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Internet Congestion Control:

Complete Stability Region for PI AQM and

Bandwidth Allocation in Networked Control

Abstract

by

Ahmad Tawfiq Al-Hammouri

The Internet represents a shared resource, wherein users contend for the finite net-

work bandwidth. Contention among independent user demands can result in congestion,

which, in turn, leads to long queueing delays, packet lossesor both. Congestion con-

trol regulates the rate at which traffic sources inject packets into a network to ensure high

bandwidth utilization while avoiding network congestion.In this thesis, we present con-

tributions pertaining to two specific areas in the Internet congestion control: PI AQM and

bandwidth allocation in Cyber-Physical Systems (CPSs). In the area of PI AQM, we present

an analytic derivation of the complete stability region. The stability region represents the

entire set of the feasible design parameters that stabilizethe closed-loop TCP-AQM sys-

tem. Utilizing the complete stability region, we show that the PI parameters used in the

literature can be excessively conservative. We also show that provably stable controller

parameters can exhibit widely different levels of performance. Furthermore, we present

examples of PI controllers that are stable and have significantly better performance than

previously proposed ones. These facts explain the previousobservation about PI sluggish

responsiveness and stress the importance of obtaining the complete stability region for the

PI AQM. As for CPSs bandwidth allocation, we devise a bandwidth allocation scheme for

Cyber-Physical Systems that have their control loops closedover a distributed network. We

xiii



formulate the bandwidth allocation as a convex optimization problem. We then present an

allocation scheme that solves this optimization problem ina fully distributed manner. In

addition to being fully distributed, the proposed scheme isasynchronous, scalable, dynamic

and flexible. Furthermore, we design robust and resilient queue controllers to enhance the

performance of the bandwidth allocation scheme to better fulfill the requirements of the

CPSs control loops. Throughout the thesis, we present analytical results and we validate

them with packet-level simulations vians-2.
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Chapter 1

Introduction

The Internet is a network of individual networks that interconnect multiple users and allow

them to communicate data. Each individual network is composed of physical communica-

tion links with each having a finite bandwidth capacity. As itis true with any finite resource

shared among multiple independent users, the network can become congested. Congestion,

which occurs when the offered packet load exceeds network capacity, has severe impacts as

bad as total collapses and complete service blackouts. Suchcollapses had actually struck

the early Internet and then they triggered amendments to thewell-known TCP to include

a congestion control mechanism [34]. In principle, congestion control regulates the rate

at which traffic sources inject packets into a network to ensure high bandwidth utilization

while avoiding network congestion. Congestion control was arguably one of the reasons

that the Internet scaled up to its size today.

From control theory perspectives, congestion control can be viewed as a feedback

closed-loop regime whereby end-systems regulate their sending rates based on explicit or

implicit congestion signals fed back from the network. As a result, control-theoretical

methods have been extensively utilized to analyze congestion control algorithms (see for

example [47, 61, 69] and the references therein). Since it ties in different network and

protocol parameters, control-theoretical analysis explained most of the observations about
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operational poor performance of congestion control algorithms in some particular envi-

ronments, and it also motivates alternative designs. In a nutshell, control-theoretical ap-

proaches lead to stable, effective, and robust congestion control design and operation.

In this thesis, we present novel results on the Internet congestion control pertinent

to two different domains: Proportional-Integral (PI) Active Queue Management (AQM)

and Cyber-Physical Systems (CPSs), in Chapters 2 and 3, respectively. We summarize the

scope of this thesis in the next sections. Chapters 2 and 3 are constructed such that each one

is an independent part, is self contained, and thus requiresno knowledge about the other

part. For example, each chapter reviews the related previous research work, and includes

packet-level simulations usingns-2 [1] that validate the theoretical analysis presented in

the respective chapter. The order of these chapters in this thesis is thus arbitrary. The

terminology we use in this thesis is that when we refer to networks, we usually mean IP

networks in the Wide Area Networks (WAN) domain, such as the Internet.

1.1 PI AQM

Congestion control was introduced into TCP to address the problem of congestion collapses

that were occurring during the 1980s. Due to the original philosophy of the Internet— the

end-to-end principle—end-systems implemented most of thecongestion control’s func-

tionality. However, Active Queue Management (AQM) [17] canfacilitate end-point con-

gestion control by proactively marking or dropping packetsprior to the inception of con-

gestion. AQM’s early feedback provides the opportunity to improve over drop-tail queues

[17], which drop packets only when buffers overflow. First, AQM would allow sources to

throttle early their transmission rates in an attempt to avoid congestion before its incep-

tion. Second, AQM would leave enough space in routers buffers to absorb traffic bursts.

Consequently, AQM should lead to low packet losses, short queueing delays, and high

bandwidth utilization [4]. Random Early Detection (RED) [22]was one of the earliest

2



AQM algorithms proposed to accomplish these goals. However, theory and simulations re-

vealed some shortcomings intrinsic to RED, such as slow responsiveness and steady-state

backlogs [31]. To address these drawbacks, the Proportional Integral (PI) controller was

proposed as an alternative AQM [30]. The PI controller is a more natural choice due to

its robustness and its ability to eliminate steady-state error in the queue length. That is,

PI stabilizes the queue length around a controllable targetlevel. Both theory and simu-

lations showed that PI outperforms RED [30]. However, previous work lacks a complete

characterization of the stability region of the PI controller parameters. The original paper

on PI AQM gives a single pair of theproportional gain, kp, and theintegral gain, ki, that

guarantees the stability of the closed-loop system as a function of the network parameters

[30]. However, there are other(kp, ki) pairs that stabilize the closed-loop system and result

in better performance.

In Chapter 2 of this thesis, we present an analytic derivationof the complete sta-

bility region of the PI AQM. The stability region representsthe entire set of the feasible

design parameters, i.e.,kp andki, that stabilize the closed-loop TCP-AQM system. The

stability region thus facilitates the selection of stable controllers that lead to better AQM

performance. From the control theory point of view, our contribution is major because we

analytically characterize the complete stability region for a second-order system and a PI

controller. There has been no such analytical characterization thus far [58]. Our contri-

bution is also important from an application perspective because of the following reasons.

First, we show that the pair ofkp andki given by [30] can be excessively conservative when

compared with other stable gains. This conservativeness, in turn, explains the sluggish re-

sponsiveness of PI observed in the literature. Second, we show that some provably stable

controller parameters enjoy better performance than others obtained according to [30] or

[32]. Finally, the same stability analysis of PI can be utilized to obtain the complete stabil-

ity region for other AQM algorithms, such as REM [15] and PIP [29], by straightforward

change of variables. One can then use the stability region toprove mathematically—not

3



just through simulations as in [55]—that PIP becomes unstable according to the original

design [29].

1.2 CPSs and Networked Control

We are witnessing major advances in VLSI, in MEMS, and in communication networks

technologies that have brought devices with sensing, processing, actuation, and commu-

nication capabilities. These devices have facilitated theconvergence of the cyber- and

physical-worlds, and have thus contributed to the formation of Cyber-Physical Systems

(CPSs). CPSs allow humans to monitor, affect, control and interactwith remote physical

environments, thus extending human’s reach beyond spatialbarriers [2, 7].Sensorssense

the physical quantities, generate a stream of sampled data,and communicate this data over

a network tocontrollers. Controllers process the samples of the sensed data and gener-

ate appropriate control signals to be delivered over the network to actuators. Actuators

transform control signals into actions that affect the physical world [8].

If networked control is to be deployed ubiquitously over IP networks, there arises

a critical need for a bandwidth management to allocate the network bandwidth between

different CPSs [8]. Addressing this issue in Chapter 3 of this thesis, we devise a bandwidth

allocation scheme for CPSs thatfairly allocates the bandwidth to control congestion and

to meet each system’s requirement as best as possible. In theproposed scheme, CPSs

adapt their sampling intervals based on the congestion level fed back from the network.

We also discuss designing robust and resilient controllersthat enhance the performance of

the bandwidth allocation scheme to better serve the CPSs control loops requirements. Our

proposed scheme has the following features:

• It allocates the bandwidth in a way to ensure stability of allcontrol systems, if feasi-

ble.

• It allocates the bandwidth in a way to attain the maximumaggregateperformance of

4



all control systems.

• It makes use of network bandwidth efficiently; controls congestion, thus minimizes

delays and losses; and achieves fairness by fulfilling performance objectives of dif-

ferent control loops.

• It provides afully distributed, asynchronous, andscalablesolution. Each node ex-

ecutes an independent algorithm using local information with no central managing

entity. The approach scales up as the number of controlled systems and/or the size of

the network increase.

• It is dynamic, adaptable, andflexible. It dynamically reallocates the bandwidth as

different control systems acquire and relinquish network resources.
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Chapter 2

Analytic Derivation of the PI-AQM

Stability Region

In this chapter, we derive an analytical characterization of the complete stability region of

the PI controller for TCP AQM and we validate it withns-2 simulations. The analytical

challenge is the presence of time-delays in the TCP-AQM feedback loop. The complete

stability region provides an in-depth understanding of theperformance of PI AQM under

different network parameters, especially round-trip delays and bandwidth. Having in hand

the complete stability region, we show that the PI parameters used in the literature can

be excessively conservative. This characterization explains the previous observation about

PI sluggish responsiveness and stresses the importance of obtaining the complete stability

region for the PI AQM.

2.1 Introduction

Active Queue Management (AQM) controls congestion by proactively marking or dropping

packets before the inception of congestion. AQM’s early feedback provides the opportu-

nity to improve over drop-tail queues, which drop packets only when buffers overflow.

First, AQM would allow sources to throttle early their transmission rates in an attempt to
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avoid congestion before its inception. Second, AQM would leave enough space in routers’

buffers to absorb traffic bursts. Consequently, AQM should lead to low packet losses, short

queueing delays, and high bandwidth utilization [4]. Several AQM schemes have been

proposed to accomplish these goals, with Random Early Detection (RED) [22] being one

of the earliest algorithms. To address RED’s shortcomings, e.g., slow responsiveness and

steady-state backlogs, the Proportional Integral (PI) controller was proposed as an alter-

native AQM [30]. The PI controller is a more natural choice due to its robustness and its

ability to eliminate the steady-state error in the queue length. That is, PI stabilizes the

queue length around a controllable target level. Both theoryand simulations showed that

PI outperforms RED [30]. The advent of PI has spurred the deployment of several related

AQM controllers—such as PIP [29], PD [60], PID [57], and P2I [70]—all of which were

proposed for a single goal: to speed up the responsiveness ofthe PI controller. However,

these AQM controllers lack a characterization of the complete stability region. Without

the complete stability region, designers usually resort toconservative parameter values to

ensure the stability and convergence of the congestion control algorithms. In turn, conser-

vative parameters can yield poor performance.

In this chapter, we present an analytic derivation of the complete stability region of

the PI AQM. The stability region represents the entire set ofthe feasible design parame-

ters, i.e., theproportionaland theintegral gains, that stabilize the closed-loop TCP-AQM

system. The stability region thus facilitates the selection of controllers that lead to better

AQM performance.

A closed-form derivation of the complete stability region for PI AQM is complicated

by the combination of various factors. Some factors are intrinsic to the PI and TCP-AQM

loop: the linearized TCP-AQM model is a second-order plant, includes time delays in the

control loop, and is cascaded with PI, a relatively high-order controller. The resultant char-

acteristic equation is a high-order quasi-polynomial whose stability analysis poses great

theoretical challenges. Another source of complications pertains to the objective of attain-
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ing stability that is robust to approximate values of systemparameters. In particular, the

TCP-AQM closed-loop system should be stabilized not only fora single value of the delay

but for a delay interval.

All these factors render the stability analysis techniquesof elementary Control The-

ory unusable to obtain the complete stability region for thePI AQM. Previous work sidestepped

the problem through assumptions and simplifications, ending up with only a subset of the

whole space of stabilizing controller parameters. The original paper on PI AQM gave

guidelines to choose only a single pair of the proportional gain, kp, and the integral gain,

ki, that guarantees the stability of the closed-loop system [30]. The stability set was later

expanded to a line segment in theki–kp plane [32]. However, all previous work, including

[32], used the guidelines prescribed by [30].

In this chapter, we exploit recent results on robust PI control theory for time-delay

systems to obtain a complete stability region for the PI controller with the TCP-AQM

model. We then validate the theoretical analysis by conducting packet-level simulations

using the PI implementation inns-2. From the control theory point of view, our contribu-

tion is major because there has been no analytical characterization of the stability region for

a second-order system with a PI controller thus far [58]. Ourcontribution is also important

from an application perspective because of the following reasons. First, we show that the

pair ofkp andki given by [30] can be excessively conservative when comparedwith other

stable gains. This conservativeness, in turn, explains thesluggish responsiveness of PI ob-

served in the literature. Second, we show that some provablystable controller parameters

enjoy better performance than others obtained according to[30] and [32]. Finally, the same

stability analysis of PI can be utilized to obtain the complete stability region for other AQM

algorithms, such as REM [15] and PIP [29], by straightforwardchange of variables. One

can then use the stability region to prove mathematically—not just through simulations as

in [55]—that PIP becomes unstable according to the originaldesign [29]; see [9, 10].

