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Internet Congestion Control:
Complete Stability Region for PI AQM and

Bandwidth Allocation in Networked Control

Abstract
by

Ahmad Tawfiq Al-Hammouri

The Internet represents a shared resource, wherein usgenddor the finite net-
work bandwidth. Contention among independent user demaardsesult in congestion,
which, in turn, leads to long queueing delays, packet lossdsoth. Congestion con-
trol regulates the rate at which traffic sources inject ptckeo a network to ensure high
bandwidth utilization while avoiding network congestiam. this thesis, we present con-
tributions pertaining to two specific areas in the Interr@igestion control: PI AQM and
bandwidth allocation in Cyber-Physical Systems (CPSs).dmatka of Pl AQM, we present
an analytic derivation of the complete stability region.eTdiability region represents the
entire set of the feasible design parameters that stabiizelosed-loop TCP-AQM sys-
tem. Utilizing the complete stability region, we show thia¢ tP1 parameters used in the
literature can be excessively conservative. We also shaiviovably stable controller
parameters can exhibit widely different levels of perfont& Furthermore, we present
examples of Pl controllers that are stable and have signtfichetter performance than
previously proposed ones. These facts explain the prewbservation about Pl sluggish
responsiveness and stress the importance of obtainingthplete stability region for the
Pl AQM. As for CPSs bandwidth allocation, we devise a bandwadiocation scheme for

Cyber-Physical Systems that have their control loops clogseda distributed network. We
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formulate the bandwidth allocation as a convex optimizapooblem. We then present an
allocation scheme that solves this optimization problera fmlly distributed manner. In
addition to being fully distributed, the proposed schenasisichronous, scalable, dynamic
and flexible. Furthermore, we design robust and resilieruglcontrollers to enhance the
performance of the bandwidth allocation scheme to bettétl fine requirements of the
CPSs control loops. Throughout the thesis, we present agllyésults and we validate

them with packet-level simulations wes- 2.
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Chapter 1

Introduction

The Internet is a network of individual networks that intarnect multiple users and allow
them to communicate data. Each individual network is coragad physical communica-
tion links with each having a finite bandwidth capacity. Aisitrue with any finite resource
shared among multiple independent users, the network cam®econgested. Congestion,
which occurs when the offered packet load exceeds netw@doily, has severe impacts as
bad as total collapses and complete service blackouts. Gliepses had actually struck
the early Internet and then they triggered amendments tavéieknown TCP to include
a congestion control mechanism [34]. In principle, conigastontrol regulates the rate
at which traffic sources inject packets into a network to em$igh bandwidth utilization
while avoiding network congestion. Congestion control wagiably one of the reasons
that the Internet scaled up to its size today.

From control theory perspectives, congestion control ecamiewed as a feedback
closed-loop regime whereby end-systems regulate thettisgmates based on explicit or
implicit congestion signals fed back from the network. Aseault, control-theoretical
methods have been extensively utilized to analyze coragestintrol algorithms (see for
example [47, 61, 69] and the references therein). Sincestiti different network and

protocol parameters, control-theoretical analysis arphmost of the observations about



operational poor performance of congestion control atgors in some particular envi-
ronments, and it also motivates alternative designs. Intshell, control-theoretical ap-
proaches lead to stable, effective, and robust congestioinat design and operation.

In this thesis, we present novel results on the Internet estngn control pertinent
to two different domains: Proportional-Integral (Pl) A&iQueue Management (AQM)
and Cyber-Physical Systems (CPSs), in Chapters 2 and 3, negbedfVe summarize the
scope of this thesis in the next sections. Chapters 2 and ®astracted such that each one
is an independent part, is self contained, and thus reqoodsiowledge about the other
part. For example, each chapter reviews the related prevesearch work, and includes
packet-level simulations usings- 2 [1] that validate the theoretical analysis presented in
the respective chapter. The order of these chapters inhba&st is thus arbitrary. The
terminology we use in this thesis is that when we refer to néte; we usually mean IP

networks in the Wide Area Networks (WAN) domain, such as titerhet.

1.1 Pl AQM

Congestion control was introduced into TCP to address thdguarobf congestion collapses
that were occurring during the 1980s. Due to the originalgsiophy of the Internet— the
end-to-end principle—end-systems implemented most ofctregestion control’s func-
tionality. However, Active Queue Management (AQM) [17] daxilitate end-point con-
gestion control by proactively marking or dropping packaisr to the inception of con-
gestion. AQM’s early feedback provides the opportunitynbpiove over drop-tail queues
[17], which drop packets only when buffers overflow. FirsQM would allow sources to
throttle early their transmission rates in an attempt tadieongestion before its incep-
tion. Second, AQM would leave enough space in routers ffeabsorb traffic bursts.
Consequently, AQM should lead to low packet losses, shortigjung delays, and high

bandwidth utilization [4]. Random Early Detection (RED) [2R&as one of the earliest



AQM algorithms proposed to accomplish these goals. Howéveory and simulations re-
vealed some shortcomings intrinsic to RED, such as slow respeness and steady-state
backlogs [31]. To address these drawbacks, the Propottiotegral (Pl) controller was
proposed as an alternative AQM [30]. The PI controller is aemnmatural choice due to
its robustness and its ability to eliminate steady-stateren the queue length. That is,
Pl stabilizes the queue length around a controllable tdeyei. Both theory and simu-
lations showed that PI outperforms RED [30]. However, presioork lacks a complete
characterization of the stability region of the PI coneolparameters. The original paper
on Pl AQM gives a single pair of theroportional gain k,, and theintegral gain k;, that
guarantees the stability of the closed-loop system as d@ifumof the network parameters
[30]. However, there are othék,, k;) pairs that stabilize the closed-loop system and result
in better performance.

In Chapter 2 of this thesis, we present an analytic derivadifotihe complete sta-
bility region of the PI AQM. The stability region represenie entire set of the feasible
design parameters, i.e, andk;, that stabilize the closed-loop TCP-AQM system. The
stability region thus facilitates the selection of stabdatcollers that lead to better AQM
performance. From the control theory point of view, our citnttion is major because we
analytically characterize the complete stability regiond second-order system and a Pl
controller. There has been no such analytical charactemezéhus far [58]. Our contri-
bution is also important from an application perspectivedose of the following reasons.
First, we show that the pair @&f, andk; given by [30] can be excessively conservative when
compared with other stable gains. This conservativenedarm, explains the sluggish re-
sponsiveness of Pl observed in the literature. Second, ox gfat some provably stable
controller parameters enjoy better performance than stbletained according to [30] or
[32]. Finally, the same stability analysis of Pl can be métl to obtain the complete stabil-
ity region for other AQM algorithms, such as REM [15] and PIB][2y straightforward

change of variables. One can then use the stability regigmaee mathematically—not



just through simulations as in [55]—that PIP becomes utestabcording to the original

design [29].

1.2 CPSs and Networked Control

We are witnessing major advances in VLSI, in MEMS, and in camitation networks
technologies that have brought devices with sensing, psieg, actuation, and commu-
nication capabilities. These devices have facilitated dbevergence of the cyber- and
physical-worlds, and have thus contributed to the fornmabd Cyber-Physical Systems
(CPS3. CPSs allow humans to monitor, affect, control and intevdtti remote physical
environments, thus extending human’s reach beyond sptigiers [2, 7].Sensorsense
the physical quantities, generate a stream of sampledaladazommunicate this data over
a network tocontrollers Controllers process the samples of the sensed data and gener
ate appropriate control signals to be delivered over thevorét to actuators Actuators
transform control signals into actions that affect the jpdglsvorld [8].

If networked control is to be deployed ubiquitously over Etworks, there arises
a critical need for a bandwidth management to allocate tivvark bandwidth between
different CPSs [8]. Addressing this issue in Chapter 3 of thésis, we devise a bandwidth
allocation scheme for CPSs thairly allocates the bandwidth to control congestion and
to meet each system’s requirement as best as possible. prapesed scheme, CPSs
adapt their sampling intervals based on the congestion fedeback from the network.
We also discuss designing robust and resilient contralfersenhance the performance of
the bandwidth allocation scheme to better serve the CPSeottaps requirements. Our

proposed scheme has the following features:

¢ It allocates the bandwidth in a way to ensure stability otalitrol systems, if feasi-

ble.

¢ It allocates the bandwidth in a way to attain the maximaggregatgoerformance of

4



all control systems.

It makes use of network bandwidth efficiently; controls cestgpn, thus minimizes
delays and losses; and achieves fairness by fulfilling pexdace objectives of dif-

ferent control loops.

It provides afully distributed asynchronousandscalablesolution. Each node ex-
ecutes an independent algorithm using local informaticin wo central managing
entity. The approach scales up as the number of controlie s and/or the size of

the network increase.

It is dynami¢ adaptable andflexible It dynamically reallocates the bandwidth as

different control systems acquire and relinquish netwesources.



Chapter 2

Analytic Derivation of the PI-AQM

Stability Region

In this chapter, we derive an analytical characterizatiotihe complete stability region of
the PI controller for TCP AQM and we validate it witts- 2 simulations. The analytical
challenge is the presence of time-delays in the TCP-AQM faekltoop. The complete
stability region provides an in-depth understanding ofghgormance of PI AQM under
different network parameters, especially round-trip geland bandwidth. Having in hand
the complete stability region, we show that the Pl paramsetised in the literature can
be excessively conservative. This characterization @xplae previous observation about
PI1 sluggish responsiveness and stresses the importanttanfiag the complete stability

region for the PI AQM.

2.1 Introduction

Active Queue Management (AQM) controls congestion by pireely marking or dropping
packets before the inception of congestion. AQM'’s earlydbaek provides the opportu-
nity to improve over drop-tail queues, which drop packetly avhen buffers overflow.

First, AQM would allow sources to throttle early their tramssion rates in an attempt to

6



avoid congestion before its inception. Second, AQM wouééeenough space in routers’
buffers to absorb traffic bursts. Consequently, AQM shoudd l® low packet losses, short
gueueing delays, and high bandwidth utilization [4]. SaV&QM schemes have been
proposed to accomplish these goals, with Random Early Dete®ED) [22] being one
of the earliest algorithms. To address RED’s shortcomings, slow responsiveness and
steady-state backlogs, the Proportional Integral (Pltrotier was proposed as an alter-
native AQM [30]. The PI controller is a more natural choiceeda its robustness and its
ability to eliminate the steady-state error in the queugtien That is, Pl stabilizes the
gueue length around a controllable target level. Both thear simulations showed that
Pl outperforms RED [30]. The advent of Pl has spurred the gepdmt of several related
AQM controllers—such as PIP [29], PD [60], PID [57], andl P70]—all of which were
proposed for a single goal: to speed up the responsivendgle &l controller. However,
these AQM controllers lack a characterization of the conepstability region. Without
the complete stability region, designers usually resodoiaservative parameter values to
ensure the stability and convergence of the congestionaailgorithms. In turn, conser-
vative parameters can yield poor performance.

In this chapter, we present an analytic derivation of the mlete stability region of
the Pl1 AQM. The stability region represents the entire seéheffeasible design parame-
ters, i.e., thgroportionaland theintegral gains, that stabilize the closed-loop TCP-AQM
system. The stability region thus facilitates the selectbcontrollers that lead to better
AQM performance.

A closed-form derivation of the complete stability regian PI AQM is complicated
by the combination of various factors. Some factors arensitr to the Pl and TCP-AQM
loop: the linearized TCP-AQM model is a second-order plartiudes time delays in the
control loop, and is cascaded with PI, a relatively higheorcbntroller. The resultant char-
acteristic equation is a high-order quasi-polynomial venetability analysis poses great

theoretical challenges. Another source of complicatiarsgins to the objective of attain-



ing stability that is robust to approximate values of sysfgarameters. In particular, the
TCP-AQM closed-loop system should be stabilized not onlyafeingle value of the delay
but for a delay interval.

All these factors render the stability analysis technicpfedementary Control The-
ory unusable to obtain the complete stability region folRh&QM. Previous work sidestepped
the problem through assumptions and simplifications, endmwith only a subset of the
whole space of stabilizing controller parameters. Theioailgpaper on Pl AQM gave
guidelines to choose only a single pair of the proportiorahg:,, and the integral gain,
k;, that guarantees the stability of the closed-loop systedh [Bhe stability set was later
expanded to a line segment in thek, plane [32]. However, all previous work, including
[32], used the guidelines prescribed by [30].

