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New Procedures for Data Mining and Measurement Error Models with
Medical Imaging Applications

Abstract

by

XIAOFENG WANG

In this dissertation we provide analysis strategies for two research areas:

spatial-temporal data mining and measurement error problems. Motivated by

analyzing data from a “Neuromuscular Electrical Stimulation” experiment we

develop an efficient procedure for mining spatial-temporal data which com-

bines the following modern and newly developed components: data segmen-

tation and registration, statistical smoothing mapping for identifying “ac-

tivated” regions and a semiparametric model for detecting spatial-temporal

similarities/trends from “large-p-small-n” data sets. For measurement error

problems we provide new density and regression estimators for nonparametric

errors-in-variables models. The errors can be either homogeneous or nonho-

mogeneous. In contrast to most existing procedures our new estimators are

stable, easy to compute and do not depend on a Fourier transform. The

asymptotics of the new estimators is investigated. Our procedures have the

potential to become powerful new tools in the image analysis and other fields.

Key words: Spatial-temporal data, medical imaging, registration, smooth-

ing, measurement error models, deconvolution, semiparametrics.
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Chapter 1

Introduction

This dissertation provides analysis strategies for two research areas: spatial-

temporal data mining and measurement error problems. Data from many

scientific and medical areas such as medical imaging, epidemiology and cli-

matology are often correlated spatially. Additionally, if they are collected

over time, they may be also correlated in time, another dimension; and they

are termed spatial-temporal data. Mining spatial-temporal data is challeng-

ing in that not only the data exhibit huge dimensionality but also involve

both spatial and temporal effects. Measurement error problems constitute

another active, rich research area in modern statistics. The effects of mea-

surement error are well-known: the presence of measurement error if ignored

can cause unignorable biases in estimated functions. Hence, correcting for

such effects is important.

In the spatial-temporal data mining motivated by analyzing data from

our “Neuromuscular Electrical Stimulation” (NMES for short) experiment

we shall develop an efficient procedure for mining spatial-temporal data.

This new procedure is a statistical ensemble built on following modern or

newly developed components: (1) data segmentation for separating hetero-

geneous data and for distinguishing outliers, (2) automatic approaches for

1
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spatial and temporal data registration, (3) statistical smoothing mapping

for identifying “activated” regions based on generalized false-discovery-rate

controlled p-maps/movies and (4) a semiparametric regression for detecting

spatial and temporal similarities/trends from “large-p-small-n” data sets.

Our new procedure should be applicable to other types of spatial-temporal

data sets beyond those from the NMES experiment. It has the potential to

be used in the analysis of time-series images and functional images such as

those from fMRI.

In the measurement error problems we provide new density and regres-

sion estimators for nonparametric errors-in-variables models. The errors can

be either homogeneous or nonhomogeneous. In contrast to most existing

procedures our new procedures do not depend on a Fourier transform. The

asymptotics of the new estimators is investigated. These estimators are sta-

ble, easy to compute and can be applied to many important areas such as

imaging deblurring, nonparametric time series and astronomical data analy-

sis.

1.1 Spatial-temporal Data Mining

Remarkable developments of medical and computer technology in the last

two decades have enabled scientists and clinicians to collect huge amounts

of data in both spatial and temporal dimensions. These types of data have

become common in medical imaging, epidemiology, neuroscience, ecology,

climatology, environmentology and other areas. Typical spatial-temporal

data will be denoted by y(s, t, n), where y is the intensity value at the spatial

location s ∈ S, time t ∈ T and for the subject indexed by n ∈ N . In

most applications, S will be a 1, 2 or 3 dimensional rectangle, indexed by

points or pixels s ∈ S = {1, ..., S}; T = {1, 2, ..., T}, where T is the number

of time points; and N = {1, 2, ..., N}, where N is the number of subjects.



3

In principle, the indexing could be done by continuous variables, but in

practice, only a discretized version is observed. In the study of data from

the NMES experiment, N ≪ T ≪ S. This is known as large-p-small-n data

analysis which is a challenging case in current data mining research. We

first describe the clinical background and challenges of data analysis from

the neuromuscular electrical stimulation experiment.