The rest of the chapter is structured as follows. Section 2.2covers the related back-

8



ground, introduces the linearized TCP-AQM model with PI controller, and presents the

method we used to obtain the complete stabilizing region. InSection 2.3, we compute the

complete set,SR, of the stabilizing PI parameters. Simulations that stressthe importance

of obtaining the complete stabilizing region are presentedin Section 2.4. Finally, Section

2.5 concludes the chapter.

2.2 Background

2.2.1 The TCP Model

Congestion control was introduced into TCP to address the problem of congestion col-

lapses that were occurring during the 1980s. Congestion control was arguably one of the

reasons that the Internet scaled up to its size today. Due to the original philosophy of the

Internet—the end-to-end principle—end-systems had to implement most of the congestion

control’s functionality. However, AQM can facilitate the end-point congestion control by

marking or dropping packets prior to the inception of congestion. Because the interaction

between end-systems and AQM routers gives rise to a feedbackloop, AQM has been exten-

sively analyzed using control-theoretical methods (see for example [32] and the references

therein). Control-theoretical approaches lead to stable, effective, and robust congestion

control operation.

A nonlinear fluid-based model was developed to describe the dynamics of multiple

TCP flows with AQM routers [51]. The model consists of a system of nonlinear differential

equations. To facilitate further analysis, the model was then simplified by ignoring the

time-out component. The resultant system of equations is given by [32]:





Ẇ (t) = 1
d(t)
− W (t)W (t−d(t))

2d(t−d(t))
p(t− d(t))

q̇(t) = W (t)
d(t)

N(t)− C,
(2.1)
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whereW (t) is the window size,d(t) is the round-trip delay,p(t) is the probability of

packet marking,q(t) is the queue length,N(t) is the number of TCP flows, andC is

the link capacity. The system of equations (2.1) was derivedindependently in other papers

following different approaches [44, 47]. According to simulations, Eq. (2.1) closely models

the TCP dynamics [32].

To carry out linear system analysis, we use the linearized version of (2.1) around the

equilibrium point(W0, q0, p0) defined by[Ẇ (t) q̇(t)]T = [0 0]T [32]. Further, since we

use frequency-response analysis, we consider the Laplace transform of the linearized sys-

tem. The linearization and its Laplace transformation are straightforward and the resultant

transfer function is given by

P (s) =
B

(s+ α)(s+ β)
e−sd , (2.2)

whereB = C2/(2N), α = 2N/(d2C), β = 1/d, andd is the round-trip delay at equilib-

rium [32, 44, 47]. The variablesB > 0, α > 0, andβ > 0 are introduced for convenience.

Notes on the Model

The TCP models in (2.1) and (2.2) assume the following:

• All flows are TCP. Although real networks carry different types of traffic (e.g., UDP),

non-TCP traffic can be modeled and incorporated in (2.2) as in [33]. For stability

analysis purposes, the resulting model has the same form as of (2.2) but with slightly

different values ofB, α, andβ. Since our analysis considersB, α, andβ as primary

and independent variables, our results still hold for the model that is accounting for

unresponsive traffic as long as the results are expressed in terms ofB, α, andβ but

not in terms ofN , C, andd.

• The number of flows,N , and the link capacity,C, are stationary or change slowly

10



over time compared to other dynamics, e.g.,W (t) andq(t).

• The model equations are parametrized byN , C, andd. None ofN , C, or d is

restricted to be higher or lower than any specific value except that they are all> 0.

• The topology is a single bottleneck link topology, which allows for deeper insight

and serves as a starting point to more general topologies as future research.

As mentioned earlier, there is a general consensus on the validity of the TCP models

(2.1) and (2.2) in the literature. However, if a new study were to develop a more accurate

model for the TCP congestion control, the new model could still be approximated by a

second-order system as in (2.2), and hence its stability analysis would follow directly from

the analysis presented in this chapter.

2.2.2 Related AQM Schemes

RED was one of the earliest AQM mechanisms proposed to replacedrop-tail queues [22].

It enjoyed the most attention from researchers, and is the only one that made its way into an

IETF standard. RED monitors congestion on the outgoing link by maintaining an EWMA

(exponentially weighted moving average) of the queue length. Packets are marked when the

average queue length exceeds some threshold. RED has then undergone several refinements

to improve its performance; see for example [20] and the RED implementation inns-2

[1]. However, these refinements increased the number of parameters that need to be tuned,

thus amplifying its operational complexity. The original RED was analyzed using control

theory techniques and was shown to exhibit slow responsiveness and large steady-state

backlogs, especially when the number of flows is large [30]; see Figure 2.1. PI was then

proposed as an alternative controller. PI uses an integration action to eliminate steady-

state backlogs and stabilizes the queue around a fixed targetregardless of the increase in

the number of flows; see Figure 2.1. PI is also a fundamental component for other AQM

and congestion control schemes. For example, several AQM schemes can be considered
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Figure 2.1: A simple experiment showing that RED exhibits stead-state error that is depen-
dent on the number of TCP flows whereas PI does not. The flows, which share a single
bottleneck link, are increased from 50 flows to 100 flows at simulation time 50 sec. and
then to 300 at time 100 sec.

variants and extensions of PI, such as, REM [15], PIP [29] and PID [57]. In general, all

these AQM schemes can use the results and the analysis presented in this chapter as will be

highlighted in the next subsection.

2.2.3 The TCP-PI Feedback Loop

The introduction of PI AQM results in the feedback control loop shown in Figure 2.2, where

q(s) is the Laplace transform of the instantaneous queue lengthq(t), q0 is the desired queue

length around which the controller should stabilizeq(t), and

G(s; kp, ki) = kp +
ki

s
=
kps+ ki

s

is the transfer function of the PI controller. The controller G(s; kp, ki) will be denoted

simply asG(s) when the proportional gainkp and the integral gainki are clear from the
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q0
P(s)

q(s)

−

+
G(s)

Figure 2.2: The closed-loop system of TCP-AQM linearized model P (s), with the PI con-
troller,G(s) [30].

context.

Although we restrict the analysis to the PI controller and the feedback loop in Figure

2.2, the results can be applied to related AQM schemes by simple changes of variables, such

as in the case of PIP (see [9, 10] for details) and REM, or the same analysis can be easily

extended to other schemes, such as AVQ [39].

2.2.4 Determination ofkp and ki

Given a network topology with specificC,N andd, the objective is to determine the values

of the parameterskp andki that stabilize the TCP-AQM closed-loop system in Figure 2.2

for delays less than or equal tod.

In [30], the stability analysis was oversimplified and resulted in guidelines to choose

only a single pair∆PI = (kp, ki) of stabilizing PI gains. Since these gains are conservative,

the PI controller showed sluggish responsiveness [21, 29].In [32], a less conservative

analysis used the pole-zero cancellation technique [38] toachieve model order reduction.

The idea is to cancel the(s + α) pole in (2.2) by mandating the conditionki = αkp.

However, this confines the space of stabilizing PI gains to a line segmentΞPI that is a

portion of the infinite lineki = αkp in theki–kp plane.

In this chapter, we exploit recent results on time-delay systems to characterize the

complete set of stabilizingkp andki gains. To be self-contained, this chapter reviews one

such recent method for time-delay PI control [58] in the nextsubsection. In the rest of the

chapter, we will apply this method for the stability analysis of TCP AQM.
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2.2.5 Stability Region for Time-Delay Systems

The stability regionSR is the complete set of points(kp, ki) for which the closed-loop

system in Figure 2.2 is stable for all delaysL between 0 andd. The stability regionSR can

be expressed asSR = S1 \ SL [58, p. 249], where

• S1 = S0 \ SN .

• S0 is the set ofkp andki values that stabilize the delay-free systemP0(s).

• SN is the set ofkp andki values such thatG(s; kp, ki)P0(s) is an improper transfer

function. (Also,SN is the set that destabilizes the closed-loop system when thedelay

is introduced.) Formally,SN is

SN =
{

(kp, ki) : lim
s→∞

|G(s; kp, ki)P0(s)| ≥ 1
}

. (2.3)

• SL is the set of(kp, ki) values such thatG(s; kp, ki)P (s) has a minimal destabilizing

delay that is less than or equal tod. Formally,SL is

SL = {(kp, ki) /∈ SN : ∃L ∈ [0, d], ω ∈ R s.t.

G(jω; kp, ki)P0(jω)e−jLω = −1}. (2.4)

To computeSR, first define the projection of the stability regionSR on the line

kp = k̂p as:

SR,k̂p
= {(kp, ki) ∈ SR : kp = k̂p} ,

so that the stability region can be calculated for each valueof the proportional gain̂kp:

SR =
⋃

k̂p

SR,k̂p
. (2.5)
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To computeSR,k̂p
, define the projections

S1,k̂p
= {(kp, ki) ∈ S1 : kp = k̂p} ,

SN,k̂p
= {(kp, ki) ∈ SN : kp = k̂p} ,

SL,k̂p
= {(kp, ki) ∈ SL : kp = k̂p} .

Then,SR,k̂p
= S1,k̂p

\ SL,k̂p
. It remains to computeSL,k̂p

by evaluating the condition in

(2.4) thatG(jω; kp, ki)P0(jω)e−jLω = −1. The setSL,k̂p
can be further decomposed and

computed as:

SL,k̂p
= S+

L,k̂p
∪ S−

L,k̂p
,

where

S+

L,k̂p
=

{
(k̂p, ki) /∈ SN,k̂p

: ∃ω ∈ Ω+.ki =
√
M(ω)

}
, (2.6)

S−

L,k̂p
=

{
(k̂p, ki) /∈ SN,k̂p

: ∃ω ∈ Ω−.ki = −
√
M(ω)

}
, (2.7)

Ω+ =

{
ω : ω > 0,M(ω) ≥ 0,

L(ω) =
π + ∠[(

√
M(ω) + jk̂pω)R0(jω)]

ω
≤ d

}
, (2.8)

Ω− =

{
ω : ω > 0,M(ω) ≥ 0,

π + ∠[(−
√
M(ω) + jk̂pω)R0(jω)]

ω
≤ d

}
, (2.9)

M(ω) =
1

|R0(jω)|2
− k̂2

pω
2 , (2.10)

R0(s) =
P0(s)

s
. (2.11)

By convention, we restrict thephasefunction,∠[z], of a complex number,z, in the interval

[−π, π).
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2.3 ComputingSR for TCP-AQM PI Controllers

In this section, we computeSR for the PI controller of Figure 2.2. Henceforth, the analysis

assumes thatkp, ki ≥ 0: negative gains are counterintuitive in operational termsbecause

they lead to a decrease in the sending rate when the queue length is less than the target

value. Although negative gains are disregarded as operationally meaningless, they can

formally stabilize the closed-loop system because the open-loop is stable and can tolerate

a slightly destabilizing controller.

2.3.1 ComputingS0

By dropping the delay term,e−sd, fromP (s), we obtain that

P0(s) =
B

(s+ α)(s+ β)
.

The characteristic equation of the closed loop-system in Figure 2.2 becomes:

1 +G(s) · P0(s) = 1 +
kps+ ki

s
· B

(s+ α)(s+ β)
= 0,

which is equivalent to

s3 + (α+ β)s2 + (αβ +Bkp)s+Bki = 0. (2.12)

To computeS0, we construct the Routh array [23] as follows:

s3 : 1 αβ +Bkp

s2 : α+ β Bki

s1 : (αβ +Bkp)−Bki/ (α+ β) 0

s0 : Bki

A necessary and sufficient condition for stability is that all entries in the first col-

umn (after the colon) are positive [23, p. 215]. This condition reduces to the following
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inequalities:

1. α + β > 0, which is always true (the network parameters,N , C, andd, cannot be

negative).

2. Bki > 0, which yieldski > 0 sinceB is always positive (the network parameters,N

andC, cannot be negative).

3. (αβ +Bkp)−Bki/(α+ β) > 0, which reduces toki < (α+ β)(αβ +Bkp)/B

Combining the last two conditions defines the following rangeof stabilizingki val-

ues with the upper boundary being a function ofkp: 0 < ki < ki,max, where

ki,max =
(α+ β)(αβ +Bkp)

B
. (2.13)

Moreover, for a feasible solution(α+β)(αβ+Bkp)/B must be positive. This gives

the range of stabilizingkp values, i.e.,kp > −αβ/B, which is always satisfied since only

non-negative gains are considered in this analysis. Consequently,

S0 = {(kp, ki) : kp > 0, 0 < ki < ki,max} ,

which is depicted in Figure 2.3.

2.3.2 ComputingSN

Since

lim
s→∞

∣∣∣∣
(kps+ ki)P0(s)

s

∣∣∣∣ = lim
s→∞

∣∣∣∣
(kps+ ki)B

s(s+ α)(s+ β)

∣∣∣∣ = 0 < 1,

we have thatSN = ∅ by definition (2.3) ofSN . Thus,S1 = S0; see Figure 2.3.
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k i

kp
∞

ki = (α+β)(αβ+Bkp)/B

S0 = S1

Figure 2.3: The stabilizing region ofkp andki gains for the delay-free closed-loop system,
i.e.,S0. The area is under the line with a slope of(α+β) and ay-intercept ofαβ(α+β)/B.
Moreover, sinceSN = ∅, S1 = S0.