In this chapter, we exploit recent results on robust Pl adifreory for time-delay
systems to obtain a complete stability region for the Pl ler with the TCP-AQM
model. We then validate the theoretical analysis by comdggiacket-level simulations
using the Pl implementation ims- 2. From the control theory point of view, our contribu-
tion is major because there has been no analytical chaizatien of the stability region for
a second-order system with a Pl controller thus far [58]. €untribution is also important
from an application perspective because of the followiragoms. First, we show that the
pair of k, andk; given by [30] can be excessively conservative when compaitdother
stable gains. This conservativeness, in turn, explainsltiggish responsiveness of Pl ob-
served in the literature. Second, we show that some prowahble controller parameters
enjoy better performance than others obtained accordif8pi@nd [32]. Finally, the same
stability analysis of PI can be utilized to obtain the contgiability region for other AQM
algorithms, such as REM [15] and PIP [29], by straightforwelndnge of variables. One
can then use the stability region to prove mathematicallgtjust through simulations as
in [55]—that PIP becomes unstable according to the origiealgn [29]; see [9, 10].

The rest of the chapter is structured as follows. Sectiow@2rs the related back-



ground, introduces the linearized TCP-AQM model with PI colfér, and presents the
method we used to obtain the complete stabilizing regiorsdation 2.3, we compute the
complete setSy, of the stabilizing Pl parameters. Simulations that stteesmportance

of obtaining the complete stabilizing region are presemesection 2.4. Finally, Section

2.5 concludes the chapter.

2.2 Background

2.2.1 The TCP Model

Congestion control was introduced into TCP to address thelgrobf congestion col-
lapses that were occurring during the 1980s. Congestiomalomas arguably one of the
reasons that the Internet scaled up to its size today. Dugetoriginal philosophy of the
Internet—the end-to-end principle—end-systems had téeémpnt most of the congestion
control’s functionality. However, AQM can facilitate thae-point congestion control by
marking or dropping packets prior to the inception of cotigas Because the interaction
between end-systems and AQM routers gives rise to a feedibagkAQM has been exten-
sively analyzed using control-theoretical methods (seexample [32] and the references
therein). Control-theoretical approaches lead to stalffectere, and robust congestion
control operation.

A nonlinear fluid-based model was developed to describeyhardics of multiple
TCP flows with AQM routers [51]. The model consists of a systémomlinear differential
equations. To facilitate further analysis, the model wantkimplified by ignoring the
time-out component. The resultant system of equationvengdiy [32]:

W) = iy — iy et — d(t))

) 2d(t—d(t)) 2.1)



where W (t) is the window sized(t) is the round-trip delayp(t) is the probability of
packet markingg(t) is the queue lengthN(¢) is the number of TCP flows, and is
the link capacity. The system of equations (2.1) was delinddpendently in other papers
following different approaches [44, 47]. According to siations, Eq. (2.1) closely models
the TCP dynamics [32].

To carry out linear system analysis, we use the linearizesiae of (2.1) around the
equilibrium point(W;, qo, po) defined by (t)  ¢(t)]” = [0 0] [32]. Further, since we
use frequency-response analysis, we consider the Lapktsfarm of the linearized sys-
tem. The linearization and its Laplace transformation &na@ghtforward and the resultant

transfer function is given by

B €_Sd
(s+a)(s+8)

P(s) = (2.2)

whereB = C?/(2N), a = 2N/(d*C), 8 = 1/d, andd is the round-trip delay at equilib-

rium [32, 44, 47]. The variableB > 0, o > 0, andg > 0 are introduced for convenience.

Notes on the Model

The TCP models in (2.1) and (2.2) assume the following:

e Allflows are TCP. Although real networks carry different tgp# traffic (e.g., UDP),
non-TCP traffic can be modeled and incorporated in (2.2) a83i [For stability
analysis purposes, the resulting model has the same forf(22pbut with slightly
different values ofB, a,, and. Since our analysis considels o, andj as primary
and independent variables, our results still hold for thelehthat is accounting for
unresponsive traffic as long as the results are expressedms 0fB, «, andj but

not in terms ofN, C, andd.

e The number of flows)V, and the link capacity_', are stationary or change slowly

10



over time compared to other dynamics, elgj(t) andq(t).

e The model equations are parametrized /¥y C, andd. None of N, C, or d is

restricted to be higher or lower than any specific value exitegt they are ali> 0.

e The topology is a single bottleneck link topology, whichoals for deeper insight

and serves as a starting point to more general topologiagwae fresearch.

As mentioned earlier, there is a general consensus on tiktyalf the TCP models
(2.1) and (2.2) in the literature. However, if a new study evier develop a more accurate
model for the TCP congestion control, the new model could lstilapproximated by a
second-order system as in (2.2), and hence its stabilitysisavould follow directly from

the analysis presented in this chapter.

2.2.2 Related AQM Schemes

RED was one of the earliest AQM mechanisms proposed to redlagetail queues [22].

It enjoyed the most attention from researchers, and is tlyeome that made its way into an
IETF standard. RED monitors congestion on the outgoing Iynknaintaining an EWMA
(exponentially weighted moving average) of the queue kengackets are marked when the
average queue length exceeds some threshold. RED has thergaoinel several refinements
to improve its performance; see for example [20] and the REplementation ims- 2
[1]. However, these refinements increased the number ofreas that need to be tuned,
thus amplifying its operational complexity. The original BEvas analyzed using control
theory techniques and was shown to exhibit slow responssgand large steady-state
backlogs, especially when the number of flows is large [36¢ Bigure 2.1. Pl was then
proposed as an alternative controller. Pl uses an integraittion to eliminate steady-
state backlogs and stabilizes the queue around a fixed ta&ggtdless of the increase in
the number of flows; see Figure 2.1. Pl is also a fundamentapooent for other AQM

and congestion control schemes. For example, several AQWnses can be considered
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Figure 2.1: A simple experiment showing that RED exhibitadtstate error that is depen-
dent on the number of TCP flows whereas Pl does not. The flowghvdare a single
bottleneck link, are increased from 50 flows to 100 flows atusitiion time 50 sec. and
then to 300 at time 100 sec.

variants and extensions of PI, such as, REM [15], PIP [29] dbd[®7]. In general, all
these AQM schemes can use the results and the analysis ta@gethis chapter as will be

highlighted in the next subsection.

2.2.3 The TCP-PI Feedback Loop

The introduction of Pl AQM results in the feedback contrapashown in Figure 2.2, where
q(s) is the Laplace transform of the instantaneous queue lefigthy, is the desired queue

length around which the controller should stabilizé), and

G (53 kp, bi) = by + — = %

is the transfer function of the PI controller. The control(s; &, k;) will be denoted

simply asG(s) when the proportional gaik, and the integral gaik; are clear from the

12



4 _+ a(s)
—> G(s) > P(s) >

Figure 2.2: The closed-loop system of TCP-AQM linearized aidd s), with the PI con-
troller, G(s) [30].
context.

Although we restrict the analysis to the PI controller arelftredback loop in Figure
2.2, the results can be applied to related AQM schemes byleichanges of variables, such
as in the case of PIP (see [9, 10] for details) and REM, or theesamalysis can be easily

extended to other schemes, such as AVQ [39].

2.2.4 Determination ofk, and k;

Given a network topology with specific, N andd, the objective is to determine the values
of the parameters, andk; that stabilize the TCP-AQM closed-loop system in Figure 2.2
for delays less than or equal do

In [30], the stability analysis was oversimplified and résdiin guidelines to choose
only a single pait\p; = (k,, k;) of stabilizing Pl gains. Since these gains are conservative
the PI controller showed sluggish responsiveness [21, B9][32], a less conservative
analysis used the pole-zero cancellation technique [38Ftoeve model order reduction.
The idea is to cancel thés + «) pole in (2.2) by mandating the conditidn = ak,.
However, this confines the space of stabilizing PI gains tma& $egmentp, that is a
portion of the infinite linek; = ok, in the k,—k, plane.

In this chapter, we exploit recent results on time-delayesyis to characterize the
complete set of stabilizing, andk; gains. To be self-contained, this chapter reviews one
such recent method for time-delay PI control [58] in the reisection. In the rest of the

chapter, we will apply this method for the stability anasysf TCP AQM.

13



2.2.5 Stability Region for Time-Delay Systems

The stability regionSg, is the complete set of points:,, k;) for which the closed-loop
system in Figure 2.2 is stable for all delaydetween 0 and. The stability regiorS; can
be expressed & = S; \ Sy, [58, p. 249], where

° 81 = So \ SN.
e S, is the set of, andk; values that stabilize the delay-free syst&ps).

e Sy is the set oft, andk; values such that(s; k,, k;) Py(s) is an improper transfer
function. (Also,Sy is the set that destabilizes the closed-loop system whestetlag

is introduced.) FormallySy is

Sy = {(kp,ki) T |Gs Ky, ki) Po(s)] > 1} . (2.3)

e S, isthe setofk,, k;) values such tha¥(s; k,, k;) P(s) has a minimal destabilizing

delay that is less than or equaldoFormally,S;, is

SL = {(kp,ki)¢SNZE|L€[O,d],wERS.t.

G(jw; ky, ki) Po(jw)e 5 = —1}, (2.4)

To computeSg, first define the projection of the stability regidf; on the line
k, = k, as:

SR,I%p = {(kp, ki) € Sp 1 kp = l%p} ,

so that the stability region can be calculated for each valdke proportional gairﬁ:p:

S =JSns, - (2.5)

Fp
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To computeSRJ;p, define the projections

81,12;,, = {(kp, ki) €S1: k= ]%p} )
SN,l% = {(kp, ki) €Sy : k= l%p} )

Spi, = {(kp, ki) € SL 2 Ky = ifp} .

Then, S, = 8, \ S, It remains to compute, ; by evaluating the condition in
(2.4) thatG (jw; kp, ki) Po(jw)e % = —1. The setS, ; can be further decomposed and

computed as:

S, = 8. uSs .

by i, UL,
where
Sii = { )¢ Syp 3w ek = M(w)} , (2.6)
Sii = { ) Sy IwEQ k= — M(w)} , 2.7)
aF = {w w> 0, M(w) >0,
L) :w+4 \/——i-jkpro]w)]_d}’ 2.8)
0 :{w:w>OM() 0,
U (VALLC) + ko) Ro(jw)] d} | 2.9)
M(w) = m — k2? (2.10)
Ro(s) = 2) (2.11)

By convention, we restrict thehasefunction, Z[z|, of a complex numbet;, in the interval

[—7, ).
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2.3 Computing Sy for TCP-AQM PI Controllers

In this section, we comput8y for the PI controller of Figure 2.2. Henceforth, the anaysi

assumes that,, k; > 0: negative gains are counterintuitive in operational teb@sause

they lead to a decrease in the sending rate when the queush lisngss than the target

value. Although negative gains are disregarded as opagdiyomeaningless, they can

formally stabilize the closed-loop system because the -bpemis stable and can tolerate

a slightly destabilizing controller.

2.3.1 ComputingS,

By dropping the delay terne,~*?, from P(s), we obtain that

B
(s+a)(s+03)°

Py(s) =

The characteristic equation of the closed loop-systemgdniiéi 2.2 becomes:

+l€p8+l{?i B

s (s+o¢)(8+ﬁ):0’

1+G(S)P0(S>:]_

which is equivalent to

s* + (a + B)s* + (a3 + Bk,)s + Bk; = 0.

To computeS,, we construct the Routh array [23] as follows:

s3 1 af + Bk,
s2 a+ 0 BE;

st (af + Bk,) — Bki/ (a+ 5) 0

sO Bk;

(2.12)

A necessary and sufficient condition for stability is thateadtries in the first col-

umn (after the colon) are positive [23, p. 215]. This comaiitreduces to the following
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inequalities:

1. a4+ § > 0, which is always true (the network paramete¥s,C, andd, cannot be

negative).

2. Bk; > 0, which yieldsk; > 0 sinceB is always positive (the network parametexs,

andC, cannot be negative).
3. (aB + Bk,) — Bk;/(a + ) > 0, which reduces t&; < (« + )(af + Bk,)/B

Combining the last two conditions defines the following rangstabilizingk; val-

ues with the upper boundary being a functiorkgf0 < £; < k; max, Where

(o + B)(ef + Bky)

Ei max = . 2.13
; - (2.13)

Moreover, for a feasible solutidav+ 3) (o5 + Bk,) /B must be positive. This gives
the range of stabilizing, values, i.e.k, > —«af/B, which is always satisfied since only

non-negative gains are considered in this analysis. Coesdgu

80 = {(k’p, kl) : k'p > 0,0 < k’l < ki,max} ,

which is depicted in Figure 2.3.

