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Machine Learning for Road Following 
by Autonomous Mobile Robots 

 

Abstract 

by 

EMILY AMANDA WARREN 

 

 

 This thesis explores the use of machine learning in the context of autonomous 

mobile robots driving on roads, with the focus on improving the robot’s internal map. 

Early chapters cover the mapping efforts of DEXTER, Team Case’s entry in the 2007 

DARPA Urban Challenge.  Competent driving may include the use of a priori 

information, such as road maps, and online sensory information, including vehicle 

position and orientation estimates in absolute coordinates as well as error coordinates 

relative to a sensed road.  An algorithm may select the best of these typically flawed 

sources, or more robustly, use all flawed sources to improve an uncertain world map, 

both globally in terms of registration corrections and locally in terms of improving 

knowledge of obscured roads.  It is shown how unsupervised learning can be used to 

train recognition of sensor credibility in a manner applicable to optimal data fusion. 
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Chapter 1: Introduction 

 Fully developed autonomous vehicles could one day prevent accidents, improve 

fuel efficiency, give drivers more time to complete other tasks, and increase the mobility 

of elderly people who can no longer drive themselves [1].  Historically, various nations 

have believed that smarter cars could benefit traffic safety and efficiency.  A good map 

has long been important to these efforts: early work in Europe relied on beaming high 

quality map data from control centers into passing vehicles [2], and in 1988 the Japanese 

Digital Road Map Association formed to standardize a digital map database for vehicle 

road guidance systems [3].  In 1995 the PANS (Portable Advanced Navigation Support) 

system ran on the Navlab 5; dealing with a subset of the autonomous driving problem, it 

used a stored map to aid control when taking curves [4]. 

 Today, GPS* sensors help Personal Navigation Assistants find a vehicle’s 

location [5]; Personal Navigation Assistants only address a subset of the autonomous 

driving problem (i.e., determining where the car is and where it should go), but they are 

marketable.  More advanced are Cybercars (also called Cycabs); similar in appearance to 

golf carts, these can drive autonomously but only on their own roads, and not mixed in 

with normal traffic [6].  In the United States, the DARPA Grand Challenge began 

renewed interest in intelligent highway systems and autonomous vehicles [7] starting 

with the first DARPA Grand Challenge in 2004 [8].  The two Grand Challenges took 
                                                 

*Note that in this paper, the phrase “GPS” at times indicates the sensors themselves, and 
in other cases represents an estimate of orientation within the GPS coordinate system. 
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place in the desert, with the competitors more isolated than human drivers usually are.  

Nonetheless, the self-driving cars in the Grand Challenges faced their share of problems, 

with the second DARPA Grand Challenge’s results more successful than the first [9]. 

 In 2007 DARPA hosted its first Urban Challenge, where the contestants faced 

additional traffic hazards such as intersections and other vehicles.  Schools such as 

Carnegie Mellon, with their converted 2007 Chevy Tahoe [1], and Stanford, with their 

2006 Volkswagen Passat [9], entered the race.  Case Western Reserve University shared 

such company thanks to our robot DEXTER, the Deployable EXtreme Terrain Enabled 

Robot.  When ENSCO first built DEXTER; he (for it quickly became more common to 

say “he” rather than “it”) placed sixth in the 2005 Grand Challenge [10]. 

 DEXTER then came to Case Western Reserve University.  Team Case included 

over fifty people, mainly students and faculty, but some people in industry as well [11].  

We altered and maintained DEXTER’s physical parts while installing a new code base.  

The vast majority of this code, including all the code discussed in this paper, was written 

in the LabVIEW environment from National Instruments [12], which organizes code in 

files known as VIs and compels the programmer to draw logical wiring diagrams.  

Through Team Case’s efforts, DEXTER reached the 2007 DARPA Urban Challenge 

semi-finals in Victorville, CA, on our university’s first try. 
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 Figure 1-1.  DEXTER, Team Case’s entry into the 2007 DARPA Urban Challenge.  
Image credited to [11]. 
 
 A project of DEXTER’s size—both in number of files and in number of team 

members—requires a modular allotment of duties.  This paper specifically covers 

DEXTER’s Global Mapper, which built and maintained DEXTER’s memory of routes 

and belief concerning where to drive, referred to as DEXTER’s Global Map.  Other 

modules could plan routes or perform localization with the help of this Global Map.  

Localization generally requires some environmental representation, whether it be grid-

like, based on the line segments from range measurements, in terms of the robot’s 

constraints in movement, or, as with DEXTER’s Global Map, a sequence of beads [13].  

Localization may involve large corrections every so often, or nearly continuous, faster 

corrections [14]; the density of points in the Global Map (generally one meter apart) 

allowed other DEXTER modules the option of taking the latter approach. 

 One of the most common localization problems is Simultaneous Localization And 

Mapping (SLAM), which builds a map while observing the environment; an example in 

[15] builds a landmark-based relative map.  Landmark matching can be difficult in 

general if image processing is necessary, landmark data is incomplete, or the dynamic 

nature of an outdoor environment interferes [16].  The beads for DEXTER’s map are in 

absolute GPS world coordinate system terms, with no dependency on landmarks; regular 

landmarks may be difficult to find in the barren desert of the competition.  While the 

Global Map can potentially improve online, the Global Mapper calculates an a priori 

Global Map from DARPA-specified goals, so DEXTER relies less on exploration than a 

robot in a typical SLAM scenario. 

 This thesis first discusses the construction and communication of information in 
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the Global Map, describing the actual methods used when DEXTER competed in the 

Urban Challenge.  Then the paper covers the extreme cases of how the Global Map might 

be modified.  On one end of the spectrum, an all update, every point in a map comes 

purely from incoming sensor data.  Such teach-and-playback algorithms have applied to 

unmanned dump trucks working in mines [17] and supplemented the remote-controlled 

operation of unmanned heavy tracked vehicles [18].  In the present research, the author 

tailored a teach-and-playback method to run on DEXTER.  At the other extreme is the 

nothing update; while driving the competition route, DEXTER’s Global Map never 

changed.  In this case, DEXTER’s initial Global Map must be of high quality, higher 

than what can be deduced from DARPA’s set of specific GPS coordinates contained in a 

Route Network Definition File (RNDF).  To provide such high quality, DEXTER’s 

Global Map was corrected and improved using aerial photography.  The RNDF and the 

Global Map must have some agreement for localization reasons, but either one may be 

moved to fit the other. 

 Though testing time did not allow for it, the author also implemented a way for 

DEXTER to choose whether to overwrite a bead with sensor data or to keep a bead 

exactly the same while he drove; this all-or-nothing update method was tested in 

DEXTER’s simulator and suggests that additional intelligence may be used in the 

maintenance of the Global Map. 

 When DEXTER became a permanent resident of the Crawford Auto-Aviation 

Museum [19], work continued in LabVIEW simulations.  In the first, simplest case, the 

simulations evaluated map registration improvements aided by presumed human driving.  

In this scenario, a human driver would competently steer an instrumented vehicle down 
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the center of a road contained within an a priori map.  The measurements acquired in this 

process would be used to alter the initial map.  In this process, it is recognized that 

available GPS sensors (or other means of state estimation) may be imprecise.  It is also 

recognized that initial estimates of the coordinates of beads intended to represent points 

along the centers of lanes are flawed.  By combining both sources of information 

(measurement and a priori mapping) instead of choosing one over the other, bead 

coordinates can be improved, even with significant uncertainty in both information 

sources.  

 With the approach presented in this thesis, the mapping algorithm performed 

sensor fusion of bead data (cumulative best-fit map data), physical state estimates 

(absolute localization in the GPS coordinate system), and (eventually) road detection 

values (relative localization from direct sensing of road surfaces).    While cost increases 

with the number of sensors, multiple sensors provide redundancy when one sensor fails 

[20], or similarly, when one sensor’s reported data is poor.  There are many methods of 

sensor fusion, including equations describing physical systems, Kalman filters, some 

form of logical reasoning, averaging [21], and even human interaction for complicated 

needs [22].  In the present research, sensor fusion was performed using optimal 

combination of signals based on presumed Gaussian-distributed uncertainty. [23]. 

 In Victorville, Team Case found the aerial imagery of the competition routes to be 

shifted from DEXTER’s sensor readings; hence DEXTER’s map had to be moved to be 

used correctly.  Because of this incident, work in this paper attempts to show, in 

simulation, how a coarsely-registered map and collected GPS coordinates can be used to 

discover map shifts in latitude and longitude.  At first, this process also works under the 
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assumption that the GPS points correspond to driving precisely centered in lanes.  In an 

extension, the presumption of accurate driving is relaxed and information from 

(imperfect) direct road sensing is incorporated. Road detection can be used for both 

global map registration and improving the map model in local regions.  To combine 

information from multiple imperfect sources, it is necessary to know the credibility 

(equivalently, statistical variance) of each source. Among the information sources, direct 

sensing of the road has the greatest variation in credibility, and it is also typically 

difficult to estimate the variance associated with a given measurement.  Work in the final 

chapter describes a method to learn how to infer an appropriate measurement variance 

from indirect cues, leading to more trustworthy sensor fusion. 
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Chapter 2: All about Beads 

Section I: Perceptions of Space 

 As DEXTER drove through space, he needed some concept of that space—some 

sense of when Point A became Point B.  DEXTER also had goals of GPS points he had to 

reach, increasing his need for spatial memory.  Programmers wishing to help a robot 

perceive and recall the world around it have many options.  At a high level of abstraction, 

the robot may record space as a collection of excitations in a neural network, for example 

in a Self-Organizing Feature Map [24], but this approach would have added unneeded 

processing complexity to DEXTER. 

 Perhaps the robot is in a scenario where it simply wishes to learn about its 

environment through its sensors as it moves about.  The robot may use feature-based 

mapping techniques and form its global map out of observations about the objects around 

it, leaving its own pose implicit but not used directly [25].  The robot may remember a 

place based on a set of views (sensory measurements) taken from that place [26].  The 

robot may also learn about its environment from polylines generated by sensors reading 

its surroundings [27].  However, DEXTER had goals to reach, so he could not function 

solely as an observer. 

 A robot’s movements on the ground are essentially 2-D (latitude and longitude, 

with elevation often of less importance to navigation).  In a 2-D world, the robot may be 

told that the world is a series of 2-D partitions, e.g. rectangles that may be algorithmically 

split in order to help see past obstacles [28].  Cycabs use a priori 2-D maps represented 

as a set of polygonal obstacles [6].  The robot’s internal representation may break out of 
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2-D in order to remember movements on a 2-D ground as a manifold, a technique 

developed to avoid confusion when learning online about a loop [29].  Or the robot may 

save survey data in databases of the land arranged in a grid format; the team from Ohio 

State University used this approach in the 2005 DARPA Grand Challenge [30]. 

 The Urban Challenge problem and its rules greatly influenced the representation 

used for DEXTER’s Global Map.  The Urban Challenge came with a priori information, 

a set of latitude and longitude coordinates that not only helped DEXTER know where the 

roads were, but also gave DEXTER his very specific goals.  DEXTER’s road detection 

software was important for avoiding obstacles and staying on the road, but with the 

biggest obstacles (other cars) constantly in motion, objects could not be used reliably as 

reference points.  A specific latitude value matched with a specified longitude coordinate 

can be considered a single, 1-D point in space; hence DEXTER perceives his map not as 

a 2-D grid, but as a series of 1-D beads.  The manifold approach in [29] was not required 

in DEXTER’s situation, since we could use our a priori coordinates to define a start and 

an end to any loop. 

 For DEXTER, a noteworthy point in space becomes its own distinct entity; 

“noteworthy” here means that the point is useful for telling DEXTER about the shape of 

a road.  Such points may be too dense, requiring more memory storage than truly 

necessary, or too sparse, causing DEXTER to know little about where to drive in large, 

in-between spaces.  DEXTER deliberately chose points at a density between these two 

extremes.  We called these points “beads,” so named because within a lane or 

intersection the beads have a specific order from start to finish, like beads on a string.  

This arrangement resembles the representation for Personal Navigation Assistants where 
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nodes (endpoints) and so-called “shape points” define a road as the segments between 

those points [5]. 

 Each bead contains latitude, longitude, and the heading that instructs DEXTER 

which direction is forward.  When Bead A is followed by Bead B within any set of beads, 

Bead A’s heading points towards Bead B.  Beads are extendable and they can (and did) 

hold additional information.  Beads may be stored and read in various file formats, such 

as XML, so the work done to generate initial beads can be saved, updated beads can be 

used for future runs, and hand-picked beads can be fed into the Global Mapper initially. 

Section II:  Generating Beads and Creating an Initial Map 

 To understand bead generation, it is necessary to understand the organization of 

the Global Map.   Beads are contained in a four-part structure.  First, there are lanes, 

contained in the Array of Lanes and sorted by Segment ID, then Lane ID, where one 

segment may have multiple parallel lanes.  A complete street with all its lanes is a 

segment.  Next, there are Intersection Beads, containing bead paths from one lane to 

either another lane or to a zone (parking lot).  Intersections are arranged first by the 

segment where they begin, then by the lane where they begin, then by an Exit ID.  Each 

intersection contains information concerning the lane or zone the intersection leads to, 

and it is this information that classifies the different intersections that start in the same 

lane.  Imagine a four-way stop with three legal paths (excluding U-turns).  To DEXTER, 

continuing in the same lane does not require an intersection, but entering a new lane does. 

The two paths shown in Figure 2-1 are two separate intersections, despite the fact that 

they start from the same place.  Zone exits are arranged just like intersections, except that 

they start from zones instead of lanes.  Finally, the Zone Array lists the perimeter points 

17 



and parking spots of each zone (parking lot). 

 
Figure 2-1.  The light blue box represents DEXTER.  Each set of colored dots is a 
different intersection in DEXTER’s memory, distinguished from each other by their 
destinations.  The path forward is not an intersection, but instead counts as more beads 
in the same lane. 
 

The data in the initial map depends on the information available from the DARPA 

Urban Challenge RNDF (Route Network Definition File) [31].  RNDFs give the GPS 

coordinates for DEXTER to follow and IDs which arrange those points in order and in 

different pieces of the map.  However, RNDFs tend to be sparse, so while surveying 

efforts may provide detailed maps to Personal Navigation Assistants [5], there is no such 

luxury here. 

Once the RNDF is loaded, generating initial beads starts with 

Add_Interpolated_Points.vi.  From there the LabVIEW code has two main branches: 

Initial_Beads.vi and Init_Intersection_Interpolation.vi.  Initial_Beads.vi iterates through 

all the segments in the RNDF data, through all lanes within segments, and through all 

initial waypoints within lanes.  The VI collects the three layers of IDs (segment, lane, and 

waypoint) along with the given GPS points to create the Array of Lanes.  Each waypoint 

becomes its own bead in this process.  In parallel, Initial_Beads.vi calls 

Process_RNDF_Zones.vi, which simply copies all the spots and perimeter points of every 

zone into the Zone Array. 

With just the waypoints from the RNDF, the Array of Lanes is too sparse.  
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Naively connecting the dots between these waypoint beads could give DEXTER off-road 

paths and pointed corners to drive.  So, Add_Interpolated_Points.vi adds points to the 

lanes by splining between waypoints. (The spline code was written by Scott McMichael).  

Generate_Spline.vi interpolates points between but not including existing RNDF 

waypoints, using a spline calculation that allows for curves.  Splining requires the 

boundary points to have headings; since this data is not provided in the RNDF, it is 

calculated by comparing the relative positions of consecutive waypoints. 

The number of beads generated by splining depends on the distance between the 

boundary waypoints, with approximately one bead per meter, though an exact number of 

splined beads may be forced.  Fill_Out_Beads_from_GPS.vi then fills beads with default 

values for some data, Insert_Bead_Headings.vi gives the beads headings based on 

comparisons with neighbor beads, and Reset_Bead_IDs.vi gives each bead a unique, in-

order ID. 

Init_Intersection_Interpolation.vi handles the intersections in the map structure.  

The RNDF data name the lane exits and their entry points; from this, an Entry Waypoint 

ID can locate either a zone perimeter point or a lane waypoint.  The GPS locations and 

headings of the exits and entrances provide boundaries for an intersection.  As with the 

Array of Lanes, Generate_Spline.vi finds points between entrances and exits, and again 

this data is packaged into beads with unique, in-order IDs.  The entry information is 

preserved and bundled for each of the lane exits in the Intersection Beads.  To help 

DEXTER drive, any intersection that enters a zone is extended into the parking lot so that 

DEXTER will not just drive to the perimeter.  The extension consists of beads (usually 

about ten) placed a meter apart following the heading established for the zone perimeter 
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point.  Init_Intersection_Interpolation.vi generates zone exits in the same way as regular 

intersections, except the “from” boundary point always comes from a zone perimeter 

point instead of a lane exit point.   

Figure 2-2 summarizes the process of bead generation, while Figure 2-3 illustrates 

how each discussed piece of the overall bead structure fits into an example map. 

 

Figure 2-2. The flowchart simplifying the generation of each of the Global Map’s four 
parts. 
 

 
Figure 2-3.  Zones have two features (perimeter points and parking spots).  Zone exits 
lead from zones to lanes; Intersections start in lanes and may go to other lanes or zones.  
The red dots give an idea of what information is in the RNDF, such as the red waypoints 
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within the lanes.  The blue dots show where beads are interpolated, i.e. between lane 
waypoints and through zone exits and intersections.  Note that the difference between an 
intersection and a zone exit is a matter of traffic flow (shown by arrows on the road). 
 

All interpolations occur once at the beginning when beads are generated.  The 

method of interpolating once contrasts with Ohio State University’s method of 

interspersing points as they were needed during the Grand Challenges [30].  DEXTER 

avoids the cost of having to spline anywhere on the map more than once, and of having to 

spline while moving, when many other modules demand processor time. 

Section III: Answering Queries 

 Beads are constructed to support navigation; therefore, communication must exist 

between the Global Map, which contains and maintains the bead data, and the rest of 

DEXTER’s software.  Typically, any one module in the system only needs a subset of the 

total Global Map at one time.  While it is possible to broadcast the entire Global Map 

constantly and let other modules pick the information they need, the Global Map may be 

huge in some cases, making such large communications expensive.  Thus the Global 

Mapper must internally locate portions of its data in its multiple bead arrays and make 

some intelligent decision about what data to publish.  If the Global Mapper were solely 

responsible for that decision, it would have to watch the robot’s progress and deduce its 

location.  However, this would blur the responsibility of the Global Mapper, which was 

intended to behave as memory rather than part of awareness. To make the Global Mapper 

focus on handling bead management, its communication responsibility was to reply to 

queries.  This approach completely hid the localization problem from the Global Mapper, 

thus keeping the code more modular.  Scott McMichael wrote some of the code that 

answers queries, while the author of this paper wrote other sections. 
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 A query asks for a certain piece of the map.  Queries come rapidly, and a module 

may re-ask similar or identical queries as much as required.  Query answers must be 

timely in order to provide help with navigation.  For these reasons, the less reliable but 

faster UDP protocol transmitted both queries and query responses.  Queries entered a 

queue upon arrival and the Global Mapper processed them in FIFO (first in, first out) 

order. 

 Each query was phrased using the following guidelines. First and perhaps most 

importantly, the Query Type tells the Global Mapper how the query should be processed.  

The Query ID distinguishes queries, and can be used by other modules to match 

questions with answers, since the Query ID carries through to a query’s response.  Two 

sets of segment, lane, and waypoint IDs, A and B, give localization information; some 

queries do not use Location B.  The GPS Coordinate gives the location from which the 

answer beads should start; this is not necessarily the current position of the robot.  For 

instance, the GPS Coordinate in a query may be some distance ahead if the module 

making the queries is looking towards the future.  The GPS Coordinate must ultimately 

resolve to a valid bead on the road, similar in theory (though not purpose) to third 

generation Personal Navigation Assistants where the current location of a vehicle must 

coincide with some street [5]. 

 The Distance variable in a query gives a measure of how many meters forward 

ahead of the GPS Coordinate the answering beads should cover.  In the query response 

code, each meter in Distance corresponded to one bead to report.  This served as a good 

rule of thumb, since beads were spaced about a meter apart at the outset and bead updates 

were not used in the final version of DEXTER.  If bead updates change the bead spacing, 
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the query might not get the number of points it expects, though navigation modules could 

call additional queries to fetch more points.  Distance Back works the same way as 

Distance, only in the reverse direction of an Array of Beads.  Finally, the “Reverse?” 

flag, when true, lets the Global Mapper know DEXTER is traveling backwards in a lane, 

meaning that the beads should be traversed in the reverse order. 