1.1.1 Clinical Background

Spinal Cord Injury and Pressure Sores

Spinal cord injury (SCI) is damage to the spinal cord that results in a loss of

function such as mobility or feeling. Frequent causes of damage are trauma

(e.g. car accident, gunshot wounds and falls) or disease (e.g. polio, spina

bifida and Friedreich’s Ataxia). Approximately 450,000 people live with SCI

in the United States. There are about 10,000 new cases of SCI every year;

the majority of them (82%) involve males between the ages of 16-30. These

injuries result from motor vehicle accidents (36%), violence (28.9%), or falls

(21.2%) (survey data from http://www.spinalinjury.net).

Pressure sores (also called pressure ulcers, bed sores, or decubitus ulcers)

are areas of injured skin and tissue. They are usually caused by sitting or

lying in one position for too long a period of time. This puts pressure on

certain areas of the body which in turn can reduce the blood supply to the

skin and the tissues under the skin. When a change in position doesn’t occur

often enough and the blood supply gets too low, a sore may form. Pressure

sores/ulcers are known to be a multi-factorial complication that occurs in

many individuals who are wheelchair users due to reduced mobility. Figure

1.1 displays the basic progression of pressure sores.

All individuals with SCI, and particularly those with complete lesions,

are considered to be at high risk of pressure sore development throughout

http://www.spinalinjury.net
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Figure 1.1: Progression of pressure sores/ulcers (The picture is taken from
http://www.spinal-injury.net/pressure-sores-sci.htm). Areas of damaged skin and
tissue are developed when sustained pressure - usually from a bed or wheelchair
- cuts off circulation to vulnerable parts of the body, especially the skin on the
buttocks, hips and heels. Without adequate blood flow, the affected tissue dies.

their lifetime. This significant secondary complication is the major cause for

re–admission to the hospital following primary rehabilitation. Indeed, up to

50% of at-risk elderly individuals may have sitting-induced pressure sores.

Individuals with spinal cord injury are also at high risk of pressure ulcer

development, with reported community incidence rates in the region of 32%

for individuals with chronic SCI (Yarkony and Heinemann, 1995).

Treating pressure sores in the United States has been estimated to cost

over $1.33 billion annually, primarily because of the need for prolonged peri-

ods of bed rest associated with many methods of treatment. Pressure sores

tend to reduce independence and affect many aspects of daily life such as

physiological well-being, social interactions, work or college attendance, and

need for caregiver time. Further medical complications may also arise, in

particular, systemic infections leading to fatality. Approaches to the pre-
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vention of pressure sores in high-risk populations can generally be classified

as education-focused or device-focused. However, despite the development of

many support devices and the introduction of skin care training within many

rehabilitation programs the incidence of pressure sores remains unacceptably

high (Yarkony and Heinemann, 1995). Furthermore, there remains a signif-

icant proportion of the SCI population who exhibit chronic recurrence of

tissue breakdown. It is therefore highly beneficial both societally and for the

individual to develop effective techniques to reduce the incidence of pressure

ulcers and maximize function while sitting.

Neuromuscular Electrical Stimulation

Traditionally, techniques to reduce pressure sore incidence have focused on

extrinsic risk factors by providing cushions which improve pressure distribu-

tion and educating individuals on the importance of regular pressure relief

procedures. There remains a significant number of people with SCI for whom

pressure relief cushions are inadequate and/or who are unable to maintain

an adequate pressure relief regime. Periodic weight shifting is essential for

maintenance of tissue health. Gluteal neuromuscular electrical stimulation

(NMES) provides a unique technique to produce beneficial changes at the

user/support system interface by altering the intrinsic characteristics of the

user’s paralyzed tissue itself.

For rehabilitation purposes, the effects of NMES on paralyzed muscle can

be considered in terms of the activation of paralyzed neuromuscular units.