2.3.2 ComputingSy
Since

(kps + ki) Po(s)

(k?pS + ]CZ)B
s(s+a)(s+ B)

= lim

S§— 00

lim '

§—00

‘:O<1,

we have thaSy = ) by definition (2.3) ofSy. Thus,S; = Sy; see Figure 2.3.
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Figure 2.3: The stabilizing region &f, andk; gains for the delay-free closed-loop system,
i.e.,S,. The area is under the line with a slopgaf+ 3) and ay-intercept ofx3(a+3)/B.
Moreover, sinceSy = 0, S; = Sp.

2.3.3 ComputingS;, and Sy

First, we give an outline of the proof and then we turn to thenfal derivations. The
stability regionSz will be derived by using some of the tools in Section 2.2.5. Bse we

consider only positive gain values, we ignore the two ca$€2.@) and (2.9). Using the
fact thatS,; =S, \S;Ep =S\ (S;f% NS, ;). we can facilitate the derivation of

Sg by considerings”™. NS, ; instead ofS”, . Inturn,S". NS, ; can be obtained by
sRp ’ ) sp ’

P

using the restriction of2™ to the case in which/M(w) € S, (see (2.6)), and we use

this restriction in the derivation a$ "

i, N Sig, After computing, ; -\ (SzAp NS ;)

N3
the stability regionSy is obtained as in (2.5).
We now turn to the formal derivation &f;, andSk. Throughout the chapter, simple

proofs and arguments will be omitted tacitly.
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For the transfer function in (2.2R,(s) and M (w) are given as follows:

Rols) = s(s + Cf)?(s +3)
M) = = Rt
_ (a4 p)t 4}—9052(002 —af)’ B
_ %, (2.15)
where
Qw) = w' + (* + fH)w? + (a4 — B*k2) . (2.16)

We start by computing the conditions in (2.8). First, thddwing sequence of lemmas

2.3.1)2.3.3, and 2.3.5 gives a lower bound.og Q.

Lemma 2.3.1 For the biquadratic polynomial)(w) defined in[(2.16)()'(0) = 0 and

Q' (w) > 0forw > 0, i.e.,Q(w) is strictly increasing fotw > 0.

Proof SinceQ’(w) = 4w? + 2(a? + 3*)w = 2w(2w? + o? + 3?) andw > 0, Q'(w) > 0,

i.e.,Q(w) is strictly increasing fow > 0. [ |

Definition 2.3.2 Definey = a3/ B—we will refer toy as the critical value of the propor-

tional gain. If, > v, then the function,;, (k,) is

R —(02 4 32) + 4/ (a2 — 52)? +432f€g
wmm(k:p) = J \/ 9 .

For simplicity, the argumeri:tp will be omitted when it is clear from the context, i.e., we use

Wmin-
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Lemma 2.3.3 As defined abovey,,;, has the following properties:
e w.i, IS real and positive,
e w.i, IS strictly increasing,
o lim; . wmin(l%p) =0, and
* Q(wWmin) = 0.
Proof First, note thata? — 3%)? + 4B%k2 > 0. Since

OzQﬁQ )
B2 B

(a2 — )2 +4K2B2 > o'+ ' — 20287 + 4
= (@ + 577,
we have thatv,;, € R andw,;, > 0. Since the square root function is increasing and
whenk, > ~, 4B%k? is strictly increasing, it follows thab,,;, (k,) is strictly increasing

as well. The last two properties can be proven by substityiie., w,,(y*) = 0 and

Q(wmin) = O [ ]

Definition 2.3.4 We define the sét as follows

(0,00)  ifk, <7,

[Wmin, 00)  Otherwise

Lemma 2.3.5 For w > 0, the inequalityl)(w) > 0 holds if and only ifv € €.

Proof Sincef2 C (0, c0), it is enough to show thap(w) > 0if w € Q andQ(w) < 0 if
w € (0,00) \ Q. From Lemma 2.3.1Q(w) > Q(0) = o?3* — BQI%I%. Now, there are two

cases
o If k, <7, Qw) > a?3? — BQI%Z >0 forw > 0.
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o If ki, > v, Q(0) = —|a?B? — B2k?| < 0. Because of the monotonicity @}(w),
there exists one and only ong > 0 such thatQ(w,) = 0. From Lemma 2.3.3,
Wo = Wmin- NOW, fOorw > wpin, Qw) > Q(wmin) = 0. FOr0 < w < wpin,

Q(w) < Q(wmin) = 0. [ ]

The following corollary is a consequence of Lemima 2.3.5 antly).
Corollary 2.3.6 The two conditionsy > 0 and M (w) > 0 hold if and only ifw € .

Before proceeding to compute the third conditibw) < d in (2.8), we give an upper
bound onw. This bound will greatly simplify the evaluation df(w). The upper bound
on w is derived from looking ahead to (2.6) and excluding valuks dhat would give
ki = /M(w) ¢ S, ;,- The bound will be derived utilizing the following two lemsia.3.7
and 2.3.8.

Lemma 2.3.7 The functiork;(w) = /M (w) is strictly increasing in the intervaD.

Proof Sincek;(w) = (1/B)y/w?Q(w), it is enough to show that far € Q, Y(w) =

w?Q(w) is strictly increasing. Fop € Q, Y'(w) = 2wQ(w) + w?Q'(w) > 0. ]

Lemma 2.3.8 If I%p < 7, limg,_g+ {\/M(w)] = 0. Otherwise, i.e.l%p > v, A/ M (Wnin) =
0. In both casedim,, .o, v/ M (w) = +oc.

Proof If k, <,

lim [ M(w)] = lim [(1/3) wQQ(w)]

w—0t w—0t

(1/B)v/(0)Q(0) = 0.

If kp > 7, /M(@nin) = (1/B)y/w2, Q(wmn) = 0. In both casesiim,, .., /M (w) =

+00. [ |

21



Sincek;(w) = /M (w) increases monotonically witlh and because of Lemma

2.3.8, there exists one and only ong,. such that\/M (wm.x) = kimax (S€€[(2.13)).
Moreover, forw € Q, k;(w) < k;imax if and only if w < wp.x. Therefore, forw € €,
(kip, ki(w)) € S, ;. if and only if w < wray.

The value otv,,., is given by the following lemma.

Lemma 2.3.9 The value of

Wmax — \/ O‘ﬁ + Bl%p

is the only positive real value that solves

(0 +5)(af + Bly)

ki,max - M(Wmax> - B

(2.17)

Proof First, note thatv,,., € R and thatw,,., > 0. Als0, w,., Satisfies (2.17). The
uniqueness of such value follows directly from the monatityiof /M (w) in the interval

w € Q. [ |

In the sequel, we confine our analysis to the $etand; that usew,,., and are

given in the following definition.

Definition 2.3.10 The set$), and2; are defined as

Qu = OnN (Oawmax) y

QF = Q"N (0, wmax) -

We next study the third condition in (2.8)

L) = ™ 4(\/M<w>w+ﬂ%pw>Ro<jw>] . (2.18)

The following two lemmas 2.3.11 and 2.3.13 will simplify teidy of L(w). By conven-
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tion, we considearctan (£o0) = /2.

Lemma 2.3.11 Let#; (w) andfy(w) be

~

Bk,

\/_

O(w) = = — arctan [ — aﬁ} :

0(w) = arctan

Then, ify/af < w < Wpax, b1 (w) + O2(w) > 7.

Proof Since thearctan is a monotonically increasing function, it is enough to shbat

Bly(a+ B)w > (W — af)v/Q(w) .
DefineV (w) as
V(w) = w*(w? — 2a83) + a?p* — BZI%i :

Note that ifw > /a3, V(w) is a strictly increasing function, and thus fofaf < w <

wmax ’

V(w) < V(wmax)

< W (Wi, —2aB)+a?B% - B%ZQ)

max

= 0.

Thereforew? + a?8? — B2k < 204w,
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Now,

(w? = aB)VQ(w)

— (@ — aB)yJw! + (0% + B2 + 22 — B2

< (W? — af)V/ (a2 + B2)w? + 2a[w?

= (W’ —aB)(a+ B

< (Whax — @B)(a + Bw

= B/E:p(oz + f)w
which proves the lemma. [ |
Definition 2.3.12 We define)(w), ¢ (w), and ¢, (w) as follows

p(w) =7+ Z[(VM(w) + jhyw) Ro(jw)] ,
P1(w) = 01 (w) and py(w) = z(w) — 7 .

Lemma 2.3.13If w € Q,, thenp(w) = ¢1(w) + da2(w).
Proof Define

P(w) = d(w) — 7 = Z[(V/M(w) + jkyw)Ro(jw)] ,

z=—(a+ f)w+ jww® — af) .

Also, defineg,(w) as

P2(w) = £[Ro(jw)] = £[z] .

Note thate (w) = Z[/M(w) + jkw] € (0,7/2]. Now, p(w) = ¢1(w) + do(w) + 2mn,

wheren € Z ensures thab(w) € [, 7). There are two cases:
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e Whenw < v/af, z belongs to the third quadrant in the complex plane, and so

~ [wQ—aﬂ

$2(w) = —m — arctan m} = ¢o(w) — .

Since¢i(w) € (0,7/2] and do(w) € [, —7/2), d1(w) + ¢o(w) € (—7,0) C
[—,7), and thusy = 0. Consequentlyp(w) = 7 + ¢(w) = T + ¢ (w) + Pa(w) =
$1(w) + ga(w).

e Whenw > /af3, z belongs to the second quadrant in the complex plane, and so

~ [uﬂ—&ﬁ

¢2(w) = 7 — arctan (ot ﬁ)w] = Oy(w) = go(w) + 7.

Sinceg, (w) € (0,7/2], po(w) € (7/2,7), ande; (w) + do(w) > 7 (Lemma 2.3.11),
$1(w) + do(w) € (m,37/2). Thus,n = —1. Consequentlyp(w) = 7 + d(w) =

T+ G1(w) + Ga(w) — 21 = ¢1(w) + Pa(w). =

Utilizing Lemma 2.3.13, we expredgw) as

We then state the following result.

Lemma 2.3.14 The function/(w) is strictly decreasing fow € €,.
Proof First, note that € [0,27) > 0. Next, for¢; (w),

_ Bhkp[2w® + (0® + 8*)u]

= <0
[Q(w) + B?k;]\/Q(w)

¢1(w) =

if we Q,. As for gs(w),

vy (et B)(WP 4 ab)
P e <
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if w € Q,. Sincep(w) = ¢1(w) + Po(w) forw € Q,, ¢'(w) < 0forw € Q,.
SinceL(w) = ¢(w)/w, taking the derivative of both sides yields

w0 ¢(w) — o)

<0
w2

L(w)

for w € Q, (note thatp(w) > 0 andw - ¢'(w) < 0). Hence,L(w) is strictly decreasing

function ofw for w € Q,,. [ |

Now, we are ready to determine the sefs S N Sy, andSg ;. . Keep in mind,
as reading through the proofs of Lemma 2.3.15 and Coroll&1 8, to consult Figure 2.4

that illustrates the computation Of" andSLfpr NSy,

Lemma 2.3.15 The sef) is given byQ)t = [w', wiax ), Where

Wmin if ]Afp > and L(wmin) <d

Wy otherwise,

andw, is the unique value such that; > 0, wg > Wy, if l%p > v and L(wni,) > d, and

L(wd) =d.