 The reverse situation can occur when DEXTER is driving on a two-lane road with 

lanes going in opposite directions.  If there is an obstacle in DEXTER’s current lane, he 

has to drive the parallel lane backwards in order keep going in the correct direction and 

reenter his true lane past the obstacle.  See Figure 2-4 for this example. 

 
Figure 2-4.  In this example, the white arrows show the directions of the lanes.  DEXTER 
must ask for beads in the reverse order so that he can navigate around an obstacle. 
 
 Every query in Global_Mapper_Main.vi went through 

Global_Mapper_Query_Check_v2.vi in order to catch malformed queries.  The VI calls 

Valid_Waypoint_ID.vi in order to check that the first segment, lane, and waypoint ID in 

the query are in range for the current RNDF.  (The second set of segment/lane/waypoint 

IDs is also checked for Query Types where it is used.)  

Global_Mapper_Query_Check_v2.vi also calls GPS_Coordinate_Check.vi to make sure 

that the GPS Coordinate in a query is some reasonable distance from a representative 

point in the current map.  A global variable stored the reference coordinate, chosen as the 

first bead in the first segment’s first lane.  This step is important, for a GPS point can 
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often come in from a sensor as zero degrees latitude, zero degrees longitude; this 

indicates a drop in reliable data, unless the robot actually is operating off the coast of 

Africa.  Any query errors were eventually returned in the query’s answer without beads, 

since knowledge of these errors prevented the Global Mapper from searching for beads it 

could not find.  A de-queuing error found separately by 

Global_Mapper_Deque_Query.vi, which happened (for example) when the queue was 

empty, skipped the query-processing steps and returned to de-queuing. 

 The author worked on processing a few of the Query Types.  The first and most 

basic, “Get Upcoming Road Points,” indicates that the querying module wants 

information pertaining to a lane.  If the incoming query is well-formed, 

Return_Lane_Beads.vi retrieves the relevant bead list.  Segment and Lane IDs in the 

query locate the bead array corresponding to the appropriate lane.  A more refined search 

typically starts at either the beginning of the Array of Beads or the end; the latter case is 

used when DEXTER intends to drive the lane in reverse. However, if the Array of Beads 

for this search and this query matches that requested by the previous query, the refined 

search begins at the current query’s expected Waypoint ID.  The assumption in this 

special case is that DEXTER uses the first query to find out about the lane the robot 

wishes to enter, but then uses subsequent queries to continue through the middle of that 

lane.  DEXTER’s guess of where in the middle of the lane to look is more sophisticated 

than assuming a lane endpoint. 

From the starting point of the search, Find_Nearest_Bead_v2.vi finds the closest 

bead (in pure distance) to the query’s GPS Coordinate.  Every point may be checked, 

even if tests must loop over in the bead array to do so.  As a way to save time, 
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Find_Nearest_Bead_v2.vi stops searching when the beads stop getting closer to the GPS 

Coordinate and start getting farther away—provided that the winning bead is within some 

minimum distance.  This extra test can be necessary depending on the shape of the lane.  

Imagine a lane shaped like a “U.”  The GPS Coordinate is near one side of the “U,” but 

the search starts on the opposite side.  In this case, the list of beads would have their 

distances to the GPS Coordinate shrink then grow before even reaching the curve of the 

“U.”  Obviously the search should continue, but for that to happen the lateral distance to 

the point must be considered, here in the form of a distance cap.  See Figure 2-5 for an 

illustration of this concept.  Note that even if it has to search an entire Array of Beads, 

Find_Nearest_Bead_v2.vi always returns a winner.  Overall, Find_Nearest_Bead_v2.vi 

performs a version of Point-to-Point Map Matching, but since the queries unambiguously 

name the lane of interest, common pitfalls of Point-to-Point Matching that lead to road 

confusion are easily avoided [5]. 

 
Figure 2-5.  The rectangle represents a robot.  The red dot is the GPS Coordinate 
magnified.  The black lines show that the robot will get closer to the red dot and then 
farther away before it even reaches the curve.  Hence, the search should continue in this 
case. 
 

Return_Lane_Beads.vi then finds the bead index containing Waypoint ID B.  

Either the number of beads between the query waypoints or the number of meters in the 

query Distance, whichever is lower, is used to decide how many beads to report.  

Select_Beads.vi finds the beads to return by iterating through the Array of Beads and 

picking out the bead index returned by Find_Nearest_Bead_v2.vi and the beads after it 
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(or before it, if in reverse).  If the VI reaches the end of the Array of Beads before getting 

all the beads it was meant to report, Select_Beads.vi passes along the shorter list; most 

lanes lead into intersections, so looping over in the Array of Beads would give incorrect 

data in the query response.  Imagine a perfectly straight, vertical lane; with looping in 

Select_Beads.vi, beads in a query response could lead out the bottom and back into the 

top, jumping a distance which would only confuse a robot and send it in the wrong 

direction. 

After Return_Lane_Beads.vi finds the beads, Global_Mapper_Main.vi calls 

Beads_to_Road_Description.vi.  This VI packages the beads found by 

Return_Lane_Beads.vi into the approved query response format, which wraps query 

errors and the beads themselves with a host of other information about the RNDF.  The 

confidences of all beads in the response are included.  The official Query Response 

structure then passes back to the requesting port and address via UDP.  The Query Type 

“Get Road Points Forward and Back” calls Return_Lane_Beads_(forward_and_back).vi, 

which works the same as Return_Lane_Beads.vi but does the extra work of selecting 

beads behind the GPS Coordinate as well and stringing all the beads together.  This query 

can be useful if the GPS Coordinate in the query is approximate and therefore a more 

complete answer comes from looking on both sides of it. 

The Query Type “Get Intersection Points” progresses like “Get Upcoming Road 

Points,” only it calls Return_Intersection_Beads.vi instead of Return_Lane_Beads.vi.  

Here, Location A is the point to reach at the end of the intersection, and Location B is the 

point where the intersection originates.  Hence Location B, compared with the RNDF, 

decides whether an intersection is in the Intersection List or the Zone Exits.  From there, 
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the code finds an Intersection Bead List that matches the start and end segments/lanes.  

Find_Nearest_Beads_v2.vi and Select_Beads.vi again take a bead list and return the 

appropriate subsection.  Figure 2-6 summarizes the basic steps needed to answer a 

generic query. 

 
Figure 2-6.  This flowchart highlights the important steps taken by the Global Mapper to 
answer a query. 
 

Zones do not have paths, and are thus much simpler to return; the Query Type 

“Get Zone Description” calls Get_Zone_Description.vi, which just finds the zone using 

the Segment ID from query Location A, and returns the entire Zone Description.  The 

parking spots and perimeter points of a zone need not be divided into subsections. 

Section IV: Bead Extensions 

 One advantage of using the bead structure is that information about a point in 

space can be extended beyond latitude, longitude, heading, and Bead ID.  Certainly 

latitude and longitude locate the point, thus creating a relationship between the bead and 

real space.  The heading defines a relationship to the next bead, which may be helpful to 

a robot that needs to decide where to go next.  Bead IDs also define order between beads 

in the same lane or intersection.  Beads may foster more and more relationships, since an 

individual bead holds a cluster of data types. 

 Bead relationships to the map structure can be useful to other modules.  The IDs 

for the overall bead structure (segments, intersections, lanes, and zones) are explicit in the 

way beads are stored, but if necessary beads themselves could also contain these 
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references.  A bead may also record some measure of its placement along its array.  For 

DEXTER, a bead reported its distance from the start of its lane, where such distance was 

along the lane instead of along the most direct route from a bead to the lane’s start.  Other 

modules also wanted the maximum speed that the robot could travel through a bead, 

which was parsed at initialization from DARPA’s Mission Data File (MDF).  RNDFs 

label checkpoints, which indicate possible goal points that should probably not be moved, 

or may otherwise warrant special attention.  Corresponding checkpoint beads contained 

flags of their status.  Another flag noted mutability, based on the idea that some special 

points, such as the beads at a stop signs, may need to be prevented from moving.  This 

flag could also be used for a lane that should stay constant, or for testing update code. 

 Again for the sake of other modules, relevant beads held an Original Waypoint 

ID.  All points in an RNDF are waypoints, and the beads derived from that file (as 

opposed to the beads interpolated by the Global Mapper) kept a record of the waypoints 

from which they were created.  The rest of DEXTER used these waypoints to understand 

the map, and included Waypoint IDs in queries to the Global Mapper.  Hence, keeping an 

Original Waypoint ID in a bead allowed beads to be matched up to another module’s 

concept of the robot’s current map. 

 When updates are used, beads may hold trending information related to their 

previous states.  The last change in latitude, longitude, or heading may be saved, as well 

as some form of total change and the original positions.  Possible uses of these bead 

elements include flagging large changes which may be in error and identifying problem 

areas within the map.  Smart updates also require a bead to have some measure of 

confidence, so that the certainty of starting beads and of past updates can be a part of any 
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update algorithm.  Confidence may be a number, or an enumerable type. 

 Team Case considered another extension, which was designed but not used.  In 

this extension, a bead records references to notable fiducials visible from its position.  In 

the proposed design, the fiducials would have been listed on their own, so that all of their 

position information need not travel with the beads, only their unique IDs.  While the 

beads are extendable, they must also pass over UDP, so how the size of a bead cluster 

affects communication must also be considered.  However, should the distance between 

the fiducial and the bead be required, that distance too may be saved in a bead cluster’s 

array of Fiducial Indices.  Again, landmarks may lack reliability in the desert, but such an 

extension would still maintain a memory of latitude/longitude positions and not use the 

landmarks as a crutch. 

For an example of how to use these indices, assume a robot is located on a 

particular bead.  From there, the robot can see, with cameras or other sensors, a nearby 

tree.  The bead would contain a reference to the tree via a unique ID, and thus the robot 

would expect to see the tree when driving through that bead.  Any given bead may have a 

list of several trees, telephone poles, or whatever else the terrain may provide, though this 

method would be limited in flat, desert areas without many features to detect.  While 

driving, the robot could use the fiducials referenced by its current bead(s) to verify its 

position.  In the other direction, fiducials seen by the cameras could be used to help locate 

the correct beads from the current list, thus performing some measure of localization. 
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Chapter 3: All Updates vs. Nothing Updates 

Section I: The All Case, Teach and Playback 

 What is meant by an “all” update?  In this context, it means that the bead 

coordinates are only poorly known, but that the robot has reliable information from direct 

sensing. Because of the disparity in quality between the two, the best course of action is 

for the beads to remember where DEXTER drove.  In the most basic version of an all 

update, DEXTER records verbatim the latitude/longitude coordinates that he passes while 

traveling in joystick mode, and then uses those recorded beads to retrace his steps.  In this 

extreme scenario, the beads are as poor as they possibly can be, because until DEXTER 

drives, the bead coordinates are unknown; alternatively, bead coordinates could exist 

with such low confidence that they would be completely ignored and overwritten.  The 

saved path is dictated by user choice and therefore no map structure is necessary during 

recording; essentially, DEXTER just remembers one long lane.  Queries still exist to 

request portions of that lane. 

 The author wrote code to address this scenario so that it could be used if needed in 

parking lot demos (defining a map can be difficult in unstructured space).  The main file, 

Record_and_Playback.vi, handles all the main modes of this bead update method, most 

notably the record (or teaching) phase and the playback phase.  These phases are 

completely separate.  There are no queries needed for navigation when DEXTER is under 

human control, as well as no data to report; hence the map is completely passive during 

recording.  Conceivably, points could be recorded while other points are played back, 

however the results may be undesirable.  DEXTER’s bulk in the real world often caused 
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him to slightly miss his marks, so constantly re-recording those goals would have likely 

led to drift.  Keeping playback completely separate also increases clarity in operation.  

Since driving DEXTER by joystick can be time-consuming, the main file allows a bead 

path to be saved to a file and reloaded from one.  Record_and_Playback.vi contains a 

number of helpful buttons for running these different pieces of functionality.  The array 

Recorded Beads contains the path that DEXTER will follow. 

 The first button in Record_and_Playback.vi is labeled “Record Phase.”  This 

button loads new beads into the Recorded Beads array by calling Record.vi.  Record.vi 

reads GPS coordinates from the Physical State Observer and checks to make sure that the 

coordinates it saves are at least a meter apart (otherwise the beads would be needlessly 

dense).  This provision prevents the string of beads from filling with identical points 

while DEXTER remains idle.  Obviously, the check is not needed for the very first GPS 

point collected. 

 During a joystick run, the Physical State Observer may time out, encounter errors, 

or report invalid points; error checking ignores any information produced under these 

conditions.  The GPS coordinates (each consisting of latitude and longitude) are the 

information of interest, and each worthy point is copied over to a bead.  By recording a 

list of points as the playback goals, this teach-and-playback algorithm may be classified 

as “target point following” [17]. 

 For the purposes of record and playback, most of the other bead information uses 

defaults (headings are ignored, for example).  However, headings are reported by the 

Physical State Observer and could be copied if necessary for some similar application.  

The record phase runs until the user un-clicks the button of the same name.  The 
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possibility exists that a recorded set of beads may grow too large for the available 

memory (which will never be infinite); however, this was not an issue for the tested scale.   

 The other side of recording is the playback phase.  Pushing the “Playback Phase” 

button in Record_and_Playback.vi calls Send_Playback.vi to replay all of the Recorded 

Beads.  During playback, the code listens for queries on a UDP port.  At this stage, a map 

is required for interface reasons.  Other modules phrase queries in terms of an RNDF, so 

an RNDF of the relevant area is needed to check the query.  The most relevant query 

check makes sure that the Recorded Beads are in the same general area as the RNDF, and 

therefore DEXTER’s recorded points are in the general vicinity of where the user would 

expect. 

 The points on the dummy RNDF need not have any overlap with the Recorded 

Beads; the RNDF merely serves as a kind of ballpark figure.  The Route Localizer 

module dictated that DEXTER had to be somewhat near a lane in order to see the 

Recorded Beads associated with that lane, even if those beads were nowhere on the lane.  

A solution to this requirement was to put the recorded path inside an RNDF loop.  Stop 

points caused DEXTER to stop when he was only near a lane, not on it, so an RNDF for 

teach and playback should not contain stops.  Once Send_Playback.vi receives a well-

formed query, the particular beads to send are chosen by Beads_to_Play_Back.vi. 

In Beads_to_Play_Back.vi, a sample of DEXTER’s current GPS location is taken 

by Take_Sample.vi, which simply returns the first valid GPS reading from the Physical 

State Observer.  Find_Nearest_Bead_v2.vi (detailed in Section III of Chapter 2 on 

answering queries) locates the element of Recorded Beads closest to DEXTER’s current 

position.  This functionality means that DEXTER need not be at the beginning of his 
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recorded path when playback begins.  However, DEXTER should start near enough to 

some position in his recorded path so that he can navigate to the path without having to 

cross a large, bead-less expanse.  Because the RNDF is only approximate, 

Beads_to_Play_Back.vi must perform this minimal localization. 

Beads_to_Play_Back.vi compares the distance from the last element in Recorded 

Beads and the first; if this distance is less than ten meters, then the points can loop over 

and all beads may be sent to the Observers; if not, the gap is too far for DEXTER to 

navigate, and the points to report can go no farther than the end of Recorded Beads.  The 

number of beads possible to report is compared with the number of beads requested by 

the query, and the smaller of the two becomes the number of beads sent. 

Due to the interface used, Send_Playback.vi must use 

Beads_to_Road_Description.vi to package the bead GPS coordinate data into a format 

the Observers expect to read.  From there, the Road Description travels back to the 

Observers through UDP.  The playback phase halts with the push of a button, or when the 

Recorded Beads run out of points and the start of the path is too far to reach.  Figure 3-1 

explains how the path shape makes a difference.  Unfortunately, a path like the red circle 

may cause DEXTER to keep going even after playback is stopped.  At least during one 

point in development, the Road Detector did not clear out when the Observers stopped 

receiving query answers.  If any sort of closed loop were present, this other part of 

DEXTER unrelated to his map would keep him driving on saved data even with no 

incoming points.  When this other module presented this problem, DEXTER himself 

needed to be stopped before the playback phase was turned off. 
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Figure 3-1.  In the red path at the left, the end is close enough to the beginning that the 
beads to play back can loop over, and playback can tell DEXTER to keep driving the 
circle.  In the blue path at the right, DEXTER does not know how to navigate from one 
end back to the other, so playback stops feeding points to the Observers and DEXTER 
must stop since he does not know where to drive. 
 
 The other three buttons in Record_and_Playback.vi are for storage and retrieval, 

so that recorded paths can be played back later without DEXTER having to relearn them.  

Figure 3-2 shows all of the buttons the user has available.  The Store in File button calls 

Record_Points_to_File.vi to write all of the current Recorded Beads into a binary file.  

The counterpart button, Get from File, reads points from a binary file and loads that data 

into the Recorded Beads.  Finally, the Save to CSV File button calls 

Recorded_Beads_to_CSV.vi, which takes only the latitude and longitude information 

from each bead and writes it to a CSV file so that users may observe this data in 

programs such as MATLAB.  Figure 3-3 summarizes how the list of Recorded Beads can 

be passed around and used. 
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Figure 3-2. The user has five buttons to choose from when teaching and playing back 
beads.  Output errors are also available in the interface. 
 

 

 

Figure 3-3.  How the Recorded Beads, highlighted in pink, are created and used.  Buttons 
used in the teach-and-playback method are highlighted in yellow. 
 
 With dexsim, a program written by Christian Miller to drive DEXTER in 

simulation [32], the user could employ a computer’s mouse to simulate the joystick 

needed for recording, and then watch the simulated DEXTER move on its own during 

playback.  Figure 3-4 shows the simulated DEXTER driving a figure eight that clearly 

35 



does not follow the lanes on the map (and in the RNDF); the figure eight was drawn 

manually.  In the spring of 2007, DEXTER himself used this teach-and-playback code in 

the Mount Sinai parking lot in Cleveland.  The RNDF used followed the suggested one 

loop format with no stops.  The code ran exactly as intended on the first try, with 

DEXTER following a misshapen loop originally drawn by hand. 

 

Figure 3-4.  DEXTER following a manually drawn figure eight by using 
Record_and_Playback.vi.  The green trail shows where simulated DEXTER has just 
driven, while the red dotted line shows where the simulated robot is going next. 
 
Section II: The Nothing Case, Altering Maps 

 What is meant by a “nothing” update?  In this context, it means that the beads 

never move; DEXTER practiced nothing updates in competition.  During a nothing 

update, the Global Mapper still keeps active and reports beads to other modules.  But no 

update code runs as the robot drives, and the beads are constant regardless of what any 

sensors might say.  However, these conditions do not mean that a nothing update involves 

no more work than generating beads from an RNDF and reporting them to the rest of 
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DEXTER (see Chapter 2 for detailed descriptions of these procedures).  Rather, a nothing 

update means that the a priori beads must have very good quality. 

 Beads may potentially come from maps, which have never been perfect.  In the 

1940s, the U.S. National Map Accuracy Standards specified that the accuracy of a map 

should be within 1/30th or 1/50th of an inch (depending on map scale), where such 

accuracy could only be verified by better surveys [33].  Map accuracy has improved since 

then, and even the terms have changed—now commercial satellite imagery can be as 

accurate as a half meter resolution [34], while aerial photography offered by the U.S. 

Geological Survey can reach a resolution of 0.3 meters in some areas [35]. 

 The RNDF format further sabotages bead confidence level.  First, RNDFs are 

sparse, and many beads must be interpolated between them as a guess.  Second, if RNDF 

points come from measurements with a GPS antenna (instead of from a map), these 

measurements may not align with what DEXTER’s antenna sees on a different day.  

Third, when RNDF points come from satellite (or aerial) imagery, DEXTER’s GPS 

antenna may again not agree with those results.  The second and third problems are really 

just two specific versions of the alignment problem; it is more important for DEXTER’s 

sensors to match the bead map than for that bead map to be absolutely correct. 

 Hence, a nothing update requires work before DEXTER runs in order to provide 

acceptable beads.  Generated beads have no knowledge of the look of the road, and 

therefore their confidence is restricted.  For DEXTER, Andrew Horchler addressed this 

problem by writing Java code that displayed beads (written to an XML file) and then 

allowed manual editing.  Several team members spent time using his software to place 

beads on the middles of roads before DEXTER’s semi-final events.  This ability was 
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invaluable for cleaning up curves and intersections. 

 Yet, not all bead shifting must be manual.  In the National Qualifying Event 

(NQE) that DEXTER participated in at Victorville, Team Case observed shifts (in both 

latitude and longitude) between RNDF points and the nearby points that the DARPA-

distributed aerial imagery believed was on the road.  Beads come from RNDF points, so 

the beads were off the centers of roads as well.  The author wrote Shift_All_Beads.vi to 

move all beads globally. 