2.3.3 ComputingSL and SR

First, we give an outline of the proof and then we turn to the formal derivations. The

stability regionSR will be derived by using some of the tools in Section 2.2.5. Because we

consider only positive gain values, we ignore the two cases of (2.7) and (2.9). Using the

fact thatSR,k̂p
= S1,k̂p

\ S+

L,k̂p
= S1,k̂p

\ (S+

L,k̂p
∩ S1,k̂p

), we can facilitate the derivation of

SR by consideringS+

L,k̂p
∩ S1,k̂p

instead ofS+

L,k̂p
. In turn,S+

L,k̂p
∩ S1,k̂p

can be obtained by

using the restriction ofΩ+ to the case in which
√
M(ω) ∈ S1,k̂p

(see (2.6)), and we use

this restriction in the derivation ofS+

L,k̂p
∩ S1,k̂p

. After computingS1,k̂p
\ (S+

L,k̂p
∩ S1,k̂p

),

the stability regionSR is obtained as in (2.5).

We now turn to the formal derivation ofSL andSR. Throughout the chapter, simple

proofs and arguments will be omitted tacitly.
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For the transfer function in (2.2),R0(s) andM(ω) are given as follows:

R0(s) =
B

s(s+ α)(s+ β)

=
B

s3 + (α+ β)s2 + αβs
, (2.14)

M(ω) =
1

|R0(jω)|2
− k̂2

pω
2

=
(α+ β)2ω4 + ω2(ω2 − αβ)2

B2
− k̂2

pω
2

=
ω2 ·Q(ω)

B2
, (2.15)

where

Q(ω) = ω4 + (α2 + β2)ω2 + (α2β2 −B2k̂2
p) . (2.16)

We start by computing the conditions in (2.8). First, the following sequence of lemmas

2.3.1, 2.3.3, and 2.3.5 gives a lower bound onω ∈ Ω+.

Lemma 2.3.1 For the biquadratic polynomialQ(ω) defined in (2.16),Q′(0) = 0 and

Q′(ω) > 0 for ω > 0, i.e.,Q(ω) is strictly increasing forω > 0.

Proof SinceQ′(ω) = 4ω3 + 2(α2 + β2)ω = 2ω(2ω2 + α2 + β2) andω > 0, Q′(ω) > 0,

i.e.,Q(ω) is strictly increasing forω > 0.

Definition 2.3.2 Defineγ = αβ/B—we will refer toγ as the critical value of the propor-

tional gain. If k̂p > γ, then the functionωmin(k̂p) is

ωmin(k̂p) =

√√√√−(α2 + β2) +
√

(α2 − β2)2 + 4B2k̂2
p

2
.

For simplicity, the argument̂kp will be omitted when it is clear from the context, i.e., we use

ωmin.
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Lemma 2.3.3 As defined above,ωmin has the following properties:

• ωmin is real and positive,

• ωmin is strictly increasing,

• limk̂p→γ+ ωmin(k̂p) = 0, and

• Q(ωmin) = 0.

Proof First, note that(α2 − β2)2 + 4B2k̂2
p > 0. Since

(α2 − β2)2 + 4k̂2
pB

2 > α4 + β4 − 2α2β2 + 4
α2β2

B2
B2

= (α2 + β2)2 ,

we have thatωmin ∈ R andωmin > 0. Since the square root function is increasing and

when k̂p > γ, 4B2k̂2
p is strictly increasing, it follows thatωmin(k̂p) is strictly increasing

as well. The last two properties can be proven by substitution, i.e.,ωmin(γ
+) = 0 and

Q(ωmin) = 0.

Definition 2.3.4 We define the setΩ as follows

Ω =





(0,∞) if k̂p ≤ γ,

[ωmin,∞) otherwise.

Lemma 2.3.5 For ω > 0, the inequalityQ(ω) ≥ 0 holds if and only ifω ∈ Ω.

Proof SinceΩ ⊆ (0,∞), it is enough to show thatQ(ω) ≥ 0 if ω ∈ Ω andQ(ω) < 0 if

ω ∈ (0,∞) \ Ω. From Lemma 2.3.1,Q(ω) > Q(0) = α2β2 − B2k̂2
p. Now, there are two

cases

• If k̂p ≤ γ,Q(ω) > α2β2 −B2k̂2
p ≥ 0 for ω > 0.
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• If k̂p > γ, Q(0) = −|α2β2 − B2k̂2
p| < 0. Because of the monotonicity ofQ(ω),

there exists one and only oneω0 > 0 such thatQ(ω0) = 0. From Lemma 2.3.3,

ω0 = ωmin. Now, for ω ≥ ωmin, Q(ω) ≥ Q(ωmin) = 0. For 0 < ω < ωmin,

Q(ω) < Q(ωmin) = 0.

The following corollary is a consequence of Lemma 2.3.5 and (2.15).

Corollary 2.3.6 The two conditionsω > 0 andM(ω) ≥ 0 hold if and only ifω ∈ Ω.

Before proceeding to compute the third conditionL(ω) ≤ d in (2.8), we give an upper

bound onω. This bound will greatly simplify the evaluation ofL(ω). The upper bound

on ω is derived from looking ahead to (2.6) and excluding values of ω that would give

ki =
√
M(ω) /∈ S1,k̂p

. The bound will be derived utilizing the following two lemmas 2.3.7

and 2.3.8.

Lemma 2.3.7 The functionki(ω) =
√
M(ω) is strictly increasing in the intervalΩ.

Proof Sinceki(ω) = (1/B)
√
ω2Q(ω), it is enough to show that forω ∈ Ω, Y (ω) =

ω2Q(ω) is strictly increasing. Forω ∈ Ω, Y ′(ω) = 2ωQ(ω) + ω2Q′(ω) > 0.

Lemma 2.3.8 If k̂p ≤ γ, limω→0+

[√
M(ω)

]
= 0. Otherwise, i.e.,̂kp > γ,

√
M(ωmin) =

0. In both cases,limω→∞

√
M(ω) = +∞.

Proof If k̂p ≤ γ,

lim
ω→0+

[√
M(ω)

]
= lim

ω→0+

[
(1/B)

√
ω2Q(ω)

]

= (1/B)
√

(0)Q(0) = 0 .

If k̂p > γ,
√
M(ωmin) = (1/B)

√
ω2

minQ(ωmin) = 0. In both cases,limω→∞

√
M(ω) =

+∞.
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Sinceki(ω) =
√
M(ω) increases monotonically withω and because of Lemma

2.3.8, there exists one and only oneωmax such that
√
M(ωmax) = ki,max (see (2.13)).

Moreover, forω ∈ Ω, ki(ω) < ki,max if and only if ω < ωmax. Therefore, forω ∈ Ω,

(k̂p, ki(ω)) ∈ S1,k̂p
if and only if ω < ωmax.

The value ofωmax is given by the following lemma.

Lemma 2.3.9 The value of

ωmax =

√
αβ +Bk̂p

is the only positive real value that solves

ki,max =
√
M(ωmax) =

(α+ β)(αβ +Bk̂p)

B
. (2.17)

Proof First, note thatωmax ∈ R and thatωmax > 0. Also, ωmax satisfies (2.17). The

uniqueness of such value follows directly from the monotonicity of
√
M(ω) in the interval

ω ∈ Ω.

In the sequel, we confine our analysis to the setsΩu andΩ+
u that useωmax and are

given in the following definition.

Definition 2.3.10 The setsΩu andΩ+
u are defined as

Ωu = Ω ∩ (0, ωmax) ,

Ω+
u = Ω+ ∩ (0, ωmax) .

We next study the third condition in (2.8)

L(ω) =
π + ∠[(

√
M(ω) + jk̂pω)R0(jω)]

ω
≤ d . (2.18)

The following two lemmas 2.3.11 and 2.3.13 will simplify thestudy ofL(ω). By conven-
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tion, we considerarctan (±∞) = ±π/2.

Lemma 2.3.11 Let θ1(ω) andθ2(ω) be

θ1(ω) = arctan

[
Bk̂p√
Q(ω)

]
,

θ2(ω) = π − arctan

[
ω2 − αβ
(α+ β)ω

]
.

Then, if
√
αβ < ω < ωmax, θ1(ω) + θ2(ω) > π.

Proof Since thearctan is a monotonically increasing function, it is enough to showthat

Bk̂p(α+ β)ω > (ω2 − αβ)
√
Q(ω) .

DefineV (ω) as

V (ω) = ω2(ω2 − 2αβ) + α2β2 −B2k̂2
p .

Note that ifω >
√
αβ, V (ω) is a strictly increasing function, and thus for

√
αβ < ω <

ωmax,

V (ω) < V (ωmax)

< ω2
max(ω

2
max − 2αβ) + α2β2 −B2k̂2

p

= 0 .

Therefore,ω4 + α2β2 −B2k̂2
p < 2αβω2.
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Now,

(ω2 − αβ)
√
Q(ω)

= (ω2 − αβ)
√
ω4 + (α2 + β2)ω2 + α2β2 −B2k̂2

p

< (ω2 − αβ)
√

(α2 + β2)ω2 + 2αβω2

= (ω2 − αβ)(α+ β)ω

< (ω2
max − αβ)(α+ β)ω

= Bk̂p(α+ β)ω ,

which proves the lemma.

Definition 2.3.12 We defineφ(ω), φ1(ω), andφ2(ω) as follows

φ(ω) = π + ∠[(
√
M(ω) + jk̂pω)R0(jω)] ,

φ1(ω) = θ1(ω) andφ2(ω) = θ2(ω)− π .

Lemma 2.3.13 If ω ∈ Ωu, thenφ(ω) = φ1(ω) + φ2(ω).

Proof Define

φ̃(ω) = φ(ω)− π = ∠[(
√
M(ω) + jk̂pω)R0(jω)] ,

z = −(α+ β)ω2 + jω(ω2 − αβ) .

Also, defineφ̃2(ω) as

φ̃2(ω) = ∠[R0(jω)] = ∠[z] .

Note thatφ1(ω) = ∠[
√
M(ω) + jk̂pω] ∈ (0, π/2]. Now, φ̃(ω) = φ1(ω) + φ̃2(ω) + 2πn,

wheren ∈ Z ensures that̃φ(ω) ∈ [−π, π). There are two cases:
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• Whenω ≤ √αβ, z belongs to the third quadrant in the complex plane, and so

φ̃2(ω) = −π − arctan

[
ω2 − αβ
(α+ β)ω

]
= φ2(ω)− π .

Sinceφ1(ω) ∈ (0, π/2] and φ̃2(ω) ∈ [−π,−π/2), φ1(ω) + φ̃2(ω) ∈ (−π, 0) ⊂

[−π, π), and thusn = 0. Consequently,φ(ω) = π + φ̃(ω) = π + φ1(ω) + φ̃2(ω) =

φ1(ω) + φ2(ω).

• Whenω >
√
αβ, z belongs to the second quadrant in the complex plane, and so

φ̃2(ω) = π − arctan

[
ω2 − αβ
(α+ β)ω

]
= θ2(ω) = φ2(ω) + π .

Sinceφ1(ω) ∈ (0, π/2], φ̃2(ω) ∈ (π/2, π), andφ1(ω) + φ̃2(ω) > π (Lemma 2.3.11),

φ1(ω) + φ̃2(ω) ∈ (π, 3π/2). Thus,n = −1. Consequently,φ(ω) = π + φ̃(ω) =

π + φ1(ω) + φ̃2(ω)− 2π = φ1(ω) + φ2(ω).

Utilizing Lemma 2.3.13, we expressL(ω) as

L(ω) =
φ(ω)

ω
=
φ1(ω) + φ2(ω)

ω
.

We then state the following result.

Lemma 2.3.14 The functionL(ω) is strictly decreasing forω ∈ Ωu.

Proof First, note thatφ ∈ [0, 2π) ≥ 0. Next, forφ1(ω),

φ′

1(ω) = −Bk̂p[2ω
3 + (α2 + β2)ω]

[Q(ω) +B2k̂2
p]

√
Q(ω)

< 0

if ω ∈ Ωu. As forφ2(ω),

φ′

2(ω) = − (α+ β)(ω2 + αβ)

(ω2 + α2)(ω2 + β2)
< 0
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if ω ∈ Ωu. Sinceφ(ω) = φ1(ω) + φ2(ω) for ω ∈ Ωu, φ′(ω) < 0 for ω ∈ Ωu.

SinceL(ω) = φ(ω)/ω, taking the derivative of both sides yields

L′(ω) =
ω · φ′(ω)− φ(ω)

ω2
< 0

for ω ∈ Ωu (note thatφ(ω) ≥ 0 andω · φ′(ω) < 0). Hence,L(ω) is strictly decreasing

function ofω for ω ∈ Ωu.

Now, we are ready to determine the setsΩ+
u , S+

L,k̂p
∩S1,k̂p

, andSR,k̂p
. Keep in mind,

as reading through the proofs of Lemma 2.3.15 and Corollary 2.3.16, to consult Figure 2.4

that illustrates the computation ofΩ+
u andS+

L,k̂p
∩ S1,k̂p

.

Lemma 2.3.15 The setΩ+
u is given byΩ+

u = [ω+, ωmax), where

ω+ =





ωmin if k̂p > γ andL(ωmin) ≤ d

ωd otherwise,

andωd is the unique value such thatωd > 0, ωd > ωmin if k̂p > γ andL(ωmin) > d, and

L(ωd) = d.