SCI interrupts the normal control of muscles below the lesion which can lead

to paralysis. Partially innervated muscles below the level of the lesion will

become weak. Thus, muscles controlled by nerves at or below the lesion will

be unable to sustain prolonged contractions. An NMES exercise program can

be designed to increase both the strength and the fatigue resistance of par-

alyzed muscles using stimulation patterns that provide repetitive maximal
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Figure 1.2: Neuromuscular Electrical Stimulation (NMES) System. The stim-
ulation system consists of four intramuscular electrodes connected to an external
battery-powered stimulator. The percutaneous electrodes are implanted bilaterally
into the gluteus maximus. The procedure is carried out under local anaesthetic on
an out-patient basis.
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contractions to select muscle groups. Concurrently, muscular vasculariza-

tion will start to increase as early as 4 days after initiating low-frequency

electrical stimulation. It has been shown that capillary density can triple in

paralyzed muscles after 2 weeks of regular moderately intensive stimulation.

These changes in stimulated muscle characteristics may also improve fatigue

resistance (Bogie and Triolo, 2003).

The stimulation system comprises four intramuscular electrodes connected

to an external battery-powered stimulator which controls the system (Figure

1.2). The percutaneous electrodes are implanted bilaterally into the gluteus

maximus. Electrode wires are routed to exit sites on the anterior thigh. The

procedure is carried out under local anaesthetic on an out-patient basis. Al-

ternating bilateral stimulation (left/right) is provided at a frequency of 20Hz.

50% active duty cycle for 3 minute period with a 17 minute inter-stimulation

period. Total stimulation cycle lasts 20 minutes.

1.1.2 Experimental Method and Data Collection

The primary hypothesis of the study is that chronic use of NMES improves

pressure distribution at the seating support area, specifically the reduction of

peak pressures over bony prominences due to increased muscle mass area. In

addition, chronic NMES will increase vascularity leading to improved tissue

blood flow and resulting in improved regional tissue health in individuals

with SCI.

Study participants. Repeated assessments of sitting interface pressures

were obtained for a group of eight subjects with SCI participating in a study

to investigate the use of NMES for standing and transfers. All subjects

were full-time wheelchair users at entrance into the study and had sustained

traumatic SCI from 13-204 months prior to enrollment. All subjects had

completed SCI and were therefore considered to be at increased risk of tissue

breakdown, in part due to disuse muscle atrophy of the glutei.
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Assessment Protocol. Seating interface pressures were determined using a

Tekscan Advanced Clinseat Pressure Mapping System (Tekscan Inc., Boston,

Massachusetts). Assessments were carried out prior to commencing regular

use of stimulation, to obtain a baseline value, and then at intervals of 3-12

months during their participation in the study, giving an overall time frame

of up to five years for repeated assessments of each study participant.

In order to perform an assessment of seating interface pressures the sub-

ject transferred out of the wheelchair and a pressure sensor mat was placed

over the wheelchair cushion. The sensor mat is comprised of a matrix of

pressure sensitive cells (38 rows, 41 columns). The subject then transferred

back into the wheelchair and was asked to sit in their customary sitting pos-

ture. Care was taken to insure that the sensor mat was not creased or folded

under the subject in order to avoid inaccurate high spots. The sensor was

then calibrated based on the assumption that 80 percent of the subject’s

body weight was acting through the seat base. Calibration took less than

20 seconds to complete. Interface pressure data was then collected for 200

seconds at a rate of 2 frames/sec. The subject was then asked to perform

a pressure relief procedure and sit back in the same position. The sensor

was then recalibrated and a second set of pressure data was collected at the

same rate of data collection while left/right alternating gluteal stimulation

was applied to provide dynamic side-to-side weight shifting for 200 seconds.

Interface pressure data was collected concurrently at a rate of 2 frames/sec.

Stimulation was then discontinued and subjects were asked to repeat the

pressure relief procedure and sit back in the same position before collecting

a third set of interface pressure data with subjects in a quiet sitting posture.

Real-time two-dimensional pressure intensity data at the seating inter-

face are produced with the use of the Tekscan Advanced Clinseat Pressure

Mapping System system (Figure 1.3).

Data. In summary, for each subject in each of sessions done over time,
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Figure 1.3: Tekscan Advanced Clinseat Pressure Mapping System. Pressures are
measured through a pressure sensor mat on a standard wheel chair support surface.