 Shift_All_Beads.vi considers all five global movements: latitude offset, longitude 

offset, horizontal scaling, vertical scaling, and rotation.  For the user’s convenience, 

latitude and longitude offsets need not be entered directly.  Instead, the user may specify 

some number of meters to move east or west (for longitude) and north or south (for 

latitude).  Each meter offset has a matching heading in polar degrees to decide direction; 

for example, a value of ninety degrees for the longitude heading is due west. 

 To convert these meters to latitude and longitude, a reference point is required.  

Find_Gathered_GPS_Midpoint.vi allowed Team Case to choose a particular GPS 

coordinate at the middle of the existing bead positions.  The midpoint may alternatively 

be calculated with Find_Gathered_GPS_Midpoint_(Calculate).vi, which calculates the 

midpoint latitude and midpoint longitude from an incoming list of beads, an RNDF, or 

sensor logs.  Once Shift_All_Beads.vi has the GPS midpoint, 

GPS_Location_from_Given_Position.vi finds the latitude of a new point the requested 

number of meters away from the midpoint and in the requested direction of latitude shift; 

the VI is called again for longitude.  The differences between these moved coordinates 

and that of the midpoint give a latitude offset and a longitude offset. 
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 A user can easily understand latitude offset, longitude offset, horizontal scaling, 

vertical scaling, and rotation.  However, moving points is easier to do in matrix math, so 

first Shift_All_Beads.vi converts variables using 

Rotation_Scales_and_Offset_to_Matrix_Variables.vi.  The offset variables only have to 

be added to one latitude/longitude pair in order to produce another, so the offsets may be 

kept in their own vector.  However, the angle of rotation becomes a rotation matrix (see 

Equation 3-1) and this matrix carries the scaling factors.  

Rotation_Scales_and_Offset_to_Matrix_Variables.vi performs the math in Equation 3-2, 

and copies the offsets to output variables.  The output variables are the following: xi, xj, 

yi, yj, x offset, and y offset.  The angle x must be in radians. 

cos sin
sin cos

x x
x x

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Equation 3-1.  The rotation matrix of an angle x, where x is in radians. 
 

cos *( ) sin *( )
sin *( ) cos *( )

x vertical scale x horizontal scale xi xj
x vertical scale x horizontal scale yi yj

−⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Equation 3-2.  The matrix produced by 
Rotation_Scales_and_Offset_to_Matrix_Variables.vi.  The rotation angle is x radians. 
 
 Once Shift_All_Beads.vi has the matrix result in Equation 3-2 and the two offsets, 

it parses out each and every bead from the overall bead structure: beads in lanes, in 

intersections, in zone exits, and in zones must be found separately.  Parking spots are not 

moved, since these must be considered goals to be reached and are not connected with 

any path.  All other beads move by a three-step process.  First, the GPS midpoint is 

subtracted from the latitude and longitude of the bead in order to put the bead in relative 

terms.  Second, Matrix_Math_for_Image_GPS_to_Real_GPS_(Inverse).vi changes the 

relative position of the point.  Last, the GPS midpoint is added back in so that the moved 
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bead’s position will be in absolute terms. 

 Matrix_Math_for_Image_GPS_to_Real_GPS_(Inverse).vi has a long name for 

legacy reasons; consider the “Image GPS” as a guess that has to be converted to reality. 

The relative bead positions in the inputs, i and j, are added to the x and y offsets.  The 

inverse (found by LabVIEW) of the matrix in Equation 3-2 is multiplied by the vector 

created by adding in offsets.  The resulting vector is the new relative position which will 

be put back into absolute latitude/longitude terms and repackaged into a bead by 

Shift_All_Beads.vi.  Shift_All_Beads.vi resaves all the beads it moves; Figure 3-5 offers 

an overview of the VI. 

 
Figure 3-5.  A flowchart of Shift_All_Beads.vi, with the GPS midpoint calculated from an 
RNDF as an example. 
 
 Figure 3-6 shows Shift_All_Beads.vi in action, using other Team Case code to 

display beads on Google Earth.  The beads with rotation moved counterclockwise, 

following the direction in which polar degrees flow.  Points are rotated individually 

relative to a midpoint, which is an estimate, so some change in the path’s shape occurs.  
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Scaled beads show some rotation; since the scale factors roll into the rotation matrix, this 

is an expected consequence of using stretches and shrinks.  “Horizontal” vs. “vertical” 

scaling is a matter of perspective, especially when used on a diagonal path.  Scaling is 

perhaps the trickiest parameter adjustment, and the user must play with these values in 

order to meet some goal (as is true in general).  The scene in Figure 3-6 is of Case 

Western University’s Engineering Quad. 

 
Figure 3-6.  The original beads created from an RNDF are in blue.  The beads shifted 5.5 
meters east and 3.5 meters south, with only offsets used, are in green.  The scaled beads 
(1.2 vertical and 0.8 horizontal, where one would mean no change) are shown in pink.  
Finally, the orange path is the beads after a forty-five degree rotation. 
 
 Shift_All_Beads.vi uses parameters to move the beads in order to try to get a 

general fit to what DEXTER believes.  Our team was not allowed to gather data with 

DEXTER’s GPS sensor on any of the tracks before the events, but we were allowed to 

drive DEXTER in the area, which confirmed that DEXTER’s perceptions matched the 
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aerial imagery, not the RNDF.  (The aerial imagery included surrounding areas that we 

used for this analysis.)  DEXTER’s GPS antenna’s measurements, and therefore his 

belief about where the middle of a road was, agreed with the aerial imagery.  RNDF 

points were never guaranteed to be exact, even as goals, but it was certain that DEXTER 

needed to stay on his road.  So to deal with the global shift in DEXTER’s map 

registration, the author moved the RNDF to suit the beads (DEXTER’s Route Planner 

required similarity between the two). 

 Match_RNDF_to_Beads.vi solves a parsing problem.  In one corner sits a set of 

beads read from an XML file.  The beads in intersections or zone exits have no 

corresponding points in the RNDF, but zone beads are copied directly from an RNDF and 

lane beads take waypoints from the RNDF.  RNDFs have a very precise format, and with 

knowledge of it, Match_Beads_to_RNDF.vi parses out each zone and each lane’s 

waypoints.  Segments, lanes, waypoints and zones have IDs that the beads copy into their 

organizational structure, and the IDs provide precise identification. 

 For zones, the perimeter is not worth changing; DEXTER is never meant to drive 

outside the bounds of a parking lot, and these points are not among his goals.  Parking 

spots are important, however, as goals, and lane waypoints are important to drivability.  

Using IDs to correctly match the right spots and waypoints (see Figure 3-7), 

Match_Beads_to_RNDF.vi converts the latitude and longitude information in the beads 

to text and replaces the previous GPS coordinate text in the RNDF file.  Non-GPS 

coordinate parts of the RNDF (such as IDs) remain the same, and after the latitudes and 

longitudes are replaced, the RNDF is resaved.  Interpolated beads lie within the moved 

RNDF.  Team Case used these moved RNDFs in the semi-finals, instead of the original 
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RNDFs distributed by DARPA. 

 

Figure 3-7.  The same waypoint is defined in an RNDF as in the bead structure, but the 
RNDF’s GPS coordinate data is replaced as above.  The same is done for parking spots. 
 
 Figure 3-8 shows how well Match_Beads_to_RNDF.vi works.  For this test, 

Shift_All_Beads.vi created a poor set of beads, which led to a poor RNDF.  The original 

good beads (before shifting) then became the goal for the poor RNDF.  

Match_Beads_to_RNDF.vi created a new and improved RNDF from the poor RNDF and 

the goal beads.  Paths on the figure vary in thickness in order to show when paths 

overlay. 
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Figure 3-8.  The red path is the poor RNDF, which is clearly impossible to drive.  The 
dark band around the quad indicates the good beads.  Match_RNDF_to_Beads.vi moved 
the red RNDF to the light blue RNDF that follows the exact same course as the good 
beads. 
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Chapter 4: An All-or-Nothing Update 

Section I: Deciding between All and Nothing Online 

 High quality aerial and/or satellite photography compared with and matched to 

the behavior of DEXTER’s own sensors can provide excellent beads to DEXTER before 

he ever takes on a course.  In practice, Team Case used this ability at the semi-finals to 

avoid ever having to update a single bead online.  The idea of using a priori position 

information is not unique; for example, a feature-based mapping approach may require 

that the absolute positions of some “anchor objects” be known before extensive map 

building [25].  Yet, not all robots can rely on a priori information.  Some so-called 

“reactive systems” do not require any sort of global map [28].  The popular SLAM 

problem also defines a robot’s environment as a nebulous, unknown quantity [15], and 

other scenarios employ a robot that must learn about its world by “walking about” inside 

it [26].  In future DEXTER endeavors, reliable photography may not be provided, and the 

robot may be forbidden from using its sensors in the area for pre-competition testing.   

 Though it might be time-consuming, DEXTER’s sensors can navigate through 

areas, and DEXTER’s Global Map could memorize his movements.    But this extreme is 

insufficient as well: if DEXTER only used such all updates on a map, then there would 

be no way to take advantage of some known good beads.  For example, aerial and 

satellite photography may be clear in some areas but obscured in others.  Hence, our team 

foresaw a need to let DEXTER make up his own mind about when to replace beads and 

when to keep his memory intact. 

Section II: Guidelines for Updating a Bead 
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An Array of Beads may define the path of a lane, an intersection, or a zone exit.  

Zones do not have paths like the rest of the map: their parking spots must be believed as 

goals to be reached, and robots do not usually drive along zone perimeters.  For these 

reasons, zone points are never updated.  Find_Array_of_Beads.vi uses DEXTER’s Route 

Localization information to locate where in the map structure DEXTER last drove, so any 

update algorithm can locate the correct bead array. 

 Replacing beads requires DEXTER to collect GPS points in some systematic way.  

The robot may make maneuvers that invalidate the data it collects with regards to any 

update operation.  When the robot avoids an obstacle, it may not take the path a second 

time (especially if the obstacle can move).  If the robot is driving a lane in reverse, then 

the robot is either in error, or disobeying the normal motion of traffic in order to move 

forward at all.  Reverse driving is unreliable in terms of repeating paths, so all update 

code assumes the forward direction and ignores data collected while DEXTER is in 

reverse. 

Collecting raw GPS data is not accurate enough in the field.   GPS signals drop 

and shift at random intervals.  And in the case of DEXTER, who had a “wagon handle” 

to direct him, the robot would not drive exactly over the path his handle followed on 

curved roads.  If DEXTER remembered raw GPS coordinates, and beads were ever 

updated more than once, then DEXTER could potentially move his remembered path 

farther and farther from his real goal as the wagon handle forced him to take wider and 

wider turns.  To solve this problem, any update bead method needs a filtered, smooth 

path of GPS points that should be traveled but are not necessarily driven over directly.  In 

DEXTER’s case, the Lane Description from the Observers contained GPS points derived 
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from combining regular GPS signals, road detection sensors, and the current beads; the 

Lane Description publishes its own confidence for each point based on the confidences of 

these pieces of data.  The Lane Description is not perfect, however, for it is a list of 

points that does not update as quickly as DEXTER moves.  When collecting latitude and 

longitude values for updates, choosing the point from the Lane Description closest to 

DEXTER’s current physical position allows the collected points for updates to move 

forward even when the Lane Description does not. 

 Another consideration when updating beads is how dense or sparse the collected 

GPS points that inspire updates should be.  The choice translates directly into the density 

of the updated beads.  Beads that are too dense are unnecessary and a memory and 

computation burden, but beads that are too sparse do not lead to a well-defined path.  

While other spacing choices are possible, a distance of roughly one meter (and at least 

that) between examined GPS points (and therefore the beads they affect) was suitable for 

avoiding the problems at either end of the spectrum.  This choice furthers a convention, 

since the Global Mapper also spaces beads one meter apart upon initialization.  

 Since the robot’s memory of its internal map is always in use, any update method 

must be careful about when the beads change.  For example, one possibility would be to 

change beads according to the current plan of the path up ahead.  The timing of this can 

adversely affect other modules; when the upcoming path is constantly reevaluated, a 

rapid and drastic change in the memory for upcoming beads may lead to choppy driving.  

Combined confidences, as found in the Lane Description, pose another problem.  The 

bead confidences could increase when altered by the Lane Description, but the Lane 

Description looks at the same points multiple times in succession.  Hence, the Lane 
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Description confidence could increase because of the Lane Description’s own previous 

results (as repeated by the beads).  This feedback may continue with the beads believing 

the Lane Description, and the Lane Description believing the beads, until the modules’ 

confidences unjustifiably approach unity from consistently repeating the same 

assumption (of possibly low confidence at the start) back to each other. 

 Replacing beads behind the robot after it has passed them solves these two 

problems, but not others.  The method presented in this paper updates beads as a group 

(once DEXTER has passed a lane or intersection) in order to avoid the issues inherent in 

updating beads one at a time.  For example, since DEXTER’s map was segmented, 

moving beads while driving past them can erase the distinction of where a lane was 

supposed to end.  Extra memory is then required simply to remember the old boundaries 

for the purpose of restricting the new ones.  These boundaries must be strictly 

maintained, or a single GPS point may belong to both a lane and its adjoining intersection 

(for example) simultaneously.  Worse, without boundaries the robot may need to back up 

after finishing a lane’s points in order to start an intersection’s points.  When beads are 

updated individually, it is also very tempting to update beads in order (based on lane 

direction).  This myopic view ignores the best fit of where new data should replace old.  

However, searching for the best bead to update with each incoming GPS coordinate could 

get costly.  Moreover, updating beads on an individual, out-of-order basis allows beads to 

be skipped, which can cause discontinuities. 

 For these reasons, DEXTER’s proposed update method works on a self-contained 

portion of the map with clear start and end points—such as a lane, or an intersection—

after the robot leaves that Array of Beads behind for the time being.  The update method 
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updates a section of a given lane or intersection so that discontinuities created by the 

update can be restricted to either end of the updated section.  These discontinuities occur 

when DEXTER only drives part of a lane (or other structure), and is therefore only able 

to update part of that lane.  However, since the discontinuities occur in expected places, 

they can be dealt with systematically. 

 Updating a lane or intersection all at once allows for the update section that best 

fits the incoming data to be found once within the lane.  It is also simpler to keep that 

update section in the predetermined bounds, since the original endpoints will not move 

until they can be compared with the new data.  For DEXTER, a VI named 

Get_Rid_of_GPS_past_Bead_Array.vi drops collected GPS points for the update that are 

ahead of the last point in an Array of Beads.  Since the update method waits for DEXTER 

to change his lane or segment before recording points for the new lane or segment, the 

method does not have a chance to grab GPS data before the start of a lane or intersection. 

 Replacing a section of an Array of Beads requires identification of such a section.  

Find_Bead_Subsection_to_Replace.vi locates which beads in an Array of Beads should 

be altered by updates, checking that the last bead index to replace is after the first, and 

that both the first and last indices are valid for the Array of Beads.  

Match_GPS_to_Bead_Index.vi finds both the first and last beads of the subsection to be 

updated (in separate calls).  The VI takes in a GPS coordinate ready to cause a bead 

update and finds the bead just behind it.  In this context, a bead that is “behind” a GPS 

point means that were DEXTER sitting on that bead facing in the direction of the bead’s 

heading, the GPS point would be somewhere in the half-plane ahead of DEXTER, though 

perhaps off to the side as well.  The algorithm does not search for simply the closest 

49 



bead, because that scheme does not prevent some beads from being pulled forward in the 

update while others are pulled backward.. 

 Paths can twist and turn, so if more than one bead in a bead list is directly behind 

the GPS point (recall the definition of “behind” here), the bead closest to the GPS point 

wins. Imagine a serpentine path (see Figure 4-1); in that case, one bead would be behind 

the GPS point (while the following bead would not be) before and after each turn.  Hence 

the choice of closest bead is needed to find the most appropriate match.  If no bead index 

can be matched to the GPS point, Match_GPS_to_Bead_Index.vi returns an error. 

 

Figure 4-1.  The serpentine path is traveled downwards.  There are three blue beads 
(marked) that are “behind” the GPS point; that is, when DEXTER is positioned on top of 
one of the blue beads and oriented tangent to the road, the labeled GPS point is in front 
of the vehicle, albeit to the side as well.  Each of the three pairs of beads shown contains 
two beads (one red and one blue) that are sequential along the path.  The red bead 
positions are “in front of” the GPS point, because the GPS point is not within the half-
plane in front of DEXTER when the vehicle sits on top of one of the red beads at an 
orientation aligned with the bead’s heading.  Match_GPS_to_Bead_Index.vi must use 
absolute distance to choose among the beads in the blue positions.  In this example, the 
GPS point should match with Bead 1 (marked). 
 
 If finding the beads to change throws an error for any reason, no update should 

occur, since trying to do so would only propagate the error.  But this does not mean that 

beads must always be updated when there are no errors.  Finally, LabVIEW offers multi-
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threading capabilities, so the update method can record GPS points for the current lane or 

intersection while updating the last visited set of beads in parallel. 

Section III: Running All-or-Nothing Updates 

 In DEXTER’s all-or-nothing update method, every bead, each a representation of 

a single point in space, can be assigned two levels of confidence: absolute confidence, or 

none at all.  As the robot’s memory is “born,” some information is instinctual; beads 

given high confidence are accepted as unassailable, unchangeable fact, a product of 

centuries of evolution, or in this case, a human judgment call.  For example, if a mission 

states that the sparse points distributed by the officials of the contest were measured with 

similar equipment to the robot under similar conditions, such points are likely to be 

believable.  These beads maintain their certainty, and they will be used exactly the same 

every time. 

 The beads with no confidence serve an opposite purpose.  These beads are 

generated by producing an inferred path between two known points.  But for whatever 

reason, the human with the vested interest in the robot’s performance does not trust these 

beads.  Imagine two known points, A and B, on either side of a black box (e.g. a 

warehouse whose insides are concealed from satellite and aerial imagery).  The robot 

must navigate through that box from one point to the other, as shown in Figure 4-2.  With 

no knowledge of the hidden terrain, the beads generated from A to B assume the most 

direct route; there is no advantage to predicting a more time-consuming, winding path. 

 

Figure 4-2. When faced with the black box in the first figure, DEXTER must assume the 
most direct route from Point A to Point B, as shown in the middle figure.  However, 
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obstacles inside the black box may force DEXTER to take a more convoluted path, an 
example of which is shown in the third image. 
 
 Now imagine that the black box contains a maze that totally thwarts the direct 

route.  The robot must rely on non-GPS sensors such as vision, radar, and LIDAR in 

order to avoid the maze obstacles.  As it does so, the robot traverses unexpected locations 

(physical state estimates) that could reduce its confusion on its next journey from A to B.  

These physical state estimates are worth remembering.  Hence, the original, no-

confidence beads move to directly match the path actually traveled.  Provided the robot 

has some confidence in its measurements for the new path, the bead confidences are set 

to high—this path worked once, so the robot assumes it will work again. 

 Note that now these moved beads are equivalent to the ones that the robot’s 

managing human believed in, and they will never change again.  The robot’s overall map 

will only be dynamic in this update method until all of the no-confidence beads have 

been visited and updated.  After that, the robot’s internal map is generally static, and the 

robot ceases to learn until it is given new paths to follow.  There are exceptions where no-

confidence beads may be created by the update method in order to smooth out 

discontinuities in a lane or intersection that result from the update of a subsection. 

 In addition to relying on the update method properties described in the previous 

section, this update process runs Replace_Bead_Array_(Decide).vi to determine whether 

beads should be updated or not.  In a situation with binary confidence levels, generally an 

entire lane or intersection or zone exit either has total confidence or none.  The code tests 

a sample of an Array of Beads (by default five beads): if all of them have no confidence, 

the bead array can be altered.  Alternatively, a larger sample of the array and a lower 

threshold percentage of no-confidence beads could be used.  This adjustment would make 
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a more informed decision for bead arrays with very mixed confidences, but it would also 

require more processing time.  If the original sparse points of a map are given high 

confidence, then a larger sample will likely see those points, and in that case a less-than-

perfect threshold percentage will be crucial if updates are to occur. 

 A low confidence lane (or other bead path) may have high confidence 

endpoints—designated points that must line up with intersections, for example.  To still 

allow a test for a complete lack of confidence, the first two beads in the “to update” bead 

list are ignored, provided that the array is long enough to do so; zone exits are very short 

but also do not have high confidence endpoints.  Ignoring the first two beads is sufficient 

for a test using a small number of bead samples, because such a test will not reach 

original map positions or the bead array’s other endpoint. 

