes in the local sensory 

feedback are necessary for some changes in behavior. However, the current model 

configurations cannot test the specific hypotheses for turning presented there for two 

reasons:  

1) The ThC2 degree of freedom is held constant in these experiments. The tonic 

postural pose at least, if not phasic activity, of this sub-joint (described in (Mu, 2007; Mu, 

et al., (in preparation)) is critical to the initiation of the reflex cascade proposed therein. 

Though it has not been implemented, this might be produced by adding a module for 

ThC2; if only tonic postural changes are desired it could even be done with only one 

action. For some further discussion of possible involvement of both ThC2 and TrF in 

turning, see sections 9.2.2.12  and 9.2.2.13  in the future work. 

2) The reflexes which Mu and Ritzmann identify and require for the reflex cascade are 

magnitude influences (as depicted in Figure 3-3), rather than coordination influences. The 

NeuRoMod software is capable of implementing such magnitude influences as muscle 

activation functions that are modified by sensory input. All muscle activations in the 

current cockroach model configurations are constant, however, and incapable of 

responding to the changed load signals (generated by ThC rotation) in the way required to 

change behavior. 



 162 

The work in (Mu & Ritzmann, 2008b) suggests that if the appropriate magnitude 

influences were added to the model, it might also automatically generate searching 

behavior upon loss of ground contact, which it is currently incapable of doing as 

described above in section 7.4.5.3 . 



 163 

8 Conclusion  

8.1 Summary 

This project is part of a larger effort, in the biorobotics group at Case Western Reserve 

and elsewhere, to understand and apply the methods used by animals in locomotion. The 

specific question investigated here is how the interaction of descending commands with 

local sensorimotor control networks result in the smooth behavioral changes seen in agile 

legged locomotion.  

My contributions resulting from this work are summarized as follows: Robotic models 

were developed to both test and develop hypotheses about the effects of descending 

commands on local control of stepping. Methods for controlling and modifying these 

models interactively were developed, as were methods for precise system description and 

data handling. Experiments establishing model functionality and addressing initial 

questions about descending modification of local behavior were conducted. These results 

support the general idea of the reflex cascade hypotheses described in (Mu & Ritzmann, 

2008b). Hypotheses about the biological system were extracted from the experimental 

process, and several of these may be feasibly testable in the cockroach. A functional 

kinematic model of the cockroach middle leg was developed, with particularly new 

insights regarding the operation of the thorax-coxa joint. In addition to its applications in 

modeling, the organization of local control observed in the stick insect was standardized 

as Sensory Coupled Action Switching Modules and presented in a way that could be 

useful in many control problems. 



 164 

8.2 Model Development 

The necessary elements of model usage and construction were developed sufficiently 

well to make an initial attempt at the reverse-pathway modeling flow shown in Figure 

2-2, generating testable biological hypotheses. These hypotheses are presented along with 

the associated experimental work in chapter 7. The neurally-based control of (Ekeberg, et 

al., 2004) was used to generate various stepping behaviors in physical model legs, which 

can be experimentally manipulated both physically and through the modification of 

control parameters, as was desired.  

Due to the neuromechanical nature of step generation in these models, some basic but 

critical modeling of the physics of the target system was done. A crude feed-forward 

torque control method was developed for the application of muscle model output to 

position-controlled servomotors. Without this ability for torque control of some sort, the 

models would have a significantly different behavioral output and a significantly worse 

structural match with the target systems. Another fairly simple but critical element of the 

physical modeling was the kinematic match of the robot legs to the target systems. In the 

stick insect leg this was a fairly straightforward matter of consulting the literature. It 

uncovered a lack of suitably complete data in the cockroach literature, however, which 

prompted the development of initial cockroach kinematics models from experimental 

data (presented in chapter 5), which is already being used here and in  (Mu, 2007), 

(Bender, et al., 2009 (In Prep)), and is still a matter of further investigation. 

In order to support the use of those models by biologists, both in interactive behavioral 

modification and in the execution of repeatable scripted experiments, the robot control 

engine was modified to allow online modifications of many model parameters, and 



 165 

development of a model description language, SCCILS, was begun. Various control 

programs now make use of these capabilities, including the interactive graphical user 

interface developed by John Bender as part of the NeuRoMod software package 

described in chapter 6 and in Appendix 10.4. 

8.3 Experiments 

Throughout model development, various experiments were run. These ranged from 

initial testing and demonstration of SCASM-generated stepping in robots, to the 

development and refinement of specific hypotheses regarding the effects of descending 

influences on local control in the cockroach. 

8.3.1 Initial Testing 

Initial testing in the stick insect model revealed a resilience to, or automatic 

compensation for, some kinds of environmental variability. This included changes in 

substrate height, which is a primary element of rugged terrain. The control system was 

not obviously vulnerable to the initial state of the joint control modules, and started 

behavior well over a range of initial poses, including at least those contained in the 

currently configured behavior. Limits to feasible operation were apparent, however, and 

the sensitivity of the system to a problem with the detection of ground contact and load 

was clear. 

A very clear demonstration of the neuromechanical nature of the behavior of these 

systems was discovered: the temporary physical disconnection of a portion of the leg, 

while maintaining all neural connectives. This procedure may be impossible in the 

animal. The usual cyclic behavior of the joint is severely disrupted during the 



 166 

disconnection, but resumes when the leg is reconnected. This also demonstrates the 

resilience of the SCASM controller to temporary disturbances. The utility of a physical 

model is also highlighted here in two ways. Firstly, this demonstration is far more clear in 

the physical world than it would be in simulation. Secondly, this was discovered 

serendipitously during model operation, which is not something that would have 

happened in a computational simulation. 

8.3.2 Muscle Model Experiments 

In order to address the problems in the initial stick insect model ground contact/load 

detection and the transfer from swing to stance, two minimal muscle models were applied 

at the femur-tibia joint. These did improve the swing –stance transition, and significantly 

conditioned overall system behavior in ways not immediately obvious. These results 

suggest that simple muscle models might be sufficient for some useful level of model 

behavioral match; this is a further example of the low computational complexity 

necessary for SCASM control. It is also apparent that modification at a single module can 

have significant effect on overall system behavior, and concentrating on the improvement 

of a module or action involved in a critical phase of the cyclic behavior may be an 

effective strategy in SCASM design improvement. 

The muscle model results also suggest that the state transition modules of SCASM 

behave better when driving an underlying plant which exhibits saturation, in order to 

ensure stable ongoing generation of the desired repetitive motion sequence. This does 

increase the overall complexity of the control system a little, but the simplicity of the 

“muscle models” used here demonstrates that it need not be much. 



 167 

8.3.3 Experiments in Descending Control 

The first demonstration of something analogous to descending control modifying local 

behavior was the modification of leg stepping speed. This was achieved simply through 

the modification of tonic muscle activation signals, effectively gated by the joint action 

switching modules/pattern generators. The biological hypotheses associated with this 

behavior in the model are difficult to test in the animal, and not directly associated with 

previous work in the Ritzmann lab. Therefore, this behavior was not fully characterized 

or investigated. 

Transitions between forward walking and two types of inside turning in the cockroach 

leg model were examined in some detail. Generally, changes between qualitatively 

different behaviors such as forward walking and forward-type inside turning require a set 

of changes in control parameters that need to happen in close temporal proximity. The 

order in which these changes are applied has an effect on the interim behaviors, but the 

final resulting behavior will be the same. In some cases there are parameters that may be 

changed gradually between behaviors. If these parameters are sensory event detection 

thresholds, they need to be timed tightly with the changes in transition rules, reflecting 

the possibility that both of these types of parameters may be associated with the same 

neural excitation parameters in an animal system. If the gradually changing parameters 

are associated with action dynamics there may be a broader range of acceptable timing of 

the transition rule changes, but significantly different interim behaviors may be produced. 

Observations may be made regarding the transient behavior of the system during 

transition between behaviors. In a number of experiments a “kick start”, some 

disturbance of system state, was necessary to get a configuration into a cyclic stepping 



 168 

behavior. In most cases this seemed to be due to an ineffective detection of the 

load/ground contact signal. When the configuration is changed suddenly there is 

generally a transient relaxation of the system output into the new stable cyclical behavior. 

This has largely to do with the force-based dynamics of module actions, but is also a 

function of the nature of sensory feedback in SCASM control. In a CPG-controlled 

position-based system there would be no behavioral transients beyond those required for 

the position control to settle, and it would immediately reach the new prescribed output– 

whether it was behaviorally useful or not. This reflects the lesser inclusion of the system 

mechanics and environmental dynamics in the generation of behavior in such a system. 

There are a number of biological experiments suggested by this experimental work. 

The most straightforward tests of the hypothesized sensory influences for the various 

cockroach model behaviors deal with manipulation of the leg load/ ground contact 

sensory events. These might be addressed either by doing substrate drop-out experiments, 

or by varying the load using magnets as in (Zill, et al., 2004). One caveat here is that the 

loss of ground contact from whole-body substrate drop-out experiments induces 

searching behavior in the animal, which is not the case in the model at this point. The 

targeting of specific load sensors might also be a way to get at these questions, though the 

experiments may be more difficult. In particular it might be useful to investigate the roles 

of the tibial campaniform sensilla (CS) fields for detection of leg load and unload signals, 

as in the work on Periplaneta americana summarized in (Zill, et al., 2004). A stimulation 

of the distal tibial CS during stance leading to the predicted swing action in one or more 

of the appropriate joints would be strong evidence for the existence of that coordinating 

influence. 



 169 

There are additionally a number of experiments suggested by the results of the 

behavioral transition experiments in the model. Experiments which might be feasible 

would involve the enabling, delay, or blocking of the reversal of sensory influences at 

one or more joints, probably through the manipulation of sensory signals. Manipulating 

the effects of coordination reversal through stimulation rather than ablation would be 

likely to produce less equivocal results regarding the function of the related sensory event 

influence. 

These results definitely support the general idea of the reflex cascade hypotheses 

described in (Mu & Ritzmann, 2008b), in that only a few changes in the local sensory 

feedback are necessary for some changes in behavior. However, the current model 

configurations cannot test the specific hypotheses for turning presented there because 1) 

the ThC2 degree of freedom is held constant in these experiments, and 2) the reflexes 

which Mu and Ritzmann identify and require for the reflex cascade are magnitude 

influences, rather than explicit coordination influences. Although it is possible to 

configure such influences using NeuRoMod, all muscle activations in the current 

cockroach model configurations are constant, and incapable of responding to changing 

load in the way required by the specific inside turning reflex cascade hypothesis. The 

work in (Mu & Ritzmann, 2008b) suggests that if the proper magnitude reflexes were 

added to the model, it might also automatically generate searching behavior upon loss of 

ground contact, as is observed in the animal. 

8.4 Initial work on description and standardization of SCASM 

The control organization that is apparently at least partially responsible for the 

generation of stepping in stick insect legs, as described by (Ekeberg, et al., 2004), has 



 170 

been presented in chapter 4 as Sensory Coupled Action Switching Modules (SCASM). A 

number of representation and description tools have been developed to implement the 

“elements of model usage” described in section 2.1, as they pertain to the general 

description of hypothetical mechanism that SCASM provides. The informational content 

of event-space diagrams, global state diagrams and sensory flow diagrams have all been 

presented. The usage of these diagrams in describing system behavior, and in both the 

forward and reverse model usage pathways – hypothesis testing and hypothesis 

generation – have been demonstrated. Additionally, the steps necessary to construct a 

SCASM controller for a system from scratch have been identified and presented though 

the example of the minimal SCASM stepper. 

A comparison of the SCASM description with finite state machines and subsumption 

architecture is presented. In some cases, SCASM is just one way of representing a 

collection of state machines, with specific advantages including representation of 

biological systems. SCASM may also be useful in the description and implementation of 

systems with smoothly changing module states, however. 

8.4.1 SCCILS and the SCCILStoolbox 

The SCASM Command and Configuration Interface Language Specification (SCCILS) 

is an XML specification that formally defines a language for defining and controlling 

SCASM-controlled systems. SCCILS makes use of the “ports” for system modification in 

the SCASM representation of control by developing an explicit representation language. 

This has supported the development of a user interface, representational diagrams, and 

data handling and display code which should be relatively easy to extend to deal with a 

broader class of SCASM-controlled systems. 



 171 

8.4.2 General Applicability and Other Advantages 

The concept of Sensory Coupled Action Switching Modules need not be limited to the 

control of legged systems. This representation can be used to describe any system with 

sub-elements that perform a set of actions, in which the sensory coupling between these 

elements can override central coupling which might exist. It is possible that it will be 

useful to use SCASM to describe or design any multi-dimensional control system that 

needs to go through a coordinated set of states in concert with the environment. 

The computational simplicity with which a SCASM control system may be 

implemented is impressive when compared to explicit inverse kinematics or coupled 

dynamical oscillators. This allows for more high-level processor availability in computer 

control, or implementation on low-power, distributed control hardware. This in turn 

should allow a robustness of legged locomotion control which has not yet been reached in 

small autonomous vehicles. 

The control of each joint, or more generally each action switching module, is also 

conceptually quite simple, allowing for straightforward implementation. Linking several 

of these modules together, as in the joints of a leg, can nevertheless generate a wide range 

of relatively complex behaviors. The emergence of these behaviors may not be 

immediately obvious, and the prediction of this emergence can be helped by the 

application of tools presented in chapter 4. The application of similar controllers to 

mechanically different robot legs in this study and, in (Ekeberg, et al., 2004), to models 

of different legs on the stick insect, demonstrates that one basic set of action switching 

modules and sensory events can, with modification to the switching event connections 



 172 

and other control parameters, address an entire class of control problems.  In this work, 

that class is the generation of repetitive stepping motions by a 3-DOF linkage. 

The sensory coupling of SCASM can give rise to automatic adaptation of the behavior 

to changes in the environment, as is demonstrated in the substrate height changes 

described in section 7.1.1. Other methods of control such as inverse kinematics can 

require an explicit handling of such changes at a higher level. The dynamics of the 

underlying plant are also a more integral part of overall system behavior in SCASM. 

With appropriate system mechanics, this could lead to even more inherent adaptability in 

low-level control. 

In the robotic models used here, not only is the inverse-kinematic calculation not 

required due to SCASM control, but large amounts of flexibility in the joints and limb 

segments also mean that the foot position cannot be accurately derived using forward 

kinematics. This information is not necessary, however, for SCASM to function. The leg 

control only explicitly depends on the interaction of the leg with the environment; 

kinematic information is used in control through joint angle sensory events, but this 

contains only an approximate implicit representation of foot position. This is apparently 

all that is needed for these behaviors. 

The controllers of local step generation presented here do not directly address higher-

level problems of legged vehicle control such as gait generation, posture control, and 

navigation.  However, the experiments on speed control and transitions between walking 

and inside turning in the cockroach model demonstrate that the behavior of a SCASM 

system can be usefully influenced online by modifying action switching parameters and 

action dynamics. It is believed that such modification, whether from local circuits for 



 173 

inter-leg coordination, or from a higher level “brain” for navigation-related control or 

complex obstacle traversal, can successfully broaden the behavioral repertoire necessary 

to get the leg to do whatever is necessary. Indeed, since a particular set of modules and 

switching events can solve an entire class of control problems, descending modification 

of the system should allow online adaptation to some range of changes in the physical 

plant as well.  

The SCCILS language and the control programs that comprise NeuRoMod were 

developed from and around legged systems, and are currently still limited to these. They 

were built with generalization in mind, however, and should require relatively little 

modification to describe and control a much broader range of systems. It is possible that 

they will be useful in applying SCASM to describe, control or design any multi-

dimensional control system that needs to go through a coordinated set of states in concert 

with the environment. As mentioned in the future work section, this work has already 

begun. 

 



 174 

9 Future Work 

 
As you should be able to tell from the introduction, the work presented in this 

dissertation is part of a broader inquiry into the basic problems of legged locomotion. I 

find all this stuff captivatingly interesting, and consistently work to keep broader 

applications and investigations in mind. This is part of the reason this section is so long. 

This is one example of a few good answers to an interesting question conspiring to create 

an explosion of new interesting questions. The systems involved are complicated, and 

this makes basic observation, experimentation, and modeling all take considerable time 

and effort. Even though this and contemporaneous work are making exciting progress in 

addressing long-standing problems in robotics and biology, this line of investigation is 

really rather new. There is a lot of basic down-and-dirty “digging it up” work to be done, 

and a lot of valuable knowledge to be found there. It is my hope that this section will 

serve as part guide and part inspiration for further work on and using of SCASM, 

SCILLS, and the models presented here. 

The rest of this section consists of a short guide to help one choose what to work on, or 

what approach to take, followed by seven primary directions of inquiry. Each direction is 

of varying complexity itself, and some of these already contain enough questions for 

many theses’ worth of effort. They are, essentially: 

1) Biological model development: The improvement of controller, physical robot, 

and SCASM concepts as models of biological systems. 



 175 

2) Model-driven & Model experimentation: experiments to be done using the robotic 

models, and experiments to be done on biological systems– resulting from 

development and experimentation on the models. 

3) Central Pattern Generators: system development to incorporate central pattern 

generation, i.e. internal module dynamics, into SCASM systems. Also, 

experiments and hypotheses to address with these tools. 

4) UI and Data Representation: Further tools for interaction of the systems and 

models with human experimenters. Though little of this is strictly “biology” or 

“engineering”, there is a lot of high-value work to be done here. 

5) Theoretic understanding and development: Regarding the formalization of 

SCASM and related concepts, and the relation of these things to prior work in 

finite state and hybrid systems. 

6) SCCILS generalization: expanding the SCCILS XML language to more readily 

address the gamut of control systems that might be usefully represented in this 

manner. 

7) SCASM in other systems: regarding the use of SCASM to design and/or 

implement control in systems other than intra-leg coordination. 

9.1 Consultation and Choosing What to Do 

It is my hope that this section will be useful specifically to investigators interested in 

choosing a research project that works for them. Since addressing all the questions in the 

rest of this chapter would probably take at least 20 person-years of hard work, and 



 176 

possibly more like 100, it is highly advisable to spend some effort biting off a bit that you 

might actually be able to chew. 

For an engineer or any other skilled service provider, one can define three levels of 

success at fulfilling the client’s demands. These concepts may also be useful more 

broadly in planning, consulting, design and technical communication. 

At the first level of success, you give the client what he told you he wants. This level of 

success is often difficult enough in itself. The desired item may be difficult to produce, 

and it requires a minimum of understanding technical demands. To a skilled practitioner, 

however, this level will rarely be satisfactory for long. This leads to the second level: 

Provide the client with what they actually want, which may or may not be very close to 

what they told you they wanted. It doesn’t take too much experience in any applied 

technical field to see the difference between these two levels of success.  Often enough, 

providing only the first level creates a client who is satisfied only temporarily. They will 

realize before too long that what they got isn’t actually what they wanted, and they’ll try 

asking for something else which may actually be closer to what they want. If things go 

particularly poorly, the client may even blame the practitioner for this failure. If the 

practitioner sufficiently understands the client’s desires and language, it is often possible 

to skip the interim steps and through more exact communication determine what the 

client actually wants, then work towards this solution from the outset. 

At the third, considerably more difficult and substantially more valuable level: you 

provide the client with what they actually need. There are several things that make this 

difficult to accomplish. Firstly, one must sufficiently understand the client’s 

surroundings, goals and limitations to have a chance at discerning actual needs that 



 177 

pertain to the product or service you are providing. Secondly, having convinced yourself 

that a particular solution is what the client actually needs, there remains the possibly 

excruciating task of convincing the client that this is in fact what they need. 

In choosing a project, I suggest using the methods involved in providing as high a level 

of successful consulting as you can, in serving yourself as the client asking the question 

of what to work on. What are the underlying or big picture questions you are actually 

addressing, or that you want to address? What are your limitations of time and effort? 

How would one best address those questions? How do you stay sane in so doing? It may 

be a useful exercise to express your answers to each of these questions at each level of 

success. Try to provide yourself with what you actually need. 

That bit about staying sane is a crucial but often overlooked part of project planning, 

particularly for small or single-person projects. In my opinion, it is worthwhile to include 

sanity and happiness in your plans in any case. Even if you ignore this; sick, tired, 

annoyed, overworked, and overstressed people just plain don’t get as much done as 

people who maintain some rest and peace of mind. 

It should also be noted that these three levels of successful service apply directly to 

interactions between biologists and engineers, from both directions. When collaborating 

with colleagues from another discipline, one should work very hard to reach at least the 

second level of understanding and response. It will speed things up a great deal, and save 

considerable gnashing of the teeth. This should involve at least some amount of getting 

your hands dirty in your colleagues’ lab(s). It takes work, and it is worth it. 



 178 

Of course, even if you have a pretty good idea of what you need, there is no guarantee 

that you will actually be able to obtain such. Ideally, one should take account of this in 

project selection and planning. 

Back in March of 2005 while I was in Köln at the Büschges lab, Roy Ritzmann sent us 

an email about how great it would be to implement the simulation of (Ekeberg, et al., 

2004) in a robot for modeling purposes. I’d already been thinking about that (and so had 

Bill Lewinger, it turns out), but thought the requirements for modeling would be pretty 

difficult to meet. 

Roy: “[how about we make the most awesome robotic model of insect walking ever, 
with electric motors]” 

Me (reply to all, after some serious thought and planning): “[sounds great!  I’ll need 3 
MS students, 2 more Ph.D. students, and five years. I don’t think electric motors will 
work]” 

Roy (probably stifling guffaws, or maybe feeling an ulcer): “[no, just a minimal 
prototype. I’ll get you a couple of undergrads for the summer. It has to use electric 
motors]” 

Me (still replying to all): “[well, I’ll see what I can do, but I’m not so sure. Also, I 
really don’t think you understand what you’re asking with the electric motors. The 
dynamics are all wrong, and it probably just won’t work at all that way]” 

Roy (hands around my neck, upon my return to campus): “…Let me explain 
something to you.” 

 

9.2 Biological Model Development 

This section covers things that could be done in the model, in the physical robots or 

control programs, to improve its function as a biological model. Many of these items 

could be expected to provide better function in a robot using SCASM for locomotion 

control, but the primary goal of the discussion here is the improvement of the modeling 

ability of the system. 



 179 

9.2.1 Improvements for Experimentation 

There are a great deal of improvements that could be made to NeuRoMod to improve 

the flexibility and control of experimentation in the model. Some of these have to do with 

basic representation and interaction with the controller; those are covered in the later 

section 9.5 on UI and Data Representation. Here, there are improvements that could be 

made specifically to allow more flexible and biologically relevant experimentation. 

9.2.1.1  Sensor-Based Scripting 

Imagine that you could modify neural circuits not only at specifically scripted times, 

but also based on a condition in the system; e.g. “ground contact” or “early swing”. This 

could be implemented in NeuRoMod or a similar system as “Boolean scripting”, where 

rather than setting a time to implement a change in parameters, the scripting process 

would monitor sensory signals and wait to implement a change until a set of conditions 

was met. One could even combine time and Boolean scripting, making time one of the 

signals to watch to determine whether to implement or not, and possibly adding another 

time to wait after the conditions were met before implementing the change. There is a 

range of experiments that could be done using these methods that is currently not possible 

in the model, and possibly very difficult to do in the animal. 

Script elements such as these could be used to investigate whether the sensitivity of the 

system to certain parameter changes is dependent on where in the step cycle the changes 

take place. For instance, is it better to change from walking to turning during late swing 

or late stance? This scripting might also be used as an ad-hoc addition of further model 

circuit elements. A Boolean script element essentially creates a new virtual neural 



 180 

element whose activation requirements and effects are quickly configurable. The 

conceptual mapping to biological systems here is not guaranteed to be clear, however. 

9.2.1.2  Sensor Signal Modification 

Also on the theme of messing with the system signals during operation, it may be 

useful to change how sensory signals are processed on the fly, rather than simply 

allowing disconnection/reconnection/threshold changes as is currently the case with 

scripting. If the sensory signal processing additions mentioned in 9.2.2.8  are made 

SCCILS-configurable, this capability will result. 

It is possible to effectively turn a sensor on/off/up/down using current scripting tools, 

but this would require simultaneous changes in thresholds or gain parameters wherever 

the sensor value is used, including transition rules, muscle activation functions, and so 

on. This is not easy to keep track of. A possibly useful interim step would be the ability to 

turn the actual “sensing” of a sensor on and off, combined with the ability to set the value 

for a disabled sensor. One should be careful, however, to insure that physical sensory 

variables used in the simulation of physics, e.g. in muscle model calculations, are not 

modified by changes intended to model neural modulation or disconnection. 

9.2.2 Improvements in Model-Animal Parity and Model-Model 

Equivalence 

In theory, “improvements in model-animal parity” could take place both in the 

construction and use of the model, as well as in modification of animal handling or 

experimental apparatus and protocols. Although the thoughts shared here are primarily 

aimed at modifying the model, the possibility of modifying animal experimentation for 

this purpose should neither be ignored nor forgotten! 



 181 

“Model-model equivalence” here refers to the ability to get the same results from 

running an experimental script on different models, here taken to mean the “engine” as 

described in SCCILS. This is particularly tricky when trying to compare, say, a robotic 

engine to a purely simulated engine. Given the extent to which certain elements of 

NeuRoMod are open-loop control, however, there is considerable likelihood that the stick 

insect robot at Case Western and the supposedly identical robot at the University of 

Cologne will not only give different results for the same script, but may require 

somewhat different sensory event thresholds or muscle model parameters to get even 

moderately similar stepping behavior. 

9.2.2.1  Quantification and Improvement of Behavioral Match 

So far, the reproduction of behavior by the model has been analyzed only at the 

qualitative level. “Walking” and “turning” are defined by the gross coordination of joint 

movement and foot direction during stance. There is, however, considerable quantitative 

animal data on leg kinematics. It would be very valuable to quantitatively compare the 

motion of the model to that in the animal, both in the form of comparisons of joint angle 

data and in comparisons of foot position data. Although ideally comparison of these two 

types of data would be equivalent, the associated implicit assumption of perfect model 

kinematics should not be made. 

Once a method of quantitatively comparing motion is chosen (mean squared error 

would probably be a good start), it should be possible to improve the behavioral match 

between systems. In the first stage this could probably be done by interactive parameter 

tuning; in a second stage it may be useful to implement a SCCILS “interface” which runs 

hardware-in-the-loop optimization on the SCASM control parameters. Note that this can 



 182 

be an extremely high-dimensional parameter space, so it would be wise to spend some 

time choosing a fairly efficient optimization scheme. A matter of some technical interest 

would be developing heuristics regarding which parameters are most likely to be 

involved in the improvement of matches in which of the output variables (i.e., thresholds 

for “ThC Angle Retracted” are probably important for fixing mis-matches of foot x 

position at the end of stance). 

9.2.2.2  Torque Control Calibration 

A basic calibration of the torque control method described in Section 6.2.1.1  would 

substantially improve capability for both model-animal parity and model-model 

equivalence. Currently, the %servo command is the output of the muscle modeling and 

input to the motor torque control. This signal, however, has no inherent or obvious 

quantitative physical meaning. Higher numbers mean generally higher torque, but other 

than that it is not clear. Not only do we not know the physical magnitude of these torques, 

but it is unlikely that there is actually a linear relationship between %servo
 and joint output 

torque, which is currently implicitly assumed. 

It would be both more generally applicable and more meaningful if the outputs of the 

joint calculations was actually torque. Another, more engine-specific part of the program 

would then apply a calibration between this torque command and low-level actuator 

commands. 

9.2.2.3  Torque-Velocity Characterization 

It should be noted that the above leaves open the question of what variables are 

included in the torque calibration. A static measurement of motor torque over a range of 



 183 

%servo values would be a big improvement over the current situation. This might not, 

however, take into account the inherent torque-velocity relationship of the motors (or 

more generally, most actuators). This is a substantial part of the dynamics of the robotic 

models described in Chapter 6. A sensible force-velocity relationship can go a long way 

towards smoothing and stabilizing the behavioral output, and it is likely that without the 

natural torque-velocity characteristics of the actuators it would have been necessary to 

actually configure force-velocity characteristics for the model muscles. As for the basic 

torque calibration, understanding and taking account of these dynamics would be a 

considerable help in allowing comparison of behavior between model and animal, and 

between models. 

Note that there are a lot of data necessary for this calibration; it involves torque 

measurements at various angular velocities for a range of %servo values. For 

implementation, it would be advisable to use a fast look-up table, such as the 

TableLookup function in the utility.c file for the RUI control software (used for Robot V 

and Puppy).  

9.2.2.4  Gravity Compensation 

Insects operate on a different dynamic scale than humans; damping and friction are 

vastly more important in their world than in ours, and inertia and particularly gravity 

vastly less so. A trained mechanical engineer should have some feel for these scaling 

effects; if you would like some convincing it might be good to start with (Hooper, et al., 

2009). 



 184 

Unlike the insects and computational models, currently implemented robotic models 

are an order of magnitude or so larger than the insect, and relatively much more affected 

by gravity. Given the pose and mass distribution in a robotic leg, it is possible to calculate 

the resultant gravitational torque at each joint (see, e.g., methods inAsada & Slotine, 

1986). With sufficiently high-fidelity torque and torque-velocity characterizations, it 

would then be possible to add the opposing torques, thereby largely removing gravity 

from the robot dynamics as is the case in the insects. Of course, gravity does still exist at 

the smaller scale, and it may eventually be sensible to take more carful account of just 

how much gravity should be “removed”. It is likely, however, that taking it away as 

completely as possible will be an excellent first approximation. 

9.2.2.5  Automatic Dynamic Scaling 

This one is probably pretty low-priority, but particularly when dealing with different 

models of the same system, which may operate at different sizes, it would make some 

sense to make the dynamic scaling of the system automatic. This would automatically 

scale the script times and any delays or update rates appropriately for the size of the 

model, and provide model time scaled back to the target (e.g. insect) time scale with any 

recorded data. It would make sense also for on-line UI signal displays to display either 

real or “scaled model” time on graphs, for sensory transmission delays, and other time-

based configuration parameters. 

9.2.2.6  Body Motion 

The current robotic models are attached at the thorax-coxa joint at a fixed location and 

orientation with respect to the ground. In freely walking insects, of course, the body both 

rotates and translates during walking. Many of the stick insect experiments upon which 



 185 

the control circuitry in these models was based did take place with the body fixed with 

respect to ground; however since the cockroach model in particular is now being used in 

parallel with flexibly tethered or freely walking animals, it may be important to take 

account of the accompanying body motion. 

Initially, the plan was to allow at least some dynamic support of simulated body weight 

in the robotic models. A vertical linear bearing, with the weight of the leg supported by 

springs, might allow at least some vertical dynamic loading similar to the take-up and 

release of body load during stance. This turned out to be a pretty serious pain in the neck, 

however. Since the downward force of the foot is applied at some distance from the body, 

there is significant torque applied at the thorax-coxa joint. This torque on the joint 

requires reactive torque in the slider or linear bearing element attached to the thorax side 

of the joint, which will bind and render immobile all but perhaps the fanciest linear 

bearings. For some “fun”, you might ask Bryan Taylor about this, since he wrestled with 

this problem for several weeks at the beginning of his involvement with the project. 

The suggested, more workable method would be to use a four-bar linkage to allow 

body-like motion. One might even incorporate measured body rotation into the design of 

the mechanism, though a first shot approximating vertical-only motion would likely be an 

improvement over the current design. 

9.2.2.7  Improved Physical Sensors 

Since sensory information is so critical to the operation of a SCASM system, good 

sensory signals contribute substantially to good system behavior. Some deficiencies can 

be treated with sensory processing, but the best way to improve sensory signals is to have 

better, and perhaps more, sensors. 



 186 

Force in the robotic models is currently represented using motor current signals. These 

are low-resolution, noisy, and subject to systemic errors introduced by the inertia of the 

motor, transmission, and leg itself; none of which are likely to be important in the insect. 

Actual force or strain sensors and contact sensors would provide much more reliable and 

structurally accurate sensory data. Force sensation in the cockroach robot is a particular 

problem; see section 7.4.5.2 . Similar problems were encountered when trying to use 

motor current as a signal to detect obstacle collision in the stick insect leg. 

A particularly sexy possibility here is the addition of a set of strain rosettes or a six-axis 

load cell in the trochanter of the model leg. This full load information would allow the 

calculation of strain in any direction at that point, which could in turn be used to simulate 

the sensory response of virtual fields of campaniform sensilla. These could then be used 

for the detection of sensory events, in magnitude influences, or even just in observation 

of force traces difficult to obtain from the animal. Gravity compensation could be added 

to these signals, as well. 

The range of sensors one might wish to add is really quite broad, but one other specific 

signal used in the stick insect, which is not readily available in the model, is joint 

velocity. Differentiation of low-resolution position data is noisy & involves delays, so is 

not currently used. This could be addressed with high-resolution position data or true 

joint velocity sensors. 

9.2.2.8  Sensory Signal Processing 

Biological sensory processing and filtering is generally highly capable and can be very 

complicated.  Adding capabilities in the model for some basic general signal processing 



 187 

could be very helpful in making some sensory processing more realistic. Examples of 

possible desired processing blocks: 

1) differentiation/integration 

2) sums/products 

3) more configurable infinite impulse response (IIR) filtering- currently used hard-

coded for the torque signal 

In terms of the SCCILS configuration, it would probably make sense for the output of 

each of these blocks/functions to be another, separate “sensor” HDSO value; possibly one 

for each “wire” in the sensory processing block diagram. 

9.2.2.9  Muscle Activation Function Dynamics 

An important part of complete muscle function that is currently nonexistent in the 

robotic models is the dynamics of muscle activation. Current implementation is “null” 

dynamics, where the activation equals the input command. In the modeled insect systems, 

muscle activation follows a time course in reaction to a motor neuron spike train. Marcus 

Blümel has done extensive and highly detailed (spike-by-spike) work on the modeling of 

activation dynamics in recent work, however it should be possible to improve both 

structural accuracy and behavioral match of the model even using smoothly varying 

“command activation” numbers for motor neuron activity, and relatively simple 

dynamics governing the response of the actual muscle activation to those commands. 

9.2.2.10  Joint Geometry Modeling 

The current muscle model implementation has only the simplest joint geometry 

implemented- that where the muscle insertion is on a constant-radius “pulley”, and the 



 188 

effective radius of the muscle force is constant. This is usually not at all the case in insect 

legs, however; the apodeme often inserts in a hinge-like manner in the exoskeleton of the 

distal segment, and the effective radius of force application may go to zero and even 

change sign as joint angle changes. This is vaguely represented in Figure 4-3 showing 

elements of a neuromechanical insect joint. 

It might be a substantial improvement in structural accuracy of the model to implement 

simulation of this kind of joint geometry. It requires trigonometric calculations, but if that 

is too computationally expensive the use of look-up tables might suffice. Eventually, it 

might be nice to allow modeling of muscle origins and insertions in three dimensions, 

and across multiple joint degrees of freedom. This would particularly help structural 

accuracy of models of the thorax-coxa joint. 

9.2.2.11  Better Cockroach Kinematics 

The cockroach leg kinematics presented in Chapter 5 have been used as a basis for 

finding more accurate kinematic data. Programs written by John Bender and presented in 

(Bender, Rutter, et al., 2008; Bender, et al., 2009 (In Prep)) bootstrap a kinematic model 

to more accurately represent the motion observed in 3D video of walking cockroaches. 

The data thus obtained on relative orientation of joint axes could be used to improve the 

physical robot or later models; currently the planar leg approximation is used. 

 
 

9.2.2.12  Trochanter-Femur Joint 

Current biological observation establishes that in straight walking and turning, the TrF 

joint is active and critical, perhaps even more so than the ThC joint (Bender, et al., 2009 



 189 

(In Prep)). Inclusion of this joint in robots is therefore highly desirable just for walking 

and turning behaviors in addition to the climbing behaviors in which its importance was 

previously known (James T. Watson, et al., 2002). This joint is included in the next 

revision of the physical model, built by the Biorobotics Team Research class in the spring 

of 2009. 

This of course requires a module to control that joint; my current first suggestion is to 

move and adapt the module used for ThC1 in this dissertation. It should be kept in mind 

as well that even in Bender’s analysis the TrF joint axis is difficult to accurately find, and 

appears to be variable. I think the precise description of the kinematic properties of this 

joint in behavior would be a substantial and worthwhile project for a mechanical engineer 

to address. 

9.2.2.13  Greater Use of the Thorax-Coxa Joint in the Cockroach Model 

It is also expected that both degrees of freedom at the ThC joint (Mu, 2007; Rutter, 

Taylor, et al., 2007) will be critical for climbing behaviors.  Current leg SCASM 

configurations essentially ignore the ThC2 DOF and hold it constant; investigating and 

modeling the control here will be new territory. 

ThC2 is apparently also important in turning (Mu, 2007), though it was not used for 

that in this work. Though it has not been implemented, this control might be produced by 

adding a module for ThC2; if only tonic postural changes are desired it could even be 

done with only one action. The tonic postural pose at least, if not phasic activity, of this 

sub-joint is probably also critical to the initiation of the reflex cascade proposed in (Mu & 

Ritzmann, 2008b). 



 190 

9.2.2.14  Feet 

When considering any legged locomotion, the actual interaction with the substrate is 

primarily through feet.  For whatever reason, however, feet appear to be the part of the 

system most thoroughly ignored when modeling or building legged systems. The current 

robotic models are quite footless; a smooth round ball is placed at the end of the tibia. 

Even adding a spring-biased passive pretarsus would probably be an improvement in 

model parity with the animal. More complicated designs are possible and, if allowed 

sufficient investigation and effort, certainly buildable. The tarsus on Matt Birch’s 

cockroach front leg model was an excellent first try. The tarsus made in spring ’08 by 

Dorothy for the Biorobotics Team Research cockroach middle leg model is of 

considerably simpler construction and is probably at least as good of a model. This 

version should be copied or (through direct reference to the insect) improved for later 

attempts.  In particular, the two muscles allowing actuated sideways motion of the 

pretarsus relative to the tibia are not modeled in that design. 

The more gradual change between swing and stance that a compliant foot affords is 

likely to change the sensing of ground contact by force. It would also, however, make 

these transitions less technically challenging from a control point of view, since the more 

gradual change in mechanical dynamics allows a broader window of time in which 

changes in control can effectively take place. 

9.2.3 General System Improvements 

These are basic improvements to modeling or robotic capabilities that don’t fit in any 

other section. 



 191 

9.2.3.1  Models with parts we can replace 

Megarobotics, the company that made the AIMotor actuators used in the robotic 

models described here, apparently went out of business. Therefore, it is difficult or 

impossible to find new AImotor servos, which puts a pretty limited lifespan on these 

robots. The transmissions are mostly plastic and a bit under-engineered. For those 

interested in using SCASM for robotic modeling, it will be necessary to build new 

models using parts that can be replaced.   

Some efforts at this have already been made; in particular the B. discoidalis middle 

legs built by the Biorobotics Team Research class at Case Western. SCASM control has 

yet to be implemented on them, however. Partly I think this is due to some 

underestimation of the difficulty of low-level basic control. Partly there appears to have 

been some miscommunication regarding precisely what signals are necessary for servo 

delta control. The AI Motor actuators had a number of things that helped with these 

considerably. 

To implement SCASM more or less as described for the stick insect and cockroach 

systems in Chapter 4, one needs the following: 

1) angle sensing 

2) force, torque, or contact sensing 

3) something vaguely resembling open-loop force control. It can be pretty vague, as 

first implemented in the BILL_ANT robot (Lewinger, et al., 2006). For biological 

modeling, however, it is likely that something closer, like direct current control or 

servo delta control, will be necessary. 



 192 

To implement servo delta control, you MUST have a signal that reports the ACTUAL 

angular position of the joint, NOT the commanded servo position. Yes, the servo is 

supposed to just go to its commanded position. The fact that it does not do this under 

sufficient load, however, is how servo delta control works. 

This also means that if your underlying servos are so strong and tightly controlled that 

they do reach the commanded position under the forces seen during the behavior you or 

modeling, servo delta control may NOT work. It is likely that the servos will need to be 

at least a little “under-torqued”, from the more classical servo control point of view. 

9.2.3.2  Basic Cleanup or Re-Implementation of the NeuRoMod Engine 

This one is a doozy, and a complete re-implementation in particular should be 

considered very carefully before making a commitment to do it. The basic function of a 

SCASM system with constant parameters and minimal muscle modeling is indeed quite 

programmatically simple. If, however, you wan to record data, allow loading and 

validating of configuration files, and allow file-based configuration of different robotic 

models, it becomes much more complicated. This is especially so if you are doing it 

within the confines of a hard real-time system. Add the ability to modify control 

parameters online via user interface or experimental scripts, and you’re getting to the 

point where it’s a real headache to keep track of everything. 

Now, the current NeuRoMod engine has some specific advantages and disadvantages, 

with respect to further development and debugging. 

Pros: 

1) RTLinux-GPL 



 193 

a. Stable 

b. Hard Real Time 

c. Free 

2) Modular and Extensible 

3) Few limitations on what can be programmed 

4) It already mostly works 

Cons: 

1) RTLinux-GPL 

a. Poorly Supported 

b. Needs access to brown- or black-belt Linux skillz for installation 

2) Shared data management is somewhat barbaric. 

3) Implementation is in C, but the program structure wants to be object-oriented. 

4) Grew gradually from a moderately configurable leg controller to the current state; 

there is considerable cruft that assumes leg control or does not yet implement 

SCCILS-defined functionality. 

The highlighted pros may be extremely important to you. A hard real-time 

programming environment allows you to count on scheduling of events to happen as you 

say, within hardware performance limitations. With the speed of today’s computers it 

may be possible to get away without this in some cases. If you really care about the 

timing of your behavior, however, use of a non-RT system will require extra checking 

and verification that things are happening in the order you desire. 



 194 

The modularity and extensibility of the NeuRoMod implementation is what allowed it 

to grow this far. In truth this is a little messy, and some extension or replacement of 

function will require more work than a “truly” modular and extensible implementation. It 

is good enough, though, that it may be reasonable to update and remove cruft one piece at 

a time, rather than starting over from scratch just to get a clean implementation. 

The fact that it works to run robotic experiments and record useful model data is a very 

big plus. No matter how easy your programming language, this takes a lot of work. 

The current low level of developer support for RTLinux-GPL is a problem; eventually 

this might lead to a need to find ancient working computers to install the software. This 

and the need for in-depth Linux knowledge might be addressed by upgrading to the non-

free RTLinux-Pro; it used to be that they had a stated policy of supplying this software 

free of charge to researchers. I generally felt comfortable enough that I never got around 

to pursuing this possibility, but it would be a wise thing to look into. Another possibility 

is using the newer XtratuM/PaRTiKle real-time system (http://www.xtratum.org/), which 

can supposedly run RTLinux programs with little modification. This would require 

installing the new OS and probably some search-and-replace in the code, but possibly not 

much else.  

The implementation in C is definitely annoying. The last time I looked it was possible 

to use C++ in RTLinux, but it was unclear whether objects could be shared between real-

time and user-space programs. Nearly all of the quasi-object-oriented data in NeuRoMod 

is in shared memory, so this would be a deal breaker. 

On the other hand, the code is only as object-oriented as it needs to be, and quite 

efficient. While pseudo-object and memory management have to be done explicitly, there 



 195 

is no overhead associated with automatic garbage collection, object and function passing, 

and so on. This allows the programs to run very substantially faster than might be the 

case in, say, Java or Python. 

The cruft and inherited limitations from the original implementation are annoying, but 

it may be useful to take note of the fact that I was able to add muscle models, script and 

data server elements, and extensive runtime data interaction to the original controller. At 

none of these points did I actually consider a complete code rewrite. Most or all of the 

cruft issues could be addressed without a complete rewrite. 

