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a = radius [m] 
 
aar(θd) = radius of deformed bubble [m] 
 
a1 = radius of the larger bubble (bubble 1) [m] 
 
a2 = radius of the smaller bubble (bubble 2) [m] 
 
aj0 = initial radius of bubble j 
 

2

1

aâ = 
a

 

 
1 2

m
1 2

a aa  = 
(a +a )

 

 
A = Hamaker constant [J] 
 
Â  = cubic spline interpolation term 
 
Ac = cross sectional area (m2) 
 
B̂  = cubic spline interpolation term 
 
c = speed of sound [m/s] 
 
cg = speed of sound through gas [m/s] 
 
cl = speed of sound through liquid [m/s] 
 
cp = speed of sound through solid particle [m/s] 
 
C0 =  contribution of external expansion to Λ 
 
Ĉ  = cubic spline interpolation term 
 
D̂  = cubic spline interpolation term 
 
D0

12 = relative diffusivity due to Brownian motion for two widely separated bubbles 
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1 ˆd  = ρ-1  
 

2 ˆd  = 1+2ρ  
 

3 ˆd  = 2+3ρ  
 

1
1,j

j

dd  = 
d

 

 
er = unit vector in the radial direction 
 
eθ = unit vector in the tangential direction 
 
Eac = average energy density [J/m3] 
 
F = acoustic contrast factor 
 
FvdW = van der Waals force [N] 
 
g = gravity [m/s2] 
 
Gρ = density acoustic contrast factor 
 
Gβ = compressibility acoustic contrast factor 
 
G(s) = axisymmetric far-field mobility function 
 
G(ξ) = axisymmetric near-field mobility function 
 

0 1h  = r-(a +a )2  
 
H(s) = asymmetric far-field mobility function 
 
I  = unit second-order tensor 

 
k = Boltzmann constant = 1.38065•10-23 [kg m2/s2 K] 
 
L = surface to surface bubble separation [m] 
 
L0 = initial surface to surface bubble separation [m] 
 
L(s) = axisymmetric far-field mobility function 
 
L(ξ) = axisymmetric near-field mobility function 
 

13 



( )1/2
m 0a /h

m = 
μ̂

 

 
2

l g

l

a (ρ -ρ )g
M = p = 

3μ
 = ratio of the buoyancy force to the drag force divided by the 

 velocity; the velocity the bubble would travel with no acoustic force [m/s] 
 
M(s) = asymmetric far-field mobility function 
 
M(ξ) = asymmetric near-field mobility function 
 
M0 = term in the asymmetric near-field mobility function 
 
M1 = term in the asymmetric near-field mobility function 
 

ac
ac

l g

3κE FqN  =  = 
p (ρ -ρ )g

 = ratio of the primary acoustic force to the buoyancy force 

 
2

l g

l

a (ρ -ρ )g
p = 

3μ
 = ratio of the buoyancy force to the drag force divided by the velocity; 

 the velocity the bubble would travel with no acoustic force [m/s] 
 
p12 = pair distribution function; probability that bubble one is at position r  relative to 
 bubble two. 
 
P = pressure [Pa] 
 
P20 = static portion of the component of radial projection which is mainly responsible for 
 bubble deformation [Pa] 
 

2
s l lP  = 2ρ c Eac  = pressure amplitude of the unmodulated standing acoustic wave [Pa] 

 
i

j0 atm
j0

2σP  = +P
a

 = pressure inside a bubble [Pa] 

 
Patm = atmospheric pressure [Pa] 
 

2
ac

l

a κE Fq = 
3μ

 [m/s] 

 
Q = general term for mobility functions used in spline calculations 
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r = center to center bubble separation distance [m] 
 
r  = vector of the center to center bubble separation distance [m] 
 

1 2

2rs = 
a +a

 = dimensionless bubble separation 

 
sfar = value of s up to which the far field mobility functions are valid 
 
snear = value of s at which the near field mobility functions become valid 
 
T = temperature [K] 
 
t = time [s] 
 
v = velocity [m/s] 
 
V0 = initial volume [m3] 
 

0
1V  = initial velocity of bubble 1 [m/s] 

 
0
2V = initial velocity of bubble 2 [m/s] 

 
V1 = velocity of bubble 1 [m/s] 
 
V2 = velocity of bubble 2 [m/s] 
 
V12 = relative velocity of bubble 1 to bubble 2 [m/s] 
 

0 0
12 1 2V  = V -V0 = relative initial velocity of bubble 1 to bubble 2 [m/s] 

 
Vp1 = volume of particle 1 [m3] 
 
Vp2 = volume of particle 2 [m3] 
 
VvdW = van der Waals force inter-particle force potential [J] 
 

*
vdWV  = the van der Waals potential made dimensionless by dividing by the Hamaker 

 constant 
 
x(θd) = deformation term in rar(θd) [m] 
 
y = distance of bubble center from pressure antinode [m] 
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α = 2κ  [1/m] 

ac = F2,acr2 = expresses the strength of secondary acoustic forces [Nm = kgm3/s2] 

1 = correction to the Hadamard-Rybczynski drag force for bubble 1 

2 = correction to the Hadamard-Rybczynski drag force for bubble 2 
 

 
α
 
β
 
β

2

1γ = 
ρc

 = compressibility [1/Pa = ms2/kg] 

p = compressibility of particle [1/Pa = ms2/kg] 

l = compressibility of liquid [1/Pa = ms2/kg] 
 

 
γ
 
γ

[ ]02 1

2

tan
1 tan

1
ac

ac

ac

N y
Mt N

N

κ
κ −

⎛ ⎞+
⎜ ⎟Γ = − +
⎜ ⎟−⎝ ⎠

 

 
Δx = x coordinate of bubble position [m] 

y = y coordinate of bubble position [m] 

 surface with respect to the vertical axis for 
deformation calculations 

 

 
Δ
 
θd = polar angle of a point on the bubble
 

ωκ = 
c

 = wavenumber [1/m] 

 = wavelength [m] 

(ξ) = asymptotic solution for the resistance function 

 = total interparticle force potential 

 = phase angle 

 = density [kg/m3] 

g = density of gas [kg/m3] 

l = density of liquid [kg/m3] 

p = density of solid particle [kg/m3] 
 

 
λ
 
Λ
 
Φ12
 
φ
 
ρ
 
ρ
 
ρ
 
ρ
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g p

l l

ρ ρ
ρ̂ =  = 

ρ ρ
 

 
g p

l l

c c
σ̂ =  = 

c c
 

 
σi = interfacial tension [dynes/cm = kg/s2] 
 
μg = viscosity of the gas [Ns/m2] 
 
μl = viscosity of the liquid [Ns/m2] 
 

g

l

μ
μ̂ = 

μ
 

 
η = polytrophic exponent of the gas (1.4 for a diatomic gas - air) 
 
ξ = s-2 
 
ξx = displacement 
 

2 21 2 1ac actM N tM Nα κΨ = − = −  
 
ω = the angular driving frequency [Hz = 1/s] 
 
ωj = monopole resonance frequency of bubble j [Hz = 1/s] 
 
ω1 = monopole resonance frequency of bubble 1 [Hz = 1/s] 
 
ω2 = monopole resonance frequency of bubble 2 [Hz = 1/s] 
 

1/2

0

0 0

3 (3 1)21 j i
j

j l l j

P
a a

γ γ σω
ρ ρ

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
∇  = gradient operator 
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Fundamentals of Bubble Transport in an Ultrasonically Assisted Separation Process 

Abstract 

By 

JENNIFER LYNN MALERS 

 

 Previous research endeavors resulted in a process to recover solid particles and oil 

droplets from aqueous suspensions.  This process involves applying a one-dimensional 

resonant ultrasonic field to the suspension while it is flowing through or resting in a 

rectangular chamber.  The same process has been utilized here for gas bubbles in an 

aqueous medium.  Bubbles in this system move to the acoustic pressure antinodes, based 

on the density and compressibility of the bubble and the surrounding fluid as well as the 

driving frequency and the radius of the bubble. 

 To obtain a fundamental understanding of the movement of a single bubble within 

the acoustic chamber, a balance of the relevant physical forces was completed:  primary 

acoustic force, buoyancy force, and drag force.  The resulting equations could be used to 

determine the position of a single bubble within the chamber and the velocity at which 

that bubble would be moving toward those positions. 

 A microscopic mathematical model was developed to predict the relative 

trajectory of a bubble pair in an acoustic field.  This model not only took into account the 

primary forces previously discussed, but also inter-bubble effects:  secondary acoustic 

force, van der Waals force, hydrodynamic interactions, and Brownian diffusivity.  The 

trajectory analysis was used to track the movement of the bubble pairs under a variety of 

operating conditions and the results were compared to experimental data.  This data was 
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then used to calculate volume cleared by the collision of different bubble pairs, thus 

describing the kinetics of the collision process. 

 The results from the models were then compared to experimental data obtained by 

injecting small numbers of bubbles into an acoustic chamber.  This comparison was done 

by taking video of bubbles colliding, mapping their path, and comparing this to the 

trajectory determined from the bubble pair model.  The projected trajectory and the 

experimental trajectory were shown to be in good agreement.  The model can then be 

used to calculate the collision time for a variety of energy densities at experimental 

conditions.  This relationship can then be used to determine the energy density of the 

experimental system based on the observed collision time.  
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Introduction and Research Objectives 

 

1.1 Purpose 

The use of ultrasonic fields to induce phase separations of a dispersed solid, 

immiscible liquid, or gas within a suspending liquid phase has received increasing 

attention over the past two decades.  Dissolved and entrained gases, and thus gas bubbles, 

have the potential to produce transport inefficiencies in closed-loop flow systems and 

also have the possibility of causing materials failure.  Research conducted in this study 

investigates the applicability of the use of a resonant ultrasonic wave field to entrap and 

harvest gas bubbles from a surrounding liquid for potential applications in microgravity 

environments.  It is hoped that by subjecting the bubbles to a standing acoustic field, their 

migration and coalescence can be managed, allowing for greater ease of removal. 

This research aims to develop a fundamental understanding of the effect of forces 

induced by resonant ultrasonic fields on the entrapment and coalescence phenomena.  

Modeling efforts illustrate the relationship between the size of bubbles, their sphericity, 

acoustic field parameters (frequency and intensity), bubble equilibrium position relative 

to acoustic pressure antinodes, and the bubble coalescence phenomena.  Experiments 

involving small numbers of bubbles (less than ten) are used to test the basic predictions 

of the model.  These results support subsequent studies of the clustering and coalescence 

of swarms of bubbles. 
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1.2 Bubble Transport 

There are a few fundamental differences in using acoustic processing techniques 

when dealing with bubbles as opposed to solid particles or liquid droplets.  These issues 

will be explored at greater length in subsequent chapters, but they warrant a brief 

introduction. 

 The first issue is possible shape distortion caused by the acoustic field (which 

may also be encountered in experiments with liquid drops).   Performing the experiments 

with spherical bubbles is most desirable because it allows for the least sophisticated 

analytical models.  Pressures induced by acoustic fields can distort bubbles from a 

spherical shape.  Therefore knowledge of this practical limit on acoustic field intensity is 

important from an analytical perspective. 

The large density difference between the gas bubbles and the surrounding fluid, in 

this case water, results in changes in the key equations defining the system.  The acoustic 

contrast factor, a term that is seen in the primary acoustic force equation and which 

determines the migration to pressure nodes or pressure antinodes, becomes dependent on 

bubble radius and the wavenumber of the acoustic field as well as densities and speeds of 

sound.  This dependence on radius and wavenumber does not show up for the case of 

solid particles and liquid droplets.  The secondary acoustic force also differs from that of 

solid particles and liquid droplets in that it is dependent on the monopole resonance 

frequencies of the bubbles, and must take into account how different those values are 

compared to the angular driving frequency of the acoustic field. 

Another issue that arises is obtaining accurate visual documentation of 

experiments.  Because the micron to millimeter sized bubbles move so quickly, often 
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with initial velocities ranging between 30 m/s and more than 200 m/s depending on the 

energy density, it is difficult to monitor their movement, clustering, and coalescence.  

Under typical conditions, it rarely takes more than a few hundredths of a second for a 

bubble to reach its approximate equilibrium position, though it may make small 

adjustments to obtain its actually equilibrium position that can be measured on a more 

lengthy time scale. 

 

1.3 Microgravity 

In ground based studies, density differences between bubbles and liquids can make 

phase separation relatively easy.  But in microgravity environments more expensive and 

complex systems must be used.  Current techniques for gas-liquid separations in 

microgravity include static separators, which can be prone to fouling; vortex separators, 

which are not suited for low flow; and rotary separators, which tend to be mechanically 

complex and expensive. 

This research provides preliminary information to address the specific need of 

removing bubbles from closed loop flow systems in microgravity, possibly space station, 

applications without incurring the cost or equipment failure of current techniques.  In the 

future it is desirable to conduct studies in environments with induced microgravity to 

determine the true value of this research under the desired conditions. 
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1.4 Roadmap to this Dissertation 

 In this document chapter two describes basic acoustic theory, covering ultrasonic 

waves, ultrasonic standing waves, and the primary and secondary acoustic forces acting 

on a compressible sphere.  Chapter two also discusses previous work done in the area of 

ultrasonic phase separation and how ultrasonics has been used in a variety of other areas.  

Chapter three begins with calculations concerning the deformation of the bubble, building 

on work previously done Marston [43, 44].  It continues with the determination of the 

primary force balance and subsequent solving for the position and velocity of a single 

bubble using previously defined ratios and values [5] to facilitate the ease of managing 

these equations.  This force balance was different from previous work in that there were 

two equations determined, one for the bubble release case, and one for the bubble capture 

case.  The next major section of chapter three discusses inter-bubble forces with much of 

the analysis resulting in the equations used in determining the inter-bubble forces 

advancing work done by Zhang and Davis [52], who didn’t consider acoustic forces.  

Primary forces and bubble-bubble interaction forces have been considered separately by 

other groups, often only in microgravity environments, whereas this work endeavors to 

consider all of these interacting together:  primary acoustic force, buoyancy force, 

secondary acoustic force, van der Waals force, and Brownian diffusion.  Chapter three 

continues on with the development of a new mathematical model which determines the 

relative trajectory of a bubble pair.  Though this has been done previously for solid 

particle and droplets, the case of bubbles is a new endeavor and involves more 

convoluted relationships between parameters due to new equations resulting from 

calculations for bubbles.  Chapter three closes with examples of relative bubble 
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trajectories as well as iso-time contours and volume cleared analyses.  Chapter four 

covers experimental procedures and results which covers new issues arising from the use 

of bubbles not seen in previous research from this group, and chapter five rounds things 

out with conclusions and suggestions for future work.  A flow chart of the basic steps 

taken in this research can be seen in Figure 1. 
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Determine conditions for 

bubble distortion. 

Spherical – continue. Not spherical – stop; 
requires different 

analysis.

Primary force balance: 
primary acoustic force, 
buoyancy force, drag 

force.  

Capture conditions 
(Nac ≥ 1) – continue. 

Release conditions 
(Nac ≤ 1) – stop. 

Inter-bubble effects: 
secondary acoustic force, 

hydrodynamic interactions, 
van der Waals, Brownian 

motion. 

Calculate bubble pair 
trajectories. 

Compare trajectories 
with experimental 

results. 

Calculate iso-time 
contours – kinetics of 

collision process. 

Calculate volume 
cleared around a bubble 

– kinetics of the 
collision process. 

 

Figure 1:  Flow chart of the steps taken to obtain the mathematical and experimental data for this 
dissertation. 
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2 Acoustic Force and Literature Survey 

 

 The initial definition of sound was anything that could be heard.  In other words, 

the vibrations of air in the frequency range detectible by the human ear.  The broader and 

more scientific definition includes vibrations that travel through all types of matter 

(gases, liquids, solids, and plasmas) which may or may not be perceivable by the human 

ear (infrasound and ultrasound).  Sound is generated when a medium is dynamically 

disturbed.  A source causes a disturbance in the fluid elements in the surrounding 

medium; those particles cause a disturbance in the fluid elements surrounding them, and 

so on.  In this way sound energy is transferred through the medium.  In fluids, the sound 

waves are considered longitudinal, i.e. the fluid elements travel in the same direction as 

the propagation of the sound wave and the disturbance of the medium affects its pressure, 

density, particle velocity, and temperature.  The relationships between these variables 

determine the wave equation [1, 2, 3, 4]. 

 

2.1 Wave Equation 

 To simplify the derivation of the wave equation, a very small element of volume 

will be considered.  The total pressure of the system consists of the hydrostatic pressure 

(Ph) and the sound pressure (Pu).  Because the hydrostatic pressure is assumed to be 

constant the derivative of the total pressure is equal to the derivative of the sound 

pressure [1, 2]. 
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 For a small volume of an inviscid fluid, dV, where the pressure on the right side is 

greater than the left side by PdP dx
x

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 there will be a net force to the left, 

P dx
x

∂⎛ ⎞−⎜ ⎟∂⎝ ⎠
, over a unit area.  Then using Newton’s second law, this force can be shown 

to accelerate the mass of liquid according to equation (2.1), where ξx is the one 

dimensional displacement of the fluid molecules (assumed to be small).   Since the 

medium is assumed continuous, equation (2.2) can be shown to be true, where V0 is the 

initial volume.  The equation of state relating the acoustic pressure to the volume change 

can be used to determine the differential change in pressure, equation (2.3), where γ is the 

compressibility. 

2

2
xP dx dx

x t
ξρ

⎛ ⎞∂∂⎛ ⎞− = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
        (2.1) 

0
xddV V

x
ξ⎛= ⎜ ∂⎝ ⎠

⎞
⎟          (2.2) 

0

1 dVP
Vγ

⎛ ⎞
= − ⎜

⎝ ⎠
⎟           (2.3) 

Combining equations (2.2) and (2.3) the equation relating the pressure to the 

displacement is seen in equation (2.4).  Using partial differentiation, equations (2.1) and 

(2.4) can  be combined and the relationship in equations (2.5) and (2.6) is found, where c 

is the speed of sound. 

1P
x
ξ

γ
∂⎛= − ⎜ ∂⎝ ⎠

⎞
⎟           (2.4) 
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         (2.5) 
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         (2.6) 

 Assuming simple harmonic motion (equating to the boundary condition of the 

transducer, which is an oscillating plate with a sinusoidal motion, on one side and the 

boundary condition of a fixed reflective wall at on the other side), the general solution for 

equations (2.5) and (2.6) can be written as the sum of two progressive waves moving in 

opposite directions. 

( ) (( , ) i t x i t xP x t Ae Beω κ ω− − −= + κ        (2.7) 

For equation (2.7) -1i = , 2 fω π=  is the angular frequency, f is the driving frequency 

of the transducer, 
c
ωκ =  is the wave number and A and B are the maximum amplitudes 

of the forward and reverse propagating waves, respectively [5].  When A = B this is the 

solution for a standing wave.  If there is no reverse propagating wave, B = 0, then 

equation (2.7) simplifies to equation (2.8).  The real form can be expressed as equation 

(2.9), where φ is the initial phase angle of the pressure wave.  If you assume the phase 

angle is zero (indicating no initial offset in the displacement from a specified reference 

point) then equation (2.9) can be reduced to equation (2.10) where the spatial and time 

dependencies are decoupled. 

(( , ) i t xP x t Ae )ω κ−=          (2.8) 

( , ) cos( )P x t A t xω κ ϕ= − +

ω

        (2.9) 

( , ) cos( ) cos( )P x t A x tκ=         (2.10) 

 The velocity of the small-volume packet of fluid or gas can be obtained directly 

from the acoustic pressure.  Noting that for simple harmonic motion i
t

ω∂
=

∂
, the 
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relationship in equation (2.11) is obtained [29].  Then utilizing equations (2.1) and (2.11), 

equation (2.12) is acquired. 

2

2

d i
dt t

ξ ξ i vω ω
⎛ ⎞ ∂⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠

        (2.11) 

1 ( ,( , ) P x tv x t
i xωρ

∂
= −

∂
)

)

        (2.12) 

 

2.2  Standing Wave Equation 

 For purposes of this research, the standing wave solution must be utilized because 

the sound wave is being reflected to introduce a standing sound wave.  A standing wave 

occurs when either the medium is moving in the opposite direction as the wave, or as in 

this case, when there is interference between two waves of equal wavelength traveling in 

opposite directions in a stationary medium.  With standing waves there is no net 

propagation of energy.  The general solution for the standing wave equation can be seen 

in equations (2.13) and (2.14), with the velocity equation being the same as that seen in 

equation (2.12). 

( ) (( , ) i t x i t xP x t Ae Aeω κ ω− − −= + κ

ω

       (2.13) 

( , ) 2 cos( )cos( )P x t A x tκ=         (2.14) 

 The interference of the two plane waves causes a series of parallel displacement 

nodal planes (minimum displacement) and antinodal planes (maximum displacement).  

The nodal planes occur at half wavelength intervals with the antinodal planes lying 

equidistant between them.  Displacement and pressure are related in the sense that at 

points of maximum displacement, there is a minimum pressure variation.  At points of 
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minimum displacement, there is a maximum pressure variation.  Figure 2 shows a 

schematic of this.  For the purposes of this dissertation any further references to nodes 

and antinodes will be indicative of pressure nodes and antinodes, not displacement. 

 

 

At displacement nodes, the fluid 
experiences maximum pressure 
swings, which means these 
locations are pressure antinodes. 

Displacement

 

Figure 2:  Diagram showing the relationship between pressure and displacement nodes and 
antinodes.  The circle indicates approximate position of bubble collection. 
 

