
MACHINE LEARNING FOR ROAD
FOLLOWING BY AUTONOMOUS

MOBILE ROBOTS

by

EMILY AMANDA WARREN

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Thesis Adviser: Dr. Wyatt Newman

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

January, 2009

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

candidate for the ______________________degree *.

(signed)___
 (chair of the committee)

 __

 __

 __

 __

 __

(date) _______________________

*We also certify that written approval has been obtained for any
proprietary material contained therein.

Emily Amanda Warren

Master of Science

Wyatt Newman

M. Cenk Cavusoglu

Francis Merat

9/19/08

Table of Contents

Table of Contents.. 1

List of Tables .. 3

List of Figures ... 4

List of Equations ... 7

Chapter 1: Introduction ... 9

Chapter 2: All about Beads ... 15

Section I: Perceptions of Space... 15

Section II: Generating Beads and Creating an Initial Map... 17

Section III: Answering Queries .. 21

Section IV: Bead Extensions .. 27

Chapter 3: All Updates vs. Nothing Updates.. 30

Section I: The All Case, Teach and Playback... 30

Section II: The Nothing Case, Altering Maps .. 36

Chapter 4: An All-or-Nothing Update .. 45

Section I: Deciding between All and Nothing Online .. 45

Section II: Guidelines for Updating a Bead.. 45

Section III: Running All-or-Nothing Updates .. 51

Section IV: Results in Simulation of the All-or-Nothing Approach............................. 58

Chapter 5: Improving Beads by Merging Noisy Data .. 66

Section I: The Theory for an Improved Estimate from Noisy Measurements.............. 66

Section II: Implementing the Combination of Gaussian Measurements 73

Section III: Running Basic Simulations.. 79

Chapter 6: Discovering Bead Bias.. 87

1

Section I: Batch Processing to Determine Bead Bias Estimates................................... 87

Section II: Running Updates to Determine Bead Bias Estimates 93

Section III: Running Updates Used with Bead Improvement 96

Chapter 7: Using Road Detection Information ... 99

Section I: Introducing Road Detection ... 99

Section II: Simulated Road Detection Values .. 100

Section III: Road Detection Experiments ... 110

Chapter 8: Discovering Road Detection Offset Variances ... 119

Section I: Calibrating Road Detection Offset Variances .. 119

Section II: Analysis of Clustering and Naïve Calibration Methods 129

Chapter 9: Summary and Future Work... 135

References... 138

2

List of Tables

Table 5-1. Summarizing the data used for tests with no road detection. 80

Table 6-1. Summarizing the data used in correcting bead biases. 91

Table 7-1. Road detection data is now a factor in the simulations. 111

Table 8-1. A set of tests comparing definitions of the road detection offset variances. 130

3

List of Figures

Figure 1-1. DEXTER, Team Case’s entry into the 2007 DARPA Urban Challenge. 11

Figure 2-1. Distinguishing intersections. ... 18

Figure 2-2. Generation of each of the Global Map’s four parts.. 20

Figure 2-3. Illustration of Global Map structures. ... 20

Figure 2-4. DEXTER asks for beads in the reverse order. .. 23

Figure 2-5. Argument for continuing a bead search. ... 25

Figure 2-6. The important steps taken by the Global Mapper to answer a query............ 27

Figure 3-1. Illustration concerning the Playback Phase... 34

Figure 3-2. User interface for the teach-and-playback method. 35

Figure 3-3. How the Recorded Beads are created and used. ... 35

Figure 3-4. DEXTER following a manually drawn figure eight 36

Figure 3-5. A flowchart of Shift_All_Beads.vi. .. 40

Figure 3-6. Shift_All_Beads.vi in action. .. 41

Figure 3-7. Replacing RNDF data. .. 43

Figure 3-8. Match_RNDF_to_Beads.vi in action. ... 44

Figure 4-1. Match_GPS_to_Bead_Index.vi must use absolute distance to choose among
beads. . .. 50

Figure 4-2. DEXTER must assume the most direct route from Point A to Point B. 51

Figure 4-3. Update method changes only part of a road.. 55

Figure 4-4. Flowchart of Update_Mapper_Beads_All_or_Nothing.vi............................ 58

Figure 4-5. A simulated DEXTER drives offset from the center of the lane. 60

Figure 4-6. The beads have been moved away from the center of the lane. 61

Figure 4-7. The curve through the intersection is seen as part of the lane. 62

4

Figure 4-8. Simulated DEXTER drives through an intersection offset from the original
bead path. .. 63

Figure 4-9. DEXTER loaded beads previously created by the all-or-nothing update
method... 64

Figure 4-10. DEXTER recovers from a kink in the intersection data. 64

Figure 5-1. A flowchart of Basic_Test_Path_Driven_on_Center_of_Lane.vi. 79

Figure 5-2. Simulation resembling an all update. .. 81

Figure 5-3. Simulation resembling a nothing update. ... 82

Figure 5-4. The beads can be improved with more physical state data. 83

Figure 5-5. Simulation resembling an all update, for headings. 85

Figure 5-6. Sub-problems created from three measurement series. 85

Figure 5-7. Patches of different path improvement levels... 86

Figure 6-1. Components of bead to physical state distance... 89

Figure 6-2. The batch method to estimate bead shifts. .. 90

Figure 6-3. Batch tests with a 2.6 m bias north but no bias east or west. 92

Figure 6-4. Batch tests with a bias 4.3 m west. ... 92

Figure 6-5. The running method to estimate bead shifts. .. 94

Figure 6-6. Running tests with a 4.3 m bias east. .. 95

Figure 6-7. Detail from the 1000 runs in Figure 6-6. .. 96

Figure 6-8. Two Center Lane Paths. .. 97

Figure 6-9. Bead improvement algorithm using biases. .. 98

Figure 7-1. The flowchart of Generate_Path_Driven.vi. ... 102

Figure 7-2. An example Path Driven derived from a Center Lane Path........................ 103

Figure 7-3. Two definitions of left and right. .. 103

Figure 7-4. Finding the lateral offset. .. 105

5

Figure 7-5. The point shown in the Center Lane Path is positioned laterally from two
places along the Path Driven... 106

Figure 7-6. The flowchart of Find_True_Offsets_Redo_Path_Driven.vi...................... 107

Figure 7-7. A virtual road sensor point from physical state and road detection data. .. 109

Figure 7-8. Flowchart for Latitude_and_Longitude_Plus_Lateral_Offset.vi. 110

Figure 7-9. Flowchart for Basic_Test_Offsets_Used.vi. ... 112

Figure 7-10. Test where road detection can be ignored... 113

Figure 7-11. The path that ignored road detection is tighter, but wrong. 113

Figure 7-12. Ignoring road detection led to beads following the Path Driven instead. . 114

Figure 7-13. Using road detection found the Center Lane Path nicely, while ignoring
road detection only reinforced the Path Driven. ... 114

Figure 7-14. Flowchart for Offsets_with_Corrected_True_Data_Running_Bead_Bias.vi.
... 116

Figure 7-15. With road detection, reasonable bead bias estimates can still be found. .. 117

Figure 7-16. The poor bead headings do not have an obvious effect. 118

Figure 8-1. How road detection calibration and test data are generated and used. 128

Figure 8-2. Lateral offset error data for Row 4 of Table 8-1... 131

Figure 8-3. Lateral offset error data for Row 5 of Table 8-1... 133

6

List of Equations

Equation 3-1. The rotation matrix of an angle x, where x is in radians. 39

Equation 3-2. The matrix produced by
Rotation_Scales_and_Offset_to_Matrix_Variables.vi. .. 39

Equation 5-1. Combining two measurements, x and y, into a new estimate z. 69

Equation 5-2. The variance of the new estimate z. .. 69

Equation 5-3. The technique in Equation 5-1 is reapplied... 69

Equation 5-4. The terms of z are substituted into Equation 5-3 to produce this new
equation... 69

Equation 5-5. The instances of 2
zσ in Equation 5-4 are replaced using Equation 5-2. ... 70

Equation 5-6. The meaning of 2
zσ can be rewritten. ... 70

Equation 5-7. A fraction found twice in Equation 5-5 can be simplified using Equation 5-
6 and the identity property of multiplication. ... 70

Equation 5-8. Equation 5-5 simplified using Equations 5-6 and 5-7............................... 71

Equation 5-9. A simplified form of an estimate b formed from three measurements. 71

Equation 5-10. The variance after incorporating three measurements together into
estimate b. ... 72

Equation 5-11. A rewrite of Equation 5-10 with 2
zσ replaced from Equation 5-2.......... 72

Equation 5-12. An illustrative simplification of Equation 5-11. 73

Equation 8-1. For one point of road detection data, each feature f is multiplied by its
corresponding constant c up to N features. ... 121

7

Machine Learning for Road Following
by Autonomous Mobile Robots

Abstract

by

EMILY AMANDA WARREN

 This thesis explores the use of machine learning in the context of autonomous

mobile robots driving on roads, with the focus on improving the robot’s internal map.

Early chapters cover the mapping efforts of DEXTER, Team Case’s entry in the 2007

DARPA Urban Challenge. Competent driving may include the use of a priori

information, such as road maps, and online sensory information, including vehicle

position and orientation estimates in absolute coordinates as well as error coordinates

relative to a sensed road. An algorithm may select the best of these typically flawed

sources, or more robustly, use all flawed sources to improve an uncertain world map,

both globally in terms of registration corrections and locally in terms of improving

knowledge of obscured roads. It is shown how unsupervised learning can be used to

train recognition of sensor credibility in a manner applicable to optimal data fusion.

8

Chapter 1: Introduction

 Fully developed autonomous vehicles could one day prevent accidents, improve

fuel efficiency, give drivers more time to complete other tasks, and increase the mobility

of elderly people who can no longer drive themselves [1]. Historically, various nations

have believed that smarter cars could benefit traffic safety and efficiency. A good map

has long been important to these efforts: early work in Europe relied on beaming high

quality map data from control centers into passing vehicles [2], and in 1988 the Japanese

Digital Road Map Association formed to standardize a digital map database for vehicle

road guidance systems [3]. In 1995 the PANS (Portable Advanced Navigation Support)

system ran on the Navlab 5; dealing with a subset of the autonomous driving problem, it

used a stored map to aid control when taking curves [4].

 Today, GPS* sensors help Personal Navigation Assistants find a vehicle’s

location [5]; Personal Navigation Assistants only address a subset of the autonomous

driving problem (i.e., determining where the car is and where it should go), but they are

marketable. More advanced are Cybercars (also called Cycabs); similar in appearance to

golf carts, these can drive autonomously but only on their own roads, and not mixed in

with normal traffic [6]. In the United States, the DARPA Grand Challenge began

renewed interest in intelligent highway systems and autonomous vehicles [7] starting

with the first DARPA Grand Challenge in 2004 [8]. The two Grand Challenges took

*Note that in this paper, the phrase “GPS” at times indicates the sensors themselves, and
in other cases represents an estimate of orientation within the GPS coordinate system.

9

place in the desert, with the competitors more isolated than human drivers usually are.

Nonetheless, the self-driving cars in the Grand Challenges faced their share of problems,

with the second DARPA Grand Challenge’s results more successful than the first [9].

 In 2007 DARPA hosted its first Urban Challenge, where the contestants faced

additional traffic hazards such as intersections and other vehicles. Schools such as

Carnegie Mellon, with their converted 2007 Chevy Tahoe [1], and Stanford, with their

2006 Volkswagen Passat [9], entered the race. Case Western Reserve University shared

such company thanks to our robot DEXTER, the Deployable EXtreme Terrain Enabled

Robot. When ENSCO first built DEXTER; he (for it quickly became more common to

say “he” rather than “it”) placed sixth in the 2005 Grand Challenge [10].

 DEXTER then came to Case Western Reserve University. Team Case included

over fifty people, mainly students and faculty, but some people in industry as well [11].

We altered and maintained DEXTER’s physical parts while installing a new code base.

The vast majority of this code, including all the code discussed in this paper, was written

in the LabVIEW environment from National Instruments [12], which organizes code in

files known as VIs and compels the programmer to draw logical wiring diagrams.

Through Team Case’s efforts, DEXTER reached the 2007 DARPA Urban Challenge

semi-finals in Victorville, CA, on our university’s first try.

10

 Figure 1-1. DEXTER, Team Case’s entry into the 2007 DARPA Urban Challenge.
Image credited to [11].

 A project of DEXTER’s size—both in number of files and in number of team

members—requires a modular allotment of duties. This paper specifically covers

DEXTER’s Global Mapper, which built and maintained DEXTER’s memory of routes

and belief concerning where to drive, referred to as DEXTER’s Global Map. Other

modules could plan routes or perform localization with the help of this Global Map.

Localization generally requires some environmental representation, whether it be grid-

like, based on the line segments from range measurements, in terms of the robot’s

constraints in movement, or, as with DEXTER’s Global Map, a sequence of beads [13].

Localization may involve large corrections every so often, or nearly continuous, faster

corrections [14]; the density of points in the Global Map (generally one meter apart)

allowed other DEXTER modules the option of taking the latter approach.

 One of the most common localization problems is Simultaneous Localization And

Mapping (SLAM), which builds a map while observing the environment; an example in

[15] builds a landmark-based relative map. Landmark matching can be difficult in

general if image processing is necessary, landmark data is incomplete, or the dynamic

nature of an outdoor environment interferes [16]. The beads for DEXTER’s map are in

absolute GPS world coordinate system terms, with no dependency on landmarks; regular

landmarks may be difficult to find in the barren desert of the competition. While the

Global Map can potentially improve online, the Global Mapper calculates an a priori

Global Map from DARPA-specified goals, so DEXTER relies less on exploration than a

robot in a typical SLAM scenario.

 This thesis first discusses the construction and communication of information in

11

the Global Map, describing the actual methods used when DEXTER competed in the

Urban Challenge. Then the paper covers the extreme cases of how the Global Map might

be modified. On one end of the spectrum, an all update, every point in a map comes

purely from incoming sensor data. Such teach-and-playback algorithms have applied to

unmanned dump trucks working in mines [17] and supplemented the remote-controlled

operation of unmanned heavy tracked vehicles [18]. In the present research, the author

tailored a teach-and-playback method to run on DEXTER. At the other extreme is the

nothing update; while driving the competition route, DEXTER’s Global Map never

changed. In this case, DEXTER’s initial Global Map must be of high quality, higher

than what can be deduced from DARPA’s set of specific GPS coordinates contained in a

Route Network Definition File (RNDF). To provide such high quality, DEXTER’s

Global Map was corrected and improved using aerial photography. The RNDF and the

Global Map must have some agreement for localization reasons, but either one may be

moved to fit the other.

 Though testing time did not allow for it, the author also implemented a way for

DEXTER to choose whether to overwrite a bead with sensor data or to keep a bead

exactly the same while he drove; this all-or-nothing update method was tested in

DEXTER’s simulator and suggests that additional intelligence may be used in the

maintenance of the Global Map.

 When DEXTER became a permanent resident of the Crawford Auto-Aviation

Museum [19], work continued in LabVIEW simulations. In the first, simplest case, the

simulations evaluated map registration improvements aided by presumed human driving.

In this scenario, a human driver would competently steer an instrumented vehicle down

12

the center of a road contained within an a priori map. The measurements acquired in this

process would be used to alter the initial map. In this process, it is recognized that

available GPS sensors (or other means of state estimation) may be imprecise. It is also

recognized that initial estimates of the coordinates of beads intended to represent points

along the centers of lanes are flawed. By combining both sources of information

(measurement and a priori mapping) instead of choosing one over the other, bead

coordinates can be improved, even with significant uncertainty in both information

sources.

 With the approach presented in this thesis, the mapping algorithm performed

sensor fusion of bead data (cumulative best-fit map data), physical state estimates

(absolute localization in the GPS coordinate system), and (eventually) road detection

values (relative localization from direct sensing of road surfaces). While cost increases

with the number of sensors, multiple sensors provide redundancy when one sensor fails

[20], or similarly, when one sensor’s reported data is poor. There are many methods of

sensor fusion, including equations describing physical systems, Kalman filters, some

form of logical reasoning, averaging [21], and even human interaction for complicated

needs [22]. In the present research, sensor fusion was performed using optimal

combination of signals based on presumed Gaussian-distributed uncertainty. [23].

 In Victorville, Team Case found the aerial imagery of the competition routes to be

shifted from DEXTER’s sensor readings; hence DEXTER’s map had to be moved to be

used correctly. Because of this incident, work in this paper attempts to show, in

simulation, how a coarsely-registered map and collected GPS coordinates can be used to

discover map shifts in latitude and longitude. At first, this process also works under the

13

assumption that the GPS points correspond to driving precisely centered in lanes. In an

extension, the presumption of accurate driving is relaxed and information from

(imperfect) direct road sensing is incorporated. Road detection can be used for both

global map registration and improving the map model in local regions. To combine

information from multiple imperfect sources, it is necessary to know the credibility

(equivalently, statistical variance) of each source. Among the information sources, direct

sensing of the road has the greatest variation in credibility, and it is also typically

difficult to estimate the variance associated with a given measurement. Work in the final

chapter describes a method to learn how to infer an appropriate measurement variance

from indirect cues, leading to more trustworthy sensor fusion.

14

Chapter 2: All about Beads

Section I: Perceptions of Space

 As DEXTER drove through space, he needed some concept of that space—some

sense of when Point A became Point B. DEXTER also had goals of GPS points he had to

reach, increasing his need for spatial memory. Programmers wishing to help a robot

perceive and recall the world around it have many options. At a high level of abstraction,

the robot may record space as a collection of excitations in a neural network, for example

in a Self-Organizing Feature Map [24], but this approach would have added unneeded

processing complexity to DEXTER.

 Perhaps the robot is in a scenario where it simply wishes to learn about its

environment through its sensors as it moves about. The robot may use feature-based

mapping techniques and form its global map out of observations about the objects around

it, leaving its own pose implicit but not used directly [25]. The robot may remember a

place based on a set of views (sensory measurements) taken from that place [26]. The

robot may also learn about its environment from polylines generated by sensors reading

its surroundings [27]. However, DEXTER had goals to reach, so he could not function

solely as an observer.

 A robot’s movements on the ground are essentially 2-D (latitude and longitude,

with elevation often of less importance to navigation). In a 2-D world, the robot may be

told that the world is a series of 2-D partitions, e.g. rectangles that may be algorithmically

split in order to help see past obstacles [28]. Cycabs use a priori 2-D maps represented

as a set of polygonal obstacles [6]. The robot’s internal representation may break out of

15

2-D in order to remember movements on a 2-D ground as a manifold, a technique

developed to avoid confusion when learning online about a loop [29]. Or the robot may

save survey data in databases of the land arranged in a grid format; the team from Ohio

State University used this approach in the 2005 DARPA Grand Challenge [30].

 The Urban Challenge problem and its rules greatly influenced the representation

used for DEXTER’s Global Map. The Urban Challenge came with a priori information,

a set of latitude and longitude coordinates that not only helped DEXTER know where the

roads were, but also gave DEXTER his very specific goals. DEXTER’s road detection

software was important for avoiding obstacles and staying on the road, but with the

biggest obstacles (other cars) constantly in motion, objects could not be used reliably as

reference points. A specific latitude value matched with a specified longitude coordinate

can be considered a single, 1-D point in space; hence DEXTER perceives his map not as

a 2-D grid, but as a series of 1-D beads. The manifold approach in [29] was not required

in DEXTER’s situation, since we could use our a priori coordinates to define a start and

an end to any loop.

 For DEXTER, a noteworthy point in space becomes its own distinct entity;

“noteworthy” here means that the point is useful for telling DEXTER about the shape of

a road. Such points may be too dense, requiring more memory storage than truly

necessary, or too sparse, causing DEXTER to know little about where to drive in large,

in-between spaces. DEXTER deliberately chose points at a density between these two

extremes. We called these points “beads,” so named because within a lane or

intersection the beads have a specific order from start to finish, like beads on a string.

This arrangement resembles the representation for Personal Navigation Assistants where

16

nodes (endpoints) and so-called “shape points” define a road as the segments between

those points [5].

 Each bead contains latitude, longitude, and the heading that instructs DEXTER

which direction is forward. When Bead A is followed by Bead B within any set of beads,

Bead A’s heading points towards Bead B. Beads are extendable and they can (and did)

hold additional information. Beads may be stored and read in various file formats, such

as XML, so the work done to generate initial beads can be saved, updated beads can be

used for future runs, and hand-picked beads can be fed into the Global Mapper initially.

Section II: Generating Beads and Creating an Initial Map

 To understand bead generation, it is necessary to understand the organization of

the Global Map. Beads are contained in a four-part structure. First, there are lanes,

contained in the Array of Lanes and sorted by Segment ID, then Lane ID, where one

segment may have multiple parallel lanes. A complete street with all its lanes is a

segment. Next, there are Intersection Beads, containing bead paths from one lane to

either another lane or to a zone (parking lot). Intersections are arranged first by the

segment where they begin, then by the lane where they begin, then by an Exit ID. Each

intersection contains information concerning the lane or zone the intersection leads to,

and it is this information that classifies the different intersections that start in the same

lane. Imagine a four-way stop with three legal paths (excluding U-turns). To DEXTER,

continuing in the same lane does not require an intersection, but entering a new lane does.

The two paths shown in Figure 2-1 are two separate intersections, despite the fact that

they start from the same place. Zone exits are arranged just like intersections, except that

they start from zones instead of lanes. Finally, the Zone Array lists the perimeter points

17

and parking spots of each zone (parking lot).

Figure 2-1. The light blue box represents DEXTER. Each set of colored dots is a
different intersection in DEXTER’s memory, distinguished from each other by their
destinations. The path forward is not an intersection, but instead counts as more beads
in the same lane.

The data in the initial map depends on the information available from the DARPA

Urban Challenge RNDF (Route Network Definition File) [31]. RNDFs give the GPS

coordinates for DEXTER to follow and IDs which arrange those points in order and in

different pieces of the map. However, RNDFs tend to be sparse, so while surveying

efforts may provide detailed maps to Personal Navigation Assistants [5], there is no such

luxury here.