When I began the coding for the controller, MATLAB real-time tools and LabVIEW 

were too limited or insufficiently hard real-time for the kind of unlimited extension and 

higher-level processing I wanted to allow. It is possible that these tools have improved 

sufficiently to allow such flexibility. Diagram-based programming of event-space 

diagrams would be nice, as long as it didn’t carry too many limitations with it. In 

particular for use in modeling and controller development, the ability to speak SCCILS is 

a big plus, and can take considerable work. Tested Python and MATLAB code for partial 

handling of SCCILS XML does exist, however, in the NeuRoMod GUI and in 

SCCILStoolbox. 

9.2.3.3  Treadmill/Treadball 

It is a reasonable match to some experiments, but the slippery feet used to simulate the 

oiled plate experiments do make some parts of stepping more difficult, and sometimes 

provide a poor behavioral match to freely walking or treadband/treadmill/treadball 

experiments. As one example, a more grippy foot on a treadmill for the stick insect leg 

model would have considerably less trouble with erratic behavior arising from poor 



 196 

detection of ground contact. It is even likely that this setup would make the detection 

itself more reliable as well. 

It is desirable, therefore, to have some sort of tread-surface and feet to interact with it. 

There is a more in-depth discussion of feet above in section 9.2.2.14 , but the 

requirements here may not be so involved. In the first round, adding a high-friction 

rubber ball at the end of the tibia instead of a low-friction plastic one may show sufficient 

improvement to be interesting. 

With such a foot, it should not be too difficult to affix an appropriate small mounting 

scaffold to the robot treadmill in Glennan 814, and get some treadmill stepping going. Of 

course, I do not know how well that treadmill itself is actually functioning. 

9.2.3.4  Teleoperation Development 

There is considerable work left to be done for improving the ability to conduct 

experiments and otherwise operate the model robots from a different room- be that across 

campus or across the globe. During model experimentation it is often useful or even 

required to reposition the robotic leg between trials, and it can be very educational to 

interact physically with the leg during behavior. Both sound and video monitoring by the 

teleoperator are highly valuable but do not re-create the full experience. 

The low-level position control software exists in NeuRoMod for doing leg 

repositioning, but there are currently no higher-level HDSO hooks for specifying angle 

commands, or switching between angle and torque control at a joint. With these tools in 

place, real tele-experimentation without significant local human supervision becomes a 

possibility.  



 197 

Replacing physical interaction during behavior over distance is not reasonably 

possible, but it might be useful to add a “tweak torque” at each joint, which could be 

interactively specified through the UI and added to the controller-specified torque. A 

more difficult but possibly useful task would be to add a virtual “tweak force” at the foot 

as well; this requires inverse dynamics, however. This is not a simple problem, especially 

for a highly flexible robot with low-resolution position and force data. 

9.2.4 Neural Delays 

There is currently only the most rudimentary modeling of anything resembling neural 

dynamics in the NeuRoMod software. Modeling of neural and synaptic dynamics may 

eventually be desirable, but that is a huge can of worms, and that’s all the treatment I’ll 

give it here. Here are some possibilities for more tractable improvements. Only neural 

delays are covered here, inherent CPG dynamics and central coupling are discussed in the 

CPG section (9.4). 

As described in section 6.2.1.3 , all delays in all sensory-motor control loops are 

currently simulated by setting the period of the state transition thread in NeuRoMod. This 

approach has a number of drawbacks. Firstly, though it does produce a delay in controller 

signal propagation, it also increases the time period over which events are detected, 

making it a worse model of a continuous system. A continuous system with delay can 

detect events at any time, but will not react to them for a little while. This implementation 

can only detect events at specific points in time. Secondly, this time delay also affects the 

speed and time continuity of the muscle model dynamics calculations. These calculations 

are a part of the controller that is pretending it is part of the physical reality. Any such 



 198 

real-time simulation of continuous-time physics should usually be done at as high a rate 

as practical, and its fidelity should certainly not be affected by sensory delays. 

It might therefore be useful to incorporate a more structurally accurate way to model 

neural delays, both afferent and efferent. This would require some bit of the program to 

store recent data for delayed signal lines, and report the appropriately delayed data to 

processes looking up that line. This could be done either by defining a delay for a 

sensor/signal variable, or, more generally and correctly, defining a delay for each of the 

various recipients of a signal.  This might be best accomplished by including a “delay” 

element in the signal processing blocks described in section 9.2.2.8 , and adding as many 

delay elements as necessary to produce the appropriately delayed signals. Another option 

might be to augment HDSO specifiers (e.g. used in specifying a Boolean transition rule 

or a muscle activation function) to optionally include delays. For instance, one might try: 

(324 > 101)  means “is HDSO 234 greater than HDSO 101?” 

(324,0.001 > 101,0.05) means “was HDSO 324 1 ms ago greater than HDSO 101 50 

ms ago?” 

This would, of course, require some quickly accessible storage for the signal history of 

each HDSO. This is not usually difficult, but in cases where the HDSO is a calculated 

value (e.g. another Boolean expression) the requested delay would need to be added to 

each delay used in that calculation. 

9.3 Model-driven & Model Experimentation 

Really, the point of a model is to support the process of explanation. In the model 

improvements section above, many of the improvements were related to specific 



 199 

biological functions or questions, but this section is intended to outline actual use of these 

models for experimentation and analysis.  

9.3.1 Walking and Turning 

A major motivator for the biological modeling in this work was the investigation of the 

interplay of descending commands and local control circuits; specifically to test the reflex 

cascade hypothesis. Since the behaviors most used for addressing this question in the 

Ritzmann lab are walking and turning, it would be sensible for these to be a significant 

element of further model experimentation.  

9.3.1.1  In The Cockroach 

All of the cockroach model control presented in chapters 4 and 7 represents 

hypothetical neural mechanisms, none of which have yet been tested. It would be a really 

good idea to start testing them, if possible. Some suggestions are given in the conclusion 

of chapter 7. Additionally, it would be a useful exercise to try to come up with 

behaviorally equivalent or similar alternate event-space diagrams for the walking and 

turning behaviors described. If many alternates are found, that indicates a greater input of 

biological data to select the most likely hypotheses. 

An explicit experiment that Bender is planning to run was diagrammed in (Rutter, 

Bender, Ritzmann, et al., 2009) and is shown in Figure 9-1. Further experimentation 

would make use of extracellular or electromyogram recordings to help discern between 

local and higher-level responses. 

As a map of the actual neural elements involved in these behaviors is developed, 

animal experiments similar to the more involved experiments described in section 7.4.2 



 200 

may become possible. Specific local influences might be reversed, or delay in reversal 

may be possible. 

 

Figure 9-1 A small magnet will be affixed to the end of the tibia of the middle leg. An electromagnet 

will then be used to modulate the force applied at the tibia. This experiment should be used to test the 

hypothetical reversal of load influences at the FTi joint controller between inside turning and 

forward walking. 

 It should be useful to incorporate known cockroach magnitude influences into the 

design of the SCASM control configurations for walking and inside turning. Once 

functional in straight walking and inside turning, these and further hypothesized 

Forward walkingInside turning

Halfway through swing,

simulate “leg load”

Magnet

Reflex response of FTi joint

should be behavior-dependent

Flexion

Extension

Magnet

Electromagnet



 201 

magnitude influences might be sufficient to test the specific reflex cascade hypothesis 

presented in (Mu & Ritzmann, 2008b) 

Investigate whether the “outside turning, backward” qualitative behavior shown in 

Figure 9-2 appears to happen in the animal. Probably it does, but under what 

circumstances? Actually in turning? The global state diagram for this behavior could be 

translated to an event-space diagram, implemented in the model, and used to generate 

testable hypotheses. 

 

Figure 9-2 Global state diagram and behavioral sketch of the “outside turn, backward” behavior. 

9.3.1.2  In the Stick Insect 

There is increasingly available data on stick insect turning, and it would be a great idea 

to use a stick insect model leg to investigate and/or verify some of the mechanisms 

involved in turning and transitions between walking and turning in this system. Ideally 

this would include collaboration with Matthias Gruhn, who has done stick insect turning 

work in Cologne (Gruhn, Hoffmann, Dübbert, et al., 2006), and Bill Lewinger, who has 

PRO LEV EXT
Stance

PRO LEV FLX

RET DEP FLX
Swing

PRO DEP EXT

PRO DEP FLX
Early Stance

RET DEP EXT

RET LEV EXT
Early Swing

RET LEV FLX

PRO

(dep)

RET 

(lev)

ThC1

DEP 

(ret)

LEV 

(pro)

CTr

EXTFLX

FTi



 202 

implemented turning in a hexapod robot using SCASM (Lewinger & Quinn, 2009), and 

who is now working on a stick insect model hexapod in Edinburgh. 

9.3.2  Other Behaviors 

9.3.2.1  Searching 

The cockroach automatically switches from walking to searching upon removal of 

substrate; the model does not. Investigate whether reasonable additions such as 

magnitude-influences suggested in (Mu & Ritzmann, 2008b), or perhaps inherent CPG 

dynamics, can cause the controller to automatically generate this behavior locally in 

SCASM. If not, is some higher-level (possibly still in the ganglion) processing easier to 

implement? Once the model exhibits the behavior, suggest biological experiments to test 

the implemented hypotheses.  

9.3.2.2  Climbing 

With operational ThC and TrF joints, and possibly feet and tibial spines, it will be 

reasonable to generate control configurations for climbing, and investigate transitions 

between these and walking in a manner similar to that done for turning in this work. 

9.3.2.3  Higher-Level Behavior. 

Once a model insect capable of locomotion is constructed, and the leg-level behaviors 

and transitions between them are sufficiently understood, it will be possible to begin 

investigating the generation of higher-level behaviors that actually make use of 

descending commands, such as navigation to a goal. Though more abstract in its 

biological basis, Lewinger has already begun this (Lewinger, Rutter, & Quinn, 2008). 



 203 

9.3.3 Speed analysis 

9.3.3.1  Further Speed Control Characterization 

As discussed in section 7.3, changes to gated tonic drive of muscles can change speed 

in stick insect and cockroach robot models. This data is very preliminary, and further 

description and sensitivity analysis could be useful; this might guide experimentation in 

the animal. Look at prior motor neuron activity descriptions (Gabriel & Büschges, 2007; 

Watson & Ritzmann, 1998b), and investigate whether changes in magnitude influences 

might control speed as well as or instead of such gated tonic drive. Mention method, and 

tests in both. Do experiments in the model to determine which muscle activations may be 

most critical for speed modulation; see if experiments can be done in the animal to 

simulate or block such control.  

 



 204 

9.3.3.2  Analysis of effects of speed on step variance 

 
Figure 9-3 Median Absolute Dispersions of stance excursions for x-position of the tibia-tarsus joint in 

the cockroach, and for the closely related femur-tibia angle in the robot.  The robot is not capable of 

periods smaller than about 200 ms, due to limits on motor speed. 

Testing either hypothesis for complete sufficiency in the animal is difficult at best. It 

therefore makes sense to go a step further in the model. When and how does it fail to 

reproduce animal behavior? In the preliminary results for the tonic drive hypothesis here, 

high stepping speeds give rise to greater dispersion in the physical extent of stance in the 

model system, but not in the cockroach itself. 

Looking more closely at the two graphs together; higher muscle activations reach a 

point where they slow down stepping, but the over-driven example has a lower dispersion 

than the two trials that were faster than it. This suggests speed may be more important 

than drive for variability in sensory pattern generation. A more full analysis of variance 

with speed has been done in (Bender, Simpson, & Ritzmann, 2008), and may be 

presented in (Bender, et al., 2009 (In Prep)). 



 205 

9.3.4 Muscle models 

9.3.4.1  Impact of Muscle Models on step variance 

Initial investigations were for one joint only; it would be interesting to do a full test of 

combinations of muscle models in both cockroach and stick insect robots. It is likely that 

improving muscle models at some joints fixes specific problems in behavior (e.g., FTi 

and the swing-stance transition); look into these. This investigation is quite interesting 

from the engineering point of view; it could also be useful in finding which muscle 

properties may be most critical in the animal for different behaviors. One might then 

hypothesize that muscles whose properties or activity is most critical would have the 

most tightly controlled or constructed properties. Measurement of variance in animal 

muscle properties may be difficult, but some experiments could be tried. 

9.3.4.2  More Sophisticated Muscle Models 

The “muscle models” used in (Rutter, Lewinger, et al., 2007) and described in section 

7.2 were extremely simple, but had a significant effect on system behavior. It would be 

useful to investigate to what extent further complexity in muscle models affects behavior. 

It would make sense to start with variance tests as before, but it would also be good to 

measure the effects on performance in dealing with rougher terrain or other 

environmental perturbations. Either a treadmill or a true walking robot would be 

necessary for this. It is reasonable to expect improvements in quantitative behavioral 

match, so it would make sense to test this as well. 

9.3.5 Impact of Neural Delays 

Once neural delay simulation was implemented, one could observe changes in step 

variation, ability to deal with environmental changes, and apparent stability as all or 



 206 

specific neural delays are changed. Look over a range of stepping speeds! Start with 

comparison of zero delay and unreasonably long delay; find points/regions where the 

behavior changes. Find specific pathways whose delay affects overall system behavior 

the most. If joint and/or full-leg central pattern generation are implemented in the model, 

it would be interesting to test the effects of sensory delays on stability in three different 

regimes: no central pattern generation, uncoupled joint CPGs, and central coupling for a 

whole leg CPG. 

9.4 Central Pattern Generators 

Sensory coupling is a defining element of SCASM systems, and the current models of 

both cockroach and stick insect legs use only sensory influences for the generation of 

coordinated stepping. The insect neural system is capable of somewhat more centrally-

driven behavior, however, and modeling this capability will allow the investigation of 

potentially more realistic model behaviors and associated neural function. 

9.4.1 Inherent CPG dynamics 

In the stick insect neurobiological system, the Action Switching Module for each joint 

has the capability to act as an oscillating central pattern generator (CPG).  The existence 

of these inherent CPG dynamics is demonstrated in experiments where the thoracic 

ganglion is excited with pilocarpine, and each joint CPG oscillates slowly, individually, 

and without sensory input (Büschges, et al., 1995; Ekeberg, et al., 2004). 

 It is expected that CPGs could improve system stability and robustness. We have 

already shown (Rutter, Lewinger, et al., 2007) that simple muscle models decrease the 

variance in stepping behavior in the model.  It is suspected that this is at least partially 



 207 

accomplished by conditioning the system outputs such that the entire leg is more likely to 

stay within the feasible operation space of any particular SCASM control configuration.  

Nevertheless, it is possible in the absence of CPG dynamics to get “stuck” in a state 

where a sensory signal critical to the transition to the next phase of behavior does not 

occur. (This is particularly likely when the SCASM configuration is “not optimal”).  In 

these cases, internal CPG dynamics would eventually trigger a transition themselves, 

thereby allowing for continued system operation. 

9.4.1.1  State and/or Module/CPG inherent dynamics 

Within the context of modeling these legged systems, each module of the SCASM 

system representation is sometimes referred to as a central pattern generator (CPG). This 

is due to the fact that each of them is modeling an element which, in the stick insect, can 

produce alternating activity without sensory feedback, at least under excitation induced 

by pilocarpine. The models of these circuits so far tested, from (Ekeberg, et al., 2004) to 

here, have modeled these PGs entirely as bi-stable state selectors, without any inherent 

switching dynamics. 

The biological circuits do possess the ability to exhibit such dynamics, at least under 

some conditions, and it would sometimes even be sensible for them to do so. In 

particular, it is possible that properly tuned CPG dynamics would increase overall system 

reliability. If each CPG is tuned to switch at a rate slower than the currently exhibited 

sensory-driven switching, it will have no effect on the system under “normal” operation. 

If, however, the leg is exposed to some perturbation that sufficiently delays the normal 

action switching, or somehow a sensor fails to detect a switching event, the inherent 

dynamics of this CPG would have an effect, kicking in and continuing the progression of 



 208 

local events likely to produce the desired behavior. This possibility is particularly 

obvious in the robotic models, where poor sensory signals are often responsible for a 

disruption or ceasing of the current behavior. 

Ideally, one would tune these inherent CPG dynamics so that they were continually a 

little slower than the current stepping rate; this could be done with some leaky-integrator 

signal for CPG frequency, which would be integrating either sensory switching events or 

the module switching itself. 

As it happens, there is some initial data available (Borgmann, Hellekes, & Büschges, 

2009) which shows exactly this effect in the stick insect- a sensory signal which 

stimulates alternating motor neuron activity, whose frequency decays to zero over a few 

cycles. It is suggested that this could be a very interesting area for modeling and 

combined model/biological investigation. 

One way to implement CPG dynamics would be to have each action keep track of how 

long it has been active via some decay variable. The simplest implementation would just 

have a timer for when to switch to the next action. For multiple-action modules, there 

would be a timer for each other action, and the action switched to would be the one 

whose timer expires first. This implementation is equivalent to setting a switching 

threshold on a time decay variable that decays linearly. A somewhat more capable 

implementation would include a refractory period as well, in which switching to other 

states is not possible; this is in fact already implemented and configurable as the SCCILS 

dwell_time element for each state. This was added to allow sensible response to obstacles 

and holes in the stick insect leg robot, as described in (Lewinger, et al., 2008). 



 209 

A more biologically plausible implementation might involve an exponential or possibly 

power-function decay of the state time variable; events depending on this variable could 

be triggered by setting thresholds for each such event; e.g., each other state in the module 

would have a threshold on that decay variable as part of its transition function. 

9.4.1.2  Experiments in Joint CPG Dynamics 

Useful experiments and observations here are similar to those recommended for 

investigating sensory delays. Investigate how close to nominal stepping speed the CPG 

dynamics can get before they modify the behavior. Investigate how CPG dynamics 

modify how quickly the system can change speed. Specific testable behavioral 

hypotheses are possible here regarding whether there is active inhibition of the CPG 

dynamics when an animal slows down. 

9.4.1.3  Central Coupling of Joint CPGs 

For a system to be represented as SCASM, it must be the case that sensory 

coordinating signals can override central coupling and dynamics. It is not necessarily the 

case, however, that these central connections do not exist or serve no purpose, in fact 

there is evidence for at least some central coupling during swing-stance transitions in 

stick insect walking (Büschges, et al., 1995). Weak central coupling at low speeds might 

be useful in increasing stability, acting as a fallback if sensory coordination somehow 

fails. Stronger central coupling may become very helpful or necessary at high speeds, 

particularly in the cockroach- this is discussed in more detail in section 9.3.3.2 . 

It will be fairly conceptually clear to add overrideable central coupling to the 

NeuRoMod controller. The easiest way to do this would be for each module/joint to have 



 210 

a time decay HDSO variable, along with a “current action” variable for that joint. Central 

coupling could then be added by including an OR dependence on these variables for state 

transitions. For example, in reference to the minimal SCASM stepper in section 4.4.1, the 

transition rule for entering ThC protraction might be changed from  

ground_contact_sensor < no_contact_threshold 

to 

( (ground_contact_sensor < no_contact_threshold) || ((CTr_state == levation) && 

(CTr_statedecay < decay_threshold)) ) 

It should be fairly clear that whether this is weak, rarely active central coupling or 

strong, usually active central coupling depends on whether the sensory or central 

threshold triggers first. As for internal CPG dynamics, it would be very sensible for 

decay_threshold to be a function of the speed of behavior, modulated by sensory input 

and/or central drive. At least one of these is necessary, in fact, for the system to be able to 

stop stepping when some higher-level drive command is turned down to zero. 

Note that although central coupling and joint CPG dynamics are conceptually 

somewhat different, the requirements for implementation in NeuRoMod are nearly 

identical. 

9.4.2 Speed, Modulation of CPG dynamics with speed 

With internal CPG dynamics, it will be necessary to scale these dynamics with “speed” 

in order to allow the full range of speeds currently available in the model. 



 211 

9.4.2.1  Impact of Muscle Models 

Speed changes can be implemented in the model merely by changing muscle 

activations; no rearrangement of the local control network is necessary.  It is expected 

that more advanced muscle models, perhaps including the modeling of muscle activation 

dynamics, would make the response of the local neuromechanical system more forgiving 

in terms of both the acceptable ranges for descending commands and the necessary 

timing precision of the coordinating CPG influences, whether sensory or central in 

nature. 

9.4.2.2  Central CPG Coupling at higher speeds 

At high enough speeds in a SCASM system, it is feasible that delays in sensory 

processing would prevent the sensory coordinating influences from arriving quickly 

enough to produce well-coordinated behavior.  There is behavioral evidence (Bender, 

Simpson, et al., 2008) that central pattern generation may be taking place at least at 

higher speeds in the cockroach, supplementing or overriding the sensory pattern 

generation that appears sufficient and adaptive at lower speeds.   

9.4.3 Sources, sinks, and function of variability in behavior 

An inspection of the distribution of various step metrics during behavior in the robotic 

models reveals substantial variation that is not easily predictable step-by-step. See section 

7.2 for some examples. I initially thought that this was due to some sensitivity of the 

system to small amounts of sensory noise. This is very likely part of it, however Marcus 

Blümel reports (pers. comm., June 2008) that the computational simulation also exhibits 

variability between steps, without reasonably discernable patterns of repetition. This 

suggests that the SCASM leg coordinating systems, at least as modeled, are inherently 



 212 

chaotic in nature. The chaotic behavior produces variation between steps, but at least for 

the most part it does not interfere with the overall generation of behavior.  

At least from the engineering standpoint, there are some very interesting questions 

raised here. It is plausible that some random and/or chaotic variability in behavior is 

adaptive. The world is often a highly variable and non-constant place, and to some degree 

variable behavior may improve performance of tasks in such environments in a 

computationally cheap and robust manner. If you barely missed getting a foothold with 

this step, just taking another chance might work much of the time, without the need for 

more complex, directed, or higher-level modification of the behavior. A big question here 

is: what are the functions and advantages of variability in behavior? Looking at “steady” 

locomotor behavior may be a useful way to start addressing this question. 

Indeed, most biological systems are inherently variable or “noisy”. It will be easy for 

most readers to believe that these systems must have mechanisms to reduce or deal with 

this variability; “sinks” for the variability. The muscle modeling work above suggests 

that muscles may be an important variability sink in these stepping systems. Tuning 

muscle properties, then, could be one way of affecting how much variability actually 

makes it to the behavioral output. 

Another, slightly less usual question is: where does this variability come from? There 

are plenty of sources of noise in biological systems, but which of these might actually be 

used in an adaptive way? Are certain elements of the system generating variability “on 

purpose”? Are systems with some inherent chaos somehow favored over other, possibly 

non-chaotic systems? Is there such a thing as a non-chaotic biological system? 



 213 

These are not particularly easy questions to address- however in the models presented 

here one can at least start looking at the question of sources and sinks. Figuring out what 

the functions of variability are would be substantially helped by an ability to modify this 

variability. It would take considerable coding, but it is not conceptually difficult to add 

variability into various sensory and other signals in a SCASM system. What effects does 

this have on behavior? It may be possible to artificially inject variability in the animal 

system as well, via pharmacological means increasing “jitter”. As mentioned above, there 

has already been some work on muscle models as sinks of variability, and the effects of 

this on behavior. Are there some sources of variability or noise that muscles do not sink? 

Which muscles are the most responsible for modulating variability from which sensors or 

internally generated “noise”? What other system elements (e.g. neural signal filters) 

might act as variability sinks? 

With such tools, it should be possible to start investigating what adaptive functions 

variability may have. Is there some non-zero optimum of behavioral variability or 

“noise”? Specific questions include: A) on a flat slippery surface, do some types of 

variability allow for longer periods of operation without failure? B) In more complex 

terrain, do some increases in variability allow improved ability to overcome some 

difficulties? 

There is biological experimentation to be done here as well. Observation of whether 

step variance metrics differ between behaviors might be informative. Are there biological 

behavioral experiments that we can develop in the model that can elucidate the role or 

existence of more central coupling in the animal? Are there ways we might be able to 

disrupt central coupling in the animal and see what happens? 



 214 

9.5 Model User Interface and Data Representation 

The experimental work and model improvements described above require a functioning 

user interface to be doable and useful.  The graphical user interface (GUI) included in 

NeuRoMod is basically sufficient for many tasks, but improvements will be necessary for 

enhanced experimental utility.  This includes improvements to the naming and display of 

system elements, configuration-specific help regarding the layout and function of the 

various sensory events and event discriminators. 

Data collection and live viewing could also be integrated into the GUI, in order to 

speed up the experimentation/analysis cycle. 

Further improvements could include ability of the model user to load, edit and save 

model configurations and experiment scripts.  A more thoroughly graphical 

representation of and interaction with the model could really substantially improve and 

support the representing, interpreting, and demonstrating elements of model usage. Work 

on these things might be at least an M.S. amount of work in UI design and data 

representation; investigators at Case Western might want to talk with the gaming lab 

about it.  

The following two sections give examples of things that would definitely be useful; 

they are by no means a complete description of what might be possible in this regard. 

9.5.1 Incorporation of Representational Diagrams Into GUI 

Currently the NeuRoMod GUI does not present any truly graphical representation of 

system configuration or function. A number of the graphical tools and system 

representations presented in Chapter 4 could be programmatically generated.  



 215 

9.5.1.1  Generation of event-space diagrams 

This is probably one of the more useful and more difficult diagrams to generate. The 

SCASM elements of this graph and their connections can be generated from a SCCILS 

configuration in a relatively straightforward manner using the method described in 

Section 4.5.3. Choosing where to place the modules and how to automatically generate 

the color and line-style codings is more involved but certainly possible. Automatically 

generating a leg diagram on which to place the modules is also doable from the Denavit-

Hartenburg parameters in a SCCILS jointlist, but this is a lot more work, and may not be 

as useful to the user as providing an pre-generated background image of the physical 

system, with defined places for module placement. 

9.5.1.2  Boolean State-Space Rule Representations 

For modules with compound sensory events, it can be useful to construct a diagram 

such as Figure 4-10 to help insure there is no overlap between the areas in sensor space 

that specify each switching event. With the current layout of the UI, it is not even 

necessarily very easy to avoid this overlap when only a single sensor is involved. The 

automatic generation of such a diagram requires the capability to construct line, area, and 

possibly volume inequality graphs. It is no more complicated than that, however. 

9.5.1.3  Global State Diagrams 

It is difficult to construct a global state diagram without knowledge of which actions 

tend to lead to which sensory events. With this information (possibly user-supplied), a 

predicted global state diagram can be constructed from an event-space diagram or a 

SCCILS configuration. It is a somewhat less difficult programming problem to construct 

an actual global state diagram from data collected during a behavior- this can be useful 



 216 

both to compare actual behavior to that predicted, and to investigate which non-nominal 

global states are reached under certain perturbations or behavioral transitions. 

9.5.1.4  Diagram Interactivity 

All of the above diagrams would be made even more useful by adding the ability to 

show live data, or generate an animation or plot from recorded data. Additionally, the 

event space and Boolean sensory space diagrams could be used to input or modify 

configuration parameters in a conceptually straightforward way. Dragging an arrow from 

a sensory event to an action transition could make it part of the switching event for that 

action (though of course a few more parameters must be entered to specify exactly how it 

effects this action). Dragging an inequality boundary on a Boolean sensory space diagram 

could modify the associated switching event threshold. 

9.5.2 GUI User-Friendliness 

There are a number of less difficult things that could be done to make the current GUI 

more broadly useful. 

9.5.2.1  Clickable Map of Leg 

The ability to bring up the configuration information for a joint by clicking on an 

image of the model (or insect) would make some user interaction much more quickly 

learnable. Further advances here might include single muscles and sensors as clickable 

elements as well. Basically this requires only an appropriate image and a map of which 

parts of the image should bring up which UI configuration panes; it would probably be 

possible to add this to the existing Python GUI. 



 217 

9.5.2.2  More Complete Naming and Help 

This is mostly a change only in the XML configuration files, but more complete and 

clear naming and display of states, joints, and HDSO elements could make some user 

interaction considerably more self-explanatory. Primarily this consists of completely and 

appropriately setting the “name” and “fullname” XML attributes on SCCILS joints, 

states, sensors, HDSOs, etc. Many SCCILS elements also contain a “description” 

element, in which description of element function and help for the user can be placed for 

display at runtime. 

9.5.2.3  Move From HDSO ID to HDSO Name in GUI and SCCILS 

The use of HDSO ID numbers to specify data in the configuration files and UI does 

make the engine and translator programming easier, but it introduces an extra layer of 

obfuscation for the user. Moving towards a primarily name-based SCCILS 

implementation requires more string processing but would substantially improve user 

clarity. In the NeuRoMod engine this would require an additional HDSO_get_byname 

function (at least) in the parsing code, in addition to the changes necessary in the HDSO 

and jointlist DTDs. 

9.5.2.4  Improved GUI File Handling and Editing 

Look at my notes and requests in conversations with John Bender. Basically, it doesn’t 

quite work, and it would be nice if it did. It would take some work, but it might be 

worthwhile to also reduce the current duplication of SCCILS translator-type functions, 

which are implemented both in the engine and in the Python translator, in two different 

languages, by two different people. 



 218 

9.5.2.5  Integrated and Live Data 

Better display of data, and better handling of data logging command would be a big 

plus. Live data traces that redrew nicely would be very good, implementation of doing 

this by a specification of data rate feeding rather than polling would be great. 

Incorporation of SCCILStoolbox plot elements into the UI could be helpful. 

9.5.2.6  Higher-Level Control Parameters 

The ability to configure higher-level control variables might be good. A relatively easy 

example would be an HDSO parameter (with associated GUI slider) for “speed”, which 

would set specified changes in a set of muscle activation parameters as it slid. This could 

be done using the data in Figure 7-11, for example. 

 

9.6 Theoretic Understanding and Development of SCASM 

9.6.1 Formal mathematical definition of SCASM 

One of the most useful tools for theoretical understanding, development, and 

comparison of SCASM to other systems will be a formal mathematical description. It is 

possible this will require two parts or stages; one for the mathematical description of 

system and signal connections (quite probably the event space diagram or some very 

similar representation), and another for the description of what precisely a module may 

consist of, and how it may switch between actions. It is possible that a considerable 

amount of use could be gotten out of the first stage only. It is my feeling that the first 

stage at least should not be particularly difficult or involved for somebody who is 

moderately proficient with mathematical descriptions of connection graphs and trees. 



 219 

An alternative and possibly more quickly fruitful method for formal definition of 

SCASM would be to derive such definition from the SCCILS XML language definition. 

In order to make this complete and correct, it would be necessary to include true XML 

schema in the language definition, to implement limitations which cannot be expressed in 

the DTD language but are mentioned in the comments of the DTDs or in the descriptions 

in Chapter 4. 

9.6.2 Mapping of SCASM to understood/previous control 

representations. 

There is a very substantial body of work in the formal description and analysis of 

discrete-event and hybrid systems. Even if it turns out that SCASM systems cannot 

always be mapped to some alternate method of description such as Petri nets ("Petri 

nets," http://www.petrinets.info), it is likely that limited mapping or mapping of a 

constrained SCASM system would still be useful in analyzing and predicting system 

behavior. 

If it does turn out that SCASM systems can be fully represented using some already-

existing tools, this is likely to be a good thing for helping both biological modeling and 

engineering synthesis. It seems likely, however, that some of the representational and 

synthesis tools presented here would still prove useful, both for ease of mapping to 

biological systems and for straightforwardness of controller synthesis. If such systems 

were already clearly presented and well understood, it is hard to understand why they 

would not be in much broader use for this purpose at this time. It would still be 

worthwhile to spend some effort looking for them, however. 



 220 

9.6.3 Description of abstract system types in which SCASM can be used 

A broad suggestion is given in the conclusion: “any multi-dimensional control system 

that needs to go through a coordinated set of states in concert with the environment”. This 

would be done implicitly in any formal description, however it would be useful to more 

thoroughly describe systems and system types which can and cannot be described by or 

implemented as SCASM. With sufficiently open restrictions on what an action may do, 

of course, it may be possible to represent any dynamic system “as SCASM”, if one 

includes the degenerate single-module case and the even more degenerate single-action 

case. There will be limits regarding to what extent this will be instructive or useful, 

however. 

9.6.4 Further Methods for Generating Modules and Coupling Influences 

for Desired Behaviors 

This is already partly done in the synthesis description of section 4.4.1, however there 

are a number of limitations and design trade-offs that are not formally addressed. Formal 

description of the full system including mechanics as a hybrid dynamic system might 

allow more explicit accounting for mechanical coupling between modules, for instance. 

9.6.5 Methods for generating Modules and Potential Couplings for a 

Desired Range of Behaviors 

This is not exactly the same as above. Whereas that is a per-behavior generation and 

related to a specific event-space diagram such as Figure 4-4, this one would be more like 

generating all locally necessary nervous pathways; not just those active in a particular 

behavior. This is to some degree the information contained in a sensory-flow diagram 

such as that in Figure 4-2.  



 221 

9.6.6 Stability Analysis 

The formal analysis of stability here may be quite difficult; however it may be possible 

to represent modules, SCASM systems, and hierarchical SCASM systems in such a way 

that previously developed methods for analyzing hybrid systems would apply. A good 

deal can be done with the implicit testing of stability involved in interactively developing 

robot controllers. There are a number of applications for which this is not sufficient, 

however. 

9.6.7 Implementability of Hierarchical Sensory Coupled Action 

Switching Modules 

Possibly, just try it and see what the problems are. Including “A SCASM system” 

recursively in the formal definition of what a module may consist of would take care of 

this from a theoretical standpoint, but might be a particularly tricky problem. 

9.7 SCCILS Generalization 

Although those of us working on this have made the argument that SCASM can be 

useful in the description and design of a fairly broad range of systems, the current 

SCCILS language has a number of things that limit it. Firstly, there are limitations related 

to hardware-specific assumptions and elements; primarily these are in the aimotor and 

sensor elements. Secondly, there are limitations related to the assumed description of a 

leg actuated by simulated muscles. Generalizing the description of modules and actuators 

should certainly be doable. Note that NeuRoMod need not necessarily implement more 

general control in order for this to be useful; a more general SCCILS definition might be 

useful just to allow easier use of the SCCILStoolbox data handling and representation 

functions by a broader range of systems. 



 222 

9.8 Use of SCASM in Other Systems 

Formalization of SCASM and generalization of SCCILS have use in their own right. In 

my opinion, however, it could be very useful and instructive, as discussed below, to 

actually apply these to other systems. To some extent this is already being done. Broader 

application in biorobotics could include swimming and flight as well; one place to look 

for possible applications is anywhere anybody has tried to use centrally coupled 

oscillators. 

9.8.1 What’s Been Done So Far 

Of course there was the original simulation done by (Ekeberg, et al., 2004), and the 

autonomous two-leg test platform of (Lewinger, et al., 2006), shown in Figure 9-4. 

Lewinger has also applied SCASM to the control of a small autonomous hexapod 

(Lewinger & Quinn, 2009), and is currently working on an 18.1:1 scale stick insect 

hexapod (pers. comm.). Also, Brian Taylor is making the first attempts at applying 

SCASM to a non-leg control problem; (Taylor, Rutter, & Quinn, 2009) work on plume 

tracking.  



 223 

 

Figure 9-4 Left: a version of Marcus Blümel’s stick insect simulation. Right: Bill Lewinger’s two-leg 

test platform.  Both from (Rutter, et al., 2006). 

9.8.2 Make it Easy 

One of the problems with SCASM, and it appears more generally with “smart” motion 

control, is that somebody who is building a robot often has a very strong desire (or, at 

least as often, outside pressure) to just get the bloody thing to move. It is very common 

for potentially highly capable robots to therefore have some “simple puppet-mode” 

position control applied for this reason. The problem with this is that implementing 

puppet mode position control is rather a lot of work in itself, particularly for systems with 

many degrees of freedom. Then, once the robot is moving more or less in a way that 

looks reasonable, the temptation is high to hand-tune the puppet files to produce a more 

functional behavior under some limitations. THIS TAKES A LOT OF WORK AND 

ATTENTION, WHICH SHOULD NOT BE IGNORED OR UNDERESTIMATED. If 

this effort were applied to implementing or applying a more intelligent motion control 

method, of which SCASM is an example, it is likely that very substantially better results 

would be obtained in the end. 



 224 

Why is this not done? “Milestones” is one answer, but the real or perceived complexity 

or implementation difficulty of smarter motion control is a big part of it as well. Often, 

such things require or greatly benefit from another person working on the project; in the 

graduate lab setting this is unfortunately often unaffordable, undesired, or unreliable. 

It might therefore be a very substantial contribution to produce a set of representations, 

code snippets, and programs that were well-known and understandable enough that more 

people would skip the very limited puppet-control stage of development. There was no 

such stage in the development of the models presented here, and as far as I can tell it 

would have been substantially a waste of time and resources. 

9.8.3 Implement SCASM with Artificial Muscles 

A lot of muscle modeling is moved to hardware in this case; controller code becomes 

even more lightweight. Finishing/improving Michael Cohen’s cockroach leg model (2006 

senior project in the Case biorobotics lab) and implementing SCASM on it would be 

pretty neat. At least for locomotion behavior, this also has the possibility of doing away 

with a lot of the position-control difficulties we have had with braided pneumatic actuator 

robots. You want to put muscle-like actuators to good use? SCASM represents one of the 

ways it is actually and successfully done. 

9.8.4 SCASM for Higher-Level or Synthetic Behaviors 

Higher-level cyclic behaviors executed in interaction with the environment might also 

benefit from the use of SCASM. As mentioned above, this is already being done for odor 

tracking. One could even represent behaviors such as driving on a road that has stop signs 

and stop lights as a SCASM system, though in order for this to be useful it is probably 



 225 

necessary to be able to break the behavior’s high-level “virtual actuators” into control by 

more than one module. An intermediate-level behavior that occurs to me here is skiing a 

slalom course; one might break this down into three modules; one controlling body twist, 

another controlling the amount of crouch and ski roll, and the third controlling arm 

position. Candidates for important sensory events here include ground contact force 

thresholds, contact of the forearm with a flag, and the next flag passing a threshold 

bearing in the visual field. This is actually a pretty physically complicated behavior, but it 

could be fun to really try applying a SCASM description to it.  

SCASM might also be applied to synthetic behaviors such as pick-and-place. In this 

example the selection of proper sensors and sensory events is critical. Once that is done, 

this might be a good way to generate fast, lightweight and reliable control for a number 

of industrial robot applications. 



 226 

10 Appendices 

10.1 NeuRoMod Engine Code Documentation 



 227 

 

 

 

 

 

 

 

Romod Engine Code Overview 
 

 

 

 

 

 

 

 

 

 

 

 

 

Brandon Rutter 

1/4/10 12:44 AM 



 228 

Table of Contents 
 
Romod Engine Documentation ....................................................................................................................229!

Introduction ..............................................................................................................................................229!

Related Projects ........................................................................................................................................229!

Engine Module: Enginemod.c ..................................................................................................................229!

Engine Initializer: Engineprog.c...............................................................................................................230!

Engine Command Line Interface: Enginecli.c .........................................................................................230!

Data Logger and Monitor: Monitor.c .......................................................................................................230!

Script Handling Module: Scriptmod.c......................................................................................................230!

Todo List ......................................................................................................................................................230!

Bug List ........................................................................................................................................................234!

Data Structure Index.....................................................................................................................................234!

File Index......................................................................................................................................................235!

Data Structure Documentation .....................................................................................................................236!

aimotor......................................................................................................................................................236!

cdata_msg_struct ......................................................................................................................................237!

command_msg_struct...............................................................................................................................237!

contr_joint.................................................................................................................................................238!

contr_state.................................................................................................................................................239!

fdata_msg_struct.......................................................................................................................................239!

HDSO .......................................................................................................................................................240!

info_msg_struct ........................................................................................................................................240!

muscle.......................................................................................................................................................241!

senseorgan ................................................................................................................................................242!

sensor........................................................................................................................................................242!

File Documentation ......................................................................................................................................243!

enginemod.c..............................................................................................................................................243!

engineprog.c .............................................................................................................................................248!

Code Overview.........................................................................................................................................249!

legdef.h .....................................................................................................................................................251!

monitor.c...................................................................................................................................................253!

scriptmod.c ...............................................................................................................................................254!

 



 229 

 

NeuRoMod Engine Documentation 
 

Print-Edited Introduction 

This document, other than this paragraph, is a subset of the Doxygen-generated documentation 

for the NeuRoMod engine collection of programs and libraries. Most serious users will find the 

complete HTML version of this documentation much more useful; it has been maintained as part 

of the doc-romod section of the consolation code repository: 

svn://consolation.cwru.edu/releg/doc-romod/trunk/engine/html . What is included here is the 

main introduction page, full Todo and bug lists, and full indexes of data structures and files. Only 

the brief data structure documentation is included; there is further detailed documentation 

available for many of the struct elements. Brief documentation for a few example files is also 

included. It should be noted that a great deal of the actual function of these programs is contained 

in the library functions defined in the other files; particularly utility, userio, HDSO, HDSOio, 

parsebool, boolio, and the HDSO Boolean parsing files. Including the detailed documentation for 

all of these files brings this document up to 180 pages, which is just killing too many trees given 

that it is available in digital browseable HTML form. 

What follows is not beautiful; I am not a Doxygen wiz, and there are a number of poorly 

formatted or incorrectly tagged items. It should serve, however, to give a faster basic introduction 

to what exists in the code than the code itself. 

Introduction 

This set of pages attempts to document the "engine" portion of the "romod" project, an 

implementation of SCASM control for robots and robotic models. The "engine" means the 

underlying code which directly controls the robot, as described in the SCILLS system description. 

There are a lot of source files here, not all of which will make sense at first, if at all. I will attempt 

to provide a basic description of the main and mostly interesting programs here, however. Of note 

is that these programs and threads communicate with one another both through shared memory 

and real-time FIFO. In general, the shared memory has to be initialized in a sane matter from user 

space before starting the realtime module which depends on said shared memory to operate. 

Related Projects 

 

• Romod/SCASM analysis toolbox  

• SCCILS (Actual link is available on that page; direct linking somehow doesn't work).  

• Python SCCILS GUI  

 

Engine Module: Enginemod.c 

enginemod.c is the most basic set of realtime functionality for running a SCASM robot, 

consisting of several threads which handle state transitions, activation and muscle modeling, and 



 230 

low-level motor commands. The modularity of these threads should be made better- really we 

should be able to do any of these things from a completely different module, and it isn't currently 

well suported. 

Engine Initializer: Engineprog.c 

engineprog.c is where the initialization mentioned above happens for enginemod.c. In fact, this 

program is used both to initialize and load the module, as well as to unload it. 

Engine Command Line Interface: Enginecli.c 

It isn't much of an interface, but enginecli.c is a command line tool for running the robot as-is, or 

running an HDSOscript. It also handles some of the log file post-processing. 

Data Logger and Monitor: Monitor.c 

monitor.c is a user-space program that handles tempoarary logging of the data streams coming in 

on the RT-FIFOs; needs to be started at a VERY high priority (usually nice -19 or so) by whoever 

wants it to do logging. Enginecli starts and stops monitor, for instance. 

Script Handling Module: Scriptmod.c 

scriptmod.c handles timed changes to HDSO data stored in shared memory, via hdsoscript-styled 

entries. It doesn't have to be an actual script; it can just be one-by-one changes as long as script 

handling is enabled.  

 

Todo List 
 Global aimotor::offset   

specify maximum offset, or maximum offset for each speed, for safety  

 Global cdata_msg_struct::data [20]  

re-kluged pending translator parsing fix [MAXDATAELTS];  

 Global contr_joint::basestate   

change this so it doesn't require a particular state order  

 Global fdata_msg_struct::data [20]  

re-kluged pending translator parsing fix [MAXDATAELTS];  

 Global muscle::lo   

put better geometry stuff here, as in "actuators" for llc  

make it 3D resting length of active section.  