Figure 1.4: Data structure in the NMES experiment. There are three sub-data
sets in each of assessment sections, under condition: no stimulation, on-off al-
ternation stimulation, and no stimulation, repectively. Each of the sub-data sets
consists of sequences of data frames, totaling 400 frames over time.
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our data sets consist of three sub-data sets each of which is under one of

three subsequent assessment conditions: no stimulation, on-off alternation

stimulation, and no stimulation, as shown in Figure 1.4. Each of the sub-

data sets consists of sequences of data frames, totaling 400 frames over time.

Each data frame represents spatial pressure intensity over the sitting interface

at a certain time point. The numbers of columns and rows correspond to

spatial coordinates of a subject’s sitting interface.

1.1.3 Spatial-temporal Data Visualization

In order to reach a quantitative understanding the data undoubtedly needs to

be analyzed by valid statistical procedures. However, the first step towards

qualitative understanding and interpretation of our clinical data is the visu-

alization of the high-dimensional data. It helps us explore data and discover

important features.

Data visualization enables us to explore data and information in such a

way as to gain understanding and insight into the data. We propose to repre-

sent our data as images and movies in the NMES study. For each data frame

we can create a grid of colored-scale rectangles with colors corresponding to

the values in pressure intensity. Figure 1.5 shows the image representation

for one data frame of a subject. Each element of the data frame specifies

the color of a rectangular segment in the image. The colorbar in the figure

indicates the mapping from data values to colors. The numbers of column

and row of the image correspond to the spatial coordinates of the sitting

interface of subjects.

In the movie representation, the x -axis and y-axis in three-dimensional

Cartesian coordinate system denote the spatial coordinates of the sitting in-

terface of subjects; the z -axis denotes the pressure intensities. Figure 1.6 pro-

vides a snapshot of a data movie. The intensities will move over time in the

movie. Examples of movies can be found at http://stat.case.edu/lasr,

http://stat.case.edu/lasr
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Figure 1.5: Image representation for one data frame. Each element of the data
frame corresponds to a color-scale rectangular segment in the image. The color bar
indicates the mapping from data values to colors.

Figure 1.6: A snapshot of movie representation for one sub-data set. The x-
axis and y-axis denote the spatial coordinates of the sitting interface of subjects,
respectively; the z-axis denotes the corresponding pressure intensities. The inten-
sities will move over time in the movie.
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in MPEG format. In order to ensure that the analytical method was applied

only to data from an inherently stable sitting posture, the initial and final

ten frames for each data movie was discarded.

1.1.4 Challenges in the NMES Experiment

Recall that the primary goal of our clinical research protocol is to estab-

lish the efficacy of using gluteal NMES for the prevention of pressure ul-

cers. In order to achieve this objective we must define a valid quantitative

method to describe the statistically and clinically significant changes in our

outcomes measures, specifically data from seating interface pressure distri-

butions. Thus we need to determine what measure or measures of seating

interface pressures will be indicative of an individual’s tissue health or risk

and what assessment procedures are required to optimize the reliability of

repeated measurements. Furthermore, the analytic method derived must in-

clude guidelines for identification of improved areas over the sitting interface.

We investigate the effects of long-term gluteal NMES on the intrinsic

characteristics of the paralyzed muscles so that the response to loading, in-

cluding interface pressure distribution when seated in a wheelchair, may be

improved. This is generally considered to include reducing peak pressures in

the ischial regions and equalizing pressures across the entire interface. Figure

1.7 shows idealized changes in pressure contour across the region of the is-

chial tuberosities. This is based on comparison with no electrical stimulation.

Note that the baseline contour shows high mean interface pressures bilater-

ally in the ischial region which indicates a high risk of local tissue breakdown.

Improved pressure distribution with reduced ischial region interface pressures

and more evenly distributed seating pressures indicates a lower risk of tissue

breakdown.

Clinicians are also interested in exploring the changes of interface pres-

sure distribution during electrical stimulation. Figure 1.8 displays idealized
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Figure 1.7: Idealized changes in pressure contour across the region of the ischial
tuberosities. 1) Baseline contour shows high mean interface pressures bilaterally
in the ischial region, indicating a high risk of local tissue breakdown. 2) Improved
pressure distribution with reduced ischial region interface pressures and more evenly
distributed seating pressures, indicating a lower risk of tissue breakdown.