Proof By definition,2 = {w € Q, : L(w) < d}. First, note thaf(w) is continuous and

strictly decreasing ab € 2, and thatl.(wy.x) = 0. Consider the following cases:

o If kp <7, Qy = (0, wWnax). SinceL(w) = ¢(w)/w and¢(0) = ¢1(0) + ¢2(0) > 0,
lim, .o+ L(w) = 400 > d. Then, there exists one and only apngsuch that) <

Wg < Wmax aNd L(wy) = d. Therefore,L(w) < difand only if wy < w < wpax-

Hence ) = [wq, wmax) = [wT, wmax); S€€ Figure 2.4(a).

o If I%p > v and L(wmin) > d, there exists one and only ong such thatv,,;, < wy <

wmax @Nd L(wy) = d. Then, the analysis proceeds similarly to the previous; caese
Figure 2.4(b).
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o If ky >y andL(wmin) < d, QF = [Wmins Wmax) = [w, wmax); S€€ Figure 2.4(c). m

Corollary 2.3.16 The setS‘;];_p NS, ;, isgiven by
87, NSk, = (Ui Ji) + s € [/ M(F), i)} -

Proof

S;i NS, = {lky VM) :w € O}

Using lemmas 2.3.7-2.3.9, we obtain that

S NSy, = {ky k) : ki € [VM(WF), Kimax)} -

|
Corollary 2.3.17 The setSRv,;p is given by
S, = ko k) : ki € (0,3/M (@)} .
Proof From the definition o5, ; =S, ;. \SZ]ACP, we obtain that
Spiy = {(kps k) 2 ki € (0, ki ma) \ [V/M (), Kimax) }
which proves the corollary. [ |

Remark 2.3.18 Note that wherk, > ~v and L(wni) < d, O = [Wmin, Wmax)» SN
Sig, = {(kp i) < Ki € [0, Kimax) } andSy; = 0; see Figure 2.4(¢).

Remark 2.3.18 enables us to obtain an exact upper bdyng,, on the values of

stabilizingk,,.
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Figure 2.4: L(w) versusw (upper) andy/ M (w) versusw (lower): (a) Whenl%p < ~; (b)
whenk, > v and L(wmi) > d; (€) whenk, > v and L(wmpin) < d.

Definition 2.3.19 DefineL(k,) as

L(k) =1L <wmin(l%p)) .

~

Lemma 2.3.20 The functionZ(,) is given by

L(ky) = —— (5 + daluomm)) -

Win 2

Moreover,L(k,) is a strictly decreasing function éf,,
lim L(k,) = +oco, and lim L(k,) =0.

]%p_”}ﬁ' fc;,—»oo
Proof By Lemma 2.3.3,/Q(wmin) = 0. Thus,

=8 1 /m

L(ky) = Liwmn) = 5 (5 + b2(wmn)) -
Definey(wmin) = 7/2 + ¢a(wmin)- First, note that since,,, > 0,

¢2(Wmin) = — arctan{[wg, — af]/[( + Blwwin]} € (—7/2,7/2) .
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Since forw,,;, > 0,

dp(wmin) (o + B) (Wi, +ap)

o (g 02) w57
andy(wmin) € (0,7) > 0, then
dL(wmin> o Wmin * ¢I(wmin) - ¢(wmin) < 0
= . ,
dwmin Whin
By the chain rule and from Lemma 2.3.3,
df/(]{?p) _ dL(wmin) dwfnin <0.
dk’p dwmin dl{}p
As for the limits part of the Lemma,
lim f/(l;:p) = lim L(wnn) = +o0
I%p~>7+ Wmin—0%
lim L(ky) = lim L(wnm) = 0.
kp—oo Wmin 00

Lemma 2.3.21 The seTSR,,;p # () if and only ifl%p < kp max, Wherek, ... is the unique
value such that

L(kpmax) =d .

Proof First, we prove the uniquenessigf,,... Note thati(l%p) is defined only fov%p > 7.
From Lemma 2.3.20, there exists one and bBpg.. > 7y such thati(kp,max) =d.
We next prove that if;, > &, max, thens i, = 0.

First, k, > kpmax > 7. SinceL(k,) is strictly decreasing (Lemma 2.3.20),
L("‘}min(l%p)) = ‘Zj(l%p) < -Z<kp’max) =d.
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Therefore, from Remark 2-3-183,1;p = 0.

Now, it remains to prove the last step,fif < kpmax, thenSy; # 0. When

~

ky < kpmax, there are two cases:, < vy ory < k, < kpmax. If k, < 7, then since

wg > 0, /M(wg) = /M(wt) > 0 by lemmas 2.3.7 and 2.3.8. Thus from Corollary
23178y # 0. If v <k < kp max, then from Lemma 2.3.20,

L(ky) > Lkpmax) = d .

Sincewy > wmin, VM (wg) = /M (wt) > 0. Thus from CorollarYA.lZSR,,;p # 0,

which proves the lemma. [ |
We now state the main result in this chapter.

Theorem 2.3.22 The complete region of stabilizirig and k; gain values isSg, where

Sk = {(kpv kz) : kp € (07 kp,maX>7ki € (07 M(w+))} )

andk, max andw™ were defined in lemmas 2.3121 and 2.3.15, respectively.

Proof It follows from Lemmas 2.3/1-2.3.21. [ ]

Theorem 2.3.22 allows us to calculate the complete stabégion of a Pl controller
for given network parametersy, C, andd. Usually, C' is constant and known by the
network administrator unlikd and V. The following remark facilitates the computation

of Sg when the values of and N are unknown.

Remark 2.3.23 As in [10], it can be shown tha$z shrinks asd increases and thasyz
expands asVv increases. Therefore, given a minimum number of TCP sesAigrssmaxi-
mum round-trip delayl,, and a link capacity”', Sy obtained forVy, dy andC will stabilize
the system for allv > Ny andd < d,. Consequently, precise valuesdoand N are not
required. An overestimated valued&nd an underestimated value &flead to increased

stability robustness.
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2.4 Simulations

In this section, we use experiments to

¢ \alidate the theoretical analysis of the previous sectigrcbmparing results for
controller parameters that are theoretically stable witters that are theoretically

unstable.

e Stress the importance of obtaining the complete stab#ityan,Sg, for the Pl AQM
by showing that some theoretically stable controllers catpe&form other stable

ones based on [30] and [32].

2.4.1 Simulation Methodology

We consider a simulation environment similar to the one 0j.[3here areV TCP sources
that share a single bottleneck link with = 3750 packets/second (correspondinglte
Mbps with average packet size &0 Bytes). Moreoverg, = 200 packets and the queue
limit is 1000 packets. In our experiments, we use long-lived FTP sessions

We use Theorem 2.3.22 to pl&§; for C = 3750 packets/secondy andd, where
the two parameterd andd will be varied across experiments.

To compare the performance of different controller paramsgtwe employ the
gueue’s speed of convergence as a comparison criteriort. ig;naone controller,g; =
(k;, k}), causes the queue lengtift), to converge tay faster thary, = (k7, k7), theng,

is preferableto g,.

2.4.2 Theoretically Stable and Unstable Controllers

The stability analysis is validated by comparing a congmothat is provably stable with
one that is provably unstable. Since the stability regiopetiels on various parameters, a

provably stable controller is one that falls within the slisbregion corresponding to the
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Figure 2.5: The two stability regions correspondingi/fo= 60 msec and/, = 167 msec
along with the point®;,, insideSg(d;), andp,, outsideSg(d).
most conservative estimate of the parameters. Analogaaigisovably unstable controller
is one that falls outside the stability region obtained wviite most optimistic estimate of
the parameters. For example, the stability region dependseomaximum RTTd, which
in turn depends on queueing delays. The most conservatieags of ¢ assumes the
longest possible queueing delays; the most optimistienedé ofd assumes that there
are no queueing delays. The stability analysis is validégadomparing the behavior
of a theoretically stable controller corresponding to thieglest RTT with a theoretically
unstable controller that violates stability even for thersést RTT.

Consider the network parameters stated in Section 2.4.1.sélevee that there are
N = 100 FTP sessions having homogeneous end-to-end fixed delay® wiséc. The
shortest expected is d;, = 60 msec (assuming no queueing delays) and the longest ex-
pectedd is d; = 167 msec (assuming a maximum queue length@f packets). Using
Theorem 2.3.22, we plot the tw8's: Sr(d,) andSg(d;) in Figure 2.5. In this pedagogi-
cal exampleSg(ds) is considered merely for the validation of the theoreticallgsis and
it ought not to be considered for selectihgandk; for a network with similar parameters.
The reason is that to attain stability that is robust to tirekag uncertainties, control design

should take into account the largest expectdf8]. From Figure 2.5, one can note that
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Figure 2.6: The queue size when using the two sets,0f;) parameters corresponding to
the pointsp; andps.
Sr(d)) C Sr(ds) as implied by the definition oy in Section 2.2.5. Also, one can note
thatSg(d;) is much larger thasr(d;).

We choose a provably stable controliere Si(d,), i.e., insideSg(d;), and a prov-
ably unstable controllep, ¢ Sg(ds), i.e., outsideSg(d;); see Figure 2.5. Figure 2.6
compares the instantaneous queue length, for the two sets ofk,, k;) parameters de-
fined by the pointg, andp,. With p;, the queue exhibits small variations aroupd On
the contrary, withp,, the queue hits zero very frequently and its oscillatiorslarge and
severe. To further analyze the nature;0f) oscillations in Figure 2.6, we use the discrete
Fourier transform (DFT) technique [56] to plot the FrequeBpectrum of;(¢), which is
shown in Figure 2.7. Figure 2.7 confirms that when uginghe queue oscillations are but
random fluctuations aroung. In contrast, when using,, the oscillations show conspicu-
ously repetitive and persistent pattern. Consistent withtéinminology of [27, 44, 48},
a theoretically stable controller, yieldstableregime whereag,, a theoretically unstable

controller, yields amnstableregime.

33



Py P2

16000 16000
$ 12000 12000
a
K] 8000 8000
I3}
I3 4000 4000
%)

0 0 o
0 1 2 3 4 0 1 2 3 4
Frequency (Hz) Frequency (Hz)
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Figure 2.8:Si based on the analysis in this chapter, the line seg@gnB2], the point
Ap [30], and seven other pointg;—ps, to be used in simulations.

2.4.3 SpversusAp and Zp

In this section, we compare the performance of differentrcbparameters chosen inside
Sr. The simulation environment us@§ = 25 FTP sessions that startiat= 0 sec, and
anotherN, = 175 sessions that start at= 50 sec. Propagation delays for all flows are
chosen randomly from a uniform distribution j60, 200] msec. The most conservative
estimate of/ assumes the largest expecteahd the most conservative value/éfassumes
the least expected’ (see [10] for details). Consequently, we obt&lp for C' = 3750
pkt/sec,N = 25, andd = 0.3 sec; see Figure 2.8. The line segmeégf and the point
Ap (see Section 2.2.4) are superimposed on the same figure tiNbEe, starts from the

origin and terminates exactly at the boundarygfand thatAp, € =Zp,.
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First, we study the performance of Pl parameters proposequtdwous work [30,

32]. We select four points oBp, (Figure 2.8):
e p; = Ap, the point prescribed in [30].
e o, an arbitrary point between andp;.
e ps3, a point that is approximately in the middle of therange.

¢ p4, the point that terminatesp, and gives the largest possible values of bigffand

k; on that line.

As clearly seen in Figure 2.9, the performance improves byimgothe point on
=p toward the right, i.e., increasing the PI gains. Consergajains ofAp, cause a large
overshoot iny(¢) and yield a drastically slow convergence; see Figure 2. :&rGhat pre-
vious research experiments used oAy in the Pl simulations, Figs. 2.8 and 2.10 explain
clearly the sluggish responsiveness previously obseredtaPl. Among the points on
=p1, p4 achieves the best performance.

To explore the performance of the Pl controller for othempmiinsideSx, four
points—s, ps, pr andps—are chosen insid&x but off =p;; see Figure 2.8. When using
these points, the corresponding queue response is showgureR2.11. The same figure
also shows the responseaf Clearly,ps, ps, andp; show superior performance ovgey.

Among themp; gives the best results.

2.4.4 Discussion

Sections 2.4.2 and 2.4.3 highlight the distinction betwstbility and performance. In-
formally, stability assesses whether a system’s stateergaes toward a target trajectory.
That s, a stable system is a system whose state convergas@&letoward a target trajec-
tory whereas an unstable system is a system whose stateqoewarges toward a target

trajectory. On the other hand, performance gauges thetguilia stable system as its
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Figure 2.10: Extending the experiment’s execution timeag®00 sec to observe the long-
term trend ofy(¢) when usingy; = Ap.
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state converges toward a target point, for instance, hotvwfaslow the convergence is.
As we have seen in Section 2.442,results in a stable regime whijg results in an un-
stable regime. In comparison, in Section 2.4.3;ps are all stable controllers but they
exhibit widely different levels of performance. The adag# ofSy, is that it gives the re-
gion of all stabilizing controllers, and thus it avoids cBow conservative parameters, e.g.,
p1 = Apy, or even more radically conservative ones, €4);72°, 1072°). This advantage of
Sr Is manifested most when designing controller gains to quagastability that is robust
to network parameter uncertainties, e.g., to account fgeld and smallNV, becauseSy
admits stable controller gains that are more aggressa/eaichieve improved convergence

properties, thad\p; and=p,.