 Global sensor::correct_overflow   

Make a specification of the input sources, instead of doing that all in code. flag indicating whether to 

do overflow correction  

 Global FIFO_ENUM   

Actually modify monitor et al. so this works!  

 Global main   

figure out which of the following actually needs to be shared/kept  

make workingdirname an absolute path; more portable?  



 231 

 File enginecli.c   

check for failure of system calls to other programs 

 

 File enginecli.c   

reduce code duplication between this and datalogging.c 

 

 Global main   

figure out which of the following actually needs to be shared/kept  

make workingdirname an absolute path; more portable?  

 Global main   

format this better, and get the year/century to show up properly  

 Global init_module   

make this depend on the defines and initializers in control.h  

 Global motor_action   

THE CONTROL LOOP DELAY WILL VARY WITH NUMBER OF MOTORS. The comm delay is 

long enough this is probably insignificant, but really it should be fixed.  

 Global motor_action   

merge this with clock_gettime below  

 Global motor_action   

update the following to report robot_dead or something under normal runtime environment  

 Global motor_conversion   

unify the signal flow to be input->processing->overflow comp->assignment  

 Global motor_conversion   

put bounds checking here!  

 Global muscle_conversion   

only do this if the joint is in muscle mode!  

 Global state_transition   

make this configurable on-the-fly  

 File engineprog.c   

update this for new structure  

 Global main   

move this initializer to a DEFINE somewhere  

make this so that it restores the serial port charactaristics on unload  

(in a perfect world) make it so we can actually have non-rt serial devices as well  

 Global main   

make this so it will work on a system with any number of serial ports  

 Global main   

make this as clean as the other file parsing  

 Global main   

put this somewhere else?  

 Global main   

fix this horrible kluge for cockroach leg!!  

 Global hdso_get   

make HDSO_INVALID_IDNUM also set errno,or return -EINVAL, but that would need to be caught 

by all the callers!  



 232 

 Global hdso_write_bool   

Make a name-based fancy output function 

 

 Global hdso_parse_bool   

make the self-reference checking deeper  

 Global hdso_init_data   

also get this to use HDSOmods in a document?  

 Global hdso_parse_datafield   

weed out unnecessary booleans below  

 Global hdso_parse_datafield   

Do something more intelligent with retval here  

 Global hdso_parse_datafield   

make the following handle both numerical and string char data  

 Global hdso_write_datafield   

update hdso_parse_datafield, and make this work more intelligently with it. 

 

 Global StrToDataType   

make this actually use the enum type properly  

 Global main   

make there be a way to quit monitor in 'i' mode - now done with datalogging program?  

 Global main   

some error checking here, and for hdsolog  

 Global rt_write_bool   

update this description  

 Global command_handler   

decide whether to also flush the HDSO data fifo when logging is stopped.  

 Global HDSOserver_code   

change this behavior, ignoring engine running (requres a reworking of time tracking) and dumping 

requests if HDSOserver is not enabled. (?)  

 Global HDSOserver_code   

double-check the following line?  

 Global HDSOserver_code   

make hdso_GetDataSize faster; initialize a static data size member of the hdso struct  

 Global init_module   

have hdso_maxdatasize automatically handled and updated when inserting new HDSOs  

 Global script_handler   

put the "if enabled" crap here, or determine if this todo is stale  

 Global script_handler_code   

handle kill-type signals during clock_nanosleep above, rather than doing this second check on 

script_enable  

 Global script_handler_code   

somehow indicate whether an error occurred, and what actually happened (which is what is recorded 

on these FIFOS) is NOT what was desired.  

 Global getinteger   

Say who Robert is.  



 233 

 Global InvParseScriptXML   

put the DTD information in a DEFINE in hdso(io).h  

 Global InvParseScriptXML   

maybe set this to "DataScript" instead?  

 Global InvParseScriptXML   

make the description more specific; i.e. different between ScriptLog and HDSOlog ?  

 Global InvParseScriptXML   

instead of having this here, make an "hdso_printdata" function; start with the relevant section of 

hdso_print_general  

 Global ParseJointFile   

Add more contextual information to the debug error messages.  

 Global ParseJointFile   

actually put the senseory organs in (do we care?)  

 Global ParseJoints   

Add more contextual information to the debug error messages.  

 Global ParseJoints   

better bounds/input checking?  

 Global ParseJoints   

check to make sure the start state is actually one of the contained states  

 Global ParseMuscles   

make this so it doesn't require a specific order for the usages, and provides default null muscle model 

behavior  

 Global ParseScriptXML   

make this warning work for xml-translated abstract types  

 Global ParseSensOrgans   

Add overflow checking for string arguments!!  

 Global ParseStates   

clean up the repeated retcodes!  

 Global ParseStates   

the indexing here?  

 Global ParseStates   

handle more than one HDSO parameter?  

 Global ParseStates   

check to see that these correspond to either sensors or params here defined  

 Global ParseStates   

roll this proccessing into the standard initialization functions  

 Global ParseStates   

put the following in a function?  

 Global ParseStates   

figure out why the heck the following lines cause "double free or corruption" errors  

 Global PrintJoints   

better-ify sense organ handling (?) 

 

 Global PrintJoints   

fix the misnomer? also prints aimotors  



 234 

 Global PrintStates   

print more names & values, fewer indices  

 Global safeOpenWrite   

update this description  

 Global StrToActFcnType   

make this actually use the enum type properly  

 Global StrToFcnType   

make this actually use the enum type properly  

 Global StrToSensorType   

make this actually use the enum type properly  

 Global ToUpper   

Make this behave properly for strings shorter than length.  

 Global const_activation   

investigate wether all these lookups are too slow?  

 Global generic_function   

document this  

 Global generic_function   

set errno instead;  

 Global linear_activation   

switch this to using RTValuePTR?  

 Global rt_memcpy   

fix or remove StateToBool  

 Global RADFACT   

make this dependent on compile environment  

 

Bug List 
 Global state_transition   

allow the following to handle other than two muscles per joint  

 Global HDSOserver_code   

?maybe a bug? In the following usage, it is possible that the data written to HDSO_DATA_FIFO and 

HDSO_DATA2_FIFO would differ, even though the timestamps provided to those FIFOS are the 

same. Putting the data in a temporary holding place may be more strictly correct, but would also take 

more processing time.  

 Global getinteger   

The code for this sscanf line says still buggy, but I don't know what the bug is.  

 

Data Structure Index 

Data Structures 
Here are the data structures with brief descriptions: 

aimotor (Struct for describing a aimotor servo motor ) .................................................................236 

cdata_msg_struct (Struct for carrying char data from a task via FIFO ) ....................................237 



 235 

command_msg_struct (Struct for carrying command information via FIFO ) ...........................237 

contr_joint (Struct for joint control ) ...............................................................................................238 

contr_state (Struct for describing control state transitions and activations ) ..............................239 

fdata_msg_struct (Struct for carrying float data from a task via FIFO ) .....................................239 

HDSO  ..................................................................................................................................................240 

info_msg_struct (Struct for carrying info on task operation via FIFO ) ......................................240 

muscle (Struct for containing muscle data, incl. muscle model & geometry ) ..............................241 

senseorgan (Struct for describing a "Biological" sense organ ) .....................................................242 

sensor (Struct for describing & carrying data for a sensory singal ) ............................................242 

 

 

File Index 

File List 
Here is a list of all files with brief descriptions: 

aimotor.c  ................................................................................................................................................... 

aimotor.h  .................................................................................................................................................. 

boolio.c (Input/output functions for the parsebool boolian library ) ................................................... 

boolio.h (Header file for boolio boolean IO library, to complement the parsebool library ) ............ 

booltest.c  ................................................................................................................................................... 

control.h (Header file defining inter-process control and data flow ) ................................................. 

datalogging.c (Command line interface for starting and stopping the monitor.c data logging 

program ) ................................................................................................................................................... 

enginecli.c (Command line interface for running a robot via engineprog and enginecli ) ................ 

enginemod.c (Kernel-space realtime module for basic SASM robot control ) .............................243 

engineprog.c (User-space program for loading/unloading configuration files and the enginemod 

realtime kernel module ) ....................................................................................................................248 

fifotest.c  ..................................................................................................................................................... 

hdso.c (Library functions for dealing with HDSO data representation ) ........................................... 

hdso.h (Header file for HDSO data representation library ) ............................................................... 

hdso_boolio.c (HDSO boolean IO parsing library ) .............................................................................. 

hdso_boolio.h (Header file for HDSO boolean IO parsing library ) ................................................... 

hdso_parsebool.c  ...................................................................................................................................... 

hdso_parsebool.h (Header file for HDSO boolean parsing library ) ................................................... 

hdsoio.c (Library functions for dealing with HDSO data IO ) ............................................................. 

hdsoio.h (Header file for HDSO data representation library parsing and printing functions ) ....... 

hdsotest.c  .................................................................................................................................................. 

invparsetest.c (Just a short program, based on datalogging.c, for testing the "inverse parser" 

translating FIFO stream data to XML hdsoscripts ) ............................................................................ 

legdef.h  ................................................................................................................................................251 

monitor.c (Monitors/logs data and information from realtime processes ) ..................................253 

motorforce.c  ............................................................................................................................................. 

motorpos.c  ................................................................................................................................................ 

parsebool.c (Library for evaluating specially represented Boolean strings ) ..................................... 



 236 

parsebool.h (Header file for parsebool boolean parsing library ) ........................................................ 

rt_boolio.c (Input/output functions for the parsebool boolian library; RT context version ) ........... 

rt_boolio.h (Header file for boolio boolean IO library, to complement the parsebool library. This 

version is for output in rt-context ) ......................................................................................................... 

scriptmod.c  .........................................................................................................................................254 

userio.c (Useful IO functions for user space file and terminal IO ) ..................................................... 

userio.h (Header for useful IO functions for user space file and terminal IO ) ................................. 

utility.c  ...................................................................................................................................................... 

utility.h (Header for a collection of utility functions and defines ) ...................................................... 

 

 

Data Structure Documentation 

aimotor Struct Reference 

Struct for describing a aimotor servo motor.  

#include <aimotor.h> 

Data Fields 

• int idNum 

idNum for xml/UI use  

• volatile unsigned char enable 

1 (enable) or 0 (disable) force control/data collection  

• unsigned char id 

motor id, 0-30  

• unsigned char mode 

position or "force" control  

• char dir 

1 (positive posn.=flexed) or -1 (" = extended)  

• volatile unsigned char speed 

speed of motor position command, 0-4  

• volatile char offset 

• volatile unsigned char commandpos 

commanded position (0-254)  

• unsigned char old_commandpos 

for keeping track of current dir  

• unsigned char position 

latest position data  

• unsigned char old_position 

for keeping track of velocity  

• float velocity 

filtered velocity data  

• unsigned char cur 

latest current data (unsigned)  



 237 

• float filtcur 

filtered, directionalized current  

• float calibration [2] 

angle calibration; raw = [0] + [1]*angle_in_degrees  

• int numsensors 

number of associated sensors  

• int sensorIDs [AIMOTOR_MAX_SENSORS] 

HDSO/sensor ids of associated sensors.  

• int sensorindices [AIMOTOR_MAX_SENSORS] 

associated indices into the sensor array  

• int sensorTypes [AIMOTOR_MAX_SENSORS] 

type of sensory data to be set  

 

Detailed Description 

Struct for describing a aimotor servo motor.  

This includes current state, mode, and communication info  

Definition at line 41 of file aimotor.h. 

 

cdata_msg_struct Struct Reference 

Struct for carrying char data from a task via FIFO.  

#include <control.h> 

Data Fields 

• hrtime_t timestamp 

timestamp usually represents when the data was gathered, in nanoseconds  

• int task 

task is one of the defined integer task id's, e.g. AD_TASK  

• unsigned char data [20] 

data is an array of char data, the meaning of which is usually implicitly defined by the task it 

comes from.  

 

Detailed Description 

Struct for carrying char data from a task via FIFO.  

The data message struct is used for packaging data, usually for the purpose of logging to a user-

space program which would write the data to a log file  

Definition at line 222 of file control.h. 

 

command_msg_struct Struct Reference 

Struct for carrying command information via FIFO.  



 238 

#include <control.h> 

Data Fields 

• int command 

command is one of the defined integer messages, e.g. START_TASK  

• int values [5] 

The contents of "values" are parsed according to what "command" is.  

 

Detailed Description 

Struct for carrying command information via FIFO.  

The command message struct is used for packaging command information for sending commands 

from one place to another (only for sending commands to LLCmodule tasks).  

Definition at line 162 of file control.h. 

 

contr_joint Struct Reference 

Struct for joint control.  

#include <legdef.h> 

Data Fields 

• volatile char name [LEGDEF_NAMELENGTH] 

A char name for UI usefulness.  

• volatile int idNum 

• volatile unsigned char statetrans_enable 

enable state transition processing  

• volatile unsigned char activation_enable 

enable activation function processing  

• volatile unsigned char numstates 

Number of possible states for the joint.  

• volatile unsigned basestate 

• volatile int curstate 

Index into current joint state in state array (negative means invalid).  

• volatile unsigned char numsenseorg 

Number of sensory organs associated with this joint.  

• volatile unsigned senseorgans [10] 

Indices into sensory organ array.  

• volatile unsigned char nummuscles 

• volatile unsigned muscles [MAXMUSCLES] 

Indices into the muscle array.  

 

Detailed Description 

Struct for joint control.  



 239 

In practice most state and sensor data should be accessed via a joint, at least in the controller. 

nubmer stored in contr_jointnum; array stored in contr_joints;  

Definition at line 25 of file legdef.h. 

 

contr_state Struct Reference 

Struct for describing control state transitions and activations.  

#include <legdef.h> 

Data Fields 

• char name [LEGDEF_NAMELENGTH] 

• int idNum 

• hrtime_t starttime 

runtime variable for storing start time of the active state  

• int hdso_dwelltime 

• unsigned char nummuscles 

number of muscles (later we could combine muscle forces at a joint more flexibly)  

• volatile unsigned int muscles [MAXMUSCLES] 

Indices into the muscle array.  

• int activation [MAXMUSCLES] 

activation function which sets muscle activation levels for given muscle  

• unsigned char numasens [MAXMUSCLES] 

sensors needed for the activation functions  

• int hdsoasensors [MAXMUSCLES][10] 

• unsigned char numaparams [MAXMUSCLES] 

parameters for activation function  

• int hdsoaparams [MAXMUSCLES][10] 

• int transitionrule 

HDSO idNum of the boolstring transition rule.  

 

Detailed Description 

Struct for describing control state transitions and activations.  

The contr_state struct consists of essentially four things: 1) a name for the state 2) a pointer 

containing the function describing the transition to the state 3) a pointer containing the activation 

function for this state 4) the sensors needed for the transition/activaiton functions 

number stored in contr_statenum; array stored in contr_states  

Definition at line 105 of file legdef.h. 

 

fdata_msg_struct Struct Reference 

Struct for carrying float data from a task via FIFO.  

#include <control.h> 



 240 

Data Fields 

• hrtime_t timestamp 

timestamp usually represents when the data was gathered, in nanoseconds  

• int task 

task is one of the defined integer task id's, e.g. AD_TASK  

• float data [20] 

data is an array of float data, the meaning of which is usually implicitly defined by the task it 

comes from.  

 

Detailed Description 

Struct for carrying float data from a task via FIFO.  

The data message struct is used for packaging data, usually for the purpose of logging to a user-

space program which would write the data to a log file  

Definition at line 207 of file control.h. 

 

HDSO Struct Reference 
#include <hdso.h> 

Data Fields 

• unsigned int idNum 

• char name [HDSO_MAXNAMELEN] 

• unsigned char abstractType 

• char type 

• char xmltype 

• int numdims 

• int dimensions [HDSO_MAXDIMS] 

• size_t data 

offset of the data, relative to base of data storage block  

 

Detailed Description 

Definition at line 23 of file hdso.h. 

 

info_msg_struct Struct Reference 

Struct for carrying info on task operation via FIFO.  

#include <control.h> 

Data Fields 

• hrtime_t timestamp 

timestamp is usually that; system time in nanoseconds  

• int task 



 241 

task is one of the defined integer task id's, e.g. AD_TASK  

• int msg 

msg is an integer representing a status message, e.g. START_TASK, which in this case would 

usually be interpreted as "This task has started"  

 

Detailed Description 

Struct for carrying info on task operation via FIFO.  

The info message struct is used for packaging information for sending operation data, like a 

command receipt acknowledgement, from one task to another. 

The original usage intention was for just that, and that is the usage on info_fifo and debug_fifo, 

but info_msg_struct is used for a number of other things now, including: 

1) script_fifo & scriptlog_fifo; here, .timestamp is the time in ns since the start of the engine to 

implement the change, .task is the HDSO ID, and .msg is the number of bytes to be written. 

Following each such formatted info_msg_struct should be data equal to the number of bytes 

specified. In the case of scriptlog_fifo, the .timestamp and .msg indicate the actual time and 

number of bytes written. 

2) hdso_request_fifo & hdso_data_fifo are similar to script, though .timestamp is irrelevant in the 

hdso_request_fifo and .msg is the number of bytes to be read, which need not equal the entire 

data for that HDSO.  

Definition at line 191 of file control.h. 

 

muscle Struct Reference 

Struct for containing muscle data, incl. muscle model & geometry.  

#include <legdef.h> 

Data Fields 

• char name [LEGDEF_NAMELENGTH] 

• int idNum 

• float lo 

• float r 

insertion radius, defined s.t. force*r gives positive torqe for stance muscles  

• float alpha 

neutral angle, in degrees  

• int functype [NUM_MUSCLE_FUNCTIONS] 

generic-function-types for the various muscle model parameters  

• int hdsoID [NUM_MUSCLE_FUNCTIONS] 

the HDSO parameter IDs for each of the functions  

• float * rtparams [NUM_MUSCLE_FUNCTIONS] 

pointers to the actual data storage for use in RT-space. Necessary?  

• float fmax 

Type of passive stiffness model.  

• float current_force 



 242 

force currently being exerted by the muscle  

• float current_length 

current length of the muscle active section  

• float current_velocity 

current velocity of the muscle contraction  

• volatile float activation 

activation level for this muscle  

 

Detailed Description 

Struct for containing muscle data, incl. muscle model & geometry.  

The muscle structure contains data describing the muscle model used for the associated muscle, 

as well as (hopefully) the appropriate joint geometry.  

Definition at line 54 of file legdef.h. 

 

senseorgan Struct Reference 

Struct for describing a "Biological" sense organ.  

#include <legdef.h> 

Data Fields 

• char name [LEGDEF_NAMELENGTH] 

• int idNum 

• unsigned numsensors 

number of actual sensors that have something to do with this organ  

• unsigned sensors [10] 

array of indices into these sensory signals  

 

Detailed Description 

Struct for describing a "Biological" sense organ.  

The purpose of this struct is primarily to clarify the relationships between biological sense organs 

and the actual sensory signals used in the controller. 

number stored in sensorgannum; array in sensorgans  

Definition at line 147 of file legdef.h. 

 

sensor Struct Reference 

Struct for describing & carrying data for a sensory singal.  

#include <legdef.h> 

Data Fields 

• char name [LEGDEF_NAMELENGTH] 



 243 

• unsigned numorgans 

number of sense organs associated with this sensor  

• unsigned senseorgans [10] 

array of indices to the sense organs  

• volatile float * RTValuePtr 

RT-context-valid direct pointer to value. NOT FOR USER SPACE!  

• volatile int valueID 

ID of the HDSO actually storing the data, AND the ID identifier for THIS sensor;.  

• unsigned char correct_overflow 

• unsigned char overflow_initialized 

• unsigned char overflows 

• int oldinput 

• int input 

• int limits [2] 

limits of input data for overflow correction [low high]  

 

Detailed Description 

Struct for describing & carrying data for a sensory singal.  

This struct carries data for a sensory signal, and describes which sensory organs it has something 

to do with. 

number stored in sensornum; array in sensors  

Definition at line 164 of file legdef.h. 

 

File Documentation 

enginemod.c File Reference 

Kernel-space realtime module for basic SASM robot control.  

#include <linux/errno.h> 
#include <rtl.h> 
#include <time.h> 
#include <rt_math.h> 
#include <rtl_sched.h> 
#include <rtl_fifo.h> 
#include <mbuff.h> 
#include <asm/io.h> 
#include <rtl_debug.h> 
#include <rtlinux/rt_com.h> 
#include "legdef.h" 
#include "control.h" 
#include "aimotor.h" 
#include "utility.h" 
#include "hdso.h" 

 



 244 

Include dependency graph for enginemod.c: 

 
 

Defines 

• #define ENGINEMOD_TASKNO  4 

• #define DEBUG  2 

Functions 

• float actfunctions (int, sensor *, contr_state *, contr_joint *, HDSO *, unsigned int, void *) 

• void * motor_action (void *arg) 

• void * motor_conversion (void *arg) 

• void * muscle_conversion (void *arg) 

• void * state_transition (void *arg) 

• int my_handler (unsigned int fifo) 

• int init_module (void) 

• void cleanup_module (void) 

Variables 

• pthread_t tasks [ENGINEMOD_TASKNO] 

• int tasks_enable [ENGINEMOD_TASKNO] 

• int conversions_waiting = 0 

• int muscle_waiting = 0 

• unsigned int * contr_jointnum 

• unsigned int * contr_statenum 

• unsigned int * sensorgannum 

• unsigned int * sensornum 

• unsigned int * musclenum 

• unsigned int * hdsonum 

• size_t * hdsodatasize 

• hrtime_t * enginestarttime 

• volatile char * cmode 

• volatile unsigned char * puppetdone 

• unsigned char * puppetnum 

• unsigned char * puppetjoints 

• int * puppetlines 

• hrtime_t * puppettimes 

• float * puppetdata 

• volatile int * motor_speed 

Pointer to the HDSO-enclosed motor speed variable.  

• volatile long long int * motor_control_delay_ns 

Pointer to the HDSO-enclosed motor control loop delay parameter.  



 245 

• volatile long long int * statetrans_period_ns 

Pointer to the HDSO-enclosed state transition loop period.  

• volatile aimotor * motors 

• volatile contr_joint * contr_joints 

• volatile contr_state * contr_states 

• volatile senseorgan * sensorgans 

• volatile sensor * sensors 

• volatile muscle * muscles 

• volatile HDSO * hdsos 

• volatile void * hdsodata 

 

Detailed Description 

Kernel-space realtime module for basic SASM robot control.  

Programmer: Brandon Rutter 

This module containes threads which run low-level servomotor controls as well as some for data 

processing and state transition control in a reflex-based leg controller. This is the realtime part of 

the "engine" for this reflex-based robot model of neuromechanical systems. 

The module assumes that rt_math.o is loaded, to provide rt-safe math library symbols. 

It is also supposed that certain shared memory values have already been set when init_modules is 

called. 

Threads are all initiated, enabled, disabled, and destroyed through commands sent from another 

process to the command FIFO. 

If DEBUG is set, additional data are (supposedly) sent from each thread to a data logging FIFO.  

Definition in file enginemod.c. 

 

Define Documentation 

#define DEBUG  2 

 

Definition at line 42 of file enginemod.c. 

#define ENGINEMOD_TASKNO  4 

 

Definition at line 22 of file enginemod.c. 

Referenced by motor_action(). 

 

Function Documentation 

float actfunctions (int,   sensor *,   contr_state *,   contr_joint *,   HDSO *,   unsigned int,   
void *) 

 

Referenced by state_transition(). 



 246 

Here is the caller graph for this function: 

 

void cleanup_module (void) 

 

Definition at line 1093 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

int init_module (void) 

 

Todo: 

make this depend on the defines and initializers in control.h  

Definition at line 872 of file enginemod.c. 

void* motor_action (void * arg) 

 

< I hate hard-coding this, but it crashes otherwise 

Todo: 

THE CONTROL LOOP DELAY WILL VARY WITH NUMBER OF MOTORS. The comm 

delay is long enough this is probably insignificant, but really it should be fixed.  

Todo: 

merge this with clock_gettime below  

Todo: 

update the following to report robot_dead or something under normal runtime environment  

Definition at line 100 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

void* motor_conversion (void * arg) 

 

Todo: 

unify the signal flow to be input->processing->overflow comp->assignment  

Todo: 

put bounds checking here!  

Definition at line 229 of file enginemod.c. 



 247 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

void* muscle_conversion (void * arg) 

This thread is another "conversion daemon" which converts muscle activations to motor 

commands, when kicked by the state transition/activation setting task.  

Todo: 

only do this if the joint is in muscle mode!  

Definition at line 432 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

int my_handler (unsigned int fifo) 

 

Definition at line 719 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

void* state_transition (void * arg) 

This thread keeps track of the state transitions for each joint, then sets the corresponding 

muscle activations. Should be a periodic thread.  

set to execute periodically Todo: 

make this configurable on-the-fly  

todo consolidate gethrtime calls; 

todo error checking here? 

Bug: 

allow the following to handle other than two muscles per joint  

Definition at line 578 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 
 



 248 

engineprog.c File Reference 
User-space program for loading/unloading configuration files and the enginemod realtime kernel 
module.  
#include <linux/errno.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <unistd.h> 
#include <ctype.h> 
#include <string.h> 
#include <rtl.h> 
#include <rtl_time.h> 
#include <rtl_fifo.h> 
#include <mbuff.h> 
#include "control.h" 
#include "userio.h" 
#include "utility.h" 
#include "aimotor.h" 
#include "legdef.h" 
#include "boolio.h" 
 
Include dependency graph for engineprog.c: 

 
 

Defines 
• #define LOAD  1 
• #define UNLOAD  2 
• #define DEBUG  2 

Functions 
• void usage (void) 

Prints basic usage/argument information.  
• void help (void) 

Just prints more detailed usage information.  
• int main (int argc, char **argv) 
 



 249 

Detailed Description 

User-space program for loading/unloading configuration files and the enginemod realtime kernel 

module.  

User-level engine program; primary usage is loading configuration files and initializing the RT 

portion of the engine, and the unloading of the RT engine when called with that argument. 

Returns zero for no errors, number of errors for non-fatal errors, or a negative number if a fatal 

error occurred. 

Usage: ./engineprog [V*|Q*]L [config files] or ./engineprog [V*|Q*]U or enter "./engineprog 

help" for more info. 

Code Overview 

The main function goes approximately like this: Convert input to all upper case for easier 

processing. Set verbosity, call help and exit if appropriate Set load or unload action. 

If load: set the serial uarts ttys0 and ttys1 to "none" to allow rt_com to load start rtlinux Verify 

that the configuration files are present and parseable, read in data sizes. If a file can't be opened; 

set fatal error number and exit. allocate mbuff size variables for shared config/parameter storage 

initialize mbuff size variables using data from config files allocate shared config/parameter 

storage based on data now in size variables Do additional inital parsing of HDSOlists 

(parameters.xml and sensors.xml) determine size of HDSO storage block using HDSO size data. 

Allocate and initialize the HDSO data storage from the HDSOlist files. Verify that global HDSO 

engine parameters exist and are sensible. Parse the joints file, finishing the population of 

configuration data. Depending on verbosity, print out various levels of now-loaded config data: 

verbosity > 1 : print joint, muscle, state, and sensor configuration verbosity > 2 : also print all 

parameter and sensor HDSOs with data. Insert enginemod.o report probable success detach from 

shared memory 

If unload: call "rtlinux stop enginemod" 

then return the "errors" variable 

!"#"$%

update this for new structure  

 

Definition in file engineprog.c. 

 

Define Documentation 

#define DEBUG  2 

 

Definition at line 91 of file engineprog.c. 

#define LOAD  1 

 

Definition at line 88 of file engineprog.c. 

Referenced by main(), motor_conversion(), and ParseJoints(). 



 250 

#define UNLOAD  2 

 

Definition at line 89 of file engineprog.c. 

Referenced by main(). 

 

Function Documentation 

void help (void) 

Just prints more detailed usage information.  

 

Definition at line 727 of file engineprog.c. 

Referenced by main(). 

Here is the caller graph for this function: 

 

int main (int argc,   char ** argv) 

 

Todo: 

move this initializer to a DEFINE somewhere  

make this so that it restores the serial port charactaristics on unload  

(in a perfect world) make it so we can actually have non-rt serial devices as well  

<number of joints 

<number of joint states 

<number "biological" sense organs 

<number of sensory signals 

<number of virtual/real muscles 

<number of HDSO parameters 

<size of HDSO parameter data storage (in bytes) 

<number of total HDSOs (parameters+sensors) 

<size of cumulative HDSO data storage 

<size of HDSO sensor data storage in bytes 

Todo: 

make this so it will work on a system with any number of serial ports  

Todo: 

make this as clean as the other file parsing  

Todo: 

put this somewhere else?  

Todo: 

fix this horrible kluge for cockroach leg!!  



 251 

Definition at line 93 of file engineprog.c. 

void usage (void) 

Prints basic usage/argument information.  

 

 

legdef.h File Reference 

 

This graph shows which files directly or indirectly include this file: 

 
 

Data Structures 

• struct contr_joint 

Struct for joint control.  

• struct muscle 

Struct for containing muscle data, incl. muscle model & geometry.  

• struct contr_state 

Struct for describing control state transitions and activations.  

• struct senseorgan 

Struct for describing a "Biological" sense organ.  

• struct sensor 

Struct for describing & carrying data for a sensory singal.  

Defines 

• #define LEGDEF_NAMELENGTH  128 

• #define MAXMUSCLES  4 

• #define NUM_MUSCLE_FUNCTIONS  3 

• #define MUSCLE_FUNCTION_NAME_INITIALIZER  

[NUM_MUSCLE_FUNCTIONS][MAXNAMELEN]={"passive_stiffness", "force-length", "force-

velocity"} 



 252 

Enumerations 

• enum MUSCLE_FUNCTION_ENUM { PASSIVE_STIFFNESS = 0, FORCE_LENGTH, 

FORCE_VELOCITY } 

function uses and enumerations for muscle models  

 

Detailed Description 

This file should contain the structure definitions and function prototypes necessary for the 

definition of reflex-controlled legs in a biology- friendly manner.  

Definition in file legdef.h. 

 

Define Documentation 

#define LEGDEF_NAMELENGTH  128 

 

Definition at line 10 of file legdef.h. 

Referenced by ParseJoints(), ParseMuscles(), ParseSensOrgans(), ParseSensors(), ParseSensorsOld(), 

and ParseStates(). 

#define MAXMUSCLES  4 

 

Definition at line 11 of file legdef.h. 

Referenced by ParseStates(). 

#define MUSCLE_FUNCTION_NAME_INITIALIZER  
[NUM_MUSCLE_FUNCTIONS][MAXNAMELEN]={"passive_stiffness", "force-length", 
"force-velocity"} 

 

Definition at line 16 of file legdef.h. 

#define NUM_MUSCLE_FUNCTIONS  3 

 

Definition at line 15 of file legdef.h. 

Referenced by ParseMuscles(). 

 

Enumeration Type Documentation 

enum MUSCLE_FUNCTION_ENUM 

function uses and enumerations for muscle models  

 

Enumerator:  

PASSIVE_STIFFNESS   



 253 

FORCE_LENGTH   

FORCE_VELOCITY   

 

Definition at line 14 of file legdef.h. 

 

 

monitor.c File Reference 

Monitors/logs data and information from realtime processes.  

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <rtl_fifo.h> 
#include <mbuff.h> 
#include "control.h" 

 

Include dependency graph for monitor.c: 

 
 

Defines 

• #define DEBUG  1 

Functions 

• int main (int argc, char **argv) 

 

Detailed Description 

Monitors/logs data and information from realtime processes.  

A program to monitor (to screen) and log (to files) data from rt processes, while a seaparate 

program may provide user interaction.  

Definition in file monitor.c. 



 254 

 

Define Documentation 

#define DEBUG  1 

 

Definition at line 20 of file monitor.c. 

 

Function Documentation 

int main (int argc,   char ** argv) 

 

Todo: 

make there be a way to quit monitor in 'i' mode - now done with datalogging program?  

Todo: 

some error checking here, and for hdsolog  

Definition at line 22 of file monitor.c. 

 

 

scriptmod.c File Reference 
#include <linux/errno.h> 
#include <rtl.h> 
#include <time.h> 
#include <rt_math.h> 
#include <rtl_sched.h> 
#include <rtl_fifo.h> 
#include <mbuff.h> 
#include <rtl_debug.h> 
#include "control.h" 
#include "utility.h" 
#include "hdso.h" 

 

Include dependency graph for scriptmod.c: 



 255 

 
 

Defines 

• #define DEBUG  1 

Functions 

• void cleanup_module (void) 

• int command_handler (unsigned int fifo) 

FIFO handler for script_command FIFO.  

• int script_handler (unsigned int fifo) 

• void * script_handler_code (void *arg) 

• int HDSOrequest_handler (unsigned int fifo) 

• void * HDSOserver_code (void *arg) 

• int init_module (void) 

Variables 

• pthread_t script_task 

• pthread_t HDSOserver_task 

• int script_enable 

• int HDSOserver_enable 

• int HDSOserver_done 

• unsigned int * hdsonum 

number of HDSO parameters/sensors/etc.  

• unsigned int * hdsodatasize 

size of cumulative HDSO data storage, in bytes  

• size_t * hdso_maxdatasize 

maximum size of data "in" any single HDSO  

• volatile hrtime_t * enginestarttime 

time of engine start, for scripting and other purposes  

• volatile unsigned char * scriptdone 

• volatile HDSO * hdsos 

• volatile void * hdsodata 



 256 

• volatile char * scriptmod_status 

• void * scriptdata 

• void * hdso_reqdata 

 

Detailed Description 

This module modifies the data in an HDSO data store at specified times, relative to a shared 

memory start time. Mostly intended for scripting purposes. 

It is supposed that certain shared memory values (number of HDSO entries and size of data store) 

have already been set when init_module is called. 

The rt_math module needs to be loaded in order for this to run correctly; needed for some of the 

hrtime_t mathematics.  

Definition in file scriptmod.c. 

 

Define Documentation 

#define DEBUG  1 

 

Definition at line 34 of file scriptmod.c. 

 

Function Documentation 

void cleanup_module (void) 

free all allocated resources  

Definition at line 1093 of file enginemod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

int command_handler (unsigned int fifo) 

FIFO handler for script_command FIFO.  

Currently just takes commands to enable or disable script handling. Sending LOG_DATA or 

STOP_LOGGING to this task turn the HDSO data server on or off, respectively. Later 

implementations may use command message parameters to actually turn some true logging 

on or off as well.  

Todo: 

decide whether to also flush the HDSO data fifo when logging is stopped.  

Definition at line 71 of file scriptmod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 



 257 

 

int HDSOrequest_handler (unsigned int fifo) 

yup, this is pretty lame. Done this way just so we can give this task a priority  

Definition at line 322 of file scriptmod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

void* HDSOserver_code (void * arg) 

This takes info_msg_structs formatted similarly to those for the script handler, interpreting 

them as requests for data rather than instructions on what to modify. .timestamp is irrelevant, 

.task is the HDSO ID, and .msg is the number of bytes to be read (i.e. written to 

HDSO_DATA_FIFO).  

Todo: 

change this behavior, ignoring engine running (requres a reworking of time tracking) and dumping 

requests if HDSOserver is not enabled. (?)  

Todo: 

double-check the following line?  

Todo: 

make hdso_GetDataSize faster; initialize a static data size member of the hdso struct  

Bug: 

?maybe a bug? In the following usage, it is possible that the data written to HDSO_DATA_FIFO 

and HDSO_DATA2_FIFO would differ, even though the timestamps provided to those FIFOS are 

the same. Putting the data in a temporary holding place may be more strictly correct, but would 

also take more processing time.  

Definition at line 342 of file scriptmod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

int init_module (void) 

 

Todo: 

have hdso_maxdatasize automatically handled and updated when inserting new HDSOs  

Definition at line 510 of file scriptmod.c. 

int script_handler (unsigned int fifo) 

yup, this is pretty lame. Done this way just so we can give the scripting a priority  



 258 

Todo: 

put the "if enabled" crap here, or determine if this todo is stale  

Definition at line 157 of file scriptmod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 

void* script_handler_code (void * arg) 

This takes info_msg_structs and uses them to modify data in the "hdsos" HDSO data store. in 

the struct, .timestamp is the time in ns since the start of the engine to implement the change, 

.task is the HDSO ID, and .msg is the number of bytes to be written. Following each such 

formatted info_msg_struct should be data equal to the number of bytes specified.  

Todo: 

handle kill-type signals during clock_nanosleep above, rather than doing this second check on 

script_enable  

Todo: 

somehow indicate whether an error occurred, and what actually happened (which is what is 

recorded on these FIFOS) is NOT what was desired.  

Definition at line 179 of file scriptmod.c. 

Referenced by init_module(). 

Here is the caller graph for this function: 

 
 

 



 259 

10.2 SCCILS 0.1



 260 

The SCASM Command and 

Configuration Interface Language 

Specification 

version 0.1 

 

BRANDON LEWIS RUTTER  

in Collaboration With 

John Bender and Marcus Blümel 

 
Department of Mechanical and Aerospace Engineering 

CASE WESTERN RESERVE UNIVERSITY 

 

January 2010 



 261 

Table of Contents 

1! INTRODUCTION ...............................................................................................................................262!

1.1! THE STRUCTURE OF A SCCILS-CAPABLE SYSTEM..........................................................................264!

1.2! THE CONFIGURATION/DATA TYPE SUBLANGUAGE ........................................................................266!

1.3! THE COMMAND SUBLANGUAGE .....................................................................................................269!

2! XML DTDS ..........................................................................................................................................270!

2.1! SCCILS_JOINT : THE JOINTLIST DTD ...............................................................................................270!

2.2! HDSO...............................................................................................................................................276!

2.3! HDSOSCRIPT ....................................................................................................................................277!

2.4! SCCILS_COMMANDSCRIPT...............................................................................................................278!

3! EXAMPLE CONFIGURATIONS .....................................................................................................283!

3.1! LIN_STICKMIDDLE_MINIMAL ..........................................................................................................283!

3.1.1! joints.......................................................................................................................................283!

3.1.2! parameters .............................................................................................................................287!

3.1.3! sensors....................................................................................................................................292!

3.2! LIN_ROACH .....................................................................................................................................293!

3.2.1! joints.......................................................................................................................................293!

3.2.2! parameters .............................................................................................................................300!

3.2.3! sensors....................................................................................................................................309!

4! EXAMPLE SCRIPT............................................................................................................................312!

 

 



 262 

1 Introduction 

The SCASM Command and Configuration Interface Language Specification (SCCILS) 

is an XML specification that formally defines a language for defining and controlling 

SCASM-controlled systems. It is definitely still in development and pre-alpha in terms of 

maturity, but it is used in the NeuRoMod control suite. 

Although those of us working on this have made the argument that SCASM can be 

useful in the description and design of a fairly broad range of systems, the current 

SCCILS language has a number of things that limit it. Firstly, there are limitations related 

to hardware-specific assumptions and elements; primarily these are in the aimotor and 

sensor elements. Secondly, there are limitations related to the assumed description of a 

leg actuated by simulated muscles. Generalizing the description of modules and actuators 

should certainly be doable. Note that NeuRoMod need not necessarily implement more 

general control in order for this to be useful; a more general SCCILS definition might be 

useful just to allow easier use of the SCCILStoolbox data handling and representation 

functions by a broader range of systems. 

The SCASM representation has a number of parameters that can act as “ports” for 

changing the system. SCCILS makes use of these ports by developing an explicit 

representation language for their specification and modification. Making a system’s 

representation as explicit as possible can be a useful exercise in itself, but SCCILS was 

first developed with the following benefits of a unified/general formal representation of 

SCASM systems in mind: 



 263 

a. One set of tools can be developed for operating and configuring SCASM 

systems, and the representation and interpretation of their data. 

b. Unified tools for operating a model might allow: 

i. Use of the same user interface for multiple models (each with 

specific benefits and weaknesses), or use of multiple interfaces 

(each with a specific purpose). 

ii. representational and experimental portability.  one might run the 

exact same experiment on multiple systems, each of which might 

present specific advantages for modeling and development. 

SCCILS was developed to fulfill these benefits, and become an integral part of the 

development of NeuRoMod and its data representation tools. The idea of using one 

interface to operate different models was present from the very beginning of the work, 

from the first meeting between Brandon Rutter and Marcus Blümel discussing using the 

controller from (Ekeberg et al. 2004), previously used in simulation, in a robot. Initial 

brainstorming for the actual implementation of SCCILS was done by Brandon Rutter, 

Marcus Blümel and Arndt von Twickel in Cologne in June-July of 2006; they wanted to 

be able to control multiple models without rewriting the user interface. Furthermore, they 

wanted to be able to run exactly the same experiment in multiple models with minimal 

fuss.  



 264 

1.1 The structure of a SCCILS-capable system 

 

Figure 1-1 The basic layout of a system using SCCILS. “Engine” is “The model”- robot & dynamic 

control software, or simulation.  Once configured the engine can operate by itself. An “interface” is 

something that sends configuration & command information, and may or may not actually be a user 

interface. 

The structure of a system using SCCILS online has two basic elements that 

communicate using SCCILS, the “interface” and the “engine”, as shown in Figure 1-1. 

The engine is the entity directly controlling the plant. This could for example be the 

physical robot and control software, or a computational simulation. SCCILS is used for 

configuration and control of the engine, and contains methods for data handling as well. 

An interface-less engine might still use SCCILS for configuration and experiment 

scripting. 

The interface is something that sends these configuration and control commands, and 

might want data in return. It could be a graphical user interface (GUI) as done in 

NeuRoMod, or a higher-level control program, or even a program that could run 

optimizations or higher-level experiments.  

The translator is an element that takes in the SCCILS XML commands and translates 

them into the native representation of the engine used directly in control. It is possible 

that a program implementing an engine might also contain translator code, or they might 

be separate programs. 



 265 

The concepts of SCASM and SCCILS are not tied to implementation in legged 

systems, but since the NeuRoMod control code was originally developed for such 

systems before the development of SCCILS, there are still some portions of that code that 

have not been generalized, and assume implementation in legs. 

 

Figure 1-2 Romod_GUI representation of elements associated with the FTi Extension action. HDSO 

elements 129 and 130 are muscle activations; a part of the dynamics of this action, which may be 

modified online. 165 is the Boolean entry rule “Enter_FT_Extension”; its arguments are the IDs of 

the HDSOs shown below it. It says ((ThC1 load > FT_EXT_TC1_load) AND (FTi angle > 

FT_EXT_FTang)). The paramater HDSOs (106 & 107) below may be modified in order to change 

the strength/thresholds of those influences. Sensor HDSOs report robot state. Modificaiton of 

transition parameters or activation parameters can drastically affect system performance, but the 

entry rule is what determines the connections in the sensory flow and event space diagrams, and 

defines the nominal behavioral progression in the global state diagram. 

The NeuRoMod software contains a graphical user interface for SCCILS written by 

John Bender. This interface is capable of modifying any SCCILS-aware parameters in the 

engine it connects to, and it automatically arranges its layout based on the configuration 

of that engine. Examples of usage of this UI are given in the NurRoMod manual, and 



 266 

Figure 1-2 shows the representation of parameters associated with a particular action of 

the cockroach forward walking configuration described in the dissertation. 

1.2 The Configuration/Data Type Sublanguage 

The jointlist is the root element of a SCCILS model description file, and defines at least 

one leg as a chain of joints. This contains or references all the data needed to define the 

interface-engine communication in SCCILS for a particular model. A jointlist describes a 

SCASM system to the level of an “implementation-specific sensory flow diagram” as 

described in section 4.5 of Brandon Rutter’s dissertation, representing both the flow of 

sensory signals represented in an event-space diagram and the thresholds and action 

parameters necessary for a full specification. Numerous parameters may be modified 

online, but the available selection of modules, actions and sensors is constant during 

system operation. 