 For each bead in the section of beads to replace, the code calls 

Update_Bead_All_or_Nothing.vi.  Many of a bead’s attributes are kept the same, but the 

latitude and longitude are completely replaced, and the heading and confidence are 

copied from values reported by the Physical State Observer and the Lane Description, 

respectively, at the time the update point was recorded.  Normally the Lane Description 

has four levels of confidence.  But with this method, if a point from the Lane Description 

had any confidence at all, the confidence of the bead is effectively absolute (not none).  

The VI also inserts into the bead data a record of how much the latitude and longitude 

have each changed in the update. 

 But what if the number of update points meant to replace a section of beads is 

more or less than the number of beads originally in that section?  While the density of 

beads must be acceptable, the exact number of beads in a particular bead list need not 
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remain constant.  Because a whole section of beads is being replaced, the problem can be 

examined from a higher level than that of just individual beads.  By finding the section of 

beads to replace at the start of the process, the beads stay within bounds no matter how 

sparse or dense they are.  The code iterates through solely the new data points.  If there 

are fewer new points than old, the new points simply change however many beads they 

require and ignore the rest; the extra beads are deleted. 

 If more beads need to be created in order to fill the section with all the new data, 

the code cannot use Update_Bead_All_or_Nothing.vi, which requires that some of a 

bead’s fields exist already.  This condition of extra beads is identified when the next bead 

index required for an updated point exceeds the last bead index originally contained in 

the replaced section.  When the condition occurs, a different function is called, 

New_Bead_from_Updates.vi, which creates an entirely new bead from latitude/longitude 

position, heading, confidence, distance from lane start, and max speed.  These quantities 

are collected from the Lane Description and the physical state when the robot drives 

through a lane/intersection/zone exit.  The other bead fields are set to defaults. 

 New_Bead_from_Updates.vi is also used if the newly created beads are too 

sparse.  Fill_Out_Bead_Gaps.vi has a value for a minimum spacing (in meters) between 

consecutive beads that it will tolerate.  If a gap is too large, the VI linearly interpolates 

points in order to fill the gap.  Linear interpolation can work for creating drivable paths, 

as shown in map matching algorithms that use linear interpolation in order to model 

vehicle trajectory [36].  Each interpolated bead receives a default confidence.  This 

confidence can be tweaked; if none (which was used in the experiments), the interpolated 

beads can be used for navigation but possibly replaced later.  If the gap beads are given 
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some confidence, then this qualifies them as good enough to keep forever. 

 The section of new beads is inserted into the Array of Beads at the same position 

that the old beads were removed; the code does not touch beads to either side of the 

updated section at this stage.  This result can often lead to discontinuities.  Imagine a lane 

with several other lanes crossing it from start to finish.  The robot can enter the lane 

partway through, and leave before the end (see Figure 4-3).  The updated section may be 

a noticeable distance from the initially guessed positions, such that if the robot next 

drives the lane from end to end, the path suggested by the beads jumps sideways at two 

points, even as it is moving forward.  Even when the robot starts out by driving straight 

through a lane, delays in various modules of DEXTER’s code can cause the update points 

collected to miss either end, leaving a few points in their original positions. 

 

Figure 4-3.  The blue dots are beads.  The orange lines show the path taken by the robot, 
which forced updates on each one lane road.  In the bottom lane, the difference between 
the old beads and the beads that were moved due to the orange path of travel is very 
noticeable. 
 
 When driving, a smooth path can be more important than a completely accurate 

one.  In DEXTER, downstream modules wanted the beads from the Global Mapper to 

give a relatively smooth path as the initial guess.  With that in mind, 

Interpolate_Replaced_Section_to_Borders.vi moves some points on either side of the 

replaced section, so that while the updated part of the path may be clearly different from 
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the original part, the connections between them will be easier for the robot to follow.  As 

with initial bead generation, the interpolation here employs a spline instead of a purely 

linear method like that implemented by Fill_Out_Bead_Gaps.vi.  Interpolating to borders 

need not be as finely grained as simply filling in a gap often is, so it is more likely for 

curves to be part of the interpolation.  The spline method handles curves better than the 

linear method. 

 Interpolation requires two points to confine either end of the trail to be generated.  

One of the two endpoints comes from an edge of the route of updated beads.  The farther 

away from the updated beads, the less likely the update pattern has a real bearing on 

where the un-updated beads should be, so the other bordering reference point should 

generally be a small number of beads (five in these experiments) from the updated 

section.  However, if not enough beads exist between an updated section and an end of 

the current Array of Beads, the number of splined beads shrinks to what the current Array 

of Beads can accommodate.  Interpolate_Replaced_Section_to_Borders.vi creates one-to-

one replacements for beads.  The interpolated points are given a default confidence; since 

these points are like the gap-filling beads that are created to help path drivability, they 

receive no confidence in the experiments. 

The number of new beads at this stage may be less than the number of old beads 

in the same section, a consequence of receiving sparse data that is only partially fixed by 

filling in gaps with entirely new beads.  Sometimes, beads are waypoints.  These 

waypoints are important because they are the original points that define the map.  

Furthermore, some waypoints are checkpoints (which have to be reached to properly 

complete a mission) or stop points (which tell where the robot must wait before crossing 
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an intersection).  Reassign_Data_from_Deleted_Array_of_Beads.vi preserves these 

important characteristics.  The VI examines the beads that were deleted—truly deleted, 

and not just moved.  These are the beads that were never updated, and if any of them is a 

waypoint, Reassign_Data_from_Deleted_Array_of_Beads.vi transfers that waypoint ID 

to the nearest (in terms of GPS proximity) surviving bead.  If the nearest surviving bead 

is itself a waypoint, the rest of the Array of Beads is examined to find an empty host.  If 

no such host exists, the data must be truly abandoned. 

If the all-or-nothing method were to be pursued further, more error checking 

could be added to this step.  In practice, this reassignment of data was not really needed 

given the density of points DEXTER can grab, nor was the order of the waypoints an 

issue.  But if the robot needed the waypoints in order, this can be forced by checking 

existing waypoint IDs.  A different approach would be to assume that any updates 

whatsoever could take the waypoints too far off their original positions to be trusted, and 

then reassign all waypoints and waypoint data within the replaced section.  Or, updates of 

waypoints could be strictly prohibited. 

New beads may have been added in this entire process, and the bead index of each 

bead cluster should match the bead’s place in its Array of Beads (other code not 

connected to updates has such an expectation).  To insure any bead index issues are 

avoided, Reset_Bead_IDs.vi renumbers each bead index in the newly updated Array of 

Beads. 

 Reinsert Array_of_Beads.vi takes the location of the Array of Beads in the overall 

map structure (saved from when the original Array of Beads was first pulled from that 

structure) and places the new Array of Beads back into the overall map as a whole.  The 
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new map structure passes back to Global_Mapper_Main.vi, which can now use these 

updated beads as it answers queries about upcoming bead paths.  Since sometimes 

updates do not happen, Update_Mapper_Beads_All_or_Nothing.vi informs 

Global_Mapper_Main.vi if it should expend the effort to update its memory.  

Update_Mapper_Beads_All_or_Nothing.vi is the main bead update file that calls each of 

the update VIs described according to its purpose.  Figure 4-4 illustrates the structure of 

Update_Mapper_Beads_All_or_Nothing.vi. 

 

Figure 4-4.  This flowchart summarizes Update_Mapper_Beads_All_or_Nothing.vi and 
describes how and when various helper functions are used in the update process. 
 
Section IV: Results in Simulation of the All-or-Nothing Approach 

 When the 2007 DARPA Urban Challenge ended, so did testing on Team Case’s 
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hardware.  With DEXTER retired, the all-or-nothing update method needed to be 

analyzed on a simulated DEXTER.  Fortunately, a program called dexsim (written by 

Christian Miller) served such simulation needs.  However, simulated DEXTER did not 

have the lane detection powers that real DEXTER did, so in testing the all-or-nothing 

update method the simulated DEXTER had to be encouraged to drive off of the RNDF by 

more direct means.  All-or-nothing tests rely on driving away from the RNDF; otherwise, 

DEXTER will drive over the original beads and update them to very similar positions. 

 To force a departure from the RNDF, first the human running the simulation must 

make a log of an RNDF path simulated DEXTER followed and the corresponding Lane 

Description he produced.  Once this record is stored, the Python script move_RNDF.py 

can move the original RNDF by set latitude and longitude offsets.  Using the shifted 

RNDF, dexsim runs again in playback mode such that the simulated DEXTER drives the 

path in the log.  Yet, the RNDF has changed, so the initial beads in the current test are 

located on the new roads, not on the roads used to make the log.  Hence, the beads 

change from matching the current roads to matching the Lane Description in the log.  

Any figures that show DEXTER as driving off a road actually show DEXTER ignoring a 

bad map for better, stored data. 

 Figure 4-5 shows an example scenario that clearly illustrates how the all-or-

nothing update method can provide some benefit to DEXTER.  The red dashed lines are 

DEXTER’s logged breadcrumbs that he must follow in playback.  The breadcrumbs are 

not the same as the Lane Description, as the former comes from the latter, but the two are 

very close; in fact, these experiments display the Lane Description as a set of black dots, 

but the red breadcrumbs cover them since the two are in the same place.  In Figure 4-5, 
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simulated DEXTER’s map told him to drive over the green and white dots (both 

waypoints), but his stored sensor log placed him more towards the road center.  

 
Figure 4-5.  Using a playback log, a simulated DEXTER drives more centered than the 
proposed route in blue.  The red breadcrumbs show where DEXTER is about to drive 
next.  The green trail shows where DEXTER has just driven. 
 
 Figure 4-6 shows that the beads (marked by blue dots) have been moved in line 

with where DEXTER drove in Figure 4-5.  Though waypoints started with some 

confidence, the other beads in the lane did not, so the update code replaced a whole 

section of the lane.  Note the gaps in the beads.  In these experiments, 

Fill_Out_Bead_Gaps.vi dealt with gaps more than one meter.  Observing the code 

showed that many points were created by this VI; Figure 4-6 shows that the VI results in 

beads spaced similarly to their initial spacing (which is also one meter).  For comparison, 

the bottom beads (below the intersection) in Figure 4-7 are original beads that have not 

been traversed and updated. 
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Figure 4-6.  The beads (marked by blue dots) have been moved more towards the center 
of the road (and placed along simulated DEXTER’s log data) because of the path driven 
by the simulated DEXTER in Figure 4-5. 
 
 Despite the potential for improvement, there are localization hazards when 

performing the all-or-nothing update method.  Remember, DEXTER is not actually off 

the road in the following figures, rather the current map belief (shown)—and therefore 

the localization software—thinks he is.  Figure 4-7 shows one example of how belief in a 

poor map can confuse localization.  Because DEXTER can drive straight through the 

intersection shown, the straight path is not actually an intersection, but rather a part of the 

lane.  When DEXTER actually entered an intersection, but was close to the lane path, the 

localizer suffered confusion and DEXTER’s travel was seen as part of the lane.  Hence 

some of the lane’s beads were updated to fill that curved intersection.  Notice the beads 

headed back from the curve towards the original beads at the bottom; 

Interpolate_Replaced_Section_to_Borders.vi determined their placement. 
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Figure 4-7.  Due to simulated DEXTER’s displacement, the curve through the 
intersection was seen as part of the lane, and updated accordingly.  The yellow lines 
divide lanes in dexsim.  DEXTER’s movements clearly ignored the poor map; the 
problem is that his localization software did not. 
 
 Figure 4-8 shows simulated DEXTER navigating an intersection.  Note how the 

resulting beads tried to fit as best as they could within the localization software’s belief in 

the intersection location while still following the update data.  Because the update path 

started in the middle of the believed intersection on the poor map, this created a kink in 

the result.  Interpolate_Replaced_Section_to_Borders.vi still tried to reach the original 

intersection endpoints from the poor map.  In real life, endpoints of a structure need to be 

fairly accurate, but dexsim cannot replicate that condition. 

A B  
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Figure 4-8.  On the left (Figure A), the simulated DEXTER drove through an intersection 
offset from the  intersection on the poor map.  The poor map’s intersection curves 
between the two dark blue dots directly ahead of DEXTER.  On the right (Figure B), the 
light blue dots show an updated intersection that still tries to keep the same endpoints. 
 
 Updated beads must be kept in numerical order.  For example, Bead 2 in an Array 

of Beads cannot be after Bead 3, where “after” is defined based on the normal forward 

progression of the path.  Even if the overall shape of the path is good, out-of-order beads 

confuse the robot, which may become convinced that it needs to backtrack to hit some 

beads and leap to reach others.  DEXTER could not handle such a situation.  To verify 

that the update code keeps beads in the correct order, a new simulation ran on a set of 

previously updated beads from a previous test.  The simulation again used a moved 

RNDF for visualization purposes, so that the reader can still see that the poor map is 

ignored in favor of beads created by the all-or-nothing update method.  Figure 4-9 shows 

the results, with the Lane Description (black dots) and breadcrumbs (red dashes) built 

from the previously updated beads.  The simulated DEXTER drove on these updated 

beads, meaning their order was sound.  Note that the Lane Description does not always 

start right in front of any DEXTER, simulated or otherwise. 

A  B  
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Figure 4-9.  In this simulation, DEXTER loaded beads previously created by the all-or-
nothing update method and found those beads to be drivable.  The red dashes represent 
the breadcrumbs while the black dots represent the Lane Description.  Figure A comes 
before Figure B in time.  The poor map in the image is ignored for the updated beads. 
 

Recall the kink problem in the intersection, as illustrated by Figure 4-8.  Figure 4-

10 is the result of driving on this crimped data; simulated DEXTER was confused not by 

bead order, but by trying to reach the localization software’s believed end of the 

intersection.  DEXTER handled the problem by attempting to start the intersection and 

then reaching what beads were next available to him within the realm of his allowed 

movements.  Since the beads were in order and DEXTER did not need to backtrack, he 

constantly moved forward until he hit the path. 

A B  

C  
Figure 4-10.  DEXTER recovers from a kink in the intersection data.  The green trail 
shows where DEXTER drove moments before.  The letters (A-C) indicate how the figures 
progress through time. 
 
 The all-or-nothing update method, while a bit simplistic, effectively introduced 

updates into DEXTER’s Global Mapper.  This simple method does not use the finer 

granularity of confidence available in DEXTER: none, low, medium and high.  With such 
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information, a bead could be moved partially instead of fully replaced, in order to take 

into account the previous bead position.  This idea of creating new beads by combining 

sources of uncertain information is explored further in Chapter 5.
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Chapter 5: Improving Beads by Merging Noisy 

Data 

Section I:  The Theory for an Improved Estimate from Noisy Measurements 

Assume that all the measurements influencing the Global Map come packaged 

with known variances.  In such a world, a bead need not be substituted with sensor data 

in an all update, nor kept constant in a nothing update, nor decide between the two 

extremes.  Instead, each bead can be partially moved in a tug-of-war among all the 

relevant inputs, where the data with the lowest standard deviation and variance (and 

therefore the highest confidence) pulls hardest.  In Applied Optimal Estimation, Gelb et 

al. present a way to find an optimal estimate given erroneous data with “random, 

independent, unbiased measurement errors” [37].  Following from these criteria, the 

simulations will assume sensors with errors in a Gaussian distribution and zero mean 

variance. 

 The measurement sources in the simulations represent pieces of the DEXTER 

problem.  First, there are a priori data, e.g. from RNDF information, with all the errors 

therein.  In reality, the RNDF points come from a GPS antenna or a human interpreting 

satellite or aerial imagery, and any of these methods may introduce errors.  Existing 

RNDF data may be further augmented by additional information (e.g. road maps or more 

aerial photography).  Errors in the a priori information may include human transcription 

errors, map or photographic registration errors, and measurement or interpretation 

imprecision.  The a priori information is used to initialize all beads.  Second, there is 
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physical state data, representing DEXTER’s Physical State Observer, which captured 

online GPS sensor data and kept DEXTER aware of his position [38].  The concept of 

building an observer to enhance raw physical data has served other, less complicated 

mobile robots in the past, such as one trained to follow a guide wall [39], or another 

deciding the heading of a unicycle robot [40].  DEXTER’s Physical State Observer 

combined GPS data with other sensory and kinematic information and strengthened its 

assumptions with a Kalman filter.  A Kalman filter’s usefulness to a mobile robot is not 

specific to GPS readings, as it can be used to filter the noise from other positional data, 

such as that derived from sonar sensors [41].  Positional information can be absolute 

(GPS coordinates) or relative (inertial and odometry data); gathering some form of it is 

essential in an autonomous robot like DEXTER and his contemporaries [1], [30]. 

 DARPA defined goals in terms of GPS coordinates [31], so the GPS sensor was 

of particular importance in referencing DEXTER’s physical state to a GPS-defined 

coordinate system.  In general, errors in GPS data provide issues in even simpler systems 

than DEXTER, such as in map matching algorithms [42].  Tree cover and tall buildings 

obstruct GPS signals [43].  Errors may also be introduced into GPS signals on purpose, 

which the U.S. military implemented historically to the detriment of civilian receivers 

[44].  In 2003, after the lifting of some military restrictions, GPS devices could give 

readings within ten meters of the true position, with Differential GPS far better at +/- 1 m 

[43].  A current, example civilian application, the Garmin, claims that its GPS receivers 

are accurate within an average of fifteen meters normally, three to five meters using 

Differential GPS, or less than three meters with a Wide Area Augmentation System—yet 

“atmospheric factors” are still a concern [45].   The physical state measurements in the 
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simulations provide information about latitude, longitude, and heading elements.  GPS 

positions have Gaussian errors in latitude and longitude, a model also used in the map 

matching algorithms in [36]. 

 DEXTER had road detection abilities, which reported his lateral offset from the 

identified center of the road and a heading correction meant to help DEXTER match his 

heading to the road’s forward direction.  However, road detection values are not in 

absolute GPS coordinate terms; as a measure of relative quantities, they cannot be 

combined with the other two measurements via the optimal estimation method.  The 

introduction of a road detection system into the simulations is still possible via other 

techniques, as discussed in Chapter 7. 

 If the physical state estimate has high confidence but beads do not, the update will 

resemble an “all” update. Conversely, if the beads are known to be reliable but the 

physical state estimate is not, the update will resemble a “nothing” update.  In the general 

case, even low-confidence data affects the results, so no source of information is 

completely ignored as with truly all updates or nothing updates.  Furthermore, shades of 

gray in the confidence of each of the measurements can be explored with this new 

system. 

 In Applied Optimal Estimation, the equations for the optimal estimate and its new 

variance follow from two measurement sources [37].  The a priori latitudes, longitudes, 

and headings in the beads are separate quantities with separate optimal estimates.  The 

beads are responsible for holding improved estimates across repeated updates along the 

same path.  The outcome of the two-measurement equation can be considered a new 

measurement itself, and the equations may be applied iteratively as the robot “drives” 
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through the simulated path again and again. 

Equation 5-1 shows the estimate z that results from two measurements, x and y 

(see [37], pg 6).  The estimate z has a corresponding variance 2
zσ , computed per Equation 

5-2. 

2 2

2 2 2 2
y x

x y x y

z x
σ σ

σ σ σ σ
= +

+ +
y  

Equation 5-1.  Combining two measurements, x and y, into a new estimate z. 
 

1

2
2 2

1 1
z

x y

σ
σ σ

−
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= +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equation 5-2.  The variance of the new estimate z. 
 

Assume the robot re-drives the same path.  The simulation takes in its third 

measurement, a, and combines it with estimate z to get a new estimate, b.  Equation 5-3 is 

Equation 5-1 reused with different variables. 

2 2

2 2 2 2
a z

a z a z

b zσ σ
σ σ σ σ

= +
+ +

a   

Equation 5-3.  The technique in Equation 5-1 is reapplied. 
 

Equation 5-4 substitutes z from Equation 5-1 into Equation 5-3 and uses the 

distributive property of multiplication to produce three terms. 

22 2 2 2

2 2 2 2 2 2 2 2 2 2
ya a x z

a z x y a z x y a z

b x y
σσ σ σ σ

σ σ σ σ σ σ σ σ σ σ
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠
a  

Equation 5-4.  The terms of z are substituted into Equation 5-3 to produce this new 
equation. 
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The presence of 2
zσ  in Equation 5-4 can be rewritten in terms of 2

xσ  and 2
yσ  

using Equation 5-2.  The result of these replacements is Equation 5-5. 

