

HARDWARE IMPLEMENTATION OF ERROR CONTROL DECODERS

by

BAINAN CHEN

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Thesis Adviser: Dr. Xinmiao Zhang

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

August, 2008

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

__

candidate for the ________________________________degree *.

(signed)___
 (chair of the committee)

 __

 __

 __

 __

 __

(date) _______________________

*We also certify that written approval has been obtained for any
proprietary material contained therein.

Table of Contents

List of Tables v

List of Figures vi

Acknowledgments viii

Abstract ix

Chapter 1. Introduction 1

1.1 Overview . 1

1.2 Summary of the Motivations and Contributions 1

1.2.1 FPGA Implementation of the Factorization Step in Soft-
decision Reed-Solomon Decoding 1

1.2.2 Error Correction for Multilevel NAND Flash Memories
Using Reed-Solomon Codes 3

1.3 Outline of the thesis . 4

Chapter 2. FPGA Implementation of a Factorization Processor
for Soft-decision Reed-Solomon Decoding 6

2.1 Introduction . 6

2.2 Algebraic Soft-Decision RS Decoding 9

2.3 Root-Order Prediction-Based Architecture 11

2.4 Coefficient Storage and Transfer for Parallel Polynomial Updating 16

2.5 Overall Factorization Architecture 22

2.6 Implementation Results . 26

2.7 Summary . 27

ii

Chapter 3. FPGA Implementation of a Factorization Proces-
sor for Soft-decision Bit-level Generalized Minimum
Distance Reed-Solomon Decoding 28

3.1 Introduction . 28

3.2 The BGMD Decoding Algorithm 29

3.3 Factorization Architecture for BGMD Decoding 31

3.4 Implementation Results . 39

3.5 Summary . 40

Chapter 4. FPGA Implementation and In-circuit Verification of
the Factorization Processors 41

4.1 Introduction . 41

4.2 Overall Design Flow . 41

4.3 In-circuit Verification using FPGA Hardware Platform 43

4.4 In-circuit Verification of the Factorization Processors 45

4.5 Summary . 46

Chapter 5. Error Correction for Multilevel NAND Flash Mem-
ory using Reed-Solomon Codes 47

5.1 Introduction . 47

5.2 Flash Memory Models and Gray Mapping 50

5.2.1 Modeling of Cell Threshold Voltage in Multi-level Flash
Memory . 50

5.2.2 Gray Mapping and Detection 51

5.3 Architectures for RS and BCH Decoders 52

5.3.1 Syndrome Computation 54

5.3.2 Key Equation Solver . 56

5.3.3 Chien Search and Forney’s algorithm 59

5.3.4 Computation Scheduling 62

5.4 Hardware Complexity and Throughput Comparisons 62

5.5 Summary . 66

Chapter 6. Conclusions and Future Research 67

6.1 Conclusions . 67

6.2 Future Research Directions . 68

iii

Bibliography 70

iv

List of Tables

2.1 Resource Utilization on a Xilinx XC2V1000-6 FPGA 27

3.1 Resource Utilization on a Xilinx XC2V1000-6 FPGA 39

5.1 Mean and deviation for the threshold voltage levels in a 2-
bit/cell MLC flash memory . 50

5.2 Gate counts and critical paths for the building blocks in the
(828, 820) RS decoder . 63

5.3 Gate counts and critical paths for the building blocks in the
(8246, 8192) BCH decoder . 63

v

List of Figures

2.1 Algebraic soft-decision RS decoding architecture 9

2.2 An example of a root tree for the factorization 13

2.3 Detailed architectures of the RC3 unit 14

2.4 Detailed architectures of the exhaustive search unit 15

2.5 Detailed architectures of the MRC2 unit 16

2.6 Polynomial updating in the factorization 17

2.7 Detailed architectures of the PU unit 18

2.8 Coefficient storage and transfer scheme 19

2.9 Hardware architecture for the polynomial updating 21

2.10 The factorization architecture 23

2.11 Details of the top-level state machine for the factorization pro-
cessor . 25

3.1 Root trees for factorization with maximum Y -degree as two. . 31

3.2 Root computation for degree two polynomial (RC2) 33

3.3 The BGMD factorization architecture 34

3.4 Detailed architectures: a) RC b) PU 35

3.5 Transformations of polynomial coefficients in an iteration level
with a second-order root . 36

3.6 Details of the top-level state machine for the BGMD factoriza-
tion processor . 38

4.1 Overall design flow . 42

4.2 Detailed architecture of the co-simulation 44

4.3 Detailed architecture of the high-speed prototyping 44

5.1 Cell threshold voltage distribution model for 2-bits/cell MLC
flash memories . 50

5.2 BER performance for 2-bit/cell MLC flash memories 51

5.3 RS/BCH decoder architecture 53

vi

5.4 Syndrome computation: a) serial architecture b) p-parallel ar-
chitecture . 54

5.5 Ultra folded RiBM architecture 58

5.6 Architecture for Chien search and error magnitude computation 60

vii

Acknowledgments

First and foremost, I wish to thank my advisor, Professor Xinmiao

Zhang, for her guidance and support throughout my studies and research at

Case Western Reserve University. I am very grateful for her recognition, in-

spiration, and the exposure and opportunities that I have received during the

course of my study.

I would also like to thank Professor Christos Papachristou and Professor

Daniel Saab for their support as members of my defense committee.

My thanks also go to the members of our group, particularly, Jiangli

Zhu and Lan Yang for many useful discussions during the course of the work.

viii

Hardware Implementation of Error Control Decoders

Abstract

by

BAINAN CHEN

In this thesis, an FPGA implementation of a factorization processor

for algebraic soft-decision Reed-Solomon (RS) decoding is first presented. The

design is based on the root-order prediction architecture and extensible for the

factorization of polynomials with designated degrees. Parallel processing is ex-

ploited to speed up the polynomial updating involved in the factorization. To

resolve the data dependency issue in parallel polynomial updating, an efficient

coefficient storage and transfer scheme with small memory requirement and

low latency is proposed. Synthesis results show that the factorization proces-

sor for a (255, 239) RS code with maximum multiplicity four can achieve an

average decoding speed of 226 Mbps on a Xilinx Virtex-II FPGA device when

the frame error rate is less than 10−2.

Next, an FPGA implementation of a factorization processor for alge-

braic soft-decision bit-level generalized minimum distance (BGMD) RS decod-

ing is presented. The BGMD factorization processor utilizes a low-latency and

prediction-free scheme for root computation. Furthermore, parallel processing

ix

architectures and efficient coefficient storage schemes are employed to reduce

the latency. Synthesis results show that the BGMD factorization processor for

a (255, 239) RS code with maximum multiplicity two can achieve a decoding

speed of 815 Mbps on a Xilinx Virtex-II FPGA device.

Prior research efforts have been focusing on using BCH codes for error

correction in multi-level cell (MLC) NAND flash memory. However, BCH

codes often require highly parallel implementations to meet the throughput

requirement. As a result, large area is needed. In this thesis, RS codes are

proposed to be used for the error correction in MLC flash memory. A (828, 820)

RS code has almost the same rate and length in terms of bits as a BCH (8248,

8192) code. Moreover, it has at least the same error-correcting performance in

flash memory applications. Nevertheless, with 70% of the area, the RS decoder

can achieve a throughput that is 121% higher than the BCH decoder. A novel

bit mapping scheme using Gray code is also proposed. Compared to direct

bit mapping, the proposed scheme can achieve 0.02 dB and 0.2dB additional

gains by using RS and BCH codes, respectively, without any overhead.

x

Chapter 1

Introduction

1.1 Overview

Error-correcting codes (ECC) are widely used in digital communica-

tion systems and data storage to achieve highly reliable data transmission and

storage. With the increasing demand for high-performance and low power sys-

tems, efficient hardware design and implementation of error-correcting codes

become more and more important.

In this thesis, we will focus on the efficient hardware implementation

and application of Reed-Solomon (RS) Codes. Two topics of the hardware

implementation and application of RS codes are presented. These include

the FPGA implementation of the factorization step for algebraic soft-decision

(ASD) RS decoding and the application of RS codes in the error correction of

multi-level cell (MLC) NAND flash memories.

1.2 Summary of the Motivations and Contributions

1.2.1 FPGA Implementation of the Factorization Step in Soft-decision

Reed-Solomon Decoding

RS codes are among the most widely used block error-correcting codes

in digital communication and storage systems. Recently, Guruswami and Su-

1

dan (GS) achieved a breakthrough in RS hard-decision decoding by using an

algebraic interpolation technique [1, 2]. Later, the GS algorithm was extended

to algebraic soft-decision decoding algorithms by incorporating the probabil-

ity information from the channel into the interpolation process [3, 4]. With

polynomial complexities, ASD algorithms can achieve substantial coding gain

over hard-decision decoding.

Two major steps of ASD algorithms are the interpolation and factor-

ization. In this thesis, we will focus on the high-speed FPGA implementation

for the factorization step. We first present an FPGA implementation of a

factorization processor for the algebraic soft-decision RS decoding. The fac-

torization processor is based on the root-order prediction architecture, which is

general and extensible. It can be easily extended to support the factorization

of polynomials with any designated degree. Parallel processing is exploited to

speed up the polynomial updating involved in the factorization. To resolve the

data dependency issue in parallel polynomial updating, we propose an efficient

coefficient storage and transfer scheme, which leads to smaller memory usage

and low latency. Synthesis results show that the factorization processor for a

(255, 239) RS code with maximum multiplicity four can achieve an average

decoding speed of 226 Mbps on a Xilinx Virtex-II FPGA device when the

frame error rate is less than 10−2.

Next, we present the implementation of a factorization processor spe-

cific for the soft-decision bit-level generalized minimum distance (BGMD) RS

decoding [4]. The BGMD factorization processor is based on the architecture

2

proposed in [5]. Among the ASD algorithms with practical multiplicity assign-

ment schemes, the BGMD algorithm can achieve similar or higher coding gain

with lower complexity. By exploiting the property that the maximum y-degree

of the polynomials is low in the BGMD decoding algorithm, the BGMD factor-

ization processor utilizes a low-latency and prediction-free root computation

scheme to speed up the root computation in the factorization. Furthermore,

efficient coefficient storage schemes and parallel processing architectures are

employed to reduce the latency of the polynomial updating. Synthesis results

show that the BGMD factorization processor for a (255, 239) RS code with

maximum multiplicity two can achieve a throughput of 815Mbps.

Both of the factorization processors have been implemented and tested

on the Prodesign CHIPit FPGA hardware platform.

1.2.2 Error Correction for Multilevel NAND Flash Memories Us-

ing Reed-Solomon Codes

The increasing demand for non-volatile multi-media and mass data stor-

age has created the need for low-cost and high-capacity flash memories. In

recent years, multi-level cell (MLC) flash memories [6–9] have been developed

as an effective solution for increasing the storage density and reducing the cost

of flash memories. In MLC flash memories, multiple bits are stored per mem-

ory cell by programming each cell with multiple threshold levels. The reduced

spacing between adjacent threshold levels significantly degrades the reliability

of flash memories. To ensure data integrity, error-correcting codes need to be

3

employed in these memories. Traditionally, single-bit error-correcting codes,

such as Hamming codes, are used for single-bit cell (SBC) flash memories. For

MLC flash memories, especially for NAND flash memories which have a large

page size, e.g. 8K bits, single-bit error-correcting codes are no longer sufficient.

Prior research efforts have been focusing on using BCH codes for error

correction in MLC NAND flash memories. However, BCH codes often require

highly parallel implementations to meet the throughput requirement. As a

result, large area is needed. In this thesis, we propose to use RS codes for error

correction in MLC flash memory. A (828, 820) RS code has almost the same

rate and length in terms of bits as a BCH (8248, 8192) code. Moreover, it has

at least the same error-correcting performance in flash memory applications.