 

Figure 1-3 The contents of a SCCILS joint. The green elements are useful for user interfaces and 

data handling, but are not descriptors of the SCASM action switching module represented by the 

joint. 



 267 

 

Figure 1-4 Everything in a joint.  Yikes! 



 268 

 

During the initial development of the SCCILS concept, we discovered that much of the 

data we wanted to pass between the interface and the engine was in a similar form. 

Handy Data Structure Objects (HDSOs) are really for data storage, but there are a 

number of things within them for making modification & UI representation more easily. 

Anything represented as an HDSO can theoretically be modified online or changed as 

part of an experimental script, though the engine is not necessarily required to be able to 

implement all HDSO changes online. These modifications are accomplished using an 

HDSOscript, which is a timed list of HDSO data modifications. Most of the SCCILS 

commands are in the form of an HDSOscript. 

The full configuration of a SCASM system is currently specified by three XML files: 

the jointlist, a list of parameter HDSOs, and a list of sensor HDSOs. 

 

Figure 1-5 The Handy Data Storage Object; an N-dimensional data store with a set of identifiers and 

descriptors. 



 269 

1.3 The Command Sublanguage 

The SCCILS command sublanguage is a fairly simple set of elements: the 

sccils_command, sccils_command_response, and sccils_config_command. The 

sccils_command allows run, stop, data logging configuration, and extended commands. 

In order to be considered SCCILS-capable, an engine or interface must implement and 

respond properly to the run and stop commands, at the very least. A sccils_command may 

contain an HDSOscript for specification of HDSO data having to do with an extended 

command. The sccils_command_response is used for acknowledging both command and 

configuration messages, and reporting whether these messages were received and 

implemented successfully. 

The sccils_config_command is used to communicate which SCCILS configuration to 

use (if several are available to the engine), as well as to specify the configuration of the 

SCCILS XML communication itself, such as setting TCP port numbers for data 

streaming. 



 270 

2  XML DTDs 

The Document Type Definition files (DTDs) that define SCCILS are a part of the 

NeuRoMod Subversion repository. The four defining files are included here. Though 

writing a DTD is pretty easy to do if you have a clear idea what you want, it is not that 

easy to see the hierarchical structure of the data. In order to do this, we recommend using 

a program such as Oxygen to convert the DTD to a schema, and look at it graphically. 

Oxygen is also useful for syntax highlighting (as shown below), file creation and 

validation, and editing multiple XML files simultaneously. It or a similarly capable XML 

editor is highly recommended for configuration and script editing.  

There are also a number of restrictions or conventions that are a part of SCCILS but not 

explicitly enforced by the DTDs. These extra specifications are included in the comments 

of the DTDs, however, which are generally quite helpful in the description of elements of 

the specification. 

2.1 sccils_joint : the jointlist DTD 

<!--The scills_joint is a structure/data type which should contain 

or reference all the data needed to define the interface/engine  

communication in SCCILS (we hope!)--> 

 

<!--Also included in this file are engine-specific configuration elements. 

These are separately defined, so that they may be more easily moved to a 

separate, extending DTD, and the SCCILS definitions can then be self-contained 

and general --> 

 

<!-- sccils_joint uses hdsoMod data specifiers; include that DTD --> 

 

<!ENTITY % hdsoscript SYSTEM "hdsoscript.dtd"> 

%hdsoscript; 

 

<!-- Definitions specific to the romod engine; some of these might be 

appropriately incorporated in the SCCILS specification --> 

 

<!-- The joint also has sense organ descriptors and motor configuration data. 

     joint plotstyle refers to the style used to plot joint position, muscles are 

     those which originate proximally and insert distally to this joint, states are  



 271 

     those which specify control of those muscles, which in turn determine the actual 

     output of the (ai)motor here.  Geometry is described in it's own place.--> 

<!ELEMENT joint (description?, plotstyle?, muscle*, geometry, state*, sense_organ*, aimotor?)> 

 

<!-- Control for this joint starts in start_state, if defined.  Specified 

     as the state's idNum. start_state_idNum defaults to the (hopefully) invalid "-1", which 

     allows for a more reasonable treatment of "endpoint" joints.--> 

<!-- the control mode can be set to plain position or force control, as well 

     as muscle model control --> 

 

<!-- TODO make this and other idNum references actual ID (i.e. name) references 

--> 

 

<!ATTLIST joint 

    start_state_idNum CDATA "-1" 

    control_mode (position | force | muscle | none) "muscle" 

> 

 

<!-- The sense organ describes a biological sense organ, which may be 

associated with any number of real model sensors (or simulated/derived sensations) 

 

The sensors are described in a sensor HDSOlist; here specified as HDSOmods.  They should 

probably have empty data components, though one might imagine initialization being useful. 

--> 

 

<!ELEMENT sense_organ (description?, hdsoMod*)> 

 

<!ATTLIST sense_organ 

    name ID #REQUIRED 

    idNum CDATA #REQUIRED 

> 

 

<!ELEMENT aimotor (description?, sensorspec*, forceCommand?, positionCommand?)> 

 

<!-- dir: directionality of torque (and angle?) --> 

<!-- angle calibration: raw = angleCal1 + angleCal2*angle_in_degrees --> 

<!-- modelnum: model number of the motor; carries max torque info --> 

<!-- TODO convert "aimotor" to general "motor" description; move calibrations to  

the sensorspecs and generalize as a functionspec entry, change serialID to general 

IOAddrSpec of some sort --> 

<!-- positionCommand and forceCommand should act as 'sensors' in muscle control mode, but 

probably should be "parameter" abstract type since they will be commands in force or position 

control mode --> 

 

<!ATTLIST aimotor 

 name ID #REQUIRED 

 idNum CDATA #REQUIRED 

 serialID CDATA #REQUIRED 

 dir ( 1 | -1) #REQUIRED 

 angleCal1 CDATA #REQUIRED 

 angleCal2 CDATA #REQUIRED 

 modelnum CDATA #IMPLIED 

> 

 

 

<!-- Sensorspec is used to specify sensors with HDSO data storage; particularly those associated  



 272 

with data from a particular aimotor. The "type" is used to tell which motor data should be pushed 

to the HDSO indicated by the hdsomod (which should probably not have any initial data included).--> 

 

<!ELEMENT sensorspec (hdsoMod)> 

 

<!ATTLIST sensorspec 

        type (angle | velocity | load | other) #REQUIRED 

> 

 

<!ELEMENT forceCommand (hdsoMod)> 

 

<!ELEMENT positionCommand (hdsoMod)> 

 

<!-- ********************************************************************** 

********************************************************************** 

********************************************************************** 

Here is where the SCCILS general description starts --> 

 

<!ELEMENT jointlist (description?, joint*, (endpoint? | jointlist*))> 

<!-- A joint list should define, at least, a leg.  Perhaps an entire animal, 

possibly heirarchically.  Thus it might want a name --> 

<!-- TODO: does a jointlist want a parent attribute, or is it enough for only  

the joints to have this? --> 

 

<!ATTLIST jointlist 

    name ID #IMPLIED 

    fullname CDATA #IMPLIED 

> 

 

<!-- Each joint has a set of muscles, a geometry, and a set of possible 

muscle activation states. --> 

 

<!-- commented out here because We don't have modularity working 

<!ELEMENT joint (muscle*, geometry, state*)> 

--> 

 

<!-- parent contains the idNum of the parent joint (i.e., the connected joint 

     which is closer to the base frame).  0 if the parent is the base frame --> 

<!ATTLIST joint 

    name ID #REQUIRED 

    fullname CDATA #IMPLIED 

    idNum CDATA #REQUIRED 

    parent CDATA #REQUIRED 

> 

 

<!-- A "endpoint" is a special stateless, motorless joint; mostly provided for UI and 

data processing use. Note that it just contains a joint; however this joint should not 

have any muscles, states or motors--> 

 

<!ELEMENT endpoint (joint)> 

 

<!-- Each muscle activation state has a set of muscle activation rules/functions 

and a transition rule for entering this state --> 

 

<!ELEMENT state (description?, plotstyle?, dwell_time, muscle_activation*, transition_rule)> 

 



 273 

<!ATTLIST state 

    name ID #REQUIRED 

    idNum CDATA #REQUIRED 

    fullname CDATA #IMPLIED 

> 

 

<!-- The muscle activation can currently be nameless; it is presumed that it only 

has meaning withing the enclosing state, and each applies to only one muscle. 

The hdsoMods are specifiers for the sensors and parameters used in the activation 

function; number required depends on the activation function, and the order matters. 

--> 

 

<!ELEMENT muscle_activation (description?, hdsoMod*) > 

 

<!-- The activation function is currently just an index into the activation 

     functions defined in enginemod- I guess this belongs in the "extension" 

     part of this file somehow... --> 

<!-- Whether the following are required or not depends on what the 

     activation function is.  They are lists of idNums of sensor and 

     parameter HDSOs, respectively. --> 

 

<!ATTLIST muscle_activation 

    name CDATA #IMPLIED 

    muscle CDATA #REQUIRED 

    activation_function (constant | linear | bilinear) #REQUIRED 

    activation_sensors CDATA #IMPLIED 

    activation_parameters CDATA #IMPLIED 

> 

 

<!-- transition_rule is represented at runtime as an HDSO of abstract type  

    boolstring; however for the configuration file it is allowed to be a  

    string, for more user-friendly representation, and can be transformed  

    into the lower-level representation by the appropriate parsing function. 

    It is expected that in any case the "variables" in the string are idNums  

    for either parameters or sensors. 

 

    The final list of hdsoMods are (optional) initializers for any of the 

    HDSOs referenced in the boolean string.  If, in the process of parsing 

    the document, an HDSO is initialized more than once, the later entries 

    will overwrite previous ones, as is standard for hdsoMod entries. 

--> 

 

<!ELEMENT transition_rule (description?, hdsoMod+)> 

 

<!-- The representation_type attribute indicates whether this 

transition rule is represented as a textual string or an HDSO; the 

hdsoMod specifying the initial/default data; this then determines 

whether this data comes from the boolstring attribute or is in the initial 

hdsoMod, which must at any rate be there in order to specify the appropriate  

HDSO for runtime storage and communication.  It defaults to text -->  

 

<!ATTLIST transition_rule  

    representation_type (text | HDSO) "text" 

    boolstring CDATA #IMPLIED 

> 

 



 274 

<!-- The "muscle" describes a simply modeled muscle: current implementation  

     more or less assumes a very linear muscle with only one nervous response  

     characteristic. Also assumes that joint angle is available, I think; should 

     make this explicit. 

 

     The muscle force is calculated as: 

     passive_stiffness + activation * force-length * force-velocity * fmax 

      

     The muscle should really have three function_specs, with appropriate 

     function_use attributes: 

     "passive_stiffness" 

     "force-length" 

     "force-velocity" 

--> 

 

<!ELEMENT muscle (description?, function_spec*)> 

 

<!-- Lnaught: Resting length of active portion of the muscle --> 

<!-- r: insertion radius --> 

<!-- alpha: joint angle at which muscle is at its resting length,  

     in degrees --> 

<!-- fmax: maximum force muscle is capable of producing (undefined  

     units!) --> 

 

<!ATTLIST muscle 

    name ID #REQUIRED 

    fullname CDATA #IMPLIED 

    idNum CDATA #REQUIRED 

    Lnaught CDATA #REQUIRED  

    r CDATA #REQUIRED  

    alpha CDATA #REQUIRED  

    fmax CDATA #REQUIRED  

> 

 

<!-- function_spec specifies a "generic function", currently one of the options 

     given in the function_type attribute.  The hdsoMod entries both indicate the 

     function parameter HDSOs, and values with which to initialize them. 

     function types piecewise_linear and exponential are not yet implemented, but 

     should be at some point. 

  --> 

<!ELEMENT function_spec (hdsoMod*)> 

 

<!--function_type: constant: output = params[0];  

      linear: output = params[0]*arg + params[1]; 

         parabolic: params[0] = a, params[1] = xo, 

            output = (arg^2 - 2*arg*xo + xo^2 + 4*a*params[2]) / (4*a); 

         hyperbolic: output = (params[0]/(arg-params[1])) + params[2]; 

    --> 

<!-- function_use is used to tag the appropriate usage of the described  

     function within the enclosing model element --> 

<!ATTLIST function_spec 

    type (constant | linear | parabolic | hyperbolic | other) #REQUIRED 

    use CDATA #IMPLIED 

>  

 

<!-- The geometry element describes how this joint is related to the previous one 



 275 

     (using Denavit-Hartenberg parameters?) --> 

 

<!ELEMENT geometry (description?, amatrix?, DHline?)> 

<!-- Geometry should contain perhaps an amatrix and/or a DHline, with which to calculate the  

    position of the endpoint of the link starting at this joint.  A joint with an empty 

    geometry indicates the end of the kinematic chain, though that may serve as the parent 

    of another joint/jointlist--> 

 

<!ELEMENT amatrix (hdsoMod)> 

<!-- amatrix is an augmented 4x4 matrix, (poentially) indicating the translation and rotation of 

     the base of said joint with respect to the endpoint of the previous joint in the chain or, if the 

     joint's parent is "0", the body, with respect to the body coordinate system. --> 

      

<!ELEMENT DHline (hdsoMod)> 

<!-- DHline is a four-element vector consisting of the following:<br> 

         (1) the "a_i" Denavit-Hartenberg parameter; length of common normal 

             between axis z_(i-1) and z_i <br> 

         (2) the "d_i" parameter; distance between O_(i-1) and H_i (along 

             z_(i-1).  The variable in prismatic joints. <br> 

         (3) the "alpha_i" parameter; angle in RADIANS between axis i 

             (along z_(i-1)) and z_i  <br> 

         (4) a scaling factor, multiplied by the theta parameter to convert 

             it to radians.  <br> 

             TODO put this scaling factor somewhere else, fer cryin' out loud! 

-->     

 

<!-- a description is just that- a textual description of the enclosing element. Now inherited from hdsoscript-

-> 

<!-- <!ELEMENT description (#PCDATA)> --> 

 

<!-- <!ELEMENT charboolstring (#PCDATA)> --> 

 

<!ELEMENT dwell_time (hdsoMod)> 

 

<!--plotstyle allows for the specification of MATLAB-style line and color specifications. Later users 

should 

feel free to make this more flexible; for the moment "linespec" is a character line description; i.e. 'kx-' 

for a black solid line with x's at the data points, and "colorspec" is an (r,g,b) vector which is passed as 

the 'Color' plot attribute for the line only --> 

<!-- TODO HDSO-ify linespec and colorspec; probably requires better handling of "string" HDSO types --

> 

<!ELEMENT plotstyle EMPTY> 

 

<!ATTLIST plotstyle 

    linespec CDATA #IMPLIED 

    colorspec CDATA #IMPLIED 

 > 

 

<!-- the linespec hdsoMod should correspond to a character (i.e. string) HDSO with at least four elements --

> 

<!--<!ELEMENT  linespec (hdsoMod)> --> 

 

<!-- colorspec is a three-element (r, g, b) vector; should correnspond to an HDSO with float range 

from 0-1.  Used for display of state data, initially in path-state plots and leg movies --> 

<!--<!ELEMENT colorspec (hdsoMod)> --> 

 



 276 

2.2 hdso 

<!-- an hdsolist is a list of hdso entries. --> 

<!ELEMENT hdsolist (description?, hdso*)> 

<!-- An hdsolist can be tagged as a particular data set type, i.e. "parameterList" --> 

<!ATTLIST hdsolist 

    name CDATA #IMPLIED 

    fullname CDATA #IMPLIED 

    DataSetType CDATA #IMPLIED 

> 

 

<!-- all actual HDSOs should have a non-negative idNum; negative idNums may be 

     specified in, say, an HDSOmod, with at least the following special meanings: 

         -1 : all HDSOs in the data store; HDSO_ALL_IDNUM 

         -2 : no HDSOs ; HDSO_NONE_IDNUM 

         -3 : id for an initialized but unused HDSO; HDSO_BLANK_IDNUM 

         -4 : explicitly invalid; ideally should throw an error somewhere; HDSO_INVALID_IDNUM 

--> 

<!-- an hdso has a bunch of attributes and contains numdims dimsize elements --> 

<!-- fullname is a longer name for better user friendliness--> 

<!-- The abstractType describes what kind of thing is in the HDSO.  A parameter 

     is expected to be a constant unless modified by the user.  A sensor is 

     expected to change "on its own", and only be "looked up" by the user, though 

     one might imagine exceptions to this expectation.  It is intended that 

     support be added for making "virtual" sensors, whose values are calculated 

     from other sensors upon accessing the HDSO; this is not yet implemented. 

     Both parameters and sensors may be tensors of any size, of any underlying  

     data type. 

 

     The boolstring abstract type is a special type consisting of a 2xn matrix 

     of integers.  The first row of the matrix contains a map of which entries 

     in the second row are boolean operators, represented as a 1 for an operator, 

     0 for a variable, -1 for "null string" i.e., the boolean string stops 

     there.  The second row contains this boolean string, with 

     operators being represented by an enumerated type consisting of the 

     possible boolean operators, and variables 

     containing the idNum of an HDSO; most likely a parameter or sensor! 

--> 

<!-- overflowCorrection indicates whether range overflow should 

     be detected and/or corrected; e.g. for sensors; 0=no, 1=yes,  

     other values may be differently interpreted--> 

 

<!ELEMENT hdso (description?, (dimsize, range*)*, initial_data?)> 

<!ATTLIST hdso 

    idNum CDATA #REQUIRED 

    name ID #REQUIRED 

    fullname CDATA #IMPLIED  

    abstractType CDATA #IMPLIED 

    units CDATA #IMPLIED 

    datatype (float | double | int | lint | llint | char | uchar) "float" 

    xmltype (float | double | int | lint | llint | char | uchar) "float" 

    numdims CDATA #REQUIRED 

    overflowCorrection CDATA "0" 

> 

 



 277 

<!-- The dimsize element has an attribute telling which dimension it 

     specifies the size of, and the element should just be an integer. 

     Currently the dimension sizes need to be listed in order (?) --> 

<!ELEMENT dimsize (#PCDATA)> 

<!ATTLIST dimsize 

    dimNr CDATA #REQUIRED 

> 

 

<!-- A range defines both the range and quantization of an HDSO variable. 

    Datatype will limit valid quantization arguments; this must be checked 

    by the program using validating the data content if this behavior is 

    important.  At present there is no convention on what a tensor range  

    or quantization means, but there is also no rule against declaring them. 

    lack of range or quantization elements implies that the range is unlimited 

    or the variable is continuous, respectively. 

--> 

<!ELEMENT range (bound*, quantum?)> 

<!ATTLIST range 

    type (suggested | valid | normal | invalid) #REQUIRED 

> 

 

<!ELEMENT bound (#PCDATA)> 

<!ATTLIST bound 

    type (upper | lower) #REQUIRED 

> 

 

<!ELEMENT quantum (#PCDATA)> 

 

<!-- the optional data initializer; a list of elements ordered appropriately 

for the dimsizes  

 

TODO Make this an hdsoMod (?)--> 

<!ELEMENT initial_data (#PCDATA)> 

 

<!ELEMENT description (#PCDATA)> 

2.3 hdsoscript 

<!-- The hdsoscript is a list of modifications to the data portion  

     of an HDSO.  It can optionally be tagged with a script type attribute. --> 

<!ELEMENT hdsoscript (description?, (hdsoMod* | hdsoSpec*)*)> 

<!ATTLIST hdsoscript 

    name CDATA #IMPLIED 

    fullname CDATA #IMPLIED 

    ScriptType CDATA #IMPLIED 

> 

<!-- The hdsoMod would ideally allow the rewrite of specific elements in 

     the HDSO data tensor.  Right now, though, it just writes from the 

     beginning, specifying the data type and number of elements.  The 

     interpretation program then parses the PCDATA element appropriately. 

     idNum specifies the appropriate HDSO to modify.  Perhaps do this with 

     the actual HDSO name later? - beginning support of this; "idByName" indicates 

     whether to do assignment by name instead of idNum.  if "y", idNum could be set 

     to HDSO_INVALID_IDNUM or some such--> 

<!ELEMENT hdsoMod (#PCDATA)> 



 278 

<!-- note that "time" is time in seconds since start of experiment--> 

<!ATTLIST hdsoMod 

    idNum CDATA #REQUIRED 

    name CDATA #IMPLIED 

    idByName (y | n) "n" 

    NumElts CDATA #REQUIRED 

    datatype (float | double | int | lint | llint | char | uchar) "float" 

    time CDATA "0" 

> 

 

<!-- hsdoSpec is essentially an hdsoMod with no enclosed data; its intended use is 

     for requesting, or specifying, an HDSO, or elements thereof.  At the moment  

     it only specifies number of elements requested starting at the beginning, as in 

     an hdsoMod. Datatype is an inherent property of the HDSO, and is not necessary for 

     calculating data size here, so is omitted.  No, it isn't.  Why is it here?--> 

      

<!ELEMENT  hdsoSpec EMPTY> 

 

<!ATTLIST hdsoSpec 

    idNum CDATA #REQUIRED 

    name CDATA #IMPLIED 

    idByName (y | n) "n" 

    NumElts CDATA "0" 

    time CDATA "0" 

    datatype (float | double | int | lint | llint | char | uchar) "float" 

> 

 

<!ELEMENT description (#PCDATA)> 

2.4 sccils_commandscript 

<!-- The sccils_commandscript is a list of SCCILS model commands.  It is possible 

     and even likely that the command and command_response elements will be used outside 

     of a commandscript.  There is currently no required order to the commands and command  

     responses.  It can optionally be tagged with a ScriptType. --> 

<!ELEMENT sccils_commandscript (sccils_command*, 

                                sccils_command_response*, 

                                sccils_command_config*)*> 

<!ATTLIST sccils_commandscript 

    ScriptType CDATA #IMPLIED 

> 

 

<!-- sccils_command uses hdsoscripts; include that DTD --> 

 

<!ENTITY % hdsoscript SYSTEM "hdsoscript.dtd"> 

%hdsoscript; 

 

<!-- The sccils_command contains a required command type attribute, a number of 

     attributes whose meaning may vary with command type, a possible list of HDSOs 

     to which to apply the command, and possible further 

     character data for use in execution of the command. --> 

 

<!ELEMENT sccils_command (hdsoscript?) (#PCDATA)> 

 

 



 279 

<!ATTLIST sccils_command 

    commandtype (run | stop | log | stoplog | extended) #REQUIRED 

    extendedcommand CDATA #IMPLIED 

    starttime CDATA "0" 

    stoptime CDATA "-1" 

    data_destination (local | network) "network" 

> 

 

<!-- commandtype: one of the four standard SCCILS commands (described below), or  

         an engine-specific extended command. 

     extendedcommand: name of the extended command, if appropriate 

     starttime: for "run", a delay to wait until starting the engine., for "log", the time 

         since engine start at which to start data logging. 

     stoptime: for "run" and "log" commands, time at which to stop engine or logging, with 

         respect to engine start time.  Not used for "stop" or "stoplog" 

             TODO: should this be changed?  do we want to be able to do a delayed stop 

                   at the user's request?  just do this with "run" and "log" maybe? 

     data_destination: where to log the data; locally at the engine, or via the SCCILS 

         network HDSO data service to the interface. 

--> 

 

<!-- The sccils_command_response is intended as just that; a response to a specific  

     sccils_command.  It contains said sccils_command, possibly modified, and optional 

     character data. 

--> 

 

<!ELEMENT sccils_command_response (sccils_command) (#PCDATA)> 

 

<!ATTLIST sccils_command_response 

    responsetype (ack_only | withdata) "ack_only" 

    responsestatus (success | fail | conditional | other) #REQUIRED 

    responsetime CDATA #IMPLIED 

> 

 

<!-- responsetype: ack_only means this is only and acknowledgement of the success or 

         failure of the enclosed, unmodified sccils_command.  withdata implies that  

         either the encolsed command has somehow been modified, or the response PCDATA 

         has something of interest.  Defaults to ack_only 

     responsestatus: status of the execution of sccils_command; "conditional" means that 

         success or failure depends on whether this response is processed successfully. 

         The response status must always be specified. 

     responsetime: optional time for when the response was made/sccils_command was acted upon 

--> 

 

<!ELEMENT sccils_config_command (sccils_config_parameter)* (#PCDATA)> 

<!ATTLIST sccils_config_command 

    configtype (available | start | parameter) #REQUIRED 

    configname CDATA #REQUIRED 

> 

 

<!ELEMENT sccils_config_parameter (#PCDATA)> 

 

<!-- sccils_config_command is used for a server to communicate what 

     types of simulations it is capable of running, then for a client 

     to request one of those, then for the server to pass additional 

     configuration information (PCDATA) related to the request. 



 280 

     Also used to pass other parameters in response to requests. 

--> 

 

<!-- example commands --> 

 

<!-- Just run the engine: 

 

<sccils_command commandtype="run" /> 

 

This will tell the engine to run at time 0 (now, no delay) with no stop time (since the stop time 

is negative and therefore invalid).   

 

 

Run the engine in ten seconds, for ten seconds, and then stop: 

<sccils_command commandtype="run" starttime="10" stoptime="10" /> 

 

--> 

 

 

<!-- Stop the engine; just stops the engine immediately.  Similar for stoplog. 

 

<sccils_command commandtype="stop" /> 

 

--> 

 

<!-- Start the network HDSO data logging service immediately: 

 

<sccils_command commandtype="log" /> 

 

--> 

 

<!-- A more complex experimental run.  Start the engine in ten seconds, and run it for ten.  Start 

     logging data locally after 2.5 seconds of engine run time, and stop after having logged for five  

     seconds, at 7.5 seconds of engine run time. 

 

<sccils_commandscript ScriptType="Example"> 

  <sccils_command commandtype="run" starttime="10" stoptime="10" /> 

  <sccils_command commandtype="log" starttime="2.5" stoptime="7.5" data_destination="local" /> 

</sccils_commandscript> 

 

--> 

 

 

<!-- 

here's an example of a series of communications between server and client to 

set up a new connection, configure, and start the engine, then poll for data 

 

[client connects to server, they handshake] 

 

[server gives list of available configurations] 

    <sccils_commandscript> 

        <sccils_config_command configtype="available" configname="null_roach"/> 

        <sccils_config_command configtype="available" configname="lin_roach"/> 

    </sccils_commandscript> 

[client acknowledges] 

    <sccils_commandscript> 



 281 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[after user input, client chooses a confguration] 

    <sccils_commandscript> 

        <sccils_config_command configtype="start" configname="lin_roach"/> 

    </sccils_commandscript> 

[server acknowledges receipt, but is agnostic about success] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="conditional"/> 

    </sccils_commandscript> 

 

[server begins its configuration, sends config-specific info to client] 

    <sccils_commandscript> 

        <sccils_config_command configtype="parameter" configname="lin_roach"> 

            <sccils_config_parameter>joints.xml</sccils_config_parameter> 

            <sccils_config_parameter>sensors.xml</sccils_config_parameter> 

        </sccils_config_command> 

    </sccils_commandscript> 

[client acknowledges] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[now server sends the complete XML scripts specified ('joints.xml' 

 and 'sensors.xml') to the client; client acknowledges successful 

 receipt of each] 

 

[server does internal configuration, sends success or failure] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[client decides to start the recently configured engine] 

    <sccils_commandscript> 

        <sccils_command commandtype="run"/> 

    </sccils_commandscript> 

[server begins running, sends success or failure] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[client changes a configuration parameter and sends a script to modify it] 

    <hdsoscript> 

        <hdsoMod time="0" idNum="13" NumElts="1" datatype="float"> 

            3.0 

        </hdsoMod> 

    </hdsoscript> 

[server acknowledges script receipt, but is agnostic about success] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="conditional"/> 

    </sccils_commandscript> 

 

[server runs script and sends success] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 



 282 

    </sccils_commandscript> 

 

[client requests a polling data stream (a new TCP/IP connection)] 

    <sccils_commandscript> 

        <sccils_command commandtype="log" extendedcommand="pollingmode"/> 

    </sccils_commandscript> 

[server acknowledges] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[server sends configuration information for data stream -- a port number] 

    <sccils_commandscript> 

        <sccils_config_command configtype="parameter" configname="dataport"> 

            <sccils_config_parameter>44106</sccils_config_parameter> 

        </sccils_config_command> 

    </sccils_commandscript> 

[client acknowledges] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[server and client run new threads for data streaming; they handshake] 

 

[client thread polls server thread for a data update on a single HDSO] 

    <sccils_commandscript> 

        <sccils_command commandtype="log" extendedcommand="poll"> 

            <hdsoscript> 

                <hdsoMod time="0" idNum="13" NumElts="1" datatype="float"> 

                    3.0 <!-- data is ignored, but must be present for parsing -> 

                </hdsoMod> 

            </hdsoscript> 

        </sccils_command> 

    </sccils_commandscript> 

[server thread acknowledges] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

 

[server thread retrieves values for the identified HDSOs, sends them back] 

    <hdsoscript> 

        <hdsoMod time="0" idNum="13" NumElts="1" datatype="float"> 

            2.5 

        </hdsoMod> 

    </hdsoscript> 

[client thread acknowledges] 

    <sccils_commandscript> 

        <sccils_command_response responsestatus="success"/> 

    </sccils_commandscript> 

--> 

 

 



 283 

3 Example Configurations 

3.1 lin_stickmiddle_minimal 

This is a configuration which implements the minimal SCASM stepper in the stick 

insect robot model. It reduces that 3-DOF robot to a 2-DOF system by configuring 

muscles and a single state to hold the FTi joint essentially fixed.  

3.1.1 joints 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE jointlist SYSTEM "/usr/local/src/romod_dtds/sccils_joint.dtd"> 

<!--<!DOCTYPE jointlist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/sccils_joint.dtd"> --> 

 

<jointlist name="lin_minimal_stick" fullname="stick insect middle leg, minimal SCASM example"> 

  <description>This is a minimal two-joint SCASM controller, implemented on the stick insect 

  robot model; FT parameters are all there just because we physically need to hold the FT joint 

  out for this to work.</description> 

 

  <joint name="Thorax-Coxa" idNum="1" parent="0" start_state_idNum="201"> 

    <muscle name="Coxa_Remotor" idNum="401" Lnaught="2" r="-.5" alpha="0" fmax="18"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-length"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Coxa_Promotor" idNum="402" Lnaught="2" r=".5" alpha="0" fmax="15"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-length"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <description>This A-matrix orients the z axis (joint axis) properly for the ThC joint on the right 

        middle leg; in a body reference frame where positive x is forward with y pointing to the left. 

        First rotation about Z Thetaz = -85 degrees, second rotation about YThetay = 40 degrees.   

        Note that this currently has this joint located at the body  

        (0,0,0); should figure out what the standard is for body zero-point and offset from there</description> 

      <amatrix> 

        <hdsoMod idNum="180" NumElts="16" datatype="float"> 



 284 

          0.066765172417751   0.996194698091746   0.056022631551222       0 

          -0.763129412737770   0.087155742747658  -0.640341608768797      0 

          -0.642787609686539                   0   0.766044443118978      0 

          0                                    0                   0      1 

        </hdsoMod> 

      </amatrix> 

      <DHline> 

        <!-- These DHlines are in centimeters --> 

        <hdsoMod idNum="181" NumElts="4"> 

          <!-- 2.26 0 (90/180)*pi pi/180 --> 

          2.26   0   1.570796326794897   0.017453292519943 

        </hdsoMod> 

      </DHline> 

       

    </geometry> 

    <state name="TC_protraction" idNum="201"> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="401" activation_function="constant" activation_parameters="121"> 

        <hdsoMod idNum="121" NumElts="1" time="0">0</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="402" activation_function="constant" activation_parameters="122"> 

        <hdsoMod idNum="122" NumElts="1" time="0">0.6</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="304 &lt; 101"> 

        <hdsoMod idNum="161" NumElts="0"/> 

        <hdsoMod idNum="101" NumElts="1">-0.5</hdsoMod> 

      </transition_rule> 

    </state> 

    <state name="TC_retraction" idNum="202"> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="401" activation_function="constant" activation_parameters="123"> 

        <hdsoMod idNum="123" NumElts="1">1.6</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="402" activation_function="constant" activation_parameters="124"> 

        <hdsoMod idNum="124" NumElts="1" time="0">0.1</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="304 &gt; 102"> 

        <hdsoMod idNum="162" NumElts="0"/> 

        <hdsoMod idNum="102" NumElts="1">0.0</hdsoMod> 

      </transition_rule> 

    </state> 

    <sense_organ name="TC_sense_organ" idNum="501"> 

      <description>The TC sense organ is involved in sensing the angle of the Thorax-Coxa joint. 

        Maybe just limits?</description> 

      <hdsoMod idNum="301" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Thorax-Coxa_motor" idNum="601" serialID="10" dir="-1" angleCal1="120" 

      angleCal2="-1.529" modelnum="701"/> 

  </joint> 

  <joint name="Coxa-Trochanter" idNum="2" parent="1" start_state_idNum="203"> 

    <muscle name="Femur_Depressor" idNum="403" Lnaught="2" r="-1" alpha="0" fmax="12"> 

      <function_spec type="constant" use="passive_stiffness"> 



 285 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-length"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Femur_Levator" idNum="404" Lnaught="2" r="1" alpha="0" fmax="15"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-length"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <DHline> 

        <hdsoMod idNum="182" NumElts="4"> 

          <!--   19.28 0 pi pi/180 --> 

          19.28   0   3.141592653589793   0.017453292519943 

        </hdsoMod> 

      </DHline> 

    </geometry> 

    <state name="CTr_Levation" idNum="203"> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="403" activation_function="constant" activation_parameters="125"> 

        <hdsoMod idNum="125" NumElts="1">0</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="404" activation_function="constant" activation_parameters="126"> 

        <hdsoMod idNum="126" NumElts="1">0.5</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="301 &lt; 104"> 

        <hdsoMod idNum="163" NumElts="0"/> 

        <hdsoMod idNum="104" NumElts="1">-25</hdsoMod> 

      </transition_rule> 

    </state> 

    <state name="CTr_Depression" idNum="204"> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="403" activation_function="constant" activation_parameters="127"> 

        <hdsoMod idNum="127" NumElts="1">0.7</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="404" activation_function="constant" activation_parameters="128"> 

        <hdsoMod idNum="128" NumElts="1">0</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="301 &gt; 105"> 

        <hdsoMod idNum="164" NumElts="0"/> 

        <hdsoMod idNum="105" NumElts="1">20</hdsoMod> 



 286 

      </transition_rule> 

    </state> 

    <sense_organ name="Trochanter_CS" idNum="502"> 

      <description>The trochanteral canpaniform sensilla are load sensors critical to agile behavior 

        and adaptation to varying conditions.</description> 

      <hdsoMod idNum="304" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Coxa-Trochanter_motor" idNum="602" serialID="11" dir="-1" angleCal1="124" 

      angleCal2="-1.529" modelnum="1001"/> 

  </joint> 

  <joint name="Femur-Tibia" idNum="3" parent="2" start_state_idNum="205"> 

    <muscle name="Tibia_Flexor" idNum="405" Lnaught="5" r="1" alpha="95" fmax="30"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="171" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Tibia_Extensor" idNum="406" Lnaught="5" r="-1" alpha="100" fmax="14"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="172" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <DHline> 

        <hdsoMod idNum="183" NumElts="4"> 

          <!--     18.90 0 0 pi/180  --> 

          18.9    0    0   0.017453292519943 

        </hdsoMod> 

      </DHline> 

    </geometry> 

    <state name="FT_Extension" idNum="205"> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="405" activation_function="constant" activation_parameters="129"> 

        <hdsoMod idNum="129" NumElts="1">0.09</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="406" activation_function="constant" activation_parameters="130"> 

        <hdsoMod idNum="130" NumElts="1">0.9</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="191"> 

        <hdsoMod idNum="165" NumElts="0"/> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </transition_rule> 

    </state> 



 287 

    <sense_organ name="Femur_CS" idNum="503"> 

      <description>The femoral canpaniform sensilla are load sensors; used similarly to the 

        trochanteral CS, as far as we know/this model knows.</description> 

      <hdsoMod idNum="302" NumElts="0"/> 

      <hdsoMod idNum="304" NumElts="0"/> 

    </sense_organ> 

    <sense_organ name="Femur_CO" idNum="504"> 

      <description>The Femoral Chordotonal Organ is a continuous angle-sensing organ which operates 

        as a specialized apodeme/muscle in the femur, sensing the motion of the Femur-Tibia 

        joint.</description> 

      <hdsoMod idNum="305" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Femur_Tibia_motor" idNum="603" serialID="12" dir="1" angleCal1="11" 

      angleCal2="1.529" modelnum="701"/> 

  </joint> 

  <endpoint> 

    <joint name="Tibia-Tarsus" idNum="4" parent="3"> 

      <description>The Tibia-Tarsus joint is in this model only the terminal endpoint. 

        No actual tarsus is currently modeled.</description> 

      <plotstyle linespec="r"/> 

      <geometry /> 

    </joint> 

  </endpoint> 

</jointlist> 

 

3.1.2 parameters 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE hdsolist SYSTEM "/usr/local/src/romod_dtds/hdso.dtd"> 

<!-- <!DOCTYPE hdsolist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/hdso.dtd"> --> 

 

<hdsolist DataSetType="parameterList"> 

 

  <!-- global engine parameters --> 

  <hdso idNum="0" name="motor_speed" datatype="int" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="upper">4</bound> 

      <bound type="lower">0</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="upper">4</bound> 

      <bound type="lower">0</bound> 

      <quantum>1</quantum> 

    </range> 

    <initial_data>2</initial_data> 

  </hdso> 

  <hdso idNum="1" name="motor_control_delay_ns" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1000000000</bound> 

      <bound type="lower">0</bound> 

      <quantum>10000000</quantum> 



 288 

    </range> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="2" name="statetrans_period_ns" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1000000000</bound> 

      <bound type="lower">0</bound> 

      <quantum>1000000</quantum> 

    </range> 

    <initial_data>10000000</initial_data> 

  </hdso> 

 

  <!-- state transition parameters --> 

  <hdso idNum="101" name="TC_pro_CTr_load" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">2</bound> 

      <bound type="lower">-3</bound> 

      <quantum>0.1</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">20</bound> 

      <bound type="lower">-20</bound> 

    </range> 

  </hdso> 

  <hdso idNum="102" name="TC_ret_CTr_load" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">3</bound> 

      <bound type="lower">-2</bound> 

      <quantum>0.1</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">20</bound> 

      <bound type="lower">-20</bound> 

    </range> 

  </hdso> 

  <hdso idNum="104" name="CTr_lev_TCang" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">-10</bound> 

      <bound type="lower">-35</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">180</bound> 

      <bound type="lower">-180</bound> 

    </range> 

  </hdso> 

  <hdso idNum="105" name="CTr_dep_TCang" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">35</bound> 

      <bound type="lower">10</bound> 

      <quantum>1</quantum> 



 289 

    </range> 

    <range type="valid"> 

      <bound type="upper">180</bound> 

      <bound type="lower">-180</bound> 

    </range> 

  </hdso> 

 

 

  <!-- MUSCLE ACTIVATION PARAMETERS --> 

  <hdso idNum="121" name="TC_protraction_retractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="122" name="TC_protraction_protractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="123" name="TC_retraction_retractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="124" name="TC_retraction_protractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 



 290 

  </hdso> 

 

  <hdso idNum="125" name="CTr_levation_depressor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="126" name="CTr_levation_levator_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="127" name="CTr_depression_depressor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="128" name="CTr_depression_levator_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

 

  <hdso idNum="129" name="FT_extension_flexor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 



 291 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  <hdso idNum="130" name="FT_extension_extensor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

      <bound type="lower">0</bound> 

      <quantum>0.05</quantum> 

    </range> 

    <range type="valid"> 

      <bound type="upper">2</bound> 

      <bound type="lower">0</bound> 

    </range> 

  </hdso> 

  

 

  <!-- STATE TRANSITION RULE PARAMETERS --> 

  <hdso idNum="161" name="Enter_TC_Protraction" abstractType="boolstring" datatype="int" 

numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="162" name="Enter_TC_Retraction" abstractType="boolstring" datatype="int" 

numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="163" name="Enter_CTr_Levation" abstractType="boolstring" datatype="int" 

numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="164" name="Enter_CTr_Depression" abstractType="boolstring" datatype="int" 

numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="165" name="Enter_FT_Extension" abstractType="boolstring" datatype="int" 

numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  

 

  <!-- MUSCLE MODEL PARAMETERS --> 

  <hdso idNum="171" name="Tibia_Flexor_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

  <hdso idNum="172" name="Tibia_Extensor_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

 

  <!-- "constants" --> 



 292 

  <hdso idNum="190" name="zero_float_const" abstractType="constant" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="191" name="one_float_const" abstractType="constant" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

  <hdso idNum="192" name="zero_int_const" abstractType="constant" datatype="int" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="193" name="one_int_const" abstractType="constant" datatype="int" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

  <hdso idNum="194" name="zero_llint_const" abstractType="constant" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="195" name="one_llint_const" abstractType="constant" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

 

 

</hdsolist> 

 

3.1.3 sensors 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE hdsolist SYSTEM "/usr/local/src/romod_dtds/hdso.dtd"> 

<!-- <!DOCTYPE hdsolist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/hdso.dtd"> --> 

 

 

<hdsolist DataSetType="sensorList"> 

  <hdso idNum="301" abstractType="sensor" name="TC_angle"  

       overflowCorrection="1" fullname="Thorax-Coxa Angle" 

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="302" abstractType="sensor" name="TC_current" 

       fullname="Thorax-Coxa Current (load)" datatype="float"  

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 



 293 

  </hdso> 

  <hdso idNum="303" abstractType="sensor" name="CTr_angle"  

       overflowCorrection="1" fullname="Coxa-Trochanter Angle" 

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="304" abstractType="sensor" name="CTr_current" 

       fullname="Coxa-Troachanter Current (load)" datatype="float" 

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 

  </hdso> 

  <hdso idNum="305" abstractType="sensor" name="FT_angle"  

       overflowCorrection="1" fullname="Femur-Tibia Angle"  

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="306" abstractType="sensor" name="FT_current" 

       fullname="Femur-Tibia Current (load)" datatype="float"  

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 

  </hdso> 

</hdsolist> 

3.2 lin_roach 

This is the forward stepping configuration; used as the starting configuration for the 

transition experiments described in the dissertation. 

3.2.1 joints 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE jointlist SYSTEM "/usr/local/src/romod_dtds/sccils_joint.dtd"> 

<!-- <!DOCTYPE jointlist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/sccils_joint.dtd"> --> 

 



 294 

<jointlist name="lin_roachmiddle" 

           fullname="cockroach middle leg, linear muscle models"> 

  <description>This describes a Blaberus discoidalis middle leg, forward stepping. Rearranged  

  from the associated stickmiddle configuration file; currently with nothing 

  going on at the ThC2 DOF.  Activations are currently all constant per-state. 

  Linear muscle models at ThC1, CTr and FTi joints. 

  </description> 

 

  <joint name="Thorax-Coxa1" idNum="1" parent="0" start_state_idNum="201"> 

    <plotstyle linespec="ko"/> 

    <muscle name="Coxa_RemotorLEV" idNum="401" Lnaught="20" r="-5" 

            alpha="25" fmax="18"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="171" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Coxa_PromotorDEP" idNum="402" Lnaught="20" r="10" 

            alpha="20" fmax="15"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="172" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <description>This A-matrix orients the z axis (joint axis) properly for the ThC joint on the left 

        middle leg; in a body reference frame where positive x is forward with y pointing to the left. 