2.5 Conclusions

This chapter makes an indispensable contribution to theenstahding of PI AQM by
providing an analytical characterization of its completgity region. The chapter has
demonstrated the importance of obtaining the completelisyategion by presenting ex-
amples of Pl controllers that are stable and have significaetter performance than pre-
viously proposed ones. While we have focused the analysis, atifer AQM schemes can

benefit from the results and the analysis discussed in tlagteh
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Chapter 3

Decentralized and Dynamic Bandwidth

Allocation in Cyber-Physical Systems

In this chapter, we propose a bandwidth allocation schem@yber-Physical Systems that
have their control loops closed over a distributed netwetkch as the Internet. We first
formulate the bandwidth allocation as a convex optimizapooblem. We then present an
allocation scheme that solves this optimization problera fmlly distributed manner. In
addition to being fully distributed, the proposed schenasisichronous, scalable, dynamic
and flexible. We further discuss mechanisms to enhance tifierp@nce of the allocation

scheme. We present analytical and simulation results.

3.1 Introduction

Networked embedded devices are becoming increasinglyiibics in our physical envi-
ronments and will lead to the formation Gyber-Physical Systenf€PS3 [41]. CPSs in-

tegrate sensing, processing, and actuation tasks thalkeemahote monitoring and control
of the physical world; see Figure 3.1. Representative agipdios include industrial au-
tomation, distributed instrumentation, unmanned vebid®me robotics, distributed vir-

tual environments, power distribution, and building stane control [5, 7, 42, 43]. Since
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Figure 3.1: CPSs integrate sensing, processing, and awtuastks that enable for remote
monitoring and control of the physical world. Figure is atbapfrom [6, 42].

CPSs are concerned with real-time actuation and controy, difeer significantly from
sensor networks, whose primary scope is data acquisitionrgiess, energy-constrained
environments. CPSs’ strength stems from the integratiomefphysical world with the
cyber world; however, this integration poses fundamerttallenges to the methods and
protocols of communication networks. In general, existegimunication methods may
no longer be applicable when interconnected devices boikesend operate on a physical
environment. For example, CPSs nodes should communicdiesaith other at a rate that
is appropriate for the physical environment being congallSince CPSs involve control
and actuation on the physical world, CPSs rate control i$yliteediffer significantly from
congestion control for bulk data transfer, for multimediaffic, or for sensor networks.
Although existing congestion control techniques may primvbe an important source of
inspiration, their applicability to CPSs is an open problem.

In this chapter, we propose an adaptive transmission-tense to allocate the
bandwidth among several CPSs. The bandwidth allocationlgolis an inherent and
a crucial issue because bandwidth is a finite resource to &edlamong several CPSs.
Without bandwidth management, congestion becomes a concommsequence. Conges-
tion is undesirable because it leads to long queueing dgtagget losses or both. In turn,

long delays and packet losses deteriorate CPSs performadde@pardize the stability
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of the underlying physical system. Therefore, the objecis/to allocate the bandwidth
among CPSs to control congestion and to meet each systeruisammgnt as best as possi-
ble. To achieve this objective, our proposed scheme masi@®&s to adapt their sampling

intervals based on the congestion level fed back from theorét

Summary of Contributions

The main contribution of this chapter is that we propose aligith allocation scheme for

CPSs that has the following features:

¢ |t allocates the bandwidth in a way to ensure stability otahtrol systems, if feasi-

ble.

¢ It allocates the bandwidth in a way to attain the maximaggregatgperformance of

all control systems.

¢ It makes use of network bandwidth efficiently; controls cestgon, thus minimizes
delays and losses; and achieves fairness by fulfilling pedoace objectives of dif-

ferent control loops.

e It provides afully distributed asynchronousandscalablesolution. Each node ex-
ecutes an independent algorithm using local informaticin wo central managing
entity. The approach scales up as the number of control&ésg and/or the size of

the network increase.

e It is dynamic adaptable andflexible It dynamically reallocates the bandwidth as

different control systems acquire and relinquish netwesources.

Along with the above main contribution, this chapter hasesavspecific contri-
butions, which are summarized as follows. First, we formauthe bandwidth allocation

problem as a mathematical optimization problem (Secti8h Z\n optimization approach
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is both natural and necessary because it determines tmeadptansmission rates of the in-
dividual CPSs such that the overall CPSs performance is magdnsubject to network and
stability constraints. Since our optimization formulatimas similarities with mathematical
formulations used for bulk-data congestion control, tHetsmn of our optimization prob-
lem and thus our approach can borrow some of techniques asédlk-data congestion
control (e.g., [45]). However, the central concerns artedkht. CPSs usually have strin-
gent real-time requirements necessary to ensure theistant safety of CPSs whereas
bulk-data flows can often tolerate transient poor levels 06QTo make certain that the
allocation scheme fulfills CPSs requirements, we developnamiycal system model that
describes the interaction between CPSs and the network. afeitie this model to analyze
and to enhance the dynamic properties of the allocationnsel{&ection 3.4). For exam-
ple, using this model, we show that a gradient-based appr@acdn [45]) exhibits steady-
state queue backlogs (Section 3.5). Although this sidecgffe., the steady-state error,
was previously observed in the literature when conductinyitions, it has never been
precisely quantified. In contrast, we derive closed-forrmregsions for the steady-state
error and show its dependency on the number of CPSs and onratveork parameters
(Section 3.5). To remedy the steady-state error in the glezgth, we use a proportional-
integral (PI) controller, which effectively stabilizesetlgueue length around a small refer-
ence value (Sections 3.4 and 3.5). Moreover, we charaetdre&complete robust-stability
region of the PI controller (Sections 3.6 and 3.7). The completaististability region
gives the complete space of the controller parameters tisatre the stability of the alloca-
tion scheme even when round-trip delays and model parasn@terunknown. Finally, we
present packet-level simulations to evaluate the propakechtion scheme and to validate

the theoretical results (Section 3.8).
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3.2 Related Work

3.2.1 Congestion Control in IP Networks

Addressing the bandwidth allocation problem in data compation networks using the-
oretical approaches is not a new subject. For example, E7fpdmulated the bandwidth
allocation problem as an optimization problem, and progasstributed solutions for the
problem. Although both papers started with exactly the saptemization formulation,
they pursued different approaches to solve the probleml|tireg in two different control
algorithms:primal anddual. In the primal algorithm as in [37], sources adjust theinsra
mission rate usingynamiccontrol laws, while links compute congestion level usatatic
laws. Conversely, in the dual algorithm as in [45], sourcégoathms are static and links’
algorithms are dynamic [47]. Much research has then tadgstebility analysis of each
algorithm, especially the algorithm of [37] (see for exaenjd5, 40, 50, 64, 69]).

Since the primal algorithm solves a relaxation rather thenexact version of the
original optimization problem [37], we adopt the approact45], which indeed solves
the original optimization problem exactly [46]. Howeved5] did not address the issue
of steady-state backlog in queue lengths. Also, it did nedidbow to ascertain the al-
gorithm’s step size to maintain stability or to achieve éasionvergence to steady state (it
only suggests that the algorithm’s step size must be chag@oniently small). To elimi-
nate the problem of steady-state backlog, a new link coatggrithm, called REM, was
then proposed in [15], but again no details were given tordete the controller gains.
The stability of the dual algorithm in the presence of delagis analyzed in both [53, 54].
However, [53] dealt with the first-order controller, i.ehetproportional controller, that
exhibits steady-state error and [54] dealt only with a sgidamily of utility functions.

In this chapter, we use a Proportional-Integral (P1) cdigrdor optimization-based
congestion control. Pl control has the ability to elimintte steady-state error [23] and to

stabilize the queue length around a reference level. Pl vapfoposed as an AQM in [32]
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but for TCP flows. In [32], only a subset of the stable gains wesrg This subset forms a
line segment in the space of control parameters. In contk@stierive the completegion

of stabilizing control parameters. Furthermore, unliké][@®ur analysis provides robust
stability conditions in that it ensures the allocation sob& stability for uncertain values

of delays and utility functions, and does not require exaties of them.

3.2.2 Bandwidth Allocation in CPSs

The issue of bandwidth management in networked sensingatémt and control systems
(known asNetworked Control Systenfig2]) has gained considerable research attention;
see for example [13, 63, 65] and the references containeditheHowever, all such re-
search efforts have focused on bandwidth scheduling indoinilocal) area networks, e.g.,
in a car, in an airplane, or in a factory. Several factors @irtle extension of such band-
width scheduling schemes to the domain of Wide Area Netw(&Ns), such as the
Internet [66]. These schemes usually require time synération among the different de-
vices in the network (such as in TDMA-based schemes), ortrinsphysical distances
over which the scheme can operate (such as in CSMA-based ssherg., CAN protocol
[65]). Moreover, the allocation schemes are either statttyoamic. Static schemes, where
allocation is determined pre-run, lack flexibility and atidglity to dynamic changes. Dy-
namic schemes, on the other hand, required centralizecimggitations. Reference [13]
discussed various examples and differences between atatidynamic approaches, and
between TDMA- and CSMA-based approaches.

In this chapter, we propose a bandwidth allocation schem€RSs that is asyn-
chronous, dynamic and flexible, and fully distributed. Te best of our knowledge, there
has been no prior research into bandwidth allocation for CPSsur scheme, CPSs adapt
their bandwidth usage by varying their sampling intervalsda on a feedback from the
network so as to avoid network congestion, and to presegtedontrol performance lev-

els. It is worthwhile here to evaluate the ideas presentgdShand in [63]. In [25], the
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Figure 3.2: A Cyber-Physical System with one controlled exys{a.k.a.plant) and one
controller. Both the sensor and the actuator are collocdtdakglant site.

authors proposed an algorithm to adapt the sampling intef\@ntrolled systems imple-
mented over a CAN bus based on two factors, network load ahdistahreshold. The
algorithm per se is special to CAN in the way it determines #tevork load. Moreover, the
heuristic of increasing and decreasing the sampling iatdras no mathematical justifica-
tion. The algorithm proposed in [63] uses the network’s ladée bandwidth and the error
in each system’s state to adapt the sampling interval. Hewéhre paper fails to discuss
an important implementation issue: measuring the occupeediwidth (to be used along
with the network’s capacity to obtain the amount of unuseadadth). In this chapter,
we introduce an approach that relies on solid mathematcaidations, and we discuss its
implementation details over IP networks. We also presesult®from a network simulator

that was extended to simulate control systems [19].

3.3 Problem Formulation

3.3.1 On the Wire

Figure 3.2 shows a configuration of a single CPS in which thelfaek loop is closed over
a network. In general, the sensor samples the values ofgaiygiantities, writes themin a
packet, and sends the packet to the controller. The comtredlamines the received sample
to generate a control signal that is then sent to the actuator

The time interval between two sample packets is called#mepling intervaland it
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is denoted by:. In other words, the sensor sends one packet containinglsalaia every

h seconds. The reciprocal of the sampling interval,

(3.1)

is therate of transmission from the plant to the controller. The rate ba similarly de-
fined in the reverse path from the controller to the planthdlitgh, in principle, the rates
in the two paths could differ, in most CPS applications, the tates are identical. The
transmission rate is the amount of bandwidth resourcesathparticular plant-controller
pair consumes. If the rate exceeds the end-to-end avababigwidth, the network ison-
gestedand the communication is then characterized by packet$osielays, and jitter. In
principle, the rate should be small enough to avoid congestiowever, a CPS typically
benefits from higher sampling rates. For example, the phi$&iehavior usually tracks
more closely the intended reference behavior if the samgphite is higher. In some ex-
treme circumstances, a very low sampling rate may causehysqal system to become
unstable in which case even small perturbations can cause massaidwwns. Hence,
the sampling rate must strike a balance between network utilization and seephysical
behaviors. The sampling rate is thus a critical tuning fact@PSs.