Once the RNDF is loaded, generating initial beads starts with

Add_Interpolated_Points.vi. From there the LabVIEW code has two main branches:

Initial_Beads.vi and Init_Intersection_Interpolation.vi. Initial_Beads.vi iterates through

all the segments in the RNDF data, through all lanes within segments, and through all

initial waypoints within lanes. The VI collects the three layers of IDs (segment, lane, and

waypoint) along with the given GPS points to create the Array of Lanes. Each waypoint

becomes its own bead in this process. In parallel, Initial_Beads.vi calls

Process_RNDF_Zones.vi, which simply copies all the spots and perimeter points of every

zone into the Zone Array.

With just the waypoints from the RNDF, the Array of Lanes is too sparse.

18

Naively connecting the dots between these waypoint beads could give DEXTER off-road

paths and pointed corners to drive. So, Add_Interpolated_Points.vi adds points to the

lanes by splining between waypoints. (The spline code was written by Scott McMichael).

Generate_Spline.vi interpolates points between but not including existing RNDF

waypoints, using a spline calculation that allows for curves. Splining requires the

boundary points to have headings; since this data is not provided in the RNDF, it is

calculated by comparing the relative positions of consecutive waypoints.

The number of beads generated by splining depends on the distance between the

boundary waypoints, with approximately one bead per meter, though an exact number of

splined beads may be forced. Fill_Out_Beads_from_GPS.vi then fills beads with default

values for some data, Insert_Bead_Headings.vi gives the beads headings based on

comparisons with neighbor beads, and Reset_Bead_IDs.vi gives each bead a unique, in-

order ID.

Init_Intersection_Interpolation.vi handles the intersections in the map structure.

The RNDF data name the lane exits and their entry points; from this, an Entry Waypoint

ID can locate either a zone perimeter point or a lane waypoint. The GPS locations and

headings of the exits and entrances provide boundaries for an intersection. As with the

Array of Lanes, Generate_Spline.vi finds points between entrances and exits, and again

this data is packaged into beads with unique, in-order IDs. The entry information is

preserved and bundled for each of the lane exits in the Intersection Beads. To help

DEXTER drive, any intersection that enters a zone is extended into the parking lot so that

DEXTER will not just drive to the perimeter. The extension consists of beads (usually

about ten) placed a meter apart following the heading established for the zone perimeter

19

point. Init_Intersection_Interpolation.vi generates zone exits in the same way as regular

intersections, except the “from” boundary point always comes from a zone perimeter

point instead of a lane exit point.

Figure 2-2 summarizes the process of bead generation, while Figure 2-3 illustrates

how each discussed piece of the overall bead structure fits into an example map.

Figure 2-2. The flowchart simplifying the generation of each of the Global Map’s four
parts.

Figure 2-3. Zones have two features (perimeter points and parking spots). Zone exits
lead from zones to lanes; Intersections start in lanes and may go to other lanes or zones.
The red dots give an idea of what information is in the RNDF, such as the red waypoints

20

within the lanes. The blue dots show where beads are interpolated, i.e. between lane
waypoints and through zone exits and intersections. Note that the difference between an
intersection and a zone exit is a matter of traffic flow (shown by arrows on the road).

All interpolations occur once at the beginning when beads are generated. The

method of interpolating once contrasts with Ohio State University’s method of

interspersing points as they were needed during the Grand Challenges [30]. DEXTER

avoids the cost of having to spline anywhere on the map more than once, and of having to

spline while moving, when many other modules demand processor time.

Section III: Answering Queries

 Beads are constructed to support navigation; therefore, communication must exist

between the Global Map, which contains and maintains the bead data, and the rest of

DEXTER’s software. Typically, any one module in the system only needs a subset of the

total Global Map at one time. While it is possible to broadcast the entire Global Map

constantly and let other modules pick the information they need, the Global Map may be

huge in some cases, making such large communications expensive. Thus the Global

Mapper must internally locate portions of its data in its multiple bead arrays and make

some intelligent decision about what data to publish. If the Global Mapper were solely

responsible for that decision, it would have to watch the robot’s progress and deduce its

location. However, this would blur the responsibility of the Global Mapper, which was

intended to behave as memory rather than part of awareness. To make the Global Mapper

focus on handling bead management, its communication responsibility was to reply to

queries. This approach completely hid the localization problem from the Global Mapper,

thus keeping the code more modular. Scott McMichael wrote some of the code that

answers queries, while the author of this paper wrote other sections.

21

 A query asks for a certain piece of the map. Queries come rapidly, and a module

may re-ask similar or identical queries as much as required. Query answers must be

timely in order to provide help with navigation. For these reasons, the less reliable but

faster UDP protocol transmitted both queries and query responses. Queries entered a

queue upon arrival and the Global Mapper processed them in FIFO (first in, first out)

order.

 Each query was phrased using the following guidelines. First and perhaps most

importantly, the Query Type tells the Global Mapper how the query should be processed.

The Query ID distinguishes queries, and can be used by other modules to match

questions with answers, since the Query ID carries through to a query’s response. Two

sets of segment, lane, and waypoint IDs, A and B, give localization information; some

queries do not use Location B. The GPS Coordinate gives the location from which the

answer beads should start; this is not necessarily the current position of the robot. For

instance, the GPS Coordinate in a query may be some distance ahead if the module

making the queries is looking towards the future. The GPS Coordinate must ultimately

resolve to a valid bead on the road, similar in theory (though not purpose) to third

generation Personal Navigation Assistants where the current location of a vehicle must

coincide with some street [5].

 The Distance variable in a query gives a measure of how many meters forward

ahead of the GPS Coordinate the answering beads should cover. In the query response

code, each meter in Distance corresponded to one bead to report. This served as a good

rule of thumb, since beads were spaced about a meter apart at the outset and bead updates

were not used in the final version of DEXTER. If bead updates change the bead spacing,

22

the query might not get the number of points it expects, though navigation modules could

call additional queries to fetch more points. Distance Back works the same way as

Distance, only in the reverse direction of an Array of Beads. Finally, the “Reverse?”

flag, when true, lets the Global Mapper know DEXTER is traveling backwards in a lane,

meaning that the beads should be traversed in the reverse order.

 The reverse situation can occur when DEXTER is driving on a two-lane road with

lanes going in opposite directions. If there is an obstacle in DEXTER’s current lane, he

has to drive the parallel lane backwards in order keep going in the correct direction and

reenter his true lane past the obstacle. See Figure 2-4 for this example.

Figure 2-4. In this example, the white arrows show the directions of the lanes. DEXTER
must ask for beads in the reverse order so that he can navigate around an obstacle.

 Every query in Global_Mapper_Main.vi went through

Global_Mapper_Query_Check_v2.vi in order to catch malformed queries. The VI calls

Valid_Waypoint_ID.vi in order to check that the first segment, lane, and waypoint ID in

the query are in range for the current RNDF. (The second set of segment/lane/waypoint

IDs is also checked for Query Types where it is used.)

Global_Mapper_Query_Check_v2.vi also calls GPS_Coordinate_Check.vi to make sure

that the GPS Coordinate in a query is some reasonable distance from a representative

point in the current map. A global variable stored the reference coordinate, chosen as the

first bead in the first segment’s first lane. This step is important, for a GPS point can

23

often come in from a sensor as zero degrees latitude, zero degrees longitude; this

indicates a drop in reliable data, unless the robot actually is operating off the coast of

Africa. Any query errors were eventually returned in the query’s answer without beads,

since knowledge of these errors prevented the Global Mapper from searching for beads it

could not find. A de-queuing error found separately by

Global_Mapper_Deque_Query.vi, which happened (for example) when the queue was

empty, skipped the query-processing steps and returned to de-queuing.

 The author worked on processing a few of the Query Types. The first and most

basic, “Get Upcoming Road Points,” indicates that the querying module wants

information pertaining to a lane. If the incoming query is well-formed,

Return_Lane_Beads.vi retrieves the relevant bead list. Segment and Lane IDs in the

query locate the bead array corresponding to the appropriate lane. A more refined search

typically starts at either the beginning of the Array of Beads or the end; the latter case is

used when DEXTER intends to drive the lane in reverse. However, if the Array of Beads

for this search and this query matches that requested by the previous query, the refined

search begins at the current query’s expected Waypoint ID. The assumption in this

special case is that DEXTER uses the first query to find out about the lane the robot

wishes to enter, but then uses subsequent queries to continue through the middle of that

lane. DEXTER’s guess of where in the middle of the lane to look is more sophisticated

than assuming a lane endpoint.

From the starting point of the search, Find_Nearest_Bead_v2.vi finds the closest

bead (in pure distance) to the query’s GPS Coordinate. Every point may be checked,

even if tests must loop over in the bead array to do so. As a way to save time,

24

Find_Nearest_Bead_v2.vi stops searching when the beads stop getting closer to the GPS

Coordinate and start getting farther away—provided that the winning bead is within some

minimum distance. This extra test can be necessary depending on the shape of the lane.

Imagine a lane shaped like a “U.” The GPS Coordinate is near one side of the “U,” but

the search starts on the opposite side. In this case, the list of beads would have their

distances to the GPS Coordinate shrink then grow before even reaching the curve of the

“U.” Obviously the search should continue, but for that to happen the lateral distance to

the point must be considered, here in the form of a distance cap. See Figure 2-5 for an

illustration of this concept. Note that even if it has to search an entire Array of Beads,

Find_Nearest_Bead_v2.vi always returns a winner. Overall, Find_Nearest_Bead_v2.vi

performs a version of Point-to-Point Map Matching, but since the queries unambiguously

name the lane of interest, common pitfalls of Point-to-Point Matching that lead to road

confusion are easily avoided [5].

Figure 2-5. The rectangle represents a robot. The red dot is the GPS Coordinate
magnified. The black lines show that the robot will get closer to the red dot and then
farther away before it even reaches the curve. Hence, the search should continue in this
case.

Return_Lane_Beads.vi then finds the bead index containing Waypoint ID B.

Either the number of beads between the query waypoints or the number of meters in the

query Distance, whichever is lower, is used to decide how many beads to report.

Select_Beads.vi finds the beads to return by iterating through the Array of Beads and

picking out the bead index returned by Find_Nearest_Bead_v2.vi and the beads after it

25

(or before it, if in reverse). If the VI reaches the end of the Array of Beads before getting

all the beads it was meant to report, Select_Beads.vi passes along the shorter list; most

lanes lead into intersections, so looping over in the Array of Beads would give incorrect

data in the query response. Imagine a perfectly straight, vertical lane; with looping in

Select_Beads.vi, beads in a query response could lead out the bottom and back into the

top, jumping a distance which would only confuse a robot and send it in the wrong

direction.

After Return_Lane_Beads.vi finds the beads, Global_Mapper_Main.vi calls

Beads_to_Road_Description.vi. This VI packages the beads found by

Return_Lane_Beads.vi into the approved query response format, which wraps query

errors and the beads themselves with a host of other information about the RNDF. The

confidences of all beads in the response are included. The official Query Response

structure then passes back to the requesting port and address via UDP. The Query Type

“Get Road Points Forward and Back” calls Return_Lane_Beads_(forward_and_back).vi,

which works the same as Return_Lane_Beads.vi but does the extra work of selecting

beads behind the GPS Coordinate as well and stringing all the beads together. This query

can be useful if the GPS Coordinate in the query is approximate and therefore a more

complete answer comes from looking on both sides of it.

The Query Type “Get Intersection Points” progresses like “Get Upcoming Road

Points,” only it calls Return_Intersection_Beads.vi instead of Return_Lane_Beads.vi.

Here, Location A is the point to reach at the end of the intersection, and Location B is the

point where the intersection originates. Hence Location B, compared with the RNDF,

decides whether an intersection is in the Intersection List or the Zone Exits. From there,

26

the code finds an Intersection Bead List that matches the start and end segments/lanes.

Find_Nearest_Beads_v2.vi and Select_Beads.vi again take a bead list and return the

appropriate subsection. Figure 2-6 summarizes the basic steps needed to answer a

generic query.

Figure 2-6. This flowchart highlights the important steps taken by the Global Mapper to
answer a query.

Zones do not have paths, and are thus much simpler to return; the Query Type

“Get Zone Description” calls Get_Zone_Description.vi, which just finds the zone using

the Segment ID from query Location A, and returns the entire Zone Description. The

parking spots and perimeter points of a zone need not be divided into subsections.

Section IV: Bead Extensions

 One advantage of using the bead structure is that information about a point in

space can be extended beyond latitude, longitude, heading, and Bead ID. Certainly

latitude and longitude locate the point, thus creating a relationship between the bead and

real space. The heading defines a relationship to the next bead, which may be helpful to

a robot that needs to decide where to go next. Bead IDs also define order between beads

in the same lane or intersection. Beads may foster more and more relationships, since an

individual bead holds a cluster of data types.

 Bead relationships to the map structure can be useful to other modules. The IDs

for the overall bead structure (segments, intersections, lanes, and zones) are explicit in the

way beads are stored, but if necessary beads themselves could also contain these

27

references. A bead may also record some measure of its placement along its array. For

DEXTER, a bead reported its distance from the start of its lane, where such distance was

along the lane instead of along the most direct route from a bead to the lane’s start. Other

modules also wanted the maximum speed that the robot could travel through a bead,

which was parsed at initialization from DARPA’s Mission Data File (MDF). RNDFs

label checkpoints, which indicate possible goal points that should probably not be moved,

or may otherwise warrant special attention. Corresponding checkpoint beads contained

flags of their status. Another flag noted mutability, based on the idea that some special

points, such as the beads at a stop signs, may need to be prevented from moving. This

flag could also be used for a lane that should stay constant, or for testing update code.

 Again for the sake of other modules, relevant beads held an Original Waypoint

ID. All points in an RNDF are waypoints, and the beads derived from that file (as

opposed to the beads interpolated by the Global Mapper) kept a record of the waypoints

from which they were created. The rest of DEXTER used these waypoints to understand

the map, and included Waypoint IDs in queries to the Global Mapper. Hence, keeping an

Original Waypoint ID in a bead allowed beads to be matched up to another module’s

concept of the robot’s current map.

 When updates are used, beads may hold trending information related to their

previous states. The last change in latitude, longitude, or heading may be saved, as well

as some form of total change and the original positions. Possible uses of these bead

elements include flagging large changes which may be in error and identifying problem

areas within the map. Smart updates also require a bead to have some measure of

confidence, so that the certainty of starting beads and of past updates can be a part of any

28

update algorithm. Confidence may be a number, or an enumerable type.

 Team Case considered another extension, which was designed but not used. In

this extension, a bead records references to notable fiducials visible from its position. In

the proposed design, the fiducials would have been listed on their own, so that all of their

position information need not travel with the beads, only their unique IDs. While the

beads are extendable, they must also pass over UDP, so how the size of a bead cluster

affects communication must also be considered. However, should the distance between

the fiducial and the bead be required, that distance too may be saved in a bead cluster’s

array of Fiducial Indices. Again, landmarks may lack reliability in the desert, but such an

extension would still maintain a memory of latitude/longitude positions and not use the

landmarks as a crutch.

For an example of how to use these indices, assume a robot is located on a

particular bead. From there, the robot can see, with cameras or other sensors, a nearby

tree. The bead would contain a reference to the tree via a unique ID, and thus the robot

would expect to see the tree when driving through that bead. Any given bead may have a

list of several trees, telephone poles, or whatever else the terrain may provide, though this

method would be limited in flat, desert areas without many features to detect. While

driving, the robot could use the fiducials referenced by its current bead(s) to verify its

position. In the other direction, fiducials seen by the cameras could be used to help locate

the correct beads from the current list, thus performing some measure of localization.

29

Chapter 3: All Updates vs. Nothing Updates

Section I: The All Case, Teach and Playback

 What is meant by an “all” update? In this context, it means that the bead

coordinates are only poorly known, but that the robot has reliable information from direct

sensing. Because of the disparity in quality between the two, the best course of action is

for the beads to remember where DEXTER drove. In the most basic version of an all

update, DEXTER records verbatim the latitude/longitude coordinates that he passes while

traveling in joystick mode, and then uses those recorded beads to retrace his steps. In this

extreme scenario, the beads are as poor as they possibly can be, because until DEXTER

drives, the bead coordinates are unknown; alternatively, bead coordinates could exist

with such low confidence that they would be completely ignored and overwritten. The

saved path is dictated by user choice and therefore no map structure is necessary during

recording; essentially, DEXTER just remembers one long lane. Queries still exist to

request portions of that lane.

 The author wrote code to address this scenario so that it could be used if needed in

parking lot demos (defining a map can be difficult in unstructured space). The main file,

Record_and_Playback.vi, handles all the main modes of this bead update method, most

notably the record (or teaching) phase and the playback phase. These phases are

completely separate. There are no queries needed for navigation when DEXTER is under

human control, as well as no data to report; hence the map is completely passive during

recording. Conceivably, points could be recorded while other points are played back,

however the results may be undesirable. DEXTER’s bulk in the real world often caused

30

him to slightly miss his marks, so constantly re-recording those goals would have likely

led to drift. Keeping playback completely separate also increases clarity in operation.

Since driving DEXTER by joystick can be time-consuming, the main file allows a bead

path to be saved to a file and reloaded from one. Record_and_Playback.vi contains a

number of helpful buttons for running these different pieces of functionality. The array

Recorded Beads contains the path that DEXTER will follow.

 The first button in Record_and_Playback.vi is labeled “Record Phase.” This

button loads new beads into the Recorded Beads array by calling Record.vi. Record.vi

reads GPS coordinates from the Physical State Observer and checks to make sure that the

coordinates it saves are at least a meter apart (otherwise the beads would be needlessly

dense). This provision prevents the string of beads from filling with identical points

while DEXTER remains idle. Obviously, the check is not needed for the very first GPS

point collected.

 During a joystick run, the Physical State Observer may time out, encounter errors,

or report invalid points; error checking ignores any information produced under these

conditions. The GPS coordinates (each consisting of latitude and longitude) are the

information of interest, and each worthy point is copied over to a bead. By recording a

list of points as the playback goals, this teach-and-playback algorithm may be classified

as “target point following” [17].

 For the purposes of record and playback, most of the other bead information uses

defaults (headings are ignored, for example). However, headings are reported by the

Physical State Observer and could be copied if necessary for some similar application.

The record phase runs until the user un-clicks the button of the same name. The

31

possibility exists that a recorded set of beads may grow too large for the available

memory (which will never be infinite); however, this was not an issue for the tested scale.

 The other side of recording is the playback phase. Pushing the “Playback Phase”

button in Record_and_Playback.vi calls Send_Playback.vi to replay all of the Recorded

Beads. During playback, the code listens for queries on a UDP port. At this stage, a map

is required for interface reasons. Other modules phrase queries in terms of an RNDF, so

an RNDF of the relevant area is needed to check the query. The most relevant query

check makes sure that the Recorded Beads are in the same general area as the RNDF, and

therefore DEXTER’s recorded points are in the general vicinity of where the user would

expect.

 The points on the dummy RNDF need not have any overlap with the Recorded

Beads; the RNDF merely serves as a kind of ballpark figure. The Route Localizer

module dictated that DEXTER had to be somewhat near a lane in order to see the

Recorded Beads associated with that lane, even if those beads were nowhere on the lane.

A solution to this requirement was to put the recorded path inside an RNDF loop. Stop

points caused DEXTER to stop when he was only near a lane, not on it, so an RNDF for

teach and playback should not contain stops. Once Send_Playback.vi receives a well-

formed query, the particular beads to send are chosen by Beads_to_Play_Back.vi.

In Beads_to_Play_Back.vi, a sample of DEXTER’s current GPS location is taken

by Take_Sample.vi, which simply returns the first valid GPS reading from the Physical

State Observer. Find_Nearest_Bead_v2.vi (detailed in Section III of Chapter 2 on

answering queries) locates the element of Recorded Beads closest to DEXTER’s current

position. This functionality means that DEXTER need not be at the beginning of his

32

recorded path when playback begins. However, DEXTER should start near enough to

some position in his recorded path so that he can navigate to the path without having to

cross a large, bead-less expanse. Because the RNDF is only approximate,

Beads_to_Play_Back.vi must perform this minimal localization.

Beads_to_Play_Back.vi compares the distance from the last element in Recorded

Beads and the first; if this distance is less than ten meters, then the points can loop over

and all beads may be sent to the Observers; if not, the gap is too far for DEXTER to

navigate, and the points to report can go no farther than the end of Recorded Beads. The

number of beads possible to report is compared with the number of beads requested by

the query, and the smaller of the two becomes the number of beads sent.

Due to the interface used, Send_Playback.vi must use

Beads_to_Road_Description.vi to package the bead GPS coordinate data into a format

the Observers expect to read. From there, the Road Description travels back to the

Observers through UDP. The playback phase halts with the push of a button, or when the

Recorded Beads run out of points and the start of the path is too far to reach. Figure 3-1

explains how the path shape makes a difference. Unfortunately, a path like the red circle

may cause DEXTER to keep going even after playback is stopped. At least during one

point in development, the Road Detector did not clear out when the Observers stopped

receiving query answers. If any sort of closed loop were present, this other part of

DEXTER unrelated to his map would keep him driving on saved data even with no

incoming points. When this other module presented this problem, DEXTER himself

needed to be stopped before the playback phase was turned off.

33

Figure 3-1. In the red path at the left, the end is close enough to the beginning that the
beads to play back can loop over, and playback can tell DEXTER to keep driving the
circle. In the blue path at the right, DEXTER does not know how to navigate from one
end back to the other, so playback stops feeding points to the Observers and DEXTER
must stop since he does not know where to drive.

 The other three buttons in Record_and_Playback.vi are for storage and retrieval,

so that recorded paths can be played back later without DEXTER having to relearn them.

Figure 3-2 shows all of the buttons the user has available. The Store in File button calls

Record_Points_to_File.vi to write all of the current Recorded Beads into a binary file.

The counterpart button, Get from File, reads points from a binary file and loads that data

into the Recorded Beads. Finally, the Save to CSV File button calls

Recorded_Beads_to_CSV.vi, which takes only the latitude and longitude information

from each bead and writes it to a CSV file so that users may observe this data in

programs such as MATLAB. Figure 3-3 summarizes how the list of Recorded Beads can

be passed around and used.

34

Figure 3-2. The user has five buttons to choose from when teaching and playing back
beads. Output errors are also available in the interface.