        First rotation about X Thetax = 130 degrees, second rotation about Y Thetay = -20 degrees, 

        and a third rotation about Z Thetaz = 180 degrees to set the theta zero point properly.  The 

        resulting coordinate system points Z along ThC1 into the body, X points basically cuadally and 

        Y essentially ventrally. The 

        offset corresponts to a (0,0,0) point on the ground beneath the coordinate frame; this is 

        different from the supposed standard of this Amatrix defining an offset from the _body_ coordinate 

        system.  Units in centimeters. 

        The DHLine in this joint's geometry entry has a length of 1 cm entered- really there is no length 

        before the ThC2 DOF, but this one centimeter doesn't change things much, and allows the possibility 

        of properly displaying ThC1 state.  This is a kluge; really makelegavi should allow different line/point 

        styles and widths per state; this would allow a zero-length line to change visibly. Currently it's  

        just colors that change, which are not usually visible for a zero-length line. 

      </description> 

      <amatrix> 

        <!-- New, actual amatrix (z and x point the other way)  

          thetax = (130/180)*pi; 

          thetay = (-20/180)*pi; 

          thetaz = (180/180)*pi; 

           



 295 

          >> Rx = rx(thetax)           

          Rx = 

          1.0000         0         0 

          0   -0.6428   -0.7660 

          0    0.7660   -0.6428 

           

          >> Ry = ry(thetay)           

          Ry =           

          0.9397         0   -0.3420 

          0    1.0000         0 

          0.3420         0    0.9397 

           

          >> Rz = rz(thetaz)           

          Rz =           

          -1.0000   -0.0000         0 

          0.0000   -1.0000         0 

          0         0    1.0000 

           

          >> Rx*Ry*Rz           

          ans =           

          -0.9397   -0.0000   -0.3420 

          0.2620    0.6428   -0.7198 

          0.2198   -0.7660   -0.6040 

        --> 

        <hdsoMod idNum="180" NumElts="16"> 

          -0.939692620785908                  0  -0.342020143325669  0 

          0.262002630229385   0.642787609686539  -0.719846310392954  0 

          0.219846310392954  -0.766044443118978  -0.604022773555054  10.5 

          0                    0                    0                  1 

        </hdsoMod> 

      </amatrix> 

      <DHline> 

        <hdsoMod idNum="181" NumElts="4"> 

          <!-- 0 0 (-90/180)*pi (pi/180) --> 

          <!-- In reality, the alpha here changes due to the loose connection between the ThC1 and ThC2 

          motors; it's a little more like 80 degrees when the leg is being held out in the air--> 

          1      0     -1.570796326794897     0.017453292519943 

        </hdsoMod> 

      </DHline> 

    </geometry> 

    <state name="TC1_protractionDEP" idNum="201"> 

<!--      <plotstyle colorspec="0    0.5725    0.2549"/>  --> 

<!--      <plotstyle colorspec="0.0039 0.7137 0.3020"/>--> 

      <plotstyle colorspec="0    0.5804    0.3882"/> 

      <dwell_time> 

      <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="401" activation_function="constant"  

 activation_parameters="121"> 

 <hdsoMod idNum="121" NumElts="1" time="0">0.05</hdsoMod> 

      </muscle_activation> 

<!--bilinear activation for 402 here, if analogous to stick insect --> 

      <muscle_activation muscle="402" activation_function="constant"  

 activation_parameters="122"> 

 <hdsoMod idNum="122" NumElts="1" time="0">0.15</hdsoMod> 

      </muscle_activation> 



 296 

      <transition_rule representation_type="text" boolstring="307 &gt; 105"> 

 <hdsoMod idNum="161" NumElts="0" /> 

 <hdsoMod idNum="105" NumElts="1">120</hdsoMod> 

      </transition_rule> 

    </state> 

    <state name="TC1_retractionLEV" idNum="202"> 

<!--      <plotstyle colorspec="0.3098    0.8667    0.5765"/>--> 

      <plotstyle colorspec="0.6627 1.000 0"/> 

 <dwell_time> 

<hdsoMod idNum="194" NumElts="0"/> 

</dwell_time> 

<!--linear activation for 401 here, if analogous to stick insect --> 

      <muscle_activation muscle="401" activation_function="constant"  

 activation_parameters="123"> 

 <hdsoMod idNum="123" NumElts="1">0.25</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="402" activation_function="constant"  

 activation_parameters="124"> 

 <hdsoMod idNum="124" NumElts="1" time="0">0.05</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text"  

        boolstring="(307 &lt; 103)|(305 &lt; 104)"> 

 <hdsoMod idNum="162" NumElts="0" /> 

 <hdsoMod idNum="103" NumElts="1">60</hdsoMod> 

 <hdsoMod idNum="104" NumElts="1">70</hdsoMod> 

      </transition_rule> 

    </state> 

    <sense_organ name="TC1_sense_organ" idNum="501"> 

      <description>The TC sense organ is involved in sensing the angle of the 

      Thorax-Coxa joint.</description> 

      <hdsoMod idNum="301" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Thorax-Coxa1_motor" idNum="601" serialID="0" dir="1" 

      angleCal1="144" angleCal2="1.529" modelnum="1001"> 

      <description>The range for theta=0 for this motor is approximately 130-158 in raw 

      A/D units, as of 06/04/09- see pp. 31-32 in Brandon L. Rutter Biorobotics lab notebook 

#3</description> 

      <forceCommand> 

        <hdsoMod idNum="201" NumElts="0"/> 

      </forceCommand> 

      <positionCommand> 

        <hdsoMod idNum="202" NumElts="0"/> 

      </positionCommand> 

    </aimotor> 

  </joint> 

  <joint name="Thorax-Coxa2" idNum="2" parent="1" start_state_idNum="201" 

control_mode="position"> 

    <plotstyle linespec="bx"/> 

    <geometry> 

      <description> 

        The d value of 6.5 in this DHline can cause things to look a little wierd sometimes; it may 

        be useful to set d=0 for debugging.  This is the jump from the upper to the lower plane of the leg; 

        it might be sensible to make this the "length" of of ThC1, with the zero-theta X for that joint pointing 

        down instead of back. 

      </description> 

      <DHline> 



 297 

        <hdsoMod idNum="182" NumElts="4"> 

          <!-- 8.9 6.5  0  (pi/180) --> 

          8.9  6.5   0   0.017453292519943 

        </hdsoMod> 

      </DHline> 

    </geometry> 

    <aimotor name="Thorax-Coxa2_motor" idNum="602" serialID="1" dir="-1" 

      angleCal1="131.5" angleCal2="-1.529" modelnum="701"> 

      <description>The range for theta=0 for this motor is approximately 122-141 in raw 

        A/D units, as of 06/04/09- see pp. 31-32 in Brandon L. Rutter Biorobotics lab notebook 

#3</description> 

      <forceCommand> 

        <hdsoMod idNum="203" NumElts="0"/> 

      </forceCommand> 

      <positionCommand> 

        <hdsoMod idNum="204" NumElts="1">128</hdsoMod> 

      </positionCommand> 

    </aimotor> 

  </joint> 

  <joint name="Coxa-Trochanter" idNum="3" parent="2" start_state_idNum="203"> 

    <plotstyle linespec="b"/> 

    <muscle name="Femur_DepressorRET" idNum="403" Lnaught="85" r="-10" 

            alpha="80" fmax="15"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="173" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Femur_LevatorPRO" idNum="404" Lnaught="75" r="2.5" 

            alpha="60" fmax="20"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="174" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <description> 

        This description entry keeps the femur at the lower plane of the leg, even though the  

        physical beam in the robot is at the upper plane. 

      </description> 

      <DHline> 

        <hdsoMod idNum="183" NumElts="4"> 

          <!-- 9.7 0 (180/180)*pi (pi/180) --> 

          9.7  0  3.141592653589793  0.017453292519943 

        </hdsoMod> 

      </DHline> 



 298 

    </geometry> 

    <state name="CTr_LevationPRO" idNum="203"> 

<!--      <plotstyle colorspec="0.6235    0.6667    0.9255"/>--> 

      <plotstyle colorspec="0 0.8627 0.8627"/> 

      <dwell_time> 

        <hdsoMod idNum="194" NumElts="0"/> 

      </dwell_time> 

      <muscle_activation muscle="403" activation_function="constant"  

 activation_parameters="125"> 

 <hdsoMod idNum="125" NumElts="1">0.01</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="404" activation_function="constant"  

 activation_parameters="126"> 

 <hdsoMod idNum="126" NumElts="1">0.85</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text"  

 boolstring="(302 &lt; 101)"> 

 <hdsoMod idNum="163" NumElts="0" /> 

 <hdsoMod idNum="101" NumElts="1">0</hdsoMod> 

      </transition_rule> 

    </state> 

    <state name="CTr_DepressionRET" idNum="204"> 

<!--      <plotstyle colorspec="0    0.5608    0.8784"/>--> 

      <plotstyle colorspec="0 0.2980 0.6392"/> 

      <dwell_time> 

<hdsoMod idNum="194" NumElts="0"/> 

</dwell_time> 

      <muscle_activation muscle="403" activation_function="constant"  

 activation_parameters="127"> 

 <hdsoMod idNum="127" NumElts="1">0.55</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="404" activation_function="constant"  

 activation_parameters="128"> 

 <hdsoMod idNum="128" NumElts="1">0.1</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="302 &gt; 102"> 

 <hdsoMod idNum="164" NumElts="0" /> 

 <hdsoMod idNum="102" NumElts="1">0.01</hdsoMod> 

      </transition_rule> 

    </state> 

    <sense_organ name="Trochanter_CS" idNum="502"> 

      <description>The trochanteral canpaniform sensilla are load sensors critical 

      to agile behavior and adaptation to varying conditions.</description> 

      <hdsoMod idNum="306" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Coxa-Trochanter_motor" idNum="603" serialID="2" dir="1" 

      angleCal1="-12.11" angleCal2="1.529" modelnum="701"> 

      <description>The range for theta=0 for this motor is approximately 119-132 in raw 

        A/D units, as of 06/04/09- see pp. 31-32 in Brandon L. Rutter Biorobotics lab notebook 

#3</description> 

    </aimotor> 

  </joint> 

  <joint name="Femur-Tibia" idNum="4" parent="3" start_state_idNum="205"> 

    <plotstyle linespec="g"/> 

    <muscle name="Tibia_Flexor" idNum="405" Lnaught="95" r="15" 

            alpha="100" fmax="14"> 



 299 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="175" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <muscle name="Tibia_Extensor" idNum="406" Lnaught="90" r="-10" 

            alpha="80" fmax="20"> 

      <function_spec type="constant" use="passive_stiffness"> 

        <hdsoMod idNum="190" NumElts="0"/> 

      </function_spec> 

      <function_spec type="linear" use="force-length"> 

        <hdsoMod idNum="176" NumElts="2">2 -1.5</hdsoMod> 

      </function_spec> 

      <function_spec type="constant" use="force-velocity"> 

        <hdsoMod idNum="191" NumElts="0"/> 

      </function_spec> 

    </muscle> 

    <geometry> 

      <DHline> 

        <hdsoMod idNum="184" NumElts="4"> 

          <!-- 8.5 0 0 (pi/180) --> 

          8.5 0 0 0.017453292519943 

        </hdsoMod> 

      </DHline> 

    </geometry> 

    <state name="FT_Extension" idNum="205"> 

<!--      <plotstyle colorspec="0.9647    0.3686    0.3922"/>--> 

      <plotstyle colorspec="1 0.4 0"/> 

<dwell_time> 

<hdsoMod idNum="194" NumElts="0"/> 

</dwell_time> 

      <muscle_activation muscle="405" activation_function="constant"  

 activation_parameters="129"> 

 <hdsoMod idNum="129" NumElts="1">0.09</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="406" activation_function="constant"  

 activation_parameters="130"> 

 <hdsoMod idNum="130" NumElts="1">1.0</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="(302 &gt; 106)&amp;(307 &gt; 107)"> 

 <hdsoMod idNum="165" NumElts="0" /> 

 <hdsoMod idNum="106" NumElts="1">0.01</hdsoMod> 

 <hdsoMod idNum="107" NumElts="1">90</hdsoMod> 

      </transition_rule> 

    </state> 

    <state name="FT_Flexion" idNum="206"> 

<!--      <plotstyle colorspec="0.8627    0.1686    0.0980"/>--> 

      <plotstyle colorspec="0.7098 0 0.2196"/> 

<dwell_time> 

<hdsoMod idNum="194" NumElts="0"/> 

</dwell_time> 



 300 

      <muscle_activation muscle="405" activation_function="constant"  

 activation_parameters="131"> 

 <hdsoMod idNum="131" NumElts="1">0.15</hdsoMod> 

      </muscle_activation> 

      <muscle_activation muscle="406" activation_function="constant"  

 activation_parameters="132"> 

 <hdsoMod idNum="132" NumElts="1" time="0">0.001</hdsoMod> 

      </muscle_activation> 

      <transition_rule representation_type="text" boolstring="(302&lt;108)|(307&lt;=109)"> 

 <hdsoMod idNum="166" NumElts="0" /> 

 <hdsoMod idNum="108" NumElts="1">0.0</hdsoMod> 

 <hdsoMod idNum="109" NumElts="1">60</hdsoMod> 

      </transition_rule> 

    </state> 

    <sense_organ name="Femur_CS" idNum="503"> 

      <description>The femoral canpaniform sensilla are load sensors; used similarly 

      to the trochanteral CS, as far as we know/this model knows.</description> 

      <hdsoMod idNum="302" NumElts="0"/> 

      <hdsoMod idNum="306" NumElts="0"/> 

    </sense_organ> 

    <sense_organ name="Femur_CO" idNum="504"> 

      <description>The Femoral Chordotonal Organ is a continuous angle-sensing 

      organ which operates as a specialized apodeme/muscle in the femur, sensing 

      the motion of the Femur-Tibia joint.</description> 

      <hdsoMod idNum="307" NumElts="0"/> 

    </sense_organ> 

    <aimotor name="Femur_Tibia_motor" idNum="604" serialID="3" dir="1" 

      angleCal1="-12.11" angleCal2="1.529" modelnum="701"> 

      <description>The range for theta=0 for this motor is approximately 119-132 in raw 

        A/D units, as of 06/04/09- see pp. 31-32 in Brandon L. Rutter Biorobotics lab notebook 

#3</description> 

    </aimotor> 

  </joint> 

  <endpoint> 

    <joint name="Tibia-Tarsus" idNum="5" parent="4"> 

      <description>The Tibia-Tarsus joint is in this model only the terminal endpoint. 

        No actual tarsus is currently modeled.</description> 

      <plotstyle linespec="r"/> 

      <geometry /> 

    </joint> 

  </endpoint> 

 

</jointlist> 

 

3.2.2 parameters 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE hdsolist SYSTEM "/usr/local/src/romod_dtds/hdso.dtd"> 

<!-- <!DOCTYPE hdsolist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/hdso.dtd"> --> 

 

<hdsolist name="lin_roachmiddle_params" DataSetType="parameterList"> 

 

<!-- global engine parameters --> 

  <hdso idNum="0" name="motor_speed" datatype="int" numdims="1"> 



 301 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="upper">4</bound> 

      <bound type="lower">0</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="upper">4</bound> 

      <bound type="lower">0</bound> 

      <quantum>1</quantum> 

    </range> 

    <initial_data>3</initial_data> 

  </hdso> 

  <hdso idNum="1" name="motor_control_delay_ns" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1000000000</bound> 

      <bound type="lower">0</bound> 

      <quantum>10000000</quantum> 

    </range> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="2" name="statetrans_period_ns" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1000000000</bound> 

      <bound type="lower">0</bound> 

      <quantum>1000000</quantum> 

    </range> 

<!-- corresponding to a hypothesized sensory loop delay of about 7.9 ms in the animal --> 

    <initial_data>25000000</initial_data> 

  </hdso> 

 

<!-- state transition parameters --> 

  <hdso idNum="101" name="CTr_lev_TC1_load" datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">2</bound> 

         <bound type="lower">-3</bound> 

         <quantum>0.1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">20</bound> 

         <bound type="lower">-20</bound> 

       </range> 

  </hdso> 

  <hdso idNum="102" name="CTr_dep_TC1_load" datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">3</bound> 

         <bound type="lower">-2</bound> 

         <quantum>0.1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">20</bound> 

         <bound type="lower">-20</bound> 



 302 

       </range> 

  </hdso> 

  <hdso idNum="103" name="TC1_retLEV_FTang" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">90</bound> 

         <bound type="lower">50</bound> 

         <quantum>1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">170</bound> 

         <bound type="lower">-170</bound> 

       </range> 

  </hdso> 

  <hdso idNum="104" name="TC1_retLEV_CTrang" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">100</bound> 

         <bound type="lower">60</bound> 

         <quantum>1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">180</bound> 

         <bound type="lower">-180</bound> 

       </range> 

  </hdso> 

  <hdso idNum="105" name="TC1_proDEP_FTang" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">130</bound> 

         <bound type="lower">90</bound> 

         <quantum>1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">170</bound> 

         <bound type="lower">-170</bound> 

       </range> 

  </hdso> 

  <hdso idNum="106" name="FT_ext_TC1_load" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">3</bound> 

         <bound type="lower">-3</bound> 

         <quantum>0.1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">20</bound> 

         <bound type="lower">-20</bound> 

       </range> 

  </hdso> 

  <hdso idNum="107" numdims="1" name="FT_ext_FTang"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">110</bound> 

         <bound type="lower">70</bound> 

         <quantum>1</quantum> 



 303 

       </range> 

       <range type="valid"> 

         <bound type="upper">170</bound> 

         <bound type="lower">-170</bound> 

       </range> 

  </hdso> 

  <hdso idNum="108" name="FT_flx_TC1_load" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">3</bound> 

         <bound type="lower">-3</bound> 

         <quantum>0.1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">20</bound> 

         <bound type="lower">-20</bound> 

       </range> 

  </hdso> 

  <hdso idNum="109" name="FT_flx_FTang" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="suggested"> 

         <bound type="upper">80</bound> 

         <bound type="lower">40</bound> 

         <quantum>1</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">170</bound> 

         <bound type="lower">-170</bound> 

       </range> 

  </hdso> 

 

<!-- MUSCLE ACTIVATION PARAMETERS --> 

  <hdso idNum="121" name="TC1_protractionDEP_retractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="122" name="TC1_protractionDEP_protractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 



 304 

  <hdso idNum="123" name="TC1_retractionLEV_retractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="124" name="TC1_retractionLEV_protractor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

 

  <hdso idNum="125" name="CTr_levationPRO_depressor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="126" name="CTr_levationPRO_levator_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="127" name="CTr_depressionRET_depressor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 



 305 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="128" name="CTr_depressionRET_levator_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

 

  <hdso idNum="129" name="FT_extension_flexor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="130" name="FT_extension_extensor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="131" name="FT_flexion_flexor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

  <hdso idNum="132" name="FT_flexion_extensor_activation" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 



 306 

    <range type="suggested"> 

      <bound type="upper">1</bound> 

         <bound type="lower">0</bound> 

         <quantum>0.05</quantum> 

       </range> 

       <range type="valid"> 

         <bound type="upper">2</bound> 

         <bound type="lower">0</bound> 

       </range> 

  </hdso> 

 

<!-- STATE TRANSITION RULE PARAMETERS --> 

  <hdso idNum="161" name="Enter_TC1_ProtractionDEP" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="162" name="Enter_TC1_RetractionLEV" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="163" name="Enter_CTr_LevationPRO" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="164" name="Enter_CTr_DepressionRET" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="165" name="Enter_FT_Extension" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

  <hdso idNum="166" name="Enter_FT_Flexion" abstractType="boolstring" datatype="int" 

xmltype="char" numdims="2"> 

    <dimsize dimNr="1">2</dimsize> 

    <dimsize dimNr="2">30</dimsize> 

  </hdso> 

 

<!-- MUSCLE MODEL PARAMETERS --> 

  <hdso idNum="171" name="ThC1_RemotorLEV_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

  <hdso idNum="172" name="ThC1_PromotorDEP_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

  <hdso idNum="173" name="CTr_DepressorRET_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

  <hdso idNum="174" name="CTr_LevatorPRO_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 



 307 

  <hdso idNum="175" name="Tibia_Flexor_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

  <hdso idNum="176" name="Tibia_Extensor_F-L_Params" numdims="1"> 

    <dimsize dimNr="1">2</dimsize> 

  </hdso> 

 

 

  <!-- JOINT GEOMETRY PARAMETERS --> 

  <hdso idNum="180" name="ThC1_Amatrix" numdims="2"> 

    <dimsize dimNr="1">4</dimsize> 

    <dimsize dimNr="2">4</dimsize> 

    <!-- Though the rotational portion of the Amatrix has a range -1 to 1, this 

      is not true for the translational portion, and we do not have per-element range 

      definitions.  So, no ranges--> 

  </hdso> 

  <hdso idNum="181" name="ThC1_DHline" numdims="1" units="cm"> 

    <dimsize dimNr="1">4</dimsize> 

  </hdso> 

  <hdso idNum="182" name="ThC2_DHline" numdims="1" units="cm"> 

    <dimsize dimNr="1">4</dimsize> 

  </hdso> 

  <hdso idNum="183" name="CTr_DHline" numdims="1" units="cm"> 

    <dimsize dimNr="1">4</dimsize> 

  </hdso> 

  <hdso idNum="184" name="FTi_DHline" numdims="1" units="cm"> 

    <dimsize dimNr="1">4</dimsize> 

  </hdso> 

   

  <!-- Motor/joint command parameters.  TODO set/derive better suggested position ranges --> 

  <hdso idNum="201" name="ThC1_forceCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">15</bound> 

      <quantum>1</quantum> 

    </range> 

  </hdso><hdso idNum="202" name="ThC1_positionCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

  </hdso><hdso idNum="203" name="ThC2_forceCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 



 308 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">15</bound> 

      <quantum>1</quantum> 

    </range> 

  </hdso><hdso idNum="204" name="ThC2_positionCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> </hdso><hdso idNum="205" name="CTr_forceCommand" numdims="1" 

units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">15</bound> 

      <quantum>1</quantum> 

    </range> 

  </hdso><hdso idNum="206" name="CTr_positionCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range>  </hdso><hdso idNum="207" name="FTi_forceCommand" numdims="1" 

units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">15</bound> 



 309 

      <quantum>1</quantum> 

    </range> 

  </hdso><hdso idNum="208" name="FTi_positionCommand" numdims="1" units="Raw_Implicit"> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="valid"> 

      <bound type="lower">0</bound> 

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> 

    <range type="suggested"> 

      <bound type="lower">0</bound>  

      <bound type="upper">254</bound> 

      <quantum>1</quantum> 

    </range> </hdso> 

   

<!-- "constants" --> 

  <hdso idNum="190" name="zero_float_const" abstractType="constant" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="191" name="one_float_const" abstractType="constant" datatype="float" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

  <hdso idNum="192" name="zero_int_const" abstractType="constant" datatype="int" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="193" name="one_int_const" abstractType="constant" datatype="int" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

  <hdso idNum="194" name="zero_llint_const" abstractType="constant" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>0</initial_data> 

  </hdso> 

  <hdso idNum="195" name="one_llint_const" abstractType="constant" datatype="llint" numdims="1"> 

    <dimsize dimNr="1">1</dimsize> 

    <initial_data>1</initial_data> 

  </hdso> 

 

</hdsolist> 

 

3.2.3 sensors 

<?xml version="1.0" standalone="no"?> 

<!DOCTYPE hdsolist SYSTEM "/usr/local/src/romod_dtds/hdso.dtd"> 

<!-- <!DOCTYPE hdsolist SYSTEM "http://roach.biol.cwru.edu/romod-dtds/hdso.dtd"> --> 

 

<hdsolist name="lin_roachmiddle_sensors" DataSetType="sensorList"> 

  <description>Sensor list for lin_roachmiddle (and variant behaviors). It should be noted that if the 

joints.xml file 

  does not have sensorspecs for the motor sensors, if there are N motors then the first N+2 

  entries in this file must be associated with the angle and current (load) of those motors. 



 310 

  </description> 

  <hdso idNum="301" abstractType="sensor" name="TC1_angle"  

       overflowCorrection="1" fullname="Thorax-Coxa 1st DOF Angle" 

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="302" abstractType="sensor" name="TC1_current" 

       fullname="Thorax-Coxa 1st DOF Current (load)" datatype="float"  

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 

  </hdso> 

  <hdso idNum="303" abstractType="sensor" name="TC2_angle"  

       overflowCorrection="1" fullname="Thorax-Coxa 2nd DOF Angle" 

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="304" abstractType="sensor" name="TC2_current" 

       fullname="Thorax-Coxa 2nd DOF Current (load)" datatype="float"  

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 

  </hdso> 

  <hdso idNum="305" abstractType="sensor" name="CTr_angle"  

       overflowCorrection="1" fullname="Coxa-Trochanter Angle" 

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="306" abstractType="sensor" name="CTr_current" 

       fullname="Coxa-Troachanter Current (load)" datatype="float" 

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 



 311 

       </range> 

  </hdso> 

  <hdso idNum="307" abstractType="sensor" name="FT_angle"  

       overflowCorrection="1" fullname="Femur-Tibia Angle"  

       datatype="float" numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">255</bound> 

         <bound type="lower">0</bound> 

         <quantum>1</quantum> 

       </range> 

  </hdso> 

  <hdso idNum="308" abstractType="sensor" name="FT_current" 

       fullname="Femur-Tibia Current (load)" datatype="float"  

       numdims="1"> 

       <dimsize dimNr="1">1</dimsize> 

       <range type="normal"> 

         <bound type="upper">10</bound> 

         <bound type="lower">-10</bound> 

       </range> 

  </hdso> 

  <hdso idNum="20" name="engine_start_time" numdims="1" datatype="llint"  

    abstractType="sensor"> 

    <description>This is the global sensor HDSO for the engine start time; should be set  by the  

      engine via script to facilitate logging every time the engine is started.  Script times are measured with 

respect 

      to this time. Initial value of -1 indicates that the engine has not yet started.</description> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="normal"> 

      <bound type="lower">0</bound> 

    </range> 

    <initial_data>-1</initial_data> 

  </hdso> 

  <hdso idNum="21" name="engine_stop_time" numdims="1" datatype="llint"  

    abstractType="sensor"> 

    <description>This is the global sensor HDSO for the engine stop time; should be set  

      by the engine via script to facilitate logging every time the engine is stopped.  Not actually as necessary 

as  

      engine start time, but included for completeness.</description> 

    <dimsize dimNr="1">1</dimsize> 

    <range type="normal"> 

      <bound type="lower">0</bound> 

    </range> 

    <initial_data>-1</initial_data> 

  </hdso> 

</hdsolist> 

 



 312 

4 Example script 

The following hdsoscript is the experimental script for “Experiment A”, which starts in 

forward stepping, goes to inside-turn-forward behavior, and then to inside-turn-backward. 

This is the script from which all of the other scripts for the transition experiments were 

derived. 

 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE hdsoscript SYSTEM "/usr/local/src/romod_dtds/hdsoscript.dtd"> 

<!-- <!DOCTYPE hdsoscript SYSTEM "http://roach.biol.cwru.edu/romod-dtds/hdsoscript.dtd"> --> 

<hdsoscript ScriptType="LegScript" name="linR_fwd-itf-itb"> 

  <description>Roch linear muscle model script for going from forward stepping to forward-flavored inside 

turning to backward-flavored inside turning. 

    Based on 09-06-13_16-32-03 (forward), 09-06-13_18-58-03 (ITF), 09-06-13_20-08-36 (ITB); modified 

from those in an attempt 

    to find the configurations which led to minimal changes between behaviors. 

  </description> 

  <hdsoMod idNum="0" name="motor_speed" NumElts="1" datatype="int" time="0">3 </hdsoMod> 

  <hdsoMod idNum="1" name="motor_control_delay_ns" NumElts="1" datatype="llint" time="0">0 

</hdsoMod> 

  <hdsoMod idNum="2" name="statetrans_period_ns" NumElts="1" datatype="llint" time="0">25000000 

</hdsoMod> 

  <hdsoMod idNum="101" name="CTr_lev_TC1_load" NumElts="1" datatype="float" time="0">0 

</hdsoMod> <!-- Changed from -0.1 --> 

  <hdsoMod idNum="102" name="CTr_dep_TC1_load" NumElts="1" datatype="float" time="0">0.01 

</hdsoMod> 

  <hdsoMod idNum="103" name="TC1_retLEV_FTang" NumElts="1" datatype="float" time="0">60 

</hdsoMod> 

  <hdsoMod idNum="104" name="TC1_retLEV_CTrang" NumElts="1" datatype="float" time="0">70 

</hdsoMod> 

  <hdsoMod idNum="105" name="TC1_proDEP_FTang" NumElts="1" datatype="float" time="0">120 

</hdsoMod> 

  <hdsoMod idNum="106" name="FT_ext_TC1_load" NumElts="1" datatype="float" time="0">0.01 

</hdsoMod> 

  <hdsoMod idNum="107" name="FT_ext_FTang" NumElts="1" datatype="float" time="0">90 

</hdsoMod> 

  <hdsoMod idNum="108" name="FT_flx_TC1_load" NumElts="1" datatype="float" time="0">0 

</hdsoMod> 

  <hdsoMod idNum="109" name="FT_flx_FTang" NumElts="1" datatype="float" time="0">60 

</hdsoMod> 

  <hdsoMod idNum="121" name="TC1_protractionDEP_retractor_activation" NumElts="1" 

datatype="float" time="0">0.05 </hdsoMod> 

  <hdsoMod idNum="122" name="TC1_protractionDEP_protractor_activation" NumElts="1" 

datatype="float" time="0">0.15 </hdsoMod> 

  <hdsoMod idNum="123" name="TC1_retractionLEV_retractor_activation" NumElts="1" 

datatype="float" time="0">0.25 </hdsoMod> 

  <hdsoMod idNum="124" name="TC1_retractionLEV_protractor_activation" NumElts="1" 

datatype="float" time="0">0.05 </hdsoMod> 



 313 

  <hdsoMod idNum="125" name="CTr_levationPRO_depressor_activation" NumElts="1" datatype="float" 

time="0">0.01 </hdsoMod> 

  <hdsoMod idNum="126" name="CTr_levationPRO_levator_activation" NumElts="1" datatype="float" 

time="0">0.85 </hdsoMod> 

  <hdsoMod idNum="127" name="CTr_depressionRET_depressor_activation" NumElts="1" 

datatype="float" time="0">0.55 </hdsoMod> 

  <hdsoMod idNum="128" name="CTr_depressionRET_levator_activation" NumElts="1" datatype="float" 

time="0">0.1 </hdsoMod> 

  <hdsoMod idNum="129" name="FT_extension_flexor_activation" NumElts="1" datatype="float" 

time="0">0.09 </hdsoMod> 

  <hdsoMod idNum="130" name="FT_extension_extensor_activation" NumElts="1" datatype="float" 

time="0">1 </hdsoMod> 

  <hdsoMod idNum="131" name="FT_flexion_flexor_activation" NumElts="1" datatype="float" 

time="0">0.15 </hdsoMod> 

  <hdsoMod idNum="132" name="FT_flexion_extensor_activation" NumElts="1" datatype="float" 

time="0">0.001 </hdsoMod> 

  <hdsoMod idNum="161" name="Enter_TC1_ProtractionDEP" NumElts="60" datatype="int" time="0">0 

1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 307 11 105 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="162" name="Enter_TC1_RetractionLEV" NumElts="60" datatype="int" time="0">1 

0 1 0 1 1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 307 12 103 20 17 19 305 12 104 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="163" name="Enter_CTr_LevationPRO" NumElts="60" datatype="int" time="0">1 0 

1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 12 101 20 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="164" name="Enter_CTr_DepressionRET" NumElts="60" datatype="int" time="0">0 

1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 302 11 102 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="165" name="Enter_FT_Extension" NumElts="60" datatype="int" time="0">1 0 1 0 1 

1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 11 106 20 16 19 307 11 107 20 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="166" name="Enter_FT_Flexion" NumElts="60" datatype="int" time="0">1 0 1 0 1 1 

1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 12 108 20 17 19 307 14 109 20 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="171" name="ThC1_RemotorLEV_F-L_Params" NumElts="2" datatype="float" 

time="0">2 -1.5 </hdsoMod> 

  <hdsoMod idNum="172" name="ThC1_PromotorDEP_F-L_Params" NumElts="2" datatype="float" 

time="0">2 -1.5 </hdsoMod> 

  <hdsoMod idNum="173" name="CTr_DepressorRET_F-L_Params" NumElts="2" datatype="float" 

time="0">2 -1.5 </hdsoMod> 

  <hdsoMod idNum="174" name="CTr_LevatorPRO_F-L_Params" NumElts="2" datatype="float" 

time="0">2 -1.5 </hdsoMod> 

  <hdsoMod idNum="175" name="Tibia_Flexor_F-L_Params" NumElts="2" datatype="float" time="0">2 

-1.5 </hdsoMod> 

  <hdsoMod idNum="176" name="Tibia_Extensor_F-L_Params" NumElts="2" datatype="float" 

time="0">2 -1.5 </hdsoMod> 

 

   

  <!-- Changes for Inside Turning, Forward --> 

  <hdsoMod idNum="103" name="TC1_retLEV_FTang" NumElts="1" datatype="float" time="20">120 

</hdsoMod> 

  <hdsoMod idNum="104" name="TC1_retLEV_CTrang" NumElts="1" datatype="float" time="20">40 

</hdsoMod> <!-- Not needed if it doesn appear in 162, Enter_TC_RetractionLEV --> 

  <hdsoMod idNum="105" name="TC1_proDEP_FTang" NumElts="1" datatype="float" time="20">50 

</hdsoMod> 

  <hdsoMod idNum="106" name="FT_ext_TC1_load" NumElts="1" datatype="float" time="20">-0.05 



 314 

</hdsoMod>  <!-- Needed?  - yes --> 

  <hdsoMod idNum="107" name="FT_ext_FTang" NumElts="1" datatype="float" time="20">70 

</hdsoMod> 

<!--  <hdsoMod idNum="108" name="FT_flx_TC1_load" NumElts="1" datatype="float" time="20">0.01 

</hdsoMod> -->  <!-- Needed? - probably not--> 

  <hdsoMod idNum="109" name="FT_flx_FTang" NumElts="1" datatype="float" time="20">40 

</hdsoMod> 

  <hdsoMod idNum="161" name="Enter_TC1_ProtractionDEP" NumElts="60" datatype="int" 

time="20">0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 307 12 105 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="162" name="Enter_TC1_RetractionLEV" NumElts="60" datatype="int" 

time="20">1 0 1 0 1 1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 307 11 103 20 17 19 

305 12 104 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="165" name="Enter_FT_Extension" NumElts="60" datatype="int" time="20">1 0 1 0 

1 1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 12 106 20 16 19 307 11 107 20 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="166" name="Enter_FT_Flexion" NumElts="60" datatype="int" time="20">1 0 1 0 1 

1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 11 108 20 17 19 307 14 109 20 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

   

  <!-- Further changes for Inside Turning, Backward --> 

<!--  <hdsoMod idNum="101" name="CTr_lev_TC1_load" NumElts="1" datatype="float" time="40">0 

</hdsoMod> -->  <!-- Needed? -yes, but could have it as 0 in prior behaviors--> 

<!--  <hdsoMod idNum="102" name="CTr_dep_TC1_load" NumElts="1" datatype="float" time="40">0 

</hdsoMod> -->  <!-- Needed? - probably not--> 

  <hdsoMod idNum="104" name="TC1_retLEV_CTrang" NumElts="1" datatype="float" time="40">150 

</hdsoMod> 

<!--  <hdsoMod idNum="123" name="TC1_retractionLEV_retractor_activation" NumElts="1" 

datatype="float" time="40">0.35 </hdsoMod> -->  <!-- Needed? probably not; maybe for backward 

stepping- but might help for ITF too--> 

  <hdsoMod idNum="126" name="CTr_levationPRO_levator_activation" NumElts="1" datatype="float" 

time="40">0.4 </hdsoMod> 

  <hdsoMod idNum="127" name="CTr_depressionRET_depressor_activation" NumElts="1" 

datatype="float" time="40">0.1 </hdsoMod> 

  <hdsoMod idNum="128" name="CTr_depressionRET_levator_activation" NumElts="1" datatype="float" 

time="40">0.3 </hdsoMod> 

<!--  <hdsoMod idNum="130" name="FT_extension_extensor_activation" NumElts="1" datatype="float" 

time="40">2 </hdsoMod> -->   <!-- Needed? -probably not; maybe make a difference at higher motor 

speeds--> 

  <hdsoMod idNum="162" name="Enter_TC1_RetractionLEV" NumElts="60" datatype="int" 

time="40">1 0 1 0 1 1 1 0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 307 11 103 20 17 19 

305 11 104 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="163" name="Enter_CTr_LevationPRO" NumElts="60" datatype="int" time="40">1 

0 1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 302 11 101 20 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

  <hdsoMod idNum="164" name="Enter_CTr_DepressionRET" NumElts="60" datatype="int" 

time="40">0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 302 12 102 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </hdsoMod> 

 

<!-- For the end, just time --> 

  <hdsoMod idNum="190" name="zero_float_const" NumElts="1" datatype="float" time="60">0 

</hdsoMod> 

</hdsoscript> 

 



 315 

10.3 The SCCILStoolbox MATLAB Data Analysis Package



 316 

THE SCCILSTOOLBOX MATLAB DATA 

ANALYSIS PACKAGE 

by 

BRANDON LEWIS RUTTER 

 
Department of Mechanical and Aerospace Engineering 

CASE WESTERN RESERVE UNIVERSITY 

 

January 2010 



 317 

Table of Contents 

1! INTRODUCTION ...............................................................................................................................318!

2! INSTALLATION.................................................................................................................................318!

3! SCCILS CONFIGURATION REPRESENTATION AND PARSING ..........................................319!

3.1! REPRESENTATION ...........................................................................................................................319!

3.2! PARSING .........................................................................................................................................322!

4! GETTING AND LOADING DATA...................................................................................................323!

4.1! GETTING DATA...............................................................................................................................323!

4.2! LOADING DATA ..............................................................................................................................323!

5! DATA PROCESSING AND DISPLAY.............................................................................................323!

5.1! BASIC DATA DISPLAY AND MANIPULATION...................................................................................323!

5.1.1! Summary Figures: jlrelegplots...............................................................................................323!

5.1.2! Object plot methods ...............................................................................................................325!

5.1.3! Object print methods ..............................................................................................................326!

5.1.4! Defining  data subsets & time ................................................................................................330!

5.1.5! ListDataConfigs .....................................................................................................................330!

5.2! KINEMATICS: JLFORWARDKIN ........................................................................................................330!

5.3! PLOTS AND VIDEO WITH KINEMATIC DATA ...................................................................................331!

5.3.1! jlromodpathstates...................................................................................................................331!

5.3.2! jlpathstateplot.........................................................................................................................331!

5.3.3! jlmakelegavi ...........................................................................................................................332!

5.4! OTHER STUFF .................................................................................................................................334!

 



 318 

1 Introduction 

If you’re reading this, there’s a good chance that you are working (or intending to 

work) on a system that you can either control or model using SCASM, and represent 

using SCCILS. Furthermore, you have gotten so far in it that you actually have, or can 

imagine having, actual data to interpret.  Congratulations!  This stuff is cool. 

It is my hope that this package will be useful to others, and with a little modification 

more broadly so. SCASM arose from biological knowledge of legged systems, as did 

SCCILS. Because of this, there is a considerable amount of this specification that is 

specific to legged systems. Most of the tools described here could be extended to the 

general SCCILS system without too much work, and some of them should be generally 

applicable right off the bat. 

Many of the “jl*” functions have precursor or supporting functions that are also part of 

the SCCILStoolbox repository. Most of these are not described here, but will be more 

easily applicable to data that does not have a SCCILS configuration associated with it. 

These were used for the early work done before SCCILS, described in the first part of the 

experimental chapter in my dissertation. 

If you are working with a system that these tools don’t fit exactly, please try to contact 

me (or possibly a new package maintainer) before writing your own software from 

scratch.  There’s a good chance that you could put the same or lesser effort into 

generalizing this software package, with benefits both to yourself and others. Please keep 

in mind, though, that I will be busy until I’m dead– so RTFM first. 

Happy Interpreting, 

Brandon Rutter 

2 Installation 

Get a copy of SCCILStoolbox.  It is included in the romod repository; but if you want 

to download it separately you can use a Subversion client to check out the current version 

from: 



 319 

svn://consolation.cwru.edu/releg/romod/trunk/SCCILStoolbox 

Then, put everything in this directory on your MATLAB path. 

3 SCCILS Configuration Representation and Parsing 

The SCCILStoolbox representation of data is largely based around an object-oriented 

representation of the SCCILS jointlist configuration. This consists of five classes, each 

with a number of properties and methods. Properties are listed here; methods are listed 

when needed.  Unfortunately, generating documentation with Doxygen and mtoc does 

not work well for MATLAB classdef files, so you’ll have to look at the in-source 

comments for a complete description of the methods. 

3.1  Representation 

The SCCILS property fields below are copies of the SCCILS XML values of these 

fields; descriptions are given in the SCCILS specification. The current names of these 

classes are used, with the more general element description given in parentheses. For 

instance, a SCCILS “joint” is an implementation of the more general “action switching 

module” concept. 

1. jointlist: analogous to the SCCILS jointlist (module list) 

a. SCCILS property fields: 

i. name 

ii. fullname 

iii. description 

iv. joints 

v. jointlists 

b. Additional fields: 

i. experiment_name : an identifier for the data contained in this 

jointlist, used in automatic figure labeling. 

2. joint : analogous to the SCCILS joint (Action Switching Module) 



 320 

a. SCCILS property fields: 

i. name 

ii. fullname 

iii. idnum 

iv. parent 

v. control_mode 

vi. description 

vii. amatrix 

viii. DHline 

ix. colorspec 

x. linespec 

xi. muscles 

xii. states 

xiii. motors 

b. Additional fields: 

i. isendpoint : Boolean indicator of whether this is an “endpoint” 

joint or not.  Endpoint joints are not expected to have muscles, 

states, or motors; but are used in plotting and holding coordinate 

data. 

ii. statedata : a vector containing the record of state changes for this 

joint 

iii. coords : a matrix of x-y-z coordinate values for the path of this 

joint through space 

iv. time_states, time_coords : time vectors for the above data 

v. statedata_unified, coords_unified, time_unified : data which has 

been unified to a common timebase. 



 321 

3. muscle : analogous to the SCCILS muscle (simulated_actor) 

a. SCCILS property fields 

i.  name 

ii. fullname 

iii. idnum 

iv. description 

b. Additional fields 

i. activation : vector containing the record of activation for this 

muscle 

ii. force : record of force 

iii. length : record of length 

iv. stime: time vector which applies to activation 

v. mtime: time which applies to force and length 

vi. activation_unified, time_unified : data which has been unified to 

the common timebase. 

4. motor: analogous to the SCCILS aimotor (real_actor) 

a. SCCILS property fields 

i. name 

ii. idnum 

b. Additional fields.  The motor contains data for angle and torque in three 

different ways, each with its own timebase. 

i. raw : raw A/D data from the motor, unprocessed 

ii. fast : corresponding data from the “sensors” – calibrated and 

perhaps filtered 



 322 

iii. unified : data from the “fast” representation which has been unified 

to the common timebase 

5. state: analogous to the SCCILS state (action).  Note that the state does not contain 

any sensor- or action-related data of its own. 

a. SCCILS property fields 

i. name 

ii. fullname 

iii. idnum 

iv. linespec 

v. colorpsec 

3.2  Parsing 

The parsing of the SCCILS configuration should be engine-independent, therefore the 

parsing of the XML SCCILS configuration is done pretty much entirely in the object 

constructors themselves. 

jlobj = ReadJointConfig(datadir) 

ReadJointConfig reads in the jointlist.xml file in datadir, passes the root element of the 

document to the jointlist constructor, and returns the resulting jointlist.  The jointlist 

constructor calls the constructors for its constituent classes when necessary. More 

advanced/complete configuration parsing would include the parameters and sensors 

configuration files, in order to have an accessible copy of the HDSO data store, but this is 

not yet implemented. It would be nice, though; one possibility in this case would be 

automatically plotting a variable sensory event detection threshold and the associated 

sensor value on the same graph. 