Nevertheless, with 70% of the area, the RS decoder can achieve a throughput

that is 121% higher than the BCH decoder. We also propose a novel bit

mapping scheme using Gray code in this thesis. Compared to the direct bit

mapping, our proposed scheme can achieve 0.02 dB and 0.2dB additional gain

for the RS and BCH decoding, respectively, without any overhead.

1.3 Outline of the thesis

This thesis is organized as follows:

Chapter 2 is focused on the FPGA implementation for a factorization

processor in algebraic soft-decision RS decoding. We first give a brief overview

of the algebraic soft-decision RS decoding and the KV multiplicity assignment

scheme. Next, details of the factorization step in algebraic soft-decision RS

4

decoding and the root-order prediction-based factorization architecture are in-

troduced. Then the proposed coefficient storage and transfer scheme, and the

overall hardware architecture are presented. Lastly, synthesis and implemen-

tation results for the proposed design are given.

Chapter 3 is focused on the FPGA implementation for the BGMD fac-

torization processor in algebraic soft-decision RS decoding. We first give a

brief overview of the BGMD multiplicity assignment scheme. Then we in-

troduce the low-latency and prediction-free root computation scheme and the

overall hardware architecture. Lastly, synthesis and implementation results

for the BGMD factorization processor are given.

Chapter 4 gives a brief introduction of the overall FPGA design flow and

the detailed setup of in-circuit verification for the two factorization processors.

The verification results are also presented.

Chapter 5 is concerned with the application of RS codes in the er-

ror correction of MLC NAND flash memories. A Gray code-based mapping

scheme is presented firstly as well as the simulation steps and modeling for

MLC NAND flash memories. Next, the hardware complexity and throughput

of decoding BCH and RS codes with similar code rate and bit length are com-

pared. In addition, detailed decoder design with a (828, 820) RS code and a

(8248, 8192) BCH code are presented as examples.

Chapter 6 provides the conclusion and some ideas for the future re-

search.

5

Chapter 2

FPGA Implementation of a Factorization

Processor for Soft-decision Reed-Solomon

Decoding

2.1 Introduction

Reed-Solomon (RS) codes are popular block error-correcting codes with

a wide range of applications in digital communication and storage systems. For

an (n, k) RS code, traditional hard-decision algorithm, such as the Berlekamp-

Massey algorithm [10, 11] and Euclid algorithms [12], can only correct up to

t = ⌊dmin/2⌋ symbol errors, where dmin = n − k + 1 is the minimum distance

of the code. Recently, Guruswami and Sudan (GS) achieved a breakthrough

in RS hard-decision decoding by using an algebraic interpolation technique

[1, 2]. The GS algorithm can correct up to n −
√

kn errors. Later, the GS

algorithm was extended to algebraic soft-decision decoding (ASD) algorithms

by incorporating the probability information from the channel into the inter-

polation process [3, 4]. With polynomial complexities, ASD algorithms can

achieve substantial coding gain over hard-decision decoding.

Two major steps of ASD algorithms are the interpolation and factor-

ization. We will focus on the factorization step in this chapter. Among the

various factorization algorithms [13–16], the algorithm proposed by Roth and

6

Ruckenstein [15] is the most efficient to solve the factorization problem. Based

on this algorithm, several factorization architectures [17–20] were proposed for

the hardware implementation. Each iteration of this algorithm mainly con-

sists of root computation over finite field and polynomial updating. In [17, 18],

exhaustive search is used for the root computation. This approach is very time-

consuming, especially for RS codes defined over finite fields of large order. In

[19], the polynomials are first transformed to affine polynomials. Then the

roots of an affine polynomial are found by solving a set of linear equations.

However, this approach is only applicable for polynomials with degree less

than five and still has long latency. For the applications where high-speed

decoding is desired, the root-order prediction-based architecture [20] can be

employed. In this architecture, if the prediction is correct, the correspond-

ing root computation in the next iteration level only involves one inversion,

one multiplication and one fractional power over finite field. Root prediction

failures only happen with less than 1% probability for the frame error rate

(FER) in practical range. Thus, the average latency for the factorization is

greatly reduced. This architecture is well-suited for high-speed applications

where worse case delay is less concerned.

In this chapter, we present an FPGA implementation of a high-speed

factorization processor based on the root-order prediction architecture pro-

posed in [20]. The proposed factorization architecture can be easily extended

to support the factorization of polynomial with any degree. Hence, it is a gen-

eral architecture for the factorization in algebraic soft-decision RS decoding.

7

To speed up the factorization, all the polynomials in the same iteration level

are updated in parallel. Additionally, in order to minimize latency, different

degrees of parallelism are employed to the updating of the polynomials based

on their degree. Due to the involved coefficient shifting, data dependencies

exist among the polynomial coefficients during parallel polynomial updating.

In this chapter, we propose an efficient coefficient storage and transfer scheme,

which leads to smaller memory usage and low latency in the polynomial updat-

ing. Synthesis results show that the factorization processor for a (255, 239) RS

code with maximum multiplicity four can achieve an average decoding speed

of 226 Mbps when the FER is less than 10−2. The proposed factorization pro-

cessor is implemented and tested on the Prodesign CHIPit FPGA hardware

platform. According to the best knowledge of the authors, this is the first

FPGA implementation ever presented for the factorization in ASD decoding.

The rest of this chapter is organized as follows. Section 2.2 gives a brief

introduction of the algebraic soft-decision RS decoding and the KV multiplic-

ity assignment scheme. Section 2.3 briefly reviews the root-order prediction-

based factorization architecture. Details of the coefficient storage and transfer

scheme are described in Section 2.4. The overall architecture and FPGA im-

plementation results are presented in Section 2.5 and 2.6 respectively. Section

2.7 provides the summary.

8

2.2 Algebraic Soft-Decision RS Decoding

Throughout this chapter, we consider an (n, k) RS code constructed

over finite field GF (2q), where n = 2q − 1 for primitive RS codes. For a (n, k)

RS code, the k message symbols form a message polynomial f(X) = f0+f1X+

· · ·+ fk−1X
k−1. The encoding is carried out by evaluating f(X) at n distinct

nonzero elements of GF (2q). Denote the n distinct evaluation elements as

{α0, α1, · · · , αn−1}, the corresponding codeword is (f(α0), f(α1), · · · , f(αn−1)).

Assume that after the jth symbol f(αj) goes through the channel, θj is the

noise-corrupted symbol observed at the receiver. Since the transmitted symbol

is unknown to the receiver, it can be any field element over GF (2q). The al-

gebraic soft-decision decoding algorithm attempts to recover the transmitted

symbols (the message polynomial f(X)) by interpolation-based algorithms.

The construction of the interpolation points is based on the reliability infor-

mation observed from the channel.

Multiplicity

Assignment

Decoded

List Output

Reliability

Information From

The Channel

Interpolation Factorization

Figure 2.1: Algebraic soft-decision RS decoding architecture

Fig. 2.1 shows the overall architecture of the algebraic soft-decision RS

decoding. The purpose of the multiplicity assignment is to construct a set

of interpolation points based on the observation from the channel and assign

each interpolation point with a ‘multiplicity’. Later, the interpolation step

9

constructs a bivariate polynomial Q(X, Y), with minimum (1, k− 1) weighted

degree that passes all the interpolation points with the assigned multiplici-

ties. If these points and multiplicities agree sufficiently well with the n points

(αj , f(αj)) that define transmitted codeword, then the message polynomial

f(X) can be recovered in the factorization step by computing all factors of

Q(X, Y) in the form of Y − f(X) with the degree of f(X) less than k.

Various multiplicity assignment schemes have been proposed in recent

years [3, 4, 18]. In the following, we brief introduce a modified version of the

Koetter-Vardy (KV) multiplicity assignment scheme [18]. Denote all the dis-

tinct elements of GF (2q) by ω0, ω1, · · · , ω2q−1. Given the observation θj from

the output of the memoryless channel, the a posteriori probabilities (APPs)

for one of the 2q possible transmitted symbols ωi can be calculated as

πi,j = Pr(ωi|θj) (2.1)

where 0 ≤ i < 2q and 0 ≤ j < n. There are 2q × n possible entries for

πi,j. All these πi,j form a 2q × n matrix called the reliability matrix, which

represents the soft information from the channel. The multiplicity assignment

step decides the interpolation point (αj, ωi) and its associated multiplicity mi,j

according to the reliability matrix. All the multiplicities can be tabulated in a

2q × n multiplicity matrix, where the nonzero entries represent the nontrivial

interpolation points and the associated multiplicities.

The original KV algorithm finds a multiplicity matrix that minimizes

the decoding failure probability subject to a constraint of s, where s is the

10

total multiplicity. Nevertheless, the original KV algorithm is iterative and

requires s passes of the reliability matrix. When it is applied to long RS codes

with large s, the original KV algorithm has long latency. Alternatively, each

entry of the multiplicity matrix can be generated by [18]

mi,j = ⌊πi,j × λ⌋ (2.2)

where λ is a positive number. This approach is based on the observation that

for the KV algorithm, the multiplicity matrix is proportional to the reliability

matrix when s → ∞. It requires only one pass through the reliability matrix

and can be easily implemented in hardware. In the rest of the chapter, the

modified KV multiplicity assignment scheme is used. λ is set to 4.99 as a

tradeoff between performance and hardware complexity. Therefore, the max-

imum multiplicity is four. Furthermore, it can be derived that the maximum

y-degree of the bi-variate polynomial output from the interpolation is also

four. It should be noted that although the algebraic soft-decision RS decoding

with a maximum multiplicity of four is taken as an example, the architecture

proposed in this chapter is general and can be easily extended to support other

multiplicities.

2.3 Root-Order Prediction-Based Architecture

Assuming the bivariate polynomial output from the interpolation step

is Q(X, Y), the factorization determines all the factors of Q(X, Y) in the form

11

of Y − f(X) with deg(f(X)) < k. The algorithm in [15] can be described by

the pseudo-code below.

Algorithm A: Factorization Algorithm

Initialization: i = 0

Reconstruct (Q(X, Y), i) {

find the largest nonnegative integer v, such that Xv|Q(X, Y)

F1: Q̄(X, Y) = Q(X, Y)/Xv

F2: find all the roots of Q̄(0, Y) in GF (2q)

for each root γ of Q̄(0, Y), do

φ(i) = γ

if i = k − 1

output Φ = [φ(0), φ(1), ..., φ(k − 1)]

else

F3: Q̃(X, Y) = Q̄(X, Y + γ)

F4: Q̂(X, Y) = Q̃(X, XY)

call Reconstruct (Q̂(X, Y), i + 1)

}

In Algorithm A, the k roots in each output vector, Φ, are the coefficients

of a possible f(X) polynomial. If the maximum Y -degree of Q(X, Y) is t, then

up to t vectors can be obtained from this algorithm. By employing re-encoding

and coordinate transformation [21], the number of roots in each vector, and

hence the number of iteration levels, can be reduced from k to 2τ in the

factorization. Here τ is the number of errors intended to be corrected in the k

12

Figure 2.2: An example of a root tree for the factorization

most reliable positions. In this chapter, an FPGA implementation for a (255,

239) RS code with t = 4 and 2τ = 26 is presented as an example. The design

can be easily extended to codes with different parameters.

The roots computed from Algorithm A form a tree structure. An ex-

ample of the root tree is shown in Fig. 2.2 [22]. Each node represents a root

with its order inside. The nodes in the same row correspond to the roots found

in the same iteration level. In this example, Q̄(0, Y) has an order-4 root up to

iteration level i. In iteration level i+1, two roots with order-1 and order-3 are

found and the root split occurs. In [20], it is observed that the root split rarely

happens and each root would most likely have a single descendant root of the

same order. Based on this observation, a root-prediction scheme is proposed.