 

2.3 Acoustic Radiation Force 

 The forces that act on individual particles, liquid drops, or bubbles interacting 

only with their processing medium, and not with neighboring particles, liquid drops, or 

bubbles is known as the primary acoustic force (Fac).  Primary acoustic forces tend to 

induce the migration to specific locations within the suspension [6].  Yosioka and 

Kawasima calculated the acoustic radiation pressure on a compressible sphere resulting 

in a primary acoustic force equation for plane stationary waves with uniform amplitude, 

(2.15) [7, 8]. 

A node of 
motion, like a 
closed end, 
will be an 
antinode of 
pressure. 

Pressure

Wavelength 
λ 
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34 sin(2ac acF a E F )yπ κ= κ         (2.15) 

 In equation (2.15) a is the radius, Eac is the average energy density of the acoustic 

field, y is the distance from the nearest pressure antinode, and F is the acoustic contrast 

factor.  Assuming no secondary interactions, the tendency of a solid drop, liquid drop, or 

bubble to respond to a resonant standing ultrasonic filed is dependent on the acoustic 

contrast factor.  The acoustic contrast factor for solid particles and liquid drops is 

different from that of bubbles, but in both cases density and compressibility (or speed of 

sound) are the important factors.  This can be seen in Figure 3.  If the acoustic contrast 

factor is greater than zero, which is the case when the particle is denser than the 

surrounding fluid, the particle moves to the pressure nodes.  If the acoustic contrast factor 

is less than zero, which is the case when the particle (usually a gas bubble) is less dense 

than the surrounding fluid, the particle moves to the pressure antinode.  This is because 

the pressure nodes are points of zero pressure variation around ambient, and dense 

particles have a minimum compressibility so they will move to these areas.  Pressure 

antinodes are areas of maximum pressure variation around ambient, and the less dense 

bubbles have a larger compressibility so they will move to these areas.  This is shown in 

Figure 4.  The particles, droplets, or bubbles move to either the pressure nodes or 

antinodes because this minimizes the energy of the system.  For instance, at pressure 

antinodes where the pressure swings are the greatest, it takes less energy to compress a 

bubble than it does to compress a packet of liquid the same size, therefore the bubbles 

collect at that location.  Whereas when particles are being suspended, it takes less energy 

to compress a packet of liquid than it does a solid particle, so the particles move toward 

the pressure nodes because they are the points of zero pressure variation. 
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Figure 3:  Graph showing the dependence of a particle or liquid drop on density and speed of sound, 
where F is the acoustic contrast factor.  For a bubble there is also a dependence on size. 
 

 

At pressure anitnodes where the fluid 
does not move, the fluid experiences 
maximum squeezing and expanding.  
A bubble will migrate toward this 
point. 

Original sound wave. 

 

Figure 4:  Diagram showing the points at which bubbles (pressure antinodes) and particles (pressure 
nodes) collect. 
 

At pressure nodes where the fluid 
does move, the fluid experiences very 
little squeezing and expanding.  A 
solid particle will migrate toward this 
point. 

Reflected sound wave. 
Wavelength 

λ 

P 
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 The acoustic contrast factor for particles and liquid drops is based solely on 

density and compressibility, equation (2.16) [7, 8].  For gas bubbles it is also dependent 

on the radius and frequency, equation (2.17) [7, 8, 9, 10].  This radius and frequency 

dependency results from the monopole oscillations of the bubble (the breathing mode), 

which can result in not only a volume change for the bubble but also a resonance 

frequency variation.  Eller developed an expression for the sinusoidal pressure variation 

[9, 79], but this did not include the effects of radiation damping like the equation 

obtained by Lee and Wang [9, 10], and like the more general equation obtained by Crum 

and Prosperetti [9, 78]. 
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 For equations (2.16) and (2.17) ρp, cp, and γp are the density of, speed of sound 

through, and compressibility of the particle; ρg and cg are the density of and speed of 

sound through the gas bubble; ρl, cl, and γl are the density of, speed of sound through, and 

compressibility of the surrounding liquid; ˆ g p

l l

ρ ρ
ρ

ρ ρ
= = , and ˆ g p

l l

c c
c c

σ = = . 

 Often the assumption of a uniform force is made when in reality there is an 

arbitrary acoustic field.  In other words the assumption of uniform energy density in the 

system does not always hold.  For the case of a standing wave field of non-uniform 

oscillation-velocity amplitude, the lateral (or transverse) component of the primary 
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acoustic force may need to be considered, equation (2.18) [11, 12, 13], as well as the 

axial component which is represented in equation (2.15).  This lateral component, which 

is a primary acoustic force acting perpendicular to the one seen in equation (2.15), most 

often results from non-uniformities in the transducer. 

3 2 24 ( cos [ ] sin [ ]
3yz acF a E G x Gρ βπ κ= ∇ − )xκ        (2.18) 

For the lateral component,  is the gradient operator in the lateral (y, z) directions and Gρ 

and Gβ are the density and compressibility acoustic contrast factors, respectively, defined 

in equations 

∇

(2.19) and (2.20). 

3( )
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p l

l p

Gρ

ρ ρ
ρ ρ

−
=

+
         (2.19) 

2

11
ˆˆ

Gβ σ ρ
= −           (2.20) 

 Because the lateral force scales with the gradients of Eac, and the axial force 

scales directly with Eac, the lateral force is often at least an order of magnitude less than 

the axial force [12, 13].  The lateral force can cause the particles or bubbles to aggregate 

to local maxima of Eac once the axial force has induced movement to the pressure nodes 

or antinodes [5].  These local Eac maxima are often referred to as “hot spots”. 

 

2.4  Secondary Acoustic Force 

 As particles, drops, or bubbles approach each other, secondary forces come into 

play.  These forces dictate how the objects will move toward each other and can possibly 

help with the understanding of clustering and coalescence.  The secondary acoustic force 

is a time-averaged mutual interaction force of two objects in an acoustically driven liquid.  
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Once again, the equation used for the case of bubbles, (2.21) [14-18], differs from that 

used for particles or drops, (2.22) [18, 19].  For the bubble case ω is the angular driving 

frequency, ωj is the monopole resonance frequency of a bubble, r is the center to center 

bubble separation distance, and Ps is the pressure amplitude of the unmodulated standing 

acoustic wave.    For the particle case Vp1 and Vp2 are the volumes associated with each 

particle. 
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2.5 Literature Survey 

 The study of acoustics probably had its beginning with Pythagoras of Samos in 

the 6th Century BC.  His interest in music and his desire to make it more harmonious and 

less chaotic lead to a series of experiments on the properties of vibrating strings [20, 21].  

Though modern acoustics was detailed in the 1877 work The Theory of Sound by Lord 

Rayleigh [22], experiments on high frequency waves did not emerge until the 19th 

century during World War I.  Paul Langevin, a French physicist, used Pierre and Jacques 

Curie’s piezoelectric effect to detect submarines through echo location, though this 

technology was not operational until after the war [20, 23]. 

 The origins of research on the acoustics of a suspended particle began in 1934 

with Louis King who developed the mathematics showing that the time-averaged 

acoustic radiation pressure on a particle is different than that of the time-averaged 
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acoustic radiation pressure experienced by the fluid near the particle [24, 25].  Though 

King’s paper didn’t account for the compressibility of the spheres, Yoshioka and 

Kawasima extended the analysis to do so, showing that the density of the spheres 

compared to that of the surrounding fluid affects whether they move toward pressure 

nodes or antinodes depending on the sign of the acoustic contrast factor, with less dense 

spheres moving to the antinodes and more dense spheres moving to the nodes [7]. 

 

2.5.1 Ultrasonic Phase Separation – Particles and Droplets 

 The past two decades have seen a rise in interest in the use of ultrasonics for 

phase separation processes.  Though often times in industry ultrasonics may not be the 

only technique used for the separation process, it does assist in more convention 

separation techniques by improving the efficiency and capacity of these presently used 

separation methods [26].  In the early 1990s research was conducted showing that 

particles ranging in size from 0.1 to 100 μm in an aqueous suspension could be trapped at 

nodal zones with half wavelength spacing.  Particles of 9 μm were shown to be stable 

against a continuous flow rate of 5 ml/min (in a cylindrical chamber with a diameter of 

2.5 cm and a length of 20 cm) giving a capture efficiency of 80-98%.  Removal of 

particles was accomplished without the aid of fluid flow by repeatedly sweeping the 

driving frequency over a known range and period, essentially marching the particles to an 

exist port at one end of the acoustic chamber [27, 28, 29]. 

 Subsequent research focused on fractionation and removal techniques, showing 

that suspensions could be separated based on particle size or density and compressibility.  

One method was to utilize thin stream splitters to divide the flow into two product 
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streams.  Particles that responded quickly to the acoustic field moved to one stream, 

while those that did not moved to the other [31-34]. 

 Another suspension method investigated involved the use of porous mesh.  This 

research utilized a variety of porous mesh, the main types being:  unconsolidated beds 

formed from glass spheres, aluminum foam mesh, and polyester foam mesh.  The first 

two have acoustic impedances an order of magnitude larger than that of the surrounding 

liquid water, whereas the last has an acoustic impedance much closer to that of the water.  

All three had pore sizes two to three orders of magnitude larger than that of the particles 

being collected.  Feed suspensions of polystyrene particles (radius 2-30 μm) in deionized 

water with Triton X were fed through the mesh in the acoustic chamber at rates from 30-

60 cm3/min with particle loadings as high as 1%, and the mesh   Single-pass filtration 

efficiencies from this technique were shown to be as high as 80-90% when using the 

polyester foam mesh.  Numerical results from the modeling associated with this method 

indicate that the capture of the particles in the mesh is due to the interaction of the 

incident plane waves with waves reflected from the fiber, also known as secondary 

acoustic forces [35, 36, 37]. 

 Though much of the research in the field of ultrasonic separations has been 

conducted with solid particles, in the last few years more investigation has been done on 

liquid drops in immiscible host liquids.  Experiments were done both with and without 

porous mesh residing in the acoustic chamber.  It was shown that the drops residing in a 

standing acoustic wave field could be induced to coalesce, resulting in a single-pass oil 

retention efficiency greater than 80% for droplets ranging from 1-15 μm.  The filtration 

efficiency was found to be strongly dependent on both emulsion flow rate and path 
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length, which implies sensitivity with respect to residence time.  Modeling was done to 

determine the path of droplets being attracted to one another and the time it took for 

collision and subsequent coalescence [38-41]. 

 

2.5.2 Ultrasonic Phase Separation – Bubbles 

 Although analyzing the effects of acoustic fields on bubbles may seem to be 

somewhat similar to that for compressible liquid spheres, the possibility of the larger 

density difference between the gas bubbles and the surrounding liquid and the resonance 

frequency of the gas bubble can result in a few intrinsic differences.  Take, for instance, 

both the primary and secondary acoustic forces.  While the majority of the primary 

acoustic force equation remains the same, the acoustic contrast factor for with gas 

bubbles, equation (2.17), is also sensitive to the bubble radius and the frequency at which 

the system is being driven as well as the density and speed of sound through each fluid 

[9, 10].  Neither of these effects is significant for liquid droplets.  The resonance 

frequency of the bubble can also affect the location of the bubble within the acoustic 

chamber.  It has been shown that if a bubble is larger than resonance size, or to put it 

another way if a bubble is being driven above its resonance frequency, it will move to the 

pressure antinodes in the system.  Whereas a bubble smaller than resonance size, or a 

bubble being driven below its resonance frequency, will move toward the pressure nodes 

[59, 60, 61].  Khabeev looked at the resonance properties of a soluble gas bubble.  He 

found that at high frequency the behavior of a soluble bubble is the same as that of an 

insoluble bubble because diffusion is a very slow process relative to the rates of bubble 

vibration and will only manifest itself at very low frequencies [83]. 
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 The secondary acoustic force must also take into account the resonance frequency 

of the bubbles being considered [14, 47].  The resonance frequency of a bubble is 

dependent on the radius of that bubble, the density of the surrounding fluid, the pressure 

inside the bubble, and the polytropic exponent of the gas inside the bubble.  It is well 

recognized that the secondary acoustic force can change signs based on the comparison 

between the resonance frequency of the bubbles and the driving frequency of the acoustic 

chamber.  Classical Bjerknes theory indicates that two interacting bubbles will repel each 

other, assuming the driving frequency is between the natural frequency of the two 

bubbles (ωi<ω<ωj), otherwise a mutual attraction occurs which should result in 

coalescence [62].  There have been a variety of papers in the last 10-15 years that refute 

the simplicity of this theory based on the specific conditions used in the study [65, 66, 67, 

68, 75]. 

 In 1944 while doing research on destructive cavitation, Kornfeld and Suvorov 

observed an attractive force acting between two bubbles, sometimes resulting in 

coalescence and, when there was a large enough size discrepancy, small bubbles were 

seen to orbit the larger bubbles in an elliptical pattern.  In other instances the bubbles 

were seen to repel each other [64].  The cases of coalescence and repulsion are, of course 

another example of the classical Bjerknes theory that indicates the acoustic force is 

attractive when the bubbles are oscillating in phase with each other and repulsive when 

the bubbles are oscillating in opposite phase [17].  The orbiting phenomenon is not 

something commonly investigated, though more recently Barbat and Ashgirz have 

attempted to explain it [73, 74].  They found that whether bubbles at small separations 

collide, orbit, or scatter is dependent on the kinetic energy of the pair.  It was also found 

39 



that the 2-D motion of a non-resonant pair of bubbles changes pattern from hyperbolic 

trajectories to elliptical orbits and elliptical collision trajectories as the forcing amplitude 

increases, regardless of the bubble size ratio [74].  Resonant bubble pairs could either 

move in a pattern of closed orbital trajectories (much like the pictures you drew as a child 

with a spiral drawing set) or they could move in a pattern of precessing orbits [74].  

Harkin et al. showed that the pattern of motion for a bubble pair can be dramatically 

affected by the strength of the acoustic forcing and that the bubble pairs can move in 

directions opposite of what is predicted from classical and even enhanced Bjerknes 

theory [77]. 

 Another factor determining whether the secondary acoustic force is attractive or 

repulsive is the spacing between the bubbles [49, 67, 69, 70].  Doinikov and Zavatrak 

showed that at small distances, the value of the mutual interaction force varies 

substantially from that of the classic theory [67, 75].  Zabolotskaya showed that as the 

bubbles approach each other their resonance frequencies increase, which may cause sign 

reversals in the secondary acoustic force [65].  Zheng and Apfel showed that the 

magnitude and direction of the interparticle force depends on the relative orientation of 

the centerline of the two objects to the traveling direction of the primary plane incident 

wave [49].  The sign of the secondary acoustic force changes when the center to center 

distance increases by half a wavelength [49]. 

 Ida has recently suggested that bubbles can invert their own pulsations phases 

around frequencies other than their resonance frequencies.  These are referred to as 

transition frequencies and are usually defined as the driving frequency at which the phase 

difference between a bubble’s frequency (not necessarily the resonance frequency) and 
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the external frequency is π/2 [48, 63].  Assuming negligible damping effects, for an N 

bubble system there are 2N-1 transition frequencies and only N of those correspond to the 

resonance frequencies.  The claim was made that the sign reversal on the secondary 

acoustic force takes place at the transition frequencies as well as at the resonance 

frequencies [48].  So now not only is there a sign reversal in the force for the case of 

ωi<ω<ωj, there is an indication that a sign reversal also occurs for ω>ωi>ωj [17].  

Doinikov showed that for two bubbles with resonance frequencies greater than the 

driving frequency (ωi>ωj>ω) there is a mutually attractive force; for the case where one 

bubble is smaller than resonance size and one bubble is larger (ωi<ω<ωj) the force may 

initially be repulsive but at small distances that repulsion changes to attraction; and for 

the case where both bubbles are larger than resonance size there are two different 

possibilities depending on the size of the bubbles:  coalescence or initial attraction 

changing to repulsion at small separations [67, 75].  In later papers Doinikov showed that 

when considering the second harmonic component of the interaction force, small bubbles 

being driven either above (ω>ωi>ωj) or below (ωi>ωj>ω) their resonance frequency can 

experience a secondary acoustic force which, at small distances, can either cause them to 

repel each other or form a bound pair with some stable separation [14, 71, 72].  Mettin et 

al. also showed that as bubbles approach each other the secondary acoustic force can 

change from attractive to repulsive, and in some cases results in a stable separation 

distance [76].  This stable separation distance can result in the cluster formation of what 

is called “bubble grapes” for larger bubbles and “acoustic streamers” for smaller bubbles. 

 Most of the cases talked about previously are based off of an assumption of an 

incompressible, non-viscous liquid as the suspending phase.  But when adding in the 
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possibility of viscous effects, the response of bubbles can veer from classical Bjerknes 

theory once again.  The fluid viscosity breaks the conservation of the system of two 

interacting bubbles, and the interaction force felt by one bubble is no longer equal and 

opposite to that felt by the second bubble [16].  The secondary acoustic force undergoes 

dissipative effects in response to losses in the linear pulsations of the bubbles and the 

acoustic streaming around the bubbles due to the viscosity of the host liquid [65, 81].  

Doinikov showed that when very small bubbles (1-20 µm) are driven far below 

resonance, viscous effects can result in a repulsive interaction force.  He conjectured that 

the vertical motion and acoustic streaming that develops around a bubble can lead to 

viscous drag forces on the other bubble, reducing or completely negating the attractive 

force that classical Bjerknes theory predicts [15].  Hitt and Prosperetti considered these 

viscous forces as they apply to the primary acoustic force.  They showed that the viscous 

drag forces consist of two components.  The first is a linear “Stokes-like” drag and the 

second is a “Basset-like” term that has its physical origin in the interaction of the bubble 

motion with its own viscous wake.  It was determined that these viscous forces had little 

impact on the bubble motion and final resting point (primary acoustic force) [78, 82].  

Devin showed that not only are viscous forces important when determining the resonance 

frequency of bubbles, but that thermal damping, due to the thermal conduction between 

the gas in the bubble and the surrounding liquid, and radiation damping, due to the 

radiation of spherical sound waves, are also important [84]. 

 When considering a bubble in a microgravity environment, the primary force 

balance becomes a bit easier because the buoyancy and gravitational effects can be 

neglected.  In boiling experiments run under microgravity conditions, Sitter et al. showed 
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that bubbles larger than resonance size moved toward the pressure nodes, and bubbles 

smaller than resonance size moved toward the pressure antinodes.  They also showed that 

acoustic standing waves can increase the heat transfer rates, especially when the heating 

element is paced at an acoustic pressure antinode, and that an acoustic standing wave can 

play the role of the buoyancy force under microgravity conditions [85].  Abe et al. also 

showed that bubbles larger than resonance size moved toward the pressure nodes, but 

their final resting point would be slightly above the node.  They determined that under 

reduced gravity the maximum size of bubbles that could be controlled was larger than in 

normal gravity due to reduced buoyancy effects, and that the bubbles tended to line up 

horizontally at the same height in reduced gravity, as opposed to agglomerating as seen in 

normal gravity [86].  Although Hawkes et al. didn’t do experiments with bubbles in 

microgravity under the influence of a standing acoustic field, they did investigate 

particles and determined that there was a more efficient movement of the bands in 

microgravity than in normal gravity due to the lack of sedimentation.  Their observations 

suggested that the chamber-scale streaming which disrupts the ordered state of smaller 

particles at normal gravity is driven by temperature gradients rather than acoustic 

streaming [87]. 

 Surfactants reduce the surface tension of the gas-liquid interface of air bubbles in 

water.  In an acoustic system without a surfactant, there is a greater tendency for bubbles 

to coalesce because this reduces the surface area and thus reduces the surface energy of 

the system.  When adding a surfactant the surface tension at the gas-liquid interface 

decreases.  It has been shown that the adsorption of the surfactant onto the interface 

retards the process of bubble coalescence [88].  Crum as well as Ashokkumar et al. 
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determined that a surfactant can increase the growth of small bubbles due to rectified 

diffusion [89, 90, 101], which is when acoustic energy causes supersaturated gas to be 

pumped into an existing small bubble, making the bubble increase in size [131].  Asaki 

and Marston showed that the soluble surfactant Triton X-100 can decrease the size of 

larger bubbles by enhancing the rate of gas transfer from the bubble to the water [91].  

Those authors noted that at low surfactant concentrations the frequency and damping of 

the bubble exhibit maxima, whereas at high concentrations of surfactant the bubble 

frequency is reduced, due to surface tension depression, and the damping is further 

increased.  They also point out that not all surfactants can be expected to affect gas 

transfer rates in the same manner [91] and identify previous experiments with the 

insoluble surfactant stearic acid which show neutrality toward gas transfer [92].  Sunartio 

et al. measured the bubble volume at different frequencies and concentrations of the 

surface active solute sodium dodecyl sulfate (SDS) and determined that a lower number 

of SDS molecules adsorb onto the gas-liquid interface at higher frequencies.  This was 

indicated by a reduced inhibition to coalescence which, they say, equates to a reduction in 

the steric repulsion of the bubbles [88].  Giribabu and Gosh looked at the effect of two 

different nonionic surfactants at the gas liquid interface without the addition of acoustics.  

They showed that between the two, Tween 20 and Triton X-100, Triton X-100 is better at 

stabilizing bubbles or, in other words, preventing coalescence [93].  Malysa et al. discuss 

the velocity of bubbles with the presence of a variety of different surface active 

substances, again without the addition of acoustics [94].  They used Frumkin and 

Levich’s adsorption theory to explain the lower velocity of bubbles in surfactant 

solutions:  the molecules of surfactant adsorbed at the top of the bubble are convected by 
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the surface flow to the bottom where they accumulate and then desorb.  This results in 

surface tension gradients that retard the mobility of the bubble interface thus lowering the 

bubble terminal velocity [94, 95, 96].  Malysa et al. determined that the minimum 

adsorption coverage needed to immobilize a bubble surface was less than 10% in the 

majority of cases of surface active substances studied [94]. 