It is also possible to enter configuration data in these objects manually via the 

command line, or in programs. This might be useful if you want to add or edit config 

information which is missing, incorrect, or not what you want, such as geometry or plot 

style elements. 



 323 

The parsing of the data is, or can be, engine-specific- the data parser for the 

NeuRoMod engine is described in the next section.  

4 Getting and Loading Data 

4.1  Getting Data 

If you don’t already have some data, you’ll need to get some; if you’re using 

NeuRoMod, look in the NeuRoMod manual at the “Seeing and Gathering Data” section 

of “Using the GUI”, or use enginecli in script mode, covered in “Command-line 

operation”.  Then, get it onto a computer where you’ve installed SCCILStoolbox, perhaps 

using the methods covered in chapter 3 of the NeuRoMod manual. 

The data used in the plots below is from an experimental run demonstrating transitions 

between behaviors in a cockroach robot model. 

4.2  Loading Data 

Data from the NeuRoMod engine is loaded using LoadRomodEngineData: 

jlobj = LoadRomodEngineData(datadir) 

This function first calls ReadJointConfig, then uses loadlegdata to get the text file data 

from datadir into the workspace, then distributes that data into the appropriate fields in 

the jlobj jointlist object and its joint, motor, state and muscle children. This functionality 

is engine-specific and much of the information about how the data files map to these 

fields is hard-coded in this function. 

5 Data Processing and Display 

5.1  Basic Data Display and Manipulation 

5.1.1 Summary Figures: jlrelegplots 

Jlrelegplots is a good function to use to quickly get the gist of data from an 

experimental run. It does not require any processing; just load the data first. 

jlrelegplots(jlist, [startfigno], [timeshift], [range]); 



 324 

Two figures are plotted, one with raw and "sensor" based sensor data, the other with 

state and activation data for each joint. An example for a cockroach model experimental 

run is given below. 

 



 325 

Parameters: 
 jlist  The joint list where all the data comes from. Need not 

have coordinate or unified data. 
 startfigno  If given, the two figures will start here and go in 

order, overwriting whatever might have been there 
before. If  
left out, new figures will be created in the first 
available slots. 

 timeshift  Optional boolean indicating if time should be shifted 
to start at zero. Defaults to 0 (no timeshift) 

 range  Optional two-element range argument passed to 
subset_data for each item to be plotted. Range is 
applied after any timeshift. 

 

 

Figure 5-1 The output of jlrelegplots, in two figure windows. Note that the state labels are a little 

cryptic; in all current configurations the state labeled [1] will be displayed as the lower index on the 

graph. There is nothing in place to enforce this explicitly, however. 

5.1.2 Object plot methods 

Jointlists and most of the other objects have plot methods, with optional title prefixes; 

mostly used for automatically placing the experiment name in the figure titles. For a 

jointlist object jlobj, calling jlobj.plot() will set this experiment name title, and call the 

plot method on all its child joints and jointlists. The joint plot method plots that joint’s 

statedata, then calls the plot methods on all of its child muscles and motors. 



 326 

Calling jlobl.plot() generates a large number of figures; it is usually a good idea to use 

jlrelegplots first, and then generate the more detailed plots offered by joints, motors, and 

muscles when you know what you’re looking for.  The data plotted in the muscle plot 

function (example shown below), in particular, is not all shown by jlrelegplots. 

 

 

 

Figure 5-2 Object plot output for the femur depressor, including length and force output. 

5.1.3 Object print methods 

A text summary of configuration data and the size of contained data vectors is 

implemented in the disp and fullprint functions of objects. Jointlists also have a 

fullprint_recursive option, which calls the fullprint method of all contained joints. For our 

example data: 

 
>> A.fullprint_recursive() 

Jointlist: lin_roachmiddle 

Fullname: cockroach middle leg, linear muscle models 

Description: This describes a Blaberus discoidalis middle leg, forward stepping. Rearranged  

  from the associated stickmiddle configuration file; currently with nothing 

  going on at the ThC2 DOF.  Activations are currently all constant per-state. 

  Linear muscle models at ThC1, CTr and FTi joints. 

   

JOINTS 

 

Joint: Thorax-Coxa1  idnum: [1]  parent [0] 

Fullname:  

Control mode: muscle 

Description:  

2 muscles, 2 states, 1 motors 



 327 

Geometry: 

 

ans = 

 

   -0.9397         0   -0.3420         0 

    0.2620    0.6428   -0.7198         0 

    0.2198   -0.7660   -0.6040   10.5000 

         0         0         0    1.0000 

 

 

ans = 

 

    1.0000         0   -1.5708    0.0175 

 

isendpoint: 0 

linespec: [ko] 

colorspec: 

Coordinates elements:     0     0 

 

Coordinates_unified elements:     0     0 

 

Thorax-Coxa1 MUSCLES 

Muscle: Coxa_RemotorLEV  idnum: 401 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

Muscle: Coxa_PromotorDEP  idnum: 402 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

 

Thorax-Coxa1 STATES 

State: TC1_protractionDEP  idnum: 201 

Fullname: [] 

linespec: [] 

colorspec:         0    0.5804    0.3882 

 

 

State: TC1_retractionLEV  idnum: 202 

Fullname: [] 

linespec: [] 

colorspec:    0.6627    1.0000         0 

 

 

 

Thorax-Coxa1 MOTORS 

Motor: Thorax-Coxa1_motor  idnum: 601 

Angle elements; unified [0], fast [11952], raw [11952] 

Torque elements; unified [0], fast [11952], raw [11952] 

 

Joint: Thorax-Coxa2  idnum: [2]  parent [1] 

Fullname:  

Control mode: position 

Description:  

0 muscles, 0 states, 1 motors 

Geometry: 

 

ans = 



 328 

 

    8.9000    6.5000         0    0.0175 

 

isendpoint: 0 

linespec: [bx] 

colorspec: 

Coordinates elements:     0     0 

 

Coordinates_unified elements:     0     0 

 

Thorax-Coxa2 MUSCLES 

 

Thorax-Coxa2 STATES 

 

Thorax-Coxa2 MOTORS 

Motor: Thorax-Coxa2_motor  idnum: 602 

Angle elements; unified [0], fast [11952], raw [11952] 

Torque elements; unified [0], fast [11952], raw [11952] 

 

Joint: Coxa-Trochanter  idnum: [3]  parent [2] 

Fullname:  

Control mode: muscle 

Description:  

2 muscles, 2 states, 1 motors 

Geometry: 

 

ans = 

 

    9.7000         0    3.1416    0.0175 

 

isendpoint: 0 

linespec: [b] 

colorspec: 

Coordinates elements:     0     0 

 

Coordinates_unified elements:     0     0 

 

Coxa-Trochanter MUSCLES 

Muscle: Femur_DepressorRET  idnum: 403 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

Muscle: Femur_LevatorPRO  idnum: 404 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

 

Coxa-Trochanter STATES 

State: CTr_LevationPRO  idnum: 203 

Fullname: [] 

linespec: [] 

colorspec:         0    0.8627    0.8627 

 

 

State: CTr_DepressionRET  idnum: 204 

Fullname: [] 

linespec: [] 

colorspec:         0    0.2980    0.6392 



 329 

 

 

 

Coxa-Trochanter MOTORS 

Motor: Coxa-Trochanter_motor  idnum: 603 

Angle elements; unified [0], fast [11952], raw [11952] 

Torque elements; unified [0], fast [11952], raw [11952] 

 

Joint: Femur-Tibia  idnum: [4]  parent [3] 

Fullname:  

Control mode: muscle 

Description:  

2 muscles, 2 states, 1 motors 

Geometry: 

 

ans = 

 

    8.5000         0         0    0.0175 

 

isendpoint: 0 

linespec: [g] 

colorspec: 

Coordinates elements:     0     0 

 

Coordinates_unified elements:     0     0 

 

Femur-Tibia MUSCLES 

Muscle: Tibia_Flexor  idnum: 405 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

Muscle: Tibia_Extensor  idnum: 406 

Fullname:  

Data elements: activation [2493] activation_unified [0]  force [2493]  length [2493] 

 

Femur-Tibia STATES 

State: FT_Extension  idnum: 205 

Fullname: [] 

linespec: [] 

colorspec:    1.0000    0.4000         0 

 

 

State: FT_Flexion  idnum: 206 

Fullname: [] 

linespec: [] 

colorspec:    0.7098         0    0.2196 

 

 

 

Femur-Tibia MOTORS 

Motor: Femur_Tibia_motor  idnum: 604 

Angle elements; unified [0], fast [11952], raw [11952] 

Torque elements; unified [0], fast [11952], raw [11952] 

 

Joint: Tibia-Tarsus  idnum: [5]  parent [4] 

Fullname:  

Control mode: muscle 



 330 

Description: The Tibia-Tarsus joint is in this model only the terminal endpoint. 

        No actual tarsus is currently modeled. 

0 muscles, 0 states, 0 motors 

Geometry: 

isendpoint: 1 

linespec: [r] 

colorspec: 

Coordinates elements:     0     0 

 

Coordinates_unified elements:     0     0 

 

Tibia-Tarsus MUSCLES 

 

Tibia-Tarsus STATES 

 

Tibia-Tarsus MOTORS 

5.1.4 Defining  data subsets & time 

Since data from the engine can be voluminous, and the timebase can start at very large 

numbers, functions are built into jointlist and sub-objects to facilitate the definition of 

data subsets. jlist.tshift(tbase) subtracts tbase from all time data. jlist.tzero finds the 

smallest time present in any child object, and uses that as tbase.  The plots shown have 

had the time zeroed, by running A = A.tzero() 

Subsets of data can be created using the subset method, which uses a two-element 

time-based range to define a new object. e.g. A_transition1 = A.subset([18 22]) creates a 

new jointlist containing only the data from t=18 to t=22.  This does not modify the time 

data; if you want the subset time to start at zero it will be necessary to call tzero on that 

new jointlist. 

5.1.5 ListDataConfigs 

This just prints a list of the subdirectories of the given directory name, along with the 

name of the jointlist configuration contained.  Useful if you have a lot of experimental 

runs, and want to quickly see which configuration was used for each. 

5.2  Kinematics: jlforwardkin 

This computes the revolute forward kinematics for the kinematic linkage defined by a 

jointlist, using the Denavit-Hartenberg geometry information provided in the SCCILS 

configuration. The resulting 3D positions are put in the appropriate joint coords matrices 



 331 

forwardkin calculates the pose of the kinematic chain described by jointlist, using the 

angle data therein, and storing the coordinates back in the output jointlist 

jlist = forwardkin(jlist) 

It is assumed that the unified data necessary to generate coords_unified exists, and also 

that there is sufficient geometry data to actually calculate something. 

Currently, the code for unifying data is only in jlromodpathstates; it has not been put in 

a separate function. So you will have to run jlromodpathstates before running 

forwardkin– but jlromodpathstates runs forwardkin anyway. 

5.3  Plots and Video with Kinematic Data 

5.3.1 jlromodpathstates 

Jlromodpathstates does the forward kinematics calculations for a jointlist object, also 

calculating unified times. 3D position output is placed in the appropriate "coords" 

element of each joint. 

jlist = jlromodpathstates(jlist, [projection]); 

projection is a 3-element vector with 1’s specifying the coordinate plane of projection. 

This currently only in one of the coordinate planes; e.g. [1 1 0] is the x-y plane. 

A path-state plot of the final joint in the jointlist (usually a special “endpoint” joint) is 

generated, as well as a 3D plot with traces for each joint colored as specified by the joint 

colorspec. 

5.3.2 jlpathstateplot 

handle = jlpathstateplot(jlist, projection, [offset],… 

[jointname], [range]) 

This is a wrapper for the more general pathstateplot function, in which pathdata, 

statetada, colors, statenames and linestyles are all harvested from jlist. 

jlist: the jointlist object containing desired paths, states, etc. 

projection: [x y z] numerical component specifiers for the projection to be plotted. e.g. 

[1 1 0] is x-y, [1 0 1] x-z 



 332 

offset: number of units neighboring lines should be set off from each other. Defaults to 

0.1. 

jointname: string naming the joint whose pathdata to use in generating the plot.  

Defaults to the last (i.e. <endpoint>) joint in jointlist 

range: start and stop indices for plotting; defaults to plotting everything 

 

Fig. 5-3. Path-state plots of the example data; at right is the subset corresponding to forward 

stepping. The path-state plot is a plot showing simultaneous foot path and joint states. Each line 

represents the state of one joint, styled as shown in the legend. The projection of the 3D path of the 

designated joint is represented by the path that starts at the circle and terminates at the triangle; in 

this case the default “endpoint” joint corresponding to the end of the tibia was used. 

5.3.3 jlmakelegavi 

In many cases, it can be highly informative to see the current joint states along with the 

3D pose of the leg. This is accomplished using jlmakelegavi, which plots a line for each 

kinematic segment, with the color of that line determined by the colorspec of the state 

active at that joint at that time. Since the robot or other model may have flexible 

elements, or the kinematic data may be in some other way incomplete, it is even more 

useful to synchronize these movies with video data taken during the experiment. In this 

way it is possible to see both the environmental interaction of the model and it’s internal 

control state at the same time. 

There is an interactive step in jlmakelegavi where the user manually sets the projection 

for the plot (or each subplot), and places the text displaying the time in the desired spot. 



 333 

This is the jointlist-based version of makelegavi; p, colors, t and states are gleaned 

from jlist. 

 M = jlmakelegavi(jlist, filename, [fps], [timeshift], 

[range],… [subplots]) 

 jlist:  A joint list which has had jlforwardkin run on it; i.e. which contains useful 

coords_unified data. 

 filename string containing the name of the avi file to be saved. 

 fps  frame rate for output (does not effect total number of frames). Defaults to 

1/mean(diff(time_unified)) if time_unified can be found in jlist, 30 otherwise. 

 timeshift Optional boolean indicating if time should be shifted to start at zero.  

Defaults to 0 (no timeshift) 

 range  Optional two-element range argument passed to subset_data after all the data 

has been extracted from jlist, and timeshifted if desired, before passing everything to 

makelegavi 

 subplots if present, a two-element vector containing [nrows ncols] for use in 

generating a multi-view movie 

 M  An avi movie object.  Limited usefulness. 

 

Figure 5-4 Experiment video data side-by-side with synchronized output of jlmakelegavi, with four 

separate projections. 



 334 

5.4  Other Stuff 

Not described in detail here, but: 

stepanalysis is a program that runs the various statistical analyses on step variance and 

a whole lot more, used in analyzing the data from the muscle modeling experiments. 

There are a number of other unfinished or older, pre-SCCILS files also in the 

SCCILStoolbox repository, which developers may find some use in perusing. 



 335 

10.4 NeuRoMod Operation Manual 



 336 

NeuRoMod Operation Manual 
The CWRU SCASM Neuromechanical 

Robotic Model Control Software 

 

 

Brandon Rutter 

in collaboration with 

John Bender (GUI) 

 

 

 

Case Western Reserve University 

January 2010



 337 

Table of Contents 
 

INTRODUCTION ..................................................................................................................................... 338!

1! INSTALLING NEUROMOD ELEMENTS ..................................................................................... 339!

1.1! USER INTERFACE ........................................................................................................................... 339!

1.2! ENGINE........................................................................................................................................... 342!

1.3! XML DTDS ................................................................................................................................... 343!

2! USING NEUROMOD......................................................................................................................... 345!

2.1! INTRODUCTION .............................................................................................................................. 345!

2.2! QUICK START................................................................................................................................. 345!
2.3! BASIC RULES ................................................................................................................................. 347!

2.4! GUI OPERATION............................................................................................................................. 348!

2.5! COMMAND-LINE OPERATION ......................................................................................................... 358!

2.6! COMMAND-LINE OUTPUT .............................................................................................................. 363!

2.7! CONFIGURATION ............................................................................................................................ 367!

3! DATA OUTPUT.................................................................................................................................. 368!

3.1! THE DATA DIRECTORY .................................................................................................................. 368!

3.2! GETTING DATA ONTO YOUR COMPUTER ......................................................................................... 370!

4! RTLINUX BASICS............................................................................................................................. 372!

4.1! INTRODUCTION .............................................................................................................................. 372!

4.2! BASIC RTL SYSTEM STRUCTURE.................................................................................................... 372!
4.3! ANATOMY OF AN RTL MODULE..................................................................................................... 373!

4.4! OUTPUT FROM RTL PROCESSES ..................................................................................................... 373!

5! THE NEUROMOD ENGINE ARCHITECTURE........................................................................... 375!

5.1! ENGINEMOD: THE CONTROL REAL-TIME MODULE ....................................................................... 376!

5.2! SCRIPTMOD: THE SCCILS INTERACTION REAL-TIME MODULE .................................................... 380!

5.3! USER-SPACE PROGRAMS ................................................................................................................ 381!

5.4! SHARED MEMORY AND FIFO ORGANIZATION............................................................................... 382!

6! WRITING PROGRAMS TO INTERACT WITH THE ENGINE ................................................ 385!

6.1! INTRODUCTION .............................................................................................................................. 385!

6.2! WRITING AN RTLINUX MODULE .................................................................................................... 386!

6.3! WRITING A USER SPACE PROGRAM................................................................................................. 387!

7! USING LINUX .................................................................................................................................... 389!

7.1! BASIC COMMANDS ......................................................................................................................... 389!

7.2! ONLINE TUTORIAL.......................................................................................................................... 391!

8! INSTALLING RT-LINUX................................................................................................................. 392!

 



 338 

Introduction 

NeuRoMod, or the Neuromechanical Robot Model control software, is a suite of 

programs that grew out of the development of Sensory Coupled Action Switching 

Modules (SCASM) and the SCASM Command and Control Interface Language 

Specification (SCCILS). It was designed with the goals of allowing robot operation, 

model configuration, and experimentation. This manual is intended to provide the 

information necessary for the reader to operate a robot using this software.  

A background on RTLinux program operation is provided as well. Through most of 

the manual a basic familiarity with Linux/Unix systems and basic commands will be 

assumed, though some introductory material is available in chapter 7. 

Chapter 1 describes the basic tasks necessary to install the NeuRoMod system, 

presuming that you already have a computer running RTLinux. Chapter 2 describes 

model usage. Once you have installed the programs, you can use the “Quick Start” to get 

the robot moving, we hope. Chapter 3 describes the data output available. 

 Chapters 4, 5 and 6 are intended primarily for readers who wish to become more 

familiar with the underlying operation of the current robot control software, and learn 

how to write additional software to add to or modify present functionality. 

As of the present (January 2010) this document is still a work in progress.  If you feel 

there is something you need to know which is missing, or any other aspect of the manual 

which could be improved, please consider letting the collaborators know or, better, 

provide edits. Many of the programs here were based on the RUI software written for the 

control of pneumatically actuated robots; the manual for those programs is available in a 

separate document. 

 



 339 

1 Installing NeuRoMod elements 

NeuRoMod consists primarily of two collections of programs, the user interface and 

the engine, which are usually run on different computers that can reach each other over 

the network, but may also be run on the same computer. Each has a different set of 

requirements; but in both cases it is currently assumed that it is a UNIX-flavored machine 

(Linux or Mac), and you have access to a command-line terminal. Full installation will 

consist of installing both supporting programs and the NeuRoMod source code. If you are 

a new user on an already configured UI or engine machine, only the source code 

installation will be necessary.  

1.1  User Interface 

1) Supporting Programs 
In order for the user interface to run, you need an appropriate Python installation. The 

following directions are for Mac 10.5, and some steps require a little ability for superuser 

text file creation.  If you've got a Linux system you can probably figure out the 

corresponding commands with your system's package manager. 

First install MacPorts: http://www.macports.org/ note: you will have to install 

Developer Tools if you haven't already, and you may need to update to the most recent 

version. Also note: if you want a fairly nice graphical interface to MacPorts, Porticus is a 

relatively useful and free option. 

 

Then install the following ports: 

py25-setuptools 
python_select 
py25-wxpython 
py25-numpy 
py25-scipy 
py25-matplotlib 
libpng 
py25-pil 
 
(e.g. "sudo port install py25-setuptools") 

 



 340 

Actually not all of these are explicitly necessary, due to dependencies.  But they all do 

need to be installed. Now set up the paths: 

(as superuser) Add the following text file: /etc/paths.d/MacPorts  and put the following 
two lines in: 
/opt/local/bin 
/opt/local/sbin 
 
(as superuser) Add the following text file: /etc/manpaths.d/MacPorts  and put the 
following line in: 
/opt/local/share/man 

 

These work for allowing access to MacPorts-installed stuff, but it generates paths that 

search the apple defaults first.  We want MacPorts to take precedence, so put the 

following line in the .profile text file in the home directory for each user who wants to do 

this: 

export PATH=/opt/local/bin:/opt/local/sbin:$PATH 
 
Now, Since motmot is now on PyPI, just do 
sudo  /opt/local/bin/easy_install-2.5 motmot.wxvalidatedtext 
 
And for the last bit, select the appropriate python: 
sudo python_select python25 

 

To test the installation so far, try the following few commands. This starts python, and 

verifies that you have installed wx. You should be able to get something very similar to 

the below, with no errors. 

factotum:~ rutter$ python 
Python 2.5.4 (r254:67916, Jun 21 2009, 19:37:44)  
[GCC 4.0.1 (Apple Inc. build 5490)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import wx 
>>> exit() 
factotum:~ rutter$  

  

2) Personal Installation 
Once you have Python properly installed and configured, you will need to download the 
NeuRoMod user interface programs using Subversion. 
 



 341 

On your user-interface machine: 

Open a terminal window and navigate to the directory where you want to keep these files. 
Type the following commands to check out the programs and the documentation: 

mkdir neuromod 

svn co svn://consolation.cwru.edu/releg/romod/trunk neuromod 

mkdir doc-neuromod 

svn co svn://consolation.cwru.edu/releg/doc-romod/trunk doc-neuromod 

 

At this point you should be able to get the UI up and running as in Figure 1-1 by doing 
the following: 

cd neuromod/ui/pygui/romod-gui/ 
python romod_gui.py 
 



 342 

 

 

Figure 1-1 Top: Romod GUI windows as they may appear right after starting the program. Bottom: 

full views of the windows after some wrangling, which may include choosing window>zoom if you 

want to see the top bar of the main window. 

1.2  Engine 

1) Supporting Programs 
For the engine to run you will need a computer which has RTLinux installed, as well as 

the proper version of Python (though the Python requirements are less than for the UI).  

You will also need to have the ability to run programs as the super user on the engine. An 

installation log, including details beyond a plain Debian Etch install for the RT-Linux 

kernel configuration and installation, and third-party RT-Linux modules necessary, is 

given in chapter 8.  

 



 343 

2) Personal Installation 
You will need to have a terminal open on your engine machine in order both to run the 

robot and to do the following install. On your engine machine, in the directory where you 

want to keep the engine programs, run the following commands: 

 
mkdir neuromod 
svn co svn://consolation.cwru.edu/releg/romod/trunk neuromod 
cd neuromod/engine 
make 
 
If everything is working properly, you should now be able to run (in this same directory) 

sudo ./enginecli help 

and it will show you some help on running enginecli, the minimal command-line 

interface for running the robot. 

NOTE: If you are in the habit of updating your working copy of the Subversion 

repository it will sometimes be necessary for you to rebuild the engine after an 

update.  To be safe, do this as a matter of course whenever you update. 

1.3  XML DTDs 

This step should not be necessary if the computer you are using has already had 

supporting programs installed and is working. 

In order to reduce errors, NeuRoMod programs use validating XML parsing, which 

means that they need to have access to the DTD files that define SCCILS. Since the robot 

controllers are used for demonstrations without network access with some regularity, this 

means that a local copy of the DTDs is now the default location references in the XML 

scripts and configuration files. The current XML DTDs should be put in 

/usr/local/src/romod_dtds/ . The most straightforward way to do this and keep it up to 

date is to do an SVN checkout there: 

cd /usr/local/src 

svn co svn://consolation.cwru.edu/releg/romod/trunk/def/dtds romod_dtds 



 344 

Due to some previous attempts to keep an http-accessible copy of the SCCILS DTDs as 

the canonical version, some of the configuration and script files will still define their 

doctype using that URL; for instance, a script might have: 

<!DOCTYPE hdsoscript PUBLIC "hdsoscript" "http://roach.biol.cwru.edu/romod-
dtds/hdsoscript.dtd"> 
 

In particular, the copies of scripts from data directories may have this definition. If the 

file is not available there, this will create a validation error- this is usually reported in the 

case of configuration files, but may cause a more cryptic failure in some script handling. 

To reference the DTDs that were checked out to your local machine above, change this to 

the following. Note that the old URL has been left in place as a comment, in case 

somebody wants to switch back to that system. 

Note also that some older configurations just have the filename only in the doctype, 

assuming that there is a copy or symlink of the DTD in whatever the current directory is. 

This was deprecated some time ago. If you intend to use any of these configurations, it is 

strongly recommended (and may be necessary) to update the doctype definitions to point 

to the DTDs in /usr/local/src/romod_dtds. 

 
<!DOCTYPE hdsoscript SYSTEM "/usr/local/src/romod_dtds/hdsoscript.dtd"> 
<!-- <!DOCTYPE hdsoscript PUBLIC "hdsoscript" "http://roach.biol.cwru.edu/romod-
dtds/hdsoscript.dtd"> --> 
 

 



 345 

2 Using NeuRoMod 

2.1  Introduction 

NeuRoMod is a suite of programs for Neuromechanical Robot Modeling.  It has grown 

out of efforts to control prototype model robots using Sensory Coupled Action Switching 

Modules (SCASM), and further efforts to configure and command these models using the 

SCASM Command and Configuration Interface Language Specification (SCCILS). The 

combined goal of all this activity is to allow operation, configuration and experimentation 

with robotic models of insect neuromechanical systems. 

The NeuRoMod programs currently operate in two basic configurations: Graphical 

User Interface + Server, or command-line only.  In this chapter, everything presumes that 

you have a working, compiled installation of the required programs. If you do not, you 

must first follow the installation instructions as given in chapter 1. If you are working on 

a computer that already has all the required software but you do not yet have a working 

copy of the repository, you may skip to the second half of the installation instructions for 

each machine. 

“Quick Start” should get you from login to a running robot, “UI operation” covers 

some details of configuration and experimentation using the UI, and “Command-line 

operation” provides details on using the engineprog and enginecli command-line tools. 

Unlike many robotic systems, these are for the most part neither dangerous nor fragile, 

so this manual is happily devoid of the usual warnings regarding imminent death.  It 

does, nevertheless, help to have a modicum of common sense and caution engaged.  Have 

fun! 

2.2  Quick Start 

The Quick Start works as long as everything is already properly installed, and there are 

no “stale” control modules in the kernel. It also assumes that you have checked out the 

repositories exactly as described in the installation instructions. If you checked out the 

repositories while in your home directory, you should be able to copy these commands 

verbatim. 



 346 

 
I. GUI quick start: from a separate UNIX-type computer 

a. In one terminal window, log in to the robot control computer remotely.  
e.g. 

ssh username@computer.case.edu 
b. Navigate to the translator directory of the repository, then start server.py: 

cd neuromod/engine/translator/ 
sudo ./server.py -h computer.case.edu 

c. In another terminal window, execute the Python UI program 
cd neuromod/ui/pygui/romod-gui/ 
python romod_gui.py 

d. In the “ROMOD_GUI” window that appears, choose Engine -> Connect 
to Engine… , then enter the robot control computer’s host name, e.g. 
“computer.case.edu”, as the hostname and click OK.  Leave the port 
number at its default value. 

e. Choose an engine configuration. Note that it must match the robot! For a 
simple working configuration use the following: 

Cockroach model: Engine -> Type -> lin_roach 
Stick insect model: Engine -> Type -> lin_stickmiddle 

f. Make sure the robot is plugged in! The computer should have power, 
probably a network connection, and definitely a serial cable going to the 
robot converter board. The robot converter board should have it’s own 
power connection, serial from the computer, and a four-wire bus 
connection(s) to the robot(s) being used. 
 

   

Figure 2-1 Fully connected robot converter boards. Left: the power board/level converter used on the 

cockroach robot. Right: the AT-Mega board that we just use for power and level conversion on the 

stick insect robot. 

g. Click the “Start Engine” button in the UI main window.  Ta-daaaa!  If that 
didn’t work, try the detailed instructions in the next section below, or try 
the command-line Quick Start. 

h. To stop the robot motion, click “Stop Engine” 



 347 

i. When you’re done starting and stopping, choose the Engine -> Quit menu 
item.  This will quit both the UI and the translator/engine. 

II. Command-line Quick Start, from the control computer 
a. Log in directly to the robot control computer 
b. At the console or in a terminal, navigate to the engine directory of the 

repository: 
cd neuromod/engine/ 

c. Choose a configuration, by copying the XML configuration files into this 
directory.  For the cockroach, do (the last period is important): 

cp configurations/lin_roach/*.xml . 
d. Run enginecli in “ignorant” mode; it will just run for 30 seconds and stop: 

sudo ./enginecli i poo 
Note that if you choose a configuration for the wrong robot, nothing will 
happen. 
 

2.3  Basic Rules 

Though it is in theory possible to run the robots using either the GUI or command-line 

methods using only the Real-Time Linux control computer connected directly to the 

robot, this is not the way we usually use these systems, and for the most part we use a 

remote login for all of our work.  There are a couple of reasons for doing this.  You can 

use the X Window system, and have multiple terminals open, and run MATLAB, without 

having the RTL computer (which may be a poor, old, decrepit thing) doing all of the 

graphics work.  You will actually have enough room on your screen to work with UI 

windows.  This way you can also see the direct output from the RTL processes on the 

robot control computer as it comes up, rather than having to look back at system logs – 

useful for debugging. 

Before running most of the programs which must execute on the RTL machine, 

including server.py and enginecli, you must become the super-user, otherwise there are a 

number of system commands which will fail.  It won’t work, and it may not tell you why. 

Mostly superuser status is necessary for loading and unloading kernel modules- you may 

find that you need to do this manually, when for one reason or another a module does not 

unload when it is supposed to.  

You may note that most of the repository paths here refer to the trunk rather than a 

stable tag; we haven’t been tagging much.  Mostly the head of the repository is 

functional, but in some cases you will be better off checking out an older version; 



 348 

possibly unstable commits are often noted in the logs, so you can use the “svn log” 

command to find a working version. 

2.4  GUI operation 

2.4.1 Basic GUI concepts 

The Python GUI communicates with the low-level robot control programs via SCCILS.  

It is the “interface” referred to in Figure 2-2.  The SCCILS communication layer takes 

place over TCP, whereas the Translator-Engine communication in the NeuRoMod engine 

is via RT-FIFO.  So the Engine and Translator must be executed on the robot control 

computer, whereas the Interface may be in theory executed anywhere on the Internet 

(though very long delays do still present an issue). 

 

Figure 2-2 A system that has SCCILS.  In NeuRoMod, romod_gui.py is the “interface”, server.py is 

the “translator”, and engineprog and associated programs are the “engine”. Since it starts the engine 

programs, server.py may be considered the single super-engine program. 

Since they are only connected by command, you can start either the Super-Engine 

(server.py) or the Interface (romod_gui.py) first; they just both need to be running when 

you try to “Connect to Engine” from the GUI.  

2.4.2 Starting the Super-Engine, server.py 

Server.py expects that the engine and RTLinux kernel modules are not loaded when it 

executes; under some conditions there may be engine modules left running, which can 

cause the super-engine considerable confusion and failure.  It is therefore advisable to run 

sudo ./cleanup.sh (also in the translator directory) before running server.py, 

unless you know that the kernel is clean.  You can determine whether any RTLinux 

modules are left in the kernel by running lsmod; if mbuff, enginemod or scriptmod are 

listed there is “stale” information in the kernel.  Unless, that is, these programs are 



 349 

actually being run actively from a different terminal.  In any case, if these things are 

present it is likely that server.py will get confused. 

There are a few other things which server.py expects, essentially boiling down to being 

in a full and built engine directory– these things are described at the end of the 

installation section.  NOTE: If you are in the habit of updating your working copy of 

the Subversion repository it will sometimes be necessary for you to rebuild the 

engine after an update.  To be safe, do this as a matter of course whenever you 

update. Files that are expected include the set of configuration files in ../configurations 

and the directory for saving data in ../data, where “..” refers to the enclosing “engine” 

directory.  

Now, on the robot control computer, start server.py 

cd neuromod/engine/translator/ 
sudo ./server.py -h computer.case.edu 

“sudo” is necessary because server.py must be run as the super-user, since it does a lot 

of kernel-level module loading and unloading.  The -p and -h flags are used to set the port 

and hostname at which the program listens for connections from an interface; defaults 

may be seen by running ./server.py --help: 

./server.py [-p PORTNUMBER=44106] [-h HOSTNAME=localhost] 

Program must be executed from its own directory. 

Program must be executed as superuser. 

“localhost” is the appropriate hostname if you are running both the engine and GUI on 

the same machine; otherwise use -h to specify the DNS name of the computer where you 

are running the engine, e.g. minishadowfax.case.edu or digistation.case.edu.  Once you 

have run the server.py command line, you should see something like the following line in 

that terminal, hereinafter referred to as the “engine terminal”: 

__waiting for connections on minishadowfax.case.edu:44106 

Tue May 26 08:32:36 2009 



 350 

2.4.3 Starting the Interface, romod_gui.py, and connecting 

As mentioned above, the interface may be run on the same or a different machine from 

the engine, as long as both computers can communicate with one another via TCP and the 

appropriate port.  The GUI is much closer to a single program than the engine, and as 

long as it is installed properly it is unlikely to require the kind of tinkering and fixing 

which the engine sometimes will. In a terminal on whichever machine you choose to run 

the GUI, execute the Python UI program 

cd neuromod/ui/pygui/romod-gui/ 
python romod_gui.py 

Note that it is usually possible to run the GUI on the robot control computer while 

logged in remotely using ssh, as long as you have X11 forwarding working. This will bog 

down the machine, however, and the GUI will be much less responsive than if you are 

running it locally. 

In the UI window that appears, choose Engine -> Connect to Engine… , then enter the 

robot control computer’s host name as specified when you ran server.py, e.g. 

“computer.case.edu” or just “computer” if your DNS is set up nicely, and click OK. If 

you are running the GUI on the same machine as the engine, the hostname should be 

“localhost”.  Leave the port number at its default value unless you set a different port 

number explicitly when running server.py. If everything goes well there will be no 

message from the GUI or the GUI terminal, but the engine terminal will probably show 

something like: 

__server handshaking with ('129.22.143.92', 55018) Tue May 26 08:34:44 2009 

__server sending simulation list to client 

__server connected OK, listening 

Now choose a configuration using the Engine menu in the GUI. Note that it must 

match the robot! The list of configurations here is generated by searching the 

engine/configurations directory on the engine computer; there is no guarantee that these 

configurations will actually work or even load the engine properly. For a simple working 

configuration use the following: 

Cockroach model: Engine -> Type -> lin_roach 



 351 

Stick insect model: Engine -> Type -> lin_stickmiddle 

 

Figure 2-3 Main GUI window, with a successfully loaded configuration 

If all goes well, the main GUI window will now look something like Figure 2-3, with a 

short description of the configuration you have loaded, a list of available joints, and a 

couple of other useful buttons. At this step the engine terminal and the RT console will 

produce a bunch of output related to loading the engine programs.  If it is successful, the 

end of the output on the engine terminal should look like this: 

Making system calls to start enginemod module 

Warning: loading enginemod.o will taint the kernel: no license 

  See http://www.tux.org/lkml/#export-tainted for information 
about tainted modules 

Module enginemod loaded, with warnings 

Module                  Size  Used by    Tainted: P   

enginemod              21540   0  (unused) 

rtl_debug              22464   0  (unused) 

rtl_sched              26816   0  [enginemod rtl_debug] 

rtl_fifo                9344   0  [enginemod rtl_debug] 

rtl_posixio             9236   0  [rtl_fifo] 

rtl_time                4336   0  [enginemod rtl_sched 
rtl_posixio] 

rt_math                20448   0  (unused) 

rt_com                 19752   1  [enginemod] 



 352 

rtl                    17424   0  [enginemod rtl_debug 
rtl_sched rtl_fifo rtl_posixio rtl_time rt_math rt_com] 

mbuff                   5228  70  [enginemod] 

 

Engine initialized, I think. 

Warning: loading ../scriptmod.o will taint the kernel: no 
license 

  See http://www.tux.org/lkml/#export-tainted for information 
about tainted modules 

Module scriptmod loaded, with warnings 

 

If you see something like: 

Making system calls to start enginemod module 

insmod: a module named enginemod already exists 

For either enginemod or scriptmod this means you had previously running or stale 

modules loaded.  You should probably try to quit now and run cleanup.sh before trying 

this all again.  In a few cases if things go horribly wrong, there will be “zombie” mbuff 

shared memory references, which may leave inappropriate data in a persistent shared 

memory store.  If mbuff still shows up when you run lsmod after having run cleanup.sh, 

this has happened. The only way to fix this is to reboot the robot control computer: close 

all the programs you have open on the computer, make sure nobody else is logged in (by 

running “who”), and do ‘sudo reboot’. 

If things have not gone horribly wrong, and you actually want the robot to move, now 

would be a good time to make sure that it is actually plugged in as in Figure 2-1:  serial 

line connected to the controller’s first serial port, and power plugged in and turned on. 

2.4.4 Using the GUI: Interactively 

The first thing you’ll want to do is start the robot running; this is true because there are 

a set of configuration and data commands that don’t work unless the engine is running. 

(Perhaps it would be a good idea to change this? Not sure). Do this by clicking “Start 

Engine”. If the robot does not actually move, make sure that you have chosen an 



 353 

appropriate configuration (you might be helped by clicking the “details” button in the 

main window) and that the robot is fully plugged in. 

After you have clicked “Start Engine”, that button should change to “Stop Engine”, and 

the functionality will change appropriately.  

During interaction, you may still have communication errors, as shown in Figure 2-4.  

After an error like this it is a good idea to quit both the GUI and the engine before trying 

again.  In some cases the communication will have become so broken that the engine just 

continues running; in this case you must type “control-c” in the engine terminal.  

Eventually it should realize that you have typed this interrupt character, and unload. 

 

Figure 2-4 Our Friend the SCCILS communication error. 

2.4.4.1 Parameter Modification 

Once you’ve got the robot running, you can use the GUI to modify any of the SCCILS-

aware controller parameters.  These are available either by joint or through the all-

parameters HDSO browser. The joint browsers reflect the most logically presented 

parameter and sensor values, but there are some global parameters which can only be 

viewed and modified in the HDSO browser.  There are a couple of things here which 

have a pretty drastic effect on overall model function; for instance changing motor_speed 

should have instant and drastic effect (be careful about setting it to 0!).  If you want to 

really mess things up, try changing some of the one and zero constants at the bottom of 

the list, or the control delays. 



 354 

In most cases you will find it most helpful to modify parameters through the joint 

browsers.  The easiest example of a benign but critical modification is in the stick insect 

robot.  Get it running and loaded, then choose the Femur-Tibia joint.  Click the states, 

FTi_Extension and Tibia_Extensor activation disclosure boxes, so that you get a window 

that looks like Figure 2-5. Since the Femur-Tibia angle is critical to the swing-stance 

transition, you can get the leg stuck in mid-air by turning down HDSO 130, 

FT_extension_extensor_activation– the activation of the tibia extensor during FTi 

extension.  Turn the activation back up to get it stepping again. 

 

Figure 2-5 Having fun with the stick insect Femur-Tibia joint– slide it down to stop the stepping 

There are quite a few more things going on at the joint.  Currently, the muscles only 

display what configuration has been loaded, but do not allow online modification.  The 

same is true of aimotors.  Sense_organs do show which robot sensors are associated with 

a biological sense organ, and can display the current value of those sensors (see section 

on data); however this is not as useful as it could be at the moment. States is really where 

the action is. 

Each state is an “action” in the action switching module (ASM) associated with this 

joint.  A state has activations for muscles at the joint, and a rule for entering the state.  

The rules for state entry define the functional control network topology for coordination 

(sometimes referred to as “timing”), and can be translated to and from event-space 

diagrams. The activations determine what the dynamic output of this action is, and 

essentially define the magnitude control/influences in the modeled control system. 



 355 

In Figure 2-6 we can see the full information for the FTi_Extension state.  First there 

are muscle activations for both of the muscles at this joint; since this is the extension state 

it makes sense that the extensor is more activated than the flexor.  Note the “constant” 

after each activation- the configuration files allow for more complex activation types.  It 

is possible to modify the parameters for any activation type, but it is not currently 

possible to modify the kind of activation function online. 

The entry rule is a Boolean expression that indicates when this state/action should be 

activated. Unfortunately, for now it is expressed via HDSO number rather than name, so 

you need to look at the entries below to figure out what it actually means.  In the example 

shown, the rule is to transfer to the FTi_Extension action if (Coxa-Trochanter Current < 

FT_ext_CTr_load) OR (Femur-Tibia Angle > FT_ext_FTang).  Coxa-Trochanter Current 

and Femur-Tibia Angle are sensor HDSOs, which change based on sensory input.  

FT_ext_CTr_load and FT_ext_FTang are parameters which determine the sensory space 

in which this transition takes place: this sensory space is represented in Figure 2-7. 

 

Figure 2-6 More fun with the FTi Joint– transition rule (action switching event) nitty gritty. 



 356 

 

Figure 2-7 Sensor-space representation of Boolean transition rule in Figure 2-6. All shaded areas 

result in a transition to FTi_Extension. 

2.4.4.2 Seeing and Gathering Data 

While running the UI, there are two basic ways of routing data: 1) through SCCILS to 

the UI and 2) locally at the engine.  The data available to the UI are all HDSO data 

elements, including parameters and sensors. To enable data streaming from the engine to 

the GUI, choose the Data -> Stream Data menu item in the GUI. (without any parameter 

windows open). You may now chose Data -> Synchronize Controls in order to load all 

HDSO data values from the engine into the UI.  This is useful both for verifying 

parameter settings, and for getting current sensor data loaded into the UI.  In streaming 

mode, there is now also a checkbox to the right of every HDSO data field, which 

indicates whether to “stream” this HDSO, updating it every second and displaying in a 

graph (though the graphing doesen’t work too well just yet). 

To log a large amount of data locally at the engine, choose Data -> Log Data; choose 

this item again to stop local logging and save the run in a timestamped data directory in 

engine/data. For completeness of the data recording, it is best to combine this with the 

Data -> Stream Data function, since that will activate HDSO logging locally, which 

should provide you with a guaranteed known configuration at any time in the data record. 



 357 

For advanced local logging even when using the UI, use the datalogging command line 

program directly, as described below in section 2.5.3. 

If you are running the robot using the command-line “enginecli” program, all data is 

always logged locally; where it is logged depends on the data directory argument to 

enginecli. 

Caveats: 

Currently, it looks like you have to explicitly stop local logging before quitting the 

engine. 

Turning data streaming on causes scriptmod to get stuck in the kernel until server.py is 

unloaded; you will need to run cleanup.sh before the next run. 

2.4.4.3 Saving a Configuration 

Currently the easiest way to save a configuration or multiple configurations is thus: 
1) turn on local logging 
2) stream data 
3) Whenever you want to save your current configuration, choose “Data -> 

Synchronize Controls”.  These HDSOs are then all logged locally (see the data 
formats section) and can be extracted for other use with minimal effort. 