Figure 3-3. How the Recorded Beads, highlighted in pink, are created and used. Buttons
used in the teach-and-playback method are highlighted in yellow.

 With dexsim, a program written by Christian Miller to drive DEXTER in

simulation [32], the user could employ a computer’s mouse to simulate the joystick

needed for recording, and then watch the simulated DEXTER move on its own during

playback. Figure 3-4 shows the simulated DEXTER driving a figure eight that clearly

35

does not follow the lanes on the map (and in the RNDF); the figure eight was drawn

manually. In the spring of 2007, DEXTER himself used this teach-and-playback code in

the Mount Sinai parking lot in Cleveland. The RNDF used followed the suggested one

loop format with no stops. The code ran exactly as intended on the first try, with

DEXTER following a misshapen loop originally drawn by hand.

Figure 3-4. DEXTER following a manually drawn figure eight by using
Record_and_Playback.vi. The green trail shows where simulated DEXTER has just
driven, while the red dotted line shows where the simulated robot is going next.

Section II: The Nothing Case, Altering Maps

 What is meant by a “nothing” update? In this context, it means that the beads

never move; DEXTER practiced nothing updates in competition. During a nothing

update, the Global Mapper still keeps active and reports beads to other modules. But no

update code runs as the robot drives, and the beads are constant regardless of what any

sensors might say. However, these conditions do not mean that a nothing update involves

no more work than generating beads from an RNDF and reporting them to the rest of

36

DEXTER (see Chapter 2 for detailed descriptions of these procedures). Rather, a nothing

update means that the a priori beads must have very good quality.

 Beads may potentially come from maps, which have never been perfect. In the

1940s, the U.S. National Map Accuracy Standards specified that the accuracy of a map

should be within 1/30th or 1/50th of an inch (depending on map scale), where such

accuracy could only be verified by better surveys [33]. Map accuracy has improved since

then, and even the terms have changed—now commercial satellite imagery can be as

accurate as a half meter resolution [34], while aerial photography offered by the U.S.

Geological Survey can reach a resolution of 0.3 meters in some areas [35].

 The RNDF format further sabotages bead confidence level. First, RNDFs are

sparse, and many beads must be interpolated between them as a guess. Second, if RNDF

points come from measurements with a GPS antenna (instead of from a map), these

measurements may not align with what DEXTER’s antenna sees on a different day.

Third, when RNDF points come from satellite (or aerial) imagery, DEXTER’s GPS

antenna may again not agree with those results. The second and third problems are really

just two specific versions of the alignment problem; it is more important for DEXTER’s

sensors to match the bead map than for that bead map to be absolutely correct.

 Hence, a nothing update requires work before DEXTER runs in order to provide

acceptable beads. Generated beads have no knowledge of the look of the road, and

therefore their confidence is restricted. For DEXTER, Andrew Horchler addressed this

problem by writing Java code that displayed beads (written to an XML file) and then

allowed manual editing. Several team members spent time using his software to place

beads on the middles of roads before DEXTER’s semi-final events. This ability was

37

invaluable for cleaning up curves and intersections.

 Yet, not all bead shifting must be manual. In the National Qualifying Event

(NQE) that DEXTER participated in at Victorville, Team Case observed shifts (in both

latitude and longitude) between RNDF points and the nearby points that the DARPA-

distributed aerial imagery believed was on the road. Beads come from RNDF points, so

the beads were off the centers of roads as well. The author wrote Shift_All_Beads.vi to

move all beads globally.

 Shift_All_Beads.vi considers all five global movements: latitude offset, longitude

offset, horizontal scaling, vertical scaling, and rotation. For the user’s convenience,

latitude and longitude offsets need not be entered directly. Instead, the user may specify

some number of meters to move east or west (for longitude) and north or south (for

latitude). Each meter offset has a matching heading in polar degrees to decide direction;

for example, a value of ninety degrees for the longitude heading is due west.

 To convert these meters to latitude and longitude, a reference point is required.

Find_Gathered_GPS_Midpoint.vi allowed Team Case to choose a particular GPS

coordinate at the middle of the existing bead positions. The midpoint may alternatively

be calculated with Find_Gathered_GPS_Midpoint_(Calculate).vi, which calculates the

midpoint latitude and midpoint longitude from an incoming list of beads, an RNDF, or

sensor logs. Once Shift_All_Beads.vi has the GPS midpoint,

GPS_Location_from_Given_Position.vi finds the latitude of a new point the requested

number of meters away from the midpoint and in the requested direction of latitude shift;

the VI is called again for longitude. The differences between these moved coordinates

and that of the midpoint give a latitude offset and a longitude offset.

38

 A user can easily understand latitude offset, longitude offset, horizontal scaling,

vertical scaling, and rotation. However, moving points is easier to do in matrix math, so

first Shift_All_Beads.vi converts variables using

Rotation_Scales_and_Offset_to_Matrix_Variables.vi. The offset variables only have to

be added to one latitude/longitude pair in order to produce another, so the offsets may be

kept in their own vector. However, the angle of rotation becomes a rotation matrix (see

Equation 3-1) and this matrix carries the scaling factors.

Rotation_Scales_and_Offset_to_Matrix_Variables.vi performs the math in Equation 3-2,

and copies the offsets to output variables. The output variables are the following: xi, xj,

yi, yj, x offset, and y offset. The angle x must be in radians.

cos sin
sin cos

x x
x x

−⎡ ⎤
⎢ ⎥
⎣ ⎦

Equation 3-1. The rotation matrix of an angle x, where x is in radians.

cos *() sin *()
sin *() cos *()

x vertical scale x horizontal scale xi xj
x vertical scale x horizontal scale yi yj

−⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

Equation 3-2. The matrix produced by
Rotation_Scales_and_Offset_to_Matrix_Variables.vi. The rotation angle is x radians.

 Once Shift_All_Beads.vi has the matrix result in Equation 3-2 and the two offsets,

it parses out each and every bead from the overall bead structure: beads in lanes, in

intersections, in zone exits, and in zones must be found separately. Parking spots are not

moved, since these must be considered goals to be reached and are not connected with

any path. All other beads move by a three-step process. First, the GPS midpoint is

subtracted from the latitude and longitude of the bead in order to put the bead in relative

terms. Second, Matrix_Math_for_Image_GPS_to_Real_GPS_(Inverse).vi changes the

relative position of the point. Last, the GPS midpoint is added back in so that the moved

39

bead’s position will be in absolute terms.

 Matrix_Math_for_Image_GPS_to_Real_GPS_(Inverse).vi has a long name for

legacy reasons; consider the “Image GPS” as a guess that has to be converted to reality.

The relative bead positions in the inputs, i and j, are added to the x and y offsets. The

inverse (found by LabVIEW) of the matrix in Equation 3-2 is multiplied by the vector

created by adding in offsets. The resulting vector is the new relative position which will

be put back into absolute latitude/longitude terms and repackaged into a bead by

Shift_All_Beads.vi. Shift_All_Beads.vi resaves all the beads it moves; Figure 3-5 offers

an overview of the VI.

Figure 3-5. A flowchart of Shift_All_Beads.vi, with the GPS midpoint calculated from an
RNDF as an example.

 Figure 3-6 shows Shift_All_Beads.vi in action, using other Team Case code to

display beads on Google Earth. The beads with rotation moved counterclockwise,

following the direction in which polar degrees flow. Points are rotated individually

relative to a midpoint, which is an estimate, so some change in the path’s shape occurs.

40

Scaled beads show some rotation; since the scale factors roll into the rotation matrix, this

is an expected consequence of using stretches and shrinks. “Horizontal” vs. “vertical”

scaling is a matter of perspective, especially when used on a diagonal path. Scaling is

perhaps the trickiest parameter adjustment, and the user must play with these values in

order to meet some goal (as is true in general). The scene in Figure 3-6 is of Case

Western University’s Engineering Quad.

Figure 3-6. The original beads created from an RNDF are in blue. The beads shifted 5.5
meters east and 3.5 meters south, with only offsets used, are in green. The scaled beads
(1.2 vertical and 0.8 horizontal, where one would mean no change) are shown in pink.
Finally, the orange path is the beads after a forty-five degree rotation.

 Shift_All_Beads.vi uses parameters to move the beads in order to try to get a

general fit to what DEXTER believes. Our team was not allowed to gather data with

DEXTER’s GPS sensor on any of the tracks before the events, but we were allowed to

drive DEXTER in the area, which confirmed that DEXTER’s perceptions matched the

41

aerial imagery, not the RNDF. (The aerial imagery included surrounding areas that we

used for this analysis.) DEXTER’s GPS antenna’s measurements, and therefore his

belief about where the middle of a road was, agreed with the aerial imagery. RNDF

points were never guaranteed to be exact, even as goals, but it was certain that DEXTER

needed to stay on his road. So to deal with the global shift in DEXTER’s map

registration, the author moved the RNDF to suit the beads (DEXTER’s Route Planner

required similarity between the two).

 Match_RNDF_to_Beads.vi solves a parsing problem. In one corner sits a set of

beads read from an XML file. The beads in intersections or zone exits have no

corresponding points in the RNDF, but zone beads are copied directly from an RNDF and

lane beads take waypoints from the RNDF. RNDFs have a very precise format, and with

knowledge of it, Match_Beads_to_RNDF.vi parses out each zone and each lane’s

waypoints. Segments, lanes, waypoints and zones have IDs that the beads copy into their

organizational structure, and the IDs provide precise identification.

 For zones, the perimeter is not worth changing; DEXTER is never meant to drive

outside the bounds of a parking lot, and these points are not among his goals. Parking

spots are important, however, as goals, and lane waypoints are important to drivability.

Using IDs to correctly match the right spots and waypoints (see Figure 3-7),

Match_Beads_to_RNDF.vi converts the latitude and longitude information in the beads

to text and replaces the previous GPS coordinate text in the RNDF file. Non-GPS

coordinate parts of the RNDF (such as IDs) remain the same, and after the latitudes and

longitudes are replaced, the RNDF is resaved. Interpolated beads lie within the moved

RNDF. Team Case used these moved RNDFs in the semi-finals, instead of the original

42

RNDFs distributed by DARPA.

Figure 3-7. The same waypoint is defined in an RNDF as in the bead structure, but the
RNDF’s GPS coordinate data is replaced as above. The same is done for parking spots.

 Figure 3-8 shows how well Match_Beads_to_RNDF.vi works. For this test,

Shift_All_Beads.vi created a poor set of beads, which led to a poor RNDF. The original

good beads (before shifting) then became the goal for the poor RNDF.

Match_Beads_to_RNDF.vi created a new and improved RNDF from the poor RNDF and

the goal beads. Paths on the figure vary in thickness in order to show when paths

overlay.

43

Figure 3-8. The red path is the poor RNDF, which is clearly impossible to drive. The
dark band around the quad indicates the good beads. Match_RNDF_to_Beads.vi moved
the red RNDF to the light blue RNDF that follows the exact same course as the good
beads.

44

Chapter 4: An All-or-Nothing Update

Section I: Deciding between All and Nothing Online

 High quality aerial and/or satellite photography compared with and matched to

the behavior of DEXTER’s own sensors can provide excellent beads to DEXTER before

he ever takes on a course. In practice, Team Case used this ability at the semi-finals to

avoid ever having to update a single bead online. The idea of using a priori position

information is not unique; for example, a feature-based mapping approach may require

that the absolute positions of some “anchor objects” be known before extensive map

building [25]. Yet, not all robots can rely on a priori information. Some so-called

“reactive systems” do not require any sort of global map [28]. The popular SLAM

problem also defines a robot’s environment as a nebulous, unknown quantity [15], and

other scenarios employ a robot that must learn about its world by “walking about” inside

it [26]. In future DEXTER endeavors, reliable photography may not be provided, and the

robot may be forbidden from using its sensors in the area for pre-competition testing.

 Though it might be time-consuming, DEXTER’s sensors can navigate through

areas, and DEXTER’s Global Map could memorize his movements. But this extreme is

insufficient as well: if DEXTER only used such all updates on a map, then there would

be no way to take advantage of some known good beads. For example, aerial and

satellite photography may be clear in some areas but obscured in others. Hence, our team

foresaw a need to let DEXTER make up his own mind about when to replace beads and

when to keep his memory intact.

Section II: Guidelines for Updating a Bead

45

An Array of Beads may define the path of a lane, an intersection, or a zone exit.

Zones do not have paths like the rest of the map: their parking spots must be believed as

goals to be reached, and robots do not usually drive along zone perimeters. For these

reasons, zone points are never updated. Find_Array_of_Beads.vi uses DEXTER’s Route

Localization information to locate where in the map structure DEXTER last drove, so any

update algorithm can locate the correct bead array.

 Replacing beads requires DEXTER to collect GPS points in some systematic way.

The robot may make maneuvers that invalidate the data it collects with regards to any

update operation. When the robot avoids an obstacle, it may not take the path a second

time (especially if the obstacle can move). If the robot is driving a lane in reverse, then

the robot is either in error, or disobeying the normal motion of traffic in order to move

forward at all. Reverse driving is unreliable in terms of repeating paths, so all update

code assumes the forward direction and ignores data collected while DEXTER is in

reverse.

Collecting raw GPS data is not accurate enough in the field. GPS signals drop

and shift at random intervals. And in the case of DEXTER, who had a “wagon handle”

to direct him, the robot would not drive exactly over the path his handle followed on

curved roads. If DEXTER remembered raw GPS coordinates, and beads were ever

updated more than once, then DEXTER could potentially move his remembered path

farther and farther from his real goal as the wagon handle forced him to take wider and

wider turns. To solve this problem, any update bead method needs a filtered, smooth

path of GPS points that should be traveled but are not necessarily driven over directly. In

DEXTER’s case, the Lane Description from the Observers contained GPS points derived

46

from combining regular GPS signals, road detection sensors, and the current beads; the

Lane Description publishes its own confidence for each point based on the confidences of

these pieces of data. The Lane Description is not perfect, however, for it is a list of

points that does not update as quickly as DEXTER moves. When collecting latitude and

longitude values for updates, choosing the point from the Lane Description closest to

DEXTER’s current physical position allows the collected points for updates to move

forward even when the Lane Description does not.

 Another consideration when updating beads is how dense or sparse the collected

GPS points that inspire updates should be. The choice translates directly into the density

of the updated beads. Beads that are too dense are unnecessary and a memory and

computation burden, but beads that are too sparse do not lead to a well-defined path.

While other spacing choices are possible, a distance of roughly one meter (and at least

that) between examined GPS points (and therefore the beads they affect) was suitable for

avoiding the problems at either end of the spectrum. This choice furthers a convention,

since the Global Mapper also spaces beads one meter apart upon initialization.

 Since the robot’s memory of its internal map is always in use, any update method

must be careful about when the beads change. For example, one possibility would be to

change beads according to the current plan of the path up ahead. The timing of this can

adversely affect other modules; when the upcoming path is constantly reevaluated, a

rapid and drastic change in the memory for upcoming beads may lead to choppy driving.

Combined confidences, as found in the Lane Description, pose another problem. The

bead confidences could increase when altered by the Lane Description, but the Lane

Description looks at the same points multiple times in succession. Hence, the Lane

47

Description confidence could increase because of the Lane Description’s own previous

results (as repeated by the beads). This feedback may continue with the beads believing

the Lane Description, and the Lane Description believing the beads, until the modules’

confidences unjustifiably approach unity from consistently repeating the same

assumption (of possibly low confidence at the start) back to each other.

 Replacing beads behind the robot after it has passed them solves these two

problems, but not others. The method presented in this paper updates beads as a group

(once DEXTER has passed a lane or intersection) in order to avoid the issues inherent in

updating beads one at a time. For example, since DEXTER’s map was segmented,

moving beads while driving past them can erase the distinction of where a lane was

supposed to end. Extra memory is then required simply to remember the old boundaries

for the purpose of restricting the new ones. These boundaries must be strictly

maintained, or a single GPS point may belong to both a lane and its adjoining intersection

(for example) simultaneously. Worse, without boundaries the robot may need to back up

after finishing a lane’s points in order to start an intersection’s points. When beads are

updated individually, it is also very tempting to update beads in order (based on lane

direction). This myopic view ignores the best fit of where new data should replace old.

However, searching for the best bead to update with each incoming GPS coordinate could

get costly. Moreover, updating beads on an individual, out-of-order basis allows beads to

be skipped, which can cause discontinuities.

 For these reasons, DEXTER’s proposed update method works on a self-contained

portion of the map with clear start and end points—such as a lane, or an intersection—

after the robot leaves that Array of Beads behind for the time being. The update method

48

updates a section of a given lane or intersection so that discontinuities created by the

update can be restricted to either end of the updated section. These discontinuities occur

when DEXTER only drives part of a lane (or other structure), and is therefore only able

to update part of that lane. However, since the discontinuities occur in expected places,

they can be dealt with systematically.

 Updating a lane or intersection all at once allows for the update section that best

fits the incoming data to be found once within the lane. It is also simpler to keep that

update section in the predetermined bounds, since the original endpoints will not move

until they can be compared with the new data. For DEXTER, a VI named

Get_Rid_of_GPS_past_Bead_Array.vi drops collected GPS points for the update that are

ahead of the last point in an Array of Beads. Since the update method waits for DEXTER

to change his lane or segment before recording points for the new lane or segment, the

method does not have a chance to grab GPS data before the start of a lane or intersection.

 Replacing a section of an Array of Beads requires identification of such a section.

Find_Bead_Subsection_to_Replace.vi locates which beads in an Array of Beads should

be altered by updates, checking that the last bead index to replace is after the first, and

that both the first and last indices are valid for the Array of Beads.

Match_GPS_to_Bead_Index.vi finds both the first and last beads of the subsection to be

updated (in separate calls). The VI takes in a GPS coordinate ready to cause a bead

update and finds the bead just behind it. In this context, a bead that is “behind” a GPS

point means that were DEXTER sitting on that bead facing in the direction of the bead’s

heading, the GPS point would be somewhere in the half-plane ahead of DEXTER, though

perhaps off to the side as well. The algorithm does not search for simply the closest

49

bead, because that scheme does not prevent some beads from being pulled forward in the

update while others are pulled backward..

 Paths can twist and turn, so if more than one bead in a bead list is directly behind

the GPS point (recall the definition of “behind” here), the bead closest to the GPS point

wins. Imagine a serpentine path (see Figure 4-1); in that case, one bead would be behind

the GPS point (while the following bead would not be) before and after each turn. Hence

the choice of closest bead is needed to find the most appropriate match. If no bead index

can be matched to the GPS point, Match_GPS_to_Bead_Index.vi returns an error.

Figure 4-1. The serpentine path is traveled downwards. There are three blue beads
(marked) that are “behind” the GPS point; that is, when DEXTER is positioned on top of
one of the blue beads and oriented tangent to the road, the labeled GPS point is in front
of the vehicle, albeit to the side as well. Each of the three pairs of beads shown contains
two beads (one red and one blue) that are sequential along the path. The red bead
positions are “in front of” the GPS point, because the GPS point is not within the half-
plane in front of DEXTER when the vehicle sits on top of one of the red beads at an
orientation aligned with the bead’s heading. Match_GPS_to_Bead_Index.vi must use
absolute distance to choose among the beads in the blue positions. In this example, the
GPS point should match with Bead 1 (marked).

 If finding the beads to change throws an error for any reason, no update should

occur, since trying to do so would only propagate the error. But this does not mean that

beads must always be updated when there are no errors. Finally, LabVIEW offers multi-

50

threading capabilities, so the update method can record GPS points for the current lane or

intersection while updating the last visited set of beads in parallel.

Section III: Running All-or-Nothing Updates

 In DEXTER’s all-or-nothing update method, every bead, each a representation of

a single point in space, can be assigned two levels of confidence: absolute confidence, or

none at all. As the robot’s memory is “born,” some information is instinctual; beads

given high confidence are accepted as unassailable, unchangeable fact, a product of

centuries of evolution, or in this case, a human judgment call. For example, if a mission

states that the sparse points distributed by the officials of the contest were measured with

similar equipment to the robot under similar conditions, such points are likely to be

believable. These beads maintain their certainty, and they will be used exactly the same

every time.

 The beads with no confidence serve an opposite purpose. These beads are

generated by producing an inferred path between two known points. But for whatever

reason, the human with the vested interest in the robot’s performance does not trust these

beads. Imagine two known points, A and B, on either side of a black box (e.g. a

warehouse whose insides are concealed from satellite and aerial imagery). The robot

must navigate through that box from one point to the other, as shown in Figure 4-2. With

no knowledge of the hidden terrain, the beads generated from A to B assume the most

direct route; there is no advantage to predicting a more time-consuming, winding path.

Figure 4-2. When faced with the black box in the first figure, DEXTER must assume the
most direct route from Point A to Point B, as shown in the middle figure. However,

51

obstacles inside the black box may force DEXTER to take a more convoluted path, an
example of which is shown in the third image.

 Now imagine that the black box contains a maze that totally thwarts the direct

route. The robot must rely on non-GPS sensors such as vision, radar, and LIDAR in

order to avoid the maze obstacles. As it does so, the robot traverses unexpected locations

(physical state estimates) that could reduce its confusion on its next journey from A to B.

These physical state estimates are worth remembering. Hence, the original, no-

confidence beads move to directly match the path actually traveled. Provided the robot

has some confidence in its measurements for the new path, the bead confidences are set

to high—this path worked once, so the robot assumes it will work again.

 Note that now these moved beads are equivalent to the ones that the robot’s

managing human believed in, and they will never change again. The robot’s overall map

will only be dynamic in this update method until all of the no-confidence beads have

been visited and updated. After that, the robot’s internal map is generally static, and the

robot ceases to learn until it is given new paths to follow. There are exceptions where no-

confidence beads may be created by the update method in order to smooth out

discontinuities in a lane or intersection that result from the update of a subsection.

 In addition to relying on the update method properties described in the previous

section, this update process runs Replace_Bead_Array_(Decide).vi to determine whether

beads should be updated or not. In a situation with binary confidence levels, generally an

entire lane or intersection or zone exit either has total confidence or none. The code tests

a sample of an Array of Beads (by default five beads): if all of them have no confidence,

the bead array can be altered. Alternatively, a larger sample of the array and a lower

threshold percentage of no-confidence beads could be used. This adjustment would make

52

a more informed decision for bead arrays with very mixed confidences, but it would also

require more processing time. If the original sparse points of a map are given high

confidence, then a larger sample will likely see those points, and in that case a less-than-

perfect threshold percentage will be crucial if updates are to occur.