 Part of the research involving acoustic effects on gas bubbles and their behavior is 

often times in regard to the cavitation and sonoluminescence phenomena.  Cavitation 

occurs when vapor bubbles or cavities are formed in a liquid when the pressure of the 

liquid has been reduced to below its vapor pressure [97].  Vapor gases evaporate into the 

cavities from the surrounding liquid and the low pressure inside the cavitation bubbles 

will cause the bubbles to begin to collapse due to the higher pressure of the surrounding 

fluid.  The temperature and pressure of the vapor in the bubbles will continue to increase 

as the bubble volume decreases, and eventually the bubbles will collapse, at which point 

the gas within the bubbles dissipates into the surrounding fluid in a violent mechanism, 

see Figure 5, which releases a significant amount of energy in the form of an acoustic 

shock-wave and sometimes visible light, also referred to as sonoluminescence [98], see 

Figure 6.  Though for sonoluminescence to occur the bubble must contain mainly inert 

noble gas such as argon [98].  Specifically for an acoustic field, microscopic gas bubbles 

already present in the liquid will be forced to oscillate, and if the acoustic field intensity 

is sufficiently high the bubbles will grow in size and then rapidly collapse [98].  
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Figure 5:  Picture of a cavitation bubble erupting [99].  The size of the bubble was not indicated in 
the reference. 
 

 

Figure 6:  1) Apparition of bubble, 2) quick expansion, 3) sudden contraction (very short compared 
to expansion), 4)  light produced by the high pressure and high temperatures inside the small bubble 
[102]. 
 

 

 Lauterborn et al. showed that free oscillations of a cavitation bubble can be 

initiated by a focused laser light and forced oscillations by a standing acoustic field.  The 

nonlinear free oscillations are strongly damped by the radiation shock waves upon 

collapse for the case of the focused laser light.  This is also true for a bubble in an 
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acoustic field, but in this case the energy lost is resupplied by the sound field.  It was 

determined that upon collapse, the resultant light flash scales with the maximum bubble 

radius, and not with the volume which is proportional to the energy in the bubble [104].  

Akhatov et al. showed that cavitation bubbles can form acoustic streamers.  Negating 

secondary acoustic forces yields a stable structure, and when adding in the secondary 

forces the structure becomes more branched and less stable [103].  Lauterborn et al. also 

reported on the filament structure of cavitation bubbles, commenting that when looking at 

the pattern with the naked eye, the structure seems dense and the dendritic branched 

structure is pronounced, Figure 7, but when short exposure pictures are taken the 

structure is much more diluted, Figure 8 [104]. 

 

 

Figure 7:  Bubble web in a standing acoustic wave called acoustic Lichtenberg figure, single pressure 
antinode region, long exposure (several periods of the sound field) [104].  Size of the structure was 
not provided in the reference. 
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Figure 8:  Bubble web in a standing acoustic wave called acoustic Lichtenberg figure, single pressure 
antinode region, short exposure (approximately 10 ns) [104].  Size of the structure or the bubbles was 
not provided in the reference. 
 

 

 Hatanaka et al. showed that by increasing the voltage supplied to the transducer, 

larger clusters of bubbles form.  The clusters consist of a few large bubbles surrounded 

by a swarm of small bubbles and they repeatedly coalesce and fragment.  This can affect 

multibubble sonoluminescence (MBSL) because as bubbles cluster, secondary acoustic 

forces increase and the cluster may begin to move away from the pressure antinode where 

sonoluminescence occurs [105].  Posakony et al. investigated the use of a second 

transducer, oriented 90º from the first one, to stabilize a 3-D MBSL bubble pattern [106].  

Maisonhaute et al. showed that isonation at 500 kHz can increase the base current of an 

electrochemical system (0.5 M solution of Fe(CN)6
3-) utilizing  a 25 µm diameter 

microelectrode due to an increased flux resulting from acoustic streaming.  The 

occurrence of cavitation in the induced a reduction current indicating that part of the 

diffusion layer had been removed by the cavitation activity [107]. 
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 Though not considered cavitation, another form of bubble breakup is referred to 

as fragmentation.  Leighton showed that in an acoustic field, one bubble approaching 

another is enough to disturb the sound field and prevent the stationary bubble from 

oscillating stably.  The subsequent violent shape oscillations of the bubble may cause it to 

break apart into smaller bubbles which disperse rapidly into the surrounding fluid [100].  

The acoustic field can also cause gas to be lost from one bubble by generating smaller 

daughter bubbles due to surface waves on the mother bubble wall.  Secondary Bjerknes 

forces can cause these smaller bubbles to be transferred to a neighbor bubble in a stream 

to coalesce with the larger bubble.  The initial mother bubble is relatively unaffected by 

this type of fragmentation, unlike the previous example of neighbor-induced 

fragmentation [100]. 

 There has also been research done on bubble interactions with drops and particles 

in acoustic fields.  Doinikov reports that as a heavy drop, a drop with a density larger 

than the surrounding fluid, and a bubble approach each other the interaction force 

changes from positive to negative forming a stable bound structure that remains as long 

as the sound field remains on.  For a light drop, a drop with a density less than the 

surrounding fluid, he showed that the interaction force changes from repulsion to 

attraction at very short separations [108].  Doinikov and Zavtrak looked at the mutual 

interaction force between a particle and bubble in a sound field.  For heavy particles, it 

was shown that the interaction force changed from attraction to repulsion if the driving 

frequency is slightly above some of the natural frequencies of shape oscillations of the 

bubble.  For light particles it was shown that the interaction force changed from repulsion 

to attraction at all frequencies [109].  For both heavy particles and light drops it was 
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observed that a second sign change on the interaction force as a function of separation 

could occur.  For the particle, this means that the force can change from attractive to 

repulsive to attractive again and vice versa for the drop [108, 109].  These examples 

considered the secondary acoustic force only, and neglected the primary forces.  Gould et 

al. investigated effect of cavitation bubbles on the capture of 9 µm polystyrene spheres.  

Their results showed that high enough levels of cavitation were disruptive to the captured 

particles but that the aggregated particles could tolerate some bubble activity.  This 

tolerance was due to the separation of the particle and the bubbles given that the particles 

were located at the pressure nodes and the bubbles were located at the pressure 

antinodes[110].  Ata and Jameson observed that in the presence of floatable solids bubble 

clusters would form held together by silica particle bridges using dodecylamine as a 

collector, though this was without the benefit of an acoustic field [111]. 

 

2.5.3 Other Applications 

 Ultrasound for use in medical applications initiated with its application in therapy 

as opposed to diagnosis, and ultrasound-induced tissue heating began to be used in the 

1930s and 1940s [112].  Langevin was probably the first to associate ulstrasound to the 

biological and medical world in 1917 when he noted the ultrasonic destruction of schools 

of fish in the sea [20, 112].  In the 1940s, William Fry and Russel Meyers used 

ultrasound to destroy parts of the basal ganglia in patients with Parkinsonism and Peter 

Lindstrom reported ablation of frontal lobe tissue in moribund patients to alleviate their 

pain from carcinomatosis [20].  In the late 1940s and early 1950s groups in the United 

States and Japan began research on the use of ultrasound for medical imaging [20].  
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Howry showed that tissue interfaces could be detected with ultrasound and Wild showed 

that cancer tissue structures could be differentiated from benign tissue structures [112, 

113-115]. 

 Ter Haar and Wyard found that blood cells exposed to an acoustic standing wave 

band at half wavelength intervals in the blood vessels [116].  Weiser et al. determined 

that when a large number of cells react to their interparticle forces, the cells lined up 

perpendicular to the primary acoustic force will experience an attractive force whereas 

the cells lined up parallel will experience a repulsive force [117].  Zhou et al. investigated 

the use of ultrasound to enhance a fiber-optic Salmonella biosensor.  They found that the 

Salmonella cells could be captured by a standing acoustic wave, but the best fluorescence 

signal intensities were achieved by immobilizing the Salmonella antibody on polystyrene 

microspheres before subjecting the sample to the acoustic field.  Acoustic focusing 

resulted in an eight-fold increase in the peak value of the fluorescence spectrum [118].  

Sedimentation ultrasonic filters have been used in biomedical separations.  The ultrasonic 

standing wave is positioned across the outflow of the fermentor so that as the soluble cell 

product is drawn away, the cells clump and sediment back into the culture to produce 

more antibodies [119].  This technique has shown a yeast recovery with an efficiency of 

99% and an E. coli recovery of 82% [120].  Batch systems can also separate cells with a 

decent efficiency, with whole blood and E. coli separation in excess of 99.5% [34, 121]. 

 Ultrasound has found a wide-spread use in the field of medical imaging, and 

though traditional medical sonography is common, another technique called contrast-

enhanced ultrasound (CEUS) is also being used.  In this technique, ultrasound contrast 

agents, which are gas-filled microbubbles, are used to increase the ultrasonic signal.  
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Microbubbles have a large ability to reflect ultrasonic waves, also called echogenicity, 

and the echogenicity difference between the gas in the microbubbles and that of the 

surrounding tissue is considerable.  The microbubble contrast agent enhances the 

ultrasonic backscatter, and thus allows for a sonogram with increased contrast [122].  

This technique was first discovered by Dr. Charles Joiner in the late 1960s.   When 

performing an M-mode echocardiogram he noticed an increase in ultrasonic signal after 

each injection of indocyanine, which was later found to be a result of small bubbles 

forming at the catheter tip [123]. 

 There are a variety of other uses for ultrasound.  Kim et al. used the acoustic 

emission technique to monitor the crevice corrosion on 304L austenitic stainless steel and 

found that this technique was in good agreement with both corrosion potential and visual 

observations [124].  Birkin et al. showed that cavitation bubbles can enhance mass 

transfer, which is associated with forced convection resulting from the bubble collapse 

[125].  Marmottant and Hilgenfeldt investigated the use of acoustic streaming, resulting 

from microbubbles in an ultrasonic field, for an alternative means of directional transport 

in microfluidics, instead of the typical method of transporting small objects through 

channels by actuation forces such as applied pressure differences or thermocapillary 

forces [126].  Similarly, Liu et al. looked at bubble induced micromixing for use in 

microfluidics.  They found that microbubbles in an acoustic field generated steady 

circulatory flows and reduced the mixing time for a 22 µl solution from hours (pure 

diffusion based mixing) to tens of seconds [127].  Pandy et al. showed that the use of 

ultrasound when chemically etching particle tracks into plastic solid state nuclear track 

detectors can reduce the etching time, result in more conical shaped particle tracks and 
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better clarity, reduce the surface damage, result in more homogenous etching, and allow 

for better control of the conditions which results in greater reproducibility [128].  Jyoti 

and Pandit looked at using ultrasonic cavitation with chemicals such as ozone and 

hydrogen peroxide for use in water disinfection.  Though they found that this increases 

the cost, ultrasonic cavitation can help decrease the toxic by-product formation, and can 

reduce the heterotropic plate count bacteria as well as the total coliforms, fecal coliforms, 

and fecal streptococci (indicators of pollution in drinking water) by as much as 99% 

when hydrogen peroxide (5 mg/L) shows a maximum reduction of only 28% [129].  

Laschimke et al. used advanced acoustic emission analysis to show that the tension in the 

water conducting system of vascular plants is caused by countless minute gas bubbles 

strongly adhering to the hydrophobic lignin domains of the xylem vessel walls [130].  It 

is their statement that the transport of the non-metabolic energy from the leaves to the 

roots, resulting from the cohesive attraction between the bubbles, is the most important 

precondition of the long-distance water transport in plants [130].  All of this goes to show 

that the uses of ultrasound are many and pervasive in modern technology. 
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3 Theory and Equations 

 The initial analytical portion of this research project aimed to develop a 

fundamental understanding of the effect of buoyancy versus acoustic forces on the 

entrapment and coalescence phenomena.  Modeling efforts illustrate the relationship 

between the size of bubbles, their sphericity, acoustic field parameters (frequency and 

intensity), bubble placement in regards to acoustic pressure antinodes, and the bubble 

coalescence phenomena. 

 

3.1 Analysis of Bubble Sphericity 

 Performing experiments with spherical bubbles is most desirable because it allows 

for the least cumbersome analytical models while still retaining the essential physics of 

the problem.  It also allows modeling results to be checked fairly easily against 

experimental results.  Pressures induced by acoustic fields can distort bubbles from a 

spherical shape.  Therefore knowledge of this practical limit on acoustic field intensity is 

important.  Bubble sphericity was determined based on work by Marston [43, 44], in 

which he used linear and inviscid theory to approximate the quadrupole projection of the 

acoustic radiation pressure on a compressible sphere of millimeter size.  This can be seen 

in equation (3.1). 
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 In equation (3.1), P20 is the static portion of the component of radial projection 

which is mainly responsible for the deformation.  Also, γl is the compressibility of the 

continuous medium (in this case water), κ is the wavenumber, y is the distance of the 

center of the bubble from a pressure antinode, a is the radius of a sphere that is the same 

volume as the bubble, and ˆ g

l

ρ
ρ

ρ
= , ˆ g

l

c
c

σ = , 1 ˆ -1d ρ= , 2 ˆ1 2d ρ= + , 3 ˆ2 3d ρ= + , 

1
1, j

j

dd
d

= , where ρl and cl are the density and speed of sound through the continuous 

phase and ρg and cg are the density and speed of sound through the dispersed bubble 

phase.  Ps is the pressure amplitude of the unmodulated standing acoustic wave and is 

given by 22s l l acP cρ= E , where Eac is the average energy density of the acoustic field. 

 By using values for the radial projection of the acoustic stress tensor obtained 

from equation (3.1) and the surface tension for an air/water interface (73.05 dynes/cm), 

the shape of the bubble can be determined using equations (3.2) and (3.3) [43, 44]. 
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For these equations σi is the interfacial tension between the bubble and the water and θd 

is the polar angle of a point on the drop surface with respect to the vertical axis.  From 

equations (3.2) and (3.3) the maximum bubble radius, corresponding to an angle of 90º, 

and the minimum bubble radius, corresponding to an angle of 180º, are determined.  For 

the purpose of this study a bubble is assumed spherical provided that its maximum aspect 

ratio (rmax/rmin) is no greater than 1.1, the assumption of a spherical bubble can be used.  
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By fixing the aspect ratio, a variety of parameters can be varied.  One of which is the 

energy density in the fluid within the acoustic chamber.  Figure 9 shows a graphical 

representation of this.  For example, a bubble with a 100 µm radius and a frequency of 

0.435 MHz, the maximum average energy density that allowed the sphericity criterion to 

be satisfied was determined to be 0.649 J/m3.  Basically, what Figure 9 shows is a force 

balance between the primary acoustic force and the surface tension force (actual surface 

tension remains constant; the force does not).  As the energy density increases, the 

primary acoustic force increases and to keep the two forces balanced, the surface tension 

force also has to increase.  The lowest energy shape for the bubble is spherical, but as the 

surface tension force increases the bubble is distorted from sphericity.  Also, the farther 

the bubble is from the acoustic pressure antinode, the larger the bubble can be and still 

allow the spherical assumption to hold. 
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Figure 9: Graph of aspect ratio for varying energy densities in J/m3 for a bubble with a radius of 100 
µm. 

 

3.2 Analysis of Bubble Entrapment 

 The physical effects referred to as body forces determine whether bubble 

entrapment will occur.  The body forces consist of gravity, buoyancy, drag, and the 

primary acoustic force.  Assuming the bubbles are widely spaced and there are no 

bubble-bubble interactions, these are the forces which determine not only the likelihood 

of bubble entrapment, but the position and velocity of the bubble as well.  Though some 

of these equations were presented in previous chapters, they will be revisited here for the 

sake of continuity.  The primary acoustic force is given by equation (3.4) [7], and the 

buoyancy and gravitational forces are given by equation (3.6).  The drag force is given by 

the Hadamard-Rybczynski formula (3.7) [42] which assumes a slip condition at the 

57 



boundary (resulting in the 4π), and which reduces to equation (3.8) for the case of an air 

bubble in water because the term inside the parenthesis is approximately one. 
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In Equations (3.4)-(3.8), κ is the wavenumber, a is the radius of the bubble, Eac is the 

average energy density in the continuous liquid phase, y is the distance of the bubble 

from a pressure antinode, F is the acoustic contrast factor defined in equation (3.5) 

specifically for a gas bubble (F = -28.9 for the air/water system with a bubble of 100 μm 

radius and a frequency of 0.435 MHz), ˆ g

l

μ
μ

μ
= , and V0 is the velocity of the moving 

bubble.  It should be noted that the bubble will move to the acoustic pressure antinode 

because the acoustic contrast factor is negative.  For the equation represented above, 

equation (3.5), and the previously defined system, the sign on the acoustic contrast factor 

will always be negative for a varying bubble radius (the limit of F as a approaches 

infinity is zero).  Balancing these forces and solving for V0 results in equation (3.9).  The 

force balance can then be used to solve for the position and the velocity of the bubble. 

2
0 1 ( ) sin(2

3 l g ac
l

aV g E Fρ ρ κ κ
μ

⎛= − +⎜
⎝ ⎠

)y ⎞
⎟       (3.9) 
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 The velocity term, V0, can be replaced by the derivative, dy
dt

, and the resulting 

first order ordinary differential equation can be solved analytically to obtain the bubble 

position, y, as a function of time.  The differentiation of that expression with respect to 

times gives the velocity due to the body forces as a function of time for a given bubble.  

These equations were derived for two different circumstances:  bubble entrapment and 

bubble release. 

 

3.2.1 Bubble Release 

 The capture or release of a bubble is determined by a dimensionless number that 

is the ratio of the magnitude of the primary acoustic force to the relative gravitational 

effects, and will be referred to as Nac from now on.  When the absolute value of this ratio 

is one or greater the bubble is captured.  Conversely, when the absolute value of this ratio 

is less than one the bubble is not captured. 

 Beginning with equation (3.9), the velocity term, V0, can be replaced by the 

derivative, dy
dt

 as seen in equation (3.10).  There are two different integrals that can 

result from this equation.  The following derivation is specifically for the case when Nac 

is less than one. 

2 1 ( ) sin[2
3 l g ac

l

dydt
a g E F yρ ρ κ κ
μ

=
⎛ ⎞− +⎜ ⎟
⎝ ⎠

]
      (3.10) 
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Evaluating equation (3.11) using Mathematica, and subsequent solving for y gives 

equation (3.15) where y0 is the bubble position at t = 0. 

0
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  (3.15) 

To get the velocity due to the body forces as a function of time for a given bubble 

equation (3.15) is differentiated, giving the rather long equation (3.16). 
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           (3.16) 

 After inputting p, q, and α (equations (3.12) - (3.14)) into equations (3.15) and 

(3.16), they become a bit unwieldy.  Three numbers are defined to facilitate 

manageability of these equations, as well as to provide basic information about the 

system.  The first is a dimensionless number which is the ratio of the magnitude of the 

primary acoustic force to the relative gravitational effects which was mentioned before, 

equation (3.17).  The second number is the ratio of the gravitational force to the drag 

force divided by the velocity term, and is the velocity at which the bubble would travel if 

there was no acoustic force acting on it, equation (3.18).  The third is another 
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dimensionless number and is given in equation (3.19).  Equation (3.20) shows a 

simplification that is used throughout equations (3.15) and (3.16). 

3
( )

ac
ac

l g

E FqN
p g

κ
ρ ρ

= =
−

         (3.17) 

2 ( )
3
l g

l

a g
M p

ρ ρ
μ
−

= =         (3.18) 

[ ]02 1

2

tan
1 tan

1
ac

ac

ac

N y
Mt N

N

κ
κ −

⎛ ⎞+
⎜Γ = − +
⎜ −⎝ ⎠

⎟
⎟

      (3.19) 

2
2 2 2 2 2 2 2

21 (1 ) (1ac ac
q )p q p p N M N
p

⎛ ⎞
− = − = − = −⎜ ⎟

⎝ ⎠
     (3.20) 

The final reduced equation for the velocity due to the body forces as a function of time 

for a given bubble is seen in equation (3.21). 

[ ] [ ]
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(1 )
1 cos 2 1 sin 2
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+ Γ − − Γ
      (3.21) 

Using this same reduction method, the position equation can be written as seen in 

equation (3.22). 

[ ]1 21 tan 1 tanac acy N N
κ

− ⎡= − + −
⎣

⎤Γ
⎦

       (3.22) 

 Figure 10 shows a position versus time graph predicted for the bubble release 

case, for various initial bubble positions for a bubble with a radius of 100 μm.  The 

energy density for this case is 0.05 J/m3, which is too low to induce capture.  From the 

primary force balance for a 100 μm bubble it was determined the lowest energy density to 

result in capture is 0.062 J/m3 (this is the lowest allowable energy density to result in an 

│Nac│ ≥ 1).  The positions of the pressure antinodes based on half wavelength 
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calculations are also shown in Figure 10.  Figure 11 shows the velocity versus time data 

for the same conditions. 
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Figure 10:  Position versus time graph of bubble for the release case, with varying initial position of 
the bubble with the transducer at the zero position.  Antinode positions are also marked.  The bubble 
radius is 100 µm and Eac is 0.5 J/m3 and Nac is -0.813. 
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Figure 11:  Velocity versus time graph of bubble for the release case, with varying initial position of 
the bubble with the transducer at the zero position.  The bubble radius is 100 µm and Eac is 0.5 J/m3 
and Nac is -0.813. 
 

 

3.2.2 Bubble Capture 

 For an air bubble to be captured in water within the acoustic chamber, │Nac│ ≥ 1.  