In this scheme, it is first predicted that a degree-r Q̄(0, Y) has a single root,

γ, of order r. Accordingly, γ can be computed as

γ = (qr−wq−1
r)1/w, (2.3)

where qi is the coefficient of X i in Q̄(0, Y) and w is the minimum positive

13

integer such that
(

r
r−w

)

is odd. It turns out that w can be only in the format

of 2e(e ∈ Z∗). In this case, q1/w can be derived by cyclically shifting all the

bits in the normal basis representation of q, e, bit positions. Accordingly,

the prediction-based root computation in (2.3) can be implemented by the

RC3 unit shown in Fig. 2.3 [20]. In this figure, the inversion is implemented

by a look-up table, and the Fractional Power block is used to implement the

conversion to and from normal basis as well as the cyclical shift.

Figure 2.3: Detailed architectures of the RC3 unit

In the case that the prediction fails, if the degree of Q̄(0, Y) is larger

than two, the roots are re-computed by the exhaustive search unit shown in

Fig. 2.4. In this case, Q̄(0, Y) can be expressed as q4X
4+q3X

3+q2X
2+q1X +

q0. In the exhaustive search unit, Q̄(0, Y) is decomposed to two polynomials

q0 + q1X + q4X
4 and (q2 + q3X)X2. At each clock cycle, these two polynomials

14

are evaluated with one of the 2q field elements, respectively. When the evalu-

ation results of the two polynomials are equal, the comparator (cmp) asserts

the valid pin to indicate a root is found. The roots found from the exhaustive

search output in parallel after a serial to parallel conversion (S2P).

4

3 2

4

1 0

2

Figure 2.4: Detailed architectures of the exhaustive search unit

If the degree of Q̄(0, Y) is two, Q̄(0, Y) can be expressed as q2Y
2+q1Y +

q0. If q1 6= 0, the roots are re-computed by the MRC2 unit shown in Fig. 2.5

[20]. In this case, q2Y
2 +q1Y = q0 is transformed into the format of Y ′2 +Y ′ =

q2q0(q
−1
1)2 by substituting Y with q−1

2 q1Y
′. Such a degree two polynomial

has two simple roots, if and only if the trace (Tr) function of q2q0(q
−1
1)2 is

zero. The two roots can be computed by multiplying a pre-computed binary

matrix with a vector formed by the standard basis representation of q2q0(q
−1
1)2.

For detailed explanations of the MRC2 architecture, the interested reader is

referred to [20].

It can be derived that for a simple root in iteration level i, the cor-

15

Figure 2.5: Detailed architectures of the MRC2 unit

responding Q̄(0, Y) in iteration level i + 1 is always of degree one and has a

simple root. The root computation in this case can be also done by using

the RC3 unit. For all the architecture addressed above (Fig. 2.3, 2.4, 2.5),

pipelines shown by the dashed lines are inserted to reduce the length of critical

paths of the computational units.

2.4 Coefficient Storage and Transfer for Parallel Poly-

nomial Updating

The coefficients of a bivariate polynomial can be represented by dots

in a two-dimensional array shown in Fig. 2.6 [20]. Each solid dot, hollow dot

and cross represents a coefficient (zero or non-zero), a zero coefficient and a

non-zero coefficient, respectively. All the dots in the same row correspond to

16

1 Y Y2 Yr-1

1

x

x2

xr-1

Q(X,Y) Q(X,Y) Q(X,Y)

YtYr

xr

1

x

x2

xr-1

xr

1

x

x2

xr-1

xr

1 Y Y2 Yr-1 YtYr 1 Y Y2 Yr-1 YtYr

(a) (b) (c)

~

Figure 2.6: Polynomial updating in the factorization

the coefficients of the monomials with the same X-degree, while those in the

same column correspond to the coefficients of the monomials with the same Y -

degree. The dots in the first row of Fig. 2.6a form the coefficients of Q̄(0, Y).

Assume an order-r root is found for Q̄(0, Y). After the F3 polynomial updating

step in Algorithm A, the coefficients of Q̃(0, Y) satisfy q̃0,b = 0(0 ≤ b < r) and

q̃0,r 6= 0. The F4 step shifts the jth column of Q̃(X, Y) down by j positions.

The coefficients in the first nonzero row of Q̂(X, Y) are those of Q̄(0, Y) in the

next iteration level. If no root split occurs, the first r rows of the coefficients

of Q̂(X, Y) are all zero and those in the row for Xr become the coefficients of

the Q̄(0, Y) in the next iteration level [20].

In our design, the F3 step is implemented by the PU unit shown in Fig.

2.7 [22], which processes one row of coefficients at a time. To reduce com-

plexity, polynomial updating only needs to be carried out on those coefficients

involved in the computations in later iteration levels. It can be derived that in

iteration level i, if a root of Q̄(0, Y) has order r, then only the first r× (2τ − i)

17

Figure 2.7: Detailed architectures of the PU unit

rows of Q̄(X, Y) need to be updated for this root. Hence, the roots with larger

order require more coefficients to be updated. To balance the polynomial up-

dating latency, for a root of order r, we divide the coefficients to be updated

into r segments of consecutive X-degree and use r PU units to update these

coefficients in parallel. For example, assume there is an order-3 root and an

order-1 root in a iteration level. Then 3 PU units will be employed for the

corresponding polynomial updating for the order-3 root, while the polynomial

updating for the order-1 root only has one PU unit to use. Using this scheme,

the polynomial updating corresponding to all the roots in a iteration level can

be completed simultaneously. Since the sum of the root order in a iteration

level never exceed t, t PUs would be enough for all polynomial updating.

Due to the polynomial shifting in the F4 step of Algorithm A, data de-

pendencies exist among the coefficients with different X-degree. This leads to

18

1 Y Y
2

Y
3

Y
4

1 Y Y
2

Y
3

Y
4

1 Y Y
2

Y
3

Y
4

1 Y Y
2

Y
3

Y
4

Figure 2.8: Coefficient storage and transfer scheme

data dependencies among the coefficients updated in different PU units corre-

sponding to the same root. In this design, an efficient block coefficient storage

and transfer scheme is proposed to solve this problem. Take the updating and

shifting of a Q̄(X, Y) corresponding to an order-4 root as example, in iteration

level i, the 4(2τ − i) rows of coefficients are divided evenly and stored in four

memory blocks shown as the shaded rectangles in Fig. 2.8 [22], with the first

2τ − i rows stored in the leftmost block. After the polynomial shifting, the

coefficients in each block form a parallelogram. Instead of moving the coeffi-

cients, the polynomial shifting step can be implemented by keeping track of

address displacements. The coefficients in the extra last four rows generated

by the shifting have the same X-degrees as the coefficients left in the first four

rows of the next adjacent memory block. Hence, these coefficients need to be

combined before they are fed to the PU units in the next iteration level. In

addition, in the case that the corresponding Q̄(X, Y) in the next iteration level

19

still has a single root of order 4, the first four rows of coefficients in the first

memory block are zero and 4(2τ − i− 1) rows of coefficients need to be stored

for the computations in later iterations. To minimize polynomial updating

latency, the 4(2τ − i − 1) coefficients also need to be divided evenly into four

segments such that the same number of coefficients are updated in each PU

unit. Due to these two reasons, the coefficients need to be transferred among

the memory blocks as shown by the arrows in Fig. 2.8. The coefficients in the

solid rectangles are those need to be stored in each memory for the next iter-

ation level. As a result of these transformations, all coefficients of the same

X-degree are put into the same row and each memory block has the same

number of coefficients. The coefficient transfer patterns for other root orders

can be derived in a similar way. In this scheme, we need to store at most t×2τ

rows of coefficients in total, which is only 1/t of the memory requirement of

the architectures proposed in [18, 19].

When the root orders do not change, the coefficients from each of the

four memory blocks can be connected directly to PU units for polynomial

updating. However, when root splits happen, extra care needs to be taken for

the routing of the coefficients. Fig. 2.9 [22] shows an example of such a case. In

this figure, the four memory blocks are denoted by M0 to M3. The RD MUX is

used to route the coefficients of Q̄(X, Y) to multiple PUs, and the WR MUX is

used for coefficient transfer between adjacent memories. Separate multiplexors

are needed for each column of coefficients since the routings for each column is

different. Assume in iteration level i, the Q̄(X, Y) corresponding to an order-3

20

MUXMUX MUX MUX

q0 q4q4 q4 q4q0 q0 q0

q0 q4q0 q0 q0q4 q4 q4

‘0’ ‘0’ ‘0’

PU1

RD_MUX

WR_MUX

PU2 PU3PU0

+1

D

write addr. generator

DRoot

order

header addr. generator

LUT

Coef.

Position
M0...M3

DPRAMs

M0 M1 M2

M0 M1 M2 M3

M3

Order-2 Order-1 Order-1

Order-1Order-3

header reg.

write addr. reg.

+1

D

read addr. generator

read addr. reg.

-1

-1

MUX MUX MUX MUX
-(2 -i)

-(2 -i)

Figure 2.9: Hardware architecture for the polynomial updating

root in the previous level is stored in M0 through M2, and another Q̄(X, Y)

corresponding to an order-1 root in the previous iteration level is stored in

M3. Assume that the order-3 root splits into one order-2 and one order-1

roots. Since the number of coefficients need to be updated for the order-2 root

has been decreased to 2 × (2τ − i), only the coefficients in M0 and M1 need

to be updated using the newly computed order-2 root, while the coefficients

in M2 can be discarded. Then the coefficients updated by PU0 and PU1 are

written back into M0 and M1, respectively. For the order-1 root from split,

the corresponding polynomial updating is only carried out on the coefficients

in M0 by PU2. Then the updated coefficients are written back into the empty

M2 memory block. There is no root order change for the other Q̄(X, Y) with

21

order-1 root. Hence the coefficients are fed to PU3 directly, and the updated

coefficients are written back to M3.

The detailed architectures of the address generators are also shown in

Fig. 2.9. The header address generators are used to generate the starting

position for each column of the memory blocks. At the beginning of each

iteration level, the header addresses are loaded into both the read and write

address generators. Both of these addresses are increased by one at each

clock cycle until 2τ − i rows of coefficients are read, updated and written

back for iteration level i. After that, these address are adjusted to transfer

the coefficients among memory blocks as shown in Fig. 2.8. The coefficient

memory is configured as a circular memory so that the coefficients are wrapped

around if they reach the memory boundary.

2.5 Overall Factorization Architecture

Fig. 2.10 [22] shows the overall architecture of the factorization pro-

cessor. In this architecture, each memory block is divided into five banks and

each bank stores the coefficients with the same Y -degree. Hence, a total of

twenty dual-port memories (DPRAMs) are used. To simplify the address gen-

eration for the circular memory, the depth of each memory is chosen as the

nearest power-of-two ceiling of 2τ , i.e. 32 bytes.

At the beginning of the factorization, the zero rows of Q(X, Y) are

taken out and the rest of the coefficients are divided evenly into four blocks

and loaded into M0 through M3. In iteration level i = 0, Q̄(0, Y) is read

22

Wr

addr

gen

Rd

addr

gen

PU0

Exhaustive

Search
MRC2

q0 q4 q4 q4 q4q0 q0 q0

MUX MUX MUX MUX

WR_MUX

q0 q4 q4 q4 q4q0 q0 q0

q0 q4 q0 q0 q0q4 q4 q4

MUX MUX MUX MUX RD_MUX

‘0’ ‘0’ ‘0’ ‘0’

PU1 PU2 PU3

DPRAMs

8x32
DPRAMs

8x32
DPRAMs

8x32

DPRAMs

8x32

Rd

addr

gen

Wr

addr

gen

Rd

addr

gen

Wr

addr

gen

Rd

addr

gen

Wr

addr

gen

MUX

M0/q0...q4 M1/q0...q4 M2/q0...q4 M3/q0...q4

M0 M1 M2 M3

q4q0q4q0q4q0q4q0

M0 M1 M2 M3

MUX

1 2 3 4 1 2

shifter

chk_fail [0..2]

chk_fail [0..2]

is_chk_fail

counteren

Permutation3

Permutation2

M
U

X

Root

Computation

Polynomial

Transformation

Permutation1

Root Order

Root Prediction

glb_chk_fail

Root

Check

RC3RC3RC3RC3

delay reg.

register register

register

1deg 2, 0q !