The effect of the transmission rateon the physical system dynamics is often cap-
tured by autility function, U(r). The utility valueU (r) expresses the degree to which a
particular system can benefit from sampling rateln general, the utility function is a
monotonically increasing function of the ratg which reflects the fact that higher sam-
pling rates lead to better control performance. In practioe utility function is also often
a strictly concave function of, which reflects a law of diminishing returns as the rate
increases. Finally, the utility function is defined only fo&> r..;,, wherer,,;, is the min-
imum rate below which the system becomes unstable or hasepiable behavior. To

carry out mathematical analysis easily, we pose an extrditton on U (r) in which we
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Figure 3.3: Examples of two generic utility functions.

requireU (r) to be doubly differentiable. Figure 3.3 shows two gener&negles of utility
functions associated with different applications. In tlegworked control systems liter-
ature, quadratic and exponential utility (performancejctions are commonly used for

optimization purposes of CPU- and bandwidth- schedulingrélgms [18].

3.3.2 Optimization Formulation

One of the major pillars of the bandwidth allocation schesmiachievdairnessamong
individual CPSs [8]. As in [59], we definefair allocation to be the one thataximizes
the sum of the utility functions of individual CPSs, i.e., tggregate benefit of all CPSs.
Then, consider a sét of CPSs using a sdt of network links, where each linke L has a
capacityC;. For each CP% € S, the objective is to determine its transmission ratgo as
to maximize the sum of utilitiey _,_, U;(r;), subject to (a) each CRS stability constraint
ri > Tmini, @and (b) each link’s capacity constrainEieSl r; < Cy, wheresS; is the set of

CPSs whose communication loops use linkV/e state our objective formally as [8]:

max » Ui(r:), (3.2)
€S

s.t. Y m<CVIeL,
1€S]

and r; > Tmin7i,Vi es.
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In this formulation, we assume that the communication lompefach CPS can use link
[ only once. This assumption is always valid if all links ardl fiuplex (in which case,
forward and backward traffic do not interfere).

Due to the concavity characteristic@fr), Equation/(3.2) is a convex optimization
problem, which means it can be solved quickly and efficietdlyield a global, optimal
solution [24]. However, the objective is to solve this prxgrwith a distributed approach

with no centralized coordination.

3.3.3 Distributed Implementation

Due to its convenient structure, Equation (3.2) can be deosed into separable sub-
problems [49]. The solution can then be implemented in aidiged fashion, whereby
individual controlled systems and links execute indepahdégorithms. This solution is
achieved by considering a dual version of (3.2) that incaafes the Lagrange multipliers
for link capacity constraints [45]. We summarize next thstrdbuted algorithm and the
protocol based on [45].

The algorithm works in an iterative manner until the optirealution is achieved.
Each linkl computes a congestion leve}, based on local information, such as the aggre-
gate incoming traffic, the queue length or both. The compartadf p, according to [45] is

as follows:

pl(t + 1) = max {O,pl(t) + ’Y(Z Tl(t> — Cl)} s (33)

1€S]

wherep,(t+1) andp,(t) are the congestion levels at the next and current stepgatasgy;
v > Oisthe step size} ;¢ 7:(t) is the aggregate incoming rates at linlndc; is link I's
capacity [45]. To carry congestion information from linkadi to plants, a special header
field is introduced in the sensor and the controller packéthen the sensor generates a

packet to carry the sampled data, the plant initializes #leevof this field to zero. As the
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packet traverses network links in the directed path fronsémesor to the controller and back
to the actuator, each link adds its current valug,ab whatever value has accumulated in
the field. Thus, when the control packet arrives at the pthigt special field would contain
the total sum o, values of all individual links along the directed path frane tsensor to
the controller and back to the actuator. Upon receiving thdroller packet, the actuator
applies the control signal and the sensor regulates itslgagn(sending) rate: based on

the fed-back congestion information as follows:

r(p) = min{max {U""(p), Pain } » Pmax } (3.4)

where

e p, is the value op in the received controller packet, which is the sunpofalues of

all the links along the path from the plant to the controllled &ack to the plant;
e U'"!isthe inverse of the derivative of the utility function;

e 7., IS the minimum transmission rate that satisfies the stglilindition of the

plant; and

® ... IS the maximum sampling rate and/or the maximum transmmssite a plant

can use, which may stem from inherent hardware limitatidrieesensor.

Based on the newly computedp,), the value ofh is then calculated according to (3.1),
which defines the wait time before generating the next sample

Introducing the header field in the sensor and controllekgiado carry the value of
pi, we assumed that routers are aware of and can manipulatestier. Also, we assumed
that the overhead for this field is negligible (at most 64 fatsa double-precision floating-
point number) compared to the size of each packet. Such ggisun® are often implied for
new congestion control protocols; see for example [36]. el@w, if practical implemen-

tations dictate otherwise, the value in our protocol can be quantized and encoded by the

49



two ECN bits that already exist in transport protocols as 8].[6

3.4 Link Queue Controllers

In this section, we model the interaction between contdofigstems and network links
in the proposed allocation scheme as a time-delay dynamystém. To facilitate the

analysis, we focus on fluid-based modeling that approxige actual packet dynamics.
Utilizing the developed model, we then design controllenslihk queues to enhance the
performance of the scheme. This approach gives rise to tpestpf feedback loops. The
first type of loop is for CPSs with distributed sensors, acxgtind controllers. The second
is the loop of the developed model that captures the interabetween CPSs and links.
Our focus in this chapter is on the second loop, where we desigtrollers to enhance
the performance of the bandwidth allocation scheme to hetet the requirements of the

CPSs loops.

3.4.1 Modeling CPS-Queue Interaction

Routers connect two or more network links. Thus, the link athm is actually executed at
the router deployed at the link’s input. Routers use buffetsald incoming packets while
servicing others. Congestion at a link causes the buffer ltarfll possibly to overflow.
Thus, congestion results in long delays, jitter, and patdstes. The aim is to stabilize
the buffer's queue around a controllable small length grethian zero, which has a two-
fold advantage. First, a stable, small queue length elitaghaxcessive delays, jitter, and
losses. Second, a queue length greater than zero avoidsrkeimderutilization because
the queue will always have packets to transmit. From thisudision, we regard the queue
length as the primary response variable to be controlledrata setpoint.

We model the interaction betweén CPSs and a single bottleneck link. We denote

the forward delay from plant to the queue byTj, and the backward delay from the queue
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Figure 3.4: Forward and backward delays. Figure is adajpted [f69].

to the controller and back to plajby <d_J see Figure 3.4. Attime instatitplant; transmits
packets at rate;(¢). These packets start arriving at the queue and thus affeittenqueue
length,q(t), after a deIa;d_;, whereupon the queue computes a new valyg©of This new
value ofp(t) reaches plani after a delaydi. The evolution of the queue lengtit), in

time can be modeled as:

N —

i=1 T\l — @) — if
0 = Yo rit—d;)—C if g(t) >0 (35)

max {2511 it —d) — c,o} if (t) =0,

Wherer:1 ri(t — Z) is the aggregate incoming traffic from all plants, ands the band-

width capacity of the outgoing link. Each plaptcomputes its sending rate as follows:

ri) = [0 (p = @) | =1 N (3.6)

Tmin

where[z]Y = min {max{z, m}, M }. (Note that/(3.6) is a more complete version of (3.4)

because it incorporates delays.)

3.4.2 Linearized Model

In this chapter, we conduct a linear systems analysis to/shelstability and the perfor-
mance of the system modeled by (3.5) and (3.6). To use limedysis, we linearize (3.5)
and (3.6) in the neighborhood of the operating pdint o0, po), Whereg, > 0 is the de-

sired steady-state queue length, is the steady-state transmission rate of plargndp,
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is the steady-state According to/(3.6)p, andr;, are related to each other according to
Po = U;(Tjo) . (37)

We assumé o, 0, po) is away from the boundary conditions in (3.5) and (3.6).
Therefore,/(3.5) and (3.6) reduce to

i) = Yonlt—d) =0,

() = U <p(t— dj)) j=1,....N.
Combining these equations yields
N
Q)= U (ot —d;)) — C, (3.8)
=1

— —
whered; = d; + d;.

To linearize (3.8) abouyo, o, po), we proceed as follows. First, define

fp) = d(t) = 3 U (plt = di)) = C, (3.9)

andp = p(t — d;). At the operating pointqo, 0, po), 4(t) = 0. Thus, f(po) = 0. Expand-

ing the right-hand side of (3.9) using Taylor series [67]w@th@o, 0, po), and ignoring
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second- and higher-order terms yield

_ ap)
f(p) = f(po)+ »

Ti=Ti0
N
1
- Z U{,(h‘o (p _pO) :

(The derivation proceeded from line 2 to line 3 by using the facts:dx /dy = 1/(dy/dx),

~—

i.e., the derivative identity of the inverse function, and= U(r;o), see/(3.7).) Next, define

dq(t) = q(t) — qo andop(t) = p(t) — po. Therefore,

i) = 1000 _ > Gyt =)

Thus, we obtain

—6q Zﬁz op(t — (3.10)

wheredq(t) = q(t) — qo anddp(t) = p(t) — po are the perturbations gfandp aroundgq
andpy, respectively, andg; = 1/U/ (1).

To simplify the analysis, we further assume that delays an@RSs are homoge-
neous, i.e.d; = d,i = 1,...,N; however, our simulations in Section 3.8 validate our

scheme using heterogeneous delays. Consequently, (3ddybs

d
a5q( )= —B-op(t—d), (3.11)
whereB = — Zf;l 0;. Because the utility function is concave,< 0,7 = 1,..., N, and
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Y- AQ(s)

Figure 3.5: Linearized Model aZPS-Queue interaction with the control@&(s).

henceB > 0.
We analyze the linearized model (3.11) in the frequency dof28]. Sinceg(0~) =

0,0q(07) = ¢q(07) — go = —qo- Then, the Laplace transform of (3.11) is

sAQ(s) —dq(07) = 5Q(s) = —B - AP(s) - e~ (3.12)

Figure 3.5 shows the block diagram of (3.12), whéf@) is the Laplace transform

of the function that relates(t) anddq(¢) and is called thejueue controller

3.4.3 P and PI Controllers

In this section, we design the controll@f s) to stabilize and to improve the response of the
closed-loop feedback system in Figure 3.5. Among diffecemitrollers, the simplest are
the Proportional (P) and the Proportional-Integral (Phtoollers. Choosing such a simple
controller algorithm allows the router to process large ants of traffic efficiently.

The transfer function of a P controller sp(s) = k,, and that of a Pl i€7;(s) =
k, + k;/s, wherek, andk; are the proportional gain and the integral gain constasts, r
spectively. Setting:; to zero in the Pl controllerz;(s), results in a pure P controller,

GP(S).

Remark 3.4.1 Note that the direct solution of the optimization problen2j3ising the

gradient method yields a P controll&F,»(s), as the queue controller, see (3.3) and [45, 53]
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for details. As we show in Section 3.5, the P controller exbibisteady-state error in the
gueue length whereas the PI controller does not. The stetadg-arror has negative effects

that will be discussed in the next two sections.

Remark 3.4.2 Although solving the optimization problem (3.2) does netdya Pl con-
troller, the PI controller still achieves an optimal solati for (3.2) because it stabilizes the

queue [47].

3.5 Steady-state Error and Queueing Delays

The outputQ(s), in Figure 3.5 is

€_Sd
b Po+ 0G(s)] . (3.13)

Qs) = s?2 + sBG(s)e—s? [

We find the steady state qft), ¢.s, by applying the final value theorem [52]. To apply
the final value theorem, we assume that the controller'sgdgsarameterskf, for the P
controller, andk, andk; for the PI controller) are chosen such that thesed-loop system
is stable (see Section 3.6).

WhenG(s) = k,,

Gy = tlil?o q(t) = Ei% 5Q(s) = qo +po/kp -
Similarly, whenG(s) = k, + k;/s,
qs = lim q(t) = lim sQ(s) = qo -

Therefore, the steady-state erra, for P and Plis!, = p,/k, andel! = 0, respectively.
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Moreover, the respectiv@eady-state queueing delays, are

b = BP0 ang 3.14
¢ c e (3.14)
PI qo

When using PI, queueing delays are predictable and indepentiehe characteristics of
CPSs (i.e., utilities or number of CPSs) because he#ndC' are constant. On the other
hand,df depends opy. In dynamic environments where different CPSs go on- andrugf-
at different timesp, changes over time. Unless is adapted dynamically to tragk varia-
tions,df will vary as the environment changes. Therefore, in thesaayc environments,
df; is unpredictable. Although designing an allocation schenwhich £, is dynamically
adapted is a powerful mechanism, this is not this chaptetent and we leave this idea for

future research.