The solution to this problem closely follows that of the bubble release example, except 

the solution to the integral of dy
dt

 is slightly different, which can be seen in equation 

(3.23). 
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Again using Mathematica to solve for y, equation (3.23) becomes equation (3.24) where 

q, p, and α are as seen in equations (3.12) - (3.14). 
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           (3.24) 

 To get the velocity due to the body forces as a function of time for a given bubble 

equation (3.24) is differentiated.  Because the velocity equation is so long, it has been 

broken up into three pieces.  The numerator is given in equation (3.25).  Two parts of the 

denominator are given in equations (3.26) and (3.27), and the equation using these three 

pieces is seen in equation (3.28).  
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Using two of the three dimensionless numbers defined previously, equations (3.17) and 

(3.18), and a new simplifying term, equation (3.29), the position and velocity equations 
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can be slightly simplified.  The position can be determined from equation (3.30).  The 

velocity can be determined from equation (3.31).  

2 1 2 1ac actM N tM Nα κΨ = − = −2        (3.29) 
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          (3.31) 

 Figure 12 shows a position versus time graph predicted for the bubble entrapment 

case, with variable initial bubble positions.  The energy density for this case is 0.649 

J/m3, which induces bubble capture fairly quickly.  This value was chosen as a result of 

the bubble sphericity calculations which showed that for a bubble with a 100 μm, 0.649 

J/m3 is the maximum energy density that can be used which still allows for an aspect 

ration of 1.1 or less, equating to a spherical bubble.  Figure 13 shows the velocity versus 

time graphs for this case.  Figure 14 and Figure 15 show the position and velocity versus 

time for the case of and energy density of 0.062 J/m3.  In both of these instances the 

transducer is located at the zero position. 
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Figure 12:  Position versus time graph of a bubble for entrapment case with an energy density of 
0.649 J/m3, with varying initial position of the bubble with the transducer at the zero position.  The 
bubble radius is 100 µm and Nac is -10.557. 
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Figure 13:  Velocity versus time graph of a bubble for entrapment case with an energy density of 
0.649 J/m3, with varying initial position of the bubble with the transducer at the zero position.  The 
bubble radius is 100 µm and Nac is -10.557. 
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Figure 14:  Position versus time graph of a bubble for entrapment case with an energy density of 
0.062 J/m3, with varying initial position of the bubble with the transducer at the zero position.  The 
bubble radius is 100 µm and Nac is -1.008. 
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Figure 15:  Velocity versus time graph of a bubble for entrapment case with an energy density of 
0.062 J/m3, with varying initial position of the bubble with the transducer at the zero position.  The 
bubble radius is 100 µm and Nac is -1.008. 
 

 

 It can be seen that there is at least an order of magnitude difference in the time it 

takes a 100 μm bubble to reach its equilibrium position between the maximum energy 

density case (0.649 J/m3) and the minimum energy density case (0.062 J/m3).  The 

distance the bubble rests above the pressure antinode is also affected by the magnitude of 

the energy density.  In Figure 12, where the energy density is 0.649 J/m3, the bubbles sit 

approximately 0.03 mm above the antinode, with the bubbles sitting at 0.026 mm, 1.74 

mm, and 3.45 mm.  From the half wavelength calculations the bubbles should sit at 0 

mm, 1.71 mm, and 3.42 mm.  In Figure 14, where the energy density is 0.062 J/m3, the 
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bubbles sit approximately 0.38 mm above the antinode, with the bubbles sitting at 0.38 

mm, 2.09 mm, and 3.8 mm. 

 Using the primary force balance the minimum energy density needed to capture 

bubbles of varying radii was calculated.  Using the bubble sphericity equations the 

maximum allowable energy density to still assume sphericity was calculated for bubbles 

of varying radii.  Figure 16 shows this data plotted as two separate curves.  The 

intersecting point was found to be approximately at a bubble radius of 160 µm.  This 

indicates that a bubble with a radius of 160 µm is the largest bubble that can both be 

captured by the primary acoustic field and can be assumed spherical.  Figure 16 shows 

that a bubble with a radius falling within the shaded area can be assumed spherical and 

will be captured at an acoustic pressure antinode. 
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Figure 16:  Energy density (J/m3) versus radius (µm).  The bottom curve represents the minimum 
energy density needed to capture a bubble of the indicated size.  The top curve represents the 
maximum energy density allowed for the spherical bubble assumption to still hold.  Any bubble with 
a radius falling within the shaded area can be assumed spherical and will be captured near a 
pressure antinode.  
 

 

3.3 Inter-Bubble Forces 

 Inter-bubble forces are fundamentally different from primary forces because they 

are constantly changing as the bubbles approach one another.  These inter-bubble forces 

become more significant as the bubbles get closer, and can induce collision and possibly 

coalescence during or after bubble migration toward the pressure antinodes. 
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3.3.1 Secondary Acoustic Force 

 The secondary acoustic force is also known as the secondary Bjerknes force, and 

was first studied by V.F.K. Bjerknes and his son C.A. Bjerknes.  It is a time-averaged 

mutual interaction force of two pulsating gas bubbles in an acoustically driven liquid 

[14].  This force is produced by a secondary ultrasonic wave from an oscillating bubble 

[45], and the magnitude of this secondary force is often far exceeded in magnitude by the 

primary acoustic force [67].  The secondary acoustic force for two bubbles can be seen in 

Equation (3.32) derived by Doinikov to allow numerical evaluation of the interaction 

force through a cutoff approximation of an infinite series using recurrence formulas for 

its coefficients [14, 51].  For the secondary acoustic force ω is the angular driving 

frequency, ωj is the monopole resonance frequency of a bubble seen in Equation (3.33) 

[14] with a newer version including an added correction factor for bubbles close to 

resonance size in Equation (3.34) [47], r is the center to center bubble separation 

distance, η is polytrophic exponent of the gas (for the case of air, a diatomic gas, 1.4 

[46]), and Pj0 is the equilibrium gas pressure inside the bubble.  Pj0 was derived assuming 

a spherical bubble with an outside pressure of 1 atm (101,325 Pa) 0
0

2 i
j a

j

P P
a
σ⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

tm .  

 Figure 17 shows the secondary acoustic force versus bubble separation distance.  

In this example, the bubbles are being driven at a frequency above their resonance 

frequency.  From the literature [14, 17, 47-51], this is an indication that the secondary 

acoustic force will be an attractive force.  This can be backed up by the graph which 

shows that as the bubbles approach each other, the secondary acoustic force increases 

exponentially. 
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Figure 17:  Secondary acoustic force versus center to center bubble separation distance.  Both bubble 
radii are 100 µm and Eac is 0.5 J/m3. 
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3.3.2 van der Waals Force 

 The van der Waals interaction potential energy seen in equation (3.35) [52] also 

needs to be considered.  By taking the derivative of equation (3.35) with respect to 

bubble separation distance, the actual van der Waals force can be derived, (3.36).  Figure 

18 shows a graph of the van der Waals force versus the bubble separation distance. 
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    (3.36) 

In equations (3.35) and (3.36) A is the Hamaker constant (3.7•10-20 J for two air bubbles 

separated by water [53]), 
1 2

2rs
a a

=
+

, and 2

1

ˆ aa
a

= . 

 To determine the relevance of the van der Waals force in the total inter-bubble 

effects the relative size of the van der Waals force 
1

4096
3

A
a

⎛ ⎞
⎜
⎝ ⎠

⎟  is compared to the value of 

the secondary acoustic force at the point of collision (s = 2).  The approximate value of 

the relative magnitude of the van der Waals force is 5•10-13 N for a1 = 100 µm, and the 

value of the magnitude of the secondary acoustic force is approximately 3.1•10-5 N for a1 

= a2 = 100 µm.  The eight orders of magnitude difference indicates that the van der 

Waals force will contribute negligibly compared to the secondary acoustic force. 
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Figure 18:  Van der Waals force versus center to center bubble separation distance.  Both bubble 
radii are 100 µm and Eac is 0.5 J/m3. 
 

 

3.3.3 Relative Brownian Diffusivity 

 Another inter-bubble force that has to be considered arises from Brownian 

motion.  The relative diffusivity due to Brownian motion for two widely separated drops 

can be seen in equation (3.37) [52]. 

1
0
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ˆ ˆ( 1)(1
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kT aD
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−+ +
=

+
)         (3.37) 

For Equation (3.37) k is the Boltzmann constant, T is the absolute temperature, and 

ˆ g

l

μ
μ

μ
= .  For this system and a bubble radius of 100 μm, the relative Brownian 

diffusivity is 6.24•10-15 m2/s.  Following a similar analysis as that done for the van der 
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Waals force, the relative magnitude of the Brownian effects 
12

kT
aπ

⎛ ⎞
⎜
⎝ ⎠

⎟  is approximately 

6•10-18 N.  This compared to the magnitude of the secondary acoustic force at collision 

(3.1•10-5 N) shows a 13 order of magnitude difference, which indicates that the Brownian 

motion can be neglected in the overall model. 

 

3.3.4 Hydrodynamic Forces 

 When two bubbles are in close proximity, within several radii, hydrodynamic 

interactions inhibit their movement toward each other resulting in bubbles flowing 

around each other [52].  Once they are sufficiently close an attractive van der Waals 

force, or in this case an attractive secondary acoustic force, comes into play pulling the 

bubbles together.  The hydrodynamic interaction between two non-rigid spheres is 

determined by calculating their relative mobility functions.  When calculating the 

hydrodynamic interactions both axisymmetric (resulting from forces felt equally by both 

bubbles) and asymmetric (resulting from the interaction of the bubbles) motion of the two 

bubbles must be considered.  Haber, Hestroni, and Solan as well as Rushton and Davies 

derived exact solutions for the quasi steady-state creeping flow internal and external to 

two spherical droplets moving along their lines of center (axisymmetric motion) [54, 55].  

Zinchenko derived exact solutions for two spherical droplets moving normal to their lines 

of centers (asymmetric motion) [56].  Zhang and Davis used these analyses to derive far-

field and near-field expressions for both axisymmetric (L(s), G(s)) and asymmetric (M(s), 

H(s)) relative mobility functions as a function of 2

1

ˆ ˆ,  g

l

aa
a

μ
μ

μ
= =  (where a1 is the radius 
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of the larger bubbles and a2 is the radius of the smaller bubble), and the dimensionless 

separation distance, 
1 2

2rs
a a

=
+

 (where r is the surface to surface separation distance of 

the two bubbles) [52].  Equations for the far field mobility functions can be seen in 

equations (3.38) – (3.41).  All the mobility function information is as detailed by Zhang 

and Davis [52].  To allow the use of these equations for the case of 2

1

ˆ 1aa
a

= =  the 

numerators and denominators are multiplied out giving equations (3.42) – (3.44) (H(s) is 

not used for these calculations; this will be explained later). 

3 3 2

2 3 2 3

ˆ ˆ ˆ ˆ ˆ2 3 1 1 ( 1)( 1) 1 1( ) 1 4
ˆ ˆ ˆ ˆ ˆ ˆ1 (1 )( 1) 1 (1 ) ( 1)

a a aL s O
a a s a a s s

μ μ
μ μ

+ − − + ⎛= − + + ⎜+ + − + + − ⎝ ⎠6
⎞
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a a a a aG s O
a s a s a s s

μ μ μ μ
μ μ μ
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           (3.39) 
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 The near field axisymmetric mobility functions, L(ξ) and G(ξ), can be seen in 

equations (3.45) and (3.46).  These have been reduced for the bubble case where 

2 1sξ = − �  and 
( )1/2/

1
ˆ

ma L
m

μ
= � , where 1 2

1 2( )m
a aa

a a
=

+
 and .  The 

parameter m describes the mobility of the interfaces.  When  the spheres behave as 

if they are rigid.  When  the spheres have fully mobile interfaces and offer 

relatively little resistance to the drop relative motion. 

1 2(L r a a= − +

1�

)

m

1m�

2
1 2

2 2
2 1 1

ˆ3 2ˆ( )
ˆ3 3( )

ˆ1 1 3ˆ( 1)
ˆ ˆ ˆ3 3

a
L

a
a a

2

μβ β
μξ

μβ β β
μ

+
−

+=
⎡ ⎤+⎛ ⎞− Λ + −⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

     (3.45) 

1 2
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+=
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1/ 2 12 2

03/ 2

ˆ ˆ ˆ2 2 (1 )( ) 1 ln
ˆ ˆ(1 ) 3(1 ) 3 2116 1

ˆ

a C
a a
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π μ μξ ξ
ξ

−⎛ ⎞⎛ ⎞ +⎛ ⎞Λ = + − +⎜ ⎟⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎛ ⎞ ⎝ ⎠ ⎝ ⎠+⎜ ⎟
⎝ ⎠

â   (3.47) 

1 2
ˆ ˆ( 0.50433) ( 0.50433)0.98826 ( 0.52509)exp ( 1.76884)exp
1.81706 0.45213

a aβ β − + − +⎛ ⎞ ⎛ ⎞= = + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

           (3.48) 

0
0.017290.6565

ˆ 0.389311 exp
0.14521

C
a

−
= +

−⎛ ⎞+ ⎜ ⎟
⎝ ⎠

       (3.49) 

In equations (3.45) and (3.46) the values for C0, β1, and β2 are determined from equations 

extracted from graphed tabulated data from Zhang and Davis [52].  For this case, β1 and 

β2 are equal since it is assumed that all the gas bubbles the same species.  The fit data for 
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C0, β1, and β2 were obtained by using a non-linear curve fit in Origin 7.5, and are seen in 

equations (3.48) and (3.49).  These values are specific for the case of ˆ 0μ =  which most 

approximates a gas bubble in water.  The graph of these can be seen in Figure 19 and 

Figure 20. 
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Figure 19:  Graphical representation of tabulated data from Zhang and Davis [52] for C0 values and 
the fit data obtained from Origin 7.5. 
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Figure 20:  Graphical representation of tabulated data from Zhang and Davis [52] for β1= β2 values 
and the fit data obtained from Origin 7.5. 
 

 

 The near field asymmetric mobility function, M(ξ), can be seen in equation (3.50).  

The terms M1 and M2 are determined from equations extracted from graphed tabulated 

data from Zhang and Davis [52].  The fit data for M1 and M2 were obtained by using a 

non-linear curve fit in Origin 7.5.  These values are specific for the case of ˆ 0μ = .  The 

graph of both M1 and M2 can be seen in Figure 21 and Figure 22. 

2
0 1( ) ( )M M M Oξ ξ ξ= + +         (3.50) 

ˆ
0 0.62188 (0.12435)0.01584aM = −        (3.51) 

1
ˆ

(4.0849)exp 0.17953
0.09166

aM −⎛ ⎞= ⎜ ⎟
⎝ ⎠

+       (3.52) 
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Figure 21:  Graphical representation of tabulated data from Zhang and Davis [52] for M0 values and 
the fit data obtained from Origin 7.5. 
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Figure 22:  Graphical representation of tabulated data from Zhang and Davis [52] for M1 values and 
the fit data obtained from Origin 7.5 
 

 

 Once the near field and far field mobility functions have been calculated, it must 

be determined at what range each solution is valid.  A test case using the mobility 

function G is given where ˆ 0.909a =  and ˆ 0.0173 0μ = ≈ .  The near field and far field 

mobility functions are graphed in Figure 23.  The two graphs overlap at approximately s 

= 2.00004668, which can be seen in Figure 24 which is a close up of this intersection. 
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Figure 23:  Graph of the near field mobility function G(ξ) and the far field mobility function G(s) 
where  (a1=110 µm and a2=100µm) and â = 0.909 ˆ ≈μ = 0.0173 0 . 
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Figure 24:  Close up of the intersection of the near field mobility function G(ξ) and the far field 
mobility function G(s) where  (a1=110 µm and a2=100µm)  and . â = 0.909 ˆ ≈μ = 0.0173 0
 

 

 It was decided to choose the near field form to be valid up to s = 2.00004 and the 

far field to be valid from s = 2.0002.  To close the gap between the two curves, a spline 

was used.  After trying a few different spline techniques, the best fit was shown to be 

achieved with a cubic spline interpolation [168].  The details of this method can be seen 

in  (3.53) – (3.57) using Q as a general term for the variety of mobility functions. 

 

'' ''
mod

ˆ ˆˆ
near far near far

ified near far near fars s
ˆ

s s
Q AQ B Q C Q DQ= + + +     (3.53) 

ˆ far

far near

s s
A

s s
−

=
−

         (3.54) 
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ˆˆ 1 near

far near

s sB A
s s

−
= − =

−
         (3.55) 

31ˆ ˆ ˆ( )(
6 far nearC A A s s= − − 2)         (3.56) 

31ˆ ˆ ˆ( )(
6 far nearD B B s s= − − 2)         (3.57) 

 Mathematica 6 was utilized to do these calculations.  A detailed print out of the 

Mathematica code can be seen in Appendix A1.  Due to round off error incurred in Excel, 

the graphical results are presented in Mathematica format and are seen in Figure 25 with 

the origin being shown as (2, 0).  This is again data for the near field mobility function G 

with  and ˆ 0.909a = ˆ 0.0173 0μ = ≈ . 
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Figure 25:  Mathematica graph showing the near field mobility function G(ξ) up to s = 2.00004 and 
the far field mobility function G(s) from s = 2.0002 with the cubic spline interpolation (red dotted 
line) connecting the two curves. 
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 After closer inspection it was decided that because the far field mobility function, 

G(s), appears to be valid down to s = 2.00004668 the entire mobility function could be 

approximated as the far field.  This is a consistent trend with the other mobility functions. 

 

3.3.5 Relative Bubble Motion 

 Using the coordinate system seen in Figure 26, equation (3.58) [52, 80] gives the 

relative velocity for spherical bubbles. 

0
0 12

12 12 122 2 2 2

0
12 122 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (ln ( ))

Drr rr rr rrV r V L s I M s G s I H s
r r kT r r

rr rrD G s I H s p r
r r

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − − + − ∇⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞− + − ∇⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i i

i

Φ

 (3.58) 

In equation (3.58)  is the difference between the velocities of the two bubbles as if 

they were acted upon individually by the primary forces, 

0
12V

r  is the center to center 

distance vector from the smaller bubble (2) to the larger bubble (1), I  is the unit second-

order tensor, and Φ12 is the total inter-bubble force potential.  The equation can basically 

be broken down into three different pieces.  The first term represents the relative motion 

due to primary forces; primary acoustic, buoyancy, and drag forces.  The second term 

represents the relative motion due to inter-bubble forces, secondary acoustic and van der 

Waals forces.  In this term 12 ( )rΦ  is the potential function that describes the inter-bubble 

force.  The third term represents Brownian motion.  It this term 12 ( )p r  is the pair 

distribution function and represents the probability that bubble one is at position r  

relative to bubble two normalized such that  as 12 1p → r → ∞ .  Because Brownian 

diffusivity is negligible, as discussed earlier, for a system with a1 = a2 = 100 µm ( ˆ 1a = ) 
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and ˆ 0.0173 0μ = ≈ 15 at a temperature of 300 K, giving a value of  m2/s, 

the third term of equation 

0 -
12 6.24 10D = i

(3.58) can be neglected giving equation (3.59) [5].  If the 

bubbles being dealt with were on the order of nanometers, the Brownian diffusivity 

would play a more important role. 

0
0 12

12 12 122 ( ) ( )H s
r

⎡ ⎤
− ∇ Φ⎢ ⎥

⎣ ⎦
i i2 2 2( ) ( ) ( ) ( )Drr rr rr rrV r V L s I M s G s I

r r kT r
⎡ ⎤⎛ ⎞ ⎛ ⎞= + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.59) 
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Figure 26:  Schematic of the coordinate system for the relative motion of two drops in an acoustic 
field.  Reproduced from a schematic by Zhang and Davis [52]. 
 

 

 After the relative velocity has been derived and simplified, the equation can be 

altered for use in the case of a bubble pair interacting in an acoustic field, resulting in 

equation (3.60) [5, 52]. 
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           (3.60) 

In equation (3.60) er and eθ are the unit vectors in the radial and tangential directions, 

respectively,  is the relative velocity due to body forces, and  is the van der Waals 

potential ma ensionless by dividing by the Hamaker constant, . The term αac 

expresses the strength of secondary acoustic forces, a (3.61), 

where ω iving frequency, ω  and ω2

 0
12V

de dim

 is the angular dr

frequencies of the bubbles, and 

*
vdWV

A

nd can be seen in equation 

 are the monopole resonance 1

22s l l acP cρ= E  is the comp e amplitude of the 

incident acoustic field [14]. 

lex pressur

2 2
1 2 2

2,2 2 2 2
1 2

2
( )( )

s
ac ac

l

P a a
F r

π ω
α

ρ ω ω ω ω
= =

− −
       (3.61) 

 Again, the first term in equation (3.60) represents the body forces, the second 

term represents the van der Waals attractive force, and the third term represents the 

secondary acoustic force. 

 To determine the relative motion of a pair bubbles, it is of benefit to separate 

equation (3.60) into its radial and tangential components.  This can be done by assuming 

starting positions of the bubbles within the half wavelength region between two pressure 

antinodes (see Figure 26).  By doing this, two ordinary differential equations can be 

obtained, (3.62) and (3.63).  These equations were simultaneously solved numerically 

using Mathematica 6 to determine the time it took for two bubbles to reach s = 2, 

indicating collision.  The Mathematica code for this can be seen in Appendix A2.  