MUX MUX MUX MUX

Figure 2.10: The factorization architecture

23

out from the first row of M0 and fed to the Exhaustive Search unit for root

computation. According to the root order definition, a root γ is a rth order root

of p(X) if and only if the coefficients of the terms with X-degree lower than r

in p(X +γ) are all zero, and the one for Xr is nonzero. Therefore, by checking

the coefficients at the output of the PU units, the order of each computed root

can be determined. In our design, the polynomial updating corresponding to a

root with order r is carried out simultaneously in r PU units. In order to make

the roots aligned with the parallel polynomial updating in multiple PU units,

permutation blocks are added. Another function of the Root Check block is

to decide which is the first nonzero row of Q̂(X, Y). This will be the Q̄(0, Y)

in the next iteration level. Once the first nonzero row is decided, the root

prediction for the next iteration level starts and is performed concurrently with

the polynomial updating of the rest of the coefficients. Due to the polynomial

shifting, the coefficients of the first nonzero row of Q̂(X, Y) come from the

outputs of the PU units in different clock cycles. Hence, triangular arrays of

registers are inserted between the PU and RC3 units.

From the second iteration level, the real orders of the roots computed

through prediction are derived in the Root Check block and they are compared

with the corresponding root orders in the previous iteration level. If they do

not match, a prediction failure happens. The root is re-computed in either the

MRC2 or the Exhaustive Search block when the degree of the failed polynomial

is two or larger than two, respectively. Then polynomial updating is carried

out based on the re-computed roots.

24

IDLE

PRE_

SCH

INIT

LOOP

CHK
DONE

global start=0 done=0

chk_fail=1

done=0 &&

chk_fail = 0

ORDSCH

PU

Start=1

done=0

last_level=0

last_level=1

PERMU

Figure 2.11: Details of the top-level state machine for the factorization pro-
cessor

A hierarchical control structure is used in the factorization processor.

Each computational unit has its state machine locally, which interacts with the

top-level state machine through proper handshake signals. The details of the

top-level state machine are shown in Fig. 2.11. The ‘done’ signals refer to the

handshake signals from various computational units, while the ‘start’ signal

for each computational unit is not explicitly presented. After power up, the

factorization processor remains in the ‘IDLE’ state until the ‘global start’ pin

is asserted. Then the internal registers are properly initialized in the ‘INIT’

state. Next, the exhaustive search or direct root computation is invoked in

the ‘SCH’ state based on the degree of Q̄(0, Y). Once the root computation is

completed, the root orders are determined in the ‘ORD’ state and permuted

25

in the ‘PERMU’ state. Polynomial updating and shifting are carried out in

the state ‘PU’. Meanwhile, root prediction for the next iteration level using

the RC3 units is performed in parallel. If it is not the first iteration level,

the roots predicted from the previous iteration level will be used and checked

during the polynomial updating. If the predicted root order is not equal the

actual root order, the ‘chk fail’ signal asserts and the state is transitioned to

the ‘SCH’ state for root search and computation. Otherwise, the state machine

will check the number of loops that has run in the ‘LOOP CHK’ state and

decide whether it continues to the next iteration level or all the iteration levels

are done and the factorization terminates. The ‘PRE SCH’ state is used to

insert some clock cycles to avoid memory access conflict.

2.6 Implementation Results

The factorization processor for a (255, 239) RS code with t = 4 was

synthesized and simulated on a Xilinx Virtex-II XC2V1000-6 device. After

place and route, the Xilinx ISE software reported a critical path of 9.822ns.

The logic resource utilization is shown in Table 2.1 [22]. All the coefficient

memories are implemented using the Xilinx distributed RAMs. Simulation

results indicate that when root prediction is successful in all the iteration levels,

the decoding latency is 914 clock cycles. In the case that root prediction failure

happens in one iteration level, if exhaustive search is used, 1194 clock cycles

are needed, if MRC2 is used, 938 clock cycles are needed. From the simulation

for a (255, 239) RS code over additive white Gaussian noise (AWGN) channel,

26

we observed that the root prediction failure rate is less than 3×10−3 when the

FER is less than 10−2. Hence, the average decoding latency is 915 clock cycles

and the decoding throughput is 226Mbps. Higher speed can be achieved by

using state-of-art ASIC technology. The details of the in-circuit verification

setup and results for the factorization processor will be addressed in Chapter

4.

Table 2.1: Resource Utilization on a Xilinx XC2V1000-6 FPGA

Resource Type Used Ratio

Slice Flip Flops 1,795 17%

4 input LUTs 6,703 65%

Block RAMs 0 0%

Total Occupied Sliced 4,195 81%

2.7 Summary

In this chapter, an FPGA implementation of a high-speed factorization

processor for algebraic soft-decision RS decoding is presented. Parallel pro-

cessing is employed to speed up the polynomial updating. In addition, efficient

coefficient storage and transfer scheme is developed to facilitate the parallel

processing and minimize the latency. This is the first hardware implementation

ever presented for the factorization in the literature.

27

Chapter 3

FPGA Implementation of a Factorization

Processor for Soft-decision Bit-level

Generalized Minimum Distance Reed-Solomon

Decoding

3.1 Introduction

In the previous chapter, an FPGA implementation of a factorization

processor for the soft-decision Reed-Solomon decoding is presented. The design

is based on the root-order prediction architecture and can be easily extended

to support factorization of polynomials with designated degrees. Since the root

prediction failures only happen with less than 1% probability for the FER in

practical range, the average latency for the factorization is greatly reduced.

However, when prediction failure happens, additional clock cycles are required

to recompute the roots, which leads to extra latency.

In this chapter, we present an FPGA implementation of a factoriza-

tion processor specific for soft-decision bit-level generalized minimum distance

(BGMD) [4] RS decoding. The BGMD algorithm is a practical multiplicity

assignment scheme in algebraic soft-decision RS decoding. Compared to the

conventional multiplicity assignment scheme, such as the Koetter-Vardy(KV)

scheme [3], it can achieve similar or higher coding gain with lower multiplic-

28

ities. As a result, the maximum Y -degree of the polynomials is low in the

BGMD algorithm. Hence, the root-order prediction scheme for root compu-

tation can be replaced by a prediction-free and low latency root computation

scheme. Furthermore, resource sharing techniques are employed to minimize

the area requirement of the factorization architecture. The BGMD factoriza-

tion processor is based on the architecture proposed in [5]. Synthesis results

show that the BGMD factorization processor for a (255, 239) RS code can

achieve a decoding throughput of 815 Mbps with low complexity.

The rest of this chapter is organized as follows. Section 3.2 briefly

reviews the BGMD multiplicity assign scheme. Details of the factorization

architecture for BGMD decoder are described in Section 3.3. The FPGA

implementation results are presented in Section 3.4. Section 3.5 provides the

summary.

3.2 The BGMD Decoding Algorithm

Throughout this chapter, we consider an (n, k) RS code constructed

over finite field GF (2q), where n = 2q − 1 for primitive RS codes. For a (n, k)

RS code, the k message symbols form a message polynomial f(X) = f0+f1X+

· · ·+ fk−1X
k−1. The encoding is carried out by evaluating f(X) at n distinct

nonzero elements of GF (2q). Denote the n distinct evaluation elements as

{α0, α1, · · · , αn−1}, the corresponding codeword is (f(α0), f(α1), · · · , f(αn−1)).

Assume that for the jth transmitted symbol f(αj), θj is the noise-corrupted

symbol observed at the receiver. Since the transmitted symbol is unknown to

29

the receiver, it can be any field element over GF (2q).

In the one-pass BGMD multiplicity assignment scheme, the multiplici-

ties are assigned based on the bit-level reliability. The reliability of a bit out

of a q-bit symbol after the channel can be calculated by the log-likelihood

ratios LLR = log P (0|r)
P (1|r)

, where r is the soft information from the channel. The

received bit is considered to be erased if its |LLR| is below a certain threshold.

Denote the maximum multiplicity is mmax, the one-pass BGMD algorithm as-

signs multiplicities based on the number of bits erased in each received symbol.

The detailed algorithm is shown below:

Algorithm A: BGMD Multiplicity Assignment

1) if no bit is erased in θj , assign mmax to (αj , βj), where βj is the

hard-decision of θj ;

2) if there is only one bit erased in θj , assign mmax/2 to both (αj, βj1)

and (αj, βj2), where βj1 and βj2 are the hard-decision of θj and the field ele-

ment differs from the hard-decision in only the erased bit, respectively;

3) if there are more than one bit erased in θj , do not assign any multi-

plicity to the interpolation points with αj.

It can be observed that for an evaluation element αj : if no bit is erased

in the jth received symbol, only one interpolation point with a multiplicity

of 2 corresponds to αj; if one bit is erased, then two possible interpolation

points with multiplicity 1 correspond to αj; in other cases, no interpolation

point corresponds to αj. Simulation results show that the one-pass BGMD

30

algorithm with maximum multiplicity two can achieve similar or higher coding

gain than the KV algorithm with maximum multiplicity four. Accordingly, the

maximum Y -degree of the polynomials from the interpolation output is 2 in

this case.

3.3 Factorization Architecture for BGMD Decoding

In this section, the detailed architecture of a BGMD factorization pro-

cessor for a (255, 239) RS code with mmax = 2 is presented. The factorization

algorithm proposed by Roth and Ruckenstein [15] is employed in the BGMD

factorization processor. The detailed of the algorithm is addressed in previ-

ous chapter. The maximum Y -degree is set to 2 in this case. By employing

re-encoding and coordinate transformation [21], the number of the iteration

levels can be reduced from k to 2τ in the factorization. Here τ is the number of

errors intended to be corrected in the k most reliable positions. In the FPGA

implementation, τ is set to 10 for a (255, 239) RS code.

i+1

i

Figure 3.1: Root trees for factorization with maximum Y -degree as two.

31

The roots computed from the factorization algorithm form a tree struc-

ture. Taking the polynomial from the interpolation with maximum Y -degree

of 2 as an example, the root tree can be one of the three formats shown in

Fig. 3.1 [5]. Each node represents a root with its order inside. The nodes

in the same row correspond to the roots found in the same iteration level. If

in iteration level i, Q̄(0, Y) has one root of order two, then the corresponding

Q̄(0, Y) may most likely have one root of order two in iteration level i + 1, as

illustrated in Fig. 3.1a. Alternatively, Q̄(0, Y) may have two simple roots in

iteration level i+1 as illustrated in Fig. 3.1b. In this case, the root tree splits.

If in iteration level i, each Q̄(0, Y) has a simple root shown in Fig. 3.1c, it can

be derived that the corresponding Q̄(0, Y) in iteration level i + 1 is always of

degree one and has a simple root.

In summary, Q̄(0, Y) can have three types of roots in each iteration:

one order-2 root, two simple roots or one simple root. The root computation

of Q̄(0, Y) can be carried out using the RC2 architecture in Fig. 3.2 [5]. When

the degree of Q̄(0, Y) is two, Q̄(0, Y) can be expressed as q2Y
2 + q1Y + q0. If

q1 6= 0, the two multiplexors in the left shaded rectangles choose q2 and q1 as

the output. In this case, the architecture in Fig. 3.2 is similar to the MRC2

architecture in the previous chapter. If the trace (Tr) function of q2q0(q
−1
1)2

is zero, the two roots roota and rootb are output from the block. In addition,

observing that the difference between the two roots is the identity element of

the finite field, the multiplication of q−1
2 q1 back to derive the roots of Q̄(0, Y)

can be simplified by using only one multiplier and one adder. In the case

32

2 1 0

1

2 1q q

1

1 0q q

! "
1 2

1

2 0q q

! "
2

1

2 0 1q q q

21

Figure 3.2: Root computation for degree two polynomial (RC2)

that q1 = 0, q2 and q0 are selected from the multiplexors in the left shaded

rectangles. The order-2 root of q2Y
2 + q0 is (q−1

2 q0)
1/2 and computed by the

computational units in the left shaded rectangles and the square root block.