 A low confidence lane (or other bead path) may have high confidence

endpoints—designated points that must line up with intersections, for example. To still

allow a test for a complete lack of confidence, the first two beads in the “to update” bead

list are ignored, provided that the array is long enough to do so; zone exits are very short

but also do not have high confidence endpoints. Ignoring the first two beads is sufficient

for a test using a small number of bead samples, because such a test will not reach

original map positions or the bead array’s other endpoint.

 For each bead in the section of beads to replace, the code calls

Update_Bead_All_or_Nothing.vi. Many of a bead’s attributes are kept the same, but the

latitude and longitude are completely replaced, and the heading and confidence are

copied from values reported by the Physical State Observer and the Lane Description,

respectively, at the time the update point was recorded. Normally the Lane Description

has four levels of confidence. But with this method, if a point from the Lane Description

had any confidence at all, the confidence of the bead is effectively absolute (not none).

The VI also inserts into the bead data a record of how much the latitude and longitude

have each changed in the update.

 But what if the number of update points meant to replace a section of beads is

more or less than the number of beads originally in that section? While the density of

beads must be acceptable, the exact number of beads in a particular bead list need not

53

remain constant. Because a whole section of beads is being replaced, the problem can be

examined from a higher level than that of just individual beads. By finding the section of

beads to replace at the start of the process, the beads stay within bounds no matter how

sparse or dense they are. The code iterates through solely the new data points. If there

are fewer new points than old, the new points simply change however many beads they

require and ignore the rest; the extra beads are deleted.

 If more beads need to be created in order to fill the section with all the new data,

the code cannot use Update_Bead_All_or_Nothing.vi, which requires that some of a

bead’s fields exist already. This condition of extra beads is identified when the next bead

index required for an updated point exceeds the last bead index originally contained in

the replaced section. When the condition occurs, a different function is called,

New_Bead_from_Updates.vi, which creates an entirely new bead from latitude/longitude

position, heading, confidence, distance from lane start, and max speed. These quantities

are collected from the Lane Description and the physical state when the robot drives

through a lane/intersection/zone exit. The other bead fields are set to defaults.

 New_Bead_from_Updates.vi is also used if the newly created beads are too

sparse. Fill_Out_Bead_Gaps.vi has a value for a minimum spacing (in meters) between

consecutive beads that it will tolerate. If a gap is too large, the VI linearly interpolates

points in order to fill the gap. Linear interpolation can work for creating drivable paths,

as shown in map matching algorithms that use linear interpolation in order to model

vehicle trajectory [36]. Each interpolated bead receives a default confidence. This

confidence can be tweaked; if none (which was used in the experiments), the interpolated

beads can be used for navigation but possibly replaced later. If the gap beads are given

54

some confidence, then this qualifies them as good enough to keep forever.

 The section of new beads is inserted into the Array of Beads at the same position

that the old beads were removed; the code does not touch beads to either side of the

updated section at this stage. This result can often lead to discontinuities. Imagine a lane

with several other lanes crossing it from start to finish. The robot can enter the lane

partway through, and leave before the end (see Figure 4-3). The updated section may be

a noticeable distance from the initially guessed positions, such that if the robot next

drives the lane from end to end, the path suggested by the beads jumps sideways at two

points, even as it is moving forward. Even when the robot starts out by driving straight

through a lane, delays in various modules of DEXTER’s code can cause the update points

collected to miss either end, leaving a few points in their original positions.

Figure 4-3. The blue dots are beads. The orange lines show the path taken by the robot,
which forced updates on each one lane road. In the bottom lane, the difference between
the old beads and the beads that were moved due to the orange path of travel is very
noticeable.

 When driving, a smooth path can be more important than a completely accurate

one. In DEXTER, downstream modules wanted the beads from the Global Mapper to

give a relatively smooth path as the initial guess. With that in mind,

Interpolate_Replaced_Section_to_Borders.vi moves some points on either side of the

replaced section, so that while the updated part of the path may be clearly different from

55

the original part, the connections between them will be easier for the robot to follow. As

with initial bead generation, the interpolation here employs a spline instead of a purely

linear method like that implemented by Fill_Out_Bead_Gaps.vi. Interpolating to borders

need not be as finely grained as simply filling in a gap often is, so it is more likely for

curves to be part of the interpolation. The spline method handles curves better than the

linear method.

 Interpolation requires two points to confine either end of the trail to be generated.

One of the two endpoints comes from an edge of the route of updated beads. The farther

away from the updated beads, the less likely the update pattern has a real bearing on

where the un-updated beads should be, so the other bordering reference point should

generally be a small number of beads (five in these experiments) from the updated

section. However, if not enough beads exist between an updated section and an end of

the current Array of Beads, the number of splined beads shrinks to what the current Array

of Beads can accommodate. Interpolate_Replaced_Section_to_Borders.vi creates one-to-

one replacements for beads. The interpolated points are given a default confidence; since

these points are like the gap-filling beads that are created to help path drivability, they

receive no confidence in the experiments.

The number of new beads at this stage may be less than the number of old beads

in the same section, a consequence of receiving sparse data that is only partially fixed by

filling in gaps with entirely new beads. Sometimes, beads are waypoints. These

waypoints are important because they are the original points that define the map.

Furthermore, some waypoints are checkpoints (which have to be reached to properly

complete a mission) or stop points (which tell where the robot must wait before crossing

56

an intersection). Reassign_Data_from_Deleted_Array_of_Beads.vi preserves these

important characteristics. The VI examines the beads that were deleted—truly deleted,

and not just moved. These are the beads that were never updated, and if any of them is a

waypoint, Reassign_Data_from_Deleted_Array_of_Beads.vi transfers that waypoint ID

to the nearest (in terms of GPS proximity) surviving bead. If the nearest surviving bead

is itself a waypoint, the rest of the Array of Beads is examined to find an empty host. If

no such host exists, the data must be truly abandoned.

If the all-or-nothing method were to be pursued further, more error checking

could be added to this step. In practice, this reassignment of data was not really needed

given the density of points DEXTER can grab, nor was the order of the waypoints an

issue. But if the robot needed the waypoints in order, this can be forced by checking

existing waypoint IDs. A different approach would be to assume that any updates

whatsoever could take the waypoints too far off their original positions to be trusted, and

then reassign all waypoints and waypoint data within the replaced section. Or, updates of

waypoints could be strictly prohibited.

New beads may have been added in this entire process, and the bead index of each

bead cluster should match the bead’s place in its Array of Beads (other code not

connected to updates has such an expectation). To insure any bead index issues are

avoided, Reset_Bead_IDs.vi renumbers each bead index in the newly updated Array of

Beads.

 Reinsert Array_of_Beads.vi takes the location of the Array of Beads in the overall

map structure (saved from when the original Array of Beads was first pulled from that

structure) and places the new Array of Beads back into the overall map as a whole. The

57

new map structure passes back to Global_Mapper_Main.vi, which can now use these

updated beads as it answers queries about upcoming bead paths. Since sometimes

updates do not happen, Update_Mapper_Beads_All_or_Nothing.vi informs

Global_Mapper_Main.vi if it should expend the effort to update its memory.

Update_Mapper_Beads_All_or_Nothing.vi is the main bead update file that calls each of

the update VIs described according to its purpose. Figure 4-4 illustrates the structure of

Update_Mapper_Beads_All_or_Nothing.vi.

Figure 4-4. This flowchart summarizes Update_Mapper_Beads_All_or_Nothing.vi and
describes how and when various helper functions are used in the update process.

Section IV: Results in Simulation of the All-or-Nothing Approach

 When the 2007 DARPA Urban Challenge ended, so did testing on Team Case’s

58

hardware. With DEXTER retired, the all-or-nothing update method needed to be

analyzed on a simulated DEXTER. Fortunately, a program called dexsim (written by

Christian Miller) served such simulation needs. However, simulated DEXTER did not

have the lane detection powers that real DEXTER did, so in testing the all-or-nothing

update method the simulated DEXTER had to be encouraged to drive off of the RNDF by

more direct means. All-or-nothing tests rely on driving away from the RNDF; otherwise,

DEXTER will drive over the original beads and update them to very similar positions.

 To force a departure from the RNDF, first the human running the simulation must

make a log of an RNDF path simulated DEXTER followed and the corresponding Lane

Description he produced. Once this record is stored, the Python script move_RNDF.py

can move the original RNDF by set latitude and longitude offsets. Using the shifted

RNDF, dexsim runs again in playback mode such that the simulated DEXTER drives the

path in the log. Yet, the RNDF has changed, so the initial beads in the current test are

located on the new roads, not on the roads used to make the log. Hence, the beads

change from matching the current roads to matching the Lane Description in the log.

Any figures that show DEXTER as driving off a road actually show DEXTER ignoring a

bad map for better, stored data.

 Figure 4-5 shows an example scenario that clearly illustrates how the all-or-

nothing update method can provide some benefit to DEXTER. The red dashed lines are

DEXTER’s logged breadcrumbs that he must follow in playback. The breadcrumbs are

not the same as the Lane Description, as the former comes from the latter, but the two are

very close; in fact, these experiments display the Lane Description as a set of black dots,

but the red breadcrumbs cover them since the two are in the same place. In Figure 4-5,

59

simulated DEXTER’s map told him to drive over the green and white dots (both

waypoints), but his stored sensor log placed him more towards the road center.

Figure 4-5. Using a playback log, a simulated DEXTER drives more centered than the
proposed route in blue. The red breadcrumbs show where DEXTER is about to drive
next. The green trail shows where DEXTER has just driven.

 Figure 4-6 shows that the beads (marked by blue dots) have been moved in line

with where DEXTER drove in Figure 4-5. Though waypoints started with some

confidence, the other beads in the lane did not, so the update code replaced a whole

section of the lane. Note the gaps in the beads. In these experiments,

Fill_Out_Bead_Gaps.vi dealt with gaps more than one meter. Observing the code

showed that many points were created by this VI; Figure 4-6 shows that the VI results in

beads spaced similarly to their initial spacing (which is also one meter). For comparison,

the bottom beads (below the intersection) in Figure 4-7 are original beads that have not

been traversed and updated.

60

Figure 4-6. The beads (marked by blue dots) have been moved more towards the center
of the road (and placed along simulated DEXTER’s log data) because of the path driven
by the simulated DEXTER in Figure 4-5.

 Despite the potential for improvement, there are localization hazards when

performing the all-or-nothing update method. Remember, DEXTER is not actually off

the road in the following figures, rather the current map belief (shown)—and therefore

the localization software—thinks he is. Figure 4-7 shows one example of how belief in a

poor map can confuse localization. Because DEXTER can drive straight through the

intersection shown, the straight path is not actually an intersection, but rather a part of the

lane. When DEXTER actually entered an intersection, but was close to the lane path, the

localizer suffered confusion and DEXTER’s travel was seen as part of the lane. Hence

some of the lane’s beads were updated to fill that curved intersection. Notice the beads

headed back from the curve towards the original beads at the bottom;

Interpolate_Replaced_Section_to_Borders.vi determined their placement.

61

Figure 4-7. Due to simulated DEXTER’s displacement, the curve through the
intersection was seen as part of the lane, and updated accordingly. The yellow lines
divide lanes in dexsim. DEXTER’s movements clearly ignored the poor map; the
problem is that his localization software did not.

 Figure 4-8 shows simulated DEXTER navigating an intersection. Note how the

resulting beads tried to fit as best as they could within the localization software’s belief in

the intersection location while still following the update data. Because the update path

started in the middle of the believed intersection on the poor map, this created a kink in

the result. Interpolate_Replaced_Section_to_Borders.vi still tried to reach the original

intersection endpoints from the poor map. In real life, endpoints of a structure need to be

fairly accurate, but dexsim cannot replicate that condition.

A B

62

Figure 4-8. On the left (Figure A), the simulated DEXTER drove through an intersection
offset from the intersection on the poor map. The poor map’s intersection curves
between the two dark blue dots directly ahead of DEXTER. On the right (Figure B), the
light blue dots show an updated intersection that still tries to keep the same endpoints.

 Updated beads must be kept in numerical order. For example, Bead 2 in an Array

of Beads cannot be after Bead 3, where “after” is defined based on the normal forward

progression of the path. Even if the overall shape of the path is good, out-of-order beads

confuse the robot, which may become convinced that it needs to backtrack to hit some

beads and leap to reach others. DEXTER could not handle such a situation. To verify

that the update code keeps beads in the correct order, a new simulation ran on a set of

previously updated beads from a previous test. The simulation again used a moved

RNDF for visualization purposes, so that the reader can still see that the poor map is

ignored in favor of beads created by the all-or-nothing update method. Figure 4-9 shows

the results, with the Lane Description (black dots) and breadcrumbs (red dashes) built

from the previously updated beads. The simulated DEXTER drove on these updated

beads, meaning their order was sound. Note that the Lane Description does not always

start right in front of any DEXTER, simulated or otherwise.

A B

63

Figure 4-9. In this simulation, DEXTER loaded beads previously created by the all-or-
nothing update method and found those beads to be drivable. The red dashes represent
the breadcrumbs while the black dots represent the Lane Description. Figure A comes
before Figure B in time. The poor map in the image is ignored for the updated beads.

Recall the kink problem in the intersection, as illustrated by Figure 4-8. Figure 4-

10 is the result of driving on this crimped data; simulated DEXTER was confused not by

bead order, but by trying to reach the localization software’s believed end of the

intersection. DEXTER handled the problem by attempting to start the intersection and

then reaching what beads were next available to him within the realm of his allowed

movements. Since the beads were in order and DEXTER did not need to backtrack, he

constantly moved forward until he hit the path.

A B

C
Figure 4-10. DEXTER recovers from a kink in the intersection data. The green trail
shows where DEXTER drove moments before. The letters (A-C) indicate how the figures
progress through time.

 The all-or-nothing update method, while a bit simplistic, effectively introduced

updates into DEXTER’s Global Mapper. This simple method does not use the finer

granularity of confidence available in DEXTER: none, low, medium and high. With such

64

information, a bead could be moved partially instead of fully replaced, in order to take

into account the previous bead position. This idea of creating new beads by combining

sources of uncertain information is explored further in Chapter 5.

65

Chapter 5: Improving Beads by Merging Noisy

Data

Section I: The Theory for an Improved Estimate from Noisy Measurements

Assume that all the measurements influencing the Global Map come packaged

with known variances. In such a world, a bead need not be substituted with sensor data

in an all update, nor kept constant in a nothing update, nor decide between the two

extremes. Instead, each bead can be partially moved in a tug-of-war among all the

relevant inputs, where the data with the lowest standard deviation and variance (and

therefore the highest confidence) pulls hardest. In Applied Optimal Estimation, Gelb et

al. present a way to find an optimal estimate given erroneous data with “random,

independent, unbiased measurement errors” [37]. Following from these criteria, the

simulations will assume sensors with errors in a Gaussian distribution and zero mean

variance.

 The measurement sources in the simulations represent pieces of the DEXTER

problem. First, there are a priori data, e.g. from RNDF information, with all the errors

therein. In reality, the RNDF points come from a GPS antenna or a human interpreting

satellite or aerial imagery, and any of these methods may introduce errors. Existing

RNDF data may be further augmented by additional information (e.g. road maps or more

aerial photography). Errors in the a priori information may include human transcription

errors, map or photographic registration errors, and measurement or interpretation

imprecision. The a priori information is used to initialize all beads. Second, there is

66

physical state data, representing DEXTER’s Physical State Observer, which captured

online GPS sensor data and kept DEXTER aware of his position [38]. The concept of

building an observer to enhance raw physical data has served other, less complicated

mobile robots in the past, such as one trained to follow a guide wall [39], or another

deciding the heading of a unicycle robot [40]. DEXTER’s Physical State Observer

combined GPS data with other sensory and kinematic information and strengthened its

assumptions with a Kalman filter. A Kalman filter’s usefulness to a mobile robot is not

specific to GPS readings, as it can be used to filter the noise from other positional data,

such as that derived from sonar sensors [41]. Positional information can be absolute

(GPS coordinates) or relative (inertial and odometry data); gathering some form of it is

essential in an autonomous robot like DEXTER and his contemporaries [1], [30].

 DARPA defined goals in terms of GPS coordinates [31], so the GPS sensor was

of particular importance in referencing DEXTER’s physical state to a GPS-defined

coordinate system. In general, errors in GPS data provide issues in even simpler systems

than DEXTER, such as in map matching algorithms [42]. Tree cover and tall buildings

obstruct GPS signals [43]. Errors may also be introduced into GPS signals on purpose,

which the U.S. military implemented historically to the detriment of civilian receivers

[44]. In 2003, after the lifting of some military restrictions, GPS devices could give

readings within ten meters of the true position, with Differential GPS far better at +/- 1 m

[43]. A current, example civilian application, the Garmin, claims that its GPS receivers

are accurate within an average of fifteen meters normally, three to five meters using

Differential GPS, or less than three meters with a Wide Area Augmentation System—yet

“atmospheric factors” are still a concern [45]. The physical state measurements in the

67

simulations provide information about latitude, longitude, and heading elements. GPS

positions have Gaussian errors in latitude and longitude, a model also used in the map

matching algorithms in [36].

 DEXTER had road detection abilities, which reported his lateral offset from the

identified center of the road and a heading correction meant to help DEXTER match his

heading to the road’s forward direction. However, road detection values are not in

absolute GPS coordinate terms; as a measure of relative quantities, they cannot be

combined with the other two measurements via the optimal estimation method. The

introduction of a road detection system into the simulations is still possible via other

techniques, as discussed in Chapter 7.

 If the physical state estimate has high confidence but beads do not, the update will

resemble an “all” update. Conversely, if the beads are known to be reliable but the

physical state estimate is not, the update will resemble a “nothing” update. In the general

case, even low-confidence data affects the results, so no source of information is

completely ignored as with truly all updates or nothing updates. Furthermore, shades of

gray in the confidence of each of the measurements can be explored with this new

system.

 In Applied Optimal Estimation, the equations for the optimal estimate and its new

variance follow from two measurement sources [37]. The a priori latitudes, longitudes,

and headings in the beads are separate quantities with separate optimal estimates. The

beads are responsible for holding improved estimates across repeated updates along the

same path. The outcome of the two-measurement equation can be considered a new

measurement itself, and the equations may be applied iteratively as the robot “drives”

68

through the simulated path again and again.

Equation 5-1 shows the estimate z that results from two measurements, x and y

(see [37], pg 6). The estimate z has a corresponding variance 2
zσ , computed per Equation

5-2.

2 2

2 2 2 2
y x

x y x y

z x
σ σ

σ σ σ σ
= +

+ +
y

Equation 5-1. Combining two measurements, x and y, into a new estimate z.

1

2
2 2

1 1
z

x y

σ
σ σ

−
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

Equation 5-2. The variance of the new estimate z.

Assume the robot re-drives the same path. The simulation takes in its third

measurement, a, and combines it with estimate z to get a new estimate, b. Equation 5-3 is

Equation 5-1 reused with different variables.

2 2

2 2 2 2
a z

a z a z

b zσ σ
σ σ σ σ

= +
+ +

a

Equation 5-3. The technique in Equation 5-1 is reapplied.

Equation 5-4 substitutes z from Equation 5-1 into Equation 5-3 and uses the

distributive property of multiplication to produce three terms.

22 2 2 2

2 2 2 2 2 2 2 2 2 2
ya a x z

a z x y a z x y a z

b x y
σσ σ σ σ

σ σ σ σ σ σ σ σ σ σ
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠
a

Equation 5-4. The terms of z are substituted into Equation 5-3 to produce this new
equation.

69

The presence of 2
zσ in Equation 5-4 can be rewritten in terms of 2

xσ and 2
yσ

using Equation 5-2. The result of these replacements is Equation 5-5.

2 22 2 2

2 2 2 2
2 2 2

2 2 2 2 2 2

1
1 1

1 1
1 1 1 1 1 1

y xa a x

x y x y
a a a

x y x y x y

b x y
σ σσ σ σ

σ σ σ σσ σ σ

σ σ σ σ σ σ

+
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠+ +
+ +

2

1
y a

σ

+
+

Equation 5-5. The instances of 2
zσ in Equation 5-4 are replaced using Equation 5-2.

Equation 5-5 can be greatly simplified. Equations 5-6 and 5-7 show how two

relevant fractions can be rewritten by multiplying each by a fraction equal to one.

2 2 2 2

2 2 2 2

2 2

1
1 1

x y x y

x y x

x y

y

σ σ σ σ
σ σ σ σ

σ σ

• =
++

Equation 5-6. The meaning of 2
zσ can be rewritten.

()2 2 22 22

2 2 2 2 2 2 2 2 2 2
2

2 2

a x yx ya

x y x y a x a y x
a

x y

σ σ σσ σσ
σ σ yσ σ σ σ σ σ σ σ

σ
σ σ

++
• =

+ + +
+

+

Equation 5-7. A fraction found twice in Equation 5-5 can be simplified using Equation 5-
6 and the identity property of multiplication.

 The results of Equations 5-6 and 5-7 can be substituted into Equation 5-5 for

simplification, producing Equation 5-8.

70

() ()
2 2

2 2 2 2 2 22 2 22

2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

2 2

x y

a x y a x yy x yx

x ya x a y x y x y a x a y x y x y
a

x y

b x y

σ σ
σ σ σ σ σ σσ σσ

σ σσ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
σ

σ σ

+ +⎛ ⎞ ⎛ ⎞ +
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠ +

+

a
σ

Equation 5-8. Equation 5-5 simplified using Equations 5-6 and 5-7.

The last shown fraction (on the a term) may be multiplied by
2 2

2 2
x y

x y

σ σ
σ σ

+

+
 in order to

perform cancellations in both its numerator and denominator. Similar cancellations apply

to the fractions on the other two terms (for x and y) as already written. The result of these

simplifications is Equation 5-9.

2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
a y x ya x

a x a y x y a x a y x y a x a y x y

b x y
σ σ σ σσ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
= + +

+ + + + + +
a

Equation 5-9. A simplified form of an estimate b formed from three measurements.