0 0
12 12

2 2
1 2 1 2 1 2

22 ( ) cos[ ] 4 1( )
( ) ( )

vdW acdVV L s Dds G s A
dt a a kT a a ds a a s

αθ ⎛ ⎞
= − − +⎜ ⎟+ + +⎝ ⎠

  (3.62) 
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0
12

1 2

2 ( )sin[
( )

V M sd
dt s a a

]θθ
=

+
      

 The Mathematica output for two bubbles with radii of 100 µm, an initial 

separation of 1 cm (s = 102), an initial separation angle of 90º, and both with starting 

5 MHz) 

 as 

  (3.63) 

positions at an acoustic pressure antinode (1.71 mm based of a frequency of 0.43

can be seen in Figure 27 and Figure 28.  Figure 27 shows the dimensionless separation

a function of time.  The graph shows an initial slower approach followed by a faster 

approach followed by collision of the two bubbles when s = 2.  This can be seen a bit 

better in Figure 29 which shows the relative velocity as a function of time. 
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Figure 27: Dimensionless separation distance, s, as a function of time for two bubbles with radii of 
100 µm, initial separation distance of 1 cm (s = 102), initial separation angle of 90º, and initial 
starting positions at a pressure antinode (1.71 mm).  The value of Nac for these conditions is -8.134. 
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Figure 28:  Separation angle, θ, as a function of time for two bubbles with radii of 100 µm, initial 
separation distance of 1 cm (s = 102), initial separation angle of 90º, and initial starting p tions at a osi
pressure antinode (1.71 mm).  The value of Nac for these conditions is -8.134. 
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Figure 29: Relative velocity, s’, as a function of time for two bubbles with radii of 100 µm, initial 
separation distance of 1 cm (s = 102), initial separation angle of 90º, and initial starting positions at a 
pressure antinode (1.71 mm).  The value of Nac for these conditions is -8.134. 
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 To plot the path of bubble two toward bubble one, s and θ can be used to calculate 

the x and y coordinates, equations (3.64) and (3.65).  These values are made 

dimensionless by dividing by λ/4.  Figure 30 and Figure 31 show the dimensionless x and 

y coordinates versus time and Figure 32 shows the relative trajectory of bubble two with 

respect to bubble one.  For all of these cases the conditions are the same as previously 

mentioned, except the initial position of the bubble in the acoustic field is 1.746 mm, 

which is the equilibrium resting point for a 100 µm bubble in an acoustic field with an 

energy density of 0.5 J/m3 based on the primary force balance.  Figure 33 is the same as 

o at -5.466 mm.  Figure 34 also has the same conditions except the bubbles have an 

itial separation angle of 135º and an initial separation distance of 0.5 cm giving bubble 

round the 

Figure 32 except with an initial separation angle of 225º and an initial position of bubble 

tw

in

two an initial position of 1.598 mm.  Figure 34 shows that as the second bubble 

approaches it reaches a certain separation distance and then begins to move a

first bubble.  This is most likely due to the second bubble being driven to its equilibrium 

resting position in respect to the pressure antinode, which is calculated from the primary 

force balance. 

sin[ ]x r θΔ =           (3.6

cos[ ]y r

4) 

θΔ =           (3.65

 

) 
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Figure 30:  Dimensionless x position vs. time for two bubbles with radii of 100 µm, initial separation 
distance of 1 cm (s = 102), initial separation angle of 90º, and initial starting positions at their 
equilibrium resting position of 1.746 mm (based on the primary force balance).  The value of Nac for 
these conditions is -8.134. 
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Figure 31:  Dimensionless y position vs. time for two bubbles with radii of 100 µm, initial separation 
distance of 1 cm (s = 102), initial separation angle of 90º, and initial starting positions at their 
equilibrium resting position of 1.746 mm (based on the primary force balance).  The value of Nac for 
these conditions is -8.134. 
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1

Figure 32:  Relative trajectory of bubble two with respect to bubble one (shown).  The graph is for 
two bubbles with radii of 100 µm, initial separation distance of 1 cm (s = 102), initial separation angle 
of 90º, and initial starting positions at their equilibrium resting position of 1.746 mm (ba the sed on 
primary force balance).  The value of Nac for these conditions is -8.134. 
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Figure 33:  Relative trajectory of bubble two with respect to bubble one (shown).  The graph is for 
two bubbles with radii of 100 µm, initial separation distance of 1 cm (s = 102), initial separ on angle 
of 225º, and an initial starting position for bubble one at its equilibrium resting position of 746 mm 

ati
1.

and for bubble two -5.466 mm(based on the primary force balance).  The value of Nac for these 
conditions is -8.134. 
 



0.0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0.0

0.2

Dxf

94 

êHlê4

D
yf

L

êHl
ê4

L
1 

 

Figure 34:  Relative trajectory of bubble two with respect to bubble one (shown).  The graph is for 
two bubbles with radii of 100 µm, initial separation distance of 0.5 cm (s = 7), initial separation angle 
of 135º, and an initial starting position for bubble one at its equilibrium resting position of 1.746 mm 
and for bubble two 1.598 mm (based on the primary force balance).  The value of Nac for these 
conditions is -8.134. 
 

 

 It may seem initially counterintuitive that the second bubble can work its way 

through several pressure nodes and antinodes to reach the first bubble.  This depends on 

how large the secondary acoustic force is compared to the difference between primary 

acoustic force and the buoyancy force.  In other words, if the secondary acoustic force 

can overcome the difference between the primary acoustic and buoyancy forces, then the 

second bubble will be pulled across the pressure antinodes that separate it from the first 

bubble.  Calculating the primary acoustic force, equation (3.4), at the first pressure node 

orce 

r the same system, equation (3.6), is calculated to be 4.09•10-8 N.  The maximum center 

 center separation between the two bubbles (a1 = a2 = 100 µm), r, can be found at a 

secondary acoustic force value equal to the difference between the primary acoustic force 

(y = 0.856 mm), which is the location where the force is the greatest, a value of 5.12•10-8 

N is obtained (θ = 90º, f = 0.435 MHz, Eac = 0.5 J/m3, a = 100 µm).  The buoyancy f

fo

to



and buoyancy force (1.02•10-8 N).  This maximum separation for this system is 1.1 cm

assuming a separation angle of 180 º.  The value will change based on that separation 

angle and can be calculated according to equation 

, 

e 

 

as 

0-7 

llision increases as the radius 

(3.65). 

 Figure 35 shows the time to collision as a function of the initial surface to surfac

separation of the two bubbles, with the radius of bubble one at 100 µm and the radius of 

bubble two varying (ahat = a2/a1).  There is an initial separation that ranges from 1.0•10-7 

m to 0.01 m, an initial separation angle of 90º, and both bubbles have starting positions at

an acoustic pressure antinode (1.71 mm based of a frequency of 0.435 MHz).  The initial 

separation distance of 1.0•10-7 was chosen based on the hydrodynamic mobility 

functions.  Previously it was decided that the far field mobility functions were a sufficient 

approximation without the near field mobility functions could be disregarded, and it w

found that the far field mobility functions were accurate down to an s value of 

2.00004668.  This s value was used to calculate an L0 value of about 4.5•10-8 (assuming 

a1 = a2 = 100 µm).  From this it was decided that a minimum initial separation of 1.0•1

was sufficiently small.  Figure 35 shows that the time to co

of bubble two increases. 
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Figure 35: Time to collision based on initial surface to surface separations.   The radius of bubble one 
is 100 µm with the radius of bubble two varying for each curve (ahat=a2/a1).  The initial angle between 
the two bubbles is 90º and the initial starting position for both bubbles is at a pressure antinode (1.71 
mm).  The value of Nac for bubble one at these conditions is -8.134. 
 

 

 Subsequent analogous calculations were done for a1 = 260 µm, which is the 

igure 35.  Figure 36 shows the time to collision as a function of initial surface to surface 

paration.  Though it may be slightly difficult to make out on the graph, the curve for ahat 

ses 

 

 

largest bubble that can be captured (though at this size the spherical assumption does not 

hold).  Again, the radius of bubble two was varied and the same conditions apply as for 

F

se

= 0.75 overlaps the curve for ahat = 0.4.  This indicates that the time to collision decrea

once ahat hits a certain limit.  This can be better seen in Figure 37 which shows the time to

collision as a function of ahat for an initial surface to surface separation distance of 1 cm. 
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The separation of 1 cm was chosen because this trend does not appear at closer initial 

separations. 
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Figure 36:  Time to collision based on initial surface to surface separations.   The radius of bubble 
one is 260 µm with the radius of bubble two varying for each curve (ahat=a2/a1).  The initial angle 
between the two bubbles is 90º and the initial starting position for both bubbles is at a pressure 
antinode (1.71 mm).  The value of Nac for bubble one at these conditions is -1.008. 
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Figure 37:  Time to collision versus ahat for two bubbles with an initial surface to surface separation 
of 1 cm.  The radius of bubble one is 260 µm with the radius of bubble two varying for each curve 
(ahat=a2/a1).  The initial angle between the two bubbles is 90º and the initial starting position for both 
bubbles is at a pressure antinode (1.71 mm).  The value of Nac for bubble one at these conditions is 
 -1.008. 
 

 

 After this trend appeared for the case of a1 = 260 µm it was decided to investigate 

whether this trend was seen for other values of a1.  Figure 38 and Figure 39 show the 

same calculations for a1 = 200 µm and a1 = 150 µm, respectively.  It can be seen that in 

both of these subsequent cases the time to collision also peaks at an ahat value not equal to 

one.  For a1 = 260 the collision time peaks at about ahat = 0.52, for a1 = 200 µm the 

collision time peaks at about ahat = 0.65, and for a1 = 150 µm the collision time peaks at 

about ahat = 0.85.  Though the graph is not shown here, the case of a1 = 110 µm seems to 

be about as large as a1 can become before the collision time stops peaking at ahat = 1. 
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Figure 38:  Time to collision versus ahat for two bubbles with an initial surface to surface separation 
of 1 cm.  The radius of bubble one is 200 µm with the radius of bubble two varying for each curve 
(ahat=a2/a1).  The initial angle between the two bubbles is 90º and the initial starting position for both 
bubbles is at a pressure antinode (1.71 mm).  The value of Nac for bubble one at these conditions is  
-1.844. 
 

99 



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1 1.2

ahat

Ti
m

e 
(s

)

L0 = 0.01 m
a1 = 150 µm

 

Figure 39:  Time to collision versus ahat for two bubbles with an initial surface to surface separation 
of 1 cm.  The radius of bubble one is 150 µm with the radius of bubble two varying for each curve 
(ahat=a2/a1).  The initial angle between the two bubbles is 90º and the initial starting position for both 
bubbles is at a pressure antinode (1.71 mm).  The value of Nac for bubble one at these conditions is  
-3.462. 
 

 

 The decreasing time to collision after ahat reaches a certain value most likely 

results from the dependence of the forces on the radii of the bubbles.  The dependence of 

the primary and secondary acoustic forces on the bubble radius is a bit complicated due 

to the acoustic contrast factor and monopole resonance frequency.  A subsequent 

calculation was run where both bubbles’ initial vertical positions were located at their 

respective equilibrium resting spot.  These values were calculated from the primary force 

balance for each bubble size.  This was done to determine if the primary acoustic force 

was having a large effect on the collision time and to see if the tapering off and decrease 
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of the collision time was due in part to the bubbles obtaining their equilibrium position 

along the y-axis.  Figure 40 shows the comparison of this curve to that of the bubbles 

starting at an acoustic pressure antinode (1.71 mm).  There is no discernable difference 

between the two.  This indicates that the small distance the bubbles had to move 

vertically to sit at their equilibrium positions did not have a significant influence on the 

collision time reversal effect and that this phenomena is most likely due to the secondary 

acoustic forces. 
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Figure 40:  Time to collision versus ahat for two bubbles with an initial surface to surface separation 
of 1 cm.  The radius of bubble one is 260 µm with the radius of bubble two varying for each curve 
(ahat=a2/a1).  The initial angle between the two bubbles is 90º and the initial starting position for both 
bubbles are at their respect equilibrium positions based on the primary force balance for the 
“equilibrium” curve and at the pressure antinode for the “antinode” curve (1.71 mm).  The value of 
Nac for bubble one at these conditions is -1.008. 
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 Calculations similar to those done for Figure 35 and Figure 36 were done for the 

case of a1 = a2 = 100 µm and variable energy density.  Figure 41 shows time versus 

initial surface to surface separation for these cases.  As is expected, as energy density 

decreases time to collision increases. 
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Figure 41:  Time to collision based on initial surface to surface separations.   The radii of bubble one 
and bubble two are 100 µm with the energy density (J/m3) varying for each curve.  The initial angle 
between the two bubbles is 90º and the initial starting position for both bubbles is at a pressure 
antinode (1.71 mm).  The value of Nac for bubble one at these conditions ranges from -1.008 to  
-10.557. 
 

 

 Another useful concept for describing the kinetics of the collision process is that 

of iso-time contours.  Two bubbles located within the same half-wavelength between two 

pressure nodes will collide due to primary and inter-bubble forces, assuming that the two 
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bubbles are both being driven above their resonance frequency.  The critical factor is then 

the time to collision.  To determine the collision time the location of bubble one (a1 = 100 

µm) within the acoustic chamber was held constant at its equilibrium y-position of 1.746 

mm and an x-position of 0 mm.  The y-position of the second bubble (a2 = 50 µm) was 

also held constant, approximately at a pressure node (either 0.856 mm for θ ≤ 90º or 

2.568 for θ ≥ 90º).  The value of θ was then varied (1º ≤ θ ≤ 179 º).  The x-position of the 

second bubble was allowed to vary with θ (this also caused r to vary).  Mathematica was 

used to calculate s and θ as a function of time, and thus the x and y coordinates for those 

times.  The time at which the iso-time contour was desired was subtracted from the 

collision time to obtain the time at which the x and y coordinates were needed.  Linear 

interpolation was then used to calculate those x and y coordinates at the desired times 

based on the output of Mathematica.  Each curve represents the time it would take for a 

bubble located at the position to collide with a bubble located at its equilibrium position, 

slightly above the pressure antinode.  The graph of this can be seen in Figure 42. 
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Figure 42:  Iso-time contours for a1 = 100 µm and a2 = 50 µm.  Bubble one (indicated by the black 
center) is at its equilibrium position slightly above a pressure antinode. 
 

 

 “Is it supposed to look like a butterfly?” you ask.  Well, no actually.  It turns out 

that because the collision times are so small, and because of the way the program was 

written, jumps in time that Mathematica may perceive as small may actually not be that 

small and can cause rather large discrepancies in output values.  At least it’s a pretty 

interesting looking mistake. 

 To counteract these issues, a collision surface was defined (at s = 2.1) which holds 

r constant for a particular set of bubbles.  The initial position of bubble one was once 

again held constant and the position of bubble two was calculated for varying θ-values.  

The s and θ-position of the bubble was tracked outward, integrating backward in time to 
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one second (s(t = 0) = 2.1).  Using this method, Mathematica was used to obtain x and y-

values at a chosen time.  These points formed the contour lines for that particular time 

and the curves are symmetrical across the y-axis.  As can be seen in Figure 43, the iso-

time contours are easier to interpret using this method. 
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Figure 43:  Iso-time contours for a1 = 100 µm and a2 = 50 µm.  Bubble one is at its equilibrium 
position slightly above a pressure antinode.  The value of Nac for bubble one at these conditions is  
-8.134. 
 

 

 Once again analogous calculations were run for a variety of energy densities and 

radii ratios.  To represent all of this data together, each circle/ellipse (as seen in Figure 

43) is rotated about the y-axis to obtain a sphere/ellipsoid.  A basic volume integral is 

then completed for each sphere/ellipsoid by the disk method.  Each is divided into slices 
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Δy thick and the area of each slice is calculated by πa2, where a is the radius of the slice.  

The areas of the slices are added and the sum is multiplied by Δy to get the volume.  This 

volume represents the volume cleared of bubbles around a particular center point; in this 

case bubble one.  Each one of these volumes represents a point on the curves seen in 

Figure 44 (the dimensionless volume scales with (λ/4)3).  Each curve corresponds to a 

different energy density, ranging from 0.062 J/m3 (the minimum needed to capture a 

bubble with a radius of 100 µm) to 0.649 J/m3 (the maximum allowed to still assume 

sphericity for a bubble with a radius of 100 µm).  Figure 44 shows that as energy density 

decreases, so does the dimensionless volume cleared, which is the expected trend.  The 

linear nature of the curves in Figure 44 was deemed of interest.  From calculations it was 

determined that the secondary acoustic force was most likely ruling the inter-bubble 

interactions.  To test this theory in conjunction with the linearity of the curves, the 

majority of the variables in the secondary acoustic force equation were held constant, 

which equates to evaluating a single curve on Figure 44.  Reducing it thusly results in a 

proportionality of the secondary acoustic to the inverse of the initial center to center 

separation squared, r2.  Since the secondary acoustic force is also proportional to the 

velocity (see equation (3.60)), the velocity can be related to the inverse of r2.  Breaking it 

down further shows the velocity to be approximated as the center to center separation 

divided by time (r/t).  This leads to the time to collision being proportional to the center 

to center separation cubed (t α r3).  This dependency indicates a linear trend as seen in 

Figure 44 which signifies that the secondary acoustic force is the overriding factor in the 

bubble pair trajectory model, and is consistent with earlier scaling that shows van der 

Waals and Brownian effects to be unimportant.  To make sure the linearity seen in Figure 

106 



44 wasn’t only a result of the short time the previous calculations were run to, the case of 

a1 = 100 µm and a2 = 50 µm and Eac = 0.5 J/m3 was extended to a time of 10,000 seconds 

(approximately 2.8 hours).  Once again it was shown that the trend remained linear, as 

seen in Figure 45.  Continuing on in this theme, the dimensionless volume was graphed 

for very short times (correlating to small separations using the method of negative time 

steps described earlier) for the system of Eac = 0.5 J/m3 and a1 = a2 = 100 µm (theses 

radii value were chosen because hydrodynamic effects are more pronounced for larger 

a2).  It was shown that for small times the dimensionless volume was not linear.  To 

represent this with the data taken out to 10,000 s, a log-log plot was produced, Figure 46.  

The nonlinearity at small separations shows the influence of the retarding hydrodynamic 

effects.  The equation in Figure 46 represents a curve fit obtained from Origin 7.5, and 

has difficulty explaining the curve of the line at small times, but returned an R2 value of 

0.99894.  Because the nonlinearity of the curve occurs for such short times, the majority 

of the volume cleared data can be considered linear. 

 It was decided to run the same calculations for the case of lower energy density 

(0.062 J/m3) to determine if there was a point where primary forces and hydrodynamic 

effects could overtake the secondary force.  Figure 47 shows an iso-time contour plot for 

the reduced energy density and a1 = a2 = 100 µm.  Slight jogs in the curves can be seen 

which indicates areas where the primary acoustic force partially counteracts the 

secondary acoustic force.  Figure 48 shows the log-log comparison plot for the two 

energy densities.  As expected, the lower the energy density, the less the dimensionless 

volume cleared for a particular time. 
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 Origin 7.5 was then used to obtain a curve fit for each line of Figure 44.  The 

curves were fit linearly, and the lowest R2 value returned from any of the fits was 

0.99999, indicating good accuracy.  The slope from each fit was plotted versus the energy 

density for each curve and the resultant graph is seen in Figure 49.  This slope represents 

type of collision rate constant as a function of energy density for the case of a1 = 100 µm 

and a2 = 50 µm.  By fitting this curve, the equation can be used to help find the volume 

cleared for other values of the energy density.  The linearity of this equation is also 

expected.  Following the same thought pattern as before, except this time both the center 

to center separation, r, and the energy density are allowed to vary.  Therefore the 

secondary acoustic force is proportional to the energy density divided by the separation 

squared (Eac/r2).  The proportionality of the secondary acoustic force to the velocity, and 

then to r/t results in the energy density being proportional to the center to center 

separation cubed over time (Eac α r3/t) which accounts for the linear trend in Figure 49. 
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Figure 44:  Dimensionless volume versus the time to clear that volume for variable energy densities 
(J/m3).  For this system a1 = 100 µm and a2 = 50 µm and dimensionless volume scales with (λ/4)3.  The 
value of Nac for bubble one at these conditions ranges from -1.008 to -10.557. 
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Figure 45:  Dimensionless volume versus the time to clear that volume for an energy density of 0.5 
J/m3 (an extended time example for Figure 44).  For this system a1 = 100 µm and a2 = 50 µm and 
dimensionless volume scales with (λ/4)3. 
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Figure 46:  Log-log plot of the dimensionless volume versus time for a system with Eac = 0.5 J/m3 and 
a1 = a2 = 100 µm run to 10,000 s.  This shows a nonlinear behavior for small separations (small time 
values) resulting from hydrodynamic interactions. 
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Figure 47:  Iso-time contours for a1 = 100, varying a2,  and Eac = 0.062 J/m3.  Bubble one is at its 
equilibrium position at the center.  The little jogs in the curves show areas where the primary 
acoustic force is partially counteracting the secondary acoustic forced.  The value of Nac for bubble 
one at these conditions is -1.008. 
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Figure 48: Log-log plot of the dimensionless volume versus time for a system with Eac = 0.5 J/m3 or 
Eac = 0.062 J/m3 and a1 = a2 = 100 µm run to 10,000 s.  This shows a nonlinear behavior for small 
separations (small time values) resulting from hydrodynamic interactions. 
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Figure 49:  Slopes (1/s) from curves in Figure 44 versus energy density (J/m3).  Values on the y-axis 
represent a type of collision rate constant for each energy density.  The value of Nac for bubble one 
at these conditions ranges from -1.008 to -10.557. 
 