3.6 Stability Analysis

The characteristic function(s), of the system of Figure 3.5 is
Y(s) = s + BG(s)e . (3.16)

Closed-loop stability requires the roots [of (3.16) to liehe bpen left-half of the complex
plane [23]. That is, the closed-loop in Figure 3.5 is staffle/s, such thaty(sy) = 0,
R{so} < 0. When the later condition holds, we equivalently say thatdharacteristic
function,(s), is stable (consistent with [26, p. 32]).

Because of the exponential teem*?, which originates from the delay in the feed-

back loop, (3.16) is calledguasi-polynomiaand it has an infinite number of roots. In Sec-

tions 3.6.1 and 3.6.2, we analyze the stability of (3.16}Hfiertwo cases whe@ip(s) = k,
andG(s) =k, + ki/s.
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3.6.1 The P Controller

SubstitutingG (s) = k, in (3.16) yields
U(s) = s+ Bhye ™. (3.17)

Theround-trip delayl comprises two components: a fixed-delay (e.g., propagalédbany)
component and a queueing-delay component that depends (see ((3.14)). Therefore,
we decomposé asd = dy + dg = dy + qo/C + po/(k,C), Whered, is the end-to-end
fixed-delay component. Lek, = d, + ¢o/C. Then,d = dy + po/(k,C). The following

Lemma determines the range of the stabilizing

Lemma 3.6.1 The quasi-polynomial (3.17) is stable for &, +p,/(k,C)) > 0andB > 0
iff

1 ™ Bpo

Proof Denote byH (jw) the open-loop transfer function of Figure 3.5, correspogdo

(3.17) and evaluated at= jw. H(jw) is given by

H(jw) = %ejw(doﬂ)o/(kpc)) .
Becauséef (jw) does not have any open-loop poles in the right-half of thepternplane,
the Nyquist stability criterion requires that the Nyquikitpf H (jw) not encircle the point
—1+ 40 [23]. Now, there are two cases, < 0 andk, > 0. Whenk, < 0, the Nyquist
plot of H(jw) is shown in Figure 3.6 (left). The big arc ab, which is due to thd /w
term in H (jw), encircles the whole left-half plane. Therefokg,< 0 can never stabilize
(3.17). Wherk, > 0, the Nyquist plot is shown in Figure 3.6 (right). The firstgsimmg of

the Nyquist plot to the negative real-axis should occur ghtrof —1 + ;j0. This happens
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Figure 3.6: The Nyquist Plot off (juw) = =2ze~i«(®tm/(C) whenk, < 0 (left) and
whenk, > 0 (right) along with the critical point-1 + ;0.

iff for wy = inf{w. > 0 : arg{H (jw.)} = —7},

H(jwo)| < 1. Solving forw yields

k,C
Clok’pc + Do .

v
Wy = =
2

After some manipulations, the conditidH (jwy)| < 1 yields

1 ™ Bpo
kp<3—do(§—7)-

This completes the proof. [ |

Remark 3.6.2 For a feasible range of a stabilizing,, we require

Bpyg

B (3.18)

bo | 3

If (3.18) does not hold, there will be rig that stabilizes the allocation scheme, no matter
how smallk, is chosen. (Note that this situation was not predicted by tserelie-time

analysis of [45].)
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3.6.2 The PI Controller

With G(s) = k, + k;/s, the characteristiquasi-polynomial becomes

U(s) = s> + B(kps + k;)e ™. (3.19)

Unlike the case with the P controllet,in (3.19) is independent df, andk;, see|(3.15).
Thus, we proceed by assumitgs constant. The following Lemma determines the region
Skr(d, B) in the k,—k; plane that stabilizes (3.19) for given valuesdof> 0 and B > 0.

First, we present the following known result that we use mvprg the Lemma.

Theorem 3.6.3 (Theorem 12.13, [16]Let H(z) = 2%¢* + pz + ¢, wherep andq are real.

Denote by, the root of the equation (there is such a root if (a) below Bpld

sina = p/a,

which lies on the open interval, 7/2). A necessary and sufficient condition that all the
roots of H(z) = 0 lie to the left of the imaginary axis is that

(@ 0<p<m/2,

(b) 0<g< af,cosap.
Lemma 3.6.4 For givend > 0 and B > 0, (3.19) is stable if and only ifk,, k;) €

Sr(d, B), where

Sr(d,B) = {(kp, ki) : 0 < kp < kpmax, 0 < ki < Kimax}
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(

o ifd=0
Kpmax = (3.20)
s ifd#0,
)
00 ifd=0
ki,max = (321)
9GC000 it g £ (),

andqy is the solution of
Bk,d — asina =0 (3.22)

in the interval(0, 7/2).

Proof We prove the Lemma for the two separate cases: when(0 and whend # 0.

Whend = 0, (3.19) becomes
s® + Bkys + Bk; = 0.

The two roots of this quadratic equations are

—Bk, T \/B?kZ — 4BF,
. .

S1,2 =

SinceB > 0, theclosed-loop system is stable #f > 0 and; > 0.
Whend # 0, we need to analyze the rootswfs) = 0 (see (3.19)). First, consider

the quasi-polynomial
U(s) = d*e* ) (s) = Bhyd®s + Bl;d® + d*s*e® .

Becausel2e? £ 0, the roots ofy)(s) are exactly same as of thoseuofs). Now, letz = sd
and rewritey)(s) as

W(2) = Bhydz + Blid® + 2% .
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Invoking Theorem 3.6.3 with = Bk,d andq = Bk;d* completes the proof. [ |

3.7 Robust Stability

The stability regionsSg(d, B), obtained according to Lemma 3.6.4 assumes biathd B
are fixed and known to the router that is implementing thercbatgorithm. However, this
assumption is far from reality. Even if delays can be madenvkmtm routers en route (for
example, using a special header in packets), delays caar diffong flows and for each
flow they usually vary over time. As faB, the situation is even harder becausdepends
on the utility functions and on theteady-state transmission rates of the individual CPSs,
thus making such information available to the router is iaggtical in a fully distributed
environment. In this section, we present a theorem thdittess the design of the, and
k; gains to ensure the stability of the allocation scheme wiminupper bounds foB and

d are available. First, we analyze the stability of (3.19) wiiee values ofl and B are
uncertain but known to belong to an interval. Precisely, dbgctive is to compute the
complete set of;, andk; gains that stabilize the closed-loop systeth c [0, dy.x| and

VB € [By, By, whered,,,,x > 0 andBy > By > 0.

The following two Lemmas 3.7.1 and 3.7.2 will be used in thegbrof the main

stability theorem.

Lemma 3.7.1 For a givenB, k, ..x defined in Lemma 3.6.4 is a strictly decreasing func-
tion ofd > 0. Also, for givenB andk,, k; max defined in Lemma 3.6.4 is a strictly decreas-

ing function ofd > 0.

Proof SinceBd? > 0,
Okp max B T

od~ ape ="

Therefore k, max is @ strictly decreasing function df
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As for k; max,

akz max 1 a
a’d = Eg de% (ag cos ao) — 2Bdad cos ayg
1
- @Qﬁl (d)u
where

¢1(d) = d2 (o cos ag) — 2 cos a

ad
SinceBd® > 0, it is enough to show that; (d) < 0. Now,

9 (a2 cos ) =

ad

9ag
od

From (3.22),

Bky,d — apsinag =0 .

Taking the derivative of both sides of (3/23) with respect toelds

Oa

Bk, — a_do [ cos g + sinag] =0 .
Or,
Jayg _ Bk,
Od  agcosag+sinag
Expandingy, (d) gives
61(d) = ———0——y(d)

sin ag + ag €os o
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where

o(d) = (2 cos g — apsinag) Bkyd — 20 sin ag cos oy — 202 cos? ay .
¢(> ( 0 0 0 D 0 0 0 0 0

Sinceay € (0,7/2) (see Lemma 3.6.4)y0/ [sinap + agcos ] > 0. Therefore, it is
enough to show that,(d) < 0. Substitutingy, sin « for Bk, d (see|(3.23)) iny(d) yields

¢a2(d) = —af (14 cos® ag) .

Hencep2(d) < 0, which proves the Lemma. u

Lemma 3.7.2 For a givend, k, .x defined in Lemma 3.6.4 is a strictly decreasing function
of B > 0. Also, for givend andk,, k; m.x defined in Lemma 3.6.4 is a strictly decreasing

function of B > 0.

The proof of this Lemma follows along the same lines of that&ima 3.7.1 and

is presented below for completeness.

Proof SinceB?d > 0,
Okpmax T

0B~ 2p2a =V

Therefore k, max IS @ strictly decreasing function &f.

As for k; max,

k’max 1
853 = o Bd28% (ag cos ag) — d*arg cos ag
1
= P
where

¢1(B) = B=— (ag cosag) — o cos ag -

0B
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SinceB?d* > 0, it is enough to show that; (B) < 0. Now,

8040

9B [—ag sin oy + 2 cos Oé():| i

a_B (Oég COS Oéo) =

Taking the derivative of both sides of (3.23) with respecBtgields

Oa

k,d — G_BO [ cos g + sin ] = 0 .
Or,
Oay _ k,d
0B  agcosag+sinag
Expandingy; (B) gives
61(B) = = 65(B) |

sin o + g cos o

where

o(B) = (2 cos oy — ap sin ag) Bk,d — g sin g cos oy — a2 cos? ay
P 0

Sinceay € (0,7/2) (see Lemma 3.6.4)y,/ [sin g + ap cosag] > 0. Therefore, it is
enough to show thap,(B) < 0. Substitutinga, sin oy for Bk,d (see((3.23)) inps(B)

yields

¢2(B) = ap (sin ap cos g — )

Sinceag € (0,7/2),

Qg > sinag > sinagcosag > 0.
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Thereforep,(B) < 0, which proves the Lemma. u

Lemmas 3.7.1 and 3.7.2 lead to Corollaries 3.7.3 and|3.7.4.

Corollary 3.7.3 Let’H be a family of closed-loop systems with each having a chaiatite
equation given by (3.19) wherte € [0, di.x] @and dyax > 0. If there is a PI controller
(k*, k) that stabilizes (3.19) fodl = d,,.x, then(k?, kF) stabilizes the entire famil§.

P> Vi P> Vi

Proof Clearly, (k*, k) stabilizes/(3.19) forl = 0 (see Lemma 3.6.4). Lét < d < diax.

pr Vi
According to Lemma 3.6.4,
Sr(d, B) = {(kp, ki) : 0 < Ky < Kypmax(d) and
0 < ki < Kimex(d)}
Sr(dmax, B) = {(kp, ki) : 0 < kp < kp max(dmax) and
0 < kz < ki,max<dmax)} .

A

From Lemma 3.7.1%), max (dmax) < Kpmax(d) @andvk, € (0, £y max(dmax) )s ki max(dmax) <
ki max(d). Therefore Sg(dmax, B) C Si(d, B). =

Corollary 3.7.4 LetQ be a family of closed-loop systems with each having a chanatite
equation given by (3.19) wher € [B;, Bs] and B, > B; > 0. If there is a Pl controller
(kx, k¥) that stabilizes (3.19) foB = Bs, then(k?, k) stabilizes the entire famil@.

pr pr

Proof Let0 < B < B,. According to Lemma 3.6.4,

Sr(d, B) = {(k;,,, ki) 1 0 < ky < kymae(B) and
0 <k < ki,max(é)} ,
Su(d, By) = {(ky, ki) : 0 < ky < kymax(Ba) and
0 < ki < kimax(B2)} .
From Lemma 3.7.2k, max(B2) < kpmax(B) andVk, € (0, kpmax(B2)), Kimax(Ba2) <
ki max(B). ThereforeSg(d, By) C Sg(d, B). m
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Now, we state our main result regarding robust stability.

Theorem 3.7.5 LetP be a family of closed-loop systems with each having a chaiatite
equation given by (3.19) whetec [0, dyax), dmax > 0, B € [By, Bs]J and B, > By > 0.
If there is a PI controller(k?*, k¥) that stabilizes[(3.19) fod = d,..x and B = By, then

P’

(K, ki) stabilizes the entire familp.

Proof It follows directly from Corollaries 3.7.3 and 3.7.4. [ |

Therefore, when designing, and k; gains, we must consider the maximumx e
pectedd and the maximum expected among all CPSs. Precise valuesdyf,, and B,
are not necessarily required. An overestimated valué,@f and an overestimated value
of B, lead to increased stability robustness. However, suctestiarated values diminish
Sr and constrain the possible valuesipfandk;, which in turn affect the protocol’'s speed
of convergence adversely. Therefore, it is advisable tainbeasonably tight bounds on

bothd,,.x andBs,.