 When processing measurements iteratively, it may appear that the algorithm

favors earlier measurements over later ones. The repeated application of Equation 5-2

leads to smaller variances in new estimates [37], and Equations 5-1 and 5-9 both show

that measurements with smaller variances influence the outcome to a greater degree. Yet,

Equation 5-9 shows that the third measurement has as much of a chance to affect the

outcome as the first two, regardless of order. For example, if x came last and a came first

into the iterative process, all appearances of x and a would be switched in Equation 5-9

(and throughout the process), but the result would be equivalent. Because of this, the

order in which the simulations process incoming measurements is irrelevant. However,

the repeated application of the same measurement on a point can weigh the results in

favor of one outcome. If, for example, the physical state consistently saw the same

71

results every time the robot drove down a path, then the beads would become more and

more likely to believe the many measurements in agreement over their own starting

assumptions—depending, still, on the relative variances involved.

The new estimate b requires its own variance, 2
bσ . If 2

zσ represents the error

before measurement a, then Equation 5-10 represents 2
bσ .

1
2

2 2

1 1
b

z a

σ
σ σ

−
⎛ ⎞

= +⎜
⎝ ⎠

⎟

Equation 5-10. The variance after incorporating three measurements together into
estimate b.

 From Equation 5-2, the value of 2
zσ is known and can be substituted into

Equation 5-10 to derive Equation 5-11.

1

2
2

2 2

1 1
1

1 1
b

a

x y

σ
σ

σ σ

−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= +⎜ ⎟
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

Equation 5-11. A rewrite of Equation 5-10 with 2
zσ replaced from Equation 5-2.

 The first fraction can be multiplied by a version of one for the purposes of

simplification. The result is in Equation 5-12. Each previous error contributes equally to

the new estimate error 2
bσ , reinforcing the idea that the order of the measurements does

not matter.

72

1

2 2
2

2

2 2

2 2

1

2
2 2 2

1 1
1 1
1 1 1

1 1

1 1 1

x y
b

a

x y

x y

b
x y a

σ σ
σ

σ
σ σ

σ σ

σ
σ σ σ

−

−

⎛ ⎞
⎜ ⎟

+⎜ ⎟
⎜ ⎟= • +⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

⎛ ⎞
= + +⎜ ⎟⎜ ⎟
⎝ ⎠

Equation 5-12. An illustrative simplification of Equation 5-11.

 The mathematics involved can be performed as a batch, or the calculations can

occur continuously as a robot runs. The equations do not change; in either event, the

equations incorporate the sensor readings in some series. Since the order of contributing

quantities does not change the results, there is no difference in using sensor readings as

they are taken versus collecting a host of readings and (potentially) reordering them after

data collection. Examination of the sensor values sooner rather than later merely

provides the advantage of making partial answers available.

 Since the equations are abstract, each new data point may be a new measurement

from a sensor used earlier, or a new measurement from a completely new sensor;

regardless, the values for x, y, and a can be used in the same way. In an attempt to

approach the DEXTER system, the number and type of sensors in upcoming simulations

follow from DEXTER’s own setup. However, the method is extendable for any number

of data acquisition devices.

Section II: Implementing the Combination of Gaussian Measurements

 A road-following robot has a Path Driven, a set of points traversed in reality. The

robot also has a Center Lane Path, which is the desired path at the center of the road

73

where the robot should be driving. When the two paths are one and the same, road

detection may be ignored. If a human is behind the wheel of the robot (either literally or

via a joystick, as was necessary with DEXTER), then such a condition may indeed be

enforced. For the simulations in this chapter, the Center Lane Path is the only path under

discussion. The physical state (consisting of latitude, longitude, and heading) and the

bead list (with the same three values) are the only types of measurements used.

 In the present analysis, physical state measurements and the bead list are both

assumed to contain Gaussian-distributed errors with zero mean (i.e. no bias), constituting

deviations from the true Center Lane Path. A single path can provide sufficient

coordinates for testing, and the data-fusion algorithm is independent of lane/intersection

distinctions, so simulations performed for this analysis do not require an entire Global

Map. Time necessary to generate a path (measured at one millisecond for a path of 300

coordinates) does not provide a noticeable delay to the user, so the simulations generate a

new path for each test.

 The main simulation file (Basic_Test_Path_Driven_on_Center_of_Lane.vi) first

calls Generate_True_Path.vi to generate a Center Lane Path with a user-specified

Number of Coordinates. Generate_True_Path.vi produces realistic paths comprised of

points spaced 1 m apart with heading changes no greater than +/-5 degrees from point to

point. The Center Lane Path needs a seed location and heading. Unless stated otherwise,

the beginning heading is 45 degrees in every simulation where a Center Lane Path is

generated (including those in future chapters). The seed coordinate is always 41.502566

degrees latitude, -81.607586 degrees longitude, a point on the engineering quad of Case

Western Reserve University.

74

 Once the Center Lane Path exists (and can therefore be used for comparison with

results), code injects Gaussian errors to produce simulated GPS and heading

measurements. Generate_Gaussian_Distribution_of_Lat-Lon-

Head_Variable_Std_Dev.vi performs this service for the simulated physical state.

Distributed with LabVIEW, Gaussian_White_Noise_PtByPt.vi produces Gaussian white

noise of a given standard deviation. The VI for introducing errors receives two sets of

standard deviations: one for headings, in units of degrees, and one for GPS coordinate

shifts, in meters.

 Though expressed in the same units, latitudes and longitudes could each have

their own set of driving standard deviations. However, since these two pieces of data

come from the same sensor, it is likely that the two quantities will be measured about

equally well, so the same standard deviations are used for both. This assumption should

not be taken to imply correlation between latitude and longitude. A change in one does

not drive a change in the other: when moving north, a robot may at the same time move

east, move west, or stay at a constant longitude. Furthermore, a latitude error towards the

north does not imply that a longitude error (even one of equal magnitude) should

necessarily be east versus west.

 Generate_Gaussian_Distribution_of_Lat-Lon-Head_Variable_Std_Dev.vi uses

specified standard deviations to introduce errors to each point in a path. The standard

deviations of noise introduced may be varied throughout the path to emulate realistic

variations in path uncertainty. For each point in the Center Lane Path, the chosen

standard deviations create three errors; one error is added to the original heading and

reset to be within the 0-360 range. The latitude error moves the original coordinate north

75

or south (depending on error sign), and the longitude error moves the coordinate east or

west. The new latitude and new longitude join the new heading in one cluster of path

data, along with each of their three variances. By definition, each variance is the square

of the standard deviation used to add error to that specific measurement (latitude,

longitude, or heading). Though the latitude and longitude variances will be the same at

this step, the two variances are stored separately; road detection offsets, if and when they

are used, may change the certainty of one differently from the other. For beads, a slightly

different VI is used. The theory of operation is the same, but the outputs are packaged

into actual bead clusters with unique Bead IDs.

 Once errors have been introduced, the simulator must be able to combine two

uncertain measurements in an effort to identify the true Center Lane Path. To do that, the

code applies Equations 5-1 and 5-2 from Section I of this chapter.

Average_Two_Measurements.vi employs both equations literally and simultaneously.

The code assumes that the two measurements it receives are of the same type and the

same units; latitude, longitude, and heading are processed independently and do not affect

each other.

 Average_N_Measurements_(of_One_Quantity).vi sits a level above

Average_Two_Measurements.vi. Although not necessary with only two data sources, the

use of this VI makes the solution more flexible; the simulation will readily accept any

number of unbiased, flawed data sources.

Average_N_Measurements_(of_One_Quantity).vi deals with n measurements by calling

Average_Two_Measurements.vi iteratively, with the new estimate from one call passed

as a measurement to the next. If n = 1, Average_N_Measurements_(of_One_Quantity).vi

76

returns the same data it received.

 For latitudes or longitudes, Average_N_Measurements_(of_One_Quantity).vi can

produce the new estimate on its own. Polar headings, however, are periodic; 360 degrees

wrap around to map onto smaller angles. Average_N_Headings.vi addresses this

problem. Average_N_Headings.vi chooses the first heading it receives as the Reference

Heading. This choice is arbitrary. All that matters is that the headings are combined

relative to one of their members, so that the new estimate can be computed as the

distance that the Reference Heading should move.

 Since Average_N_Headings.vi must convert headings into relative quantities,

and since headings are periodic, Closest_Heading_Difference.vi finds the shortest

distance, positive or negative, between the Reference Heading and another heading h.

The shortest distance between two headings either crosses the zero to 360 line once or not

at all. The heading h has three relevant forms: h itself, h + 360, and h – 360. Once

Closest_Heading_Difference.vi finds these three sums, each has the Reference Heading

subtracted from it. The difference among the three with the lowest absolute value is

returned by the function as the closest difference.

 As an example, consider a Reference Heading of zero degrees with h = 359

degrees. The heading h may be written as 359 degrees, 359 + 360 = 719 degrees, or 359

– 360 = -1 degrees. Subtracting zero degrees from each sum yields the same sums back

again. The distance of -1 degrees has the smallest absolute value, so as a human would

expect, Closest_Heading_Difference.vi reports -1 degrees as the shortest distance to

travel from zero degrees to 359 degrees.

 Average_N_Headings.vi sends all relative data (with the Reference Heading as

77

zero degrees, relative to itself) into Average_N_Measurements_(of_One_Quantity).vi.

The result measures how much to move the Reference Heading; the variance associated

with the zero degrees heading fights to keep the Reference Heading the same. Once the

Reference Heading moves to a new heading in absolute terms, the resulting new estimate

is placed back in the 0-360 range.

 With these tools, Basic_Test_Path_Driven_on_Center_of_Lane.vi iterates

through the entire path for a user-specified number of times. Bead updates are kept

across such iterations, so that potentially a path may become more and more improved as

it is driven multiple times. Physical state errors are created for each path traversal.

Given the assumption of Gaussian errors, a sensor is unlikely to repeat the same exact

information each time it takes a reading in the same spot. If this repetition occurred, the

method used to combine measurements would become more and more convinced that the

physical state was simply correct.

 When exploring a path, the code finds a new estimate for each bead’s latitude,

longitude, and heading using previous bead data and incoming physical state data. The

nth point in the bead list is always generated from the same Center Lane Path data as the

nth point in the physical state data. The results for latitude, longitude, and heading

estimates (including the new variances) are packaged back into the current bead,

overwriting previous data with better estimates. Path data before and after updates is

saved to .CSV files for later analysis.

 Figure 5-1 presents an overview of the architecture of

Basic_Test_Path_Driven_on_Center_of_Lane.vi. The three basic stages, each of which

has already been covered in greater detail, are to create the Center Lane Path, to introduce

78

measurement errors, and to improve the path through the application of the optimal

estimation method described by Equations 5-1 and 5-2. Figure 5-1 also depicts key times

in the simulation procedure where the code saves results for later examination.

Figure 5-1. A simplified picture of Basic_Test_Path_Driven_on_Center_of_Lane.vi’s
modus operandi. Data may not be saved for insignificant path traversals.

Section III: Running Basic Simulations

 For comparison with other chapters, Table 5-1 shows what path data and error

data are used in the following tests. Note that road detection errors are ignored; there is

no road detection, since the Path Driven equals the Center Lane Path. The errors in initial

bead placements and simulated physical state measurements have no bias.

Type Data

Path Path Driven = Center Lane Path,

number of points in Center Lane Path = 300

Bead Errors
,b GPSσ > 0, > 0, bias = 0 ,b headingσ

Physical State Errors
,ps GPSσ > 0, > 0, bias = 0 ,ps headingσ

Road Detection

Errors

,rd offsetσ = 0, = 0 ,rd heading correctionσ

79

Table 5-1. Summarizing the data used for the following tests in bead improvement with
no road detection. Biases and standard deviations are only factors in the experiments
when they are not equal to zero.

 Beads have an inherent order due to their relative arrangement within a list. The

simulation generates beads on the Center Lane Path such that each subsequent bead

continues a drivable path from its previous neighbor. However, once Gaussian noise is

introduced, the simulations are able to show extreme cases with enough noise to make the

path look as if it has wild backward and forward movements. This is allowed in order to

more clearly illustrate the behavior of the optimal estimation algorithm.

 The simulator can approximate all updates or nothing updates when changing the

initial latitude/longitude positions of the beads. First, consider the conditions for an all

update: the physical state must have a much higher confidence than the starting beads, so

much so that the best course for improvement is for the beads to practically copy what the

physical state reports. Figure 5-2 shows the results after driving once through a path,

with beads at a starting standard deviation of ten meters and the physical state

measurements starting at a lower standard deviation of two meters (each standard

deviation applies to both latitude and longitude).

A B

80

C D
Figure 5-2. Graph A shows the true Center Lane Path. Graph B shows the starting
beads generated from Graph A with the introduction of noise with = 10.00 m.
Graph C shows the simulated physical state measurements with noise = 2.00 m.
Graph D shows the beads after running the simulator once through the entire path,
resulting in an ending standard deviation of ~1.96 m in both latitude and longitude. Note
how much the ending beads resemble the physical state, much like a typical all update.

,b GPSσ

,ps GPSσ

 The simulator can also approximate a nothing update. Recall that a nothing

update means that the bead position estimates start out with better quality than the

sensors, so the beads have no reason to change. Figure 5-3 show an update much like a

nothing update after one traversal through a path, where the confidences in the physical

state and in the beads were reversed from the situation in Figure 5-2.

A B

81

C D
Figure 5-3. Graph A shows the true Center Lane Path. Noise of = 2.00 m,

 = 10.00 m were added to the bead estimates and to the simulated physical state
measurements, respectively, as shown in figures B and C. Graph D shows the beads after
running the simulator once through the entire path, with an ending standard deviation of
~1.96 m in both latitude and longitude. Note how the ending beads closely follow the
starting beads, as in a nothing update.

,b GPSσ

,ps GPSσ

 The previous two figures show that, unlike a true all update or a true nothing

update, the resulting standard deviation in the ending bead positions is slightly better than

the single best confidence present in the incoming data. The resulting standard deviation

for bead positions is determined mathematically by the optimal estimation method

(Equation 5-2). Whether the initial bead positions or the physical state measurements

were more confident in the beginning of a simulation, the other, inferior source of data

still improved the confidence in the result. Thus, using all sources of noisy data makes

better use of the information available than previous methods that only used the best

incoming source.

 The simulator may also show a middle ground, wherein the physical state and the

beads start out with equal confidences/standard deviations. Figure 5-4 shows an example

using latitude/longitude position standard deviations of 5 m for both beads and physical

state. The beads did show some change after one path traversal, but with only two

samples of data to work with, neither one particularly reliable, bead improvement was

82

limited. However, after ten path traversals, and therefore ten physical state readings per

bead, the beads in Graph F of Figure 5-4 started to approach the Center Lane Path. The

power of the optimal estimation method is shown here, as beads improved when no one

good data source existed.

A B

C D

E F
Figure 5-4. Graph A shows the Center Lane Path before adding simulated noise to the a
priori bead location estimates and to the simulated physical state measurements of

 = 5 m, = 5 m, respectively. Graph B shows the starting beads generated ,b GPSσ ,ps GPSσ

83

from Graph A, while Graph C shows the data in the simulated physical state for the first
path traversal. Graph D shows the beads after running the simulator once through the
entire path. Graph D is a combination of Graphs B and C, and is not the same as either
one. However, the beads can be improved with more physical state data. In the tenth
path traversal, the physical state data (Graph E) for that iteration was still poor, but the
fusion of data from 10 traversals resulted in the beads shown in Graph F. These beads
had a standard deviation of ~1.5 m in both latitude and longitude (as opposed to ~3.5 m
after a single path traversal).

 The simulator combines headings as well, as outlined in Section II. The behavior

of the algorithm in regards to headings is the same as with the latitude/longitude portions

of the bead and physical state data; examining a graph of GPS coordinates is just more

intuitive. Improving bead positions is also more important, since the headings of a path

can be derived from the path’s latitude/longitude bead locations, but the reverse is not

true. As an example of heading improvement, Figure 5-5 shows an all-like update from

the heading’s perspective.

A B

C D

84

Figure 5-5. Graph A shows the Center Lane Path’s headings before = 11.0
degrees, = 3.0 degrees. Graph B shows the starting bead headings generated
from Graph A, while Graph C shows the heading data in the simulated physical state.
Graph D shows the bead headings after running the simulator once through the entire
path, with an ending standard deviation of ~2.9 degrees. Note the result headings follow
the better data in the physical state, like a typical all update. The large spikes in the
graphs come from the fact that for headings, zero degrees is equal to 360 degrees.

,b headingσ

,ps headingσ

 Recall that the simulator is built to handle more than one standard deviation for a

series of measurements, whether those measurements are latitudes, longitudes, or

headings. On a real course, the reliability of predetermined beads may vary due to what

imagery is available beforehand, especially if parts of that imagery are obscured. The

confidence in GPS sensors may also vary with weather and nearby trees, etc. The

behavior when using more than one standard deviation per measurement series follows

from the behavior observed when using only one standard deviation per series. Using

path-varying standard deviations creates sub-problems identical to the original problem;

each sub-problem, like the original, has one standard deviation to consider for each data

source. Figure 5-6 illustrates this concept.

Figure 5-6. Consider three measurement series from three information sources (for
illustrative purposes—the concept does not change based on the number of sources
involved). Each measurement series has a time (or path)-varying standard deviation. In
this instance, the standard deviation of each measurement source varies stepwise (the
change from one to another is marked by a vertical black line). Each unique set of three
standard deviations (highlighted in yellow or green) produces a smaller version of the
original problem, where each measurement source has a constant standard deviation.

 Figure 5-7 shows how the same path may have sections more like an all update

85

(where the beads try to match what is in the physical state) or a nothing update (where the

beads change little). Figure 5-7 also shows that sections of a path with at least one source

of good data improve more quickly than sections where both sources lack confidence.

A B

C D
Figure 5-7. Graph A shows the Center Lane Path. Graph B shows the starting beads
generated with = 1, 8, and then 3 m. Graph C shows the physical state generated
with = 5 and then 0.5 m. Graph D shows the beads after running the simulator
once through the entire path. Note that Graph D has patches of different improvement
levels based on the data available to each portion of the path.

,b GPSσ

,ps GPSσ

 The optimal estimation method of combining measurements has an advantage

over setting bead updates into all update mode versus nothing update mode for the entire

map. By combining the variances involved, the system itself can decide how the update

will behave on different parts of the map. Compared with the DEXTER system that

chose between all updates or nothing updates, these simulations can produce middle

ground when neither an all update nor a nothing update is appropriate.

86

Chapter 6: Discovering Bead Bias

Section I: Batch Processing to Determine Bead Bias Estimates

 The method the simulator in Chapter 5 uses to combine beads and physical state

data relies on the erroneous measurements having no bias, only Gaussian errors.

However, at the Urban Challenge National Qualifying Event, Team Case found a

positional shift between DEXTER’s measurements and DARPA’s RNDF, and we had to

move the RNDF accordingly to compensate. Since beads come from RNDFs initially,

the next experiments attempt to estimate bead bias in simulation. The bead bias is known

to have only a potential north-south shift and a potential east-west shift; any warping or

rotation that might be present in the map is assumed to be too small to be noteworthy, an

assumption justified by Team Case’s Urban Challenge experience. The simulations rely

on the assumption that the beads alone contain a bias. Physical state measurements from

a GPS sensor, while noisy, are presumed to have zero bias.

 For a simulation to eventually discover a bias, first it must add in such a bias

when generating beads. Generate_Beads_with_Global_Bias.vi still introduces Gaussian

errors as before, and still accommodates the application of a series of standard deviations

when creating a list of beads. The added functionality comes from two new inputs:

North-South Bias and East-West Bias. North and east biases are expressed in positive

meters, while south and west biases are written as negative meters. Before a bead

receives Gaussian errors, it first moves due north (0 degrees) or south (180 degrees), then

due west (270 degrees) or east (90 degrees) by the distances in the two biases. The same

bias quantities affect each and every bead the same amount, creating a truly global bias

87

like the one Team Case saw in Victorville, as opposed to any inconsistent bias found on

only some of the roads.

 As in past simulations, No_Offsets_Batch_Bead_Bias.vi creates a Center Lane

Path, a set of physical state data, and a bead list. The code then examines each bead and

its corresponding physical state data exactly once. The simulations have the advantage of

knowing which points in the beads and simulated physical state readings correspond to

each other; in a scenario that had to deduce such pairs, path areas roughly following a

cardinal direction may be more likely to miss shifts along the same direction they travel.

For example, a road that runs west to east may miss some of the east-west shift when

trying to match points.

 DEXTER utility functions find the heading from the simulated physical state

point to the corresponding bead point and the number of meters between the two. The

heading found is relative to 0 degrees at due north and increases counterclockwise. The

code considers the distance between the two points as a hypotenuse of a right triangle,

and the angle from the physical state point to the bead as one of the acute angles in the

same right triangle. Then, using trigonometric rules, the cosine of the angle between the

two points multiplied by the distance between them is the north-south component (in

meters) of the distance from the physical state point to the bead. Similarly, using the sine

instead of the cosine yields the number of east-west meters involved in the shift. See

Figure 6-1 for an illustration of the values used in these trigonometric calculations.

88

Figure 6-1. Assume a physical state point is at the origin of the graph. Then the
associated bead can be in any of the four quadrants at some angle from the physical state
point. Four of these possible angles lie on the axes and indicate shifts in pure cardinal
directions. The blue arrow shows an example distance to a bead at an example angle,
and labels the two components of that distance.

 Of course, some bead shifts are negative, and some are positive. The cosine and

sine functions correspond nicely to the convention used to insert biases (west and south

negative, north and east positive). The cosine will be negative if its argument is greater

than ninety degrees but less than 270 degrees—or when its argument points south. As

expected, 270 degrees and ninety degrees have no north-south component because the

cosine of both measurements is zero, and cosines are positive at all northern degrees (the

two top quadrants). The same argument holds for the sine and the east-west convention;

the sine gives zero for directions directly north or directly south, negative numbers to the

west (the two left quadrants), and positive numbers elsewhere (east). Because of these

mathematical properties, using the cosine and sine produces bias estimates with the same

signs as the biases added.