 

 The graphs for the variable radii ratios were prepared in much the same way as 

those for the variable energy densities.  Each ahat was run for an energy density of 0.5 

J/m3.  The radius for bubble one is 100 µm and the radius for bubble two varies from 50 

µm to 100 µm.  Figure 50 shows the dimensionless volume cleared versus time for 

variable radii ratios.  The dimensionless volume cleared increases with decreasing ahat, 

which is expected since it is easier for the larger bubble to draw other bubbles to it if they 

are small.  The same analysis of the linear trend was considered for the variable radii 

ratio as it was for the variable energy density.  Once again calculation run to 10,000 s 

showed no variation (for the case of a1 = a2 = 100 µm and Eac = 0.5 J/m3).   
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 Figure 51 shows the slope from each Origin curve fit for the data in Figure 50 

plotted versus the radii ratio for each curve.  This slope represents type of collision rate 

constant as a function of ahat for the case of Eac = 0.5 J/m3, a1 = 100 µm, and variable a2.  

By fitting this curve, the equation can be used to help find the volume cleared for other 

values of ahat.  Figure 52 shows the actually Origin fit graph for the curve in Figure 51 

with 95% confidence bands.  Though this fit isn’t the best, it is the best that could be 

obtained from Origin’s built in functions.  The exponential nature of the curve indicates 

that though the dimensionless volume cleared decreases with increasing bubble two 

radius, that the trend slows with increasing bubble size.  Calculating the actual 

dependence of the secondary acoustic force on the ratio of the radii is fairly complicated, 

mainly due to the monopole resonance frequency dependence on the bubble size.  

Hopefully the following explanations will cover the trend without becoming too specific 

in regards to the direct proportionality of the secondary acoustic force to other 

parameters.  The asymptotic characteristic of the curve as the bubble approaches its 

resonance size is expected from the dependence of the secondary acoustic force on the 

monopole resonance frequency of the two bubbles and how close that frequency is to the 

driving frequency of the chamber ( ,2 2 2 2 2
1 2( )( )acF ω

ω ω ω ω
∝

− −
).  For the given conditions, 

the resonance radius of the bubble is approximately 48 µm.  Bubbles that are closer to 

their resonance frequency may have a faster collision rate in part because of a correction 

factor included in the bubble resonance frequency calculation which correlates to a more 

rapid breathing mode of the bubble.  This can be seen in Figure 53 for the case of Eac = 

0.5 J/m3, a1 = 100 µm, and a2 = 100 µm.  As the radius of bubble two increases, the gap 

between the curve with the correction factor and the curve without rapidly decreases.  
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Therefore the smaller bubbles have quicker collision time than larger bubbles not only 

because of the smaller size, but also because of the proximity of the bubble to its 

resonance frequency.   

 For both cases run to 10,000 s ((1) a1 = 100 µm and a2 = 50 µm and Eac = 0.5 

J/m3, (2) a1 = a2 = 100 µm and Eac = 0.5 J/m3) the hydrodynamic mobility functions were 

also calculated.  It was shown that for both cases the mobility functions (L(s), G(s), and 

M(s)) varied up until approximately a time of 0.2 s (which equates to short separations for 

calculations using a negative time step) and then all three leveled to a value of one.  For 

the case of ahat = 0.5, 0.89 ≤ L(s) ≤ 1, 0.98 ≤ G(s) ≤ 1, and 0.94 ≤ M(s) ≤ 1.  For the case 

of ahat = 1, 0.66 ≤ L(s) ≤ 1, 0.78 ≤ G(s) ≤ 1, and 0.84 ≤ M(s) ≤ 1.  This indicates that the 

retarding effects of the hydrodynamic interactions are larger when the bubbles are larger, 

also contributing to the exponential nature of the curve in Figure 52. 
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Figure 50:  Dimensionless volume versus the time to clear that volume for variable radii ratios.  For 
this system a1 = 100 µm and a2 varies and the energy density is 0.5 J/m3.  The value of Nac for bubble 
one at these conditions is -8.134. 
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Figure 51:  Slopes (1/s) from curves in Figure 50 versus ahat (ahat = a2/a1).  Values on the y-axis 
represent a type of collision rate constant for each ahat. 
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Figure 52:  Origin fit graph for Figure 51 showing the original data set (black), the fit curve (red), 
and the 95% confidence bands (blue). 
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Figure 53:  Time versus surface to surface separation for Eac = 0.5 J/m3, a1 = 100 µm, and a2 = 50 
µm.  The top curve indicates the case for the resonance frequency of the bubble without the 
correction factor for streaming, and the bottom curve for that with the correction factor.  This gap in 
the two curves decreases quickly as the size of bubble two increases. 
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4 Experimental 

 Experiments were run in conjunction with the modeling done to see if the paths 

the bubbles followed had been predicted correctly.  Many of the experiments were run 

with swarms of bubbles that would emerge at the pressure antinodes due to the negative 

pressure swing of the acoustic field.  Some experiments were also run with single bubbles 

injected with a syringe into degassed deionized water.  Hydrophone measurements were 

also taken to help determine the acoustic energy density of the system. 

 

4.1 Experimental Setup 

 The acoustic chamber design employed was a fairly simple structure.  The 

chamber had three main sections:  an acrylic chamber centerpiece, two polyethylene 

support structures, and a transducer and reflector.  A schematic of this can be seen in 

Figure 54.  In typical acoustic chambers, the transducers and reflectors are rigidly 

attached to their support structures.  The disadvantage of this is that the sealant is easily 

fatigued which may result in leakage, and the direct connection to the support structure 

provides a transmission path for the acoustic energy, which can result in inefficiency in 

producing strong fields within the liquid itself.  To counteract these issues, the chamber 

design used in this study incorporates a thin Latex membrane (0.02 in. thick) glued 

around the edges of the transducer and reflector as well as foam strips attached to the 

back of the latex membrane.  These pieces were then sandwiched between the 

polyethylene support structures and the centerpiece.  The latex membranes provide a 

resilient seal that withstands the vibrations of the transducer over long periods of 
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operation [132].  The acoustic chamber used was approximately 6.3 cm wide by 6.3 cm 

deep with a height of 5.7 cm.  The transducer (EC-64 by EDO) was 3.8 cm by 3.8 cm 

with a thickness of 5.08 mm.  The reflector was glass and was also 3.8 cm by 3.8 cm with 

a thickness of 2.23 mm.  The transducer and reflector were set approximately 2 cm apart 

within the chamber. 

 The signal to the transducer was acquired by utilizing a Fluke 6011A Synthesized 

Signal Generator (also used was an HP 3325A Synthesizer/Function Generator) attached 

to an ENI Model 240L RF Power Amplifier.  The output signal was then run through a 

Clarke-Hess Model 2335 Sampling Wattmeter before being transferred to the transducer.  

The sampling wattmeter allowed for the monitoring of the signal as both frequency and 

voltage modifications were made.  A quantity called the power factor was observed to 

determine how ideally the system was utilizing the input signal.  The closer the power 

factor was to one, the greater the efficiency of the system at transforming electrical 

energy into acoustic energy.  This value was also used to help tune the system.  The 

frequency was varied to obtain a value of the power factor as close to one as possible. 

 After the system was electronically hooked up, water was pumped into the 

chamber using a Cole-Parmer Masterflex Model 7520-00 peristaltic pump.  Once the 

chamber was filled the inlet and outlet ports were sealed.  A digital camera, UNIQ UP-

930 Progressive Scan CCD Camera, was used to capture images and video to a computer 

throughout the experiment.  A Minolta MD 50 mm lens (1:1.7 ratio) was used for 

distance images and a Nikon AF Micro Nikkor 60 mm lens (1:2.8 ratio) was used for 

close-up pictures.  The computer imaging software used was EPIX PIXCI D2X.  A full 

schematic of this experimental set-up can be seen in Figure 55. 
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Figure 54:  Schematic representation of the acoustic chamber used for experimentation.  The 
transducer and reflector are held in place by double-sided foam attached to an adjustable positioning 
plate.  The fluid suspension flows through the centerpiece, where, upon assembly, an airtight seal is 
created between the polyethylene support structures, the latex membranes glued to the transducer 
and reflector, and the chamber centerpiece [132]. 
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Figure 55:  Schematic of experimental setup [5]. 
  

 When conducting single bubble experiments, the acoustic chamber was filled with 

degassed deionized water.  The water was degassed using a combination of stirring and 

vacuum pumping, using a Welch 1400 DuoSeal Vacuum Pump.  One port of the acoustic 

chamber was sealed with a septum plug to allow insertion of a needle.  The syringes used 

for these experiments were the Hamilton 7000.5 0.5 µl (26s gauge needle, 1.71 in. in 

length, HP type tip) or the Hamilton 7001 1 µl (25s gauge needle, 2.75 in. in length, type 

2 tip).  Swarms of bubbles were achieved by simply degassing the water to a lesser extent 

or not at all.  When running the transducer at high intensities, dissolved gas was drawn 

out of solution due to the negative pressure swings at the acoustic pressure antinodes 

within the chamber, and large numbers of bubbles were formed.  The normal operating 

conditions of the chamber were 0.435 MHz and about 30 V p-p. 
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4.2 Images 

 Initial images obtained showed both that the bubbles could be banded and that 

they would rest approximately at the pressure antinodes.  Figure 56 shows that the system 

works well for swarms of bubbles as the bubbles move readily to pressure antinodes 

where they form distinct bands.  Figure 57 shows a picture taken of two bubbles and the 

distance that they rest from each other.  In this instance, the transducer was being 

operated at 0.55 MHz and 30 V p-p, so the antinodes can be approximated as 1.355 mm 

apart when calculated by the half wavelength method.  The image shows the bubbles to 

be approximately 1.32 mm apart.  Although there are some intrinsic errors in the 

measurement process, mainly through human error, this is a good indication that the 

system is working as predicted.  It was shown that the majority of the bubbles could 

remain trapped for up to an hour.  Experiments longer in length than an hour were not 

run. 
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Figure 56:  Entrapment of swarms of bubbles in multiple, parallel bands.  Chamber operating 
conditions were 0.55 MHz and about 30 V p-p. 
 
 
 

 

Figure 57:  Image of air bubbles in water resting at pressure antinodes within the acoustic chamber.  
The distance between bubbles is 1.32 mm.  Chamber operating conditions were 0.55 MHz and about 
30 V p-p. 
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 Initially it was thought that there was some coalescence and subsequent release of 

the newly enlarged bubbles once a threshold size was reached, but further study showed 

that this was not necessarily the case.  Higher magnification showed bubbles that were 

initially thought to have coalesced were simply attracted together and had formed bubble 

clusters.  The bubbles initially formed long chains as seen in Figure 58(a).  There were 

three further common bubble formations seen.  The first was a “planet” type formation 

seen in Figure 58 (b).  The next two were variations on the planet cluster, and were the 

“comet” type formation and the “cyclone” type formation seen in Figure 58 (c) and 

Figure 58 (d), respectively. 

 

 

 

Figure 58: (a) Initial long chain bubble formation, (b) planet type bubble formation (large top bubble 
approximately 400 µm in diameter, large bottom bubble approximately 550 µm in diameter), (c) 
comet type bubble formation (large bubble approximately 300 µm in diameter), (d) cyclone type 
bubble formation (large bubble approximately 500 µm in diameter). 
 

 

 It is thought that the particular bubble formations may be more prevalent in 

certain areas within the chamber where “hot spots” may occur.  Hot spots result from 
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non-uniformities in the transducer which results in a force perpendicular to the primary 

acoustic force.  But this is difficult to confirm from experiments.  Often the case of 

mother/daughter bubbles is seen [100], as mentioned in the literature survey section, and 

this helps to increases cluster size.  Video taken shows smaller daughter bubbles being 

transferred in a stream from the mother bubbles to a neighboring bubble due to secondary 

acoustic forces. 

 The suggestion was made that perhaps electrostatic forces were preventing the 

bubbles from coalescing, hence inducing the clustering phenomenon.  To this end sodium 

chloride was added to the DI water (1.05 g NaCl into 400 ml DI H20).  The acoustic 

chamber was run at the normal frequency of 0.435 MHz and a voltage of 57 V p-p.  A 

power factor of 0.986 was observed indicating the chamber was operating correctly 

(values of the power factor on in the range of 0.9 – 0.99, with one being the maximum, 

were typical for the DI water/air system).  At these conditions no bubbles were observed 

to form.  The voltage was gradually increased, still with no bubbles appearing.  

Eventually the voltage reached a value of approximately 118 V p-p.  At this point the 

water had heated to the point where experiments couldn’t continue.  The addition of the 

salt lowers the chemical potential of the water.  Also, the solubility of oxygen in salt 

water is lower than that in DI water, which would indicate the addition of salt should 

cause the gas bubbles to emerge more readily from the water.  The addition of salt was 

done prior to pumping the water into the acoustic chamber, which points to the dissolved 

gas escaping into the surroundings.  Future experiments should involve salt water being 

injected into an acoustic chamber already filled with DI water to prevent this problem. 
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 Figure 59 shows the collision of two bubbles inserted into the chamber using a 

GC syringe with a 26s gauge needle.  The needle was dipped in 5.5 % Tecophilic 

polyurethane in chloroform then allowed to dry.  This provided a hydrophilic coating 

which was necessary because previous experiments showed bubbles adhering to the 

needle instead of releasing.  For this experiment the DI water was degassed prior to use.  

The top bubble has a radius of 182 µm and the bottom bubble has a radius of 233 µm and 

the transducer was run at a frequency of 0.435 MHz and a voltage of 33 V p-p.  In the 

first picture of the series, the two bubbles have a surface to surface separation of 

approximately 3 mm.  If this picture series is compared to Figure 34 (though Figure 34 

should be flipped to get the correct approximate angle), the movement of the two bubbles 

in Figure 59 correspond to the path shown in Figure 34 fairly well.  The initial surface to 

surface separation for Figure 34 is 5 mm which is close enough to the initial surface to 

surface separation of 3 mm for Figure 59 to allow for an approximate comparison.  

Though the measurements show that the smaller bubble is the top bubble and the larger 

bubble is the bottom bubble, thus indicating that the top bubble should move down to the 

bottom bubble, the intrinsic error in measuring something this small may have resulted in 

incorrect radii values.  The bubbles are most likely approximately equal in size, possibly 

allowing for the top bubble to remain stationary while the bottom bubble moves up 

toward it.  Of course for the case of equal sized bubbles the top bubble should move 

toward the bottom bubble as well as the bottom bubble moving toward the top.  Part of 

this issue may result from streaming from the syringe.  But the most likely reason is that 

the top bubble is not only sitting at a pressure antinode, but is also sitting at a hot spot 

(hot spots result in a force perpendicular to the primary acoustic force).  This would 
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increase the primary type forces it is experiencing (holding it stationary) without 

increasing the primary force the bottom bubble is initially experiencing.  Figure 60 shows 

much the same thing as Figure 59 but with two bubble clusters colliding.  The radius of 

the larger bubble in the top cluster of Figure 60 is approximately 500 µm and the initial 

separation distance between the two tips of the clusters that collide is 1.4 mm. 

 

 

 

 

Figure 59:  Bubble collision pictures.  The radius of the top bubble is about 182 µm and the radius of 
the bottom bubble is about 233 µm.  The frequency and voltage for this experiment was 0.435 MHz 
and 33 V p-p and the initial surface to surface separation of the two bubbles is approximately 3 mm. 
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Figure 60:  Bubble collision pictures.  The radius of the larger bubble in the top cluster is 500 µm.  
The frequency and voltage for this experiment was 0.435 MHz and 33 V p-p and the initial tip to tip 
separation of the two bubbles is approximately 1.4 mm 
 

 

4.3 Hydrophone 

 To determine the pressure in the acoustic chamber, and thus the average energy 

density of the system, a hydrophone was utilized.  The hydrophone allowed voltage 

measurements to be taken throughout the system, which can be converted to pressure 

measurements.  These pressure measurements can then be averaged and used to calculate 

the average energy density throughout the system using 22s l l acP cρ= E .  The 

hydrophone used was an Onda HNR-0500.  A preamplifier (Onda AH 17DB) was also 

used because the voltage in the fluid was so low.  Multiple runs were taken to try to 

determine how uniform the pressure was throughout the system.  For these measurements 
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the transducer was operated at 0.435 MHz and 16 V p-p.  The acoustic chamber was 

placed on its side so the transducer and reflector were horizontal to each other.  Figure 61 

is a graph of three runs taken at a depth of about 2 cm and a distance from the side of the 

chamber of about 2 cm, which puts the hydrophone approximately at the center of the 

transducer.  The hydrophone was then moved micron distances at a time to starting at the 

transducer (zero point) and ending at the reflector.  The voltage readings were monitored 

as the hydrophone was moved, and measurements were taken at high and low points as 

well as a few points in between.  The voltage was observed and measured with a National 

Instruments PCI-5102 card with a 5 V p-p and 20 MHz maximum.  The software used 

was National Instruments Scope-SFP (software included with PCI-5102 card). 
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Figure 61:  Hydrophone pressure measurements taken in the acoustic chamber with the zero point 
being the transducer.  Measurements were taken at a frequency of 0.435 MHz and 16 V p-p.  Curves 
are labeled based on the day the data was taken.  This will correlate to data shown in Table 1. 
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 After taking the voltage measurements, the pressure was calculated using a 

calibration chart supplied by the company.  The pressure was then averaged and used to 

calculate the average energy density in the chamber.  Table 1 shows a summary of this 

for the three runs shown in Figure 61.  The average distance between antinodes is close to 

the distance that was calculated by the half wavelength method, which is an indication 

the system is operating as expected.  As can be seen, the energy density is about two 

orders of magnitude lower than that needed to assume a spherical bubble, 0.649 J/m3 as 

seen in Figure 9.  Unfortunately, the energy density is also about an order of magnitude 

too low for capture (minimum energy density previously determined to be 0.062 J/m3 

based on the primary force balance).  The voltage supplied to the transducer for these 

experiments were about a factor of two lower than that normally used for capturing 

images.  Since pressure is proportional to voltage and the energy density is proportional 

to the pressure squared, by doubling the voltage being fed to the transducer (to increase it 

from the 16 V for the hydrophone experiments to the 30 V most often used for capturing 

images), the energy density can be multiplied by a factor of four to get a more accurate 

value for normal operating conditions.  Even doing this puts the energy density readings a 

bit low to assume capture, especially considering the ease at which the bubbles were 

viewed to be captured within the chamber indicating a higher energy density than 

measured.  One possible explanation is that the hydrophone could have become un-

calibrated through use.  The most probable explanation, though, is that the open chamber 

experiment (which is necessary for scanning experiments) alters the pressure in the 

chamber from that when running it closed.  So the hydrophone measurements should be 
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used mainly for the purpose of locating the pressure antinodes in the system, as opposed 

to measuring the average energy density in the chamber. 

 

Table 1:  Energy density and distance between antinodes based on hydrophone data. 
 Average Energy Average Distance

Date Pressure (Pa) Density (J/m3) Half λ (µm) Between Antinodes (µm)
92006 2382 1.28E-03 1713 1686
92506 3439 2.67E-03 1713 1792

100606 5672 7.26E-03 1713 1700  

 

4.4 Verification of Bubble Pair Model 

 To determine if data returned from the bubble pair trajectory model could 

accurately predict movement of bubbles in experiments, video was obtained of actual 

bubble motion within the acoustic chamber.  Since the hydrophone proved inaccurate in 

experimental measurement of energy density in the chamber, the model was run at 

decreasing values of the energy density until an approximate match was obtained.  For 

each energy density the equilibrium resting position of bubble one was calculated using 

the primary force balance.  The primary force balance was also used to calculate the 

minimum energy density needed to effect capture for each bubble size.  Bubble one and 

bubble two were measured to be within one or two pixels of each other, and thus assumed 

to be the same size.  The average of the two measurements was taken and for Figure 62 

a1 = a2 = 117 µm.  The dip shown in the experimental data as bubble two approaches 

bubble one is commonly seen in experiments and can possibly be attributed to “cold 

spots” within the chamber (opposite of hot spots indicating dead areas of the transducer).  
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A more likely possibility is that bubble one could be shielding the reflected acoustic wave 

coming back from the reflector, which is located at the top of the chamber. 

 Also, Figure 62 shows that varying the energy density changes the path of the 

bubbles to a very minor degree.  What does change, though, is the time to collision which 

is represented in Figure 63 for a variety of energy densities.  This trend is expected 

because, once again assuming the secondary acoustic force is the main controlling force, 

the time to collision is proportional to the inverse of the energy density (t α 1/Eac).  The 

curve was fit using Origin 7.5 and the equation represented on the graph was then used to 

calculate the energy density of the experimental system based on the frame rate of the 

video captured.  For this example, the bubbles collided in six frames and for a frame rate 

of 30 frames/s and collision time of 0.2 +/- 0.03 s is obtained.  Using this time with the 

fitted equation for Figure 63, an energy density for the system of 0.084 +/- 0.177 J/m3 

was calculated. 
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Figure 62:  Comparison of experimental data to calculated results from the bubble pair trajectory 
model for the case of a1 = a2 = 117 µm. 
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Figure 63:  Energy density versus time to collision for the experimental case seen in Figure 62.  From 
this curve the energy density can be determined based on the collision time calculated for the 
experimental data from the frame rate of video being taken.  
 