2 22 2 2

2 2 2 2
2 2 2

2 2 2 2 2 2

1
1 1

1 1
1 1 1 1 1 1

y xa a x

x y x y
a a a

x y x y x y

b x y
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σ σ σ σσ σ σ

σ σ σ σ σ σ

+
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠+ +
+ +

2

1
y a

σ

+
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Equation 5-5.  The instances of 2
zσ  in Equation 5-4 are replaced using Equation 5-2. 

 

Equation 5-5 can be greatly simplified.  Equations 5-6 and 5-7 show how two 

relevant fractions can be rewritten by multiplying each by a fraction equal to one. 

2 2 2 2

2 2 2 2

2 2

1
1 1

x y x y

x y x

x y

y

σ σ σ σ
σ σ σ σ

σ σ

• =
++

   

Equation 5-6.  The meaning of 2
zσ  can be rewritten. 
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Equation 5-7.  A fraction found twice in Equation 5-5 can be simplified using Equation 5-
6 and the identity property of multiplication. 
 

 The results of Equations 5-6 and 5-7 can be substituted into Equation 5-5 for 

simplification, producing Equation 5-8. 
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Equation 5-8.  Equation 5-5 simplified using Equations 5-6 and 5-7. 
 

The last shown fraction (on the a term) may be multiplied by 
2 2

2 2
x y

x y

σ σ
σ σ

+

+
 in order to 

perform cancellations in both its numerator and denominator.  Similar cancellations apply 

to the fractions on the other two terms (for x and y) as already written.  The result of these 

simplifications is Equation 5-9. 

2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
a y x ya x

a x a y x y a x a y x y a x a y x y

b x y
σ σ σ σσ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
= + +

+ + + + + +
a  

Equation 5-9.  A simplified form of an estimate b formed from three measurements. 
 

 When processing measurements iteratively, it may appear that the algorithm 

favors earlier measurements over later ones.  The repeated application of Equation 5-2 

leads to smaller variances in new estimates [37], and Equations 5-1 and 5-9 both show 

that measurements with smaller variances influence the outcome to a greater degree.  Yet, 

Equation 5-9 shows that the third measurement has as much of a chance to affect the 

outcome as the first two, regardless of order.  For example, if x came last and a came first 

into the iterative process, all appearances of x and a would be switched in Equation 5-9 

(and throughout the process), but the result would be equivalent.  Because of this, the 

order in which the simulations process incoming measurements is irrelevant.  However, 

the repeated application of the same measurement on a point can weigh the results in 

favor of one outcome.  If, for example, the physical state consistently saw the same 
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results every time the robot drove down a path, then the beads would become more and 

more likely to believe the many measurements in agreement over their own starting 

assumptions—depending, still, on the relative variances involved.  

The new estimate b requires its own variance, 2
bσ .  If 2

zσ  represents the error 

before measurement a, then Equation 5-10 represents 2
bσ . 

1
2

2 2

1 1
b

z a

σ
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−
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= +⎜
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⎟   

Equation 5-10.  The variance after incorporating three measurements together into 
estimate b. 
 

 From Equation 5-2, the value of 2
zσ  is known and can be substituted into 

Equation 5-10 to derive Equation 5-11. 
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Equation 5-11.  A rewrite of Equation 5-10 with 2
zσ  replaced from Equation 5-2. 

 

 The first fraction can be multiplied by a version of one for the purposes of 

simplification.  The result is in Equation 5-12.  Each previous error contributes equally to 

the new estimate error 2
bσ , reinforcing the idea that the order of the measurements does 

not matter. 
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Equation 5-12.  An illustrative simplification of Equation 5-11. 
 

 The mathematics involved can be performed as a batch, or the calculations can 

occur continuously as a robot runs.  The equations do not change; in either event, the 

equations incorporate the sensor readings in some series.  Since the order of contributing 

quantities does not change the results, there is no difference in using sensor readings as 

they are taken versus collecting a host of readings and (potentially) reordering them after 

data collection.  Examination of the sensor values sooner rather than later merely 

provides the advantage of making partial answers available.  

 Since the equations are abstract, each new data point may be a new measurement 

from a sensor used earlier, or a new measurement from a completely new sensor; 

regardless, the values for x, y, and a can be used in the same way.  In an attempt to 

approach the DEXTER system, the number and type of sensors in upcoming simulations 

follow from DEXTER’s own setup.  However, the method is extendable for any number 

of data acquisition devices. 

Section II: Implementing the Combination of Gaussian Measurements 

 A road-following robot has a Path Driven, a set of points traversed in reality.  The 

robot also has a Center Lane Path, which is the desired path at the center of the road 
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where the robot should be driving.  When the two paths are one and the same, road 

detection may be ignored.  If a human is behind the wheel of the robot (either literally or 

via a joystick, as was necessary with DEXTER), then such a condition may indeed be 

enforced.  For the simulations in this chapter, the Center Lane Path is the only path under 

discussion.  The physical state (consisting of latitude, longitude, and heading) and the 

bead list (with the same three values) are the only types of measurements used. 

 In the present analysis, physical state measurements and the bead list are both 

assumed to contain Gaussian-distributed errors with zero mean (i.e. no bias), constituting 

deviations from the true Center Lane Path.  A single path can provide sufficient 

coordinates for testing, and the data-fusion algorithm is independent of lane/intersection 

distinctions, so simulations performed for this analysis do not require an entire Global 

Map.  Time necessary to generate a path (measured at one millisecond for a path of 300 

coordinates) does not provide a noticeable delay to the user, so the simulations generate a 

new path for each test. 

 The main simulation file (Basic_Test_Path_Driven_on_Center_of_Lane.vi) first 

calls Generate_True_Path.vi to generate a Center Lane Path with a user-specified 

Number of Coordinates.  Generate_True_Path.vi produces realistic paths comprised of 

points spaced 1 m apart with heading changes no greater than +/-5 degrees from point to 

point.  The Center Lane Path needs a seed location and heading.  Unless stated otherwise, 

the beginning heading is 45 degrees in every simulation where a Center Lane Path is 

generated (including those in future chapters).  The seed coordinate is always 41.502566 

degrees latitude, -81.607586 degrees longitude, a point on the engineering quad of Case 

Western Reserve University. 
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 Once the Center Lane Path exists (and can therefore be used for comparison with 

results), code injects Gaussian errors to produce simulated GPS and heading 

measurements.  Generate_Gaussian_Distribution_of_Lat-Lon-

Head_Variable_Std_Dev.vi performs this service for the simulated physical state.  

Distributed with LabVIEW, Gaussian_White_Noise_PtByPt.vi produces Gaussian white 

noise of a given standard deviation.  The VI for introducing errors receives two sets of 

standard deviations: one for headings, in units of degrees, and one for GPS coordinate 

shifts, in meters. 

 Though expressed in the same units, latitudes and longitudes could each have 

their own set of driving standard deviations.  However, since these two pieces of data 

come from the same sensor, it is likely that the two quantities will be measured about 

equally well, so the same standard deviations are used for both.  This assumption should 

not be taken to imply correlation between latitude and longitude.  A change in one does 

not drive a change in the other: when moving north, a robot may at the same time move 

east, move west, or stay at a constant longitude.  Furthermore, a latitude error towards the 

north does not imply that a longitude error (even one of equal magnitude) should 

necessarily be east versus west. 

 Generate_Gaussian_Distribution_of_Lat-Lon-Head_Variable_Std_Dev.vi uses 

specified standard deviations to introduce errors to each point in a path.  The standard 

deviations of noise introduced may be varied throughout the path to emulate realistic 

variations in path uncertainty.  For each point in the Center Lane Path, the chosen 

standard deviations create three errors; one error is added to the original heading and 

reset to be within the 0-360 range.  The latitude error moves the original coordinate north 
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or south (depending on error sign), and the longitude error moves the coordinate east or 

west.  The new latitude and new longitude join the new heading in one cluster of path 

data, along with each of their three variances.  By definition, each variance is the square 

of the standard deviation used to add error to that specific measurement (latitude, 

longitude, or heading).  Though the latitude and longitude variances will be the same at 

this step, the two variances are stored separately; road detection offsets, if and when they 

are used, may change the certainty of one differently from the other.  For beads, a slightly 

different VI is used.  The theory of operation is the same, but the outputs are packaged 

into actual bead clusters with unique Bead IDs. 

 Once errors have been introduced, the simulator must be able to combine two 

uncertain measurements in an effort to identify the true Center Lane Path.  To do that, the 

code applies Equations 5-1 and 5-2 from Section I of this chapter.  

Average_Two_Measurements.vi employs both equations literally and simultaneously.  

The code assumes that the two measurements it receives are of the same type and the 

same units; latitude, longitude, and heading are processed independently and do not affect 

each other. 

 Average_N_Measurements_(of_One_Quantity).vi sits a level above 

Average_Two_Measurements.vi.  Although not necessary with only two data sources, the 

use of this VI makes the solution more flexible; the simulation will readily accept any 

number of unbiased, flawed data sources.  

Average_N_Measurements_(of_One_Quantity).vi deals with n measurements by calling 

Average_Two_Measurements.vi iteratively, with the new estimate from one call passed 

as a measurement to the next.  If n = 1, Average_N_Measurements_(of_One_Quantity).vi 
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returns the same data it received.  

 For latitudes or longitudes, Average_N_Measurements_(of_One_Quantity).vi can 

produce the new estimate on its own.  Polar headings, however, are periodic; 360 degrees 

wrap around to map onto smaller angles.  Average_N_Headings.vi addresses this 

problem.  Average_N_Headings.vi chooses the first heading it receives as the Reference 

Heading.  This choice is arbitrary.  All that matters is that the headings are combined 

relative to one of their members, so that the new estimate can be computed as the 

distance that the Reference Heading should move. 

 Since Average_N_Headings.vi must convert headings into relative quantities,  

and since headings are periodic, Closest_Heading_Difference.vi finds the shortest 

distance, positive or negative, between the Reference Heading and another heading h.  

The shortest distance between two headings either crosses the zero to 360 line once or not 

at all.  The heading h has three relevant forms: h itself, h + 360, and h – 360.  Once 

Closest_Heading_Difference.vi finds these three sums, each has the Reference Heading 

subtracted from it.  The difference among the three with the lowest absolute value is 

returned by the function as the closest difference. 

 As an example, consider a Reference Heading of zero degrees with h = 359 

degrees.  The heading h may be written as 359 degrees, 359 + 360 = 719 degrees, or 359 

– 360 = -1 degrees.  Subtracting zero degrees from each sum yields the same sums back 

again.  The distance of -1 degrees has the smallest absolute value, so as a human would 

expect, Closest_Heading_Difference.vi reports -1 degrees as the shortest distance to 

travel from zero degrees to 359 degrees. 

 Average_N_Headings.vi sends all relative data (with the Reference Heading as 
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zero degrees, relative to itself) into Average_N_Measurements_(of_One_Quantity).vi.  

The result measures how much to move the Reference Heading; the variance associated 

with the zero degrees heading fights to keep the Reference Heading the same.  Once the 

Reference Heading moves to a new heading in absolute terms, the resulting new estimate 

is placed back in the 0-360 range. 

 With these tools, Basic_Test_Path_Driven_on_Center_of_Lane.vi iterates 

through the entire path for a user-specified number of times.  Bead updates are kept 

across such iterations, so that potentially a path may become more and more improved as 

it is driven multiple times.  Physical state errors are created for each path traversal.  

Given the assumption of Gaussian errors, a sensor is unlikely to repeat the same exact 

information each time it takes a reading in the same spot.  If this repetition occurred, the 

method used to combine measurements would become more and more convinced that the 

physical state was simply correct. 

 When exploring a path, the code finds a new estimate for each bead’s latitude, 

longitude, and heading using previous bead data and incoming physical state data.  The 

nth point in the bead list is always generated from the same Center Lane Path data as the 

nth point in the physical state data.  The results for latitude, longitude, and heading 

estimates (including the new variances) are packaged back into the current bead, 

overwriting previous data with better estimates.  Path data before and after updates is 

saved to .CSV files for later analysis. 

 Figure 5-1 presents an overview of the architecture of 

Basic_Test_Path_Driven_on_Center_of_Lane.vi.  The three basic stages, each of which 

has already been covered in greater detail, are to create the Center Lane Path, to introduce 
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measurement errors, and to improve the path through the application of the optimal 

estimation method described by Equations 5-1 and 5-2.  Figure 5-1 also depicts key times 

in the simulation procedure where the code saves results for later examination. 

 
Figure 5-1.  A simplified picture of Basic_Test_Path_Driven_on_Center_of_Lane.vi’s 
modus operandi.  Data may not be saved for insignificant path traversals. 
 
Section III: Running Basic Simulations 

 For comparison with other chapters, Table 5-1 shows what path data and error 

data are used in the following tests.  Note that road detection errors are ignored; there is 

no road detection, since the Path Driven equals the Center Lane Path.  The errors in initial 

bead placements and simulated physical state measurements have no bias. 

Type Data 

Path Path Driven = Center Lane Path, 

number of points in Center Lane Path = 300 

Bead Errors 
,b GPSσ  > 0,  > 0, bias = 0 ,b headingσ

Physical State Errors 
,ps GPSσ > 0,  > 0, bias = 0 ,ps headingσ

Road Detection 

Errors 

,rd offsetσ = 0,  = 0 ,rd heading correctionσ
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Table 5-1.  Summarizing the data used for the following tests in bead improvement with 
no road detection.  Biases and standard deviations are only factors in the experiments 
when they are not equal to zero. 
 
 Beads have an inherent order due to their relative arrangement within a list.  The 

simulation generates beads on the Center Lane Path such that each subsequent bead 

continues a drivable path from its previous neighbor.  However, once Gaussian noise is 

introduced, the simulations are able to show extreme cases with enough noise to make the 

path look as if it has wild backward and forward movements.  This is allowed in order to 

more clearly illustrate the behavior of the optimal estimation algorithm. 

 The simulator can approximate all updates or nothing updates when changing the 

initial latitude/longitude positions of the beads.  First, consider the conditions for an all 

update: the physical state must have a much higher confidence than the starting beads, so 

much so that the best course for improvement is for the beads to practically copy what the 

physical state reports.  Figure 5-2 shows the results after driving once through a path, 

with beads at a starting standard deviation of ten meters and the physical state 

measurements starting at a lower standard deviation of two meters (each standard 

deviation applies to both latitude and longitude).  

A B  
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C D  
Figure 5-2.  Graph A shows the true Center Lane Path.  Graph B shows the starting 
beads generated from Graph A with the introduction of noise with  = 10.00 m.  
Graph C shows the simulated physical state measurements with noise  = 2.00 m.  
Graph D shows the beads after running the simulator once through the entire path, 
resulting in an ending standard deviation of ~1.96 m in both latitude and longitude.  Note 
how much the ending beads resemble the physical state, much like a typical all update. 

,b GPSσ

,ps GPSσ

 
 The simulator can also approximate a nothing update.  Recall that a nothing 

update means that the bead position estimates start out with better quality than the 

sensors, so the beads have no reason to change.  Figure 5-3 show an update much like a 

nothing update after one traversal through a path, where the confidences in the physical 

state and in the beads were reversed from the situation in Figure 5-2. 

A B  
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C D  
Figure 5-3.  Graph A shows the true Center Lane Path.  Noise of  = 2.00 m, 

 = 10.00 m were added to the bead estimates and to the simulated physical state 
measurements, respectively, as shown in figures B and C. Graph D shows the beads after 
running the simulator once through the entire path, with an ending standard deviation of 
~1.96 m in both latitude and longitude.  Note how the ending beads closely follow the 
starting beads, as in a nothing update. 

,b GPSσ

,ps GPSσ

 
 The previous two figures show that, unlike a true all update or a true nothing 

update, the resulting standard deviation in the ending bead positions is slightly better than 

the single best confidence present in the incoming data.  The resulting standard deviation 

for bead positions is determined mathematically by the optimal estimation method 

(Equation 5-2).  Whether the initial bead positions or the physical state measurements 

were more confident in the beginning of a simulation, the other, inferior source of data 

still improved the confidence in the result.  Thus, using all sources of noisy data makes 

better use of the information available than previous methods that only used the best 

incoming source. 

 The simulator may also show a middle ground, wherein the physical state and the 

beads start out with equal confidences/standard deviations.  Figure 5-4 shows an example 

using latitude/longitude position standard deviations of 5 m for both beads and physical 

state.  The beads did show some change after one path traversal, but with only two 

samples of data to work with, neither one particularly reliable, bead improvement was 
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limited.  However, after ten path traversals, and therefore ten physical state readings per 

bead, the beads in Graph F of Figure 5-4 started to approach the Center Lane Path.  The 

power of the optimal estimation method is shown here, as beads improved when no one 

good data source existed. 

A B  

C D  

E F  
Figure 5-4.  Graph A shows the Center Lane Path before adding simulated noise to the a 
priori bead location estimates and to the simulated physical state measurements of 

 = 5 m,  = 5 m, respectively.  Graph B shows the starting beads generated ,b GPSσ ,ps GPSσ
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from Graph A, while Graph C shows the data in the simulated physical state for the first 
path traversal.  Graph D shows the beads after running the simulator once through the 
entire path.  Graph D is a combination of Graphs B and C, and is not the same as either 
one.  However, the beads can be improved with more physical state data.  In the tenth 
path traversal, the physical state data (Graph E) for that iteration was still poor, but the 
fusion of data from 10 traversals resulted in the beads shown in Graph F.   These beads 
had a standard deviation of ~1.5 m in both latitude and longitude (as opposed to ~3.5 m 
after a single path traversal). 
 
 The simulator combines headings as well, as outlined in Section II.  The behavior 

of the algorithm in regards to headings is the same as with the latitude/longitude portions 

of the bead and physical state data; examining a graph of GPS coordinates is just more 

intuitive.  Improving bead positions is also more important, since the headings of a path 

can be derived from the path’s latitude/longitude bead locations, but the reverse is not 

true.  As an example of heading improvement, Figure 5-5 shows an all-like update from 

the heading’s perspective.   

A B  

C D  
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Figure 5-5.  Graph A shows the Center Lane Path’s headings before  = 11.0 
degrees,  = 3.0 degrees.  Graph B shows the starting bead headings generated 
from Graph A, while Graph C shows the heading data in the simulated physical state.  
Graph D shows the bead headings after running the simulator once through the entire 
path, with an ending standard deviation of ~2.9 degrees.  Note the result headings follow 
the better data in the physical state, like a typical all update.  The large spikes in the 
graphs come from the fact that for headings, zero degrees is equal to 360 degrees. 

,b headingσ

,ps headingσ

 
 Recall that the simulator is built to handle more than one standard deviation for a 

series of measurements, whether those measurements are latitudes, longitudes, or 

headings.  On a real course, the reliability of predetermined beads may vary due to what 

imagery is available beforehand, especially if parts of that imagery are obscured.  The 

confidence in GPS sensors may also vary with weather and nearby trees, etc.  The 

behavior when using more than one standard deviation per measurement series follows 

from the behavior observed when using only one standard deviation per series.  Using 

path-varying standard deviations creates sub-problems identical to the original problem; 

each sub-problem, like the original, has one standard deviation to consider for each data 

source.  Figure 5-6 illustrates this concept. 

 
Figure 5-6.  Consider three measurement series from three information sources (for 
illustrative purposes—the concept does not change based on the number of sources 
involved).  Each measurement series has a time (or path)-varying standard deviation.  In 
this instance, the standard deviation of each measurement source varies stepwise (the 
change from one to another is marked by a vertical black line).  Each unique set of three 
standard deviations (highlighted in yellow or green) produces a smaller version of the 
original problem, where each measurement source has a constant standard deviation. 
 
 Figure 5-7 shows how the same path may have sections more like an all update 
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(where the beads try to match what is in the physical state) or a nothing update (where the 

beads change little).  Figure 5-7 also shows that sections of a path with at least one source 

of good data improve more quickly than sections where both sources lack confidence. 

A B  

C D  
Figure 5-7.  Graph A shows the Center Lane Path.  Graph B shows the starting beads 
generated with  = 1, 8, and then 3 m.  Graph C shows the physical state generated 
with =  5 and then 0.5 m.  Graph D shows the beads after running the simulator 
once through the entire path.  Note that Graph D has patches of different improvement 
levels based on the data available to each portion of the path. 

,b GPSσ

,ps GPSσ

 
 The optimal estimation method of combining measurements has an advantage 

over setting bead updates into all update mode versus nothing update mode for the entire 

map.   By combining the variances involved, the system itself can decide how the update 

will behave on different parts of the map.  Compared with the DEXTER system that 

chose between all updates or nothing updates, these simulations can produce middle 

ground when neither an all update nor a nothing update is appropriate. 
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Chapter 6: Discovering Bead Bias 

Section I: Batch Processing to Determine Bead Bias Estimates 

 The method the simulator in Chapter 5 uses to combine beads and physical state 

data relies on the erroneous measurements having no bias, only Gaussian errors.  