 

Alternatively, it is intended that Config -> Save should work in the UI. This appears to 

nearly work, however there is currently some disagreement between the engine and UI in 

the initialization of HDSO values, and some values that haven’t been modified 

interactively (like, say, the constants) are likely to have incorrect values saved. The 

intention is to fix this by changing the HDSO init_value element to be an HDSOmod; this 

would involve some redundancy of information because the mod would have to list its 

containing HDSO ID, but would allow easier UI initialization just by scanning the config 

files for all HDSOmod elements. 

Additionally, the current SCCILS spec still passes long-long-int (llint) times for some 

values, but these are not handled properly in the GUI. The current plan is to change the 

xmltype of these values to float, and have the translator handle the translation to the 

underlying llint engine data type. 



 358 

2.4.5 Using the GUI: Scripting 

Script generation, loading, and saving using the GUI are all problematic at this point- 

there are some issues with GUI rendering (at least on Mac python) as well as the 

problems mentioned above with llint data handling. I do not currently use the GUI for 

scripting. 

2.5  Command-Line operation 

While the GUI is crucial for interactive exploration of the system, and makes for some 

excellent demonstrations, there are a number of things that are handled a bit better from 

the command line at this point. All of these tools must be run with super-user privileges 

in order to succeed; they won’t even show you the help as a standard user. 

There are, of course, plenty of things that can go wrong here. If you are having trouble 

and the reasons why are not obvious, it may help to take a look at explanation of program 

output in section 2.6 . If you are running any of these commands on the console of the 

engine computer, output from the real-time processes will also be printed to the screen 

and may be voluminous. These messages are not processed through the UNIX shell, so 

the command prompt may not automatically appear after they’ve been printed and the 

program has finished, even though you can still type a command and hit return to see the 

output and the next command prompt. 

2.5.1 Enginecli 

Enginecli is the main command-line tool for running the robot; it will handle calls to 

the lower-level engineprog and datalogging commands for a particular experimental run. 

This is the program used for generating all the experimental data presented in Brandon 

Rutter’s dissertation. The help output of enginecli is as follows: 

Usage: ./enginecli mode_spec outputdir [scriptfile] || help  

mode_spec is I for "interactive" or S for Script. 

outputdir of "auto" creates a time-derived output directory name 

outputdir of "poo" overwrites the old "poo" without confirming 



 359 

“interactive” mode is also occasionally referred to as “ignorant” mode– there is in fact 

no interactivity; it just loads the locally available configuration files and tries to run the 

model using that configuration for 30 seconds. Script mode does indeed use an XML 

script file; if the file name argument [scriptfile] is given, that file will be attempted. 

Otherwise the user will be prompted to enter a script file name. The script path is 

expressed with respect to the current working directory. 

Outputdir specifies the output data directory name; the contents of this directory are 

described in section 3.1 . The actual directory path used will be prepended by “data”; in 

normal usage where enginecli is executed in the neuromod/engine directory this will 

result in the path to the output directory being neuromod/engine/data/”outputdir”. 

Specifying an outputdir of “auto” will automatically generate a year-month-day-hour-

minute-second based data directory there in the form yymmdd_hh.mm.ss . Specifying 

“poo” as the output directory does indeed put the data for the run in data/poo, but it will 

overwrite the previous data there without asking. This is useful when you don’t want to 

keep the data for long (e.g., debugging), or you don’t want to look at it at all (e.g., 

demonstrations). 

In either mode, enginecli requires the three XML configuration files for the desired 

configuration to be in the current working directory, neuromod/engine. These are the 

jointlist file joints.xml and the HDSOlist files parameters.xml and sensors.xml. There is a 

configuration clean-up “make” script to clean up whatever configuration files might have 

been in this directory beforehand. So, to make your current configuration lin_roach, one 

would do: 

make cleanconfig 

cp configurations/lin_roach/*.xml . 

In script mode, the script file must be a valid “hdsoscript” XML file. Since both initial 

configuration and the script file are saved to the data directory, it will be possible to re-

run an experiment nearly exactly by doing the following steps. It should be noted, 

however, that modification of the source code might in some cases cause different results; 

the hard-coded configuration-like elements that have an effect on control are now very 

few, but for a guaranteed reproduction of the run it will be necessary to make sure you 



 360 

are also using the same version of enginecli and supporting programs and libraries. This 

can most easily be done by making note of the SVN repository version used for an 

experiment, then reverting to that SVN version and re-making the engine when you want 

to exactly replicate the experiment. Note that of course this will not exactly replicate the 

physical conditions of the original experiment, and given that the force control is 

uncalibrated and open-loop, you may get substantially different results anyway if the 

robot is significantly worn, has a higher or lower body posture, is stepping on a different 

surface, or has a significantly different motor supply voltage (which you will likely see in 

Europe vs. U.S., with our little wall-wart unregulated voltage supplies which must run at 

110, but have different output at 50Hz than at the U.S. 60 Hz). 

That all having been said, there are many situations where re-running an experiment 

from the files in the experiment’s data will work just fine without headaches involving 

different versions of the source code or differing physical conditions. If you are in the 

neuromod/engine directory and want to re-run an experiment called “publishable_data”, 

the following steps should do it: 

make cleanconfig 

cp data/publishable_data/*s.xml . 

sudo ./enginecli s publishable_data_rerun data/publishable_data/scriptfile.xml 

Note that you can name the output directory whatever you like, though you probably 

don’t want to name it “publishable_data” and overwrite that if it really was publishable. 

For any outputdir other than “poo”, though, enginecli should ask you twice before 

overwriting a previous data directory. If outputdir is “auto” and the clocks are set 

reasonably well on your robot control machines, this should give you a unique data 

directory name. 

The above only works if that data directory was generated using enginecli; if it was 

generated using datalogging while using the graphical UI, it may be necessary to use the 

HDSOlog and Scriptlog files to actually reproduce the configuration changes; there is 

currently no automated way to do this. The biggest problem here is that datalogging 

copies default configuration files from the current directory regardless of whether those 



 361 

configuration files were actually loaded in the engine. It should be possible to detect if 

the config files are incorrect by comparing them with data in the HDSOlog, but this is a 

pain in the neck. 

Note also that this presumes that the configuration and script XML files are still fully 

valid and contain references to existing DTDs. If you get “document not valid” errors, 

most likely these scripts either specify incompatible or nonexistent DTD files; see the 

notes on DTD installation in section 1.3  above. 

2.5.2 Engineprog 

Engineprog is the user-level program used for loading configuration files and 

initializing the RT portion of the engine, and unloading the RT engine when called with 

that argument. Since it is often called from other programs such as enginecli, it has a 

return value: zero for no errors, number of errors for non-fatal errors, or a negative 

number if a fatal error occurred. The output of “sudo ./engineprog help” is as follows: 

 

./engineprog [V*|Q*]L [config files] 

or ./engineprog [V*|Q*]U 

V is for verbose, in which case config/debug info 

will be printed to screen. Q(uiet) suppresses most output. 

Both V and Q can be repeated to be more verbose or more quiet. 

L is for loading the config files and initializing the 

RT part. Currently, if one is specified all three must 

be specified, in the following order: 

 

joints sensors parameters 

 

Otherwise engineprog will attempt to load the default 

config file names. 

U is for unloading the RT part and shutting down shared 

memory. 

 



 362 

As a robot operator, the most likely uses you will have for engineprog are 

configuration debugging and unloading the engine in the case of user interface failure. 

“engineprog l”  is a good initial check of file validity and RT-Linux module loading; vl 

(verbose load) also prints basic configuration data for the joints, muscles, states and 

sensors, which can be useful in finding problems if a new configuration is acting 

strangely. vvl also prints out all the parameter and sensor HDSOs with their data; this is 

quite a lot of output but can be useful if you are looking for specific problems with 

HDSO data initialization. 

Using the unload command “engineprog u” can be useful or necessary if enginecli or 

the SCCILS translator crash badly and leave enginemod running with shared memory in 

place. 

Developers of new ui software or higher-level control may find engineprog useful; both 

enginecli and the Python translator use engineprog to load and unload the low-level robot 

controller. 

2.5.3 Datalogging 

Datalogging is a program used to start and stop monitoring and recording of low-level 

engine data.  

Usage: ./datalogging mode_spec [outputdir] | help  

mode_spec is L for load/start or U for unload/stop. 

outputdir may only be specified when loading. 

outputdir of "auto" (or blank) creates a time-derived output directory name 

outputdir of "poo" overwrites the old "poo" without confirming 

Largely this is a command-line interface to load and unload the “monitor” data 

recording and forwarding background process. This is done by enginecli itself (which 

does not call datalogging) and there is considerable code duplication between these 

programs. Datalogging is most useful when you want to explicitly control data directory 

names and logging start/stop times during a GUI interactive session; keep in mind 

however that datalogging records the configuration files in the current working directory 

and does not check to see if those represent the actually-loaded configuration. It can also 



 363 

be useful to attempt unloading monitor when GUI data logging or enginecli has crashed 

and left it running. 

2.6  Command-Line Output 

Engineprog and enginecli can produce considerable output; an annotated example of 
a successful script run is included here to help determine whether what you’re seeing is 
normal. 

 
 

rutter@minishadowfax:~/releg/romod/trunk/engine$ sudo ./enginecli s 
ExpA scripts/linR_fwd-itf-itb.xml  
I think I have the following 4 arguments: 
./enginecli S ExpA scripts/linR_fwd-itf-itb.xml  
 

The following lines are the result of engincli calling “engineprog l” 

I think I have the following 2 arguments: 
./engineprog L  
Warning: loading /lib/modules/2.4.29-rtl3.2-rc1_8-5-05/misc/rt_com.o 
will taint the kernel: no license 
  See http://www.tux.org/lkml/#export-tainted for information about 
tainted modules 
Module rt_com loaded, with warnings 
Warning: loading /lib/modules/2.4.29-rtl3.2-rc1_8-5-05/misc/rt_math.o 
will taint the kernel: no license 
Module rt_math loaded, with warnings 
Module rtl_time loaded, with warnings 
Module rtl_posixio loaded, with warnings 
Module rtl_fifo loaded, with warnings 
Module rtl_sched loaded, with warnings 
Module rtl_debug loaded, with warnings 
 
Scheme: (-) not loaded, (+) loaded 
  (+) mbuff  
  (+) rt_com  
  (+) rt_math  
  (+) rtl  
  (+) rtl_debug  
  (+) rtl_fifo  
  (+) rtl_posixio  
  (+) rtl_sched  
  (+) rtl_time  
 

At this point the RT-Linux system has been loaded successfully; we don’t care too much 
about all the warnings regarding tainted kernel. The following lines report successful 
validation and parsing of the XML configuration files. 
 
xml_open_validate: Validity: 1 
Try Validation: 1 
xml_open_validate: Validity: 1 
Try Validation: 1 
ParseJointFile: Starting 
xml_open_validate: Validity: 1 



 364 

Try Validation: 1 
Found 4 joints 
engineprog: main mbuff_alloc succeeded 
xml_open_validate: Validity: 1 
Try Validation: 1 
xml_open_validate: Validity: 1 
Try Validation: 1 
xml_open_validate: Validity: 1 
Try Validation: 1 
hdso_init_data: initnum = 9 
ParseJointFile: Starting 
xml_open_validate: Validity: 1 
Try Validation: 1 
ParseMuscles: Starting 
ParseStates: Starting 
ParseJoints: Starting 

The following warnings are usually okay; there is an implicit default mapping of sensors 
to aimotors that required no configuration in earlier versions of the code. These lines 
indicate that the joints configuration file has not had the sensor mapping updated and 
included, and it is setting the old default mapping. 
 
ParseJoints: Warning: unreasonable number of sensorspecs [0] found for 
aimotor 601; setting defaults 
ParseJoints: Warning: unreasonable number of sensorspecs [0] found for 
aimotor 602; setting defaults 
ParseJoints: Warning: unreasonable number of sensorspecs [0] found for 
aimotor 603; setting defaults 
ParseJoints: Warning: unreasonable number of sensorspecs [0] found for 
aimotor 604; setting defaults 
 
 
Making system calls to start enginemod module 
Warning: loading enginemod.o will taint the kernel: no license 
  See http://www.tux.org/lkml/#export-tainted for information about 
tainted modules 
Module enginemod loaded, with warnings 
Module                  Size  Used by    Tainted: P   
enginemod              21540   0  (unused) 
rtl_debug              22464   0  (unused) 
rtl_sched              26816   0  [enginemod rtl_debug] 
rtl_fifo                9344   0  [enginemod rtl_debug] 
rtl_posixio             9236   0  [rtl_fifo] 
rtl_time                4336   0  [enginemod rtl_sched rtl_posixio] 
rt_math                20448   0  (unused) 
rt_com                 19752   1  [enginemod] 
rtl                    17424   0  [enginemod rtl_debug rtl_sched 
rtl_fifo rtl_posixio rtl_time rt_math rt_com] 
mbuff                   5228  70  [enginemod] 
 
Engine initialized, I think. 
 

At this point engineprog is done, and enginecli continues with its job. Note how paranoid 
enginecli is about overwriting data. 
 
enginecli: main mbuff_alloc succeeded 
enginecli: I think outdirname is: 'ExpA' 



 365 

I think the script file is: 'scripts/linR_fwd-itf-itb.xml' 
Data directory data/ExpA already exists. Overwrite, erasing all 
previous data in this directory? yes 
yes 
Are you really sure you want to annihilate data/ExpA and all its 
contents?? yes 
yes 
Making directory because I think I removed it 
enginecli: making system calls to start HDSO script engine 
Warning: loading scriptmod.o will taint the kernel: no license 
  See http://www.tux.org/lkml/#export-tainted for information about 
tainted modules 
Module scriptmod loaded, with warnings 
enginecli: about to open command fifo (1) 
enginecli: successfully opened command fifo 
enginecli: opening puppet file FIFOs 
Parsing puppet file scripts/linR_fwd-itf-itb.xml as xml... 
enginecli: about to start monitor 
monitor: Beginning monitor loop 
enginecli: about to enable all joints 
enginecli: about to start RT task 
enginecli: started RT task 
 

At this point enginecli’s job is done for a while, since it has loaded the script onto the 
script FIFO and started all the RT tasks. The following lines are from the monitor data 
handling program; all the “wrote inhdso” lines mean that it recorded some HDSO script 
data, which happens when script entries are enacted by scriptmod and verification is sent 
on the scriptlog FIFO. 
 
Engine Module info, time 8456.904452 sec 
Everything Enabled 
Engine Module info, time 8456.906836 sec 
Starting 
monitor: wrote inhdso 
Script Module info, time 8456.938274 sec 
Starting 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 



 366 

monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
monitor: wrote inhdso 
Script Processor thread info, time 8516.909708 sec 
Subtask Done 
 

The above reports that the script handler stopped because the script FIFO had been 
emptied; this indicates that the scripted experiment has finished. This is conveyed to 
enginecli via shared memory, and enginecli then shuts things down. 
 
monitor: wrote inhdso 
enginecli: about to stop RT task 
enginecli: sent stop commands 
enginecli: Waiting for monitor to quit... 
monitor: Exiting. 
Done. 
 
enginecli: Wrote data files to data/ExpA 
 
I think I have the following 2 arguments: 
./engineprog U  
rmmod: rtl is in use 
 
Scheme: (-) not loaded, (+) loaded 
  (-) enginemod  
  (-) mbuff  
  (-) rt_com  
  (-) rt_math  
  (-) rtl  



 367 

  (-) rtl_debug  
  (-) rtl_fifo  
  (-) rtl_posixio  
  (-) rtl_sched  
  (-) rtl_time  

 
 

rutter@minishadowfax:~/releg/romod/trunk/engine$  
 

All the minuses indicate that the RT-Linux system was successfully and completely 
unloaded. If there are still modules loaded, try “engineprog u” and “datalogging u” to see 
if perhaps something crashed but can still be sensibly unloaded. If this doesn’t work you 
probably have zombie mbuffs or RT-processes and need to reboot. 

 

2.7  Configuration 

Configuration and scripting in NeuRoMod are done using the SCASM Command and 

Configuration Interface Language Specification (SCCILS). The reader is hereby referred 

to the SCCILS 0.1 documentation, available in the doc-romod repository or as part of 

Brandon Rutter’s dissertation. 



 368 

3 Data Output 

3.1  The Data Directory 

The data directory created by datalogging or enginecli contains pretty much 

everything you need to recreate a particular experimental run, in a lucky set of 12 or 13 

files, in 5 convenient categories. 

1. Configuration files.  The SCCILS config files used for this run are copied here; 

joints.xml, parameters.xml and sensors.xml. Content of these files is described in 

the SCCILS documentation. Note, however, that if this directory was generated 

by datalogging then it is not guaranteed that these are the correct configuration 

files. 

2. Script input file.  If enginecli was run in script mode, the script file used is copied 

to scriptfile.xml. 

3. Message logs. 

a. Infolog.txt : text interpretation of messages sent on the INFO2 real-time 

FIFO; messages regarding when various RT system events happened; 

including engine start and stop, and module loading. 

b. Debuglog.txt : text interpretation of messages sent on the DEBUG2 real-

time FIFO; specifically for debug data.  Not really used for anything at 

the moment. 

c. dmesglog.txt : output from the “dmesg” command when data logging is 

stopped; this is where direct output from real-time processes go; 

primarily useful for debugging. 

4. Engine data logs. These four text files contain output from the various engine 

realtime threads, received by monitor via FDATA2 and CDATA2 FIFOS.  Their 

names and formats are as follows. Elements are listed in the order they occur in 

the shared-memory arrays. The mapping of these to SCCILS configuration is 

currently implicit, and can be determined by examining the data loading 

functions in the SCCILStoolbox MATLAB programs. 

a. MotorData.txt  (from motor_action thread in enginemod) 



 369 

time(ns)       motor0current      motor0posn.   motor1current   motor1posn. 

... 

 

b. SensData.txt   (from motor_conversion thread in enginemod) 

time(ns)       sensor0value           sensor1value      ... 

 

c. StateData.txt  (from state_transition thread in enginemod) 

time(ns)       joint0state            joint0activation[0]       joint0activation[1]     

joint1state     ... 

 

d. MuscleData.txt (from muscle_conversion thread in enginemod) 

time(ns) muscle1force muscle1length muscle2force muscle2length ... 

5. SCCILS data logs. These are HDSOscript files; raw FIFO data is logged during 

the run and translated to XML once data logging is stopped. Whereas time 

reported in the engine data logs above are absolute, the script file times reported 

are relative to the engine start time; thus you will need to use the logged engine 

start time in order to unify the time representation between the two sets of files. 

a. Scriptlog.xml contains a log of all the HDSOmods sent to SCRIPT_FIFO 

which were actually implemented by the script task, along with time of 

implementation. If the data is from an enginecli run in script mode, this 

should return something very close to scriptfile.xml as long as the run 

worked properly. Engine start time is also logged here by enginemod, 

though due to the FIFO nature of logging it may be reported late (the time 

values recorded will still be correct) if there are log entries already on 

SCRIPT_FIFO (as is the case when using enginecli). 

b. HDSOlog.xml contains a log of all the HDSO data requests sent on 

HDSO_REQUEST_FIFO which are actually handled by the HDSO 

server task; this contains an exact equivalent of the data sent during 

runtime to the HDSO_DATA_FIFO. When logging is started, the entire 

HDSO database is dumped here, to insure that the configuration can be 



 370 

accurately known at any time. This is to deal with the possibility that 

HDSO data might be modified after engine start time and before logging 

is started. Note that both local logging (via monitor) and SCCILS logging 

must be enabled for HDSOlog to actually contain data. 

 

3.2  Getting data onto your computer 

Though in theory it is possible and desirable to channel a lot of data from the robot 

control “engine” computer to the “interface” computer through SCCILS, current reality is 

that there is a lot more and much higher time-resolution data available at the engine, and 

you are likely to want to get this to your own computer for analysis. For the reader with 

enough UNIX-fu, scp  and scp -r will occasionally be the easiest and fastest way to 

get data from the engine/data directory.  If you’ve done multiple experiments, though, 

and for other reasons as well, you may wish to use an sftp client, or rsync.  This is what I 

usually do.  The following example gets data from my engine/data directory on 

digistation, putting it in the data/ directory in the working directory (i.e., you would 

execute this in the neuromod/engine directory on your local machine (replacing “rutter” 

with your username, if you had followed the installation instructions in section 1 above 

while in your home directory on each machine).   

rsync -avu -e ssh --exclude=*svn* rutter@digistation:~/neuromod/engine/data/ data 

The rsync options used are:  

-a: archive mode; preserve all sorts of permissions and other file metadata  

-v: verbose; tell me what’s happening 

-u: update; do not overwrite newer items in my local data directory (in case I’ve been 

messing with them) 

-e ssh: use ssh as the remote shell 

--exclude=*svn*: exclude all of the hidden files SVN uses to keep track of revisions, 

etc. 

 



 371 

The -n option is also often useful; this just prints out what the command would do, 

instead of actually doing it. In other words, you can run “rsync -n put_anything_here” 

without changing or messing up anything. 

 



 372 

4 RTLinux Basics 

4.1  Introduction 

RTLinux is one of a couple of different methods for giving a computer running Linux 

real-time capabilities.  In the context of operating systems, “hard real-time” does not 

mean fast, it just means that you have the capability of ensuring that a task will be 

completed by a specified time.  Thus, RTLinux will not make a computer do anything 

faster but it will give it the ability to do things on a fairly accurate schedule, as long as 

those things are within the processing capability of the computer. 

This chapter will provide a brief overview of how RTLinux adds real-time capabilities 

to the Linux operating system, and how a program can be given a real-time execution 

schedule.  Much of the information here is available in more detail in Getting Started 

with RTLinux, which is included in HTML form in the documentation of the RTLinux 

distribution.  If you follow the same directions as done for digistation in chapter 8, that 

will be at /usr/src/rtlinux/rtldoc-3.2-pre1/doc/html/GettingStarted. 

4.2  Basic RTL system structure 

RTLinux gives a Linux system real-time capability by inserting a scheduler which runs 

all the real-time tasks in order of their priority.  In this paradigm standard Linux is run as 

the idle task. If there is no real-time task scheduled for execution, the standard Linux 

operating system runs. 

RTLinux real-time programs are written as Linux kernel modules with specific RTL 

functions giving them real-time functionality.  Depending on how the kernel module is 

written, the real-time task or tasks included might start automatically when the module is 

inserted into the kernel, or they might be started by commands from another source.  

Likewise the program might be stopped by removing the module from the kernel, or by 

external commands. 

The fact that real-time programs must be written as kernel modules introduces some 

limitations and dangers you should be aware of.   



 373 

Firstly, only the superuser is allowed to insert and remove kernel modules, since by 

doing so you are modifying the operating system and could easily do nasty things to the 

system and data in memory on the computer. 

Secondly, there are some limitations to what you can do from the kernel; some 

standard C input and output functions are not supported in this context. It is often 

possible to allow standard functions by linking the libraries statically, but you run a risk 

of linking non-RT-safe code (i.e., code which introduces indeterminate blocking, which 

could result in an inability of the RT scheduler to ensure priority adherence). Actually, 

some of the current code has not been strictly evaluated for RT-safety; e.g. HDSO 

searches may not be. Boolean parsing is recursive and may take arbitrary time, but is 

always interruptible. 

Thirdly, since the code you have inserted actually becomes part of the operating 

system, bugs in the code (like a thread loop with no sleep or make_periodic statements) 

can quite easily bring the system to a crashing halt.  One thing you should do to prevent 

many cases of this is to make sure you are running the rtl_debug module whenever you 

are running a real-time module which hasn’t been very thoroughly tested. On current 

installations, rtl_debug is loaded by default whenever the RTLinux system is started. 

4.3  Anatomy of an RTL module 

A Linux kernel module has several parts, each of which serves different functions. For 

now, the hello world example in the Getting Started document referred to in the 

introduction of this chapter will have to suffice. 

4.4  Output from RTL processes 

As alluded to above, many standard C input and output functions do not work in Linux 

kernel context.  Even worse than that, kernel IO functions may or may not be real-time 

safe, and should for the most part be avoided.  This leaves you with a couple of options 

for seeing output from real-time processes: 

rtl_printf can be used for debugging purposes- it prints output to the console and, 

if configured to do so at compile time, the kernel print buffer, whose output can be 



 374 

viewed by using the command dmesg.  rtl_printf should not be used too 

extensively, as it will slow down your code considerably. 

Data can be sent via an RT FIFO to a user-space program for display or recording, or it 

may be possible to use shared memory for a similar functionality. 

  
NeuRoMod uses rtl_printf for debugging and initialization-type console output–

 output that will not be generated frequently, and therefore will not overtax the computer 

during standard operation.  For all other data output, including more frequent status 

updates and data logging, RT FIFOs are used.  These are preferred wherever it is 

important to preserve time order of messages, and that no messages get lost.  It does 

require that the receiving program have extra code for parsing the data structures used in 

the FIFO.  For situations where a particular piece of current data is needed now, looking 

at a shared memory structure is probably best. 



 375 

5 The NeuRoMod Engine Architecture 

This section describes the engine portion of the NeuRoMod control suite, in the 

SCCILS sense of “engine” described in section 2.4.1. The local control system is 

designed to allow modular addition of muscle models, dynamic muscle activation levels, 

and the continuous modification of activations and state transition conditions based on 

higher-level control inputs. This local control might be thought of as occupying the mid-

level sequencing and low-level reactive portions of a three-layer architecture. 

For those reading this as an appendix, this chapter is largely a reproduction of  section 

6.2 of Brandon Rutter’s dissertation. It may be presented with a little more attention to 

the programmatic structure and code function, however. 

 

Figure 5-1 Location of real-time threads on the three-layer architecture backdrop. High-level control 

influences SCASM via descending commands; SCASM specifies motor patterns for lowest-level 

control. All arrows represent the flow of information between system elements. White rectangles are 

threads in the engine module; the state transition thread initiates state transitions and sets muscle 

activations and any low-level reflex rules, making it the thread that actually enacts SCASM. The 

light grey boxes are threads in the script module and handle SCCILS HDSO I/O: the script handler 

takes parameter modifications from the high-level (interface) and enacts them in lower levels. The 

HDSO server provides low-bandwidth access to most of the sensory data and parameter values in the 

lower levels of control.  

The control code was implemented as a number of concurrently running real-time 

threads contained within two kernel modules. This allows for greater control modularity 

than single-process designs, and is a better structural match to the organization of the 

associated computational processes in the animal. The conceptual location of these 



 376 

threads in a three-layer architectural description is shown in Figure 5-1. The same threads 

are shown in the context of a neuromechanical joint in Figure 5-2. 

 

Figure 5-2 Approximate location of real-time threads in the context of the neuromechanical joint 

system. The script handler and HDSO server threads process higher-level interaction. The state 

transition thread implements SCASM, modeling the joint pattern generators. The muscle conversion 

thread models muscle and joint dynamics. The motor action thread handles low-level physics 

modeling and physical I/O. The “motor conversion” thread implements low-level sensory filtering 

and processing. 

5.1  Enginemod: The Control Real-Time Module 

As described above, enginemod is loaded and unloaded by the engineprog user-space 

command-line program. Engineprog sets up and initializes shared memory properly 

before launching enginemod. Enginemod runs four concurrent threads, but control takes 

place primarily in the Motor Action and State Transition threads. The Motor Action 

thread handles the feed-forward force control and runs up to a maximum rate given by 

computation and serial communication overhead, currently 197 Hz. The second SCASM 

control thread runs at a lower priority and handles the state transition and activation 

calculations. The update rates of these threads are both configurable; currently 

recommended settings of 100 Hz and 40 Hz respectively. All control and sensory data are 

stored in shared memory accessible both from real-time and user space, allowing online 

modification of the control. Each thread logs data every execution cycle via FIFO to the 



 377 

“monitor” user space program that writes all data, including sensor readings, states and 

muscle activations, to files. 

 

Figure 5-3 Enginemod thread event relationships.  State Transition and Motor Action threads run at 

their own periodic timebases, and kick the conversion threads when necessary.  All four threads 

access shared memory and produce output that goes through the data/info FIFOs. Many shared 

memory variables may be considered the “output” of one thread and the “input” for another. 

Scriptmod interacts with the controller through its connection to this shared memory. 

5.1.1 The Motor Action Thread 

The motor control thread handles low-level hardware I/O, and the feed-forward torque 

control calculations. The system is fast enough that angle feedback can be used in 

conjunction with the servomotors’ proportional control to implement a crude, but stable, 

feed-forward torque control. For a given desired torque output, the servo is commanded 

to go to some delta of position from the current position; the proportional control used by 

the servo then generates a torque proportional to this delta. This system generates smooth 

compliant motion from an electrical motor system with relatively little computational 

overhead.  

This is implemented as follows: in the servomotor, the current/torque command sent to 

the motor coils is at least primarily a proportional control, calculated as in Equations 5-1, 

where !command is the desired angular position and !measured is that reported by the servo’s 

sensing device. In servo delta control, the command angle is calculated at a higher level 



 378 

and at a high rate by using Equation 5-2. In this case !err , and thereby the motor 

current/torque, can be controlled as shown in Equations 5-3. 

current _ command = P *!
err

!
err

= !
command

"!
measured  Equations 5-1 

for servo delta control, set 

!
command

= !
measured

+!
servo  Equation 5-2 

then 

!
err

= !
measured

+ "
servo

#!
measured

= "
servo
,

current _ command = P *"
servo  Equations 5-3 

5.1.2 Motor conversion thread: Sensory Processing 

The motor conversion thread actually just does low-level sensory processing and 

filtering on the raw A/D sensory data that the Motor Action Thread records in shared 

memory. Angle data are used both in raw 8-bit form and after having a calibration 

applied, but no sensor filtering is done. The current data are filtered using the following 

IIR (Infinite Impulse Response) filter (after initialization). 

 filt_current = 0.05*current + 0.95 * prev_filt_current Equation 5-4 

This IIR filter is hard-coded at this point and unconfigurable; providing SCCILS hooks 

for specifying filtering for any sensory signal would be an excellent addition to the 

present capability. 

5.1.3 State transition control thread: SCASM 

The state transition thread sets the state at each joint by checking the sensory thresholds 

described in the Boolean state transition rules. In so doing, this is the thread that 

implements the action switching of SCASM in these programs. It also calculates and sets 

the activations for the muscles at each joint as specified by the current action. Though 

most configurations currently use constant muscle activations, they are dynamically 

calculated and can use any available sensor and any of the generic functions available in 

the utility.c library. 



 379 

To simulate sensory-motor control loop delays, the state transition thread is run at less 

than the maximum possible.  A period of 25 milliseconds is used in the cockroach robot, 

corresponding to a hypothesized sensory loop delay of about 7.9 ms in the animal. As 

discussed in the future work section of the dissertation, this method has drawbacks 

because it also affects the fineness of sensory event detection, and the speed (and 

therefore fidelity) at which muscle dynamics are calculated. Motion was not obviously 

changed by adding the 25 ms delay here, however. 

5.1.4 Muscle conversion thread: Muscle modeling 

The muscle conversion task handles muscle model calculations, and sets the !servo 

values used by the Motor Action thread. Here, the term “muscle model” refers to a crude 

mathematical model of a biological muscle, where the muscle is represented as a 

contractile element whose force at a particular level of activation is scaled by its current 

length and velocity. The length of the element, in turn, is determined by modeling the 

joint as a constant-radius pulley; an inaccurate but computationally simple joint model. 

This model of muscle activation is simpler than those intended to accurately model 

muscle dynamics (e.g. that of (Hill, 1970)), which can include a more complex 

arrangement of passive nonlinear stiffness and damping elements. 

The servo delta at each joint is computed using the following relationship: 

! servo = r " f[ ]
muscles

#

f = PS + activation "FL "FV " fmax

 Equation 5-5 

where r is the radius of the pulley associated with each muscle, f is the current force of 

that muscle, PS, FL and FV are the values of the muscle’s functions for passive stiffness, 

force-length activation scaling, and force-velocity activation scaling respectively, and fmax 

is a parameter intended to represent the maximum force which can be exerted by each 

particular muscle. PS, FL and FV can be calculated using constant, linear, parabolic or 

hyperbolic relationships, as implemented in generic_function in utility.c. As an example, 

the linear force-length characteristic FL was a function of nondimensionalized muscle 

length l’: 



 380 

  Equation 5-6 

with a and b constant parameters, ! the joint angle, l0 the “resting” length of the muscle 

and " the joint angle at which the muscle has this length.  

Though it is not modeled explicitly and has not been quantified, there is also a force-

velocity dependence inherent in the force control method used in the Motor Action 

thread. As a joint moves more quickly in the direction it is being driven, the average 

distance between the commanded position and the joint’s actual position will become 

less, reducing the torque applied to the joint. The inverse is also true; decreasing joint 

velocity increases force. In the limit of the static case, !err is always equal to !servo and 

will therefore actually be exerting the associated torque. At high speeds the low-level !err 

may never equal !servo, since the low-level !measured will have moved closer to the 

calculated !command by the time the !servo command reaches the servo. Additionally, there 

is some speed-output torque relationship for any physically existing motor and 

transmission, which also reduces maximum torque output at higher speeds. 

5.2  Scriptmod: The SCCILS Interaction Real-Time Module 

The low-level hooks for online SCCILS configuration changes are in the HDSO data 

store in the RT-Linux shared memory, accessed by enginemod. Scriptmod provides timed 

read and write access to these data through its two threads: the script handler and the 

HDSO data server. 

The script handler thread receives HDSOmod data change commands (already 

translated from XML to the native engine representation) and implements them as closely 

as possible to the times specified. Once an HDSOmod has been applied, the script 

handler puts that HDSOmod on the Scriptlog FIFOs, marked with the time of actual 

implementation. 

The HDSO server thread receives HDSOspec specifiers for requested HDSO data. It 

then reads the associated data from the shared memory HDSO store and writes them to 

the HDSOlog FIFOs, marked with the current time. 



 381 

 

Figure 5-4 Scriptmod data flow. The script handler takes HDSOmod config changes via the Script 

FIFO, implements them at the desired time, and records actual implementation via the Scriptlog 

FIFOs (to Scriptlog.xml). The HDSO data server takes requests for HDSO data via the request 

FIFO, then looks up the specified data and writes it to the HDSOlog FIFOs in HDSOmod form.  The 

“Shared Memory” in this figure is the shared memory HDSO store, a subset of the “Shared 

memory” block in the enginemod diagrams; thus the “connection” with enginemod. 

5.3  User-space programs 

Although the actual control computations take place in the real-time modules described 

above, there are a number of things that happen in programs in the “Linux User-Space 

Domain” elements of Figure 5-3 and Figure 5-4. This reflects the fact that user 

interaction, initial system configuration, and file parsing and I/O are better handled in the 

normal Linux programming environment. 

Parsing and configuration are accomplished primarily by the engineprog command-line 

program. It is used to load and unload the RT-Linux modules, and makes heavy use of 

functions in the userio.c library. The monitor program logs data from RT data FIFOs to 

disk, and is run as a very high-priority user-space task. The datalogging command-line 

program is used to load and unload the daemon-like monitor, and it does some parsing of 

raw FIFO data written to disk by monitor. 

The Python SCCILS translator and the command-line enginecli program are higher-

level programs for running the engine interactively or executing experimental scripts. 



 382 

Each of these makes use of engineprog and monitor/datalogging for the services they 

provide. The Python translator, of course, interacts with the graphical user interface via 

SCCILS, and via that SCCILS communication is capable of interacting with higher-level 

control of any nature. 

5.4  Shared Memory and FIFO Organization 

Information of many kinds is shared and passed between various RT tasks and user-

space tasks using both shared memory and RT-FIFOs. Nearly all the configuration and 

operational data is stored in shared memory, allowing any process to look at and modify 

it at any time. Of course, it generally makes sense for only the sensor-reading real-time 

tasks to modify the sensor data values (for example), but there is no mechanism enforcing 

this. In order to make the operation a little more strictly controlled, communication of 

data between RT and user-space programs only takes place through RT-FIFO during 

actual engine operation. The user space programs do manipulate and initialize nearly all 

the shared memory structures before starting the real-time modules, however. 

Shared memory is handled using the mbuff driver; each shared memory variable must 

be allocated/attached using mbuff_alloc at the beginning and detached using mbuff_free 

at the end of each program that uses that variable. In many of the programs involved in 

the NeuRoMod engine, you will find a lot of goto: quitting_stuff statements; 

generally wherever a fatal error is detected. This goes to the end of the main function, 

which has all of the mbuff_free statements and occasionally some other cleanup 

necessary before the program exits. If the program hangs or exits without freeing those 

shared memory variables, they will persist as “zombie” variables and the mbuff driver 

kernel module will not unload. Occasionally running an unload version of a program 

(such as “enineprog u”) will kill zombie variables, but sometimes this will not work. 

In such cases it is necessary to reboot the computer to kill the zombies. This is usually 

recommended, because although the initialization routines should give you a clean slate, 

it is possible (and this has happened) that in some cases particular zombie data might not 

be zapped and cause confusion. Usually, it is best to kill the zombies. 

One important note to understand when using mbuff is that the pointer address space is 

different in the kernel and user-space environments. Therefore, shared pointer variables 



 383 

will not point to the same place in both contexts. This is why many of the shared memory 

structures use array indices rather than pointers. It is considerably messier than using 

pointers would be, but it does work. 

An overview of the shared memory structure is shown in Figure 5-5. No one program 

accesses all shared memory variables; these are all the variables used in NeuRoMod. 

There are a number of one-element variables, many of which specify the size of shared 

data arrays. The parameter struct arrays provide structures for accessing various 

configuration and control data, much of which is actually stored in the monolithic HDSO 

database’s data storage block. 

 

Figure 5-5 Shared memory overview for NeuRoMod. Status variables help to coordinate the function 

of different processes and programs, file handling variables are used primarily by enginecli, 

datalogging and monitor in user space. The array size variables are associated with the arrays they 

point to, and are necessary to allocate the proper array size in each program accessing shared 

memory. Param- and sensordatasize are only used in initialization to double-check consistency with 

hdsodatasize. The struct data type associated with each parameter struct array is given in 

parantheses in the parameter struct arrays block. The HDSO database really only consists of hdsos 

and hdsodata; parameters and hdsoSensors are convenience pointers into the hdsos array, but valid 

only in user space. 

The FIFOs used in NeuRoMod are shown in Figure 5-6; note that the “input” FIFOs 

that carry info from user space to RT kernel space are all single-input-single-output since 

only one of enginecli or server.py is active at any given time. The output FIFOs can each 

carry information from multiple RT processes, and since they are duplicated (e.g. there 



 384 

are INFO and INFO_2 FIFOs) they can carry information both to the local monitor data 

logger and through server.py to SCCILS interfaces. 

 

Figure 5-6 FIFOs used in NeuRoMod; the struct type on each FIFO is labeled according to the legend 

at the bottom. The script, hdso_request, scriptlog and hdso_data FIFOs each actually carry 

interleaved info_msg_structs and raw data associated with the HDSOmod defined in the preceding 

struct. 

 



 385 

6 Writing Programs to Interact with the Engine 

 

6.1   Introduction  

I have, for the most part, tried to document the code in the various NeuRoMod engine 

program and library files pretty well.  So, many questions can be answered by looking at 

the code, and searching for something you want to find (use control-s to search for 

something in emacs or xemacs text editors).  You may wish to have a place to start, 

however, to familiarize yourself with the structure of the programs and meanings of the 

variables. I have started using Doxygen (www.doxygen.org) to create documentation for 

the source code in HTML.  The current documentation can be found in the repository; 

checked out in the installation as doc-romod/engine/html/index.html .  An abbreviated 

version of this documentation is also contained in an appendix to Brandon Rutter’s 

dissertation. The same information is available in the source code, but even I find the 

HTML pages generated by Doxygen useful, and the hyperlinks provided between 

functions and files make navigation considerably more pleasant than searching through 

code in a text editor. If you plan to work on the code and update the Doxygen 

documentation, note that the Doxyxfile configuration in neuromod/engine currently 

assumes that neuromod/doc is linked to doc-romod; however this is only the default if 

you have checked out the entire romod repository; it won’t work out of the box with the 

installation instructions in this manual. 

There are a number of ways to interact with the engine using a further program 

added to the system, and a number of things to do with this interaction:  

1) Through SCCILS, using the Python translator. This is currently used for the UI, 

and could be used for higher-level control and optimization programs. Data bandwidth is 

limited in this method, however, since the SCCILS layer does add considerable 

communication overhead. This method is not covered here, but anything implementing 

SCCILS should be able to make use of this way to add function; consult the example of 

the Python UI and server, and the SCCILS specification. It may be wise to consider this 



 386 

option first, since SCCILS provides a better-defined API than other, lower-level 

communication with the engine. 

2) Through real-time FIFOs from user space. Monitor is a good example of this, 

though its function is essentially read-only.  Such programs can be local, and high-

bandwidth. One could use both SCCILS functionality and higher-bandwith (and currently 

broader kinds of) data in this kind of program. 

3) Through shared memory; either user-space and higher-level programs, or 

replacing or augmenting engine-level function. Examples: engineprog for 

configuration/initialization/setup. Scriptmod for the addition of functionality. 

 

6.2  Writing an RTLinux module 

Anything dealing with additional hardware or requiring strict interactive scheduling 

should be done in RT. To write your own RTL control modules, I suggest first 

familiarizing yourself with some of the RTL functions and the hello_world example, by 

reading  

/usr/src/rtlinux/rtldoc-3.2-pre1/doc/html/GettingStarted/index.html 

The RTLinux examples are in /usr/src/rtlinux/rtlinux-3.2-rc1/examples .  The frank 

example demonstrates the FIFO command handling used in NeuRoMod. 

Once you are familiar with the basics (or perhaps before), you can start taking a look at 

scriptmod.c as an example of relatively simple function to extend the functionality of the 

already-loaded and already-running engine. Honestly, scriptmod is not all that simple but 

it can be significantly simplified by ignoring the HDSO data server FIFO handler and 

thread. 

Essentially, though, an RTLinux kernel module consists of the following sections: 

includes 

module-global variables, including thread variables and mbuff shared memory pointers 

FIFO handler functions (optional) 

function(s) for RT thread(s) containing: 



 387 

initialization of local variables; possibly setting the thread to periodic execution or 

allowing floating-point calculations. 

thread execution loop; must include either sleep statement(s) (usually 

clock_nanosleep) or pthread_wait_np (if it’s been set to automatic periodic 

execution) in order to allow Linux some execution time. 

init_module function containing: 

 FIFO initialization  

shared memory attachment 

 possible linking of kernel-space pointer variables to shared memory (see 

enginemod) 

 create and possibly start the thread(s) 

cleanup_module function containing: 

 FIFO destruction 

 thread halting/destruction 

 shared memory unlinking 

Of the RT modules in NeuRoMod, scriptmod is probably the easier to understand. 

When developing realtime modules, keep in mind that at the Linux command prompt you 

can always enter “lsmod” to see what modules are currently loaded.  If things are acting 

strangely, sometimes it is because somebody left an external module running after they 

quit the main engine. 

6.3  Writing a user space program 

User and file I/O, as well as higher-level control that has less stringent scheduling 

requirments (and may use more complex, non-deterministic-time calculations), should be 

done in user space. The most straightforward examples of user space interaction with the 

engine are datalogging.c and monitor.c. A user space program that interacts with the 

engine will probably have the following elements: 

includes 



 388 

main function, including: 

variable declarations & initialization 

possible input parsing, mode determiniation, and environment checking 

shared memory attachment/allocation 

shared memory status variable initialization 

Possible file parsing 

RT-FIFO opening (note: in some cases it is better to only open FIFOs when necessary, 

and close them after each use) 

Execution loop, possibly including: 

 shared memory status updates 

 user interaction 

 FIFO data processing (from RT) 

 File output 

 Control computations and FIFO output to RT 

quitting_stuff, including: 

 file closing 

 RT-FIFO closing 

 shared memory status updating (to indicate this program is done) 

 shared memory detachment/deallocation 

 return status 



 389 

7 Using Linux 

7.1  Basic commands 

Note on doing things as the super-user:  On the RTLinux machine where you run the 

engine, a number of the commands will only work if you do them as the “super-user”.  In 

UNIX and similar systems, the super-user, usually named “root”, is essentially capable of 

doing anything. It is therefore dangerous to do things as the super-user, since you can 

really mess things up! 