Proof By definition,Ω+
u = {ω ∈ Ωu : L(ω) ≤ d}. First, note thatL(ω) is continuous and

strictly decreasing ofω ∈ Ωu and thatL(ωmax) = 0. Consider the following cases:

• If k̂p ≤ γ, Ωu = (0, ωmax). SinceL(ω) = φ(ω)/ω andφ(0) = φ1(0) + φ2(0) > 0,

limω→0+ L(ω) = +∞ > d. Then, there exists one and only oneωd such that0 <

ωd < ωmax andL(ωd) = d. Therefore,L(ω) ≤ d if and only if ωd ≤ ω < ωmax.

Hence,Ω+
u = [ωd, ωmax) = [ω+, ωmax); see Figure 2.4(a).

• If k̂p > γ andL(ωmin) > d, there exists one and only oneωd such thatωmin < ωd <

ωmax andL(ωd) = d. Then, the analysis proceeds similarly to the previous case; see

Figure 2.4(b).
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• If k̂p > γ andL(ωmin) ≤ d, Ω+
u = [ωmin, ωmax) = [ω+, ωmax); see Figure 2.4(c).

Corollary 2.3.16 The setS+

L,k̂p
∩ S1,k̂p

is given by

S+

L,k̂p
∩ S1,k̂p

= {(k̂p, ki) : ki ∈ [
√
M(ω+), ki,max)} .

Proof

S+

L,k̂p
∩ S1,k̂p

= {(k̂p,
√
M(ω)) : ω ∈ Ω+

u } .

Using lemmas 2.3.7–2.3.9, we obtain that

S+

L,k̂p
∩ S1,k̂p

= {(k̂p, ki) : ki ∈ [
√
M(ω+), ki,max)} .

Corollary 2.3.17 The setSR,k̂p
is given by

SR,k̂p
= {(k̂p, ki) : ki ∈ (0,

√
M(ω+))} .

Proof From the definition ofSR,k̂p
= S1,k̂p

\ S+

L,k̂p
, we obtain that

SR,k̂p
= {(k̂p, ki) : ki ∈ (0, ki,max) \ [

√
M(ω+), ki,max)} ,

which proves the corollary.

Remark 2.3.18 Note that when̂kp > γ andL(ωmin) ≤ d, Ω+
u = [ωmin, ωmax), S+

L,k̂p
∩

S1,k̂p
= {(k̂p, ki) : ki ∈ [0, ki,max)}, andSR,k̂p

= ∅; see Figure 2.4(c).

Remark 2.3.18 enables us to obtain an exact upper bound,kp,max, on the values of

stabilizingkp.
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Figure 2.4:L(ω) versusω (upper) and
√
M(ω) versusω (lower): (a) when̂kp ≤ γ; (b)

whenk̂p > γ andL(ωmin) > d; (c) whenk̂p > γ andL(ωmin) ≤ d.

Definition 2.3.19 DefineL̃(k̂p) as

L̃(k̂p) = L
(
ωmin(k̂p)

)
.

Lemma 2.3.20 The functionL̃(k̂p) is given by

L̃(k̂p) =
1

ωmin

(π
2

+ φ2(ωmin)
)
.

Moreover,L̃(k̂p) is a strictly decreasing function of̂kp,

lim
k̂p→γ+

L̃(k̂p) = +∞ , and lim
k̂p→∞

L̃(k̂p) = 0 .

Proof By Lemma 2.3.3,
√
Q(ωmin) = 0. Thus,

L̃(k̂p) = L(ωmin) =
1

ωmin

(π
2

+ φ2(ωmin)
)
.

Defineψ(ωmin) = π/2 + φ2(ωmin). First, note that sinceωmin > 0,

φ2(ωmin) = − arctan{[ω2
min − αβ]/[(α + β)ωmin]} ∈ (−π/2, π/2) .
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Since forωmin > 0,

dψ(ωmin)

dωmin

= − (α+ β)(ω2
min + αβ)

(ω2
min + α2)(ω2

min + β2)
< 0

andψ(ωmin) ∈ (0, π) > 0, then

dL(ωmin)

dωmin

=
ωmin · ψ′(ωmin)− ψ(ωmin)

ω2
min

< 0 .

By the chain rule and from Lemma 2.3.3,

dL̃(k̂p)

dk̂p

=
dL(ωmin)

dωmin

dωmin

dk̂p

< 0 .

As for the limits part of the Lemma,

lim
k̂p→γ+

L̃(k̂p) = lim
ωmin→0+

L(ωmin) = +∞ ,

lim
k̂p→∞

L̃(k̂p) = lim
ωmin→∞

L(ωmin) = 0 .

Lemma 2.3.21 The setSR,k̂p
6= ∅ if and only if k̂p < kp,max, wherekp,max is the unique

value such that

L̃(kp,max) = d .

Proof First, we prove the uniqueness ofkp,max. Note thatL̃(k̂p) is defined only for̂kp > γ.

From Lemma 2.3.20, there exists one and onekp,max > γ such that̃L(kp,max) = d.

We next prove that if̂kp ≥ kp,max, thenSR,k̂p
= ∅.

First, k̂p ≥ kp,max > γ. SinceL̃(k̂p) is strictly decreasing (Lemma 2.3.20),

L(ωmin(k̂p)) = L̃(k̂p) ≤ L̃(kp,max) = d .
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Therefore, from Remark 2.3.18,SR,k̂p
= ∅.

Now, it remains to prove the last step, ifk̂p < kp,max, thenSR,k̂p
6= ∅. When

k̂p < kp,max, there are two cases:̂kp ≤ γ or γ < k̂p < kp,max. If k̂p ≤ γ, then since

ωd > 0,
√
M(ωd) =

√
M(ω+) > 0 by lemmas 2.3.7 and 2.3.8. Thus from Corollary

2.3.17,SR,k̂p
6= ∅. If γ < k̂p < kp,max, then from Lemma 2.3.20,

L̃(k̂p) > L̃(kp,max) = d .

Sinceωd > ωmin,
√
M(ωd) =

√
M(ω+) > 0. Thus from Corollary 2.3.17,SR,k̂p

6= ∅,

which proves the lemma.

We now state the main result in this chapter.

Theorem 2.3.22The complete region of stabilizingkp andki gain values isSR, where

SR = {(kp, ki) : kp ∈ (0, kp,max), ki ∈ (0,
√
M(ω+))} ,

andkp,max andω+ were defined in lemmas 2.3.21 and 2.3.15, respectively.

Proof It follows from Lemmas 2.3.1–2.3.21.

Theorem 2.3.22 allows us to calculate the complete stability region of a PI controller

for given network parameters,N , C, andd. Usually,C is constant and known by the

network administrator unliked andN . The following remark facilitates the computation

of SR when the values ofd andN are unknown.

Remark 2.3.23 As in [10], it can be shown thatSR shrinks asd increases and thatSR

expands asN increases. Therefore, given a minimum number of TCP sessionsN0, a maxi-

mum round-trip delayd0, and a link capacityC, SR obtained forN0, d0 andC will stabilize

the system for allN ≥ N0 andd ≤ d0. Consequently, precise values ofd andN are not

required. An overestimated value ofd and an underestimated value ofN lead to increased

stability robustness.
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2.4 Simulations

In this section, we use experiments to

• Validate the theoretical analysis of the previous section by comparing results for

controller parameters that are theoretically stable with others that are theoretically

unstable.

• Stress the importance of obtaining the complete stability region,SR, for the PI AQM

by showing that some theoretically stable controllers can outperform other stable

ones based on [30] and [32].

2.4.1 Simulation Methodology

We consider a simulation environment similar to the one in [30]. There areN TCP sources

that share a single bottleneck link withC = 3750 packets/second (corresponding to15

Mbps with average packet size of500 Bytes). Moreover,q0 = 200 packets and the queue

limit is 1000 packets. In our experiments, we use long-lived FTP sessions.

We use Theorem 2.3.22 to plotSR for C = 3750 packets/second,N andd, where

the two parametersN andd will be varied across experiments.

To compare the performance of different controller parameters, we employ the

queue’s speed of convergence as a comparison criterion. That is, if one controller,g1 =

(k1
p, k

1
i ), causes the queue length,q(t), to converge toq0 faster thang2 = (k2

p, k
2
i ), theng1

is preferableto g2.

2.4.2 Theoretically Stable and Unstable Controllers

The stability analysis is validated by comparing a controller that is provably stable with

one that is provably unstable. Since the stability region depends on various parameters, a

provably stable controller is one that falls within the stability region corresponding to the

31



k i

kp

 0

 0.02

 0.04

 0.06

 0  0.002  0.004  0.006  0.008  0.01

p2

SR(ds)

1e-3

5e-4

0
8e-44e-40

p1

SR(dl)

Figure 2.5: The two stability regions corresponding tods = 60 msec anddl = 167 msec
along with the pointsp1, insideSR(dl), andp2, outsideSR(ds).

most conservative estimate of the parameters. Analogously, a provably unstable controller

is one that falls outside the stability region obtained withthe most optimistic estimate of

the parameters. For example, the stability region depends on the maximum RTTd, which

in turn depends on queueing delays. The most conservative estimate of d assumes the

longest possible queueing delays; the most optimistic estimate ofd assumes that there

are no queueing delays. The stability analysis is validatedby comparing the behavior

of a theoretically stable controller corresponding to the longest RTT with a theoretically

unstable controller that violates stability even for the shortest RTT.

Consider the network parameters stated in Section 2.4.1. We assume that there are

N = 100 FTP sessions having homogeneous end-to-end fixed delays of 60 msec. The

shortest expectedd is ds = 60 msec (assuming no queueing delays) and the longest ex-

pectedd is dl = 167 msec (assuming a maximum queue length of400 packets). Using

Theorem 2.3.22, we plot the twoSR’s: SR(ds) andSR(dl) in Figure 2.5. In this pedagogi-

cal example,SR(ds) is considered merely for the validation of the theoretical analysis and

it ought not to be considered for selectingkp andki for a network with similar parameters.

The reason is that to attain stability that is robust to time delay uncertainties, control design

should take into account the largest expectedd [58]. From Figure 2.5, one can note that
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Figure 2.6: The queue size when using the two sets of(kp, ki) parameters corresponding to
the pointsp1 andp2.

SR(dl) ⊂ SR(ds) as implied by the definition ofSR in Section 2.2.5. Also, one can note

thatSR(ds) is much larger thanSR(dl).

We choose a provably stable controllerp1 ∈ SR(dl), i.e., insideSR(dl), and a prov-

ably unstable controllerp2 /∈ SR(ds), i.e., outsideSR(ds); see Figure 2.5. Figure 2.6

compares the instantaneous queue length,q(t), for the two sets of(kp, ki) parameters de-

fined by the pointsp1 andp2. With p1, the queue exhibits small variations aroundq0. On

the contrary, withp2, the queue hits zero very frequently and its oscillations are large and

severe. To further analyze the nature ofq(t) oscillations in Figure 2.6, we use the discrete

Fourier transform (DFT) technique [56] to plot the Frequency Spectrum ofq(t), which is

shown in Figure 2.7. Figure 2.7 confirms that when usingp1, the queue oscillations are but

random fluctuations aroundq0. In contrast, when usingp2, the oscillations show conspicu-

ously repetitive and persistent pattern. Consistent with the terminology of [27, 44, 48],p1,

a theoretically stable controller, yields astableregime whereasp2, a theoretically unstable

controller, yields anunstableregime.
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2.4.3 SR versus∆PI and ΞPI

In this section, we compare the performance of different control parameters chosen inside

SR. The simulation environment usesN1 = 25 FTP sessions that start att = 0 sec, and

anotherN2 = 175 sessions that start att = 50 sec. Propagation delays for all flows are

chosen randomly from a uniform distribution in[60, 200] msec. The most conservative

estimate ofd assumes the largest expectedd and the most conservative value ofN assumes

the least expectedN (see [10] for details). Consequently, we obtainSR for C = 3750

pkt/sec,N = 25, andd = 0.3 sec; see Figure 2.8. The line segmentΞPI and the point

∆PI (see Section 2.2.4) are superimposed on the same figure. NotethatΞPI starts from the

origin and terminates exactly at the boundary ofSR and that∆PI ∈ ΞPI.
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First, we study the performance of PI parameters proposed byprevious work [30,

32]. We select four points onΞPI (Figure 2.8):

• p1 = ∆PI, the point prescribed in [30].

• p2, an arbitrary point betweenp1 andp3.

• p3, a point that is approximately in the middle of thekp range.

• p4, the point that terminatesΞPI and gives the largest possible values of bothkp and

ki on that line.

As clearly seen in Figure 2.9, the performance improves by moving the point on

ΞPI toward the right, i.e., increasing the PI gains. Conservative gains of∆PI cause a large

overshoot inq(t) and yield a drastically slow convergence; see Figure 2.10. Given that pre-

vious research experiments used only∆PI in the PI simulations, Figs. 2.8 and 2.10 explain

clearly the sluggish responsiveness previously observed about PI. Among the points on

ΞPI, p4 achieves the best performance.

To explore the performance of the PI controller for other points insideSR, four

points—p5, p6, p7 andp8—are chosen insideSR but off ΞPI; see Figure 2.8. When using

these points, the corresponding queue response is shown in Figure 2.11. The same figure

also shows the response ofp4. Clearly,p5, p6, andp7 show superior performance overp4.