When the degree of Q̄(0, Y) is one, i.e. q2 = 0 and q1 6= 0, the root, q−1
1 q0,

can be computed from the computational units in the left shaded rectangles

by choosing q1 and q0 from the multiplexors. For the detailed explanations of

the RC2 architecture, the interested reader is referred to [5]. To reduce the

latency, the inverter is implemented by a look-up table. The square root block

is implemented by a conversion to and from normal basis as well as the cyclical

shift. In Fig. 3.2, pipelines shown by the dashed lines are inserted to reduce

33

the length of critical paths of the computational units.

Wr

addr

gen

Rd

addr

gen

q0 q2 q2q0

DPRAMs

8x20

DPRAMs

8x20

Rd

addr

gen

Wr

addr

gen

M0/q0...q2 M1/q0...q2

M0 M1

q2q0q2q0

MUX

0 1

MUX MUX

MUX MUX

q0 q2 q2q0

q0 q2 q0 q2

‘0’ ‘0’

root root

a

root

b

root

Coef. Coef.rootroot

Figure 3.3: The BGMD factorization architecture

Fig. 3.3 [5] shows the overall architecture of the BGMD factorization

processor. In this architecture, M0 and M1 are the memory blocks for storing

polynomial coefficients. Each memory block is divided into three banks and

each bank stores the coefficients with the same Y -degree. Hence, a total of

six dual-port memories (DPRAMs) are used. The RC unit is only used for

the root computation of degree one polynomials. The detailed architecture

34

of the RC unit is shown in Fig. 3.4a. The F3 polynomial updating step is

implemented by the PU units shown in Fig. 3.4b. The F4 and F1 steps are

implemented by proper address displacements from the read and write address

generators.

Figure 3.4: Detailed architectures: a) RC b) PU

A coefficient storage and transfer scheme similar to the one described in

previous chapter is employed for the BGMD factorization processor. Assume

that in iteration level i, Q̄(X, Y) has an order-r root, then only the coefficients

of Q̄(X, Y) with X-degree up to r × (2τ − i) need to be updated for this

root. These coefficients are divided into r segments of consecutive X-degree

and updated in r PU units. If Q̄(0, Y) has a single root of order two, in

iteration level i, the coefficients of Q̄(X, Y) corresponding to the lower and

higher 2τ − i X-degree are stored into M0 and M1 respectively, as shown in

Fig. 3.5 [5]. After polynomial updating, the coefficient corresponding to the

term X in Q̂(X, Y) is tested. If it is nonzero, then there is no root in the

35

next iteration level and the factorization stops. Otherwise, the third row in

Q̂(X, Y) coefficient array is first nonzero row and it becomes the first row of the

Q̄(X, Y) coefficient array in the next iteration level. Two coefficients need to

be transferred so that both M0 and M1 have an equal number of coefficients

for the updating in the next iteration level. The coefficient transfer can be

done during the write-back of the updated coefficients through the WR MUX

in Fig. 3.3. If Q̄(0, Y) is a degree one polynomial, Q̄(0, Y) has a simple root,

the coefficients of Q̄(0, Y) occupy one of the M0 and M1 and are updated in

one PU unit.

2 22

2

2j-1

j

j-1

2j-1

j

2

j-1

2j-1

j

2

j-1

j

j+1

j+1

Figure 3.5: Transformations of polynomial coefficients in an iteration level
with a second-order root

When the root orders do not change, the coefficients from each of the M0

36

and M1 are connected directly to a PU unit for polynomial updating. However,

when root split happens, i.e. the order-2 root splits into two simple roots as

shown in Fig. 3.1b, since the root order is one in all later iteration levels, the

polynomial coefficients stored in M1 are discarded, and the coefficients in M0

are routed to both PU units and updated with two simple roots, respectively.

Then the coefficients updated by PU0 and PU1 are written back into M0 and

M1, respectively.

For the root computation of Q̄(0, Y), if q2 6= 0 and q1 = 0 in Q̄(0, Y),

the corresponding root tree is shown in Fig. 3.1a, the single order-2 root of

Q̄(0, Y) is computed through the RC2 unit and routed to both PU0 and PU1.

If q2 6= 0 and q1 6= 0 in Q̄(0, Y) in Q̄(0, Y), the root computation is carried

out in the RC2 unit, if the trace tr from the RC2 unit is nonzero, Q̄(0, Y) has

no root and the factorization stops. Otherwise, roota and rootb from the RC2

unit would routed to PU0 and PU1, respectively. If each of M0 and M1 stores

a degree one polynomial, then the root for the Q̄(0, Y) in M0 is computed

through the RC2 unit and the root for the Q̄(0, Y) in M1 is computed through

the RC unit. For the case when the polynomial from the interpolation output

is degree one, the coefficients of Q̄(0, Y) would be stored in M0 and computed

by the RC2 unit.

Two zero detectors are used to test the coefficients of Q̄(0, Y). At the

beginning of the factorization, the zero detector connected to the output of

M0 is used to determine the root-order distribution in iteration level i = 0.

Later, the zero detector connected to the PU unit is used so that the root-order

37

distribution is determined prior to the root computation for the next iteration

level.

IDLE RC

global start=0 done=0

LOOP

CHK

PU

global

start=1

done=0

iteration level

=2 -1

RC1

done=0

DONE
iteration level

=[0..2 -2]

Figure 3.6: Details of the top-level state machine for the BGMD factorization
processor

A hierarchical control structure is used in the BGMD factorization pro-

cessor. Each computational unit has its state machine locally, which interacts

with the top-level state machine through proper handshake signals. The details

of the top-level state machine are shown in Fig. 3.6. The ‘done’ signals refer

to the handshake signals from various computational units, while the ‘start’

signal for each computational unit is not explicitly presented. After power

up, the BGMD factorization processor remains in the ‘IDLE’ state until the

‘global start’ pin is asserted. Then the root computation is carried out in the

‘RC’ state. Once the root computation is completed, polynomial updating

and shifting are carried out in the state ‘PU’. The number of iteration levels

that has been run is checked in the ‘LOOP CHK’ state. Root computation,

polynomial updating and shifting would continue to run until 2τ − 1 iteration

38

levels are completed. Then, the root computation for the last iteration level

is carried out in the ‘RC1’ state.

3.4 Implementation Results

The factorization processor for a (255, 239) RS code with mmax =

2 was synthesized and simulated on a Xilinx Virtex-II XC2V1000-6 device.

After place and route, the Xilinx ISE software reported a critical path of

9.884ns. The logic resource utilization is shown in Table 3.1. All the coefficient

memories are implemented using the Xilinx distributed RAMs. Simulation

results indicate the decoding latency is 253 clock cycles. Hence, the decoding

throughput is 815.7Mbps. Higher speed can be achieved by using state-of-

art ASIC technology. Comparing to the synthesis result for a factorization

processor, the factorization processor for the BGMD decoder occupies less

than 1/4 of area as the factorization processor with mmax = 4 presented in the

previous chapter.

Table 3.1: Resource Utilization on a Xilinx XC2V1000-6 FPGA

Resource Type Used Ratio

Slice Flip Flops 331 3%

4 input LUTs 1,580 15%

Block RAMs 0 0%

Total Occupied Sliced 1,063 20%

39

3.5 Summary

In this chapter, an FPGA implementation of a high-speed factorization

processor for the algebraic soft-decision RS decoding using BGMD algorithm

is presented. The BGMD factorization processor utilizes a low latency and

prediction-free root computation scheme. Furthermore, efficient coefficient

storage schemes and parallel processing architectures are employed to reduce

the latency of polynomial updating. The resulted hardware implementation

achieves a high decoding throughput with low complexity.

40

Chapter 4

FPGA Implementation and In-circuit

Verification of the Factorization Processors

4.1 Introduction

In this chapter, we will first briefly describe the overall design flow for

the FPGA implementation used in the factorization processor and the BGMD

factorization processor. Next, the hardware setup of the in-circuit verification

for the designs will be addressed in detail. Lastly, the in-circuit verification

for both factorization processors is given.

4.2 Overall Design Flow

Fig. 4.1 shows the overall design flow for the FPGA hardware imple-

mentation. All the designs presented in this thesis are coded in verilog HDL.

The synthesis, mapping, place and route are performed using the Prodesign

CHIPit manager v3.2.1 and the Xilinx ISE v9.1 design suite. Modelsim v6.2g

is used for the simulations at various design stages, which includes the behav-

ior simulation after the HDL coding, the functional simulation after synthesis,

and the timing simulation after the delay information is back-annotated to

the gate-level netlist. An equivalent C model is written to generate the test

41

vectors as stimulus and the desired test results for comparison. Static timing

analysis is performed to ensure the timing closure. After the design is fully

simulated in the host platform, the bit stream file from the implementation is

downloaded to the Prodesign CHIPit hardware platform (Iridium edition) for

in-circuit verification.

RTL

Simulation

Functional

Simulation

Static Timing

Analysis

Timing

Simulation

Back

Annotation

C Model

Test Vector Generation

Figure 4.1: Overall design flow

42

4.3 In-circuit Verification using FPGA Hardware Plat-

form

Two approaches are used in the in-circuit verification: the co-simulation

and the high-speed prototyping. In the co-simulation, individual design mod-

ules or the entire design can be moved to the hardware platform to accelerate

the simulation and connected to the PC host through a co-simulation link,

e.g. the CHIPit HDL-Bridge. The entire design is simulated under the same

simulation environment (Modelsim) using the same testbench. Fig. 4.2 shows

the configuration for the design in the co-simulation. In the PC host, a pseudo

DUT (design under test) is created to replace the actual DUT. The pseudo

DUT has the same I/O ports and parameters as the original HDL design.

It sends out the simulation commands to the hardware platform through the

HDL-Bridge co-simulation link. In the hardware platform, a pseudo test bench

is created to mimic the behavior of the original test bench. It receives the

command sent from the host and generates the test stimulus. All the data are

transferred between the PC host and the CHIPit hardware platform through

the UMRBus communication system over the PCI-e card.

The co-simulation is used in the early stage of the design verification.

We observed the co-simulation is at least 1000 times faster than the pure

software simulation. The major reason is that the HDL codes of the DUT

are run in parallel in the hardware platform during the co-simulation, while

it is executed serially during pure software simulation. However, since the

test-bench is run on the simulator on the PC host, the co-simulation still has

43

Modelsim simulator

Test Bench

Pseudo

DUT

HDL

Bridge

HDL

Bridge

DUT

Pseudo

Test Bench

CHIPit Platform

UMR

Bus

Figure 4.2: Detailed architecture of the co-simulation

a performance bottleneck in the simulator. As a result, the verification speed

of the test-bench is limited to about 5KHz - 100KHz during co-simulation. To

further speed up the design verification, the high-speed prototyping can be

used.

Test-bench

(TCL script)

DUT

CHIPit Platform

UMR

Bus
FIFO

FIFO
CAPIM2

CAPIM1
State

Machine

API Library

Control and Status

PC

Figure 4.3: Detailed architecture of the high-speed prototyping

Fig. 4.3 shows the detailed architecture of the high-speed prototyping.

In this mode, the DUT is run at the maximum operating speed during the

44

verification. In the PC host, a test-bench written in TCL script is used to

send out test vectors and fetch the test results. The API library is a software

library to provide an interface between the host application and the UMRBus

communication system. In the hardware platform, two client application in-

terface modules (CAPIM) from Prodesign are used for the data and command

exchanges between the DUT and the UMRBus. the CAPIM1 is used for the

control path and the CAPIM2 is used for the data path. A state machine

is employed to generate the controls signals based on the commands from

the CAPIM1 and fetch the status of the DUT. Since the UMRBus runs at

a fixed clock frequency of 70MHz and the DUT needs to run at a frequency

up to 100MHz, two asynchronous FIFO are inserted for data transfer between

the two different clock domains. Furthermore, 4-phase handshake scheme is

employed to the control signals between the two clock domains to avoid meta-

stability.