 

 A second similar case was run under the same experimental conditions but with a1 

= a2 = 132 µm, seen in Figure 64.  The extra swoop, or the portion of the experimental 

trajectory that is near collision, for the minimum energy density curve is most likely a 

result of the primary acoustic force trying to push the second bubble to its equilibrium 

position.  It is possible that this would be seen in the other curves if the collision shell 

around bubble one was made smaller.  Again the same trend of decreasing collision time 

with increasing energy density is seen and Figure 65 shows the energy density versus the 

collision time.  Based on a collision sequence of five frames, and thus a collision time of 

0.167 +/- 0.03 s, an energy density of 0.12 +/- 0.216 J/m3 was calculated using the fit 
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equation seen in Figure 65.  The two cases were for the same operating conditions and 

this gives a difference of about 30%, which is a fairly decent agreement.  It should be 

noted that due to the nature of the acoustic chamber design, inserting bubbles at different 

angles is not easily accomplished, so examples for other angles were not obtained. 
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Figure 64:  Comparison of experimental data to calculated results from the bubble pair trajectory 
model for the case of a1 = a2 = 132 µm 
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Figure 65:  Energy density versus time to collision for the experimental case seen in Figure 64.  From 
this curve the energy density can be determined based on the collision time calculated for the 
experimental data from the frame rate of video being taken. 
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5 Conclusions and Future Work 

 

5.1 Summary 

 The main objective of this research was to develop a fundamental understanding 

of the effect of forces induced by resonant ultrasonic fields on the entrapment and 

coalescence phenomena of gas bubbles in a liquid.  This included modeling efforts to 

illustrate the relationship between the size of bubbles, their sphericity, acoustic field 

parameters (frequency and intensity), bubble equilibrium position relative to acoustic 

pressure antinodes, and the bubble coalescence phenomena.  It also included experiments 

involving both small numbers of bubbles and large swarms to test the basic predictions of 

the model.  These tasks were accomplished by the derivation and experimental 

verification of the bubble pair model which determined the path and collision rate for 

bubbles starting at designated locations within the acoustic chamber. 

 Initial calculations were done to determine deformation in bubble shape due to 

acoustic field parameters.  This was done by determining the quadrupole projection of the 

acoustic radiation pressure on a small compressible sphere.  Calculations allowed for the 

determination of the maximum energy density allowable to still assume sphericity of the 

bubble.  The spherical assumption was necessary for less complicated equations for the 

remainder of the modeling.  Figure 9 shows the results of this calculation, indicating that 

the maximum energy density for a bubble with a radius of 100 µm is 0.649 J/m3.  

Experimental hydrophone measurements showed that at normal operating conditions the 

average energy density of the system falls far below that value, as seen from Figure 61 

and Table 1, indicating that the spherical assumption holds for experimental results 
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assuming the bubbles in the system have a radius of 100 µm or less, which is not 

necessarily always the case.  To this end the maximum energy density for a variety of 

bubble radii was calculated.  The primary force balance on a single bubble was then used 

to calculate the minimum energy density required to effect capture.  Figure 16 give the 

results of these calculations showing that a bubble with a chosen radius that falls within 

the shaded area can be assumed spherical and will also be captured based on energy 

density.  It should be noted that hydrophone measurements are suspect because they show 

an energy density in the acoustic chamber that is too low to effect capture based on 

calculated results. 

 To determine the equilibrium resting position and velocity of a single bubble as a 

function of size and energy density, the primary force balance was solved for the velocity 

term of the drag force, equation (3.9).  Subsequent solving gave equations returning the 

position and velocity of a single bubble within a resonant acoustic chamber with respect 

to the location of the acoustic pressure antinodes for a given initial position. 

 The determination of the relative trajectory of a pair of bubbles as a function of 

relevant operating parameters required the development of a mathematical model.  The 

relative motion of two bubbles toward one another is governed by both primary forces 

and by inter-bubble effects and the compilation of these effects result in equations (3.62) 

and (3.63).  The model results indicate that the typical relative trajectory of a bubble pair 

has an initial slower motion followed by a faster approach followed by collision of the 

bubble pair.  Subsequent calculations showed that for the parameters and bubble sizes 

stated previously, that the secondary acoustic force was large enough to overcome the 

difference between the primary acoustic and buoyancy forces, pulling the second bubble 
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through the pressure nodes and antinodes that separated the bubble pair.  This is valid for 

an initial y-coordinate separation of 1.1 cm, again for the previously stated parameters.  

For the microscopic model these results indicate that the bubble motion is driven 

primarily by the secondary acoustic force, and that both the slow and fast approach are 

primarily due to the secondary acoustic force and that, as seen in Figure 17, the 

secondary acoustic force increases exponentially as the bubbles approach on another.  

 The trajectory analysis was used to define iso-time collision contours, showing 

the location, with respect to a fixed bubble one, at which bubble two would have to reside 

for it to collide with bubble one within the time indicated by the contour.  These 

calculations were done for both variable energy density and variable radii ratios.  To 

represent this data in combined form, each iso-time contour was rotated about the y-axis 

to form a sphere/ellipsoid allowing for the calculation of volume cleared by the clustering 

of bubble pairs as a function of time.  Collision rate constants were then determined from 

this data.  Section 4.4 shows bubble trajectories taken from experiments compared to 

trajectories from the model.  Fairly good agreement is seen between the two, proving that 

the model is an accurate prediction of bubble pair trajectories. 

 Through the literature survey it was discovered that the secondary acoustic force 

acting between a pair of bubbles is not always attractive, but can change sign based on 

bubble size and movement of bubbles toward one another.  This can result in the forming 

stable bound pairs or clusters that won’t necessarily coalesce like originally believed for 

this research [64-70, 74, 75, 77].  These types of calculations were beyond the scope of 

this research, but experimental observations coincided with those observations.  No 

actual coalescence was viewed during experiments, but clusters formed almost 
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immediately upon introduction of the sound field.  A variety of cluster types were 

observed, with the differences most likely resulting from hot spots causing lateral 

acoustic forces within the acoustic chamber. 

 

5.2 Suggested Future Work 

 Further research should include analysis the effect of hot spots within the acoustic 

chamber.  The lateral acoustic forces that arise from non-uniformities of transducer may 

alter the validity of the spherical assumption and of the droplet pair model by increasing 

the primary forces acting on a bubble.  The intensity and location of these hot spots might 

also be responsible for the variety of bubble cluster types seen in experiments.  If a 

hydrophone could be found that could return accurate results, pressure measurements 

could be taken at the location of each type of bubble cluster and then compared to the 

average pressure of the system. 

 Future work could also address the issues pertaining to the resonance frequency of 

the bubbles in the bubble pair model.  The equation for the secondary acoustic force 

could possibly include necessary additions related to the changing sign due primarily to 

the resonance frequency of the bubble.  It may also be possible that the hydrodynamic 

mobility functions for bubbles differ from those for drops due, once again, to the 

monopole resonance frequency of the bubbles.  A literature search should be done on 

this. 

 Because this research was originally proposed for microgravity environments, it 

would be beneficial to run experiments under these conditions.  Models developed would 

have to be modified slightly to neglect the gravitational effect, and results from the 
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models and experiments under normal gravity conditions could be compared to those 

under microgravity to determine how the trajectories and time to collision would change. 

 Final suggestions regard experimental work.  A slightly better design of the 

acoustic chamber would be beneficial.  Currently the positioning screws are rather large 

and do not allow for minute changes in the position of the transducer.  Screws allowing 

for a larger number of turns per inch would be beneficial.  Also, a variety of syringe 

insertion points would be useful to obtain experimental trajectory results for other angles.  

Obtaining longer needles for the syringe would also be beneficial so bubbles could be 

inserted into the chamber closer to the center of the transducer.  When running 

experiments with salt water, the chamber should be filled with DI water first and then salt 

water should be injected.  For hydrophone measurements, one of the ports in the acrylic 

centerpiece should be enlarged to allow for insertion of the hydrophone so that values of 

the energy density in a closed system could be measured. 
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Appendix A1 

 This appendix shows Mathematica 6 code for the cubic spline calculations 

discussed in Section 3.3.4. 

 

Ag =
sfar − s

sfar − snear
;

Bg =
s − snear

sfar − snear
;

Cg = H1ê6L∗IAg3 − AgM∗Hsfar − snearL2;

Dg = H1ê6L∗IBg3 − BgM∗Hsfar − snearL2;

Gfar = 1 − 2 ∗
2 + 3 ∗ μ

1 + μ
∗

λ

H1 + λL2 ∗ s
+ 8 ∗

μ

1 + μ
 

λ ∗Iλ2 + 1M
I1 + λ4M∗ s3

− 4 ∗
H2 + 5 ∗ μL∗H2 + 3 ∗ μL

H1 + μL2
∗

λ ∗Iλ3 + 1M
H1 + λL5 ∗ s4

;

∂s Gfar

−
24 λ I1 + λ2M μ

s4 I1 + λ4M H1 + μL
+

2 λ H2 + 3 μL
s2 H1 + λL2 H1 + μL

+
16 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

s5 H1 + λL5 H1 + μL2

DGfar = −
24 λ I1 + λ2M μ

s4 I1 + λ4M H1 + μL
+

2 λ H2 + 3 μL
s2 H1 + λL2 H1 + μL

+
16 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

s5 H1 + λL5 H1 + μL2
;

∂s DGfar

96 λ I1 + λ2M μ

s5 I1 + λ4M H1 + μL
−

4 λ H2 + 3 μL
s3 H1 + λL2 H1 + μL

−
80 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

s6 H1 + λL5 H1 + μL2

DDGfar =
96 λ I1 + λ2M μ

s5 I1 + λ4M H1 + μL
−

4 λ H2 + 3 μL
s3 H1 + λL2 H1 + μL

−
80 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

s6 H1 + λL5 H1 + μL2
;

Λ =
π2 ∗ 2 ∗ μ

16 ∗H1 + 1 ê λL3ê2
∗

2
ξ ∗H1 + λL

1ê2
+

λ

3 ∗H1 + λL ∗ 1 −
μ2

3
∗ LogBξ ∗H1 + λL

2
F

−1
+ C0;

ξ = s − 2;

Gnear =
HB1 + λ ∗ B2L∗ 3∗μ+2

3∗μ+3

H1 + λL∗JΛ ∗HB2 + B2ê λL− B12 ë λ ∗ 3∗μ+2
3∗μ+3

N
;
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∂s Gnear

−

IB2 + B2
λ
M HB1 + B2 λL H2 + 3 μL − π2 μ

16 H−2+sL2 J1+1
λ
N3ê2 1

H−2+sLH1+λL H1+λL
−

λ 1−μ2
3

3 H−2+sLH1+λLLogB1
2 H−2+sLH1+λLF2

H1 + λL H3 + 3 μL − B12 H2+3 μL
λH3+3 μL + IB2 + B2

λ
M C0 +

π2 1
H−2+sLH1+λL μ

8 J1+1
λ
N3ê2 +

λ 1−μ2
3

3 H1+λLLogB1
2 H−2+sLH1+λLF

2

DGnear =

− KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL

−
π2 μ

16 H−2 + sL2 I1 + 1
λ
M3ê2 1

H−2+sLH1+λL H1 + λL
−

λ J1 − μ2

3
N

3 H−2 + sL H1 + λL LogA 1
2
H−2 + sL H1 + λLE2

ì

H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL + KB2 +
B2
λ
O C0 +

π2 1
H−2+sLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ J1 − μ2

3
N

3 H1 + λL LogA 1
2
H−2 + sL H1 + λLE

2

;
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∂s DGnear

− KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL −

π2 μ

32 H−2 + sL4 I1 + 1
λ
M3ê2 J 1

H−2+sLH1+λLN
3ê2 H1 + λL2

+

π2 μ

8 H−2 + sL3 I1 + 1
λ
M3ê2 1

H−2+sLH1+λL H1 + λL
+

2 λ K1 − μ2

3
O

3 H−2 + sL2 H1 + λL LogA 1
2
H−2 + sL H1 + λLE3

+

λ K1 − μ2

3
O

3 H−2 + sL2 H1 + λL LogA 1
2
H−2 + sL H1 + λLE2

ì H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL
+ KB2 +

B2
λ
O C0 +

π2 1
H−2+sLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + sL H1 + λLE

2

+

2 KB2 +
B2
λ
O

2
HB1 + B2 λL H2 + 3 μL −

π2 μ

16 H−2 + sL2 I1 + 1
λ
M3ê2 1

H−2+sLH1+λL H1 + λL
−

λ K1 − μ2

3
O

3 H−2 + sL H1 + λL LogA 1
2
H−2 + sL H1 + λLE2

2

ì H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL
+ KB2 +

B2
λ
O C0 +

π2 1
H−2+sLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + sL H1 + λLE

3
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DDGnear =

− KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL

−
π2 μ

32 H−2 + sL4 I1 + 1
λ
M3ê2 J 1

H−2+sLH1+λLN
3ê2 H1 + λL2

+

π2 μ

8 H−2 + sL3 I1 + 1
λ
M3ê2 1

H−2+sLH1+λL H1 + λL
+

2 λ J1 − μ2

3
N

3 H−2 + sL2 H1 + λL LogA 1
2
H−2 + sL H1 + λLE3

+

λ J1 − μ2

3
N

3 H−2 + sL2 H1 + λL LogA 1
2
H−2 + sL H1 + λLE2

ì

H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL + KB2 +
B2
λ
O C0 +

π2 1
H−2+sLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ J1 − μ2

3
N

3 H1 + λL LogA 1
2
H−2 + sL H1 + λLE

2

+

2 KB2 +
B2
λ
O

2
HB1 + B2 λL H2 + 3 μL

−
π2 μ

16 H−2 + sL2 I1 + 1
λ
M3ê2 1

H−2+sLH1+λL H1 + λL
−

λ J1 − μ2

3
N

3 H−2 + sL H1 + λL LogA 1
2
H−2 + sL H1 + λLE2

2

ì

H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL + KB2 +
B2
λ
O C0 +

π2 1
H−2+sLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ J1 − μ2

3
N

3 H1 + λL LogA 1
2
H−2 + sL H1 + λLE

3

;
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Gnear ê. s → snear

HB1 + B2 λL H2 + 3 μL

H1 + λL H3 + 3 μL − B12 H2+3 μL
λH3+3 μL + IB2 + B2

λ
M C0 +

π2 1
H−2+snearLH1+λL μ

8 J1+1
λ
N3ê2 +

λ 1−μ2
3

3 H1+λLLogB1
2 H−2+snearLH1+λLF

Gnsn =

HB1 + B2 λL H2 + 3 μL

H1 + λL H3 + 3 μL − B12 H2+3 μL
λH3+3 μL + IB2 + B2

λ
M C0 +

π2 1
H−2+snearLH1+λL μ

8 J1+1
λ
N3ê2 +

λ 1−μ2
3

3 H1+λL LogB1
2 H−2+snearLH1+λLF

;
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DDGnear ê. s → snear

− KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL −

π2 μ

32 H−2 + snearL4 I1 + 1
λ
M3ê2 J 1

H−2+snearLH1+λLN
3ê2 H1 + λL2

+

π2 μ

8 H−2 + snearL3 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
+

2 λ K1 − μ2

3
O

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE3

+

λ K1 − μ2

3
O

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

ì H1 + λL H3 + 3 μL −
B12 H2 + 3 μL
λ H3 + 3 μL

+

KB2 +
B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

2

+

2 KB2 +
B2
λ
O

2
HB1 + B2 λL H2 + 3 μL −

π2 μ

16 H−2 + snearL2 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
−

λ K1 − μ2

3
O

3 H−2 + snearL H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

2

ì

H1 + λL H3 + 3 μL −
B12 H2 + 3 μL
λ H3 + 3 μL

+KB2 +
B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+

λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

3
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DDGnsn =

− KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL

−
π2 μ

32 H−2 + snearL4 I1 + 1
λ
M3ê2 J 1

H−2+snearLH1+λLN
3ê2 H1 + λL2

+
π2 μ

8 H−2 + snearL3 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
+

2 λ J1 − μ2

3
N

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE3

+

λ J1 − μ2

3
N

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

ì

H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL + KB2 +
B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ J1 − μ2

3
N

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

2

+

2 KB2 +
B2
λ
O

2
HB1 + B2 λL H2 + 3 μL

−
π2 μ

16 H−2 + snearL2 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
−

λ J1 − μ2

3
N

3 H−2 + snearL H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

2

ì

H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL + KB2 +
B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ J1 − μ2

3
N

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

3

;
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Gfar ê. s → sfar

1 +
8 λ I1 + λ2M μ

sfar3 I1 + λ4M H1 + μL
−

2 λ H2 + 3 μL
sfar H1 + λL2 H1 + μL

−
4 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

sfar4 H1 + λL5 H1 + μL2

Gfsf = 1 +
8 λ I1 + λ2M μ

sfar3 I1 + λ4M H1 + μL
−

2 λ H2 + 3 μL
sfar H1 + λL2 H1 + μL

−
4 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

sfar4 H1 + λL5 H1 + μL2
;

DDGfar ê. s → sfar

96 λ I1 + λ2M μ

sfar5 I1 + λ4M H1 + μL
−

4 λ H2 + 3 μL
sfar3 H1 + λL2 H1 + μL

−
80 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

sfar6 H1 + λL5 H1 + μL2

DDGfsf =
96 λ I1 + λ2M μ

sfar5 I1 + λ4M H1 + μL
−

4 λ H2 + 3 μL
sfar3 H1 + λL2 H1 + μL

−
80 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

sfar6 H1 + λL5 H1 + μL2
;
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Gmod = Ag ∗ Gnsn + Bg ∗ Gfsf + Cg ∗ DDGnsn + Dg ∗ DDGfsf

1
6

Hs − snearL3

Hsfar − snearL3
−

s − snear
sfar − snear

Hsfar − snearL2

96 λ I1 + λ2M μ

sfar5 I1 + λ4M H1 + μL
−

4 λ H2 + 3 μL
sfar3 H1 + λL2 H1 + μL

−
80 λ I1 + λ3M H2 + 3 μL H2 + 5 μL

sfar6 H1 + λL5 H1 + μL2
+

Hs − snearL 1 +
8 λJ1+λ2Nμ

sfar3 J1+λ4NH1+μL
− 2 λH2+3 μL

sfar H1+λL2 H1+μL
−

4 λJ1+λ3NH2+3 μLH2+5 μL
sfar4 H1+λL5 H1+μL2

sfar − snear
+

1
6

H−s + sfarL3

Hsfar − snearL3
−

−s + sfar
sfar − snear

Hsfar − snearL2 − KB2 +
B2
λ
O HB1 + B2 λL H2 + 3 μL −

π2 μ

32 H−2 + snearL4 I1 + 1
λ
M3ê2 J 1

H−2+snearLH1+λLN
3ê2 H1 + λL2

+

π2 μ

8 H−2 + snearL3 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
+

2 λ K1 − μ2

3
O

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE3

+

λ K1 − μ2

3
O

3 H−2 + snearL2 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

ì H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL
+ KB2 +

B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

2

+

2 KB2 +
B2
λ
O

2
HB1 + B2 λL H2 + 3 μL −

π2 μ

16 H−2 + snearL2 I1 + 1
λ
M3ê2 1

H−2+snearLH1+λL H1 + λL
−

λ K1 − μ2

3
O

3 H−2 + snearL H1 + λL LogA 1
2
H−2 + snearL H1 + λLE2

2

ì H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL
+ KB2 +

B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE

3

+

HH−s + sfarL HB1 + B2 λL H2 + 3 μLL ì Hsfar − snearL H1 + λL H3 + 3 μL

−
B12 H2 + 3 μL

λ H3 + 3 μL
+ KB2 +

B2
λ
O C0 +

π2 1
H−2+snearLH1+λL μ

8 I1 + 1
λ
M3ê2

+
λ K1 − μ2

3
O

3 H1 + λL LogA 1
2
H−2 + snearL H1 + λLE
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snear = 2.00004;
sfar = 2.0002;
Gfsf = 0.434161893;
Gnsn = 0.417671626;
B1 = 0.669411286;
B2 = 0.669411286;
C0 = 0.656031192;
μ = 0.0173;
λ = 0.909090909;

Gmod

−0.195856 I−6250. H2.0002 − sL+ 2.44141 × 1011 H2.0002 − sL3M −

2.24271 × 10−9 I−6250. H−2.00004 + sL + 2.44141 × 1011 H−2.00004 + sL3M +

1657.48 H2.0002 − sL + 2805.06 H−2.00004 + sL

FullSimplify@%D

4.78163 × 1010 H−1.99999 + sL H4.00123 + H−4.00061 + sL sL

P1 = Plot@Gmod, 8s, snear, sfar<,
PlotStyle → 8Dashing@80.03, 0.03<D, Thickness@0.012D, Hue@1D<, AxesLabel → 8"s", "G"<D

2.00005 2.00008 2.00013 2.00015 2.00018 2.0002
s

0.36

0.38

0.42

0.44

G

h Graphics h

P2 = Plot@Gnear, 8s, 2, snear<, PlotStyle → 8Thickness@0.012D<, AxesLabel → 8"s", "G"<D

2.00001 2.00002 2.00003 2.00004
s

0.05

0.1

0.15

0.2

0.25

G

h Graphics h  
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P3 = Plot@Gfar, 8s, sfar, 2.0004<, PlotStyle → 8Thickness@0.012D<, AxesLabel → 8"s", "G"<D

2.00025 2.0003 2.00035 2.0004
s

0.44882

0.44883

0.44884

0.44885

0.44886

0.44887

0.44888

G

h Graphics h

Show@P1, P2, P3D

2.0001 2.0002 2.0003 2.0004
s

0.1

0.2

0.3

0.4

G

h Graphics h  
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Appendix A2 

 This appendix shows Mathematica 6 code for the bubble pair trajectory model. 