However, at the Urban Challenge National Qualifying Event, Team Case found a 

positional shift between DEXTER’s measurements and DARPA’s RNDF, and we had to 

move the RNDF accordingly to compensate.  Since beads come from RNDFs initially, 

the next experiments attempt to estimate bead bias in simulation.  The bead bias is known 

to have only a potential north-south shift and a potential east-west shift; any warping or 

rotation that might be present in the map is assumed to be too small to be noteworthy, an 

assumption justified by Team Case’s Urban Challenge experience.  The simulations rely 

on the assumption that the beads alone contain a bias.  Physical state measurements from 

a GPS sensor, while noisy, are presumed to have zero bias. 

 For a simulation to eventually discover a bias, first it must add in such a bias 

when generating beads.  Generate_Beads_with_Global_Bias.vi still introduces Gaussian 

errors as before, and still accommodates the application of a series of standard deviations 

when creating a list of beads.  The added functionality comes from two new inputs: 

North-South Bias and East-West Bias.  North and east biases are expressed in positive 

meters, while south and west biases are written as negative meters.  Before a bead 

receives Gaussian errors, it first moves due north (0 degrees) or south (180 degrees), then 

due west (270 degrees) or east (90 degrees) by the distances in the two biases.  The same 

bias quantities affect each and every bead the same amount, creating a truly global bias 
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like the one Team Case saw in Victorville, as opposed to any inconsistent bias found on 

only some of the roads. 

 As in past simulations, No_Offsets_Batch_Bead_Bias.vi creates a Center Lane 

Path, a set of physical state data, and a bead list.  The code then examines each bead and 

its corresponding physical state data exactly once.  The simulations have the advantage of 

knowing which points in the beads and simulated physical state readings correspond to 

each other; in a scenario that had to deduce such pairs, path areas roughly following a 

cardinal direction may be more likely to miss shifts along the same direction they travel.  

For example, a road that runs west to east may miss some of the east-west shift when 

trying to match points. 

 DEXTER utility functions find the heading from the simulated physical state 

point to the corresponding bead point and the number of meters between the two.  The 

heading found is relative to 0 degrees at due north and increases counterclockwise.  The 

code considers the distance between the two points as a hypotenuse of a right triangle, 

and the angle from the physical state point to the bead as one of the acute angles in the 

same right triangle.  Then, using trigonometric rules, the cosine of the angle between the 

two points multiplied by the distance between them is the north-south component (in 

meters) of the distance from the physical state point to the bead.  Similarly, using the sine 

instead of the cosine yields the number of east-west meters involved in the shift.  See 

Figure 6-1 for an illustration of the values used in these trigonometric calculations. 
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Figure 6-1.  Assume a physical state point is at the origin of the graph.  Then the 
associated bead can be in any of the four quadrants at some angle from the physical state 
point.  Four of these possible angles lie on the axes and indicate shifts in pure cardinal 
directions.  The blue arrow shows an example distance to a bead at an example angle, 
and labels the two components of that distance. 
 
 Of course, some bead shifts are negative, and some are positive.  The cosine and 

sine functions correspond nicely to the convention used to insert biases (west and south 

negative, north and east positive).  The cosine will be negative if its argument is greater 

than ninety degrees but less than 270 degrees—or when its argument points south.  As 

expected, 270 degrees and ninety degrees have no north-south component because the 

cosine of both measurements is zero, and cosines are positive at all northern degrees (the 

two top quadrants).  The same argument holds for the sine and the east-west convention; 

the sine gives zero for directions directly north or directly south, negative numbers to the 

west (the two left quadrants), and positive numbers elsewhere (east).  Because of these 

mathematical properties, using the cosine and sine produces bias estimates with the same 

signs as the biases added. 

 The bias components discovered from a bead and its physical state reading are 

both ultimately the result of a subtraction between those two points.  Because two 

independent quantities are combined, the variances associated with the new north-south 
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and east-west biases are the sums of the appropriate variances in the bead point and in the 

physical state point [46].  The code packages the sum of the latitude variances with the 

north-south distance and the sum of the longitude variances with the east-west 

component.  By using the variances, more confident areas in the paths have added ability 

to improve the estimates produced by the batch process. 

 Once the simulator processes the physical state and bead paths, it calls 

Average_N_Measurements_(of_One_Quantity).vi twice; once to calculate the end east-

west bias estimate, and once for the final north-south bias estimate.  The estimates 

produced should resemble the driving biases in both magnitudes and signs.  Figure 6-2 

shows visually how No_Offsets_Batch_Bead_Bias.vi calculates an estimate of the global 

bead bias. 

 
Figure 6-2.  A flowchart of the method that No_Offsets_Batch_Bead_Bias.vi uses to 
calculate estimates of a global north-south bead shift and a global east-west bead shift. 
 
 In order to amass statistics, No_Offsets_Batch_Bead_Bias.vi computes bias 

estimates for a large number of independent runs.  For each run, the bead bias works with 

a new random path and a new random set of Gaussian errors, but with the same driving 

bead biases and the same standard deviations creating the Gaussian errors.  Table 6-1 

summarizes the sources of error shared by each run. 
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Type Data 

Path Path Driven = Center Lane Path, 

Coordinates in Center Lane Path: variable 

Bead Errors 
,b GPSσ  > 0  > 0, bias ≠ 0 ,b headingσ

Physical State Errors 
,ps GPSσ > 0,  > 0, bias = 0 ,ps headingσ

Road Detection 

Errors 

,rd offsetσ = 0,  = 0 ,rd heading correctionσ

Table 6-1.  Summarizing the data used for the following tests in correcting bead biases. 
 
 Each run produces an estimate of the map registration biases.  These estimates are 

imperfect, and their distribution is another Gaussian.  Errors in bias identification can be 

calculated and graphed, as shown in the histograms in Figures 6-3 and 6-4.  Since those 

figures graph the errors, they are all centered on zero (truth).  However, note that the 

behavior does not change if the tests run on negative, positive, or zero biases; the actual 

value of a bias does not affect the accuracy of the algorithm.  Note that all of the 

histograms have Gaussian-like curves whose variances are close to the variances for the 

bias estimates as calculated in each run of algorithm.  As the number of runs approaches 

infinity, the distribution of bias-identification errors would have a variance that converges 

identically on the theoretical value.  
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A B   
Figure 6-3. Each run used 300 beads and 300 physical state points,   = 2 m and 

 = 2 m.  There was a 2.6 m bias north in these tests but no bias east or west.  The 
graphs show the results from running 1000 such experiments.  Graph A shows the north-
south results with variance 0.0257 m

,b GPSσ

,ps GPSσ

2, and Graph B shows the east-west results with 
variance 0.0256 m2.  The calculated variance for both directions at the end of each 
individual test was 0.0267 m2. 

A B  
Figure 6-4.  Both of the graphs show the discovery of a bias 4.3 m west (a negative 
number to the algorithm) for 1000 different runs, with  = 7 m and = 5 m.  
In Graph A, 300 coordinates were used, ending in a predicted variance of 0.247 m

,b GPSσ ,ps GPSσ
2 per 

test and a measured variance of 0.259 m2 for all 1000 tests.  In contrast, Graph B used 
700 coordinates and ended with a variance of 0.106 m2 across all experiments (where 
0.106 m2 were expected for each test). 
 
 Figure 6-4 highlights which factors do affect the accuracy of the results—the 

same factors that mathematically reduce the predicted variance of any one result.  Graph 

A in Figure 6-4 has less confident data (i.e., initial bead estimates and physical state 

measurements have higher standard deviations) than Graph B in Figure 6-3, and the 

increased variance in Figure 6-4, Graph A, shows this cost.  However, Graph B in Figure 
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6-4 shows that adding more points to a path with little confidence increases confidence in 

the bias estimates.  Once again, the equations used to compute new measurements from 

uncertain data improve with each new data point (however uncertain).  Therefore, when 

using this method with sensors of low confidence, driving the robot farther to collect 

more sensor readings can aid the quest to determine the global bead bias. 

Section II: Running Updates to Determine Bead Bias Estimates 

 Bead shift estimates need not be decided at the end of a run.  Instead, estimates 

can be improved upon as the simulation “drives.”  By doing so, a robot (and anyone 

watching its progress) can learn about the current map registration online.  The robot 

does not learn how to drive better in this process; it just learns more about the map.  For 

No_Offsets_Running_Bead_Bias.vi, the simulator evaluates the bead bias into the bead 

list in the same manner as in the batch processing tests.  The general path data and errors 

follow the same scheme as that for the batch method (see Table 6-1). 

 For No_Offsets_Running_Bead_Bias.vi, the user specifies initial guesses for both 

bias quantities and their variances; in order to constantly improve an estimate, a starting 

estimate must be provided.  The experiments here use zeroes for the initial guesses; with 

no idea what a bias might be, zero bias is assumed.  The variances for the guesses start at 

1.013 m2 each, essentially giving the starting guesses no confidence so that actual data 

will quickly replace these numbers. 

 While iterating through a path, the code calculates north-south and east-west 

components using the same process and trigonometric rules as in the batch processing 

case.  The variances of the components are also the same sums as in the batch process.  

However, now the two calls (one for east-west and one for north-south) to 
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Average_N_Measurements_(of_One_Quantity).vi occur each time a new bead and 

physical state point pair is processed.  For the first pair, 

Average_N_Measurements_(of_One_Quantity).vi combines the initial guesses of shifts 

and variances with the results for that pair.  Then the two new weighted averages and 

their variances replace the initial guesses and their variances.  As the path is “driven,” the 

result of the last step is always combined with the new data. 

 As with the batch process, No_Offsets_Running_Bead_Bias.vi handles multiple 

runs, each with new paths and new specific errors but with the same driving biases and 

driving standard deviations.  The initial guesses of bias quantities also start out the same 

in every run.  Figure 6-5 shows, in the scope of one run, the organization of the 

simulation code that uses the running update method (contrast with Figure 6-2, which 

illustrates the batch processing method).  Figure 6-5 shows that the progress of each bead 

bias estimate in each run is recorded for later analysis. 

 

Figure 6-5.  A flowchart of the method that No_Offsets_Running_Bead_Bias.vi uses to 
calculate estimates of a global north-south bead shift and a global east-west bead shift. 
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 The math in the running update method is the same as that used to arrive at bias 

estimates in the batch processing method.  Figure 6-6 shows histograms created under 

similar conditions to those in Figure 6-3.  Once again, the algorithm’s calculated variance 

for each test result is verified by the variance of the errors in the results after 1000 tests.  

And once again, the shape of the errors after many runs is roughly Gaussian. 

A B  
Figure 6-6.  Each run used 300 beads and 300 physical state points,   = 2 m and 

 = 2 m.  There was a 2.6 m bias south (a negative bias) in these tests and a 4.3 m 
bias east.  The histograms show the results after running 1000 such experiments.  Graph 
A shows the north-south results with variance 0.0254 m

,b GPSσ

,ps GPSσ

2, and Graph B shows the east-
west results with variance 0.0270 m2.  The calculated variance for both directions at the 
end of each individual test was 0.0267 m2. 
 
 Though the results are the same in both methods, the running update method is 

more like learning than the batch processing method, because it makes intermediate 

results available (if only to the user) in real time.  Such intermediate data may be useful if 

the robot or user has to decide when enough points have been collected.  Figure 6-7 

illustrates this feature by showing progress for several bias estimate experiments.  As the 

running update method moves through the beads, the bias estimates level off and 

becomes more stable.  The simulator code places the initial guess at the beginning of each 

plot for comparison. 
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A B  

C D  
Figure 6-7.  These graphs show some detail from the 1000 runs in the previous figure 
(Figure 6-6).  Graphs A and C show the discovery of a bias 2.6 m south, while Graphs B 
and D show estimates approaching a bias 4.3 m east.  Graphs A and B each show one 
example experiment, while Graphs C and D show five runs each.  
 
Section III: Running Updates Used with Bead Improvement 

 The running update method can be used directly to help bead-improvement 

simulations, namely those outlined in Chapter 5.  In Chapter 5, the bead errors were 

assumed to be unbiased, but this may not always be the case.  The following bead-

improvement simulator follows the scheme in Table 6-1 over the scheme in Table 5-1.  

To simulate the improvement of biased beads, first No_Offsets_Running_Bead_Bias.vi 

creates its own path data to estimate the biases, with its own bead data, its own physical 

state data, and its own Center Lane Path.  The VI that uses bias estimates creates a second 

set of path data in parallel.  In general, the robot could drive around a competition area to 

discover map registration values before the event.  However, the true biases need to be 
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consistent for both paths (the Bias Discovery Path and the Bead Improvement Path) in 

order for the results of the former to apply to the latter.  Also, this simulator assumes that 

the qualities of the robot’s sensors do not change, so that both path sets use the same 

standard deviations to drive errors. 

 When the simulator arrives at the bead-improvement code, it pulls in both bias 

estimates from No_Offsets_Running_Bead_Bias.vi.  Using these bias estimates, every 

bead is shifted north or south and east or west before being combined with physical state 

data as per the optimal estimation equations.  Because the bias estimates are imperfect, 

these movements introduce more variance into the original bead.  Fortunately, 

No_Offsets_Running_Bead_Bias.vi calculates the variances of its estimates.  The 

estimate variances (one for latitude, one for longitude) are added to the original bead 

variances to arrive at the new bead variances; as before, variances are added when two 

independent sources act on a measurement.  Figure 6-8 illustrates how two sets of path 

data are used for these simulations. 

 
Figure 6-8.  From the two Center Lane Paths, two sets of beads and of physical state 
data are created.  Though individual errors vary,  and  are the same for 
both sets of beads, and the same is true for the physical state data sets. 

,b GPSσ ,b headingσ
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 Figure 6-9 displays the results of not only introducing bead biases to the bead-

improvement algorithm, but also estimating those biases and adjusting for them.  Only 

one run of No_Offsets_Running_Bead_Bias.vi was used to get both bead bias estimates, 

as opposed to using the means of many runs.  The former case is faster to accomplish, 

and as Figure 6-9 shows, still helpful.  In Victorville, Team Case had to estimate the map 

registration offsets in order to improve the quality of beads; this work shows that the map 

registration offsets may be calculated algorithmically. 

 
Figure 6-9.  Both the path used to discover bead bias estimates and the path used to 
improve beads were 300 coordinates long, but they were not the same.  Both of these 
paths were generated with a true global map shift of 7 m south, 6 m east.  The paths 
shown above were all created by the bead-improvement algorithm.  The tests in green 
and red above used all of the exact same data in terms of physical state and starting 
beads, and each used exactly one iteration through the path in order to improve.  Both 
identified paths are noisy due to using  = 2 m and  = 2 m.  The only 
difference between the red and green paths is that the red path corrected its bead data 
using bias estimates, and the green path did not.  The red path is thus noticeably better, 
as it is centered on the Center Lane Path and not shifted from it. 

,b GPSσ ,ps GPSσ
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Chapter 7: Using Road Detection Information 

Section I:  Introducing Road Detection 

 Mobile robots can gather non-GPS information; other sensors, such as cameras or 

LIDAR scanners, can aid in navigation.  Typically a mobile robot’s vision may find 

features (such as lane markings) to follow, or features (such as obstacles) to avoid [47].  

In the 2005 DARPA Grand Challenge, Ohio State University used digital cameras (and a 

host of other sensors) to generate points to keep their robot driving [30].  DEXTER’s 

road detection system for the 2007 DARPA Urban Challenge used color cameras, 

infrared cameras, and laser scanners known as LIDAR (LIght Detection And Ranging) 

units [38].  Other teams at the 2007 DARPA Urban Challenge also employed LIDAR 

units.  Therefore, instead of “vision,” these tests use the phrase “road detection.”  The 

individual sensors that make up a road detection system are immaterial, and indeed vision 

may be included.  Road detection as a whole observes the road while a robot is driving 

and helps the robot know where it is in relationship to the center of its lane. 

 As with any sensor data, road detection quantities include errors, which may arise 

from various factors.  Hardware itself can be the source; for example, vision systems 

make demands on processing speed and power consumption [48].  Restricted camera 

views may also limit accuracy, especially for a robot that needs to make tight maneuvers 

or to travel at higher speeds [49].  The environment can fool road detection with changes 

in illumination, defects in road surfaces, pedestrians, the absence of lane markings at 

intersections, and more.  Illumination particularly can make it very difficult for lane 

detection to tell yellow lane lines from white ones [50].  DEXTER’s cameras had issues 

99 



with changeable pavement reflections, missing lane lines, obstructions, and camera 

vibrations caused by both the robot and the road [38].  The simulator combines these 

sources of error into overall variances in the road detection measurements.  As in 

previous simulations, the errors introduced into road detection follow a zero-mean 

Gaussian distribution. With the addition of road detection, the simulations can remove the 

restriction that the Path Driven—where the robot travels—must be the same as the Center 

Lane Path—where the robot should drive.  When running autonomously, it is rare for a 

robot to be able to follow such a restriction, due to errors in the system and the 

kinematics of driving.  DEXTER, for example, definitely deviated from the centers of his 

lanes.  The bead data, since it is a set of goals, is still based on the Center Lane Path.  

Physical state measurements, on the other hand, correspond to the robot’s actual 

coordinates, and as such their errors must center on the Path Driven.  Road detection 

must reconcile these two sets of data, recognizing that the Path Driven may not 

correspond to the center of the intended lane.  

Section II: Simulated Road Detection Values 

 Each point of road detection data contains a lateral offset, which gives the 

simulation an estimate of how far to the left or right the robot is displaced from the center 

of its lane.  The road detector can also estimate a heading correction relative to the 

direction of the road.  Ideally (with no errors involved in the system), the heading 

correction from the road detector added to the robot’s physical state heading would equal 

the tangent angle (road heading) of the intended center of lane.  In practice, measuring a 

lateral offset may be done with projections, by looking ahead or behind at the robot’s 

direction of travel and the lane’s direction of travel and projecting how those two paths 
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would relate at the robot’s current location.  Alternatively, a lateral offset may be 

estimated by looking ahead at time t at what the offset will be if the robot continues its 

current path for x time steps ahead of t, then recalling that offset when the robot reaches 

time t + x.  In another approach, sensors such as vision cameras and LIDAR units may be 

placed to look sideways from the robot, so that offsets might be observed as they occur. 

 In the simulations, offsets must be calculated by comparing the Center Lane Path 

with the Path Driven.  The Center Lane Path is generated as in previous simulations.  The 

Path Driven, now generated separately, must roughly—but not exactly—follow the same 

course as the Center Lane Path.  The Path Driven, in order to make the simulator’s output 

more realistic, should also appear smooth enough to be drivable.  

Generate_Path_Driven.vi creates splines between points near the Center Lane Path in 

order to create the Path Driven. 

 The first spline’s origin is the first point on the Center Lane Path.  The destination 

of that spline is a point near the point on the Center Lane Path p points away from the 

start of the Center Lane Path, where p is specified according to the user’s judgment call.  

In order for the Path Driven to look drivable, the value of p must encompass enough 

points to keep the splines from being choppy in relationship to each other, but not so 

many points that the Path Driven can veer too far away from the Center Lane Path. The 

destination point of the spline comes from moving the point designated by p on the 

Center Lane Path in a random direction by some random number of meters m, where m 

has a standard deviation of 2 m.  The spline results replace the exact number of points 

between both endpoints, and these interim points, along with their destination, begin the 

start of a new path.  Since headings are needed to continue splining, the headings of the 
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new points are recalculated. 

 The destination point (after its movement) becomes the next starting point for the 

next spline, and the process continues.  The Spline Spacing p chooses the next destination 

by jumping along the Center Lane Path p points from the last destination (before its 

movement).  Since spline origins come from previous spline destinations, and no point 

needs to be moved twice, no origin is moved.  As a result, the first points in both the 

Center Lane Path and the Path Driven match.  The last set of splined and replaced points 

may be shorter than previous sets, because the number of points a spline can replace 

cannot exceed the number of points left in the Center Lane Path.  The last point in the 

Path Driven is the same as in the Center Lane Path.  Once the Path Driven is complete, its 

headings are completely recalculated based on the relative positions of its member points.  

Note that the Path Driven and the Center Lane Path have exactly the same number of 

points.  Figure 7-1 gives more details on the process in Generate_Path_Driven.vi, while 

Figure 7-2 shows an example of how a possible Path Driven is derived from its 

associated Center Lane Path. 