4.4 In-circuit Verification of the Factorization Proces-

sors

Both the factorization processor and the BGMD factorization processor

are verified using the methods addressed above. We first apply the computer

generated test vectors to factorization processors. To ensure the test coverage,

the test cases for various root distributions with or without root splitting are

selected or constructed manually and tested. Both factorization processors

successfully pass all the test cases at the frequency of 100MHz.

45

4.5 Summary

In this chapter, the overall design flow for the FPGA design and im-

plementation is presented. The setup of the in-circuit verification for the

factorization processors and the test results are given.

46

Chapter 5

Error Correction for Multilevel NAND Flash

Memory using Reed-Solomon Codes

5.1 Introduction

The increasing demand for non-volatile multi-media and mass data stor-

age has created the need for low-cost and high-capacity flash memories. In

recent years, multi-level cell (MLC) flash memories [6–9] have been developed

as an effective solution to increasing the storage density and reducing the

cost of flash memories. In MLC flash memories, multiple bits are stored per

memory cell by programming each cell with multiple threshold levels. The

reduced spacing between adjacent threshold levels significantly degrades the

reliability of flash memories. To ensure data integrity, error-correcting codes

(ECC) need to be employed in these memories. Traditionally, single-bit error-

correcting codes, such as Hamming codes, are used for single-bit cell (SBC)

flash memories. For MLC flash memories, especially for NAND flash memories

which have a large page size, e.g. 8K bits, single-bit error-correcting codes are

no longer sufficient.

Several works [9, 23–25] have proposed to use strong Bose-Chaudhuri-

Hocquenghem (BCH) codes for MLC NAND flash memories. BCH codes

47

provide a wide range of error-correcting capability and support flexible code

length through the shortening process. Efficient decoding algorithms, such as

the Berlekamp-Massey algorithm (BMA) [10, 11] and Euclid algorithms [12],

exist for decoding BCH codes. However, the large page size of NAND flash

memories demands codes of long length. Hence, the binary BCH codes to be

used in NAND flash memories are constructed over finite fields of very large

order. Consequently, highly parallel implementations are necessary in order to

meet the decoding speed requirement. As a result, large area is required for

the decoder implementation.

In this thesis, we propose to use Reed-Solomon (RS) codes for error

correction in flash memories. RS codes are good at correcting burst errors since

they are non-binary codes constructed over extension fields. For a RS code

constructed over GF (2m), if a symbol error can be corrected, then all the m

bit errors in this symbol are corrected. From simulations, it was found that the

errors in flash memory applications are random errors, i.e. errors happen one

bit at a time, if proper bit mapping is used. Although the burst error-correcting

capability of RS codes are wasted by having a t-symbol error-correcting code

to correct t random bit errors, the RS decoder has much lower complexity than

the decoder of a t-bit error-correcting BCH code with about the same code rate

and length in terms of bits. The major reason is that in order to construct a

code of the same bit length, the required order of the finite field for RS codes

is much smaller than that required for BCH codes. Hence, the syndrome

computation in RS decoding involves much less number of coefficients and

48

Chien search [26] needs to try much smaller number of finite field elements.

Accordingly, much smaller parallel processing factor is required by the RS

decoder to achieve a given throughput. Smaller parallel processing factor

translates to smaller number of computational units. As a result, RS decoders

require much less area than BCH decoders, despite the extra step of error

magnitude computation. As an example, a (828, 820) RS code constructed

over GF (210) and a binary (8248, 8192) BCH code constructed over GF (214)

are selected to correct 4 bit errors in an 8K data block for flash memories. It

can be computed that with 70% of the area, the RS decoder can achieve 121%

higher throughput than the BCH decoder.

Another contribution of this thesis is that, for the first time, a Gray

code-based mapping scheme is proposed to map the multi-level voltage value

in a memory cell to binary numbers. Compared to the direct mapping scheme

that was employed previously, our scheme can achieve 0.02dB and 0.2dB cod-

ing gains for the (828, 820) RS code and (8248, 8192) BCH code, respectively,

without any overhead.

This chapter is organized as follows. Our proposed bit mapping scheme

is presented in Section 5.2. This section also describes the simulation setups.

Section 5.3 presents the decoder design for RS codes and BCH codes. Com-

plexity analyses and comparisons for the two decoders are provided in Section

5.4. Section 5.5 draws conclusions.

49

5.2 Flash Memory Models and Gray Mapping

5.2.1 Modeling of Cell Threshold Voltage in Multi-level Flash Mem-

ory

−2 0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cell threshold voltage (Volts.)

P
ro

ba
bi

lit
y

D
en

si
ty

00 10 11 01
Gray
Mapping

Direct
Mapping[1] 0011 10 01

Figure 5.1: Cell threshold voltage distribution model for 2-bits/cell MLC flash
memories

Table 5.1: Mean and deviation for the threshold voltage levels in a 2-bit/cell
MLC flash memory

Level 3 2 1 0

Direct Mapping [7] 11 10 01 00
Gray Mapping (This thesis) 00 10 11 01

Mean (V) 0 3.25 4.55 6.5
Deviation (V) 4σ σ σ 2σ

The threshold voltage distribution measurement results for 2-bit/cell

MLC flash memories are given by Intel in [7]. For simulation purpose, we use

an approximate simulation model [23] shown in Fig. 5.1 [27]. Each of the

four threshold levels follows a Gaussian distribution. The mean values and

deviations of the four threshold levels are listed in Table 5.1 [27].

50

5.2.2 Gray Mapping and Detection

14.6 14.8 15 15.2 15.4 15.6 15.8 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

V
max

/σ (dB)

B
E

R

uncoded
BCH(8248,8192) direct mapping
BCH(8248,8192) gray mapping
RS(828,820) direct mapping
RS(828,820) gray mapping

Figure 5.2: BER performance for 2-bit/cell MLC flash memories

For 2-bit/cell MLC flash memories, data are grouped into 2-bit pairs,

and each pair is mapped to one of the four threshold levels. In prior works,

a direct mapping scheme is used. In the direct mapping scheme, the bits

mapped to a threshold level are the binary representation of the threshold

number, as shown in Table 5.1. From Fig. 5.1, when errors happen, it is

more likely that a voltage level will be taken as one of its adjacent levels in

the detector. In addition, the two voltage levels in the middle have both bits

different. Hence two bit errors will happen if one of the middle voltage levels

is taken as another by mistake. Alternatively, Gray codes can be used for the

bit-mapping. As a result, adjacent voltage levels have only one different bit

51

as shown in Fig. 5.1, and bit error rate (BER) can be reduced. Fig. 5.2 [27]

shows some simulation results of BERs for using BCH and RS codes in flash

memory applications. In our simulations, the decision threshold for signal

detection is set to a voltage, whose distances from the two adjacent means are

proportional to the corresponding deviations. Accordingly, the three decision

thresholds are set to 2.6V, 3.9V and 5.2V. As it can observed from Fig. 5.2,

around 0.2 dB coding gain can be achieved by the BCH code at BER of 10−7 if

Gray code mapping is used. The coding gain can be achieved by the RS code

using Gray mapping is only 0.02 dB. The coding gain for RS codes is trivial

because RS codes are symbol-based. In most of the cases, the two bit errors

resulted from taking one voltage level in the middle as another by mistake are

located in one symbol and can be corrected. Despite the small coding gain for

RS codes, the employment of Gray mapping does not require any overhead.

5.3 Architectures for RS and BCH Decoders

In [9, 23, 25], binary BCH codes are employed for error correction in

MLC flash memories. To protect a page size of 8K bits, a (8248, 8192) BCH

code is used. This code is a shortened 4-bit error correcting (16383, 16327)

BCH code constructed over GF (214). To shorten an (n, k) systematic code,

s message bits/symbols can be deleted. The resulted shortened code is an

(n− s, k − s) code. RS codes can be also employed for error correction. From

Fig. 5.2, it can be observed that the (828, 820) RS code can achieve similar or

higher coding gain than the (8248, 8192) BCH code. The (828, 820) RS code

52

is a shortened 4-symbol error correcting (1023, 1015) RS code constructed over

GF (210). In addition, compared to the (8248, 8192) BCH code, the (828, 820)

RS code has about the same rate and code length in terms of bits.

No prior work has compared the complexity of RS and BCH decoders.

In the remaining of this section, the decoder complexity for the BCH and RS

codes are compared. The algebraic decodings of RS and BCH codes share

three major steps: (a) syndrome computation; (b) key equation solver; (c)

error location computation using the Chien search. In addition, since RS codes

are non-binary, an extra step is required to determine the error magnitudes

using Forney’s algorithm [28]. The overall decoder architecture is illustrated

in Fig. 5.3 [27].

Syndrome

Computation

Key

Equation

Solver

Chien

Search

Forney’s

Algorithm
Received

Data

Error

Magnitudes

Error

Locations

Figure 5.3: RS/BCH decoder architecture

The decoding of a shortened code can be accomplished by the same

circuit used for the unshortened code with minor modifications. Hereafter, we

consider the decoder architecture for primitive t-error correcting (n, k) code

constructed over GF (2m), where n = 2m − 1. The architecture modifications

for the shortened codes will be described when necessary. Throughout this

chapter, the parameters n, k, t and s denote bit numbers and symbol numbers

in the context of BCH codes and RS codes, respectively.

53

b i

!

(1)()p b i

" !

()p b i

!

0r

1r

1pr "

iS

b i

!

iSjr

(a) (b)

Figure 5.4: Syndrome computation: a) serial architecture b) p-parallel archi-
tecture

5.3.1 Syndrome Computation

The received bits/symbols can be considered as the coefficients of a

degree n− 1 polynomial r(x) =
∑n−1

i=0 rix
i. The first step of the decoding is to

compute the 2t syndrome values, i.e. evaluate r(x) over 2t consecutive finite

field elements starting from αb:

Si = r(αb+i) =

n−1
∑

j=0

rj(α
b+i)j, 0 ≤ i < 2t

where α is a primitive element of the finite field and b is an integer. These 2t

consecutive elements are roots of the generator polynomial of the BCH or RS

code.

Applying the Horner’s rule, each syndrome can be computed by using

a recursive architecture as shown in Fig. 5.4a [27], which includes a constant

finite field multiplier and an adder. In the RS decoder, 2t such units are

required to compute 2t syndromes in parallel. In this case, 2t constant finite

field multipliers and 2t adders are required. One clock cycle is required to

54

process each received symbol. In shortened RS codes, the deleted message

symbols can be considered as zero. Hence only n− s clock cycles are required

to compute the syndromes.

For binary BCH codes, the syndrome computation can be simplified by

using the property that S2i = S2
i . Taking b = 1, only t syndromes need to

be computed explicitly and the rest can be derived through simple squaring

computations [29]. However, the number of coefficients in r(x) for the (8248,

8192) BCH decoding is much larger than that in the (828, 820) RS decoding.

Hence, higher level of parallel processing needs to be employed in the BCH

syndrome computation in order to achieve the same throughput as the RS

decoder. A p-parallel processing syndrome computation unit [30] is shown in

Fig. 5.4b, where p received bits are input at each clock cycle and weighted

before the recursive summation. If p-parallel processing is employed, then

the syndrome computation for BCH decoding requires pt constant multipliers,

pt 2-input adders and t squarers. In addition, since each input rj is binary,

the constant multipliers in the dashed block in Fig. 5.4b can be replaced

by directly wiring the inputs to the adder according to the nonzero bits in

the αb+i, . . . , α(p−1)(b+i) coefficients. Further area reduction can be achieved

by applying sub-structure sharing [31] among all constant multipliers in the

syndrome computation using the iterative matching algorithm (IMA)[32]. This

optimization depends on the finite field order and the irreducible polynomials

used for field construction.