 The bias components discovered from a bead and its physical state reading are

both ultimately the result of a subtraction between those two points. Because two

independent quantities are combined, the variances associated with the new north-south

89

and east-west biases are the sums of the appropriate variances in the bead point and in the

physical state point [46]. The code packages the sum of the latitude variances with the

north-south distance and the sum of the longitude variances with the east-west

component. By using the variances, more confident areas in the paths have added ability

to improve the estimates produced by the batch process.

 Once the simulator processes the physical state and bead paths, it calls

Average_N_Measurements_(of_One_Quantity).vi twice; once to calculate the end east-

west bias estimate, and once for the final north-south bias estimate. The estimates

produced should resemble the driving biases in both magnitudes and signs. Figure 6-2

shows visually how No_Offsets_Batch_Bead_Bias.vi calculates an estimate of the global

bead bias.

Figure 6-2. A flowchart of the method that No_Offsets_Batch_Bead_Bias.vi uses to
calculate estimates of a global north-south bead shift and a global east-west bead shift.

 In order to amass statistics, No_Offsets_Batch_Bead_Bias.vi computes bias

estimates for a large number of independent runs. For each run, the bead bias works with

a new random path and a new random set of Gaussian errors, but with the same driving

bead biases and the same standard deviations creating the Gaussian errors. Table 6-1

summarizes the sources of error shared by each run.

90

Type Data

Path Path Driven = Center Lane Path,

Coordinates in Center Lane Path: variable

Bead Errors
,b GPSσ > 0 > 0, bias ≠ 0 ,b headingσ

Physical State Errors
,ps GPSσ > 0, > 0, bias = 0 ,ps headingσ

Road Detection

Errors

,rd offsetσ = 0, = 0 ,rd heading correctionσ

Table 6-1. Summarizing the data used for the following tests in correcting bead biases.

 Each run produces an estimate of the map registration biases. These estimates are

imperfect, and their distribution is another Gaussian. Errors in bias identification can be

calculated and graphed, as shown in the histograms in Figures 6-3 and 6-4. Since those

figures graph the errors, they are all centered on zero (truth). However, note that the

behavior does not change if the tests run on negative, positive, or zero biases; the actual

value of a bias does not affect the accuracy of the algorithm. Note that all of the

histograms have Gaussian-like curves whose variances are close to the variances for the

bias estimates as calculated in each run of algorithm. As the number of runs approaches

infinity, the distribution of bias-identification errors would have a variance that converges

identically on the theoretical value.

91

A B
Figure 6-3. Each run used 300 beads and 300 physical state points, = 2 m and

 = 2 m. There was a 2.6 m bias north in these tests but no bias east or west. The
graphs show the results from running 1000 such experiments. Graph A shows the north-
south results with variance 0.0257 m

,b GPSσ

,ps GPSσ

2, and Graph B shows the east-west results with
variance 0.0256 m2. The calculated variance for both directions at the end of each
individual test was 0.0267 m2.

A B
Figure 6-4. Both of the graphs show the discovery of a bias 4.3 m west (a negative
number to the algorithm) for 1000 different runs, with = 7 m and = 5 m.
In Graph A, 300 coordinates were used, ending in a predicted variance of 0.247 m

,b GPSσ ,ps GPSσ
2 per

test and a measured variance of 0.259 m2 for all 1000 tests. In contrast, Graph B used
700 coordinates and ended with a variance of 0.106 m2 across all experiments (where
0.106 m2 were expected for each test).

 Figure 6-4 highlights which factors do affect the accuracy of the results—the

same factors that mathematically reduce the predicted variance of any one result. Graph

A in Figure 6-4 has less confident data (i.e., initial bead estimates and physical state

measurements have higher standard deviations) than Graph B in Figure 6-3, and the

increased variance in Figure 6-4, Graph A, shows this cost. However, Graph B in Figure

92

6-4 shows that adding more points to a path with little confidence increases confidence in

the bias estimates. Once again, the equations used to compute new measurements from

uncertain data improve with each new data point (however uncertain). Therefore, when

using this method with sensors of low confidence, driving the robot farther to collect

more sensor readings can aid the quest to determine the global bead bias.

Section II: Running Updates to Determine Bead Bias Estimates

 Bead shift estimates need not be decided at the end of a run. Instead, estimates

can be improved upon as the simulation “drives.” By doing so, a robot (and anyone

watching its progress) can learn about the current map registration online. The robot

does not learn how to drive better in this process; it just learns more about the map. For

No_Offsets_Running_Bead_Bias.vi, the simulator evaluates the bead bias into the bead

list in the same manner as in the batch processing tests. The general path data and errors

follow the same scheme as that for the batch method (see Table 6-1).

 For No_Offsets_Running_Bead_Bias.vi, the user specifies initial guesses for both

bias quantities and their variances; in order to constantly improve an estimate, a starting

estimate must be provided. The experiments here use zeroes for the initial guesses; with

no idea what a bias might be, zero bias is assumed. The variances for the guesses start at

1.013 m2 each, essentially giving the starting guesses no confidence so that actual data

will quickly replace these numbers.

 While iterating through a path, the code calculates north-south and east-west

components using the same process and trigonometric rules as in the batch processing

case. The variances of the components are also the same sums as in the batch process.

However, now the two calls (one for east-west and one for north-south) to

93

Average_N_Measurements_(of_One_Quantity).vi occur each time a new bead and

physical state point pair is processed. For the first pair,

Average_N_Measurements_(of_One_Quantity).vi combines the initial guesses of shifts

and variances with the results for that pair. Then the two new weighted averages and

their variances replace the initial guesses and their variances. As the path is “driven,” the

result of the last step is always combined with the new data.

 As with the batch process, No_Offsets_Running_Bead_Bias.vi handles multiple

runs, each with new paths and new specific errors but with the same driving biases and

driving standard deviations. The initial guesses of bias quantities also start out the same

in every run. Figure 6-5 shows, in the scope of one run, the organization of the

simulation code that uses the running update method (contrast with Figure 6-2, which

illustrates the batch processing method). Figure 6-5 shows that the progress of each bead

bias estimate in each run is recorded for later analysis.

Figure 6-5. A flowchart of the method that No_Offsets_Running_Bead_Bias.vi uses to
calculate estimates of a global north-south bead shift and a global east-west bead shift.

94

 The math in the running update method is the same as that used to arrive at bias

estimates in the batch processing method. Figure 6-6 shows histograms created under

similar conditions to those in Figure 6-3. Once again, the algorithm’s calculated variance

for each test result is verified by the variance of the errors in the results after 1000 tests.

And once again, the shape of the errors after many runs is roughly Gaussian.

A B
Figure 6-6. Each run used 300 beads and 300 physical state points, = 2 m and

 = 2 m. There was a 2.6 m bias south (a negative bias) in these tests and a 4.3 m
bias east. The histograms show the results after running 1000 such experiments. Graph
A shows the north-south results with variance 0.0254 m

,b GPSσ

,ps GPSσ

2, and Graph B shows the east-
west results with variance 0.0270 m2. The calculated variance for both directions at the
end of each individual test was 0.0267 m2.

 Though the results are the same in both methods, the running update method is

more like learning than the batch processing method, because it makes intermediate

results available (if only to the user) in real time. Such intermediate data may be useful if

the robot or user has to decide when enough points have been collected. Figure 6-7

illustrates this feature by showing progress for several bias estimate experiments. As the

running update method moves through the beads, the bias estimates level off and

becomes more stable. The simulator code places the initial guess at the beginning of each

plot for comparison.

95

A B

C D
Figure 6-7. These graphs show some detail from the 1000 runs in the previous figure
(Figure 6-6). Graphs A and C show the discovery of a bias 2.6 m south, while Graphs B
and D show estimates approaching a bias 4.3 m east. Graphs A and B each show one
example experiment, while Graphs C and D show five runs each.

Section III: Running Updates Used with Bead Improvement

 The running update method can be used directly to help bead-improvement

simulations, namely those outlined in Chapter 5. In Chapter 5, the bead errors were

assumed to be unbiased, but this may not always be the case. The following bead-

improvement simulator follows the scheme in Table 6-1 over the scheme in Table 5-1.

To simulate the improvement of biased beads, first No_Offsets_Running_Bead_Bias.vi

creates its own path data to estimate the biases, with its own bead data, its own physical

state data, and its own Center Lane Path. The VI that uses bias estimates creates a second

set of path data in parallel. In general, the robot could drive around a competition area to

discover map registration values before the event. However, the true biases need to be

96

consistent for both paths (the Bias Discovery Path and the Bead Improvement Path) in

order for the results of the former to apply to the latter. Also, this simulator assumes that

the qualities of the robot’s sensors do not change, so that both path sets use the same

standard deviations to drive errors.

 When the simulator arrives at the bead-improvement code, it pulls in both bias

estimates from No_Offsets_Running_Bead_Bias.vi. Using these bias estimates, every

bead is shifted north or south and east or west before being combined with physical state

data as per the optimal estimation equations. Because the bias estimates are imperfect,

these movements introduce more variance into the original bead. Fortunately,

No_Offsets_Running_Bead_Bias.vi calculates the variances of its estimates. The

estimate variances (one for latitude, one for longitude) are added to the original bead

variances to arrive at the new bead variances; as before, variances are added when two

independent sources act on a measurement. Figure 6-8 illustrates how two sets of path

data are used for these simulations.

Figure 6-8. From the two Center Lane Paths, two sets of beads and of physical state
data are created. Though individual errors vary, and are the same for
both sets of beads, and the same is true for the physical state data sets.

,b GPSσ ,b headingσ

97

 Figure 6-9 displays the results of not only introducing bead biases to the bead-

improvement algorithm, but also estimating those biases and adjusting for them. Only

one run of No_Offsets_Running_Bead_Bias.vi was used to get both bead bias estimates,

as opposed to using the means of many runs. The former case is faster to accomplish,

and as Figure 6-9 shows, still helpful. In Victorville, Team Case had to estimate the map

registration offsets in order to improve the quality of beads; this work shows that the map

registration offsets may be calculated algorithmically.

Figure 6-9. Both the path used to discover bead bias estimates and the path used to
improve beads were 300 coordinates long, but they were not the same. Both of these
paths were generated with a true global map shift of 7 m south, 6 m east. The paths
shown above were all created by the bead-improvement algorithm. The tests in green
and red above used all of the exact same data in terms of physical state and starting
beads, and each used exactly one iteration through the path in order to improve. Both
identified paths are noisy due to using = 2 m and = 2 m. The only
difference between the red and green paths is that the red path corrected its bead data
using bias estimates, and the green path did not. The red path is thus noticeably better,
as it is centered on the Center Lane Path and not shifted from it.

,b GPSσ ,ps GPSσ

98

Chapter 7: Using Road Detection Information

Section I: Introducing Road Detection

 Mobile robots can gather non-GPS information; other sensors, such as cameras or

LIDAR scanners, can aid in navigation. Typically a mobile robot’s vision may find

features (such as lane markings) to follow, or features (such as obstacles) to avoid [47].

In the 2005 DARPA Grand Challenge, Ohio State University used digital cameras (and a

host of other sensors) to generate points to keep their robot driving [30]. DEXTER’s

road detection system for the 2007 DARPA Urban Challenge used color cameras,

infrared cameras, and laser scanners known as LIDAR (LIght Detection And Ranging)

units [38]. Other teams at the 2007 DARPA Urban Challenge also employed LIDAR

units. Therefore, instead of “vision,” these tests use the phrase “road detection.” The

individual sensors that make up a road detection system are immaterial, and indeed vision

may be included. Road detection as a whole observes the road while a robot is driving

and helps the robot know where it is in relationship to the center of its lane.

 As with any sensor data, road detection quantities include errors, which may arise

from various factors. Hardware itself can be the source; for example, vision systems

make demands on processing speed and power consumption [48]. Restricted camera

views may also limit accuracy, especially for a robot that needs to make tight maneuvers

or to travel at higher speeds [49]. The environment can fool road detection with changes

in illumination, defects in road surfaces, pedestrians, the absence of lane markings at

intersections, and more. Illumination particularly can make it very difficult for lane

detection to tell yellow lane lines from white ones [50]. DEXTER’s cameras had issues

99

with changeable pavement reflections, missing lane lines, obstructions, and camera

vibrations caused by both the robot and the road [38]. The simulator combines these

sources of error into overall variances in the road detection measurements. As in

previous simulations, the errors introduced into road detection follow a zero-mean

Gaussian distribution. With the addition of road detection, the simulations can remove the

restriction that the Path Driven—where the robot travels—must be the same as the Center

Lane Path—where the robot should drive. When running autonomously, it is rare for a

robot to be able to follow such a restriction, due to errors in the system and the

kinematics of driving. DEXTER, for example, definitely deviated from the centers of his

lanes. The bead data, since it is a set of goals, is still based on the Center Lane Path.

Physical state measurements, on the other hand, correspond to the robot’s actual

coordinates, and as such their errors must center on the Path Driven. Road detection

must reconcile these two sets of data, recognizing that the Path Driven may not

correspond to the center of the intended lane.

Section II: Simulated Road Detection Values

 Each point of road detection data contains a lateral offset, which gives the

simulation an estimate of how far to the left or right the robot is displaced from the center

of its lane. The road detector can also estimate a heading correction relative to the

direction of the road. Ideally (with no errors involved in the system), the heading

correction from the road detector added to the robot’s physical state heading would equal

the tangent angle (road heading) of the intended center of lane. In practice, measuring a

lateral offset may be done with projections, by looking ahead or behind at the robot’s

direction of travel and the lane’s direction of travel and projecting how those two paths

100

would relate at the robot’s current location. Alternatively, a lateral offset may be

estimated by looking ahead at time t at what the offset will be if the robot continues its

current path for x time steps ahead of t, then recalling that offset when the robot reaches

time t + x. In another approach, sensors such as vision cameras and LIDAR units may be

placed to look sideways from the robot, so that offsets might be observed as they occur.

 In the simulations, offsets must be calculated by comparing the Center Lane Path

with the Path Driven. The Center Lane Path is generated as in previous simulations. The

Path Driven, now generated separately, must roughly—but not exactly—follow the same

course as the Center Lane Path. The Path Driven, in order to make the simulator’s output

more realistic, should also appear smooth enough to be drivable.

Generate_Path_Driven.vi creates splines between points near the Center Lane Path in

order to create the Path Driven.

 The first spline’s origin is the first point on the Center Lane Path. The destination

of that spline is a point near the point on the Center Lane Path p points away from the

start of the Center Lane Path, where p is specified according to the user’s judgment call.

In order for the Path Driven to look drivable, the value of p must encompass enough

points to keep the splines from being choppy in relationship to each other, but not so

many points that the Path Driven can veer too far away from the Center Lane Path. The

destination point of the spline comes from moving the point designated by p on the

Center Lane Path in a random direction by some random number of meters m, where m

has a standard deviation of 2 m. The spline results replace the exact number of points

between both endpoints, and these interim points, along with their destination, begin the

start of a new path. Since headings are needed to continue splining, the headings of the

101

new points are recalculated.

 The destination point (after its movement) becomes the next starting point for the

next spline, and the process continues. The Spline Spacing p chooses the next destination

by jumping along the Center Lane Path p points from the last destination (before its

movement). Since spline origins come from previous spline destinations, and no point

needs to be moved twice, no origin is moved. As a result, the first points in both the

Center Lane Path and the Path Driven match. The last set of splined and replaced points

may be shorter than previous sets, because the number of points a spline can replace

cannot exceed the number of points left in the Center Lane Path. The last point in the

Path Driven is the same as in the Center Lane Path. Once the Path Driven is complete, its

headings are completely recalculated based on the relative positions of its member points.

Note that the Path Driven and the Center Lane Path have exactly the same number of

points. Figure 7-1 gives more details on the process in Generate_Path_Driven.vi, while

Figure 7-2 shows an example of how a possible Path Driven is derived from its

associated Center Lane Path.

Figure 7-1. The flowchart of the code in Generate_Path_Driven.vi. The pink arrows
follow the spline destinations, while the yellow-orange arrows highlight the spline
origins. The purple arrows show how the Center Lane Path is replaced in parts to
become the Path Driven. Blue arrows are used for miscellaneous transfers of data.

102

Figure 7-2. The spacing of points on this diagram is coarse in order to show the points
of interest, as opposed to showing every point on either path. The red dots on the Center
Lane Path move randomly to positions marked by the blue dots, and the Path Driven is
splined between those blue points. Note that both paths start and end at the same places.

 Once both paths exist, code calculates the true lateral offsets between them before

any errors become present in the system. The definition of what a lateral offset means

must be consistent and chosen carefully. A lateral offset is a distance between two

points, but not any pair of points can be considered “lateral” from each other. The

definition of the word “lateral” means “to the side.” But there are two paths with two

different sets of headings, and thus two concepts of “to the side.” See Figure 7-3.

Figure 7-3. The blue dot and the red dot above have different headings, and thus
different concepts of what it means to go forward. From this, two definitions of left and
right follow. The blue dot on the Path Driven is left of the red dot on the Center Lane
Path, but the red dot is not directly right of the blue dot.

 Since the Center Lane Path represents the goal of a simulation, the lateral offsets

are each defined with one endpoint resting on a point in the Center Lane Path, and with

103

left and right defined relative to the Center Lane Path heading at that point. However,

note from Figure 7-2 that the known Path Driven points may not be directly left or right

of the corresponding known points on the Center Lane Path. There is not a simple

correspondence between sample points on the Center Lane Path and sample points on the

Path Driven. To define consistent lateral offsets, the Path Driven is resampled to create a

simple one-to-one correspondence between Center Lane Path and Path Driven points. In

a real-time situation, path, road detector and physical state samples may be synchronized

either by triggering or by interpolation (as is done in simulation).

 For each known point on the Center Lane Path, the line going through the left and

right directions (as shown on Figure 7-3) can be calculated as the line perpendicular to

the line through the Center Lane Path’s heading at that point. This perpendicular line

intersects with the Path Driven in one of the Path Driven segments. In the special cases

found at the endpoints of both paths, the line intersection occurs at the Center Lane Path

point. For the other cases, the point lateral to the Center Lane Path point intersects with

the perpendicular line within a line segment (endpoints included) of the Path Driven.

These intersections define the resampled Path Driven. The distance from the Center Lane

Path point to the intersection on the Path Driven is the Euclidean distance between

corresponding pairs of points. Finding the distance from a point to a line segment is also

used in the Geometric Point-to-Curve Map Matching algorithm, but here finding the

correct segment is less ambiguous because the lane of interest is automatically known [5].

To distinguish between left and right offsets, by convention the offset value is defined to

be negative when the Path Driven’s intersection is to the right of the Center Lane Path

point. Figure 7-4 illustrates the graphical calculations.

104

Figure 7-4. The offset is found along a line perpendicular to the Center Lane Path at a
particular point. The distance along this perpendicular line from the Center Lane Path
to the intersection with a segment of the Path Driven becomes the offset. In this case, the
Path Driven is left of the Center Lane Path at the position of interest, so the offset is a
positive value.

 The code enforces offset calculations to use monotonically increasing Path Driven

segments, where “increasing” segments go forward through the path and the starting and

ending indices of a segment each increase numerically. Offsets can be found using the

same Path Driven segment for two or more sequential Center Lane Path points.

However, an offset calculation should never jump backwards to intersect a previous

section of the Path Driven, otherwise the points in the new definition of the Path Driven

would become out-of-order. To enforce these rules, the calculation (found in

Find_Lateral_Distance_Redo_Path_Driven.vi) of the offset for a single point in the

Center Lane Path receives as input the first index of the last Path Driven line segment

used (as reported by the last call to the same VI). The segments tested can only advance

as long as the Path Driven continues. The search for the Path Driven line segment to use

ends with the first Path Driven segment that the line perpendicular to the Center Lane

Path intersects. Doing so prevents skipping Path Driven segments that could otherwise

be used (see Figure 7-5).

105

Figure 7-5. The point shown in the Center Lane Path is positioned laterally from two
places along the Path Driven. However, the offset comes from the earlier Path Driven
intersection, so that all the offsets that will be calculated through the turns of both paths
are not skipped.

 When all the offsets have been calculated, the Path Driven is redefined as a

polyline connecting the resampled points. Since those points were already on the original

Path Driven, the shape of the resampled Path Driven is still reasonable. This new

definition of the Path Driven is as good as the last in terms of shape; the only reason the

Path Driven is not generated from the beginning from a set of lateral offsets is because

doing so makes it difficult to produce a smooth, drivable path. The new Path Driven has

its headings redefined. The road detector must report heading corrections. To simulate a

road detector, heading corrections are calculated by subtracting each new Path Driven

heading from the heading of the corresponding point on the Center Lane Path. The file

that handles redefining the Path Driven and finding lateral offsets is named

Find_True_Offsets_Redo_Path_Driven.vi; Figure 7-6 summarizes its major features.

106

Figure 7-6. The flowchart of Find_True_Offsets_Redo_Path_Driven.vi.
Find_Lateral_Distance_Redo_Path_Driven.vi computes each individual offset.

 Once the simulator computes the true lateral and heading offsets, a road detector

can be simulated by adding zero-mean Gaussian errors to these values.

Generate_Gaussian_Distribution_of_Offsets.vi works very similarly to the other VIs that

generate Gaussian errors. But since the offsets are already measured as relative

displacements, the errors in offsets are directly added to the true offsets without having to

move any points. Heading corrections have errors added in just like headings do, but

heading corrections are not set into the 0-360 degrees range. As with other data sets, the

errors in the offsets or the in the heading corrections may come from a series of standard

deviations.

 Because road detection values are relative (in offsets and heading corrections) and

not absolute (in latitude/longitude positions and polar headings), they cannot be

combined with bead and physical state data via the optimal estimation equations. For

readings to be fused at all, they must relate to each other in the same coordinate system

[51]. To achieve this, the simulator combines road detection values with physical state

107

estimates (as well as combining their variances), thus producing a virtual road sensor that

expresses belief about the Center Lane Path in absolute coordinates. The beads

separately represent a different belief concerning the same quantity. The virtual road

sensor estimates of the center of the lane can then be reconciled with the Center Lane

Path estimates contained in beads to compute optimal corrected estimates of the center of

the lane. Latitude_and_Longitude_Plus_Lateral_Offset.vi combines physical state values

and road detection values to produce the virtual road sensor. Since two stochastic

sources are added to produce the new heading estimate, the variance of each of the virtual

road sensor’s headings is the sum of the variances of its two components.