Among them,p5 gives the best results.

2.4.4 Discussion

Sections 2.4.2 and 2.4.3 highlight the distinction betweenstability and performance. In-

formally, stability assesses whether a system’s state converges toward a target trajectory.

That is, a stable system is a system whose state converges eventually toward a target trajec-

tory whereas an unstable system is a system whose state neverconverges toward a target

trajectory. On the other hand, performance gauges the quality of a stable system as its
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state converges toward a target point, for instance, how fast or slow the convergence is.

As we have seen in Section 2.4.2,p1 results in a stable regime whilep2 results in an un-

stable regime. In comparison, in Section 2.4.3,p1–p8 are all stable controllers but they

exhibit widely different levels of performance. The advantage ofSR is that it gives the re-

gion of all stabilizing controllers, and thus it avoids choosing conservative parameters, e.g.,

p1 = ∆PI, or even more radically conservative ones, e.g.,(10−20, 10−20). This advantage of

SR is manifested most when designing controller gains to guarantee stability that is robust

to network parameter uncertainties, e.g., to account for larged and smallN , becauseSR

admits stable controller gains that are more aggressive, i.e., achieve improved convergence

properties, than∆PI andΞPI.

2.5 Conclusions

This chapter makes an indispensable contribution to the understanding of PI AQM by

providing an analytical characterization of its complete stability region. The chapter has

demonstrated the importance of obtaining the complete stability region by presenting ex-

amples of PI controllers that are stable and have significantly better performance than pre-

viously proposed ones. While we have focused the analysis on PI, other AQM schemes can

benefit from the results and the analysis discussed in this chapter.
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Chapter 3

Decentralized and Dynamic Bandwidth

Allocation in Cyber-Physical Systems

In this chapter, we propose a bandwidth allocation scheme for Cyber-Physical Systems that

have their control loops closed over a distributed network,such as the Internet. We first

formulate the bandwidth allocation as a convex optimization problem. We then present an

allocation scheme that solves this optimization problem ina fully distributed manner. In

addition to being fully distributed, the proposed scheme isasynchronous, scalable, dynamic

and flexible. We further discuss mechanisms to enhance the performance of the allocation

scheme. We present analytical and simulation results.

3.1 Introduction

Networked embedded devices are becoming increasingly ubiquitous in our physical envi-

ronments and will lead to the formation ofCyber-Physical Systems(CPSs) [41]. CPSs in-

tegrate sensing, processing, and actuation tasks that enable remote monitoring and control

of the physical world; see Figure 3.1. Representative applications include industrial au-

tomation, distributed instrumentation, unmanned vehicles, home robotics, distributed vir-

tual environments, power distribution, and building structure control [5, 7, 42, 43]. Since
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Figure 3.1: CPSs integrate sensing, processing, and actuation tasks that enable for remote
monitoring and control of the physical world. Figure is adopted from [6, 42].

CPSs are concerned with real-time actuation and control, they differ significantly from

sensor networks, whose primary scope is data acquisition inwireless, energy-constrained

environments. CPSs’ strength stems from the integration of the physical world with the

cyber world; however, this integration poses fundamental challenges to the methods and

protocols of communication networks. In general, existingcommunication methods may

no longer be applicable when interconnected devices both sense and operate on a physical

environment. For example, CPSs nodes should communicate with each other at a rate that

is appropriate for the physical environment being controlled. Since CPSs involve control

and actuation on the physical world, CPSs rate control is likely to differ significantly from

congestion control for bulk data transfer, for multimedia traffic, or for sensor networks.

Although existing congestion control techniques may proveto be an important source of

inspiration, their applicability to CPSs is an open problem.

In this chapter, we propose an adaptive transmission-rate scheme to allocate the

bandwidth among several CPSs. The bandwidth allocation problem is an inherent and

a crucial issue because bandwidth is a finite resource to be shared among several CPSs.

Without bandwidth management, congestion becomes a commonconsequence. Conges-

tion is undesirable because it leads to long queueing delays, packet losses or both. In turn,

long delays and packet losses deteriorate CPSs performance and jeopardize the stability
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of the underlying physical system. Therefore, the objective is to allocate the bandwidth

among CPSs to control congestion and to meet each system’s requirement as best as possi-

ble. To achieve this objective, our proposed scheme mandates CPSs to adapt their sampling

intervals based on the congestion level fed back from the network.

Summary of Contributions

The main contribution of this chapter is that we propose a bandwidth allocation scheme for

CPSs that has the following features:

• It allocates the bandwidth in a way to ensure stability of allcontrol systems, if feasi-

ble.

• It allocates the bandwidth in a way to attain the maximumaggregateperformance of

all control systems.

• It makes use of network bandwidth efficiently; controls congestion, thus minimizes

delays and losses; and achieves fairness by fulfilling performance objectives of dif-

ferent control loops.

• It provides afully distributed, asynchronous, andscalablesolution. Each node ex-

ecutes an independent algorithm using local information with no central managing

entity. The approach scales up as the number of controlled systems and/or the size of

the network increase.

• It is dynamic, adaptable, andflexible. It dynamically reallocates the bandwidth as

different control systems acquire and relinquish network resources.

Along with the above main contribution, this chapter has several specific contri-

butions, which are summarized as follows. First, we formulate the bandwidth allocation

problem as a mathematical optimization problem (Section 3.3). An optimization approach
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is both natural and necessary because it determines the optimal transmission rates of the in-

dividual CPSs such that the overall CPSs performance is maximized, subject to network and

stability constraints. Since our optimization formulation has similarities with mathematical

formulations used for bulk-data congestion control, the solution of our optimization prob-

lem and thus our approach can borrow some of techniques used for bulk-data congestion

control (e.g., [45]). However, the central concerns are different. CPSs usually have strin-

gent real-time requirements necessary to ensure the stability and safety of CPSs whereas

bulk-data flows can often tolerate transient poor levels of QoS. To make certain that the

allocation scheme fulfills CPSs requirements, we develop a dynamical system model that

describes the interaction between CPSs and the network. We then use this model to analyze

and to enhance the dynamic properties of the allocation scheme (Section 3.4). For exam-

ple, using this model, we show that a gradient-based approach (as in [45]) exhibits steady-

state queue backlogs (Section 3.5). Although this side effect, i.e., the steady-state error,

was previously observed in the literature when conducting simulations, it has never been

precisely quantified. In contrast, we derive closed-form expressions for the steady-state

error and show its dependency on the number of CPSs and on othernetwork parameters

(Section 3.5). To remedy the steady-state error in the queuelength, we use a proportional-

integral (PI) controller, which effectively stabilizes the queue length around a small refer-

ence value (Sections 3.4 and 3.5). Moreover, we characterize thecomplete robust-stability

region of the PI controller (Sections 3.6 and 3.7). The complete robust-stability region

gives the complete space of the controller parameters that ensure the stability of the alloca-

tion scheme even when round-trip delays and model parameters are unknown. Finally, we

present packet-level simulations to evaluate the proposedallocation scheme and to validate

the theoretical results (Section 3.8).
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3.2 Related Work

3.2.1 Congestion Control in IP Networks

Addressing the bandwidth allocation problem in data communication networks using the-

oretical approaches is not a new subject. For example, [37, 45] formulated the bandwidth

allocation problem as an optimization problem, and proposed distributed solutions for the

problem. Although both papers started with exactly the sameoptimization formulation,

they pursued different approaches to solve the problem, resulting in two different control

algorithms:primal anddual. In the primal algorithm as in [37], sources adjust their trans-

mission rate usingdynamiccontrol laws, while links compute congestion level usingstatic

laws. Conversely, in the dual algorithm as in [45], sources’ algorithms are static and links’

algorithms are dynamic [47]. Much research has then targeted stability analysis of each

algorithm, especially the algorithm of [37] (see for example [35, 40, 50, 64, 69]).

Since the primal algorithm solves a relaxation rather than the exact version of the

original optimization problem [37], we adopt the approach in [45], which indeed solves

the original optimization problem exactly [46]. However, [45] did not address the issue

of steady-state backlog in queue lengths. Also, it did not detail how to ascertain the al-

gorithm’s step size to maintain stability or to achieve faster convergence to steady state (it

only suggests that the algorithm’s step size must be chosen sufficiently small). To elimi-

nate the problem of steady-state backlog, a new link controlalgorithm, called REM, was

then proposed in [15], but again no details were given to determine the controller gains.

The stability of the dual algorithm in the presence of delayswas analyzed in both [53, 54].

However, [53] dealt with the first-order controller, i.e., the proportional controller, that

exhibits steady-state error and [54] dealt only with a special family of utility functions.

In this chapter, we use a Proportional-Integral (PI) controller for optimization-based

congestion control. PI control has the ability to eliminatethe steady-state error [23] and to

stabilize the queue length around a reference level. PI was first proposed as an AQM in [32]
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but for TCP flows. In [32], only a subset of the stable gains was given. This subset forms a

line segment in the space of control parameters. In contrast, we derive the completeregion

of stabilizing control parameters. Furthermore, unlike [61], our analysis provides robust

stability conditions in that it ensures the allocation scheme’s stability for uncertain values

of delays and utility functions, and does not require exact values of them.

3.2.2 Bandwidth Allocation in CPSs

The issue of bandwidth management in networked sensing, actuation and control systems

(known asNetworked Control Systems[72]) has gained considerable research attention;

see for example [13, 63, 65] and the references contained therein. However, all such re-

search efforts have focused on bandwidth scheduling in limited (local) area networks, e.g.,

in a car, in an airplane, or in a factory. Several factors hinder the extension of such band-

width scheduling schemes to the domain of Wide Area Networks(WANs), such as the

Internet [66]. These schemes usually require time synchronization among the different de-

vices in the network (such as in TDMA-based schemes), or constrain physical distances

over which the scheme can operate (such as in CSMA-based schemes, e.g., CAN protocol

[65]). Moreover, the allocation schemes are either static or dynamic. Static schemes, where

allocation is determined pre-run, lack flexibility and adaptability to dynamic changes. Dy-

namic schemes, on the other hand, required centralized implementations. Reference [13]

discussed various examples and differences between staticand dynamic approaches, and

between TDMA- and CSMA-based approaches.

In this chapter, we propose a bandwidth allocation scheme for CPSs that is asyn-

chronous, dynamic and flexible, and fully distributed. To the best of our knowledge, there

has been no prior research into bandwidth allocation for CPSs. In our scheme, CPSs adapt

their bandwidth usage by varying their sampling intervals based on a feedback from the

network so as to avoid network congestion, and to preserve high control performance lev-

els. It is worthwhile here to evaluate the ideas presented in[25] and in [63]. In [25], the
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Sensor

Controlled System

Actuator

Network Controller

Figure 3.2: A Cyber-Physical System with one controlled system (a.k.a.plant) and one
controller. Both the sensor and the actuator are collocated at the plant site.

authors proposed an algorithm to adapt the sampling interval of controlled systems imple-

mented over a CAN bus based on two factors, network load and stability threshold. The

algorithm per se is special to CAN in the way it determines the network load. Moreover, the

heuristic of increasing and decreasing the sampling interval has no mathematical justifica-

tion. The algorithm proposed in [63] uses the network’s available bandwidth and the error

in each system’s state to adapt the sampling interval. However, the paper fails to discuss

an important implementation issue: measuring the occupiedbandwidth (to be used along

with the network’s capacity to obtain the amount of unused bandwidth). In this chapter,

we introduce an approach that relies on solid mathematical foundations, and we discuss its

implementation details over IP networks. We also present results from a network simulator

that was extended to simulate control systems [19].

3.3 Problem Formulation

3.3.1 On the Wire

Figure 3.2 shows a configuration of a single CPS in which the feedback loop is closed over

a network. In general, the sensor samples the values of physical quantities, writes them in a

packet, and sends the packet to the controller. The controller examines the received sample

to generate a control signal that is then sent to the actuator.

The time interval between two sample packets is called thesampling interval, and it
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is denoted byh. In other words, the sensor sends one packet containing sample data every

h seconds. The reciprocal of the sampling interval,

r =
1

h
, (3.1)

is therate of transmission from the plant to the controller. The rate can be similarly de-

fined in the reverse path from the controller to the plant. Although, in principle, the rates

in the two paths could differ, in most CPS applications, the two rates are identical. The

transmission rate is the amount of bandwidth resources thata particular plant-controller

pair consumes. If the rate exceeds the end-to-end availablebandwidth, the network iscon-

gested, and the communication is then characterized by packet losses, delays, and jitter. In

principle, the rate should be small enough to avoid congestion. However, a CPS typically

benefits from higher sampling rates. For example, the physical behavior usually tracks

more closely the intended reference behavior if the sampling rate is higher. In some ex-

treme circumstances, a very low sampling rate may cause the physical system to become

unstable, in which case even small perturbations can cause massive breakdowns. Hence,

the sampling rater must strike a balance between network utilization and intended physical

behaviors. The sampling rate is thus a critical tuning factor in CPSs.