 

Figure 7-1.  The flowchart of the code in Generate_Path_Driven.vi.  The pink arrows 
follow the spline destinations, while the yellow-orange arrows highlight the spline 
origins.  The purple arrows show how the Center Lane Path is replaced in parts to 
become the Path Driven.  Blue arrows are used for miscellaneous transfers of data. 
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Figure 7-2.  The spacing of points on this diagram is coarse in order to show the points 
of interest, as opposed to showing every point on either path.  The red dots on the Center 
Lane Path move randomly to positions marked by the blue dots, and the Path Driven is 
splined between those blue points.  Note that both paths start and end at the same places. 
 
 Once both paths exist, code calculates the true lateral offsets between them before 

any errors become present in the system.  The definition of what a lateral offset means 

must be consistent and chosen carefully.  A lateral offset is a distance between two 

points, but not any pair of points can be considered “lateral” from each other.  The 

definition of the word “lateral” means “to the side.”  But there are two paths with two 

different sets of headings, and thus two concepts of “to the side.”  See Figure 7-3. 

   

Figure 7-3.  The blue dot and the red dot above have different headings, and thus 
different concepts of what it means to go forward.  From this, two definitions of left and 
right follow.  The blue dot on the Path Driven is left of the red dot on the Center Lane 
Path, but the red dot is not directly right of the blue dot. 
  
 Since the Center Lane Path represents the goal of a simulation, the lateral offsets 

are each defined with one endpoint resting on a point in the Center Lane Path, and with 
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left and right defined relative to the Center Lane Path heading at that point.  However, 

note from Figure 7-2 that the known Path Driven points may not be directly left or right 

of the corresponding known points on the Center Lane Path.  There is not a simple 

correspondence between sample points on the Center Lane Path and sample points on the 

Path Driven.  To define consistent lateral offsets, the Path Driven is resampled to create a 

simple one-to-one correspondence between Center Lane Path and Path Driven points.  In 

a real-time situation, path, road detector and physical state samples may be synchronized 

either by triggering or by interpolation (as is done in simulation). 

 For each known point on the Center Lane Path, the line going through the left and 

right directions (as shown on Figure 7-3) can be calculated as the line perpendicular to 

the line through the Center Lane Path’s heading at that point.  This perpendicular line 

intersects with the Path Driven in one of the Path Driven segments.  In the special cases 

found at the endpoints of both paths, the line intersection occurs at the Center Lane Path 

point.  For the other cases, the point lateral to the Center Lane Path point intersects with 

the perpendicular line within a line segment (endpoints included) of the Path Driven.  

These intersections define the resampled Path Driven.  The distance from the Center Lane 

Path point to the intersection on the Path Driven is the Euclidean distance between 

corresponding pairs of points.  Finding the distance from a point to a line segment is also 

used in the Geometric Point-to-Curve Map Matching algorithm, but here finding the 

correct segment is less ambiguous because the lane of interest is automatically known [5].  

To distinguish between left and right offsets, by convention the offset value is defined to 

be negative when the Path Driven’s intersection is to the right of the Center Lane Path 

point.  Figure 7-4 illustrates the graphical calculations. 
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Figure 7-4.  The offset is found along a line perpendicular to the Center Lane Path at a 
particular point.  The distance along this perpendicular line from the Center Lane Path  
to the intersection with a segment of the Path Driven becomes the offset.  In this case, the 
Path Driven is left of the Center Lane Path at the position of interest, so the offset is a 
positive value. 
 
 The code enforces offset calculations to use monotonically increasing Path Driven 

segments, where “increasing” segments go forward through the path and the starting and 

ending indices of a segment each increase numerically.  Offsets can be found using the 

same Path Driven segment for two or more sequential Center Lane Path points.  

However, an offset calculation should never jump backwards to intersect a previous 

section of the Path Driven, otherwise the points in the new definition of the Path Driven 

would become out-of-order.  To enforce these rules, the calculation (found in 

Find_Lateral_Distance_Redo_Path_Driven.vi) of the offset for a single point in the 

Center Lane Path receives as input the first index of the last Path Driven line segment 

used (as reported by the last call to the same VI).  The segments tested can only advance 

as long as the Path Driven continues.  The search for the Path Driven line segment to use 

ends with the first Path Driven segment that the line perpendicular to the Center Lane 

Path intersects.  Doing so prevents skipping Path Driven segments that could otherwise 

be used (see Figure 7-5). 
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Figure 7-5.  The point shown in the Center Lane Path is positioned laterally from two 
places along the Path Driven.  However, the offset comes from the earlier Path Driven 
intersection, so that all the offsets that will be calculated through the turns of both paths 
are not skipped. 
 
 When all the offsets have been calculated, the Path Driven is redefined as a 

polyline connecting the resampled points.  Since those points were already on the original 

Path Driven, the shape of the resampled Path Driven is still reasonable.  This new 

definition of the Path Driven is as good as the last in terms of shape; the only reason the 

Path Driven is not generated from the beginning from a set of lateral offsets is because 

doing so makes it difficult to produce a smooth, drivable path.  The new Path Driven has 

its headings redefined.  The road detector must report heading corrections.  To simulate a 

road detector, heading corrections are calculated by subtracting each new Path Driven 

heading from the heading of the corresponding point on the Center Lane Path.  The file 

that handles redefining the Path Driven and finding lateral offsets is named 

Find_True_Offsets_Redo_Path_Driven.vi; Figure 7-6 summarizes its major features. 
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Figure 7-6.  The flowchart of Find_True_Offsets_Redo_Path_Driven.vi.  
Find_Lateral_Distance_Redo_Path_Driven.vi computes each individual offset. 
 
 Once the simulator computes the true lateral and heading offsets, a road detector 

can be simulated by adding zero-mean Gaussian errors to these values. 

Generate_Gaussian_Distribution_of_Offsets.vi works very similarly to the other VIs that 

generate Gaussian errors.  But since the offsets are already measured as relative 

displacements, the errors in offsets are directly added to the true offsets without having to 

move any points.  Heading corrections have errors added in just like headings do, but 

heading corrections are not set into the 0-360 degrees range.  As with other data sets, the 

errors in the offsets or the in the heading corrections may come from a series of standard 

deviations.  

 Because road detection values are relative (in offsets and heading corrections) and 

not absolute (in latitude/longitude positions and polar headings), they cannot be 

combined with bead and physical state data via the optimal estimation equations.  For 

readings to be fused at all, they must relate to each other in the same coordinate system 

[51].  To achieve this, the simulator combines road detection values with physical state 
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estimates (as well as combining their variances), thus producing a virtual road sensor that 

expresses belief about the Center Lane Path in absolute coordinates.  The beads 

separately represent a different belief concerning the same quantity.  The virtual road 

sensor estimates of the center of the lane can then be reconciled with the Center Lane 

Path estimates contained in beads to compute optimal corrected estimates of the center of 

the lane. Latitude_and_Longitude_Plus_Lateral_Offset.vi combines physical state values 

and road detection values to produce the virtual road sensor.  Since two stochastic 

sources are added to produce the new heading estimate, the variance of each of the virtual 

road sensor’s headings is the sum of the variances of its two components. 

 The magnitude of a lateral offset, as reported by the road detector, determines the 

Euclidean distance between the physical state point and the new virtual road sensor 

latitude/longitude position.  The sign of the offset tells the code whether the new position 

is left or right of the physical state measurement; by convention, a negative sign means 

the result should be left of the physical state point in order to get closer to a perception of 

the Center Lane Path.  Recall that “left” and “right” as terms cannot by themselves define 

the direction from one point to another.  Left and right are defined in terms of the current 

heading of the Center Lane Path, and the best simulated knowledge of that Center Lane 

Path heading comes from the bead that exists laterally (before Gaussian errors) from the 

current physical state point.  The virtual road sensor’s heading could also be used, but 

doing so would mean that the heading used to determine directions of left and right 

would have two sources of error instead of just one.  For the purpose of ignoring its 

influence in most of the tests, the bead heading’s standard deviation will be set very low. 

 When combining physical state and lateral offset data, care must be taken in 
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computing the resulting uncertainty (variance) in terms of latitude and longitude.  For 

example, if the lateral offset corresponds to a due north correction, the resulting virtual 

road sensor coordinate estimate would have a latitudinal variance equal to the sum of the 

physical state estimate’s latitudinal variance plus the road detector’s lateral offset 

variance.  However, the longitudinal variance would be equal to the physical state 

estimate’s longitudinal variance, unaffected by the lateral offset variance.  It is thus 

important to take into account the direction of the lateral offset to correctly compute the 

longitudinal and latitudinal variances contained in the virtual road sensor. 

 To compute the latitude/longitude variances for the virtual road sensor estimate, 

the road detector’s lateral offset variance is multiplied by the square of the cosine of the 

heading from the physical state point to the new virtual road sensor point.  In parallel, the 

same lateral offset variance is multiplied by the square of the sine of the same heading.  

These quantities are added to the physical state longitudinal and latitudinal variances, 

respectively.  Figure 7-7 illustrates how the position of the virtual road sensor estimate is 

computed.  Figure 7-8 summarizes the process through which the calculation happens. 

 

Figure 7-7.  The virtual road sensor point created by 
Latitude_and_Longitude_Plus_Lateral_Offset.vi is positioned laterally from the physical 
state point based on the heading tangent to the center of the lane and the offset 
magnitude.  The sign of the offset decides the relative direction from the physical state 
point to the virtual road sensor point. 
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Figure 7-8.  Latitude_and_Longitude_Plus_Lateral_Offset.vi uses road detection and 
physical state data to produce a new latitude, longitude, and heading, as well as the 
variances for each of those three pieces of data, thus creating a virtual road sensor. 
 
Section III: Road Detection Experiments 

 As Team Case learned with DEXTER, a robot is very likely to drive off the center 

of its lane when controlling itself autonomously.  These next experiments introduce a 

Path Driven different from the Center Lane Path.  In some cases, the simulator assumes 

that the Path Driven is the Center Lane Path, even though this is no longer true.  These 

older methods are performed for comparison with the cases that use road detection data to 

compensate for the differences between the Path Driven and the Center Lane Path.  Table 

7-1 summarizes the assumptions for using road detection data.  Note that the standard 

deviation for bead heading is very low, so that the distinction of left vs. right in road 

detection offsets will introduce negligible error when combining lateral offset data with 

physical state data. 

Type Data 

Path Path Driven is different from Center Lane Path, 
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Coordinates in Both Paths: 300 points, Spline Spacing: 100 

points 

Bead Errors 
,b GPSσ  > 0,  = ,b headingσ ε (i.e., positive but negligible), bias ≠  

0 in map registration tests, bias = 0 otherwise 

Physical State Errors 
,ps GPSσ > 0,  > 0, bias = 0 ,ps headingσ

Road Detection 

Errors 

,rd offsetσ > 0,  > 0 ,rd heading correctionσ

Table 7-1.  Road detection data is now a factor in the simulations. 
 
 Basic_Test_Offsets_Used.vi greatly resembles 

Basic_Test_Path_Driven_on_Center_of_Lane.vi, but the former creates and then uses 

road detection values.  The physical state data in Basic_Test_Offsets_Used.vi comes 

from the Path Driven instead of the Center Lane Path, since the two paths no longer 

match.  After the physical state and road detection data combine to produce the virtual 

road sensor, estimates concerning the Center Lane Path may be combined using the 

optimal estimation method.  Figure 7-9 shows the structure of 

Basic_Test_Offsets_Used.vi.  For the tests to come, the algorithms in 

Basic_Test_Offsets_Used.vi and in Basic_Test_Path_Driven_on_Center_of_Lane.vi are 

run in parallel on the same data in order to compare the results. 
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Figure 7-9.  Basic_Test_Offsets_Used.vi varies from 
Basic_Test_Path_Driven_on_Center_of_Lane.vi in that the former, shown here, creates 
and incorporates road detection data as shown. 
 
 Figure 7-10 shows that when beads are confident, more so than the other data, 

road detection is not really needed, because the beads already know where the Center 

Lane Path is.  However, beads cannot always be guaranteed to be of such good quality.  

Figures 7-11 and 7-12 show cases when the physical state or the road detection data are 

most confident, respectively.  Recall that using road detection to influence physical state 

actually increases the physical state variances.  Because of this, and as the figures 

illustrate, using road detection does not increase confidence.  What road detection does 

instead is center the bead results on the Center Lane Path as desired.  Without the benefit 

of the road detector, the robot could only infer that its beads should lie on the Path 

Driven, as reported by the physical state estimates.  Figure 7-13 reinforces the idea that 

using road detection improves identification of the Center Lane Path by accounting for 

discrepancies between it and the Path Driven.  In Fig 7-13, the physical state and road 

detection data had equally strong confidences, and were both more confident than the 
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beads. 

 
Figure 7-10.  This figure shows beads after ten iterations, with  = 1 m,   = 6 
m, and  = 5 m.  When the confidence in the beads is noticeably the strongest of all 
confidences, little input from the other sensors is used, and road detection can be 
ignored.  Notice, however, that after ten iterations a portion of the beads that used no 
road detection started to drift slightly towards the Path Driven and away from the Center 
Lane Path. 

,b GPSσ ,ps GPSσ

,rd offsetσ

 

 
Figure 7-11.  This figure shows beads after ten iterations, with  = 6 m,   = 
0.5 m, and  = 5 m.  Because using the road detection data added noticeable error 
to the physical state, beads that used road detection became more variable than beads 
that ignored it.  However, the path that ignored road detection is also wrong, and goes 
along the Path Driven instead of trying to find the Center Lane Path. 

,b GPSσ ,ps GPSσ

,rd offsetσ
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Figure 7-12.  This figure shows beads after ten iterations, with  = 6 m,   = 5 
m, and  = 0.5 m.  Road detection added minimally to the physical state’s 
variances, but its inclusion allowed beads to follow the Center Lane Path as desired; 
ignoring road detection led to beads following the Path Driven instead. 

,b GPSσ ,ps GPSσ

,rd offsetσ

 

 
Figure 7-13.  This figure shows beads after ten iterations, with  = 6 m,   = 1 
m, and  = 1 m.  With the combination of the physical state and the road detection 
(the virtual road sensor) at a relatively high confidence, the identified paths were fairly 
clean.  Using road detection found the Center Lane Path nicely, while ignoring road 
detection only reinforced the Path Driven. 

,b GPSσ ,ps GPSσ

,rd offsetσ

 
 In previous experiments in discovering map registration, the assumption was that 

the robot would need to be forced to drive down the center of its lane.  Now assume 
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instead that this restriction is lifted, and the robot is driving autonomously and likely 

imperfectly.  Without road detection, the robot attempts to drive based on the biased 

beads and cannot realize that it may be literally running off the road.  Furthermore, 

without road detection, the physical state data remains based on the Path Driven and 

cannot provide an estimate by itself of where the Center Lane Path should be.  Therefore, 

an autonomous robot without road detection cannot detect its global bias in map 

registration. 

Applying road detection, however, allows the previous algorithms in discovering 

map registration to be used with a robot driving autonomously.  As before, an alternative 

Center Lane Path estimate is compared with a matching bead in order to determine the 

two shifts (north-south and east-west) between those two points.  But now, the road 

detection data combines with the physical state data and creates a virtual road sensor in 

order to compare those estimates of points on the Center Lane Path with the bead 

positions.  Figure 7-14 illustrates how road detection can be used in discovering map 

registration. 
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Figure 7-14.  Offsets_with_Corrected_True_Data_Running_Bead_Bias.vi discovers bead 
biases by taking into account the road detection data.  For more mathematical details on 
how to calculate shifts, see the previous chapter on map registration.  The generation of 
the Center Lane Path and the Path Driven is the same as in Figure 7-9. 
 
 As Figure 7-14 suggests, these experiments use the running bead bias method.  

The errors in each sensor are recalculated for each run, but the underlying paths (the 

Center Lane Path and the Path Driven) are not.  Figure 7-15 shows that, provided the 

correcting force of road detection, the global bead bias can be estimated as before, even 

though the robot is not driving on the center of its lane.  Furthermore, the statistical 

variances in the experimental results follow the algorithm’s anticipated confidences in its 

bias estimates. 
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A B  
Figure 7-15.  This data was collected over 1000 runs with  = 4 m,   = 3 m, 
and  = 2 m.  Graph A shows the discovery of an east-west bias 4.3 m west, with 
each run expecting a variance of 0.089 m

,b GPSσ ,ps GPSσ

,rd offsetσ
2 in its bias estimate and the graph overall 

displaying a variance of 0.087 m2.  Graph B shows the discovery of a north-south bias 
2.6 m north, with each run expecting a variance of 0.090 m2 in its bias estimate and the 
graph overall displaying a variance of 0.090 m2. With road detection, a human need not 
drive down the Center Lane Path in order for a global bead bias to be discovered.  
 

 Finally, it should be noted that the directions of perceived lateral offsets were 

computed based on high-quality estimates of bead heading, and this might not always be 

practical.  Figure 7-16, however, shows that a higher bead heading variance did not have 

a noticeable effect on the results; their character, when compared with previous, similar 

figures, remained the same.  One possible explanation is that since offsets are generally 

only a few meters, the effect of moving at an incorrect angle may be minimized.  

Nevertheless, a practical application may unavoidably degrade the knowledge of left vs. 

right relative to the Center Lane Path, and additional sensor information may not be able 

to determine this center lane heading while driving.  The challenge in this scenario would 

be to determine exactly how the variance in the bead heading (in degrees) adds to the 

variances of position in the virtual road sensor measurements. 
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A B  

C  
Figure 7-16.  Graph A shows ten iterations of bead improvement with  = 6 m,  

 = 1 m, and  = 1 m.  This time,  = 20 degrees (with = 2 
degrees and  = 2 degrees).  Graph B shows east-west bias estimates 
collected over 1000 runs using a bias 4.3 m west and  = 4 m,   = 3 m, 

 = 2m, and  = 20 degrees.  The data on Graph B has a variance of 0.090 
m

,b GPSσ

,ps GPSσ ,rd offsetσ ,b headingσ ,ps headingσ

,rd heading correctionσ

,b GPSσ ,ps GPSσ

,rd offsetσ ,b headingσ
2, while each run expected a variance of 0.093 m2 in its bias estimate.  Overall, the poor 

bead headings did not have an obvious effect.  However, poor starting bead data allows 
Graph C to illustrate that headings, like GPS data, need road detection to approximate 
the data in the Center Lane Path instead of in the Path Driven.  Graph C is from the 
same test as Graph A. 
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Chapter 8: Discovering Road Detection Offset 

Variances 

Section I:  Calibrating Road Detection Offset Variances 

 In the previous chapter, road detector information (relative heading and lateral 

offset error measurements) was merged with physical state estimates based on presumed 

Gaussian noise and knowledge of variances.  Bead variances were also used in the overall 

process; these variances can be approximated by a close examination of maps.  For the 

physical state estimates, a combination of sensor sources may yield latitudes, longitudes, 

headings, and the variances of each (DEXTER’s Physical State Observer, for example, 

performed such calculations).  To incorporate road detector data, it is also necessary to 

estimate the variance of the road detector uncertainty.  This is particularly difficult for 

vision-based road detection, as errors in road detection vary wildly and these errors are 

not easily describable in terms of zero-mean Gaussian noise.  This chapter offers some 

suggestions for deriving the variances of road detection offsets as a function of more-

easily evaluated indicators.  Similar methods could potentially apply to discovering the 

variances of road detection heading corrections. 

 A road detection system must have sensory inputs, such as camera images or 

LIDAR scans.  Raw data from these sensors is analyzed in terms of some type of pattern 

matching.  In this process, there are multiple cues indicating quality of the road 

identification.  These may include consideration of how well the current fit conforms to 

expectation, how strongly lines on the road are identified, the RMS error of line fits, 
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parallelism and distance between identified curbs, and others.  While none of these cues 

fulfills the role of a variance estimate, each of them can contribute to an estimate of the 

lateral offset and heading error variances. 

 In the present analysis, it is assumed that there are multiple indirect cues that have 

bearing on the resulting measurement variance.  Each of these numerical indicators will 

be referred to as a “feature.”  A feature can represent any quantity that has some 

influence on the road detection system.  In these simulations, a feature with a higher 

value (all other features being held constant) translates into a higher variance in the road 

detection system.  Further, the feature values have been scaled to fall in the range from 

zero to one.  Any features may be scaled and inverted to follow this scheme without loss 

of generality.   For example, if a feature measured the visibility of painted road lines in an 

image, fewer pixels assigned to road lines in one image versus another would assign a 

higher value (a value closer to one) to the road line feature in the former case. 