 

dVvdW@t_D :=

I−I4096 A ahat3 s@tDMë I3 Ha1 + a2L H1 + ahatL2 I−4 + Hs@tDL2M2 I−4 H−1 + ahatL2 + H1 + ahatL2 Hs@tDL2M2MMë A;

L@t_D := 1 −
2 + 3 ∗ μ

1 + μ
∗

ahat2 + ahat + 1
H1 + ahatL2

∗
1

s@tD + 4 ∗
μ

1 + μ
∗
Iahat2 + ahat + 1M∗ Iahat2 + 1M

H1 + ahatL3 ∗Hahat + 1L
∗

1
Hs@tDL3

;

G@t_D := 1 − 2 ∗
2 + 3 ∗ μ

1 + μ
∗

ahat3

H1 + ahatL2
∗

1
s@tD + 8 ∗

μ

1 + μ
∗

ahat ∗Iahat2 + 1M
H1 + ahatL4

∗
1

Hs@tDL3
−

4 ∗
H2 + 5 ∗ μL∗H2 + 3 ∗ μL

H1 + μL2
∗

ahat ∗Iahat3 + 1M
H1 + ahatL5

∗
1

Hs@tDL4
;

M@t_D := 1 −
2 + 3 ∗ μ

2 ∗H1 + μL ∗
ahat2 + ahat + 1
H1 + ahatL2

∗
1

s@tD − 2 ∗
μ

1 + μ
∗
Iahat2 + ahat + 1M∗ Iahat2 + 1M

H1 + ahatL3 ∗Hahat + 1L
∗

1
Hs@tDL3

;

V10@t_D :=

2 Hp1 − q1L Hp1 + q1L Hp1 + q1 Sin@a yo1DL

p1 Hp1 + q1 Sin@a yo1DL − CoshBa −p12 + q12 tF II− p12 + q12M Cos@a yo1D + q1 Hq1 + p1 Sin@a yo1DLM−

−p12 + q12 Hq1 + q1 Cos@a yo1D + p1 Sin@a yo1DL SinhBa − p12 + q12 tF ì

q12 + H−p1 + q1L Hp1 + q1L Cos@a yo1D− p12 CoshBa −p12 + q12 tF −

2 p1 q1 Sin@a yo1D SinhB1
2

a −p12 + q12 tF
2 2

1 +

−p1 Hq1 + p1 Sin@a yo1DL + q1 CoshBa − p12 + q12 tF Hp1 + q1 Sin@a yo1DL +

−p12 + q12 Hp1 + q1 Sin@a yo1DL SinhBa − p12 + q12 tF
2
ì

q12 + H−p1 + q1L Hp1 + q1L Cos@a yo1D− p12 CoshBa −p12 + q12 tF −

2 p1 q1 Sin@a yo1D SinhB1
2

a −p12 + q12 tF
2 2

;  
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V20@t_D :=

2 Hp2 − q2L Hp2 + q2L Hp2 + q2 Sin@a yo2DL

p2 Hp2 + q2 Sin@a yo2DL − CoshBa −p22 + q22 tF II− p22 + q22M Cos@a yo2D + q2 Hq2 + p2 Sin@a yo2DLM−

−p22 + q22 Hq2 + q2 Cos@a yo2D + p2 Sin@a yo2DL SinhBa − p22 + q22 tF ì

q22 + H−p2 + q2L Hp2 + q2L Cos@a yo2D− p22 CoshBa −p22 + q22 tF −

2 p2 q2 Sin@a yo2D SinhB1
2

a −p22 + q22 tF
2 2

1 +

−p2 Hq2 + p2 Sin@a yo2DL + q2 CoshBa − p22 + q22 tF Hp2 + q2 Sin@a yo2DL +

−p22 + q22 Hp2 + q2 Sin@a yo2DL SinhBa − p22 + q22 tF
2
ì

q22 + H−p2 + q2L Hp2 + q2L Cos@a yo2D− p22 CoshBa −p22 + q22 tF −

2 p2 q2 Sin@a yo2D SinhB1
2

a −p22 + q22 tF
2 2

;

V120@t_D := V10@tD− V20@tD;

α =
2 ∗ π ∗ Ps2 ∗ ω2 ∗ a1 ∗ a2

ρl ∗Iω12 − ω2M ∗Iω22 − ω2M
H∗N∗m2∗L;

Ps = 2 ∗ ρl ∗ cl2 ∗ Eac H∗Pa∗L;

D120 =
k ∗ T ∗Hμ + 1L∗I1 + ahat−1M
2 ∗ π ∗ μl ∗H3 ∗ μ + 2L∗ a1

H∗m2ês∗L;

ω1 =
1
a1

∗
3 ∗ γ ∗ Px1

ρl
+

6 ∗ γ ∗ σhat
ρl ∗ a1

−
2 ∗ σhat
ρl ∗ a1

H∗1ês∗L;

ω2 =
1
a2

∗
3 ∗ γ ∗ Px2

ρl
+

6 ∗ γ ∗ σhat
ρl ∗ a2

−
2 ∗ σhat
ρl ∗ a2

H∗1ês∗L;

Px1 = 101 325 +
2 ∗ σhat

a1
H∗Pa∗L;

Px2 = 101 325 +
2 ∗ σhat

a2
H∗Pa∗L;

F1 =
I1ë c2M∗ I3 ∗ ρ −Hκ ∗ a1êcL2M

c2 ∗Hκ ∗ a1êcL6 + I3 ∗ ρ − Hκ ∗ a1êcL2M2
;

F2 =
I1ë c2M∗ I3 ∗ ρ −Hκ ∗ a2êcL2M

c2 ∗Hκ ∗ a2êcL6 + I3 ∗ ρ − Hκ ∗ a2êcL2M2
;

p1 =
a12

3 ∗ μl
∗Hρl − ρgL∗ gH∗mês∗L;

q1 =
a12

μl
∗ κ ∗ Eac ∗ F1H∗mês∗L;
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p2 =
a22

3 ∗ μl
∗Hρl − ρgL∗ gH∗mês∗L;

q2 =
a22

μl
∗ κ ∗ Eac ∗ F2H∗mês∗L;

Nac1 =
3 ∗ κ ∗ Eac ∗ F1
Hρl − ρgL∗ g

;

Nac2 =
3 ∗ κ ∗ Eac ∗ F2
Hρl − ρgL∗ g

;

μg = 1.73 ∗ 10−5H∗Nsêm2 = kgêHs∗mL∗L;
ρg = 1.25H∗kgêm3∗L;
cg = 343H∗mês∗L;
μl = 0.001H∗Nsêm2 = kgêHs∗mL∗L;
ρl = 998.23H∗kgêm3∗L;
cl = 1490H∗mês∗L;
a1 = 0.000132H∗m∗L;
a2 = 0.000132H∗m∗L;
ahat = a2êa1
μ = μgêμl;
ρ = ρgêρl;
c = cgêcl;
k = 1.38065 ∗ 10−23H∗kg∗m2ês2∗K∗L;
T = 300H∗K∗L;
A = 3.7 ∗ 10−20H∗J∗L
ω = fH∗1ês∗L;
σhat = 0.0728H∗surface tension, kgês2∗L;
γ = 1.4;
g = 9.81H∗mês2∗L;
f = 435 000H∗Hz∗L;
Eac = 0.649H∗Jêm3 = kgêm∗s2∗L;

κ =
2 ∗ π

HclêfLH∗1êm∗L;

λ = clêfH∗m∗L;
a = 2 ∗ κH∗m∗L;
r = a1 + a2 + 0.0019H∗m∗L
s0 = 2 ∗ rêHa1 + a2L
x = 222 ∗ π ê180H∗radians∗L;
yo1 = 0.001759056596H∗m∗L êê N
yo2 = yo1 + r ∗ Cos@xDH∗m∗L
xo1 = 0H∗m∗L;
xo2 = xo1 + r ∗ Sin x ∗m∗ ;@ DH L  
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sol =

NDSolveB

:s'@tD ==
−2 ∗ V120@tD
Ha1 + a2L ∗ L@tD∗ Cos@θ@tDD −

4 ∗ D120
k ∗ T ∗Ha1 + a2L2

∗ G@tD∗ A ∗ dVvdW@tD +
2 ∗ α

Ha1 + a2L ∗
1

Hs@tDL2
,

θ'@tD ==
2 ∗ V120@tD∗ M@tD ∗ Sin@θ@tDD

s@tD ∗Ha1 + a2L , s@0D m 2 ∗ rêHa1 + a2L, θ@0D m x>, 8s, θ<,

8t, 0, 1<, Method → StiffnessSwitching, AccuracyGoal → Infinity, MaxSteps → 10 000 000,

MaxStepFraction → 1ê100 000F

88s → InterpolatingFunction@880., 1.<<, <>D, θ → InterpolatingFunction@880., 1.<<, <>D<<

FindRoot@Evaluate@s@tD ê. solD− 2, 8t, 0<D

8t → 0.509327<

:s@5.6370585066290565`∗^−6D,
θ@5.6370585066290565`∗^−6D

°
> ê. sol

882., 225.123<<

ptheta = PlotBEvaluateBθ@tD
°

ê. solF, 8t, 0, 1<,

FrameLabel → 8"Time HsL", "Separation Angle , θ°"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14, FontWeight → Bold<,
PlotStyle → 8Red, Thickness@0.01D<, PlotRange → 880, 1<, 8210, 240<<, Frame → True

H∗,Ticks→8units,Automatic<∗LF
ps = Plot@Evaluate@s@tD ê. solD, 8t, 0, 0.05<,

FrameLabel → 8"Time HsL", "Dimensionless Separation , s"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14, FontWeight → Bold<,
PlotStyle → 8Red, Thickness@0.01D<, PlotRange → 880, 0.05<, 80, 20<<,
AxesOrigin → 80, 2<, Frame → True, Axes → FalseH∗,Ticks→8units,Automatic<∗LD
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∆xf@t_D := HEvaluate@s@tD ê. solD∗Ha1 + a2L ê2L∗ Sin@Evaluate@θ@tD ê. solDD
∆yf@t_D := HEvaluate@s@tD ê. solD∗Ha1 + a2L ê2L∗ Cos@Evaluate@θ@tD ê. solDD

Export@"test.xls",
8Table@8∆xf@tD, ∆yf@tD, Evaluate@s@tD ê. solD, Evaluate@θ@tD ê. solD<,
8t, 80, 1 ∗ 10 ^−9, 1 ∗ 10^ −8, 1 ∗ 10^ −7, 1 ∗ 10^ −6, 1 ∗ 10^−5, 1 ∗ 10^−4, 1 ∗ 10 ^−3,

1 ∗ 10^ −2, 0.1, 0.125, 0.15, 0.175, 0.2, 0.3, 0.4, 0.5, 1<<D<D

test.xls

Plot@Evaluate@H∆xf@tD ê. solLêHλê4LD, 8t, 0, 0.044<, Frame → True,
FrameLabel → 8"TimeHsL", "∆xfêHλê4L"<, BaseStyle → 8FontFamily → "Times", FontSize → 14<,
PlotStyle → 8Red, Thick<H∗,PlotRange→880,0.02<,8−2,2<<∗LD

Plot@Evaluate@H∆yf@tD ê. solLêHλê4LD, 8t, 0, 0.044<H∗,PlotRange→880,0.02<,8−2,1<<∗L,
Frame → True, FrameLabel → 8"TimeHsL", "∆yfêHλê4L"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<, PlotStyle → 8Red, Thick<D

0.00 0.01 0.02 0.03 0.04

-0.192632

-0.192630

-0.192628

-0.192626

-0.192624

TimeHsL

Dx
f êH
lê

4L

 

160 



0.00 0.01 0.02 0.03 0.04

-0.240727

-0.240726

-0.240726

-0.240725

TimeHsL

D
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êHl
ê4

L

ParametricPlot@Evaluate@8H∆xf@tDLêHλê4L, H∆yf@tDLêHλ ê4L< ê. solD, 8t, 0, 0.044<,
PlotRange → 88−2, 0<, 8−2, 0<<, PlotPoints → 1000, AspectRatio → 0.5, Frame → True,
FrameLabel → 8"∆xfêHλê4L", "∆yfêHλê4L"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14, FontWeight → Bold<,
PlotStyle → 8Red, Thickness@0.01D<, PlotPoints → 100, AspectRatio → 1D
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Export@"testex1.xls", Table@t, 8t, 0, 1, 0.001<DD
Export@"testex2.xls", Table@H∆xf@tDLêHλê4L, 8t, 0, 1, 0.001<DD
Export@"testex3.xls", Table@H∆yf@tDLêHλê4L, 8t, 0, 1, 0.001<DD

testex1.xls

testex2.xls

testex3.xls  
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Plot@Evaluate@V120@tD ê. solD, 8t, 0, 0.1<, AxesLabel → 8"Time HsL", "V120 HmêsL"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<, PlotStyle → 8Red, Thick<H∗,
PlotRange→880,0.1<,8−1,0.5<<∗LD

0.02 0.04 0.06 0.08 0.10
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8.μ10-9

V120 HmêsL

Plot@Evaluate@V10@tD ê. solD, 8t, 0, 0.02<, AxesLabel → 8"Time HsL", "V10 HmêsL"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<D

Plot@Evaluate@V20@tD ê. solD, 8t, 0, 0.02<, AxesLabel → 8"Time HsL", "V20 HmêsL"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<D
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Plot@Evaluate@8s@tD, s'@tD< ê. solD, 8t, 0, 0.001<,
AxesLabel → 8"Time HsL", "Dimensionless Separation, s and s'"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<, PlotStyle → 8Dashed, Thick<
H∗,PlotRange→880,0.0002<,8−5,5<<∗LD

PlotBEvaluateB:θ@tD
°

,
θ'@tD

°
> ê. solF, 8t, 0, 0.001<,

AxesLabel → 8"Time HsL", "Separation Angle, θ° and θ'"<,

BaseStyle → 8FontFamily → "Times", FontSize → 14<, PlotStyle → 8Dashed, Thick<F
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0.0002 0.0004 0.0006 0.0008 0.0010
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Plot@Evaluate@8s'@tD< ê. solD, 8t, 0, 0.5<, Frame → True,
FrameLabel → 8"Time HsL", "Dimensionless Separation Derivative , s'"<,
BaseStyle → 8FontFamily → "Times", FontSize → 14<, PlotStyle → 8Red, Thick<,
PlotRange → 880, 0.0002<, 8−100, 1<<D
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ps@@1DD
ptheta@@1DD

998<, 8<,

9Hue@0.67, 0.6, 0.6D, RGBColor@1, 0, 0D, Thickness@0.01D, LineA991.02041 × 10−10, 19.2649=,

91.53359 × 10−6, 18.8234=, 93.06708 × 10−6, 18.3514=, 94.60056 × 10−6, 17.8462=,

96.13405 × 10−6, 17.304=, 97.66754 × 10−6, 16.72=, 99.20103 × 10−6, 16.0874=,

80.0000107345, 15.397<, 80.000012268, 14.636<, 80.0000138015, 13.7853<,
80.000015335, 12.815<, 80.0000168685, 11.6745<, 80.000018402, 10.2649<,
80.0000199354, 8.33867<, 80.0000214689, 4.66942<, 80.0000230024, 1.38714<,
80.0000245359, 1.38714<, 80.0000260694, 1.38714<, 80.0000276029, 1.38714<,
80.0000291364, 1.38714<, 80.0000306699, 1.38714<, 80.0000322033, 1.38714<,
80.0000337368, 1.38714<, 80.0000352703, 1.38714<, 80.0000368038, 1.38714<,
80.0000383373, 1.38714<, 80.0000398708, 1.38714<, 80.0000414043, 1.38715<,
80.0000429378, 1.38715<, 80.0000444712, 1.38715<, 80.0000460047, 1.38715<,
80.0000475382, 1.38715<, 80.0000490717, 1.38715<, 80.0000506052, 1.38715<,
80.0000521387, 1.38715<, 80.0000536722, 1.38715<, 80.0000552057, 1.38715<,
80.0000567391, 1.38715<, 80.0000582726, 1.38715<, 80.0000598061, 1.38715<,
80.0000613396, 1.38715<, 80.0000628731, 1.38715<, 80.0000644066, 1.38715<,
80.0000659401, 1.38715<, 80.0000674736, 1.38715<, 80.000069007, 1.38715<,
80.0000705405, 1.38715<, 80.000072074, 1.38715<, 80.0000736075, 1.38715<,
80.0000766745, 1.38715<, 80.0000797415, 1.38715<, 80.0000828084, 1.38715<,
80.0000858754, 1.38715<, 80.0000920094, 1.38715<, 80.0000981433, 1.38715<,
80.000151343, 1.38715<, 80.000204542, 1.38715<, 80.000254216, 1.38715<,
80.000303889, 1.38715<, 80.000352589, 1.38715<, 80.000401288, 1.38715<,
80.000454115, 1.38715<, 80.000506942, 1.38715<, 80.000556244, 1.38715<,
80.000605546, 1.38715<, 80.000658975, 1.38715<, 80.000712404, 1.38715<,
80.000764859, 1.38715<, 80.000817314, 1.38715<, 80.000915173, 1.38715<,
80.00096823, 1.38715<, 80.00102129, 1.38715<, 80.00107082, 1.38715<,
80.00112035, 1.38715<, 80.00116891, 1.38715<, 80.00121746, 1.38715<,
80.00127015, 1.38715<, 80.00132283, 1.38715<, 80.00137199, 1.38715<,
80.00142115, 1.38715<, 80.00147444, 1.38715<, 80.00152773, 1.38715<,
80.00158004, 1.38715<, 80.00163235, 1.38715<, 80.00168114, 1.38715<,
80.00172993, 1.38715<, 80.00178284, 1.38715<, 80.00183576, 1.38715<,
80.00188515, 1.38715<, 80.00193454, 1.38715<, 80.00198805, 1.38715<,
80.00204157, 1.38715<, 80.00209411, 1.38715<, 80.00214666, 1.38715<,
80.00219567, 1.38715<, 80.00224469, 1.38715<, 80.00229784, 1.38715<,
80.00235098, 1.38715<, 80.0024006, 1.38715<, 80.00245022, 1.38715<,
80.00249886, 1.38715<, 80.00254751, 1.38715<, 80.00260028, 1.38715<,
80.00265306, 1.38715<, 80.0027023, 1.38715<, 80.00275155, 1.38715<,
80.00280492, 1.38715<, 80.0028583, 1.38715<, 80.0029107, 1.38715<,
80.0029631, 1.38715<, 80.00301198, 1.38715<, 80.00306085, 1.38715<,
80.00311385, 1.38715<, 80.00316686, 1.38715<, 80.00326581, 1.38715<,
80.00331431, 1.38715<, 80.00336282, 1.38715<, 80.00341545, 1.38715<,
80.00346808, 1.38715<, 80.00351718, 1.38715<, 80.00356629, 1.38715<,
80.00361952, 1.38715<, 80.00367275, 1.38715<, 80.00372246, 1.38715<,
80.00377217, 1.38715<, 80.0038209, 1.38715<, 80.00386964, 1.38715<,
80.0039225, 1.38715<, 80.00397536, 1.38715<, 80.00402469, 1.38715<,
80.00407403, 1.38715<, 80.00412749, 1.38715<, 80.00418095, 1.38715<,
80.00423344, 1.38715<, 80.00428593, 1.38715<, 80.00433489, 1.38715<,
80.00438386, 1.38715<, 80.00443695, 1.38715<, 80.00449004, 1.38715<,
80.0045396, 1.38715<, 80.00458917, 1.38715<, 80.00463776, 1.38715<,
80.00468635, 1.38715<, 80.00473907, 1.38715<, 80.00479179, 1.38715<,
80.00484098, 1.38715<, 80.00489017, 1.38715<, 80.00494349, 1.38715<,
80.00499681, 1.38715<, 80.00499841, 1.38715<, 80.005, 1.38715<=E===  



998<, 8<, 9Hue@0.67, 0.6, 0.6D, RGBColor@1, 0, 0D, Thickness@0.01D,

LineA992.04082 × 10−8, 222.998=, 80.000306718, 221.026<, 80.000613415, 221.026<,

80.000920113, 221.026<, 80.00122681, 221.026<, 80.00184021, 221.026<,
80.0024536, 221.026<, 80.00368039, 221.026<, 80.00490718, 221.026<,
80.00736076, 221.026<, 80.00981434, 221.026<, 80.0147215, 221.026<,
80.0196287, 221.026<, 80.0302685, 221.026<, 80.0409084, 221.026<, 80.0607779, 221.026<,
80.0802576, 221.026<, 80.101388, 221.026<, 80.121109, 221.026<, 80.142481, 221.026<,
80.163463, 221.026<, 80.183035, 221.026<, 80.204257, 221.026<, 80.22407, 221.026<,
80.243493, 221.026<, 80.264567, 221.026<, 80.284231, 221.026<, 80.305546, 221.026<,
80.326471, 221.026<, 80.345986, 221.026<, 80.367151, 221.026<, 80.386907, 221.026<,
80.408314, 221.026<, 80.429331, 221.026<, 80.448938, 221.026<, 80.470196, 221.026<,
80.490044, 221.026<, 80.509502, 221.026<, 80.530611, 221.026<, 80.55031, 221.026<,
80.57166, 221.026<, 80.59262, 221.026<, 80.61217, 221.026<, 80.633371, 221.026<,
80.653162, 221.026<, 80.672563, 221.026<, 80.693616, 221.026<, 80.713258, 221.026<,
80.734551, 221.026<, 80.754434, 221.026<, 80.773927, 221.026<, 80.795071, 221.026<,
80.814805, 221.026<, 80.83619, 221.026<, 80.857186, 221.026<, 80.876771, 221.026<,
80.898007, 221.026<, 80.917833, 221.026<, 80.93727, 221.026<, 80.958357, 221.026<,
80.978034, 221.026<, 80.999363, 221.026<, 80.999681, 221.026<, 81., 221.026<=E===  
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