The effect of the transmission rater on the physical system dynamics is often cap-

tured by autility function, U(r). The utility valueU(r) expresses the degree to which a

particular system can benefit from sampling rater. In general, the utility function is a

monotonically increasing function of the rater, which reflects the fact that higher sam-

pling rates lead to better control performance. In practice, the utility function is also often

a strictly concave function ofr, which reflects a law of diminishing returns as the rate

increases. Finally, the utility function is defined only forr ≥ rmin, wherermin is the min-

imum rate below which the system becomes unstable or has unacceptable behavior. To

carry out mathematical analysis easily, we pose an extra condition onU(r) in which we
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transmission rate,r, ([bits or packets]/sec)

U1(r)
U2(r)

Figure 3.3: Examples of two generic utility functions.

requireU(r) to be doubly differentiable. Figure 3.3 shows two generic examples of utility

functions associated with different applications. In the networked control systems liter-

ature, quadratic and exponential utility (performance) functions are commonly used for

optimization purposes of CPU- and bandwidth- scheduling algorithms [18].

3.3.2 Optimization Formulation

One of the major pillars of the bandwidth allocation scheme is to achievefairnessamong

individual CPSs [8]. As in [59], we define afair allocation to be the one thatmaximizes

the sum of the utility functions of individual CPSs, i.e., theaggregate benefit of all CPSs.

Then, consider a setS of CPSs using a setL of network links, where each linkl ∈ L has a

capacityCl. For each CPSi ∈ S, the objective is to determine its transmission rateri so as

to maximize the sum of utilities
∑

i∈S Ui(ri), subject to (a) each CPSi’s stability constraint

ri ≥ rmin,i, and (b) each linkl’s capacity constraint
∑

i∈Sl
ri ≤ Cl, whereSl is the set of

CPSs whose communication loops use linkl. We state our objective formally as [8]:

max
∑

i∈S

Ui(ri), (3.2)

s. t.
∑

i∈Sl

ri ≤ Cl,∀l ∈ L,

and ri ≥ rmin,i,∀i ∈ S.
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In this formulation, we assume that the communication loop for each CPS can use link

l only once. This assumption is always valid if all links are full duplex (in which case,

forward and backward traffic do not interfere).

Due to the concavity characteristic ofU(r), Equation (3.2) is a convex optimization

problem, which means it can be solved quickly and efficientlyto yield a global, optimal

solution [24]. However, the objective is to solve this program with a distributed approach

with no centralized coordination.

3.3.3 Distributed Implementation

Due to its convenient structure, Equation (3.2) can be decomposed into separable sub-

problems [49]. The solution can then be implemented in a distributed fashion, whereby

individual controlled systems and links execute independent algorithms. This solution is

achieved by considering a dual version of (3.2) that incorporates the Lagrange multipliers

for link capacity constraints [45]. We summarize next the distributed algorithm and the

protocol based on [45].

The algorithm works in an iterative manner until the optimalsolution is achieved.

Each linkl computes a congestion level,pl, based on local information, such as the aggre-

gate incoming traffic, the queue length or both. The computation of pl according to [45] is

as follows:

pl(t+ 1) = max

{
0, pl(t) + γ(

∑

i∈Sl

ri(t)− Cl)

}
, (3.3)

wherepl(t+1) andpl(t) are the congestion levels at the next and current steps, respectively;

γ > 0 is the step size;
∑

i∈Sl
ri(t) is the aggregate incoming rates at linkl; andCl is link l’s

capacity [45]. To carry congestion information from links back to plants, a special header

field is introduced in the sensor and the controller packets.When the sensor generates a

packet to carry the sampled data, the plant initializes the value of this field to zero. As the
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packet traverses network links in the directed path from thesensor to the controller and back

to the actuator, each link adds its current value ofpl to whatever value has accumulated in

the field. Thus, when the control packet arrives at the plant,this special field would contain

the total sum ofpl values of all individual links along the directed path from the sensor to

the controller and back to the actuator. Upon receiving the controller packet, the actuator

applies the control signal and the sensor regulates its sampling (sending) rater based on

the fed-back congestion information as follows:

r(pt) = min{max
{
U ′−1(pt), rmin

}
, rmax}, (3.4)

where

• pt is the value ofp in the received controller packet, which is the sum ofpl values of

all the links along the path from the plant to the controller and back to the plant;

• U ′−1 is the inverse of the derivative of the utility function;

• rmin is the minimum transmission rate that satisfies the stability condition of the

plant; and

• rmax is the maximum sampling rate and/or the maximum transmission rate a plant

can use, which may stem from inherent hardware limitations of the sensor.

Based on the newly computedr(pt), the value ofh is then calculated according to (3.1),

which defines the wait time before generating the next sample.

Introducing the header field in the sensor and controller packets to carry the value of

pl, we assumed that routers are aware of and can manipulate thisheader. Also, we assumed

that the overhead for this field is negligible (at most 64 bitsfor a double-precision floating-

point number) compared to the size of each packet. Such assumptions are often implied for

new congestion control protocols; see for example [36]. However, if practical implemen-

tations dictate otherwise, thepl value in our protocol can be quantized and encoded by the
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two ECN bits that already exist in transport protocols as in [68].

3.4 Link Queue Controllers

In this section, we model the interaction between controlled systems and network links

in the proposed allocation scheme as a time-delay dynamicalsystem. To facilitate the

analysis, we focus on fluid-based modeling that approximates the actual packet dynamics.

Utilizing the developed model, we then design controllers for link queues to enhance the

performance of the scheme. This approach gives rise to two types of feedback loops. The

first type of loop is for CPSs with distributed sensors, actuators, and controllers. The second

is the loop of the developed model that captures the interaction between CPSs and links.

Our focus in this chapter is on the second loop, where we design controllers to enhance

the performance of the bandwidth allocation scheme to better meet the requirements of the

CPSs loops.

3.4.1 Modeling CPS-Queue Interaction

Routers connect two or more network links. Thus, the link algorithm is actually executed at

the router deployed at the link’s input. Routers use buffers to hold incoming packets while

servicing others. Congestion at a link causes the buffer to fill and possibly to overflow.

Thus, congestion results in long delays, jitter, and packetlosses. The aim is to stabilize

the buffer’s queue around a controllable small length greater than zero, which has a two-

fold advantage. First, a stable, small queue length eliminates excessive delays, jitter, and

losses. Second, a queue length greater than zero avoids network underutilization because

the queue will always have packets to transmit. From this discussion, we regard the queue

length as the primary response variable to be controlled around a setpoint.

We model the interaction betweenN CPSs and a single bottleneck link. We denote

the forward delay from plantj to the queue by
−→
dj , and the backward delay from the queue
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Figure 3.4: Forward and backward delays. Figure is adapted from [69].

to the controller and back to plantj by
←−
dj ; see Figure 3.4. At time instantt, plantj transmits

packets at raterj(t). These packets start arriving at the queue and thus affecting the queue

length,q(t), after a delay
−→
dj , whereupon the queue computes a new value ofp(t). This new

value ofp(t) reaches plantj after a delay
←−
dj . The evolution of the queue length,q(t), in

time can be modeled as:

q̇(t) =





∑N
i=1 ri(t−

−→
di )− C if q(t) > 0

max
{∑N

i=1 ri(t−
−→
di )− C, 0

}
if q(t) = 0,

(3.5)

where
∑N

i=1 ri(t−
−→
di ) is the aggregate incoming traffic from all plants, andC is the band-

width capacity of the outgoing link. Each plantj computes its sending rate as follows:

rj(t) =
[
U ′−1

j

(
p(t−←−dj )

)]rmax

rmin

, j = 1, . . . , N , (3.6)

where[x]Mm = min {max{x,m},M}. (Note that (3.6) is a more complete version of (3.4)

because it incorporates delays.)

3.4.2 Linearized Model

In this chapter, we conduct a linear systems analysis to study the stability and the perfor-

mance of the system modeled by (3.5) and (3.6). To use linear analysis, we linearize (3.5)

and (3.6) in the neighborhood of the operating point(q0, rj0, p0), whereq0 > 0 is the de-

sired steady-state queue length,rj0 is the steady-state transmission rate of plantj, andp0
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is the steady-statep. According to (3.6),p0 andrj0 are related to each other according to

p0 = U ′

j(rj0) . (3.7)

We assume(q0, rj0, p0) is away from the boundary conditions in (3.5) and (3.6).

Therefore, (3.5) and (3.6) reduce to

q̇(t) =
N∑

i=1

ri(t−
−→
di )− C ,

rj(t) = U ′−1
j

(
p(t−←−dj )

)
, j = 1, . . . , N .

Combining these equations yields

q̇(t) =
N∑

i=1

U ′−1
i (p(t− di))− C , (3.8)

wheredi =
−→
di +

←−
di .

To linearize (3.8) about(q0, rj0, p0), we proceed as follows. First, define

f(p) = q̇(t) =
N∑

i=1

U ′−1
i (p(t− di))− C, (3.9)

andp = p(t− di). At the operating point(q0, rj0, p0), q̇(t) = 0. Thus,f(p0) = 0. Expand-

ing the right-hand side of (3.9) using Taylor series [67] about (q0, rj0, p0), and ignoring
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second- and higher-order terms yield

f(p) = f(p0) +
df(p)

dp

∣∣∣∣
p=p0

(p− p0)

=
N∑

i=1

d

dp
U ′−1

i (p)

∣∣∣∣
p=p0

(p− p0)

=
N∑

i=1

1

d
dri
U ′

i(ri)
∣∣∣
ri=ri0

(p− p0)

=
N∑

i=1

1

U ′′

i (ri0)
(p− p0) .

(The derivation proceeded from line 2 to line 3 by using the two facts:dx/dy = 1/(dy/dx),

i.e., the derivative identity of the inverse function, andp0 = U ′

j(rj0), see (3.7).) Next, define

δq(t) = q(t)− q0 andδp(t) = p(t)− p0. Therefore,

q̇(t) =
d(δq(t))

dt
=

N∑

i=1

1

U ′′

i (ri0)
δp(t− di) .

Thus, we obtain

d

dt
δq(t) =

N∑

i=1

βi · δp(t− di) , (3.10)

whereδq(t) = q(t) − q0 andδp(t) = p(t) − p0 are the perturbations ofq andp aroundq0

andp0, respectively, andβi = 1/U ′′

i (ri0).

To simplify the analysis, we further assume that delays among CPSs are homoge-

neous, i.e.,di = d, i = 1, . . . , N ; however, our simulations in Section 3.8 validate our

scheme using heterogeneous delays. Consequently, (3.10) becomes

d

dt
δq(t) = −B · δp(t− d) , (3.11)

whereB = −∑N
i=1 βi. Because the utility function is concave,βi < 0, i = 1, . . . , N , and
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Figure 3.5: Linearized Model ofCPS-Queue interaction with the controllerG(s).

henceB > 0.

We analyze the linearized model (3.11) in the frequency domain [23]. Sinceq(0−) =

0, δq(0−) = q(0−)− q0 = −q0. Then, the Laplace transform of (3.11) is

s∆Q(s)− δq(0−) = sQ(s) = −B ·∆P (s) · e−sd . (3.12)

Figure 3.5 shows the block diagram of (3.12), whereG(s) is the Laplace transform

of the function that relatesp(t) andδq(t) and is called thequeue controller.

3.4.3 P and PI Controllers

In this section, we design the controllerG(s) to stabilize and to improve the response of the

closed-loop feedback system in Figure 3.5. Among differentcontrollers, the simplest are

the Proportional (P) and the Proportional-Integral (PI) controllers. Choosing such a simple

controller algorithm allows the router to process large amounts of traffic efficiently.

The transfer function of a P controller isGP (s) = kp, and that of a PI isGI(s) =

kp + ki/s, wherekp andki are the proportional gain and the integral gain constants, re-

spectively. Settingki to zero in the PI controller,GI(s), results in a pure P controller,

GP (s).

Remark 3.4.1 Note that the direct solution of the optimization problem (3.2) using the

gradient method yields a P controller,GP (s), as the queue controller, see (3.3) and [45, 53]
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for details. As we show in Section 3.5, the P controller exhibits a steady-state error in the

queue length whereas the PI controller does not. The steady-state error has negative effects

that will be discussed in the next two sections.

Remark 3.4.2 Although solving the optimization problem (3.2) does not yield a PI con-

troller, the PI controller still achieves an optimal solution for (3.2) because it stabilizes the

queue [47].

3.5 Steady-state Error and Queueing Delays

The output,Q(s), in Figure 3.5 is

Q(s) =
Be−sd

s2 + sBG(s)e−sd
[p0 + q0G(s)] . (3.13)

We find the steady state ofq(t), qss, by applying the final value theorem [52]. To apply

the final value theorem, we assume that the controller’s design parameters (kp for the P

controller, andkp andki for the PI controller) are chosen such that theclosed-loop system

is stable (see Section 3.6).

WhenG(s) = kp,

qP
ss = lim

t→∞

q(t) = lim
s→0

sQ(s) = q0 + p0/kp .

Similarly, whenG(s) = kp + ki/s,

qPI
ss = lim

t→∞

q(t) = lim
s→0

sQ(s) = q0 .