 It is assumed that there is some multivariable and possibly quite nonlinear 

mapping from feature values onto the lateral offset variance.  It should be noted that 

variance, in this case, is not truly random noise.  For a given snapshot of road detection 

data, the computed lateral offset is repeatable (i.e. deterministic).  However, for larger 

feature values, the computed result is less trustworthy.  It is desired to assign an 

equivalent variance that would be suitable for optimally merging road detection data with 

physical state and bead location data. 

 In this chapter, a method is proposed for learning an appropriate mapping from 

available cues (features) to road detector variances. The method is evaluated in 

simulation.  In these simulations, the road detector is assumed to have three easily-
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computed features that should have bearing on the credibility of the road detector lateral 

offset estimates.  (The method applies to any number of features). 

 A set of features captured at one point in time maps to a standard deviation (and 

therefore a variance) in the road detection system.  Since a smaller feature indicates better 

data, the road detection standard deviation should increase and decrease in value 

monotonically with each individual feature.  However, some features may be more 

important to the road detection standard deviation mapping than others.  For example, a 

feature that detects the visibility of road lines may affect the road detection standard 

deviation more than a feature that tries to determine the color of those lines.  Hence, the 

influences of the features on the road detection standard deviation are not equal. 

 In the simulated evaluations presented here, the mapping from features onto a 

standard deviation is defined according to Equation 8-1.  This mapping satisfies the 

presumption that the variance increases monotonically with each feature.  More complex, 

nonlinear mappings could be assumed, but this is adequate for the present analysis.  It 

should be noted that it is only presumed that there is some underlying mapping from 

features onto variance.  The exact form of that mapping is not known a priori to the 

learning algorithm, and the algorithm does not assume any model for this mapping. 

 ( )
N

rd i i
i

f cσ = •∑  

Equation 8-1.  For one point of road detection data, each feature f is multiplied by its 
corresponding constant c up to N features; in these simulations, N = 3.  The sum of these 
products gives the standard deviation of a road detection offset value.  Optionally, a 
constant could be added to the sum above. 
 
 For simulation analyses, the influence coefficients in Equation 8-1 are generated 

at random, but held constant throughout a given simulation.  These influence coefficients 

remain unchanged throughout the calibration and testing phases of any one simulation, 
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but are regenerated for each subsequent simulation. The random influence coefficients 

can take values from zero to some user-defined maximum.  The larger these coefficients, 

the higher the road detection standard deviations can be in a given simulation. 

 In order to perform calibration, road detection data must be gathered under special 

circumstances.  The road detection calibration readings should capture a range of possible 

sets of features, in order to better characterize the behavior of the system.  For similar 

reasons, calibration data should include many samples.  Each simulation generates a 

random feature set 1000 times in order to perform calibration.  By assumption, 

calibration readings occur while the robot drives on the center of a lane (zero meters 

offset), so that any offset reported by the road detection system constitutes an offset error.  

As discussed previously, robots can indeed drive down the center of the lane when 

forced; calibration need not occur in autonomous driving mode. 

 Discovering_Road_Detection_Variance.vi generates calibration data in 

simulation, creating 1000 feature set readings and mapping each feature set to a road 

detection standard deviation.  Each road detection standard deviation then translates into 

a Gaussian offset error.  By this process, errors are added to the virtual road detector 

lateral offset data.  In simulation, only the indirect measures of road detector uncertainty 

(the three feature values) are exposed to the system; the corresponding variance 

responsible for generating an offset error is not known.  It is desired to discover the 

mapping from features to variances. 

 The 1000 offset errors from calibration have their own statistics, including an 

error standard deviation that describes how these offset errors vary.  This error standard 

deviation, when squared, produces a general estimate of the variance in the road detection 
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system.  This simple approximation of the road detection variance will be referred to as 

the naïve variance, as produced by the naïve method.  In the naïve case, the road detector 

is assumed to have a constant variance.  Since the mapping from features onto variance is 

unknown, the feature values are ignored.  The naïve case thus loses the opportunity to 

recognize when the road detector data is particularly trustworthy, and at the other 

extreme, it may put more faith in the road detector than is warranted.  An improvement 

over the naïve case is a learned mapping from features onto variances.  The method used 

here to learn this mapping is Lloyd's k-means clustering algorithm, as described in [52].  

First, some user-specified number of clusters is created.  The centroid of each new cluster 

consists of a random feature set, where each feature is between the maximum and 

minimum values of that same feature that were observed during calibration. 

 Once clusters exist, the code examines each feature set in the calibration data.  

Each feature set will be closest, in terms of Euclidean distance, to one of the cluster 

centroids.  If the closest cluster does not already contain this feature set as one of its 

members, the data point is added, and the feature set moves the centroid (the 

characteristic feature set) of the cluster.  If a specific sample was formerly assigned to a 

different cluster than the closest cluster, this data point is removed from the former 

cluster, altering that cluster’s centroid.  Thus, this process alters the centroids of both 

affected clusters.  At any one time, a cluster’s centroid consists of a set of features, where 

each feature is averaged from the cluster’s members’ values of that feature.   

 Available data is re-clustered iteratively until all clusters are stable (or, 

theoretically, until some maximum number of iterations, though that restriction was not 

needed for these simulations).  After clustering, the statistics of each cluster may be 
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calculated.  Cluster statistics depend on member data, so the code removes empty clusters 

from the overall cluster list.  The final clusters each hold a population of samples that 

have similar feature sets.  Each cluster is analyzed to infer the mapping between features 

and variance.  The representative feature set of a given cluster is its centroid (the average 

of all feature sets from the population of samples within a cluster).  It is desired to 

associate this average feature set with an appropriate measurement variance.  To do so, 

member properties within the respective cluster are analyzed.  Each member of the 

cluster is a calibration sample with a known lateral offset error.  A representative cluster 

variance is computed as the variance in lateral offset errors using all members of that 

cluster.  In this way, each cluster is associated with a corresponding representative 

variance.   

 Once the clusters are trained, the simulation can consider the computable feature 

values for a road detector sample with unknown error.  These features are used to find the 

closest trained cluster.  The variance associated with the closest trained cluster is then 

assumed to apply to the current measurement.  In order to evaluate this method, the 

simulated robot drives a test path (using the same hidden mapping from features onto 

variances).  The simulator creates new feature sets for some user-specified number of test 

path points.  The feature sets on this test path follow one of three patterns.  In the first 

case, code creates each feature set on the test path randomly, as was the case during 

calibration.  For the second situation, each feature set is a copy of the feature set that 

produced the maximum road detection standard deviation observed during calibration 

(emulating poor road detector performance).  The final, third case resembles the second, 

except the feature set copied produced the minimum road detection standard deviation 
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observed during calibration (emulating good road detector performance).  The last two 

cases represent extremes where, after calibration, the robot drives on roads that are hard 

to sense (the second case) or easy to sense (the third case). 

 Each feature set on the test path maps onto a road detection standard deviation per 

a known (but hidden) mapping—the same hidden mapping that was used for calibration.  

For validation purposes, the actual standard deviations used to generate the lateral offset 

errors are recorded, although this information is not exposed to the methods under test.  

These are called the “true” standard deviations.  Each feature set on the test path also lies 

closest to the centroid of one of the trained clusters.  The algorithm assumes that each 

road detector sample may have a variance (equivalently, standard deviation) equal to the 

variance associated with the closest cluster.  Recall that the naïve road detection standard 

deviations were already calculated, and also that method assumes that the road detector 

variance is constant throughout a path.  In contrast, the K-means clustering algorithm has 

K clusters, each with an associated variance.  Thus, rather than assuming a single 

variance, the clustering method assigns one of K variances to each sample point. 

After Produce_Feature_Standard_Deviations_for_Path.vi completes the simulation of test 

path uncertainties, there are three lists of road detection standard deviations that could be 

believed for the road detection offsets in the test path: the true standard deviations from 

the (hidden) feature mappings, the standard deviations assigned by clustering, and the 

naïve standard deviations (constant for all samples). 

 Comparison_of_Lateral_Measurements.vi compares the results of believing in 

turn each of the three possible lists of road detection standard deviations.  First, the VI 

generates at random the error-free offsets of the test path, which are the lateral offsets that 
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sensors would report if they were perfect.  For simulation purposes, the maximum pre-

error lateral offset was three meters; in the U.S., the most common lane width is twelve 

feet [53], which is a little more than three and a half meters. As described above, random 

feature values were generated, and these produced corresponding road detection 

variances per the hidden mapping.  These variances were recorded for comparison, and 

they were used to generate Gaussian-distributed offset errors for (simulated) lateral 

displacement measurements.  The resulting offsets, errors included, represent the offsets 

reported by the road detection system. 

 In order to compare the effects of using each of the three different lists of 

uncertainties, the simulations require some other lateral offset measurement that can be 

combined in turn with each separate list of uncertainties.  This independent lateral offset 

measurement could be calculated from comparing beads with physical state data, for 

example.  For simplicity and to preserve generality, the simulations do not care about the 

source of these measured offsets.  The user sets the standard deviations for the measured 

offsets throughout the test path; using these standard deviations and the true lateral 

offsets, the reported measured offsets contain Gaussian errors, and the variance of each 

measured offset is known.  For simplicity, the same standard deviation is used for every 

measured offset in the test path. 

 To invoke the optimal estimation equations, it is necessary for the information 

sources to satisfy the assumptions of zero-mean Gaussian noise, and it is also necessary 

to know the variance of the Gaussian noise.  In the current evaluations, the virtual road 

detector measurements include Gaussian noise, but the variance of that noise is unknown 

to the system.  Nonetheless, the variances used to generate the road detector 
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measurements can be analyzed as if this information were available, and use of this 

information yields the theoretically optimal use of the road detector data.  This 

computation, using the “true” variances, is used as a benchmark constituting an upper 

bound on the performance of a variance-learning algorithm.  On the other hand, assuming 

a constant variance for the road detector (the naïve case) constitutes a lower bound for a 

learning algorithm.  The learning algorithm should, at a minimum, perform no worse than 

the naïve case, and ideally it would rival the ideal case. 

 For every point in the test path, the measured offset and its corresponding known 

variance combine with the road detection offset and each of the three beliefs about the 

current road detection variance.  The three combinations occur independently, so that 

none of the three variance beliefs influences the behavior of either of the others.  The true 

standard deviations, the clustering standard deviations, and the naïve standard deviations 

all become variances through squaring.  Each of the three road detection variances uses 

the same value for the lateral road detection offset, an erroneous value following the true 

road detection standard deviation.  Therefore, the differences in road detection variances 

are the only differences when the optimal estimation equations combine two lateral offset 

measurements three separate times.  Figure 8-1 summarizes how calibration and test data 

are generated and used. 
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Figure 8-1.  Calibrating road detection data makes both the naïve and clustering 
methods possible.  Arbitrary measured offsets allow the naïve and clustering methods to 
be compared with the effects of using the actual variances present in the road detection 
system.  Recall that “Average N Measurements” refers to a VI that performs optimal 
estimation. 
 
 Traversing the test path produces three outputs, each a list of lateral offset 

estimates affected by the variances used to produce them.  The code subtracts the true 

lateral offsets from each list of lateral offset estimates.  The lateral offset errors following 

true road detection standard deviations, clustering standard deviations, and naïve standard 

deviations each have a root mean square (RMS) value.  The RMS values of each method 

can then be compared for analysis.  The measured offsets similarly have an RMS value 
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characterizing how they deviate from the true lateral offsets.  Since the true lateral offsets 

have no errors, any set of true lateral offsets always has an RMS of zero meters. 

Section II: Analysis of Clustering and Naïve Calibration Methods 

 As stated, these simulations assume three features as inputs into the road detection 

system, and pre-error lateral offsets up to three meters on the imaginary road.  Since the 

calibration process takes 1000 readings, the simulations seeded one hundred clusters in 

each run.  Using too few clusters would have little advantage over the naïve method, 

while using too many clusters may produce clusters with few members and therefore not 

very robust member statistics.  Further work could experiment with determining the 

optimal number of clusters to use.  Indeed, the clustering performed by the simulations 

does not always produce variances closer to the true road detection variances than the 

naïve variances are.  However, clustering variances are nonetheless usually better than in 

the naïve case, and those runs presented in Table 8-1 analyze the usefulness of good 

clustering. 

 Table 8-1 provides data from several runs of the simulator.  The specific values of 

the lateral offsets do not matter, since the analysis is concerned instead with the lateral 

offset errors.  In order to make graphical analysis clearer, the test paths used for Table 8-1 

were always fifteen points long.  The variances in the measured offsets were consistent 

throughout each test path; if these values varied, the test path would consist of a set of 

sub-problems, each one characterized by the measured offset variance on the relevant 

stretch of road.  Recall that the three types of road detection offset variances (true, naïve, 

and cluster) are all attempting to improve (i.e., decrease) the plain RMS value for the 

measured offsets. 
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1 400 0.30 31.53 0.76 17.31 0.69 1.07 0.68 

2 400 259.87 79.35 176.35 16.77 13.31 15.42 13.93 

3 169 129.13 46.19 173.87 13.24 7.78 8.82 7.90 

4 4 0.071 19.68 0.55 1.52 0.27 1.26 0.29 

5 400 Varies 20.11 Varies 24.70 3.90 3.92 3.97 

6 9 121.55 33.63 146.45 3.29 3.34 4.22 3.31 

7 0.09 0.08 24.97 0.53 0.29 0.20 0.29 0.26 

8 0.09 Varies 10.56 Varies 0.32 0.32 0.32 0.34 

9 9 Varies 41.39 Varies 2.94 2.23 2.63 2.30 

Table 8-1.  A set of tests showing how various definitions of the road detection offset 
variances can hurt or improve the RMS value of errors in an independent measured 
offset.  The three columns on the right all characterize errors in lateral offsets after 
including some sort of road detection data. 
 
 Rows 1-4 show cases where the true road detection variances are less than the 

variances of the measured offsets (Row 1 drastically so).  Since the true road detection 

variances are consistent, the clustering variances are as well; if Centroid X is closest to 

Feature Set Y once, that condition will always be true for matching feature sets and the 

same cluster list.  In all four rows, the naïve variances are farther from the true road 

detection variances than the clustering variances are.  This improved accuracy makes the 
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RMS values using clustering closer than the naïve RMS values to the true road detection 

variance RMS values.  Note that this RMS improvement still occurs in Row 3, where the 

true road detection variances are more comparable to the measured offset variances. 

 The naïve method in Rows 2 and 3 made the optimal estimation equations 

incorrectly believe the road detection data too strongly; in Rows 1 and 4, the naïve 

method’s belief was not strong enough. The results of each method can also be observed 

with regards to each point on the test path.  Figure 8-2 graphs information for the test 

path that produced the data in Row 4.  Note that in some cases, believing the naïve lateral 

offset estimate could lead a robot to drive more than two meters off of the center of the 

road, while the clustering method would keep the robot driving closer to a half a meter 

from the center of the lane.  Depending on the road, this difference in performance may 

mean the difference between safety and disaster. 

 
Figure 8-2.  Lateral offset error data for Row 4 of Table 8-1.  Since this is a graph of 
errors, the perfect case would be a flat, horizontal line at 0 m.  The three lines resulting 
from combining erroneous data under different beliefs are, as expected, between the road 
detection errors on one end and the measured offset errors on the other.  Note that the 
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errors using true (road detection) variances are the goals (the best expected behavior), 
and that the errors using cluster variances are between the true road detection variance 
errors and the naïve variance errors. 
 
 In Row 6, the true road detection variance was consistently poorer than the 

measured offset variance along the test path.  Once again the naïve method believed the 

road detection data too strongly, but in this case the naïve method actually led to a worse 

RMS value than the RMS value of the measured offsets.  The clustering method, since its 

variances were closer to the true road detection variances, instead allowed the code to 

suitably ignore road detection’s contribution.  However, Row 7 shows that the measured 

offset confidence can be high enough that the naïve method’s high uncertainty may not 

always have an effect.  In Row 7, the true road detection variance was comparable to that 

of the measured offset variance, so the true and clustering road detection variances 

caused little change. 

 The road detection features may vary along a test path; in Rows 5, 8, and 9, those 

variations were random.  When the measured offset variances were large (Row 5), the 

measured offset RMS value had room to improve, but the clustering method did not 

noticeably outperform the naïve method in Rows 5, 8, or 9.  Using more points on the test 

path does not change this outcome.  When the test path’s true road detection variances are 

random, assuming the average variance (as the naïve method does) works about as well 

as the clustering method over the course of the test path.  Figure 8-3 shows that along the 

test path, the clustering method may still be better than the naïve method at particular 

path points. 
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A  

B  
Figure 8-3.  Lateral offset error data for Row 5 of Table 8-1.  There are points on the test 
path where the clustering method does a better job than the naïve method of improving 
the lateral offset estimate for that path point; Graph B shows just a subset of Graph A in 
order to highlight that principle.  Yet overall, the naïve variance method’s RMS value 
was close to that of both the true road detection variance and the clustering variance 
methods. 
 
 The naïve method avoids the complications of the clustering method, including 

the further experimentation that the clustering method desires.  Additionally, using the 

naïve method often improves the measurement offsets, which is a clear step above having 
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no idea what the road detection variances are.  In some cases, the naïve method is just as 

good as the clustering method, though importantly, the clustering method is never 

measurably worse.  Yet, when a test path has consistent quality in road detection offsets, 

and that quality is higher than that of the measured offsets, the clustering case makes 

better use of the calibration information than the naïve method.  The same is true when 

the true road detection variances are much higher (relatively) than the variances in the 

measured offsets throughout the test path.  Therefore, the clustering method is more 

flexible than the naïve method, a valuable quality since in reality the confidence of road 

detection data along any test path begins as an unknown. 
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Chapter 9: Summary and Future Work 

 The research presented here started with its roots in DEXTER, Team Case’s entry 

into the 2007 DARPA Urban Challenge.  Beads were designed specifically for DEXTER.  

Through repeated tests in preparation for the Urban Challenge, the bead structure itself, 

as well as bead generation and bead communication, proved accurate and adequate for 

the DEXTER project.  DEXTER also verified the teach-and-playback method outlined in 

this paper, and ran successfully on beads preprocessed via the described preprocessing 

method. 

 A more general solution should perform online bead updates.  A different but 

related problem could instead improve the physical state readings (using the map and 

potentially other sources), but in this paper the focus remained on updating beads.  

DEXTER’s personal simulator verified one proposed online bead update solution, the all-

or-nothing update method.  The simulator had some limitations when compared with 

running on the actual robot, but clearly the errors in bead updates caused by coordinating 

data with the localization software would need to be addressed in a physical robot.  

Additionally, the all-or-nothing update method always throws away some information.  

Making use of all information, and thus performing partial updates, would lead to a more 

knowledgeable bead map. 

 Work presented here extended past the Urban Challenge competition through the 

use of simulations to explore the issue of fused data map updates.  Ideally, the algorithms 

developed in simulation would be tested in physical field trials.  One challenge when 

abandoning simulations will be to gather data from different sources that all correspond 
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to the same sample point.  Simulations started by considering only beads and physical 

state data, and their respective variances.  Since beads may be biased, work was done that 

(in simulation) could successfully identify both north-south and east-west biases.  If 

needed, future work could investigate the issues involved if a map were shrunk, stretched, 

and/or rotated from its desired state.   

 Simulations using only beads and physical state data are ignorant of road 

detection, and must unrealistically assume that a robot is always driving on the center of 

its lane.  Road detection systems report relative data, contrary to the beads and physical 

state data that retain absolute latitude/longitude positions.  In response, this paper 

introduced a method of using road detection information in fused data bead map updates.  

To translate these simulations into practice, additional work would be required for the 

road detection system to output computable features that are expected to influence road 

detection credibility. 

 The online fused data bead updates all relied on knowing the variances in beads, 

physical state data, and road detection data.  Though road detection variances tend to be 

the most difficult to discover, more work could also address finding variance values for 

beads and physical state in the best ways available.  Because road detection variances are 

especially tricky, this paper concluded by making suggestions on how to derive such 

variances from the inputs available to a road detection system.  A means was proposed 

for inferring variances for lateral offset measurements; learning variances in the heading 

corrections of a road detection system would require additional work. 

 Clustering was proposed as a method to infer road detection offset variances from 

available cues.  This method was compared to an alternative that assumes a fixed 
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variance associated with road detector measurements (the naïve method).  The clustering 

method itself, while appearing to provide some benefit over the naïve method, can be 

investigated further.  There may be some optimal number of clusters for certain 

conditions.  Recordings from physical experiments may illuminate what kind of 

relationship to reasonably expect between calibration and test data. Real-life results may 

also further restrict the randomness of the calibration data that can be practically 

anticipated.  Finally, while clustering certainly suggests a solution, there may be other 

unsupervised learning techniques suited to the task. 
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