 The magnitude of a lateral offset, as reported by the road detector, determines the

Euclidean distance between the physical state point and the new virtual road sensor

latitude/longitude position. The sign of the offset tells the code whether the new position

is left or right of the physical state measurement; by convention, a negative sign means

the result should be left of the physical state point in order to get closer to a perception of

the Center Lane Path. Recall that “left” and “right” as terms cannot by themselves define

the direction from one point to another. Left and right are defined in terms of the current

heading of the Center Lane Path, and the best simulated knowledge of that Center Lane

Path heading comes from the bead that exists laterally (before Gaussian errors) from the

current physical state point. The virtual road sensor’s heading could also be used, but

doing so would mean that the heading used to determine directions of left and right

would have two sources of error instead of just one. For the purpose of ignoring its

influence in most of the tests, the bead heading’s standard deviation will be set very low.

 When combining physical state and lateral offset data, care must be taken in

108

computing the resulting uncertainty (variance) in terms of latitude and longitude. For

example, if the lateral offset corresponds to a due north correction, the resulting virtual

road sensor coordinate estimate would have a latitudinal variance equal to the sum of the

physical state estimate’s latitudinal variance plus the road detector’s lateral offset

variance. However, the longitudinal variance would be equal to the physical state

estimate’s longitudinal variance, unaffected by the lateral offset variance. It is thus

important to take into account the direction of the lateral offset to correctly compute the

longitudinal and latitudinal variances contained in the virtual road sensor.

 To compute the latitude/longitude variances for the virtual road sensor estimate,

the road detector’s lateral offset variance is multiplied by the square of the cosine of the

heading from the physical state point to the new virtual road sensor point. In parallel, the

same lateral offset variance is multiplied by the square of the sine of the same heading.

These quantities are added to the physical state longitudinal and latitudinal variances,

respectively. Figure 7-7 illustrates how the position of the virtual road sensor estimate is

computed. Figure 7-8 summarizes the process through which the calculation happens.

Figure 7-7. The virtual road sensor point created by
Latitude_and_Longitude_Plus_Lateral_Offset.vi is positioned laterally from the physical
state point based on the heading tangent to the center of the lane and the offset
magnitude. The sign of the offset decides the relative direction from the physical state
point to the virtual road sensor point.

109

Figure 7-8. Latitude_and_Longitude_Plus_Lateral_Offset.vi uses road detection and
physical state data to produce a new latitude, longitude, and heading, as well as the
variances for each of those three pieces of data, thus creating a virtual road sensor.

Section III: Road Detection Experiments

 As Team Case learned with DEXTER, a robot is very likely to drive off the center

of its lane when controlling itself autonomously. These next experiments introduce a

Path Driven different from the Center Lane Path. In some cases, the simulator assumes

that the Path Driven is the Center Lane Path, even though this is no longer true. These

older methods are performed for comparison with the cases that use road detection data to

compensate for the differences between the Path Driven and the Center Lane Path. Table

7-1 summarizes the assumptions for using road detection data. Note that the standard

deviation for bead heading is very low, so that the distinction of left vs. right in road

detection offsets will introduce negligible error when combining lateral offset data with

physical state data.

Type Data

Path Path Driven is different from Center Lane Path,

110

Coordinates in Both Paths: 300 points, Spline Spacing: 100

points

Bead Errors
,b GPSσ > 0, = ,b headingσ ε (i.e., positive but negligible), bias ≠

0 in map registration tests, bias = 0 otherwise

Physical State Errors
,ps GPSσ > 0, > 0, bias = 0 ,ps headingσ

Road Detection

Errors

,rd offsetσ > 0, > 0 ,rd heading correctionσ

Table 7-1. Road detection data is now a factor in the simulations.

 Basic_Test_Offsets_Used.vi greatly resembles

Basic_Test_Path_Driven_on_Center_of_Lane.vi, but the former creates and then uses

road detection values. The physical state data in Basic_Test_Offsets_Used.vi comes

from the Path Driven instead of the Center Lane Path, since the two paths no longer

match. After the physical state and road detection data combine to produce the virtual

road sensor, estimates concerning the Center Lane Path may be combined using the

optimal estimation method. Figure 7-9 shows the structure of

Basic_Test_Offsets_Used.vi. For the tests to come, the algorithms in

Basic_Test_Offsets_Used.vi and in Basic_Test_Path_Driven_on_Center_of_Lane.vi are

run in parallel on the same data in order to compare the results.

111

Figure 7-9. Basic_Test_Offsets_Used.vi varies from
Basic_Test_Path_Driven_on_Center_of_Lane.vi in that the former, shown here, creates
and incorporates road detection data as shown.

 Figure 7-10 shows that when beads are confident, more so than the other data,

road detection is not really needed, because the beads already know where the Center

Lane Path is. However, beads cannot always be guaranteed to be of such good quality.

Figures 7-11 and 7-12 show cases when the physical state or the road detection data are

most confident, respectively. Recall that using road detection to influence physical state

actually increases the physical state variances. Because of this, and as the figures

illustrate, using road detection does not increase confidence. What road detection does

instead is center the bead results on the Center Lane Path as desired. Without the benefit

of the road detector, the robot could only infer that its beads should lie on the Path

Driven, as reported by the physical state estimates. Figure 7-13 reinforces the idea that

using road detection improves identification of the Center Lane Path by accounting for

discrepancies between it and the Path Driven. In Fig 7-13, the physical state and road

detection data had equally strong confidences, and were both more confident than the

112

beads.

Figure 7-10. This figure shows beads after ten iterations, with = 1 m, = 6
m, and = 5 m. When the confidence in the beads is noticeably the strongest of all
confidences, little input from the other sensors is used, and road detection can be
ignored. Notice, however, that after ten iterations a portion of the beads that used no
road detection started to drift slightly towards the Path Driven and away from the Center
Lane Path.

,b GPSσ ,ps GPSσ

,rd offsetσ

Figure 7-11. This figure shows beads after ten iterations, with = 6 m, =
0.5 m, and = 5 m. Because using the road detection data added noticeable error
to the physical state, beads that used road detection became more variable than beads
that ignored it. However, the path that ignored road detection is also wrong, and goes
along the Path Driven instead of trying to find the Center Lane Path.

,b GPSσ ,ps GPSσ

,rd offsetσ

113

Figure 7-12. This figure shows beads after ten iterations, with = 6 m, = 5
m, and = 0.5 m. Road detection added minimally to the physical state’s
variances, but its inclusion allowed beads to follow the Center Lane Path as desired;
ignoring road detection led to beads following the Path Driven instead.

,b GPSσ ,ps GPSσ

,rd offsetσ

Figure 7-13. This figure shows beads after ten iterations, with = 6 m, = 1
m, and = 1 m. With the combination of the physical state and the road detection
(the virtual road sensor) at a relatively high confidence, the identified paths were fairly
clean. Using road detection found the Center Lane Path nicely, while ignoring road
detection only reinforced the Path Driven.

,b GPSσ ,ps GPSσ

,rd offsetσ

 In previous experiments in discovering map registration, the assumption was that

the robot would need to be forced to drive down the center of its lane. Now assume

114

instead that this restriction is lifted, and the robot is driving autonomously and likely

imperfectly. Without road detection, the robot attempts to drive based on the biased

beads and cannot realize that it may be literally running off the road. Furthermore,

without road detection, the physical state data remains based on the Path Driven and

cannot provide an estimate by itself of where the Center Lane Path should be. Therefore,

an autonomous robot without road detection cannot detect its global bias in map

registration.

Applying road detection, however, allows the previous algorithms in discovering

map registration to be used with a robot driving autonomously. As before, an alternative

Center Lane Path estimate is compared with a matching bead in order to determine the

two shifts (north-south and east-west) between those two points. But now, the road

detection data combines with the physical state data and creates a virtual road sensor in

order to compare those estimates of points on the Center Lane Path with the bead

positions. Figure 7-14 illustrates how road detection can be used in discovering map

registration.

115

Figure 7-14. Offsets_with_Corrected_True_Data_Running_Bead_Bias.vi discovers bead
biases by taking into account the road detection data. For more mathematical details on
how to calculate shifts, see the previous chapter on map registration. The generation of
the Center Lane Path and the Path Driven is the same as in Figure 7-9.

 As Figure 7-14 suggests, these experiments use the running bead bias method.

The errors in each sensor are recalculated for each run, but the underlying paths (the

Center Lane Path and the Path Driven) are not. Figure 7-15 shows that, provided the

correcting force of road detection, the global bead bias can be estimated as before, even

though the robot is not driving on the center of its lane. Furthermore, the statistical

variances in the experimental results follow the algorithm’s anticipated confidences in its

bias estimates.

116

A B
Figure 7-15. This data was collected over 1000 runs with = 4 m, = 3 m,
and = 2 m. Graph A shows the discovery of an east-west bias 4.3 m west, with
each run expecting a variance of 0.089 m

,b GPSσ ,ps GPSσ

,rd offsetσ
2 in its bias estimate and the graph overall

displaying a variance of 0.087 m2. Graph B shows the discovery of a north-south bias
2.6 m north, with each run expecting a variance of 0.090 m2 in its bias estimate and the
graph overall displaying a variance of 0.090 m2. With road detection, a human need not
drive down the Center Lane Path in order for a global bead bias to be discovered.

 Finally, it should be noted that the directions of perceived lateral offsets were

computed based on high-quality estimates of bead heading, and this might not always be

practical. Figure 7-16, however, shows that a higher bead heading variance did not have

a noticeable effect on the results; their character, when compared with previous, similar

figures, remained the same. One possible explanation is that since offsets are generally

only a few meters, the effect of moving at an incorrect angle may be minimized.

Nevertheless, a practical application may unavoidably degrade the knowledge of left vs.

right relative to the Center Lane Path, and additional sensor information may not be able

to determine this center lane heading while driving. The challenge in this scenario would

be to determine exactly how the variance in the bead heading (in degrees) adds to the

variances of position in the virtual road sensor measurements.

117

A B

C
Figure 7-16. Graph A shows ten iterations of bead improvement with = 6 m,

 = 1 m, and = 1 m. This time, = 20 degrees (with = 2
degrees and = 2 degrees). Graph B shows east-west bias estimates
collected over 1000 runs using a bias 4.3 m west and = 4 m, = 3 m,

 = 2m, and = 20 degrees. The data on Graph B has a variance of 0.090
m

,b GPSσ

,ps GPSσ ,rd offsetσ ,b headingσ ,ps headingσ

,rd heading correctionσ

,b GPSσ ,ps GPSσ

,rd offsetσ ,b headingσ
2, while each run expected a variance of 0.093 m2 in its bias estimate. Overall, the poor

bead headings did not have an obvious effect. However, poor starting bead data allows
Graph C to illustrate that headings, like GPS data, need road detection to approximate
the data in the Center Lane Path instead of in the Path Driven. Graph C is from the
same test as Graph A.

118

Chapter 8: Discovering Road Detection Offset

Variances

Section I: Calibrating Road Detection Offset Variances

 In the previous chapter, road detector information (relative heading and lateral

offset error measurements) was merged with physical state estimates based on presumed

Gaussian noise and knowledge of variances. Bead variances were also used in the overall

process; these variances can be approximated by a close examination of maps. For the

physical state estimates, a combination of sensor sources may yield latitudes, longitudes,

headings, and the variances of each (DEXTER’s Physical State Observer, for example,

performed such calculations). To incorporate road detector data, it is also necessary to

estimate the variance of the road detector uncertainty. This is particularly difficult for

vision-based road detection, as errors in road detection vary wildly and these errors are

not easily describable in terms of zero-mean Gaussian noise. This chapter offers some

suggestions for deriving the variances of road detection offsets as a function of more-

easily evaluated indicators. Similar methods could potentially apply to discovering the

variances of road detection heading corrections.

 A road detection system must have sensory inputs, such as camera images or

LIDAR scans. Raw data from these sensors is analyzed in terms of some type of pattern

matching. In this process, there are multiple cues indicating quality of the road

identification. These may include consideration of how well the current fit conforms to

expectation, how strongly lines on the road are identified, the RMS error of line fits,

119

parallelism and distance between identified curbs, and others. While none of these cues

fulfills the role of a variance estimate, each of them can contribute to an estimate of the

lateral offset and heading error variances.

 In the present analysis, it is assumed that there are multiple indirect cues that have

bearing on the resulting measurement variance. Each of these numerical indicators will

be referred to as a “feature.” A feature can represent any quantity that has some

influence on the road detection system. In these simulations, a feature with a higher

value (all other features being held constant) translates into a higher variance in the road

detection system. Further, the feature values have been scaled to fall in the range from

zero to one. Any features may be scaled and inverted to follow this scheme without loss

of generality. For example, if a feature measured the visibility of painted road lines in an

image, fewer pixels assigned to road lines in one image versus another would assign a

higher value (a value closer to one) to the road line feature in the former case.

 It is assumed that there is some multivariable and possibly quite nonlinear

mapping from feature values onto the lateral offset variance. It should be noted that

variance, in this case, is not truly random noise. For a given snapshot of road detection

data, the computed lateral offset is repeatable (i.e. deterministic). However, for larger

feature values, the computed result is less trustworthy. It is desired to assign an

equivalent variance that would be suitable for optimally merging road detection data with

physical state and bead location data.

 In this chapter, a method is proposed for learning an appropriate mapping from

available cues (features) to road detector variances. The method is evaluated in

simulation. In these simulations, the road detector is assumed to have three easily-

120

computed features that should have bearing on the credibility of the road detector lateral

offset estimates. (The method applies to any number of features).

 A set of features captured at one point in time maps to a standard deviation (and

therefore a variance) in the road detection system. Since a smaller feature indicates better

data, the road detection standard deviation should increase and decrease in value

monotonically with each individual feature. However, some features may be more

important to the road detection standard deviation mapping than others. For example, a

feature that detects the visibility of road lines may affect the road detection standard

deviation more than a feature that tries to determine the color of those lines. Hence, the

influences of the features on the road detection standard deviation are not equal.

 In the simulated evaluations presented here, the mapping from features onto a

standard deviation is defined according to Equation 8-1. This mapping satisfies the

presumption that the variance increases monotonically with each feature. More complex,

nonlinear mappings could be assumed, but this is adequate for the present analysis. It

should be noted that it is only presumed that there is some underlying mapping from

features onto variance. The exact form of that mapping is not known a priori to the

learning algorithm, and the algorithm does not assume any model for this mapping.

 ()
N

rd i i
i

f cσ = •∑

Equation 8-1. For one point of road detection data, each feature f is multiplied by its
corresponding constant c up to N features; in these simulations, N = 3. The sum of these
products gives the standard deviation of a road detection offset value. Optionally, a
constant could be added to the sum above.

 For simulation analyses, the influence coefficients in Equation 8-1 are generated

at random, but held constant throughout a given simulation. These influence coefficients

remain unchanged throughout the calibration and testing phases of any one simulation,

121

but are regenerated for each subsequent simulation. The random influence coefficients

can take values from zero to some user-defined maximum. The larger these coefficients,

the higher the road detection standard deviations can be in a given simulation.

 In order to perform calibration, road detection data must be gathered under special

circumstances. The road detection calibration readings should capture a range of possible

sets of features, in order to better characterize the behavior of the system. For similar

reasons, calibration data should include many samples. Each simulation generates a

random feature set 1000 times in order to perform calibration. By assumption,

calibration readings occur while the robot drives on the center of a lane (zero meters

offset), so that any offset reported by the road detection system constitutes an offset error.

As discussed previously, robots can indeed drive down the center of the lane when

forced; calibration need not occur in autonomous driving mode.

 Discovering_Road_Detection_Variance.vi generates calibration data in

simulation, creating 1000 feature set readings and mapping each feature set to a road

detection standard deviation. Each road detection standard deviation then translates into

a Gaussian offset error. By this process, errors are added to the virtual road detector

lateral offset data. In simulation, only the indirect measures of road detector uncertainty

(the three feature values) are exposed to the system; the corresponding variance

responsible for generating an offset error is not known. It is desired to discover the

mapping from features to variances.

 The 1000 offset errors from calibration have their own statistics, including an

error standard deviation that describes how these offset errors vary. This error standard

deviation, when squared, produces a general estimate of the variance in the road detection

122

system. This simple approximation of the road detection variance will be referred to as

the naïve variance, as produced by the naïve method. In the naïve case, the road detector

is assumed to have a constant variance. Since the mapping from features onto variance is

unknown, the feature values are ignored. The naïve case thus loses the opportunity to

recognize when the road detector data is particularly trustworthy, and at the other

extreme, it may put more faith in the road detector than is warranted. An improvement

over the naïve case is a learned mapping from features onto variances. The method used

here to learn this mapping is Lloyd's k-means clustering algorithm, as described in [52].

First, some user-specified number of clusters is created. The centroid of each new cluster

consists of a random feature set, where each feature is between the maximum and

minimum values of that same feature that were observed during calibration.

 Once clusters exist, the code examines each feature set in the calibration data.

Each feature set will be closest, in terms of Euclidean distance, to one of the cluster

centroids. If the closest cluster does not already contain this feature set as one of its

members, the data point is added, and the feature set moves the centroid (the

characteristic feature set) of the cluster. If a specific sample was formerly assigned to a

different cluster than the closest cluster, this data point is removed from the former

cluster, altering that cluster’s centroid. Thus, this process alters the centroids of both

affected clusters. At any one time, a cluster’s centroid consists of a set of features, where

each feature is averaged from the cluster’s members’ values of that feature.

 Available data is re-clustered iteratively until all clusters are stable (or,

theoretically, until some maximum number of iterations, though that restriction was not

needed for these simulations). After clustering, the statistics of each cluster may be

123

calculated. Cluster statistics depend on member data, so the code removes empty clusters

from the overall cluster list. The final clusters each hold a population of samples that

have similar feature sets. Each cluster is analyzed to infer the mapping between features

and variance. The representative feature set of a given cluster is its centroid (the average

of all feature sets from the population of samples within a cluster). It is desired to

associate this average feature set with an appropriate measurement variance. To do so,

member properties within the respective cluster are analyzed. Each member of the

cluster is a calibration sample with a known lateral offset error. A representative cluster

variance is computed as the variance in lateral offset errors using all members of that

cluster. In this way, each cluster is associated with a corresponding representative

variance.

 Once the clusters are trained, the simulation can consider the computable feature

values for a road detector sample with unknown error. These features are used to find the

closest trained cluster. The variance associated with the closest trained cluster is then

assumed to apply to the current measurement. In order to evaluate this method, the

simulated robot drives a test path (using the same hidden mapping from features onto

variances). The simulator creates new feature sets for some user-specified number of test

path points. The feature sets on this test path follow one of three patterns. In the first

case, code creates each feature set on the test path randomly, as was the case during

calibration. For the second situation, each feature set is a copy of the feature set that

produced the maximum road detection standard deviation observed during calibration

(emulating poor road detector performance). The final, third case resembles the second,

except the feature set copied produced the minimum road detection standard deviation

124

observed during calibration (emulating good road detector performance). The last two

cases represent extremes where, after calibration, the robot drives on roads that are hard

to sense (the second case) or easy to sense (the third case).

 Each feature set on the test path maps onto a road detection standard deviation per

a known (but hidden) mapping—the same hidden mapping that was used for calibration.

For validation purposes, the actual standard deviations used to generate the lateral offset

errors are recorded, although this information is not exposed to the methods under test.

These are called the “true” standard deviations. Each feature set on the test path also lies

closest to the centroid of one of the trained clusters. The algorithm assumes that each

road detector sample may have a variance (equivalently, standard deviation) equal to the

variance associated with the closest cluster. Recall that the naïve road detection standard

deviations were already calculated, and also that method assumes that the road detector

variance is constant throughout a path. In contrast, the K-means clustering algorithm has

K clusters, each with an associated variance. Thus, rather than assuming a single

variance, the clustering method assigns one of K variances to each sample point.

After Produce_Feature_Standard_Deviations_for_Path.vi completes the simulation of test

path uncertainties, there are three lists of road detection standard deviations that could be

believed for the road detection offsets in the test path: the true standard deviations from

the (hidden) feature mappings, the standard deviations assigned by clustering, and the

naïve standard deviations (constant for all samples).

 Comparison_of_Lateral_Measurements.vi compares the results of believing in

turn each of the three possible lists of road detection standard deviations. First, the VI

generates at random the error-free offsets of the test path, which are the lateral offsets that

125

sensors would report if they were perfect. For simulation purposes, the maximum pre-

error lateral offset was three meters; in the U.S., the most common lane width is twelve

feet [53], which is a little more than three and a half meters. As described above, random

feature values were generated, and these produced corresponding road detection

variances per the hidden mapping. These variances were recorded for comparison, and

they were used to generate Gaussian-distributed offset errors for (simulated) lateral

displacement measurements. The resulting offsets, errors included, represent the offsets

reported by the road detection system.

 In order to compare the effects of using each of the three different lists of

uncertainties, the simulations require some other lateral offset measurement that can be

combined in turn with each separate list of uncertainties. This independent lateral offset

measurement could be calculated from comparing beads with physical state data, for

example. For simplicity and to preserve generality, the simulations do not care about the

source of these measured offsets. The user sets the standard deviations for the measured

offsets throughout the test path; using these standard deviations and the true lateral

offsets, the reported measured offsets contain Gaussian errors, and the variance of each

measured offset is known. For simplicity, the same standard deviation is used for every

measured offset in the test path.

 To invoke the optimal estimation equations, it is necessary for the information

sources to satisfy the assumptions of zero-mean Gaussian noise, and it is also necessary

to know the variance of the Gaussian noise. In the current evaluations, the virtual road

detector measurements include Gaussian noise, but the variance of that noise is unknown

to the system. Nonetheless, the variances used to generate the road detector

126

measurements can be analyzed as if this information were available, and use of this

information yields the theoretically optimal use of the road detector data. This

computation, using the “true” variances, is used as a benchmark constituting an upper

bound on the performance of a variance-learning algorithm. On the other hand, assuming

a constant variance for the road detector (the naïve case) constitutes a lower bound for a

learning algorithm. The learning algorithm should, at a minimum, perform no worse than

the naïve case, and ideally it would rival the ideal case.