Figure 1.8: Idealized changes in gluteal pressure variation with electrical stimu-
lation over time. 1) Before treatment: regional interface pressures vary cyclically
with applied stimulation 2) After treatment: variations about the mean increase in
amplitude due to increasing strength of muscle contraction.
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changes in pressure variation based on comparison with electrical stimulation

over time. Regional interface pressures vary cyclically with applied stimula-

tion before treatment. Variations about the mean increase in amplitude be-

cause of increasing strength of muscle contraction after long-term treatment.

In order to show whether this objective has been met over time and/or with

different seating setups there must be some basis for comparison between

measurements, so that true differences can be determined.

To ascertain the true difference we must overcome the following two chal-

lenges: (1) registration for a large sequence of data frames, (2) analysis of

large-p-small-n data. These challenges are common in the analysis of high

dimensional spatial-temporal data sets.

Registration for a Large Sequence of Data Frames

In the data mining process, the raw data often require some initial processing

in order to become useful for further statistical inferences, e.g. filtering, scal-

ing, calibration etc. Unwarping of data frames (or images) is an important

stage in the NMES study. Our challenges here are:

1). Data frames recorded at different sessions over time from the same

subject may not align spatially because, either the subject did not

sit in the same relative position on the sensing mat or with the same

posture at each assessment, or the image target regions differ from one

session to another.

2). Artificial differences between alternating left/right simulation responses

can obscure true differences if the data frames from different phases of

the stimulation cycle are not aligned temporally between sessions.

Registration techniques have been remarkably developed in the medical

imaging area. However, most existing image registration procedures require

a reference image and a similarity measure for each candidate image. They
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are not efficient for calibrating a large number of spatial-temporal data sets,

such as registering sequences of data frames or movies in pressure mapping.

For instance, it is “labor intensive” to identify the landmarks one by one for

each data frame when we use corresponding landmark-based registration for

thousands of data frames. Developing effective and fast spatial and tempo-

ral registration/calibration algorithms for a large volume of spatial-temporal

data sets is of interest in this dissertation.

Large-p-small-n Problems

The experimental protocol for the clinical research study produced many

time points and three assessment conditions for each subject. Thus, the

data obtained from the NMES experiment exhibit a large-p-small-n problem;

that is, a large number of features (pressure intensities) over space and time

relative to a small number of subject samples. As mentioned in the beginning

of the chapter, N ≪ T ≪ S in our data, where N , T , S denote the number of

subjects, time points, spatial locations respectively. Moreover, the pressure

intensities also exhibit spatial and temporal correlation.

Several characteristics of the data complicate the application of classi-

cal statistical methodologies. Traditional statistical approaches usually are

based on the assumption that p < N . Here p = S · T · (no. of frames) ·
(no. of sessions), so new approaches are needed to handle the complex data.

1.2 Measurement Error Problems

Many practical problems involve density estimation and nonparametric re-

gression from indirect observations such as those in image deblurring, signal

processing, image reconstruction in emission tomography and other applica-

tions. In the low level microarray data from either the CDNA microarray

or Affymetrix GeneChip system, what is observed is an original signal cou-
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Figure 1.9: An example to illustrate the effects of measurement errors (take from
Sun and Feuerverger (2002)). The solid line denotes the true density curve of X,
the dashed line denotes the density curve of Z = X + U where X is measured
in error by Z. It is noticed that measurement errors cause bias in the estimated
density function.

pled with a background noise. To obtain an expression measure, the goals

here include developing better statistical tools or enhancing algorithms for

background correction so that the disease genes can be detected accurately

and efficiently. In astronomy, due to great astronomical distances and atmo-

spheric noise, most data are subject to measurement errors. Analyses that

ignore measurement errors could be misleading. Figure 1.9 gives an example

which illustrates the effects of measurement errors. The example illustrates

that even if the true density is bimodal, the density of the data measured with

measurement error may be unimodal. Thus, finding efficient deconvolution

estimates of the true density is critical.