55

5.3.2 Key Equation Solver

Assume ν errors occurred in the received data. The key equation solver

step finds the error locations i1, i2 · · · , iν . This is achieved by making use of

an error locator polynomial defined as

Λ(x) =

ν
∏

l=1

(1 − αilx) = 1 + λ1x + . . . + λνx
ν ,

where α is a primitive element. It can be derived that

Sj −
ν

∑

i=1

λiSj−i = 0 (5.1)

for 1 ≤ j < 2t. In addition, for RS codes, an error magnitude polynomial

Ω(x) is calculated in this step. Define the syndrome polynomial as S(x) =

S1x + S2x
2 + · · · + S2tx

2t, Ω(x) is the polynomial that satisfies the following

condition:

(1 + S(x))Λ(x) = Ω(x) mod x2t+1.

Efficient algorithms, such as BMA, exist to compute Λ(x) and Ω(x).

Starting from j = 0, the BMA constructs the Λ(x) iteratively to satisfy one

more equation described by (5.1) each time. In each iteration, a discrepancy

value Sj −
∑ν

i=1 λiSj−i is first computed. If it is not zero, then the Λ(x) is

modified by making use of a correction polynomial to make the discrepancy

zero. It can be observed that the computation of the discrepancy involves

polynomial convolutions. In addition, the updating of Λ(x) depends on the

discrepancy. Therefore, long latency is required in each iteration loop. To

56

increase the speed, a reformulated inversion-less BMA (RiBM) [33] has been

proposed. The RiBM algorithm introduces a discrepancy polynomial to cal-

culate the discrepancy value recursively. Moreover, it breaks the dependency

between the error locator polynomial and the discrepancy. As a result, the

coefficients of both polynomials can be updated simultaneously in each iter-

ation. The RiBM algorithm leads to a simple control scheme and a systolic

architecture, which has 3t + 1 processing elements (PEs) with one multiplier

and one adder in the critical path. To reduce the area, the RiBM architecture

can be folded by a factor of 3t + 1 and use only one PE [34]. The folded

architecture is shown in Fig. 5.5.

In the architecture shown in Fig. 5.5, the 2t syndromes are loaded into

the first 2t registers in both rows at the beginning. The rest of the registers are

initialized as ’0’ except that the rightmost registers in both rows are initialized

as ’1’. Since 2t iterations are required and each iteration takes 3t + 1 clock

cycles, the key equation solver step for RS decoding requires 2t× (3t+1) clock

cycles. After 2t × (3t + 1) clock cycles, the coefficients of Ω(h)(x) and Λ(x)

are available in first t and the following t + 1 registers, respectively, in the

top row. Here Ω(h)(x) satisfies x2tΩ(h)(x) + Ω(x) = 0|x=α−il . Although Ω(h)(x)

does not equal Ω(x), it has the same evaluation values on α−il as Ω(x). These

evaluation values are what actually needed to compute the error magnitudes

in the Forney’s algorithm. For the detailed description of this architecture, the

interested reader is referred to [33, 34]. The critical path of this architecture

has one multiplier, one adder and one multiplexor.

57

3t+1

3t+1

1 0

0 1

‘0'

1

0

‘1'

MSB

Figure 5.5: Ultra folded RiBM architecture

For binary BCH codes, the discrepancy is always zero in each odd

iteration. Hence, all the odd iterations can be skipped and only t iterations

are required [29]. In addition, since Ω(h)(x) does not need to be computed,

only t registers is required in each row in Fig. 5.5 and each iteration takes 2t

clock cycles [25]. Therefore t× (2t) = 2t2 clock cycles are required for the key

equation solver step in BCH decoding.

58

5.3.3 Chien Search and Forney’s algorithm

After Λ(x) is computed, the error locations can be found through com-

puting the roots of Λ(x). Root computations over finite fields can be carried

out by Chien search, which is based on exhaustive search. In addition, RS

decoding requires an additional step to determine the error magnitudes. The

Forney’s algorithm can be used to calculate the error magnitude for the error

located at position il:

eil =
xbΩ(x)

xΛ′(x)

∣

∣

∣

∣

x=α−il

. (5.2)

In (5.2), xΛ′(x) = λ1x + λ3x
3 + . . . + λ2t−1x

2t−1 is the sum of the odd degree

terms of Λ(x). It can be directly obtained during the computation of Λ(x).

Since the error magnitude polynomial Ω(h)(x) from the RiBM algorithm sat-

isfies x2tΩ(h)(x) + Ω(x) = 0|x=α−il , Ω(h)(x) is used instead of Ω(x) in (5.2), the

term xb can be eliminated by setting b = −t.

The architecture for the Chien search and error magnitude computation

in RS decoding is shown in Fig. 5.6 [27]. In this architecture, ω0, ω1, · · · , ωt−1

are the coefficients of Ω(h)(x). The upper part of this architecture carries out

the Chien search and the lower part is for the error magnitude computation.

The evaluations of the even terms and odd terms of Λ(x) are done by the

upper left and right parts, respectively. Then the outputs of these two parts

are added up. If the sum is zero, it indicates that a root has been found.

Since the evaluation values of the odd terms are the evaluation values of the

denominator in (5.2), the output of the upper right part can be directly used

59

Zero

detector
Inverter

0

t

t

0

1

t-1

1

t-1

0

t-1

0

t-1

e

-j

-j

-j

-j

-j

Even

terms

Odd

terms

Figure 5.6: Architecture for Chien search and error magnitude computation

in the error magnitude computation. From (5.2), the Forney’s algorithm re-

quires one finite field inversion. To reduce the area requirement of inversion,

composite field arithmetic can be employed [35]. In addition, since the inver-

sion is located in a feed-forward path, pipelining can be applied to reduce the

length of the critical path. The hardware complexity for the Chien search and

error magnitude computation block is 2t constant multipliers, 2t − 1 2-input

adders, one multiplier and one inverter. The architecture of Fig. 5.6 requires

the search to begin with the field element α or 1. Since the roots of Λ(x) are

60

the reciprocals of the error locations, the error correction would always begin

from the α2m−2 position. One field element is tried in each clock cycle. Hence,

2m − 1 clock cycles are required to find all the error locations.

In binary BCH decoding, there is no need to compute the error mag-

nitudes. In addition, the same architecture in the upper part of Fig. 5.6 can

be used for the Chien search to find the error locations. However, since the

BCH code is constructed over a much larger finite field than the RS code, a

much larger number of field elements need to be checked in the Chien search.

Therefore, to achieve the same decoding throughput, a large parallel pro-

cessing factor needs to be employed to the Chien search for BCH decoding.

Assuming a parallel processing factor of p is used, the hardware complexity

of the Chien search block is pt constant multipliers and p(t − 1) adders. To

further reduce the hardware, sub-structure sharing can be applied among all

the constant multipliers. In addition, the Chien search can be carried out on

Λ̃(x) = λν + λν−1x + . . . + λ1x
ν−1 + xν in binary BCH decoding since the

computation of xΛ′(x)|x=α−il is not required. In this case, the roots found

for Λ̃(x) are reciprocals of the roots of Λ(x). Hence, the computed roots are

already the error locations and the error correction can start from the α po-

sition. For shortened codes, there is no need to find the errors in the deleted

message bits. Therefore, only n − s field elements need to be checked in the

Chien search. Employing p-parallel processing, the Chien search for the BCH

decoding requires ⌈n−s
p
⌉ clock cycles.

61

5.3.4 Computation Scheduling

From the architectures discussed above, the latencies of both the syn-

drome computation and Chien search are proportional to the code length. On

the other hand, the latency for the key equation solver is proportional to t2.

For the error correction in MLC flash memories, the error-correcting capability

t is much smaller than the code length. Hence, the latencies of the syndrome

computation and Chien search dominate. Accordingly, although pipelining

can be employed to break the computation of all three steps, pipelining will

be only applied to separate the Chien search step from the others in order

to increase the hardware utilization efficiency. In this case, the clock cycle

number required for decoding each block is the maximum of the clock cycle

numbers required for syndrome computation and key equation solver and that

of the Chien search (and error magnitude computation for RS decoding).

5.4 Hardware Complexity and Throughput Comparisons

Table 5.2 and 5.3 [27] summarize the gate count and critical path of

each building block except the control block in the (828, 820) RS decoder

and (8246, 8192) BCH decoder, respectively. All gates in these tables refer

to 2-input gates except the single input NOT gates, and the MUXes refer to

1-bit 2:1 multiplexors. In the (8246, 8192) BCH decoder, a parallel processing

factor of 8 is employed in both the syndrome computation and Chien search

blocks. Multiple irreducible polynomials can be used to construct GF (210)

and GF (214). p(x) = x10 + x3 + 1 and p(x) = x14 + x10 + x6 + x + 1 are picked

62

in our design in order to minimize the hardware complexity.

Table 5.2: Gate counts and critical paths for the building blocks in the (828,
820) RS decoder

- Area Critical path

Multiplier 101XOR+100AND 5XOR+1AND
Adder 10XOR 1XOR

Inverter 164XOR+160AND+36OR+5NOT 16XOR+5AND+3OR+1NOT
Syndrome Computation 116XOR -

Key Equation Solver 212XOR+200AND+30MUX 6XOR+1AND+1MUX
Chien Search 50XOR+9OR+90MUX -

Forney algorithm 301XOR+270AND+36OR+5NOT -
Total Gate Count 679XOR+470AND+45OR+5NOT+120MUX 6XOR+1AND+1MUX

Table 5.3: Gate counts and critical paths for the building blocks in the (8246,
8192) BCH decoder

- Area Critical path

Multiplier 221XOR+196AND 14XOR+1AND
Adder 14XOR 1XOR

Squarer 21XOR 3XOR
Syndrome Computation 339XOR -

Key Equation Solver 456XOR+392AND+42MUX 15XOR+1AND+1MUX
Chien Search 727XOR+104OR+56MUX -

Total Gate Count 1522XOR+392AND+104OR+98MUX 15XOR+1AND+1MUX

From Table 5.2 and 5.3, it can be observed that the multiplier in

GF (210) requires less than 50% of the area of the multiplier in GF (214) and the

critical path is also much shorter. The major reason is that a trinomial exists

as an irreducible polynomial for the construction of GF (210) but not GF (214).

As it was mentioned before, the inverter required for the error magnitude com-

putation in (5.2) is implemented by using composite field arithmetic [35]. In

addition, the critical path of the composite field inverter is almost three times

63

of that in the overall design. Hence, the inverter is pipelined into three stages.

As it was mentioned in the previous section, the constant multipliers

for the syndrome computation in BCH decoding can be replaced by wiring the

input bits, and substructure sharing can be applied among the multipliers. In

addition, the number of syndromes needs to be computed explicitly is only

t for a t-error-correcting BCH code. After taking these optimizations into

account, the syndrome computation in the (8246, 8192) BCH decoding still

requires more than twice of the area as that in the (828, 820) RS decoding

due to the 8-parallel processing employed. From Table 5.2 and 5.3, it can

be also observed that the key equation solver block in the RS decoder has

much lower complexity than that in the BCH decoder. This is due to the

simpler multipliers in GF (210). The Chien search in the RS decoder has a

much smaller area than the one in BCH decoder. The major reason is that

in the Chien search of BCH decoding, high parallel processing is employed to

search a much larger number of finite field elements.

In summary, the overall hardware complexity for a (828, 820) RS de-

coder is 679 XOR gates, 470 AND gates, 45 OR gates, 5 NOT gates, 120

MUXes, and 534 registers, the implementation of the (8246, 8192) BCH de-

coder requires 1522 XOR gates, 392 AND gates, 104 OR gates, 98 MUXes,

and 638 registers. Assume that each AND or OR gate occupies 3/4 of the

area of an XOR, each NOT gate occupies half of the area of an XOR, a MUX

has the same area as an XOR, and each register requires about 3 times of the

area of an XOR. The (828, 820) RS decoder occupies 70% of the area of the

64

(8246, 8192) BCH decoder, despite the extra step required to compute the

error magnitudes using the Forney’s algorithm.

The minimum achievable clock period of both the RS and BCH de-

coders is limited by the feedback loop in the key equation solver block. It

contains one multiplier, one adder and one MUX. Since there are no feedback

loops involved in other parts of the decoder architecture, pipelining can be

employed to have a critical path of one multiplier, one adder and one MUX.