Therefore, the steady-state error,ess, for P and PI iseP
ss = p0/kp andePI

ss = 0, respectively.
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Moreover, the respectivesteady-state queueing delays,dq, are

dP
q =

q0
C

+
p0

kpC
, and (3.14)

dPI
q =

q0
C
. (3.15)

When using PI, queueing delays are predictable and independent of the characteristics of

CPSs (i.e., utilities or number of CPSs) because bothq0 andC are constant. On the other

hand,dP
q depends onp0. In dynamic environments where different CPSs go on- and off-line

at different times,p0 changes over time. Unlesskp is adapted dynamically to trackp0 varia-

tions,dP
q will vary as the environment changes. Therefore, in these dynamic environments,

dP
q is unpredictable. Although designing an allocation schemein which kp is dynamically

adapted is a powerful mechanism, this is not this chapter’s intent and we leave this idea for

future research.

3.6 Stability Analysis

The characteristic function,ψ(s), of the system of Figure 3.5 is

ψ(s) = s+BG(s)e−sd . (3.16)

Closed-loop stability requires the roots of (3.16) to lie in the open left-half of the complex

plane [23]. That is, the closed-loop in Figure 3.5 is stable iff ∀s0 such thatψ(s0) = 0,

ℜ{s0} < 0. When the later condition holds, we equivalently say that thecharacteristic

function,ψ(s), is stable (consistent with [26, p. 32]).

Because of the exponential terme−sd, which originates from the delay in the feed-

back loop, (3.16) is called aquasi-polynomialand it has an infinite number of roots. In Sec-

tions 3.6.1 and 3.6.2, we analyze the stability of (3.16) forthe two cases whenGP (s) = kp

andGI(s) = kp + ki/s.
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3.6.1 The P Controller

SubstitutingG(s) = kp in (3.16) yields

ψ(s) = s+Bkpe
−sd . (3.17)

Theround-trip delayd comprises two components: a fixed-delay (e.g., propagation-delay)

component and a queueing-delay component that depends onkp (see (3.14)). Therefore,

we decomposed asd = dg + dq = dg + q0/C + p0/(kpC), wheredg is the end-to-end

fixed-delay component. Letd0 = dg + q0/C. Then,d = d0 + p0/(kpC). The following

Lemma determines the range of the stabilizingkp.

Lemma 3.6.1 The quasi-polynomial (3.17) is stable for all(d0+p0/(kpC)) ≥ 0 andB > 0

iff

0 < kp <
1

Bd0

(
π

2
− Bp0

C

)
.

Proof Denote byH(jω) the open-loop transfer function of Figure 3.5, corresponding to

(3.17) and evaluated ats = jω. H(jω) is given by

H(jω) =
Bkp

jω
e−jω(d0+p0/(kpC)) .

BecauseH(jω) does not have any open-loop poles in the right-half of the complex plane,

the Nyquist stability criterion requires that the Nyquist plot ofH(jω) not encircle the point

−1 + j0 [23]. Now, there are two cases:kp < 0 andkp > 0. Whenkp < 0, the Nyquist

plot of H(jω) is shown in Figure 3.6 (left). The big arc at∞, which is due to the1/ω

term inH(jω), encircles the whole left-half plane. Therefore,kp < 0 can never stabilize

(3.17). Whenkp > 0, the Nyquist plot is shown in Figure 3.6 (right). The first crossing of

the Nyquist plot to the negative real-axis should occur to right of−1 + j0. This happens
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Figure 3.6: The Nyquist Plot ofH(jω) = Bkp

jω
e−jω(d0+p0/(kpC)) whenkp < 0 (left) and

whenkp > 0 (right) along with the critical point−1 + j0.

iff for ω0 = inf{ωc > 0 : arg{H(jωc)} = −π}, |H(jω0)| < 1. Solving forω0 yields

ω0 =
π

2

kpC

d0kpC + p0

.

After some manipulations, the condition|H(jω0)| < 1 yields

kp <
1

Bd0

(
π

2
− Bp0

C

)
.

This completes the proof.

Remark 3.6.2 For a feasible range of a stabilizingkp, we require

Bp0

C
<
π

2
. (3.18)

If (3.18) does not hold, there will be nokp that stabilizes the allocation scheme, no matter

how smallkp is chosen. (Note that this situation was not predicted by the discrete-time

analysis of [45].)
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3.6.2 The PI Controller

With G(s) = kp + ki/s, the characteristicquasi-polynomial becomes

ψ(s) = s2 +B(kps+ ki)e
−sd . (3.19)

Unlike the case with the P controller,d in (3.19) is independent ofkp andki, see (3.15).

Thus, we proceed by assumingd is constant. The following Lemma determines the region

SR(d,B) in the kp–ki plane that stabilizes (3.19) for given values ofd ≥ 0 andB > 0.

First, we present the following known result that we use in proving the Lemma.

Theorem 3.6.3 (Theorem 12.13, [16])LetH(z) ≡ z2ez + pz+ q, wherep andq are real.

Denote byap the root of the equation (there is such a root if (a) below holds)

sin a = p/a ,

which lies on the open interval(0, π/2). A necessary and sufficient condition that all the

roots ofH(z) = 0 lie to the left of the imaginary axis is that

(a) 0 < p < π/2,

(b) 0 < q < a2
p cos ap.

Lemma 3.6.4 For given d ≥ 0 and B > 0, (3.19) is stable if and only if(kp, ki) ∈

SR(d,B), where

SR(d,B) = {(kp, ki) : 0 < kp < kp,max, 0 < ki < ki,max} ,
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kp,max =





∞ if d = 0

π
2Bd

if d 6= 0,

(3.20)

ki,max =





∞ if d = 0

α2
0
cos α0

Bd2 if d 6= 0,

(3.21)

andα0 is the solution of

Bkpd− α sinα = 0 (3.22)

in the interval(0, π/2).

Proof We prove the Lemma for the two separate cases: whend = 0 and whend 6= 0.

Whend = 0, (3.19) becomes

s2 +Bkps+Bki = 0 .

The two roots of this quadratic equations are

s1,2 =
−Bkp ∓

√
B2k2

p − 4Bki

2
.

SinceB > 0, theclosed-loop system is stable iffkp > 0 andki > 0.

Whend 6= 0, we need to analyze the roots ofψ(s) = 0 (see (3.19)). First, consider

the quasi-polynomial

ψ̃(s) = d2esdψ(s) = Bkpd
2s+Bkid

2 + d2s2esd .

Becaused2esd 6= 0, the roots ofψ̃(s) are exactly same as of those ofψ(s). Now, letz = sd

and rewriteψ̃(s) as

ψ̃(z) = Bkpdz +Bkid
2 + z2ez .
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Invoking Theorem 3.6.3 withp = Bkpd andq = Bkid
2 completes the proof.

3.7 Robust Stability

The stability region,SR(d,B), obtained according to Lemma 3.6.4 assumes bothd andB

are fixed and known to the router that is implementing the control algorithm. However, this

assumption is far from reality. Even if delays can be made known to routers en route (for

example, using a special header in packets), delays can differ among flows and for each

flow they usually vary over time. As forB, the situation is even harder becauseB depends

on the utility functions and on thesteady-state transmission rates of the individual CPSs,

thus making such information available to the router is impractical in a fully distributed

environment. In this section, we present a theorem that facilitates the design of thekp and

ki gains to ensure the stability of the allocation scheme when only upper bounds forB and

d are available. First, we analyze the stability of (3.19) when the values ofd andB are

uncertain but known to belong to an interval. Precisely, theobjective is to compute the

complete set ofkp andki gains that stabilize the closed-loop system∀d ∈ [0, dmax] and

∀B ∈ [B1, B2], wheredmax > 0 andB2 > B1 > 0.

The following two Lemmas 3.7.1 and 3.7.2 will be used in the proof of the main

stability theorem.

Lemma 3.7.1 For a givenB, kp,max defined in Lemma 3.6.4 is a strictly decreasing func-

tion ofd > 0. Also, for givenB andkp, ki,max defined in Lemma 3.6.4 is a strictly decreas-

ing function ofd > 0.

Proof SinceBd2 > 0,
∂kp,max

∂d
= − π

2Bd2
< 0 .

Therefore,kp,max is a strictly decreasing function ofd.
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As for ki,max,

∂ki,max

∂d
=

1

B2d4

[
Bd2 ∂

∂d

(
α2

0 cosα0

)
− 2Bdα2

0 cosα0

]

=
1

Bd3
φ1(d),

where

φ1(d) = d
∂

∂d

(
α2

0 cosα0

)
− 2α2

0 cosα0 .

SinceBd3 > 0, it is enough to show thatφ1(d) < 0. Now,

∂

∂d

(
α2

0 cosα0

)
=
∂α0

∂d

[
−α2

0 sinα0 + 2α0 cosα0

]
.

From (3.22),

Bkpd− α0 sinα0 = 0 . (3.23)

Taking the derivative of both sides of (3.23) with respect tod yields

Bkp −
∂α0

∂d
[α0 cosα0 + sinα0] = 0 .

Or,

∂α0

∂d
=

Bkp

α0 cosα0 + sinα0

.

Expandingφ1(d) gives

φ1(d) =
α0

sinα0 + α0 cosα0

φ2(d) ,
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where

φ2(d) = (2 cosα0 − α0 sinα0)Bkpd− 2α0 sinα0 cosα0 − 2α2
0 cos2 α0 .

Sinceα0 ∈ (0, π/2) (see Lemma 3.6.4),α0/ [sinα0 + α0 cosα0] > 0. Therefore, it is

enough to show thatφ2(d) < 0. Substitutingα0 sinα0 forBkpd (see (3.23)) inφ2(d) yields

φ2(d) = −α2
0

(
1 + cos2 α0

)
.

Hence,φ2(d) < 0, which proves the Lemma.

Lemma 3.7.2 For a givend, kp,max defined in Lemma 3.6.4 is a strictly decreasing function

of B > 0. Also, for givend andkp, ki,max defined in Lemma 3.6.4 is a strictly decreasing

function ofB > 0.

The proof of this Lemma follows along the same lines of that ofLemma 3.7.1 and

is presented below for completeness.

Proof SinceB2d > 0,
∂kp,max

∂B
= − π

2B2d
< 0 .

Therefore,kp,max is a strictly decreasing function ofB.

As for ki,max,

∂ki,max

∂B
=

1

B2d4

[
Bd2 ∂

∂B

(
α2

0 cosα0

)
− d2α2

0 cosα0

]

=
1

B2d2
φ1(B),

where

φ1(B) = B
∂

∂B

(
α2

0 cosα0

)
− α2

0 cosα0 .
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SinceB2d2 > 0, it is enough to show thatφ1(B) < 0. Now,

∂

∂B

(
α2

0 cosα0

)
=
∂α0

∂B

[
−α2

0 sinα0 + 2α0 cosα0

]
.

Taking the derivative of both sides of (3.23) with respect toB yields

kpd−
∂α0

∂B
[α0 cosα0 + sinα0] = 0 .

Or,

∂α0

∂B
=

kpd

α0 cosα0 + sinα0

.

Expandingφ1(B) gives

φ1(B) =
α0

sinα0 + α0 cosα0

φ2(B) ,

where

φ2(B) = (2 cosα0 − α0 sinα0)Bkpd− α0 sinα0 cosα0 − α2
0 cos2 α0 .

Sinceα0 ∈ (0, π/2) (see Lemma 3.6.4),α0/ [sinα0 + α0 cosα0] > 0. Therefore, it is

enough to show thatφ2(B) < 0. Substitutingα0 sinα0 for Bkpd (see (3.23)) inφ2(B)

yields

φ2(B) = α0 (sinα0 cosα0 − α0) .

Sinceα0 ∈ (0, π/2),

α0 > sinα0 > sinα0 cosα0 > 0 .

64



Therefore,φ2(B) < 0, which proves the Lemma.

Lemmas 3.7.1 and 3.7.2 lead to Corollaries 3.7.3 and 3.7.4.

Corollary 3.7.3 LetH be a family of closed-loop systems with each having a characteristic

equation given by (3.19) whered ∈ [0, dmax] and dmax > 0. If there is a PI controller

(k∗p, k
∗

i ) that stabilizes (3.19) ford = dmax, then(k∗p, k
∗

i ) stabilizes the entire familyH.

Proof Clearly,(k∗p, k
∗

i ) stabilizes (3.19) ford = 0 (see Lemma 3.6.4). Let0 < d̂ < dmax.

According to Lemma 3.6.4,

SR(d̂, B) =
{

(kp, ki) : 0 < kp < kp,max(d̂) and

0 < ki < ki,max(d̂)
}
,

SR(dmax, B) = {(kp, ki) : 0 < kp < kp,max(dmax) and

0 < ki < ki,max(dmax)} .

From Lemma 3.7.1,kp,max(dmax) < kp,max(d̂) and∀kp ∈ (0, kp,max(dmax)), ki,max(dmax) <

ki,max(d̂). Therefore,SR(dmax, B) ⊂ SR(d̂, B).

Corollary 3.7.4 LetQ be a family of closed-loop systems with each having a characteristic

equation given by (3.19) whereB ∈ [B1, B2] andB2 > B1 > 0. If there is a PI controller

(k∗p, k
∗

i ) that stabilizes (3.19) forB = B2, then(k∗p, k
∗

i ) stabilizes the entire familyQ.

Proof Let 0 < B̂ < B2. According to Lemma 3.6.4,

SR(d, B̂) =
{

(kp, ki) : 0 < kp < kp,max(B̂) and

0 < ki < ki,max(B̂)
}
,

SR(d,B2) = {(kp, ki) : 0 < kp < kp,max(B2) and

0 < ki < ki,max(B2)} .