Measurement error problems are an active, rich research field in statistics.
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There is an enormous literature on this topic in linear regression, as sum-

marized by Fuller (1987) and in nonlinear models, as summarized by Carroll

et al. (1995).

There are three typical measurement error models as classified by Sun

and Feuerverger (2002):

Model I:

Y = X + U

where we want to recover the density fX of interest based on observa-

tions of Y when direct observation of X is not possible.

Model II:

Y = m(X) + ǫ

where the goal is to estimate the regression function m(X) based on

observations Y with Z = X + U the covariates measured in error.

Model III:

Y (t) = K(x(t)) + U(t)

where our intent is to make inferences about the target signal x(t) based

on output Y at t and knowledge about K, when K−1 can not be easily

obtained and when there is non-ignorable random noise U(t).

Each of the three models leads to an ongoing research area. The first

model refers to deconvolution problems and is also related to imaging deblur-

ring and bump hunting with measurement error. The second is known as

regression with error-in-variables. The third one is related to inverse prob-

lems in signal processes or time series. In this dissertation we are concerned

with issues arising from nonparametric estimating problems in the first two

areas.
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More specifically, the fundamental problem here is: for random variables

X and Y with domains X and Y respectively, we consider the following den-

sity estimation from indirect measurements. Let Y1, Y2, · · · , Yn be n inde-

pendent observations from a distribution with an unknown density function

g(y). Our goal is to estimate another density function f(x) which is related

to g(y) via

g(y) =

∫

x

w(y|x)f(x)dx (1.1)

where w(y|x) represents the conditional density function of Y |X and is as-

sumed known. Note that if X is a discrete random variable we need to replace

the integral in (1.1) by summation. This kind of problem has been studied,

for example, in Mendelsohn and Rice (1982), Snyder et al. (1992) and Vardi

and Lee (1993), who focused on applications of medical image reconstruction

in emission tomography.

In some cases the conditional density in (1.1) depends only on y − x,

producing a convolution equation

g(y) =

∫

x

w(y − x)f(x)dx. (1.2)

For example, under model I, w is the density function of U . Estimating f

based on a sample from g is a deconvolution problem or statistical inverse

problem in the sense that the sampling distribution is the image of the dis-

tribution of interest under a known transformation w:

g = image of f after transformation specified by w

In that sense estimating f can be interpreted as to first estimate g and then

to apply “some inverse transformation” of w to obtain an estimate for f .

Next, under the measurement error model I setting, we generalize to allow

that w or the density of Ui does not have to be same for all i. This occurs
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when we do not observe Xj but only the random variables Yj = Xj + Uj .

The Xj ’s have a common density fX (f in (1.2)) and the additive error Uj

has density wj (w in (1.2)) for j = 1, ..., n. If wj = w0 for all j, the errors

are homogeneous ; otherwise, they are nonhomogeneous. The question then

is: how can we estimate fX based on the sample of Y s?

In the case of homogeneous errors, the deconvolution literature is vast.

The Fourier-type estimates – Deconvoluting Kernel Density Estimators have

been studied by many researchers. See, for instance, Stefanski and Carroll

(1990), Carroll and Hall (1989), Fan (1991), Efromovich (1997), Wand (1998)

and Cator (2001). In applications of “deblurring of images”, Roy Choudhury

(1998) and O’Sullivan and Roy Choudhury (2001) discuss methods for recov-

ering images blurred by Poisson noise where the image plays the role of a

density. The challenges of deconvolution problems arise when errors are non-

homogeneous where we literally have only one observation for each error

distribution. Sun et al. (2002) proposed new non-Fourier estimators when

errors are homogeneous or nonhomogeneous uniform. The new estimators

abandon the characteristic functions - there are no Fourier transformations

needed in the calculation. Following the successes of the new estimators by

Sun et al. (2002), we study the non-Fourier based estimators in the case

of homogeneous or nonhomogeneous normal errors and any other arbitrary

error distribution.