 For every point in the test path, the measured offset and its corresponding known

variance combine with the road detection offset and each of the three beliefs about the

current road detection variance. The three combinations occur independently, so that

none of the three variance beliefs influences the behavior of either of the others. The true

standard deviations, the clustering standard deviations, and the naïve standard deviations

all become variances through squaring. Each of the three road detection variances uses

the same value for the lateral road detection offset, an erroneous value following the true

road detection standard deviation. Therefore, the differences in road detection variances

are the only differences when the optimal estimation equations combine two lateral offset

measurements three separate times. Figure 8-1 summarizes how calibration and test data

are generated and used.

127

Figure 8-1. Calibrating road detection data makes both the naïve and clustering
methods possible. Arbitrary measured offsets allow the naïve and clustering methods to
be compared with the effects of using the actual variances present in the road detection
system. Recall that “Average N Measurements” refers to a VI that performs optimal
estimation.

 Traversing the test path produces three outputs, each a list of lateral offset

estimates affected by the variances used to produce them. The code subtracts the true

lateral offsets from each list of lateral offset estimates. The lateral offset errors following

true road detection standard deviations, clustering standard deviations, and naïve standard

deviations each have a root mean square (RMS) value. The RMS values of each method

can then be compared for analysis. The measured offsets similarly have an RMS value

128

characterizing how they deviate from the true lateral offsets. Since the true lateral offsets

have no errors, any set of true lateral offsets always has an RMS of zero meters.

Section II: Analysis of Clustering and Naïve Calibration Methods

 As stated, these simulations assume three features as inputs into the road detection

system, and pre-error lateral offsets up to three meters on the imaginary road. Since the

calibration process takes 1000 readings, the simulations seeded one hundred clusters in

each run. Using too few clusters would have little advantage over the naïve method,

while using too many clusters may produce clusters with few members and therefore not

very robust member statistics. Further work could experiment with determining the

optimal number of clusters to use. Indeed, the clustering performed by the simulations

does not always produce variances closer to the true road detection variances than the

naïve variances are. However, clustering variances are nonetheless usually better than in

the naïve case, and those runs presented in Table 8-1 analyze the usefulness of good

clustering.

 Table 8-1 provides data from several runs of the simulator. The specific values of

the lateral offsets do not matter, since the analysis is concerned instead with the lateral

offset errors. In order to make graphical analysis clearer, the test paths used for Table 8-1

were always fifteen points long. The variances in the measured offsets were consistent

throughout each test path; if these values varied, the test path would consist of a set of

sub-problems, each one characterized by the measured offset variance on the relevant

stretch of road. Recall that the three types of road detection offset variances (true, naïve,

and cluster) are all attempting to improve (i.e., decrease) the plain RMS value for the

measured offsets.

129

R
ow

 #

σ
2m

easured offset (m
2)

σ
2truth (m

2)

σ
2naϊve (m

2)

σ
2cluster (m

2)

M
easured O

ffset R
M

S (m
)

True V
ar. M

ethod R
M

S (m
)

N
aïve M

ethod R
M

S (m
)

C
luster M

ethod R
M

S (m
)

1 400 0.30 31.53 0.76 17.31 0.69 1.07 0.68

2 400 259.87 79.35 176.35 16.77 13.31 15.42 13.93

3 169 129.13 46.19 173.87 13.24 7.78 8.82 7.90

4 4 0.071 19.68 0.55 1.52 0.27 1.26 0.29

5 400 Varies 20.11 Varies 24.70 3.90 3.92 3.97

6 9 121.55 33.63 146.45 3.29 3.34 4.22 3.31

7 0.09 0.08 24.97 0.53 0.29 0.20 0.29 0.26

8 0.09 Varies 10.56 Varies 0.32 0.32 0.32 0.34

9 9 Varies 41.39 Varies 2.94 2.23 2.63 2.30

Table 8-1. A set of tests showing how various definitions of the road detection offset
variances can hurt or improve the RMS value of errors in an independent measured
offset. The three columns on the right all characterize errors in lateral offsets after
including some sort of road detection data.

 Rows 1-4 show cases where the true road detection variances are less than the

variances of the measured offsets (Row 1 drastically so). Since the true road detection

variances are consistent, the clustering variances are as well; if Centroid X is closest to

Feature Set Y once, that condition will always be true for matching feature sets and the

same cluster list. In all four rows, the naïve variances are farther from the true road

detection variances than the clustering variances are. This improved accuracy makes the

130

RMS values using clustering closer than the naïve RMS values to the true road detection

variance RMS values. Note that this RMS improvement still occurs in Row 3, where the

true road detection variances are more comparable to the measured offset variances.

 The naïve method in Rows 2 and 3 made the optimal estimation equations

incorrectly believe the road detection data too strongly; in Rows 1 and 4, the naïve

method’s belief was not strong enough. The results of each method can also be observed

with regards to each point on the test path. Figure 8-2 graphs information for the test

path that produced the data in Row 4. Note that in some cases, believing the naïve lateral

offset estimate could lead a robot to drive more than two meters off of the center of the

road, while the clustering method would keep the robot driving closer to a half a meter

from the center of the lane. Depending on the road, this difference in performance may

mean the difference between safety and disaster.

Figure 8-2. Lateral offset error data for Row 4 of Table 8-1. Since this is a graph of
errors, the perfect case would be a flat, horizontal line at 0 m. The three lines resulting
from combining erroneous data under different beliefs are, as expected, between the road
detection errors on one end and the measured offset errors on the other. Note that the

131

errors using true (road detection) variances are the goals (the best expected behavior),
and that the errors using cluster variances are between the true road detection variance
errors and the naïve variance errors.

 In Row 6, the true road detection variance was consistently poorer than the

measured offset variance along the test path. Once again the naïve method believed the

road detection data too strongly, but in this case the naïve method actually led to a worse

RMS value than the RMS value of the measured offsets. The clustering method, since its

variances were closer to the true road detection variances, instead allowed the code to

suitably ignore road detection’s contribution. However, Row 7 shows that the measured

offset confidence can be high enough that the naïve method’s high uncertainty may not

always have an effect. In Row 7, the true road detection variance was comparable to that

of the measured offset variance, so the true and clustering road detection variances

caused little change.

 The road detection features may vary along a test path; in Rows 5, 8, and 9, those

variations were random. When the measured offset variances were large (Row 5), the

measured offset RMS value had room to improve, but the clustering method did not

noticeably outperform the naïve method in Rows 5, 8, or 9. Using more points on the test

path does not change this outcome. When the test path’s true road detection variances are

random, assuming the average variance (as the naïve method does) works about as well

as the clustering method over the course of the test path. Figure 8-3 shows that along the

test path, the clustering method may still be better than the naïve method at particular

path points.

132

A

B
Figure 8-3. Lateral offset error data for Row 5 of Table 8-1. There are points on the test
path where the clustering method does a better job than the naïve method of improving
the lateral offset estimate for that path point; Graph B shows just a subset of Graph A in
order to highlight that principle. Yet overall, the naïve variance method’s RMS value
was close to that of both the true road detection variance and the clustering variance
methods.

 The naïve method avoids the complications of the clustering method, including

the further experimentation that the clustering method desires. Additionally, using the

naïve method often improves the measurement offsets, which is a clear step above having

133

no idea what the road detection variances are. In some cases, the naïve method is just as

good as the clustering method, though importantly, the clustering method is never

measurably worse. Yet, when a test path has consistent quality in road detection offsets,

and that quality is higher than that of the measured offsets, the clustering case makes

better use of the calibration information than the naïve method. The same is true when

the true road detection variances are much higher (relatively) than the variances in the

measured offsets throughout the test path. Therefore, the clustering method is more

flexible than the naïve method, a valuable quality since in reality the confidence of road

detection data along any test path begins as an unknown.

134

Chapter 9: Summary and Future Work

 The research presented here started with its roots in DEXTER, Team Case’s entry

into the 2007 DARPA Urban Challenge. Beads were designed specifically for DEXTER.

Through repeated tests in preparation for the Urban Challenge, the bead structure itself,

as well as bead generation and bead communication, proved accurate and adequate for

the DEXTER project. DEXTER also verified the teach-and-playback method outlined in

this paper, and ran successfully on beads preprocessed via the described preprocessing

method.

 A more general solution should perform online bead updates. A different but

related problem could instead improve the physical state readings (using the map and

potentially other sources), but in this paper the focus remained on updating beads.

DEXTER’s personal simulator verified one proposed online bead update solution, the all-

or-nothing update method. The simulator had some limitations when compared with

running on the actual robot, but clearly the errors in bead updates caused by coordinating

data with the localization software would need to be addressed in a physical robot.

Additionally, the all-or-nothing update method always throws away some information.

Making use of all information, and thus performing partial updates, would lead to a more

knowledgeable bead map.

 Work presented here extended past the Urban Challenge competition through the

use of simulations to explore the issue of fused data map updates. Ideally, the algorithms

developed in simulation would be tested in physical field trials. One challenge when

abandoning simulations will be to gather data from different sources that all correspond

135

to the same sample point. Simulations started by considering only beads and physical

state data, and their respective variances. Since beads may be biased, work was done that

(in simulation) could successfully identify both north-south and east-west biases. If

needed, future work could investigate the issues involved if a map were shrunk, stretched,

and/or rotated from its desired state.

 Simulations using only beads and physical state data are ignorant of road

detection, and must unrealistically assume that a robot is always driving on the center of

its lane. Road detection systems report relative data, contrary to the beads and physical

state data that retain absolute latitude/longitude positions. In response, this paper

introduced a method of using road detection information in fused data bead map updates.

To translate these simulations into practice, additional work would be required for the

road detection system to output computable features that are expected to influence road

detection credibility.

 The online fused data bead updates all relied on knowing the variances in beads,

physical state data, and road detection data. Though road detection variances tend to be

the most difficult to discover, more work could also address finding variance values for

beads and physical state in the best ways available. Because road detection variances are

especially tricky, this paper concluded by making suggestions on how to derive such

variances from the inputs available to a road detection system. A means was proposed

for inferring variances for lateral offset measurements; learning variances in the heading

corrections of a road detection system would require additional work.

 Clustering was proposed as a method to infer road detection offset variances from

available cues. This method was compared to an alternative that assumes a fixed

136

variance associated with road detector measurements (the naïve method). The clustering

method itself, while appearing to provide some benefit over the naïve method, can be

investigated further. There may be some optimal number of clusters for certain

conditions. Recordings from physical experiments may illuminate what kind of

relationship to reasonably expect between calibration and test data. Real-life results may

also further restrict the randomness of the calibration data that can be practically

anticipated. Finally, while clustering certainly suggests a solution, there may be other

unsupervised learning techniques suited to the task.

137

References

[1] C. Urmson, "Self-Driving Cars and the Urban Challenge," Intelligent Systems, IEEE,

vol. 23, pp. 66-68, 2008.

[2] I. Catling, "Road transport informatics in Europe-major programs and

demonstrations," Vehicular Technology, IEEE Transactions on, vol. 40, pp. 132-140,

1991.

[3] W. C. Collier, "Smart cars, smart highways," Spectrum, IEEE, vol. 31, pp. 27-33,

1994.

[4] T. Jochem, "PANS: a portable navigation platform," Intelligent Vehicles '95

Symposium. , Proceedings of the, pp. 107-112, 1995.

[5] D. Bernstein and A. Kornhauser, "An introduction to map matching for personal

navigation assistants," New Jersey TIDE Center, Newark, NJ, August 1996, 1996.

[6] G. Chen, "A Real-Time Navigation Architecture for Automated Vehicles in Urban

Environments," Intelligent Vehicles Symposium, 2007 IEEE, pp. 1223-1228, 2007.

[7] G. Seetharaman, "Unmanned Vehicles Come of Age: The DARPA Grand Challenge,"

Computer, vol. 39, pp. 26-29, 2006.

[8] Anonymous (2008, 4/21/08). DARPA urban challenge. 2008(6/28), pp. 15.

[9] S. Thrun, "Why we compete in DARPA's Urban Challenge autonomous robot race,"

Commun ACM, vol. 50, pp. 29-31, 2007.

[10] Anonymous (2005, ENSCO's DEXTER placed sixth out of the 23 robotic vehicles

competing in the final run of DARPA grand challenge. 2008(4/16), pp. 1.

[11] Anonymous (2007, Team case. 2008(4/16), pp. 10.

138

[12] Anonymous (2008, NI LabVIEW. 2008(4/16), pp. 1.

[13] M. Y. Ibrahim and A. Fernandes, "Study on mobile robot navigation techniques,"

Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on,

vol. 1, pp. 230-236 Vol. 1, 2004.

[14] B. Yamauchi, A. Schultz, W. Adams and K. Graves, "Integrating map learning,

localization and planning in a mobile robot," Intelligent Control (ISIC), 1998. Held

Jointly with IEEE International Symposium on Computational Intelligence in Robotics

and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), Proceedings, pp. 331-

336, 1998.

[15] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte and M.

Csorba, "A solution to the simultaneous localization and map building (SLAM)

problem," - Robotics and Automation, IEEE Transactions on, vol. 17, pp. - 229, 2001.

[16] S. Kotani, K. Kaneko, T. Shinoda and H. Mori, "Mobile robot navigation based on

vision and DGPS information," Robotics and Automation, 1998. Proceedings. 1998

IEEE International Conference on, vol. 3, pp. 2524-2529 vol.3, 1998.

[17] O. Murayama, "Navigation algorithm based on teaching-playback system for

unmanned dumptrucks in mines," in Intelligent Vehicles '94 Symposium, Proceedings of

the, 1994, pp. 25-31.

[18] G. Xiong, "Development and Implementation of Remote Control System for An

Unmanned Heavy Tracked Vehicle," Intelligent Vehicles Symposium, 2007 IEEE, pp.

663-667, 2007.

[19] H. Cool. (2008, 2/28/08). DEXTER, case western reserve university's robotic car, to

be inducted into crawford auto-aviation museum. 2008(6/28), pp. 1.

139

[20] U. Ozguner, C. Stiller and K. Redmill, "Systems for Safety and Autonomous

Behavior in Cars: The DARPA Grand Challenge Experience," Proceedings of the IEEE,

vol. 95, pp. 397-412, 2007.

[21] F. Figueroa and Xiaojing Yuan, "Sensor fusion for a network of processes/systems

with highly autonomous sensors," Virtual and Intelligent Measurement Systems, 2001,

IEEE International Workshop on. VIMS 2001, pp. 4-10, 2001.

[22] M. Chan, E. H. Ruspini, J. Lowrance, J. Yang, J. Murdock and E. Yeh, "Human-

aided multi-sensor fusion," Information Fusion, 2005 8th International Conference on,

vol. 1, pp. 3 pp., 2005.

[23] P. U. Lima, "A Bayesian Approach to Sensor Fusion in Autonomous Sensor and

Robot Networks," Instrumentation & Measurement Magazine, IEEE, vol. 10, pp. 22-27,

2007.

[24] C. Owen and U. Nehmzow, "Route learning in mobile robots through self-

organisation," in - Advanced Mobile Robot, 1996., Proceedings of the First Euromicro

Workshop on, 1996, pp. - 126.

[25] Takehisa Yairi, "Map building without localization by dimensionality reduction

techniques," in Proceedings of the 24th International Conference on Machine Learning,

2007, pp. 1071.

[26] S. P. Engelson and D. V. McDermott, "Error correction in mobile robot map

learning," in - Robotics and Automation, 1992. Proceedings., 1992 IEEE International

Conference on, 1992, pp. - 2555.

140

[27] R. Lakaemper, L. J. Latecki and D. Wolter, "Incremental multi-robot mapping," in -

Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International

Conference on, 2005, pp. - 3846.

[28] R. Araujo and A. T. de Almeida, "Mobile robot path-learning to separate goals on an

unknown world," in - Intelligent Engineering Systems, 1997. INES '97. Proceedings.,

1997 IEEE International Conference on, 1997, pp. - 265.

[29] A. Howard, G. S. Sukhatme and M. J. Mataric, "Multirobot Simultaneous

Localization and Mapping Using Manifold Representations," - Proceedings of the IEEE,

vol. 94, pp. - 1360, 2006.

[30] C. K. Toth, E. Paska, Q. Chen, Y. Zhu, K. Redmill and U. Ozguner, "Mapping

support for the OSU DARPA grand challenge vehicle," in - Intelligent Transportation

Systems Conference, 2006. ITSC '06. IEEE, 2006, pp. - 1580.

[31] Anonymous (2007, 3/14/2007). Urban challenge: Route network definition file

(RNDF) and mission data file (MDF) formats. 2008(4/16), pp. 14.

[32] C. Miller. (2007, A simulation and regression testing framework for autonomous

vehicles. Available:

http://vorlon.case.edu/~mcc14/research/papers/ChristianMillerMS2007.pdf

[33] United States, United States National Map Accuracy Standards. ,Rev. June 17, 1947

ed.Washington, D.C.: U.S. Bureau of the Budget, 1947, pp. [1].

[34] Ball Aerospace and Technologies Corp. (2008, WORLDVIEW-1. 2008(5/20), pp. 1.

[35] U.S. Geological Survey. (2006, 8/22/2006). High resolution orthoimagery.

2008(5/22), pp. 1.

141

[36] S. Brakatsoulas, D. Pfoser, R. Salas and C. Wenk, "On map-matching vehicle

tracking data," in VLDB '05: Proceedings of the 31st International Conference on very

Large Data Bases, 2005, pp. 853-864.

[37] Analytic Sciences Corporation. Technical Staff: Gelb, Arthur, Applied Optimal

Estimation. Cambridge, Mass.: M.I.T. Press, 1974, pp. 374.

[38] S. T. McMichael. (2008, Lane detection for DEXTER, an autonomous robot, in the

urban challenge.

[39] N. Matsumoto, A. Toyoda and S. Ito, "Mobile robot guidance control with nonlinear

observer based state estimation," Intelligent Robots and Systems '93, IROS '93.

Proceedings of the 1993 IEEE/RSJ International Conference on, vol. 3, pp. 2264-2271

vol.3, 1993.

[40] H. Rodriguez-Cortes and E. Aranda-Bricaire, "Observer Based Trajectory Tracking

for a Wheeled Mobile Robot," American Control Conference, 2007. ACC '07, pp. 991-

996, 2007.

[41] Le-Jie Zhang, Zeng-Guang Hou and Min Tan, "Kalman filter and vision localization

based potential field method for autonomous mobile robots," Mechatronics and

Automation, 2005 IEEE International Conference, vol. 3, pp. 1157-1162 Vol. 3, 2005.

[42] Y. Zhao, "A Map Matching Algorithm in GPS-based Car Navigation System,"

Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007.

Third International Conference on, vol. 1, pp. 77-80, 2007.

[43] M. F. Goodchild, "Geographic Information Science and Systems for Environmental

Management," Annual Review of Environment and Resources, vol. 28, pp. 493-519,

11/30. 2003.

142

[44] I. Lachow, "The GPS Dilemma: Balancing Military Risks and Economic Benefits,"

Int. Secur., vol. 20, pp. 126, 1995.

[45] Garmin Ltd. (2008, What is GPS? 2008(5/20), pp. 1.

[46] R. A. Fisher, "The Correlation Between Relatives on the Supposition of Mendelian

Inheritance," Philosophical Transactions of the Royal Society of Edinburgh, vol. 52, pp.

399, 1918.

[47] G. N. Desouza, "Vision for mobile robot navigation: a survey," Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 237-267, 2002.

[48] Peng Lu, Kui Yuan and Wei Zou, "A High Performance Low Power Consumption

Robot Vision System," Natural Computation, 2007. ICNC 2007. Third International

Conference on, vol. 5, pp. 171-175, 2007.

[49] E. D. Dickmanns, "The development of machine vision for road vehicles in the last

decade," Intelligent Vehicle Symposium, 2002. IEEE, vol. 1, pp. 268-281 vol.1, 2002.

[50] Sunghoon Kim, Jeong-Ho Park, Seong Ik Cho, Soonyoung Park, Kisung Lee and

Kyoungho Choi, "Robust Lane Detection for Video-Based Navigation Systems," Tools

with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on,

vol. 2, pp. 535-538, 2007.

[51] G. Yin and Q. M. J. Wu, "The multi-sensor fusion: image registration using artificial

immune algorithm," Soft Computing Techniques in Instrumentation, Measurement and

Related Applications, 2003. SCIMA 2003. IEEE International Workshop on, pp. 32-36,

2003.

143

[52] G. A. Wilkin and X. Huang, "K-Means Clustering Algorithms: Implementation and

Comparison," Computer and Computational Sciences, 2007. IMSCCS 2007. Second

International Multi-Symposiums on, pp. 133-136, 2007.

[53] Anonymous (2007, 4/5/2007). Highway statistics 2005. 2008(4/6), pp. 1.

144

	 List of Tables
	 List of Figures
	 List of Equations
	
	Chapter 1: Introduction
	Chapter 2: All about Beads
	Section I: Perceptions of Space
	Section II: Generating Beads and Creating an Initial Map
	Section III: Answering Queries
	Section IV: Bead Extensions

	Chapter 3: All Updates vs. Nothing Updates
	Section I: The All Case, Teach and Playback
	Section II: The Nothing Case, Altering Maps

	Chapter 4: An All-or-Nothing Update
	Section I: Deciding between All and Nothing Online
	Section II: Guidelines for Updating a Bead
	Section III: Running All-or-Nothing Updates
	Section IV: Results in Simulation of the All-or-Nothing Approach

	Chapter 5: Improving Beads by Merging Noisy Data
	Section I: The Theory for an Improved Estimate from Noisy Measurements
	Section II: Implementing the Combination of Gaussian Measurements
	Section III: Running Basic Simulations

	Chapter 6: Discovering Bead Bias
	Section I: Batch Processing to Determine Bead Bias Estimates
	Section II: Running Updates to Determine Bead Bias Estimates
	Section III: Running Updates Used with Bead Improvement

	Chapter 7: Using Road Detection Information
	Section I: Introducing Road Detection
	Section II: Simulated Road Detection Values
	Section III: Road Detection Experiments

	Chapter 8: Discovering Road Detection Offset Variances
	Section I: Calibrating Road Detection Offset Variances
	Section II: Analysis of Clustering and Naïve Calibration Methods

	Chapter 9: Summary and Future Work
	References