From Lemma 3.7.2,kp,max(B2) < kp,max(B̂) and∀kp ∈ (0, kp,max(B2)), ki,max(B2) <

ki,max(B̂). Therefore,SR(d,B2) ⊂ SR(d, B̂).
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Now, we state our main result regarding robust stability.

Theorem 3.7.5 LetP be a family of closed-loop systems with each having a characteristic

equation given by (3.19) whered ∈ [0, dmax], dmax > 0, B ∈ [B1, B2] andB2 > B1 > 0.

If there is a PI controller(k∗p, k
∗

i ) that stabilizes (3.19) ford = dmax andB = B2, then

(k∗p, k
∗

i ) stabilizes the entire familyP.

Proof It follows directly from Corollaries 3.7.3 and 3.7.4.

Therefore, when designingkp andki gains, we must consider the maximum ex-

pectedd and the maximum expectedB among all CPSs. Precise values ofdmax andB2

are not necessarily required. An overestimated value ofdmax and an overestimated value

of B2 lead to increased stability robustness. However, such overestimated values diminish

SR and constrain the possible values ofkp andki, which in turn affect the protocol’s speed

of convergence adversely. Therefore, it is advisable to obtain reasonably tight bounds on

bothdmax andB2.

Remark 3.7.6 In this section, we focused on robust-stability analysis forthe PI controller

only. However, the same analysis can be easily carried out to the P controller. That is, if

k∗p stabilizes (3.17) ford0 = d0,max > 0, B = B2 > 0, andp0 = p0,max > 0, thenk∗p can

stabilize the whole family of (3.17) withd0 ∈ [0, d0,max],B ∈ (0, B2], andp0 ∈ (0, p0,max].

3.8 Simulations

In this section, we explain the experimental setup, and we present simulation results that

evaluate the proposed allocation scheme and validate the theoretical results.

3.8.1 Simulation Software

We have extendedns-2 [1] by adding two new agents:NSCSPlantandNSCSController,

which stand for networked-sensing-and-control-systems plant and controller, respectively.
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d msec

plant(1)

plant(2)

...
...

plant(n−1)

plant(n)

controller(1)

controller(2)

...
...

controller(n−1)

controller(n)

1.0 Mbps/10 msec

10.0 Mbps/

−K[R−x(tj)]

x(tj)

R1 R2

Figure 3.7: A single bottleneck topology for experimental simulation.

NSCSPlant is an abstract agent class, which can be used to instantiate several controlled

systems, each of which simulates a physical system. NSCSController can be used toin-

stantiate a controller to control a plant. With these twons-2 agents, we can then simulate

the dynamics of physical systems combined with the dynamicsof a communication net-

work. NSCSPlant and NSCSController are based on an earlierns-2 implementation,

Agent/Plant, to simulate networked control systems, see [19, 28]. (Recently, we have

also developed a co-simulation platform for CPSs [12] that wewill use in future experi-

ments. This platform combinesns-2 with Modelica, a modeling language for large-scale

physical systems [62].)

3.8.2 Network Topology

Our experiments are based on the dumbbell topology shown in Figure 3.7. There, all CPSs

share the single bottleneck link that connects the two routers, R1 and R2. Several plants

are connected to R1; and their corresponding controllers to R2. Each link’s bandwidth and

propagation delay is shown in the figure. In Figure 3.7,d will be varied across plants.
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3.8.3 Plants and Controllers

In this chapter, we confine our focus on linear scalar plants and proportional controllers.

Each plant’s state,x(t), evolves according to the following differential equation:

ẋ(t) = ax(t) + bu(t),

wherea andb are constants, andu(t) is the input from the controller. The sensor samples

x(t) at discrete time instances, generatingx(t0), x(t1), . . . , x(tj). For each received plant’s

samplex(tj), the controller calculatesu(tj) as follows:

u(tj) = −K(R(t)− x(tj)),

whereK is the constant controller gain, andR(t) is the reference signal the plant is required

to follow.

Reference [18] proposed a performance measure for linear scalar networked control

systems that is a function of the sampling interval,h. Substituting1/r in place ofh, we

obtain the following utility function for planti:

Ui(ri) =
ai − biKi

ai

eai/ri . (3.24)

Such a utility function satisfies all required conditions mentioned at the end of Subsection

3.3.1. Moreover,rmin is derived in [71] for the same family of linear scalar networked

control systems, and is given by

rmin,i =
ai

ln
(

biKi+ai

biKi−ai

) .
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plant(0), plant(1)

plant(2), plant(3)

plant(4), plant(5)

plant(6), plant(7)

plant(8)

plant(9) − plant(11)

Time (sec) 0 50 100 150 200 250 300

Figure 3.8: Six sets of CPSs. Each set uses the network for the duration defined by the
extent of the bold horizontal line. For example, the set comprisingplant(0) andplant(1)
acquires the network atts = 0 sec and releases it atte = 300 sec.

3.8.4 Experiments

We have a dynamic environment where CPSs acquire and release the network at different

times. There are six sets of CPSs based on when each set acquires or releases the network

as in Figure 3.8.

We assume that all plants have identical physical dynamics,ai = 0.12 andbi =

1.0, and all have the same corresponding controllers,Ki = 4.7. Propagation delays for

links connecting individual plants and controllers (i.e.,d in Figure 3.7) are as follows. For

plant(0), d = 0 msec; forplant(1), d = 10 msec; and forplant(2) throughplant(11),

the fixed delay,d, is drawn from a uniform distribution on the interval[0, 10] msec. (See

[3, 8] for different sets of simulations and results.)

3.8.5 Computing Controller Parameters

To calculateB andp0, we assume that the plants’ and controllers’ packets have size of100

bytes. Therefore,C = 1250 pkts/sec. Based on the number of plants using the network

during each time interval,B andp0 values are summarized in Table 3.1.

To estimatedmax, we assume thatq0 = 50 pkts. Based on Figure 3.7 and theafore-
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Table 3.1: The values ofB, p0, andkP
p,max during each interval of time where the number

of CPSs is constant.

Time interval (sec) Number of plants B p0 kP
p,max

[0, 50] 4 1.3319× 107 4.6917× 10−5 5.3603× 10−7

[50, 100] 6 5.9178× 106 1.0558× 10−4 1.2065× 10−6

[100, 150] 8 3.3278× 106 1.8774× 10−4 2.1456× 10−6

[150, 200] 12 1.4782× 106 4.2258× 10−4 4.8307× 10−6

[200, 250] 8 3.3278× 106 1.8774× 10−4 2.1456× 10−6

[250, 300] 5 8.5228× 106 7.3315× 10−5 8.3769× 10−7

mentioned assumptions, we choose an overestimatedmax, such asdmax = 0.15 sec. (This

value ofdmax is almost150% the expected amount of delays at steady state, i.e.,d0.)

For the P controller, the upper bound,kP
p,max = [π/2−Bp0/C]/(Bd0) (see Lemma

3.6.1), of the stabilizingkp range is given in Table 3.1 during each time interval. The inter-

section of the six stabilizingkp intervals where each defined by(0, kP
p,max) is (0, 5.3603 ×

10−7). Thus, for the P controller, we choosekP
p = 4.0× 10−7, i.e., about75% of 5.3603×

10−7. As for PI, thekp–ki stabilizing region,SR, corresponding toB = 1.3319× 107 and

dmax = 0.15 sec is shown in Figure 3.9. We choose the PI controller gains as (kPI
p , kPI

i ) =

(4.75 × 10−7, 9.0 × 10−7), i.e., in the middle ofSR. According to the analysis in Section

3.7,(kPI
p , kPI

i ) = (4.75×10−7, 9.0×10−7) stabilizes the allocation scheme during all time

intervals.

3.8.6 Results

Under both the P and the PI queue controllers, Figure 3.10 shows how CPSs that are using

the network adapt their transmission rates by reducing their sampling rates when new CPSs

start operating or by increasing their sampling rates when some CPSs stop operating. All

CPSs share the bottleneck bandwidth equally since all have the same physical dynamics

and thus the same utility functions. Moreover, the allocation scheme retains100% network
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Figure 3.9: The stabilizing range of the P controller and thestabilizing region of the PI
controller,SR, for B = 1.3319 × 107, p0 = 4.6917 × 10−5 anddmax = 0.15 sec; and the
two pointskP

p = 4.0×10−7 and(kPI
p , kPI

i ) = (4.75×10−7, 9.0×10−7) used in simulations.

utilization when CPSs acquire or release the network bandwidth (this can be inferred by

adding transmission rates of all plants during each time interval).

Although Figure 3.10 does not reveal a significant difference between using the P

and PI as queue controllers, the difference is pronounced when comparingq(t) behaviors

under the two controllers; see Figure 3.11. With the P controller, the queue exhibits a

steady-state error. As more CPSs acquire the network, the deviation of q(t) from q0 = 50

pkts widens. On the contrary,q(t) under the PI control settles toq0 = 50 pkts after short

periods of transient behavior regardless of the number of CPSs using the network. Thus,

the results in Figure 3.11 confirm the analysis in Section 3.5.

Long queue backlogs increase round-trip delays (see Figure3.12), which in turn

affect the control performance adversely. Figure 3.14 and Figure 3.15 depict the response

of plant(0) andplant(1) when using PI and P as queue controllers, respectively. The

CPS control objective is to follow the square-wave input in Figure 3.13.

With PI, the CPSs stay stable and track the input signal accurately (Figure 3.14).

On the other hand, with the P controller, long queueing delays degrade the performance of

the CPSs and cause instability (Figure 3.15). These results,which confirm the theoretical

analysis, show the superiority of PI as a queue controller and the inadequacy of the P
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controller for use in the proposed allocation scheme.

3.9 Conclusions

In this chapter, we have presented a scheme for bandwidth allocation in Cyber-Physical

Systems (CPSs). First, we formulated the problem of bandwidth allocation as a convex

optimization problem whereby the objective is to maximize the aggregate performance of

all CPSs subject to stability and network constraints. Second, we presented a distributed

implementation of the optimization problem. Third, we developed a dynamical model to

analyze the performance of the decentralized scheme under two queue control algorithms:

P and PI controllers. Fourth, we showed how to design robust and resilient controllers to

guarantee the stability of the allocation scheme when communication delays and model

parameters are uncertain. Finally, we experimentally validated the theoretical results using

ns-2 simulations.
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Chapter 4

Conclusions and Future Work

This chapter concludes the thesis by summarizing our contributions and presentingdirec-

tions for future work.

4.1 Conclusions

This thesis presented contributions in two specific areas ofInternet congestion control: PI

AQM and bandwidth allocation in cyber-physical systems. These contributions are sum-

marized as follows. In Chapter 2, we derived an analytical characterization of the com-

plete stability region of the PI controller for TCP AQM and we validated it withns-2

simulations. The analytical derivation was complicated mostly due to time-delays in the

TCP-AQM feedback loop and to the relatively high-order TCP-AQM plant model. Utiliz-

ing the complete stability region, we showed that the PI parameters used in the literature

could be excessively conservative, a fact that explained the previous observation about PI

sluggish responsiveness. We also showed that provably stable controller parameters could

exhibit widely different levels of performance. Furthermore, we presented examples of PI

controllers that are stable and have significantly better performance than previously pro-

posed ones. Therefore, the chapter demonstrated the importance of obtaining the complete

stability region for the PI AQM. While we have focused the analysis on PI, other AQM
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schemes can benefit from the results and the analysis discussed in this chapter.

In Chapter 3, we proposed a bandwidth allocation scheme for Cyber-Physical Sys-

tems (CPSs) that have their control loops closed over a spatially distributed network. We

formulated the bandwidth allocation as a convex optimization problem whereby the objec-

tive is to maximize the aggregate performance of all CPSs subject to stability and network

constraints. We then presented an allocation scheme that solved the optimization problem

in a fully distributed manner. In addition to being fully distributed, the proposed scheme

had other features, such as being asynchronous, scalable, dynamic and flexible. We further

showed how to ascertain the scheme’s parameters to achieve robust and resilient operation

in face of uncertainties in communication delays and in characteristics of CPSs.

4.2 Future Work

This thesis paves the way to several avenues of future work. The first step is to extend the

results, e.g., the complete stability region, to larger andmore general topologies than the

dumbbell set-up. Another area is to design AQM and queue controllers that use system

characterization and gain scheduling techniques to adapt controller parameters on the fly.

Gain-scheduling and adaptive queue controllers require the estimation of different network

parameters, e.g., delays and number of flows; and the construction of the complete stability

region, which represents the whole feasible space from which particular points are to be

chosen to attain particular performance metrics. Adaptivecontrollers [14] can outperform

static controllers especially in highly dynamic environments.

Control theoretical procedures similar to ones used in this thesis can be applied to

other layers in the Internet stack. In particular, an adaptive and reflective middleware [11]

can be implemented in the application layer to ameliorate for the lack of QoS. Such a mid-

dleware will provide a common platform for a range of applications by acting as a broker

between the applications and the network as follows. It collects online measurements for

77



network-oriented metrics, such as delay, jitter, packet loss rate, and bandwidth availabil-

ity, and maps their statistics to application-oriented metrics. It then alters some system

configurations and parameters in response to and to adapt to network vagaries [11, 42].
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