Hence, the critical path of the RS decoder is about 47% of that in the BCH

decoder. The (828, 820) RS decoder requires 828, 104 and 1024 clock cycles for

the syndrome computation, key equation solver, Chien search and error magni-

tude computation, respectively. The (8248, 8192) BCH decoder requires 1031,

32 and 1031 clock cycles for the three decoding steps, respectively. Apply-

ing the scheduling scheme mentioned in the previous section, it can be derived

that decoding one block of (828, 820) RS code requires 1024 clock cycles, while

1063 clock cycles are required for the (8248, 8192) BCH code. Accordingly,

the RS decoder can achieve 121% higher throughput than the BCH decoder.

When codes constructed over other fields are considered, the area and

throughput differences may become less if there is no trinomial that can be

used to construct the finite field for RS codes. However, it is still expected that,

with similar error-correcting performance, RS codes of similar code rate and

length requires smaller area and can achieve higher efficiency in the decoder

implementation.

65

5.5 Summary

In this chapter, a novel bit-mapping scheme using the Gray code is

proposed. The proposed scheme can achieve additional coding gain without

any overhead. In addition, the complexity of RS codes and BCH codes with

similar code rate and length are compared. It can be concluded that the RS

codes can achieve similar error-correcting performance as the BCH codes in

MLC flash memory applications with lower decoding complexity. Therefore,

RS codes are more suitable for these applications.

66

Chapter 6

Conclusions and Future Research

6.1 Conclusions

This thesis considers several hardware design and implementation is-

sues for error-correcting coding, including the FPGA implementation of the

factorization step for algebraic soft-decision RS decoding and the application

of RS codes for MLC NAND flash memories.

For the FPGA implementation of the factorization step for soft-decision

RS decoding, we first present an FPGA implementation of a factorization pro-

cessor for algebraic soft-decision RS decoding in general case. The proposed

factorization architecture is general and extensible. It can be easily modified

to support factorization of polynomial with designated degree. Parallel pro-

cessing is employed to speed up the polynomial updating. In addition, efficient

coefficient storage and transfer scheme is developed to facilitate the parallel

processing and minimize the latency. Next, we present an FPGA implemen-

tation of a factorization processor specific for the BGMD decoding. The im-

plementation is based on the architecture proposed in [5]. A low-latency and

prediction-free scheme is utilized for the root computation in the factoriza-

tion. Moreover, parallel processing and efficient coefficient storage scheme are

67

employed to reduce the latency of the polynomial updating. The BGMD fac-

torization processor achieves a high decoding throughput and has low hardware

area requirement, although it is only applicable to the polynomial factorization

with low Y -degree.

Another topic covered in this thesis is on the application of RS codes

in the error correction for MLC NAND flash memories. First, we propose a

novel bit-mapping scheme using the Gray code. The proposed scheme can

achieve additional coding gain without any overhead. In addition, the com-

plexity of RS codes and BCH codes with similar code rate and length are

compared. It can be concluded that the RS codes can achieve similar error-

correcting performance as the BCH codes in MLC flash memory applications

with lower decoding complexity. Therefore, RS codes are more suitable for

these applications.

6.2 Future Research Directions

In the factorization processor presented in Chapter 2, a root-order

prediction-based root computation scheme is utilized to circumvent the exhaustive-

search-based root computation from the second iteration level. However, the

root computation in the first iteration level is still carried out by exhaustive

search, which contributes to a significant portion of the overall factorization

latency. In [36], a novel iterative prediction scheme is proposed for the root

computation in the first iteration level. The resulted factorization architecture

can achieve significant speedup over prior works. Thus it is of practical in-

68

terest to incorporate the iterative prediction root computation scheme to the

factorization processor to further reduce the factorization latency.

In the BGMD factorization processor presented in Chapter 3, since the

updated polynomial coefficients for the next iteration level are available after

at most three clock cycles of polynomial updating, further speedup can be

achieved by performing the root computation and the polynomial updating

simultaneously in each iteration level. However, the design throughput is still

limited by the long critical path and overall clock cycles. Thus, it is highly

desirable to develop new architectures to further break the critical path and

reduce the overall clock cycles of the BGMD factorization processor.

For the error correction in the MLC flash memories, future studies

will be directed to develop more efficient decoders for flash memories appli-

cations. The investigation of the silicon cost and implementation for both

error-correcting coding schemes are also interesting topics.

69

Bibliography

[1] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction

bound,” Journal of Complexity, vol. 13, no. 1, pp. 180–193, 1997.

[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and

algebraic-geometric codes,” IEEE Transactions on Information Theory,

vol. 45, no. 1, pp. 1755–1764, 1999.

[3] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-

Solomon codes,” IEEE Transactions on Information Theory, vol. 49,

no. 11, pp. 2809–2825, 2003.

[4] J. Jiang and K. R. Narayanan, “Algebraic soft decision decoding of Reed-

Solomon codes using bit-level soft information,” Proc. Allerton Confer-

ence on Communications, Control and Computing, 2006.

[5] J. Zhu and X. Zhang, “Efficient VLSI architecture for soft-decision decod-

ing of Reed-Solomon codes,” IEEE Transactions on Circuit and System

- I: Regular Papers, submitted.

[6] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. Hensel,

M. Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe, D. Mills, P. Ruby,

R. Rozman, S. Sweha, S. Talreja, and K. Wojciechowski, “A multilevel-cell

70

32 mb flash memory,” IEEE International Solid-State Circuits Conference

(ISSCC), 1995., pp. 132–133, 351, 15-17 Feb 1995.

[7] G. Atwood, A. Fazio, D. Mills, and B. Reaves, “Intel StrataFlash memory

technology overview,” Intel Technology Journal, pp. 1–8, 4th Quarter,

1997.

[8] B. Ricco, G. Torelli, M. Lanzoni, A. Manstretta, H. Maes, D. Monta-

nari, and A. Modelli, “Nonvolatile multilevel memories for digital appli-

cations,” Proceedings of the IEEE, vol. 86, no. 12, pp. 2399–2423, Dec

1998.

[9] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino,

L. Crippa, E. Di Martino, L. D’Onofrio, A. Gambardella, E. Grillea,

G. Guerra, D. Kim, C. Missiroli, I. Motta, A. Prisco, G. Ragone, M. Ro-

mano, M. Sangalli, P. Sauro, M. Scotti, and S. Won, “A 4Gb 2b/cell

NAND flash memory with embedded 5b BCH ECC for 36MB/s system

read throughput,” IEEE International Solid-State Circuits Conference

(ISSCC), 2006., pp. 497–506, Feb. 6-9, 2006.

[10] E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, 1968.

[11] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans-

actions on Information Theory, vol. 15, no. 1, pp. 122–127, Jan 1969.

[12] Y. Sugiyama, M. Kasahara, S. Hirawawa, and T. Namekawa, “A method

for solving key equation for decoding Goppa codes,” Information and

71

Control, vol. 27, pp. 87–99, 1975.

[13] G.-L. Feng and K. Tzeng, “A generalization of the Berlekamp-Massey al-

gorithm for multisequence shift-register synthesis with applications to de-

coding cyclic codes,” IEEE Transactions on Information Theory, vol. 37,

no. 5, pp. 1274–1287, Sep 1991.

[14] S. Gao and M. A. Shokrollahi, “Computing roots of polynomials over

function fields of curves,” Coding Theory and Cryptography, D. Joyner,

Ed., pp. 114–228, 1999.

[15] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon

codes beyond half the minimum distance,” IEEE Transactions on Infor-

mation Theory, vol. 46, no. 1, pp. 246–257, 2000.

[16] X.-W. Wu and P. Siegel, “Efficient root-finding algorithm with applica-

tion to list decoding of algebraic-geometric codes,” IEEE Transactions on

Information Theory, vol. 47, no. 6, pp. 2579–2587, Sep 2001.

[17] A. Ahmed, R. Koetter, and N. Shanbhag, “VLSI architectures for soft-

decision decoding of Reed-Solomon codes,” 2004 IEEE International Con-

ference on Communications, vol. 5, pp. 2584–2590, 20-24 June 2004.

[18] W. J. Gross, Implementation of algebraic soft-decision Reed-Solomon de-

coders. PhD thesis, E.C.E., Univ. of Toronto, Canada, 2003.

72

[19] J. Ma, A. Vardy, Z. Wang, and Q. Chen, “Factorization architecture

by direct root computation for algebraic soft-decision decoding of Reed-

Solomon,” ICASSP 2007, pp. II–1–4, April 2007.

[20] X. Zhang and K. K. Parhi, “Fast factorization architecture in soft-decision

Reed-Solomon decoding,” IEEE Transactions on VLSI System, vol. 13,

no. 4, pp. 413–426, 2005.

[21] K. Ralf and A. Vardy, “A complexity reducing transformation in algebraic

list decoding of Reed-Solomon codes,” Proc. ITW2003, pp. 10–13, April

2003.

[22] B. Chen and X. Zhang, “FPGA implementation of a factorization proces-

sor for soft-decision Reed-Solomon decoding,” IEEE International Sym-

posium on Circuits and Systems, May 2008.

[23] F. Sun, K. Rose, and T. Zhang, “On the use of strong BCH codes for im-

proving multilevel NAND flash memory storage capacity,” IEEE Work-

shop on Signal Processing Systems (SiPS), Oct. 2006.

[24] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Design of on-chip error

correction systems for multilevel NOR and NAND flash memories,” IET

Circuits, Devices and Systems, vol. 1, no. 3, pp. 241–249, Jun. 2007.

[25] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error

correction VLSI design for multi-level cell NAND flash memories,” IEEE

Workshop on Signal Processing Systems (SiPS), pp. 248–253, Oct. 2006.

73

[26] R. Chien, “Cyclic decoding procedure for the bose-chaudhuri-hocquenghem

codes,” IEEE Transactions on Information Theory, vol. 10, pp. 357–363,

October 1964.

[27] B. Chen and X. Zhang, “Error correction for multi-level NAND flash

memory using Reed-Solomon codes,” IEEE Workshop on Signal Process-

ing Systems (SiPS), submitted.

[28] G. D. Forney, “On decoding BCH codes,” IEEE Transactions on Infor-

mation Theory, vol. 11, no. 4, pp. 549–557, Oct 1965.

[29] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Ap-

plications. Prentice Hall, 2nd ed., 2004.

[30] L. Song, M.-L. Yu, and M. Shaffer, “10- and 40-Gb/s forward error cor-

rection devices for optical communications,” IEEE Journal of Solid-State

Circuits, vol. 37, no. 11, pp. 1565–1573, Nov 2002.

[31] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Imple-

mentation. Wiley, Jan. 1999.

[32] Y. Chen and K. K. Parhi, “Small area parallel Chien search architectures

for long BCH codes,” IEEE Transactions on VLSI System, vol. 12, no. 5,

pp. 545–549, 2004.

[33] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for Reed-

Solomon decoders,” IEEE Transactions on VLSI System, vol. 9, no. 5,

pp. 641–655, 2001.

74

[34] K. Seth, K. N. Viswajith, S. Srinivasan, and V. Kamakoti, “Ultra folded

high-speed architectures for Reed Solomon decoders,” VLSI Design, 2006.

Held jointly with 5th International Conference on Embedded Systems and

Design., 19th International Conference on, pp. 1063–9667, 3-7 Jan. 2006.

[35] C. Paar, Efficient VLSI Architecture for Bit-Parallel Computations in

Galois Field. PhD thesis, Institute for Experimental Mathematics, Uni-

versity of Essen, Germany, 1994.

[36] X. Zhang, “Further exploring the strength of prediction in the factor-

ization of soft-decision Reed-Solomon decoding,” IEEE Transactions on

VLSI System, vol. 15, no. 7, pp. 811–820, 2007.

75

	Text93: Bainan Chen
	Text94: Master of Science
	Text95: Xinmiao Zhang
	Text96: Daniel Saab
	Text97: Christos Papachristou
	Text98: 04/28/2008