Remark 3.7.6 In this section, we focused on robust-stability analysigitierPI controller
only. However, the same analysis can be easily carried outa@d’t controller. That is, if
k» stabilizes (3.17) fotly = domax > 0, B = By > 0, andpy = pomax > 0, thenk; can
stabilize the whole family of (3.17) with € [0, do max|, B € (0, Bz, andpy € (0, po max) -

3.8 Simulations

In this section, we explain the experimental setup, and veegnt simulation results that

evaluate the proposed allocation scheme and validate ¢loegtical results.

3.8.1 Simulation Software

We have extendeds- 2 [1] by adding two new agent®SCSPlanandNSCSController

which stand for networked-sensing-and-control-systelast@nd controller, respectively.
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10.0 Mbps/d msec

plant(1) controller(1)

plant(2) controller(2)

1.0 Mbps/10 msec

T RG] T

plant(n-1) controller(n-1)

plant(n) controller(n)

Figure 3.7: A single bottleneck topology for experimentatdation.

NSCSPIlant is an abstract agent class, which can be used antias¢ several controlled
systems, each of which simulates a physical system. NSCS#llenttan be used tm-
stantiate a controller to control a plant. With these tvge 2 agents, we can then simulate
the dynamics of physical systems combined with the dynawifiégscommunication net-
work. NSCSPIlant and NSCSController are based on an eardie? implementation,
Agent / Pl ant , to simulate networked control systems, see [19, 28]. (Rbceve have
also developed a co-simulation platform for CPSs [12] thatwmieuse in future experi-
ments. This platform combiness- 2 with Modelica, a modeling language for large-scale

physical systems [62].)

3.8.2 Network Topology

Our experiments are based on the dumbbell topology showigind 3.7. There, all CPSs
share the single bottleneck link that connects the two reuytel and R2. Several plants
are connected to R1; and their corresponding controllers t&Reh link’s bandwidth and

propagation delay is shown in the figure. In Figure 3.W;ll be varied across plants.
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3.8.3 Plants and Controllers

In this chapter, we confine our focus on linear scalar plantsgoportional controllers.

Each plant’s state;(t), evolves according to the following differential equation:
&(t) = ax(t) + bu(t),

wherea andb are constants, andt) is the input from the controller. The sensor samples
x(t) at discrete time instances, generatiti¢y), z(¢1), . . ., z(t;). For each received plant’s

samplez(t;), the controller calculates(t;) as follows:

whereK is the constant controller gain, ait) is the reference signal the plant is required
to follow.

Reference [18] proposed a performance measure for linelar seaworked control
systems that is a function of the sampling interval,Substitutingl /r in place ofh, we

obtain the following utility function for plant:

i — bl
Ui(r;) = L2120 gaufrs, (3.24)

a;

Such a utility function satisfies all required conditionsitiened at the end of Subsection
3.3.1. Moreovery,,;, is derived in [71] for the same family of linear scalar netkent

control systems, and is given by

a;

Tnin 3 — ——— .,
min,s I b K tar
b K;—a;
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plant(9) — plant(11)

plant(8)

plant(6),plant(7)

plant(4),plant(5)

plant(2),plant(3)

plant(0),plant(1)

Time (sec) 0 50 100 150 200 250 300

Figure 3.8: Six sets of CPSs. Each set uses the network forutagiah defined by the
extent of the bold horizontal line. For example, the set casimy plant(0) andplant(1)
acquires the network at = 0 sec and releases itat= 300 sec.

3.8.4 Experiments

We have a dynamic environment where CPSs acquire and releasetivork at different
times. There are six sets of CPSs based on when each set aaquieteases the network
as in Figure 3.8.

We assume that all plants have identical physical dynamics; 0.12 andb; =
1.0, and all have the same corresponding controll&is= 4.7. Propagation delays for
links connecting individual plants and controllers (i€in Figure 3.7) are as follows. For
plant(0), d = 0 msec; forplant(1), d = 10 msec; and foplant(2) throughplant(11),
the fixed delayd, is drawn from a uniform distribution on the interval 10] msec. (See

[3, 8] for different sets of simulations and results.)

3.8.5 Computing Controller Parameters

To calculateB andp,, we assume that the plants’ and controllers’ packets haeeosil 00
bytes. Therefore(’ = 1250 pkts/sec. Based on the number of plants using the network
during each time interval? andp, values are summarized in Table 3.1.

To estimatel,, .., we assume thaf, = 50 pkts. Based on Figure 3.7 and thfore-
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Table 3.1: The values a8, p,, andk?”

,.max dUNG each interval of time where the number
of CPSs is constant.

Time interval (sec) Number of plants B Do K o
[0, 50] 4 1.3319 x 107 | 4.6917 x 10~° | 5.3603 x 10~°
50, 100] 6 5.9178 x 10° | 1.0558 x 10~ * | 1.2065 x 10~
(100, 150] 8 3.3278 x 10° | 1.8774 x 10™* | 2.1456 x 107
[150, 200] 12 1.4782 x 10° | 4.2258 x 10~ | 4.8307 x 107°
[200, 250] 8 3.3278 x 10° | 1.8774 x 10~ | 2.1456 x 10°
(250, 300] ) 8.5228 x 10° | 7.3315 x 107° | 8.3769 x 10~ "

mentioned assumptions, we choose an overestithate such asl,,., = 0.15 sec. (This
value ofd,,,., is almost150% the expected amount of delays at steady state},8.,

For the P controller, the upper bourid, .. = [7/2 — Bpy/C]/(Bd,) (see Lemma
3.6.1), of the stabilizing;, range is given in Table 3.1 during each time interval. Therint
section of the six stabilizing, intervals where each defined by, £ ..) is (0, 5.3603 x
1077). Thus, for the P controller, we chook§ = 4.0 x 1077, i.e., abou5% of 5.3603 x
1077, As for PI, thek,—k; stabilizing regionSx, corresponding t& = 1.3319 x 10" and
dmax = 0.15 sec is shown in Figure 3.9. We choose the Pl controller gaifsd, k') =
(4.75 x 1077,9.0 x 1077), i.e., in the middle ofS;. According to the analysis in Section

3.7,(kPT kP = (4.75x 1077,9.0 x 1077) stabilizes the allocation scheme during all time

p O™
intervals.
3.8.6 Results

Under both the P and the PI queue controllers, Figure 3.1@show CPSs that are using
the network adapt their transmission rates by reducing saenpling rates when new CPSs
start operating or by increasing their sampling rates wioenesCPSs stop operating. All
CPSs share the bottleneck bandwidth equally since all havsame physical dynamics

and thus the same utility functions. Moreover, the allaratcheme retain€)0% network
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Figure 3.9: The stabilizing range of the P controller andgtabilizing region of the PI
controller,Sg, for B = 1.3319 x 107, py = 4.6917 x 10~° andd.x = 0.15 sec; and the

two pointsk) = 4.0x 107" and(k}”, k") = (4.75x1077,9.0x10"") used in simulations.

utilization when CPSs acquire or release the network barttwttlis can be inferred by
adding transmission rates of all plants during each timervat).

Although Figure 3.10 does not reveal a significant diffeeehetween using the P
and Pl as queue controllers, the difference is pronounceshwbmparing;(t) behaviors
under the two controllers; see Figure 3.11. With the P cdiettathe queue exhibits a
steady-state error. As more CPSs acquire the network, thatibevof ¢(¢) from ¢, = 50
pkts widens. On the contrary(t) under the Pl control settles tg = 50 pkts after short
periods of transient behavior regardless of the number ofsGR#ig the network. Thus,
the results in Figure 3.11 confirm the analysis in Section 3.5

Long queue backlogs increase round-trip delays (see Figd@), which in turn
affect the control performance adversely. Figure 3.14 dgdrE 3.15 depict the response
of plant(0) andplant(1) when using Pl and P as queue controllers, respectively. The
CPS control objective is to follow the square-wave input igufe 3.13.

With PI, the CPSs stay stable and track the input signal atyréFigure 3.14).
On the other hand, with the P controller, long queueing detiegrade the performance of
the CPSs and cause instability (Figure 3.15). These restish confirm the theoretical

analysis, show the superiority of Pl as a queue controller the inadequacy of the P
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Figure 3.10: Transmission rates when using the P and therfaiatlers.
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Figure 3.13: The input signak(t), plants are instructed to follow.
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Figure 3.15: Plant state,t), for plant(0) andplant(1) while tracking the input signal,
R(t), of Figure 3.13 when the P controller is used as a queue dlamtr@®nly the time
interval [0, 150] sec is shown, which is divided into two separate figures {teff0, 100]
sec and right fof100, 150] sec) to highlight differences in CPS control performance.
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controller for use in the proposed allocation scheme.

3.9 Conclusions

In this chapter, we have presented a scheme for bandwidibadilbn in CybeiPhysical
Systems (CPSs). First, we formulated the problem of bantivatlbcation as a convex
optimization problem whereby the objective is to maximize aggregate performance of
all CPSs subject to stability and network constraints. Seécwe presented a distributed
implementation of the optimization problem. Third, we deped a dynamical model to
analyze the performance of the decentralized scheme undeayueue control algorithms:
P and PI controllers. Fourth, we showed how to design romutresilient controllers to
guarantee the stability of the allocation scheme when conication delays and model
parameters are uncertain. Finally, we experimentallydeadid the theoretical results using

ns- 2 simulations.
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Chapter 4

Conclusions and Future Work

This chapter concludes the thesis by summarizing our darions and presentindjrec-

tions for future work.

4.1 Conclusions

This thesis presented contributions in two specific aredstefnet congestion control: Pl
AQM and bandwidth allocation in cyber-physical systemsedécontributions are sum-
marized as follows. In Chapter 2, we derived an analyticatadtarization of the com-
plete stability region of the PI controller for TCP AQM and walidated it withns- 2
simulations. The analytical derivation was complicatedstiyodue to time-delays in the
TCP-AQM feedback loop and to the relatively high-order TCPM\@lant model. Utiliz-
ing the complete stability region, we showed that the Pl p&tars used in the literature
could be excessively conservative, a fact that explainegtbvious observation about PI
sluggish responsiveness. We also showed that provabliestabtroller parameters could
exhibit widely different levels of performance. Furthemaowe presented examples of Pl
controllers that are stable and have significantly bettefop@ance than previously pro-
posed ones. Therefore, the chapter demonstrated the emperof obtaining the complete

stability region for the PI AQM. While we have focused the gsa on PI, other AQM
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schemes can benefit from the results and the analysis dextursthis chapter.

In Chapter 3, we proposed a bandwidth allocation scheme foekRBfwysical Sys-
tems (CPSs) that have their control loops closed over a dgatiatributed network. We
formulated the bandwidth allocation as a convex optimarafiroblem whereby the objec-
tive is to maximize the aggregate performance of all CPSssuly stability and network
constraints. We then presented an allocation scheme tlvatstive optimization problem
in a fully distributed manner. In addition to being fully ttibuted, the proposed scheme
had other features, such as being asynchronous, scalgbmnd and flexible. We further
showed how to ascertain the scheme’s parameters to acbiewstrand resilient operation

in face of uncertainties in communication delays and in ati@ristics of CPSs.

4.2 Future Work

This thesis paves the way to several avenues of future wdrk.fifst step is to extend the
results, e.g., the complete stability region, to larger anote general topologies than the
dumbbell set-up. Another area is to design AQM and queueralerts that use system
characterization and gain scheduling techniques to adagtatler parameters on the fly.
Gain-scheduling and adaptive queue controllers requerestimation of different network
parameters, e.g., delays and number of flows; and the cotistrof the complete stability
region, which represents the whole feasible space fromwpésticular points are to be
chosen to attain particular performance metrics. Adamtorgrollers [14] can outperform
static controllers especially in highly dynamic environrtse

Control theoretical procedures similar to ones used in tiesis can be applied to
other layers in the Internet stack. In particular, an adepnd reflective middleware [11]
can be implemented in the application layer to amelioratéhe lack of QoS. Such a mid-
dleware will provide a common platform for a range of apgimas by acting as a broker

between the applications and the network as follows. ltectdl online measurements for
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network-oriented metrics, such as delay, jitter, packet loss, rand bandwidth availabil-
ity, and maps their statistics to application-orientedrmost It then alters some system

configurations and parameters in response to and to adaptonk vagaries [11, 42].
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