The standard way to run a command as the super-user is ‘sudo [command]’; this will 

work for commands you have been given the rights to run as super-user. For increased 

security you will often be required to type your password. Though it is routine to run a 

number of commands via ‘sudo’ to operate NeuRoMod, try not to become too 

comfortable doing this. Be careful with sudo, because it is possible to really mess things 

up if you run the wrong commands as super-user. 

Basic UNIX commands: 

Typing the “tab” key in a terminal will auto-complete a command or file name if it is 

unique. 

The standard syntax for a UNIX command line program is 

command -options [arguments] 

When describing a set of commands, it is standard to have a new command on each line; 

i.e. 

cd ~ 

ls 

Are two separate commands; hit “return” after each. (Those two commands will take you 

to your home directory and show you what’s in it). 

 

man [command] displays a manual page for command 

info [command] displays either more in-depth info for a command, if available, or 

the manual page for the command 

apropos [keyword] displays a list of commands dealing with keyword 



 390 

 

cd [dir] change directory to dir 

pwd print working directory to screen 

ls list the contents of the current directory 

~ shortcut for your home directory 

~rutter shortcut for rutter's home directory 

. shortcut for working directory 

.. shortcut for parent of working directory 

mkdir [dir] create directory [dir] 

mv [path] [path] move file or directory from one place to another 

cp [path] [newpath] copy  a file 

cp -r [path] [newpath] copy directories recursively 

rm [path] delete a file 

rm -r [path] recursively delete a directory 

rm -rf [path] recursively delete a directory without asking for confirmation 

*  wildcard character 

rm -r * something to type only if you know what you're doing – 

recursively removes all files and directories in the working  

directory 

sudo do something as the root user, or "superuser" 

startx start the X screen display server 

passwd change your password 

emacs a text editor 

xemacs same text editor, works better in X 

halt immediately shut down the system 

reboot immediately reboot 

shutdown a command that allows you to warn users who may be logged in 

before rebooting or shutting down 

who displays who is logged on to the machine, and from where 



 391 

ssh user@hostname secure shell – log into hostname as user 

scp secure copy – copy documents from one machine to another 

securely.  to copy an entire data directory poo on exuberance to 

your home directory on your local machine, type  

 “scp -r user@exuberance:~rutter/llcnew/data/poo ~/.” 

rsync Remote sync 

 

 

 

7.2  Online tutorial 

 
http://www.linux.org/lessons/beginner/index.html 



 392 

8 Installing RT-Linux 

This consists merely of a copy of the installation log kept for Digistation, the most 

recently and straightforwardly configured NeuRoMod engine-capable machine. These 

directions provide a complete outline, but a substantial amount of ability to run Debian 

installers and do Linux kernel configuration is assumed. If you run into trouble, which is 

most likely in the kernel configuration stage in the selection of the drivers necessary for 

your machine, there is considerable help available on the internet- though it can take 

some time to dig up and understand properly. Be patient, and possibly enlist the help of a 

Linux/Unix geek who will think it’s cool to configure a real-time kernel. In case it is 

useful, both this and the configuration log for minishadowfax (which is longer, and not 

quite so straightforward) are included in the doc-romod subversion repository. 

 

digistation admin log 

 

Intended system use: SCASM robot runner; sibling/update/replacement of minishadowfax 

 

500 MHz Pentium III 

 

Optical NIC: National Semiconductor DP83820 10/100/1000 driver 

 

hda: IBM DTTA-371440    /, swap 

hdc: BCD-48SB CD-ROM 
hdd: WDC WD1200JB-00FUA0 /home 

 

Video card: 

agpgart: Detected an Intel 440BX Chipset. 

agpgart: AGP aperture is 64M @ 0xe0000000 

 

12/4/2007 BLR 

Installed Debian Etch from net install image debian-40r1-i386-netinst.iso 

Basic system 

Also added basics and basic window manager: sshd, (x)emacs, xfce, sux, modutils 

Also added Python+wxWidgets for the robot UI, and libxml2-dev,utils,doc  
and setserial for engine 

 

12/6/2007 BLR 

Continuing basic setup before compile & install of RTLinux 

 

configure sudoers file: 

 

----------------------- 

# /etc/sudoers 

# 



 393 

# This file MUST be edited with the 'visudo' command as root. 

# 

# See the man page for details on how to write a sudoers file. 

# 

 

Defaults        env_reset 
 

# Host alias specification 

 

# User alias specification 

User_Alias BOTRUNNERS = rutter, markw, bkt2, jbender 

 

# Cmnd alias specification 

 

# User privilege specification 

BOTRUNNERS ALL=(ALL) ALL 

root    ALL=(ALL) ALL 

-------------------------------- 
 

That appears to work.  Now disable root ssh login: 

 

edit /etc/ssh/sshd_config 

  Find the line in the "# Authenication:" section which reads: 

    PermitRootLogin yes 

  This is "yes" by default, and will allow someone to ssh into the 

      machine using the root account. 

  First change this option to "no". 

Now the sshd service needs to be restarted, so that the config file 

    is read off of the disk: 
  /etc/init.d/ssh restart 

Test to make sure it is doing the right thing, and that everyone 

    who should be able can still get into the machine 

 

All appears to work. 

 

Now, enable X11 forwarding over SSH as default: 

 

in /etc/ssh/sshd_config change X11Forwarding line to "yes" 

(actually, the above now appears to be the default) 

in /etc/ssh/ssh_config change ForwardX11 to "yes" and uncomment 

 
use 

ps aux | grep sshd 

to find root sshd process, then kill -HUP that process 

 

(this kill step actually unnecessary, since sshd was already correctly configured) 

 

 

Edit /etc/apt/sources.list to remove the cdrom entry 

 

=============== 

Now do the RTLinux thing. 
 

1) compile and install gcc 2.95.3 from gcc.gnu.org 

 

First, make sure you've got any compiler at all; I installed Etch gcc, which is 4.1 



 394 

Also, install flex to work around a bug in binutils make process 

 

install binutils 2.15, from http://ftp.gnu.org/pub/gnu/binutils/ 

 

tar -xjf binutils-2.15.tar.bz2 (might have to rename the tarball) 

cd binutils-2.15 
./configure 

make 

sudo make install 

 

tar -xvzf gcc-2.95.3.tar.gz  

follow directions in gcc-2.95.3/install/index.html 

 

mkdir gcc_objdir 

cd gcc_objdir 

../gcc-2.95.3/configure --with-as=/usr/local/bin/as --with-ld=/usr/local/bin/ld 

 

make bootstrap 
 

sudo make install 

 

This puts gcc 2.95.3 (as "gcc") in /usr/local/bin, so it's the default (since this is 

before /usr/bin in the default path)  Yay! 

 

===== 

2) compile custom kernel, basing config choices on those from minishadowfax. 

 

First get the sources in the right places: 

 
put the following in /usr/src: 

linux-2.4.29 (vanilla from kernel.org) (symlink "linux" to this) 

tarball from http://www.rtlinux-gpl.org/cgi-bin/viewcvs.cgi/  

(saved and unpacked in /usr/src/rtlinux/) 

rt_math-1.0 (from tarball from minishadowfax, originally from http://sourceforge.net/projects/mca2) 

 

Now configure and compile the custom kernel (as root) 

cd /usr/src/linux 

 

make clean 

make mrproper 

make xconfig 
 

do not prompt for alpha modules/code 

enable loadable module support 

do not set version information on module symbols 

yes: kernel module loader 

 

Processor type/features 

PentiumIII/Celeron(Coppermine) 

Machine Check Exception 

(turned off SMP support) 

General Setup disabled support for hot-pluggable devices (includes PCMCIA 
enabled kernel support 

 for all available binaries 

disabled power management support 

RTC stores time in GMT 



 395 

 

NO parallel port support 

 

No Plug and Play support 

 

Block devices only Normal Floppy (Though Ram disk might be useful at some point) 
 

Network: Packet socket: mmaped IO 

Network packet filtering 

Socket filtering 

 

IDE,ATA... 

IDE,ATA, and ATAPI block devices 

turned off use multi-mode by default 

turned on CMD640 bugfix/support and enhanced support 

 left on: use PCI DMA by default when available 

 turned off INtel PIIXn chipsets support 

turned off RZ1000 chipset bugfix/support 
SCSI support off 

 

Network devices: 

Dummy net driver as module 

Enable 10/100 

       DECchip Tulip support 

Ethernet 1000 

  National Semiconductor DP83820 support 

 

Character Devices: Module Enhanced Real Time clock Support rtc.o 

turned off Direct Rendering Manager turned off all AGP chipset support except 
 Intel 440LX/BX/GX 

 

File systems 

Reiserfs 

EXT3 

DOS FAT 

MSDOS 

VFAT turned off Virtual memory file system support 

NTFS 

XFS 

Network all but SMB (unix extensions enabled) off 

UDF read-only 
 

Sound support off 

USB support off 

 

make dep 

 

edit EXTRAVERSION in Makefile = pre-rtl_12-6-07 

make bzImage (or nohup make bzImage &) 

 

Crap, that didn't work; got a bunch of errors starting with: 

{standard input}: Assembler messages: 
{standard input}:730: Error: suffix or operands invalid for 'mov' 

 

Apparently this has to do with: 

"...The new i386/x86_64 assemblers no longer accept instructions for moving 



 396 

between a segment register and a 32bit memory location,..." 

(from http://kerneltrap.org/node/5785) 

and indeed minishadowfax has gnu assembler version 2.15, whereas here it's 2.17 

 

Okay, so install that version of binutils and re-compile GCC 2.95.3 with it... 

This is actually included above, so that this day is represented as a single  
successful series of events. 

 

After having done that and (successfully!) re-done all of the above: 

 

make modules 

make modules_install 

copy the config file for records 

copy the image 

 /usr/src/linux/arch/i386/boot/bzImage to /boot/vmlinuz-2.4.29_pre-rtl_12-6-07 

copy the .config to /boot/config-imagename (i.e. config-2.4....) 

 

edit /boot/grub/menu.lst to have a 20 second timeout for boot loading 
update-grub 

reboot 

 

all appears to work, except the ethernet interface didn't come up automatically. 

Apparenlty this is one of the things the 2.6 kernel supports- in interfaces eth0 

was listed as allow-hotplug, and that was enough.  but not so for a 2.4 kernel. 

 

To fix, edit /etc/network/interfaces 

 

modify the following line to be: 

auto lo eth0 
 

And now it works. 

 

but whoops, x doesn't work on the console.   

 

dpkg-reconfigure xserver-xorg, leave everything the same but change the 

mouse port to /dev/psaux (/dev/mice apparently not supported by 2.4 kernel) 

   

yup, that works. 

 

Okay, now do rtlinux 

 
cd /usr/src/linux 

change EXTRAVERSION back to blank 

make clean 

make mrproper 

patch -p1 < ../rtlinux/rtlinux-3.2-rc1/patches/kernel_patch-2.4.29-rtl3.2-rc1 

copy config file from above to .config 

make xconfig 

 

not enabling RTLinux HAL 

leave everything else as before.  Save and exit. 

 
make dep 

 

edit EXTRAVERSION = -rtl3.2-rc1_12-6-07 

make bzImage 



 397 

 

make modules 

make modules_install 

copy image and config to /boot/  with version name 2.4.29-rtl3.2-rc1_12-6-07 

update-grub 

 
reboot 

 

All appears to work!  Now compile rtlinux modules 

 

cd to /usr/src/rtlinux/rtlinux-3.2-rc1 

 

make checklinux 

succeeded 

 

make xconfig 

turned off RTLinux V1 API support 

left everything else as default 
 

make dep 

make 

make install 

 

make regression - all OK, no warnings! 

 

now install rt-math 

cd /usr/src/rtlinux/rt-math-1.0 

edit makefile to set include paths correctly: 

"rtl" -> "rtlinux/rtlinux-3.2-rc1" 
"rtlinux" -> "linux" 

 

make 

 

cp rt_math.o /usr/rtlinux/modules 

cp rt_math.o /lib/modules/2.4.29-rtl3.2-rc1_12-6-07/misc 

cp include/rt_math.h /usr/local/include/ 

 

and while we're at it, copy rtl_debug module from rtlinux-3.2-rc1/debugger/rtl_debug.o 

to these same places (not include) 

 

Do the same with rtlinux-3.2-rc1/drivers/rt_com.0.5.5/ 
 

now attempting to make /romod/trunk/engine  

 

compiler isn't finding libxml/*.h header files 

 

-ah yes, make the necessary symlink: 

 

ln -s /usr/include/libxml2/libxml /usr/include/libxml 

 

now scriptmod make complaining that ld can't find -lc; added -L/usr/lib to fix this. 

not sure what was making this work on minishadowfax. 
 

Also getting ": undefined reference to 'errno'" errors from make of enginecli --appears new 

libc doesn't like old "extern int errno" usage, needs #include <errno.h> instead 

 



 398 

This compiles! 

 

hrm.  having troubles getting rt_com to work, and FIFOs don't appear to be working right 

 

This was due to rt_com.o not loading, due to it attempting to gain control of more than just 

the first serial port.  Need to figure out what exactly is necessary to get this to work 
(I did setserial /dev/ttyS[0-3] uart none) 

 

 

12/11/2007 BLR+JAB 

=================== 

To get the Python GUI working, changed symlink for python in /usr/bin to  

point to /usr/bin/python2.5 

 

Also, needed to get a more up-do-date wxWidgets to work with Python2.5: 

 

add 

 
deb http://apt.wxwidgets.org/ etch-wx main 

deb http://debs.astraw.com/ gutsy/ 

 

to /etc/apt/sources.list 

 

apt-get update 

apt-get install python-wxgtk2.8 python-wxvalidatedtext python-setuptools 

 

Also had to make symlinks in /usr/lib/python2.5/site-packages to the above 

packages, which otherwise installed in /usr/lib/python2.4/site-packages 

 
cd /usr/lib/python2.5/site-packages 

ln -s ../../python2.4/wx-2.8-gtk2-unicode 

ln -s ../../python2.4/wxversion.py 

ln -s ../../python2.4/pkg_resources.py 

ln -s ../../python2.4/setuptools 

ln -s ../../python2.4/wx.pth 

ln -s ../../python2.4/python-support.pth 

ln -s ../../python2.4/setuptools.pth 

ln -s ../../python2.4/wxvalidatedtext 

 

 

3/15/08 JAB 
=================== 

changed python-wxvalidatedtext package: 

 

# apt-get remove python-wxvalidatedtext 

# apt-get install python-motmot-wxvalidatedtext 

# cd /usr/lib/python2.5/site-packages 

# rm wxvalidatedtext 

# ln -s ../../python2.4/motmot 

# ln -s ../../python2.4/motmot.wxvalidatedtext.egg-info 

# ln -s /usr/share/pycentral/python-motmot-wxvalidatedtext/site-packages/motmot.wxvalidatedtext-

0.5.1.dev_r409-py2.4-nspkg.pth 
# ln -s /usr/share/pycentral/python-motmot-wxvalidatedtext/site-packages/motmot.wxvalidatedtext-

0.5.1.dev_r409-py2.5-nspkg.pth 

 



 399 

11 Bibliography 

 

Abbas, J., & Full, R. J. (2000). Neuromechanical interaction in cyclic movements. In J. 
M. Winter & P. E. Crago (Eds.), Biomechanics and neural control of posture and 

movement (pp. 177-191). New York: Springer-Verlag. 
Akay, T., Bässler, U., Gerharz, P., & Büschges, A. (2001). The role of sensory signals 

from the insect coxa-trochanteral joint in controlling motor activity of the femur-
tibia joint. Journal of neurophysiology, 85(2), 594-604. 

Akay, T., & Büschges, A. (2006). Load signals assist the generation of movement-
dependent reflex reversal in the femur-tibia joint of stick insects. J Neurophysiol, 

96(6), 3532-3537. 
Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors 

underlie interjoint coordination during stepping movements of the stick insect leg. 
Journal of neurophysiology, 92, 42-51. 

Akay, T., Ludwar, B. C., Goritz, M. L., Schmitz, J., & Büschges, A. (2007). Segment 
specificity of load signal processing depends on walking direction in the stick 
insect leg muscle control system. Journal of Neuroscience, 27(12), 3285-3294. 

Allen, T. J., Quinn, R. D., Bachmann, R. J., & Ritzmann, R. E. (2003, Oct). Abstracted 

Biological Principles Applied with Reduced Actuation Improve Mobility of 

Legged Vehicles. Paper presented at the IEEE/RSJ international conference on 
intelligent robots and systems (IROS 2003), Las Vegas, NV. 

Alsop, D. W. (1978). Comparative analysis of the intrinsic leg musculature of the 
American cockroach, Periplaneta americana (L.). Journal of Morphology, 

158(2), 199-241. 
Altendorfer, R., Moore, N., Komsuolu, H., Buehler, M., Brown, H. B., McMordie, D., 

Saranli, U., Full, R., & Koditschek, D. E. (2001). RHex: A biologically inspired 
hexapod runner. Autonomous Robots, 11(3), 207-213. 

Asada, H., & Slotine, J.-J. E. (1986). Robot Analysis and Control. New York: Wiley-
Interscience. 

Bachmann, R. J., Nelson, G. M., Flannigan, W. C., Quinn, R. D., Watson, J. T., & 
Ritzmann, R. E. (1997, May). Design of a Cockroach-Like Hexapod Robot. Paper 
presented at the 11th VPI & SU Symposium on Structural dynamics and control, 
Blacksburg, VA. 

Bässler, U. (1988). Functional Principles of Pattern Generation for Walking Movements 
of Stick Insect Forelegs: The Role of the Femoral Chordotonal Organ Afferences. 
J Exp Biol, 136(1), 125-147. 

Bässler, U. (1993). The femur-tibia control system of stick insects – a model system for 
the study of the neural basis of joint control. Brain Research Reviews, 18, 207-
226. 

Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking 
movements – multisensory control of a locomotor program. Brain Research 

Reviews, 27, 65-88. 
Beer, R. D., & Gallagher, J. C. (1992). Evolving Dynamical Neural Networks for 

Adaptive Behavior. Adaptive Behavior, 1(1), 91-122. 



 400 

Bender, J. A., Rutter, B. L., Simpson, E. M., Papay, T., Parker, D. A., Taylor, B. K., 
Quinn, R. D., & Ritzmann, R. E. (2008, June 1-6). Robotic Control based on 

Cockroach 3D Leg Kinematics. Poster presented at the Fourth International 
Symposium on Adaptive Motion of Animals and Machines Cleveland, OH. 

Bender, J. A., Simpson, E. M., & Ritzmann, R. E. (2008). Increased stereotypy of leg 
movement patterns with increased walking speed in the cockroach. Program no. 
198.6. 2008 Neuroscience Meeting Planner. 

Bender, J. A., Simpson, E. M., & Ritzmann, R. E. (2009 (In Prep)). Quantitative 
behavioral analysis reveals a distinction between trotting and ambling gaits in the 
cockroach, Blaberus discoidalis. to be submitted to Arthropod Struct Dev. 

Black, P. E. (2008). finite state machine. Dictionary of Algorithms and Data Structures  
Retrieved July 5, 2009, from 
http://www.itl.nist.gov/div897/sqg/dads/HTML/finiteStateMachine.html 

Boggess, M., Schroer, R., Quinn, R., & Ritzmann, R. (2004, Apr). Mechanized 

Cockroach Footpaths Enable Cockroach-like Mobility. Paper presented at the 
International conference on robotics and automation; 2004 IEEE, New Orleans, 
La. 

Borgmann, A., Hellekes, K., & Büschges, A. (2009). Characterization of intersegmental 
sensory influences in the stick insect walking system. Program no. 564.15. 2009 

Neuroscience Meeting Planner. 
Branicky, M. S. (1995). Studies in hybrid systems: modeling, analysis and control. 

Massachusetts Institute of Technology, Cambridge. 
Branicky, M. S. (1997, 09-04-1999). Hybrid Systems Retrieved July, 2009, from 

http://dora.cwru.edu/msb/personal/hybrid.html 
Brezina, V., Orekhova, I. V., & Weiss, K. R. (2000). The Neuromuscular Transform: The 

Dynamic, Nonlinear Link Between Motor Neuron Firing Patterns and Muscle 
Contraction in Rhythmic Behaviors. Journal of neurophysiology, 83(1), 207-232. 

Brooks, R. A. (1986). A robust layered control system for a mobile robot. Robotics and 

Automation, IEEE Journal of, 2(1), 14-23. 
Brooks, R. A. (1989). A Robot that Walks; Emergent Behaviors from a Carefully 

Evolved Network. Neural computation, 1(2), 253-262. 
Brooks, R. A. (1991). New Approaches to Robotics. Science, 253(5025), 1227-1232. 
Bucher, D., Akay, T., DiCaprio, R. A., & Büschges, A. (2003). Interjoint coordination in 

the stick insect leg-control system: The role of positional signaling. Journal of 

neurophysiology, 89, 1245-1255. 
Büschges, A. (2005). Sensory Control and Organization of Neural Networks Mediating 

Coordination of Multisegmental Organs for Locomotion. Journal of 

neurophysiology, 93(3), 1127-1135. 
Büschges, A., Ludwar, C., Bucher, D., J, S., & DiCaprio, R. A. (2004). Synaptic drive 

contributing to rhythmic activation of motorneurons in the deafferented stick 
insect walking system. European Journal of Neuroscience, 19, 1-7. 

Büschges, A., Schmitz, J., & Bässler, U. (1995). Rhythmic patterns in the thoracic nerve 
cord of the stick insect induced by pilocarpine. Journal of Experimental Biology, 

198, 453-456. 
Buschmann, A. (2000a, March 2000). Home of Tarry I & II: design of the walking 

machine Tarry II, from http://www.tarry.de 



 401 

Buschmann, A. (2000b, March 2000). Home of Tarry I & II: frequently asked questions 
about Tarry, from http://www.tarry.de 

Chan, K. H., & Tidwell, P. M. (1993). The reality of Artificial Life: Can computer 

simulations become realizations? Paper presented at the Third International 
Conference on Artificial Life (submitted).  

Choi, J.-u., Rutter, B. L., Kingsley, D. A., Ritzmann, R. E., & Quinn, R. D. (2005, Jul). A 

Robot with Cockroach Inspired Actuation and Control. Paper presented at the 
IEEE / ASME international conference on advanced intelligent mechatronics, 
Monterey, CA. 

Collins, S. H., Wisse, M., & Ruina, A. (2001). A Three-Dimensional Passive-Dynamic 
Walking Robot with Two Legs and Knees. The International Journal of Robotics 

Research, 20(7), 607-615. 
Crespi, A., Badertscher, A., Guignard, A., & Ijspeert, A. J. (2004). AmphiBot I: an 

amphibious snake-like robot. Robotics and autonomous systems, 50(4), 163-175. 
Cruse, H. (1976). The function of the legs in the free walking stick insect, Carausius 

morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, 

and Behavioral Physiology, 112(2), 235-262. 
Cruse, H. (1985). Which Parameters Control the Leg Movement of a Walking Insect?: II. 

The Start of the Swing Phase. J Exp Biol, 116(1), 357-362. 
Cruse, H. (1990). What Mechanisms Coordinate Leg Movement in Walking Arthropods. 

[Review]. Trends in Neurosciences, 13(1), 15-21. 
Cruse, H., & Bartling, C. (1995). Movement of Joint Angles in the Legs of a Walking 

Insect, Carausius-Morosus. Journal of Insect Physiology, 41(9), 761-771. 
Cruse, H., Dean, J., Muller, U., & Schmitz, J. (1991). The stick insect as a walking robot. 

Paper presented at the Fifth International Conference on Advanced Robotics, 
'Robots in Unstructured Environments' (91 ICAR). 

Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the 
aerodynamic basis of insect flight. Science, 284(5422), 1954-1960. 

Dresden, D., & Nijenhuis, E. D. (1953). On the anatomy and mechanism of motion of the 
mesothoracic leg of Periplaneta americana. Proc. Acad. Sci. Amster., 56, 39-47. 

Dürr, V., Krause, A. F., Schmitz, J., & Cruse, H. (2003). Neuroethological Concepts and 
their Transfer to Walking Machines. The International Journal of Robotics 

Research, 22(3-4), 151-167. 
Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod 

locomotion: linking biology and technical application. Arthropod structure & 

development, 33(3), 237-251. 
Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. 

Arthropod structure & development, 33(3), 287-300. 
Ekeberg, O., & Grillner, S. (1999). Simulations of neuromuscular control in lamprey 

swimming. Philosophical Transactions of the Royal Society of London Series B-

Biological Sciences, 354(1385), 895-902. 
Espenschied, K. S., & Quinn, R. D. (1994, March 20-24). Biologically-Inspired Hexapod 

Robot Design and Simulation. Paper presented at the AIAA Conference on 
Intelligent Robots in Field, Factory, Service and Space, Houston, Texas. 



 402 

Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based 
distributed control and local reflexes improve rough terrain locomotion in a 
hexapod robot. Robotics and autonomous systems, 18(1-2), 59-65. 

Espenschied, K. S., Quinn, R. D., Chiel, H. J., & Beer, R. D. (1993). Leg coordination 
mechanisms in stick insect applied to hexapod robot locomotion. Adaptive 

Behavior, 1(4), 455-468. 
Full, R. J., & Tu, M. S. (1990). Mechanics of 6-Legged Runners. Journal of 

Experimental Biology, 148, 129-146. 
Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. (1998). The simplest walking 

model: stability, complexity, and scaling. Journal of Biomechanical Engineering, 

120(2), 281-288. 
Gassmann, B., Scholl, K.-U., & Berns, K. (2001, September, 2001). Behavior control of 

LAURON III for walking in unstructured terrain. Paper presented at the Intl. 
Conference on Climbing and Walking Robots (CLAWAR '01), Karlsruhe, 
Germany. 

Gat, E. (1998). Three-layer architectures. In D. Kortenkamp, R. P. Bonasso & R. Murphy 
(Eds.), Artificial intelligence and mobile robots: case studies of successful robot 

systems (pp. 195-210). Menlo Park: AAAI Press. 
Gollu, A., & Varaiya, P. (1989). Hybrid dynamical systems. Paper presented at the 28th 

IEEE Conference on Decision and Control. 
Greenwood, D. T. (1965). Principles of Dynamics. Englewood Cliffs, NJ: Prentice-Hall. 
Grillner, S. (1975). Locomotion in vertebrates: central mechanisms and reflex interaction. 

Physiol Rev, 55(2), 247-304. 
Gruhn, M., Hoffmann, O., Dübbert, M., Scharstein, H., & Büschges, A. (2006). Tethered 

stick insect walking: A modified slippery surface setup with optomotor 
stimulation and electrical monitoring of tarsal contact. Journal of neuroscience 

methods, 158(2), 195-206. 
Guschlbauer, C., Scharstein, H., & Büschges, A. (2007). The extensor tibiae muscle of 

the stick insect: biomechanical properties of an insect walking leg muscle. 
Journal of Experimental Biology, 210(6), 1092-1108. 

Hess, D., & Büschges, A. (1999). Role of proprioceptive signals from an insect femur-
tibia joint in patterning motoneuronal activity of an adjacent leg. Journal of 

neurophysiology, 81, 1856-1865. 
Hill, A. V. (1970). First and last experiments in muscle mechanics. Cambridge [Eng.]: 

University Press. 
Hofmann, T., & Bässler, U. (1982). Anatomy and physiology of trochanteral 

campaniform sensilla in the stick insect, Culiculina impigra. Physiological 

Entomology, 7(4), 413-426. 
Hooper, S. L., Brezina, V., Cropper, E. C., & Weiss, K. R. (1999). Flexibility of muscle 

control by modulation of muscle properties. In P. S. Katz (Ed.), Beyond 

neurotransmission: neuromodulation and its importance for information 

processing (pp. 241-274). New York: Oxford University Press. 
Hooper, S. L., Guschlbauer, C., Blümel, M., Rosenbaum, P., Gruhn, M., Akay, T., & 

Büschges, A. (2009). Neural Control of Unloaded Leg Posture and of Leg Swing 
in Stick Insect, Cockroach, and Mouse Differs from That in Larger Animals. 
Journal of Neuroscience, 29(13), 4109-4119. 



 403 

Horchler, A. D., Reeve, R. E., Webb, B., & Quinn, R. D. (2004). Robot phonotaxis in the 
wild: a biologically inspired approach to outdoor sound localization. Advanced 

Robotics, 18(8), 801-816. 
Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and 

robots: a review. Neural Netw, 21(4), 642-653. 
Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to 

walking with a salamander robot driven by a spinal cord model. Science, 

315(5817), 1416-1420. 
Jindrich, D. L., & Full, R. J. (1999). Many-legged maneuverability: Dynamics of turning 

in hexapods. The journal of experimental biology, 202(12), 1603-1625. 
Jindrich, D. L., & Full, R. J. (2002). Dynamic stabilization of rapid hexapedal 

locomotion. The journal of experimental biology, 205(18), 2803-2825. 
Josephson, R. K. (1993). Contraction Dynamics and Power Output of Skeletal Muscle. 

Annual Review of Physiology, 55, 527-546. 
Kingsley, D. A., Quinn, R. D., & Ritzmann, R. E. (2003). A cockroach inspired robot 

with artificial muscles. Paper presented at the International symposium on 
adaptive motion of animals and machines (AMAM '03).  

Koditschek, D. E., Full, R. J., & Buehler, M. (2004). Mechanical aspects of legged 
locomotion control. Arthropod structure & development, 33(3), 251-272. 

Laurent, G., & Richard, D. (1986). The Organization and Role During Locomotion of the 
Proximal Musculature of the Cricket Foreleg: I. Anatomy and Innervation. 
Journal of Experimental Biology, 123(1), 255-283. 

Lewinger, W. A. (2005). Insect-Inspired, Actively Compliant Robotic Hexapod. Case 
Western Reserve University, Cleveland, OH. 

Lewinger, W. A., Branicky, M. S., & Quinn, R. D. (2005, Sept. 13-15). Insect-inspired, 

actively compliant robotic hexapod. Paper presented at the International 
Conference on Climbing and Walking Robots (CLAWAR 05), London, U.K. 

Lewinger, W. A., & Quinn, R. D. (2009). A Small, Autonomous, Agile Robot with an On-

board, Neurobiologically-based Control System. Video Proceedings of the 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'09).  

Lewinger, W. A., Rutter, B. L., Blümel, M., Büschges, A., & Quinn, R. D. (2006). 
Sensory Coupled Action Switching Modules (SCASM) generate robust, adaptive 

stepping in legged robots. Paper presented at the 9th International Conference on 
Climbing and Walking Robots (CLAWAR 06).  

Lewinger, W. A., Rutter, B. L., & Quinn, R. D. (2008). Irregular Terrain Navigation and 

Leg Coordination Improve Walking Behavior for Small Legged Robots. Paper 
presented at the Fourth International Symposium on Adaptive Motion of Animals 
and Machines from http://amam.case.edu/AMAM%202008%20Abstracts.pdf 

Maxwell, B. A., Meeden, L. A., Addo, N. S., Dickson, P., Fairfield, N., Johnson, N., 
Jones, E. G., Kim, S., Malla, P., Murphy, M., Rutter, B. L., & Silk, E. (2001). 
REAPER: A Reflexive Architecture for Perceptive Agents. AI Magazine, 22(1), 
53-66. 

Mu, L. (2007). Interaction between descending input and local thoracic reflexes for joint 

coordination in cockroach turning. Case Western Reserve University, Cleveland. 



 404 

Mu, L., & Ritzmann, R. E. (2005). Kinematics and motor activity during tethered 
walking and turning in the cockroach, Blaberus discoidalis. J Comp Physiol A 

Neuroethol Sens Neural Behav Physiol, 191(11), 1037-1054. 
Mu, L., & Ritzmann, R. E. (2008a). Interaction between descending input and thoracic 

reflexes for joint coordination in cockroach: I. descending influence on thoracic 
sensory reflexes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 

194(3), 283-298. 
Mu, L., & Ritzmann, R. E. (2008b). Interaction between descending input and thoracic 

reflexes for joint coordination in cockroach. II comparative studies on tethered 
turning and searching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 

194(3), 299-312. 
Mu, L., Taylor, B. K., Rutter, B. L., Ritzmann, R. E., & Quinn, R. D. ((in preparation)). 

A Kinematic Model Study on the Spatial and Temporal Coordination of the Joints 
of the Cockroach Mesothoracic Leg. 

Nelson, G. M. (2002). Learning about control of legged locomotion using a hexapod 

robot with compliant pneumatic actuators. Case Western Reserve University, 
Cleveland. 

Nelson, G. M., & Quinn, R. D. (1999). Posture Control of a Cockroach-like Robot. IEEE 

control systems magazine, 19(2), 9. 
Nelson, G. M., Quinn, R. D., Bachmann, R. J., & Flannigan, W. C. (1997). Design and 

Simulation of a Cockroach-Like Hexapod Robot. Paper presented at the 
International Conference of Robotics and Automation (ICRA '97), Albuquerque, 
NM. 

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto: Tioga. 
Petri nets. 2009, from http://www.petrinets.info/ 
Pfeiffer, F., Weidemann, H. J., & Eltze, J. (1994). The TUM Walking Machine. - In: 

Intelligent Automation and Soft Computing Trends in Research, Development 

and Applications (Vol. 2, pp. 167-174): TSI Press. 
Pfeiffer, F., & Zielinska, T. (Eds.). (2003). Walking: biological and technological 

aspects. Udine, Italy: Springer. 
Prochazka, A., Clarac, F., Loeb, G. E., Rothwell, J. C., & Wolpaw, J. R. (2000). What do 

"reflex" and "voluntary" mean? Modern views on an ancient debate. Experimental 

brain research, 130(4), 417-432. 
Prochazka, A., & Yakovenko, S. (2002). Locomotor control: from spring-like reactions 

of muscles to neural prediction. In R. J. Nelson (Ed.), The somatosensory system: 

deciphering the brain's own body image (pp. 141-181). Boca Raton, FL: CRC 
Press. 

Raibert, M., Blankespoor, K., Nelson, G. M., Playter, R., & the Big Dog Team (2008, 
July 6-11). BigDog, the Rough-Terrain Quaduped Robot. Paper presented at the 
World Congress of the International Federation of Automatic Control, Seoul, 
Korea. 

Raibert, M. H. (1986). Legged robots that balance. Cambridge: Massachusetts Institute 
of Technology. 

Reeve, R., Webb, B., Horchler, A., Indiveri, G., & Quinn, R. (2005). New technologies 
for testing a model of cricket phonotaxis on an outdoor robot. Robotics and 

autonomous systems, 51(1), 41-54. 



 405 

Ritzmann, R. E., Gorb, S., & Quinn, R. D. (2004). Arthropod locomotion systems: from 
biological materials and systems to robotics. Arthropod structure & development, 

33(3), 183-187. 
Ritzmann, R. E., & Quinn, R. D. (2003, September 8-12 ). Locomotion in Complex 

Terrain. Paper presented at the Advanced Class on Walking: biological and 
technological aspects, Udine, Italy. 

Rutter, B. L., Bender, J. A., Ritzmann, R. E., & Quinn, R. D. (2009). Descending 
commands modify local feedback circuitry to effect behavioral transitions in a 
robotic neuromechanical cockroach leg model. Program no. 287.3. 2009 

Neuroscience Meeting Planner. 
Rutter, B. L., Bender, J. A., Taylor, B. K., Ritzmann, R. E., & Quinn, R. D. (2008). 

Experiments in locomotion with neuromechanically based robotic insect models. 
Program no. 198.7. 2008 Neuroscience Meeting Planner. 

Rutter, B. L., Lewinger, W. A., Blümel, M., Büschges, A., & Quinn, R. D. (2007). Simple 

Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step 

Generation. Paper presented at the International Conference on Robotics and 
Automation (ICRA '07), Rome. 

Rutter, B. L., Lewinger, W. A., Taylor, B. K., Wilson, M., Blümel, M., Ekeberg, Ö., 
Büschges, A., Ritzmann, R. E., & Quinn, R. D. (2006). Neurally-based robot 
control for neuromechanical modeling of insect stepping. Program No. 449.13. 
2006 Neuroscience Meeting Planner. 

Rutter, B. L., Mu, L., Ritzmann, R. E., & Quinn, R. D. (2007). Transforming Insect 

Electromyograms into Pneumatic Muscle Control. Paper presented at the 
International Conference on Robotics and Automation (ICRA '07), Rome  

Rutter, B. L., Taylor, B. K., Mu, L., & Ritzmann, R. E. (2007). A Functional Kinematic 

Model of the Cockroach Mesothoracic Leg. Poster presented at the Eighth 
International Congress of Neuroethology.  

Shirley, D., & Matijevic, J. (1995). Mars Pathfinder Microrover. Autonomous Robots, 

2(4), 283-289. 
Taylor, B. K., Rutter, B. L., & Quinn, R. D. (2009). A biologically inspired sensory 

driven method for tracking wind-borne odors. Paper presented at the Workshop 
on Performance Metrics for Intelligent Systems (PerMIS '09).  

van Heesch, D. (2009). Doxygen: online. 
Von Békésy, G. (1960). Experiments in hearing. New York,: McGraw-Hill. 
Wadden, T., & Ekeberg, O. (1998). A neuro-mechanical model of legged locomotion: 

single leg control. Biological cybernetics, 79(2), 161-175. 
Wadden, T., & Ekeberg, O. (1999, Sep). A neuro-mechanical model of legged 

locomotion: quadruped control. Paper presented at the International Conference 
on Climbing and Walking Robots, Portsmouth. 

Waibel, M., Brooks, R. A., Hauert, S., Duerr, P., & Marbach, D. (2007). Rodney Brooks 
- The Past and Future of Behavior Based Robotics. On Talking Robots - The 

Podcast on Robotics and A.I. [Podcast]: Laboratory of Intelligent Systems, EPFL. 
Waibel, M., Ijspeert, A. J., Hauert, S., Duerr, P., & Marbach, D. (2007). Auke Ijspeert - 

Salamander robot swims and walks. On Talking Robots - The Podcast on 

Robotics and A.I. [Podcast]: Laboratory of Intelligent Systems, EPFL. 



 406 

Watson, J. T., & Ritzmann, R. E. (1998a). Leg kinematics and muscle activity during 
treadmill running in the cockroach, Blaberus discoidalis : I. Slow running. 
Journal of Comparative Physiology a-Neuroethology Sensory Neural and 

Behavioral Physiology, 182(1), 11-22. 
Watson, J. T., & Ritzmann, R. E. (1998b). Leg kinematics and muscle activity during 

treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. Journal 

of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral 

Physiology, 182(1), 23-33. 
Watson, J. T., Ritzmann, R. E., & Pollack, A. J. (2002). Control of climbing behavior in 

the cockroach, Blaberus discoidalis. II. Motor activities associated with joint 
movement. Journal of Comparative Physiology a-Neuroethology Sensory Neural 

and Behavioral Physiology, 188(1), 55-69. 
Watson, J. T., Ritzmann, R. E., Zill, S. N., & Pollack, A. J. (2002). Control of obstacle 

climbing in the cockroach, Blaberus discoidalis. I. Kinematics. Journal of 

Comparative Physiology a-Neuroethology Sensory Neural and Behavioral 

Physiology, 188(1), 39-53. 
Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral and 

Brain Sciences, 24(06), 1033-1050. 
Webb, B., & Scutt, T. (2000). A simple latency-dependent spiking-neuron model of 

cricket phonotaxis. Biol Cybern, 82(3), 247-269. 
Wei, T. E., Quinn, R. D., & Ritzmann, R. E. (2004). A CLAWAR That Benefits From 

Abstracted Cockroach Locomotion Principles. Paper presented at the Climbing 
and walking robots Conference, Madrid, Spain. 

Wiener, N. (1948). Cybernetics; or, Control and communication in the animal and the 

machine. Paris; Cambridge, Mass: Hermann; Technology Press. 
Yodaiken, V., & Barabanov, M. (1997). A real-time Linux. Paper presented at the Linux 

Applications Development and Deployment Conference (USELINUX), Anaheim, 
CA. 

Zill, S., Schmitz, J., & Büschges, A. (2004). Load sensing and control of posture and 
locomotion. Arthropod structure & development, 33(3), 273-287. 

 
 

 


	Title Page
	Committee Signature Sheet
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	List of Abbreviations
	Abstract
	1 Introduction
	1.1 The Investigation of Walking
	1.2 Goals of the Broader Project
	1.3 The state of the art in 2005
	1.4 Project Goals
	1.5 Description of Contents

	2 Essentials in Robotic Model Development
	2.1 Elements of a Useful Model
	2.2 Model Scope

	3 Background
	3.1 The Walking Task
	3.2 Insect walking behavior
	3.3 The descending control problem
	3.4 Stick Insect Leg Control
	3.5 Stepping control methods in robots
	3.6 Robotic control architectures
	3.7 Robotic Models of Biological Systems

	4 Sensory Coupled Action Switching Modules
	4.1 The basis in biology
	4.2 General system concept
	4.3 The SCASM Command and Configuration Interface Language Specification
	4.4 Examples: Synthesis and Restructuring
	4.5 Translating between systems and representations

	5 Functional Cockroach Leg Kinematics
	5.1 Introduction
	5.2 Motivation
	5.3 Methods
	5.4 Results
	5.5 Applications and Conclusions

	6 Neuromechanical Robotic Models
	6.1 Introduction
	6.2 The NeuRoMod Engine Control Architecture
	6.3 Control hardware
	6.4 Physical Models

	7 Experiments
	7.1 Initial Testing and Functionality
	7.2 Effects of muscle models on stepping behavior
	7.3 Changing speed
	7.4 Transitions from walking to turning
	7.4.1 Behaviors
	7.4.2 Hypotheses and Experiments
	7.4.3 Experimental Methods
	7.4.4 Transition to Turning Results
	7.4.5 Discussion


	8 Conclusion
	8.1 Summary
	8.2 Model Development
	8.3 Experiments
	8.4 Initial work on description and standardization of SCASM

	9 Future Work
	9.1 Consultation and Choosing What to Do
	9.2 Biological Model Development
	9.3 Model-driven & Model Experimentation
	9.4 Central Pattern Generators
	9.5 Model User Interface and Data Representation
	9.6 Theoretic Understanding and Development of SCASM
	9.7 SCCILS Generalization
	9.8 Use of SCASM in Other Systems

	10 Appendices
	10.1 NeuRoMod Engine Code Documentation
	10.1_TOC

	10.2 SCCILS 0.1
	10.2_TOC
	1 Introduction
	2 XML DTDs
	3 Example Configurations
	4 Example script

	10.3 SCCILStoolbox MATLAB Data Analysis Package
	10.3_TOC
	1 Introduction
	2 Installation
	3 SCCILS Configuration Representation and Parsing
	4 Getting and Loading Data
	5 Data Processing and Display

	10.4 NeuRoMod Operation Manual
	10.4_TOC
	Introduction
	1 Installing NeuRoMod elements
	2 Using NeuRoMod
	3 Data Output
	4 RTLinux Basics
	5 The NeuRoMod Engine Architecture
	6 Writing Programs to Interact with the Engine
	7 Using Linux
	8 Installing RT-Linux


	11 Bibliography