Another interesting problem that is related to density deconvolution is

nonparametric regression with errors-in-variables. Fan and Truong (1993)

studied this type of problem and derived Fourier type estimators. Carroll

et al. (1995) discussed two applicable functional methods, regression cali-

bration and simulation-extrapolation (SIMEX) in their monograph. As de-

scribed in the measurement error model II, the predictor X cannot be ob-

served directly. Let (X, Y ) denote a pair of random variables for which we are

interested in the nonparametric estimating problem of the regression func-
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tion m(x) = E(Y |X = x). Due to the measuring mechanism or the nature

of the environment, the covariate Xi is observed through Zi = Xi +Ui where

Ui is a measurement error with known density wi. We shall develop a new

non-Fourier regression estimator and study the asymptotics and performance

of the new estimator.

1.3 Outline of Rest Chapters

Complex spatial-temporal data usually require the development of an ensem-

ble of (new) statistical tools. We will develop propose a new data-mining

technique, the LASR (the abbreviation for longitudinal analysis and self-

registration, pronounced “laser”) procedure and a semiparametric regression

model for a large sequence of spatial-temporal data sets. In the research of

measurement error models we will derive new non-Fourier density and re-

gression estimators for both homogeneous error cases and nonhomogeneous

error cases.

In chapter 2, we address the data preprocessing issue in our data mining

process. Two steps are proposed here, data segmentation and data registra-

tion. An optimal threshold method with EM algorithm is used to classify the

sitting region in data frames. After reviewing the existing image registration

methods, we introduce our new self-registration technique, Self-Registration

by a Line and a Point (SRLP) for spatial registration incorporated by a fast

temporal registration scheme Intensity-based Correlation Registration (ICR).

In chapter 3, we focus on the multivariate smoothing techniques and their

testing procedures that are used in our data mining process. We propose a

Statistical Smoothing Mapping (SSM) algorithm for interface pressure anal-

ysis. It leads to an efficient procedure for computing false-discovery-rate

controlled movies/maps, called FDR movies and FDR maps. The control

of the FDR under dependency is studied here to overcome the multiplicity
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effect from testing activation pixels simultaneously.

In chapter 4, combining the techniques we developed in the previous

chapters, we present a new complete data-mining scheme, the LASR proce-

dure for analyzing a large sequence of spatial-temporal data sets. LASR is

shown to be effective in the application to data from the NMES experiments.

In order to model the overall treatment effects over subjects, we develop a

semiparametric regression model based on Karhunen-Loève expansion and

general radial spline technique. The results confirm that NMES improves

seating interface pressure distributions thus reducing the risk of developing

pressure ulcers.

In chapter 5 we adapt the idea of Sun et al. (2002) and develop fast and

non-Fourier based nonparametric estimators of fX — 3U estimators, when

errors are normal. The new estimators are applicable not only to homoge-

neous error cases but also to nonhomogeneous error cases. Moreover, because

the estimators are inspired from knowledge found in random number genera-

tion (RNG), the ideas in developing the 3U estimators can be generalized for

any arbitrary error distribution and nonhomogeneous case. These estimators

are stable and easy to compute – there are no Fourier transformations needed

in the calculation. The rates of their optimal estimators are n−1/9 for the

cumulative distribution function of X and n−1/11 for the density distribution

function of X. This is in contrast to the slow convergence rates of Fourier

deconvolution estimators when errors are either ordinary or super smooth as

defined by Fan (1991). We also develop new non-Fourier regression estima-

tors – SWAP estimators and study the asymptotics and performance of the

new estimators. In chapter 6 we discuss our proposed methods in the re-

search of both spatial-temporal data mining and measurement error models

and describe future research issues.



Chapter 2

Image Data Preprocessing:
Segmentation and Registration

Data preprocessing is an important step in imaging, astronomy and any data

mining applications. It processes raw data to prepare it for another subse-

quent processing or analyzing procedure.

The goal of data preprocessing is to transform the data into a format

that can be more easily and effectively analyzed. The accuracy of statistical

inferences will be increased. There are a number of different tools and meth-

ods used for preprocessing, such as: sampling, which selects a representative

subset from a large population of data (usually done if the sample size is

too large to input data all at one time for analysis); transformation, which

manipulates raw data to produce a single input that can be analyzed; denois-

ing, which removes noise from data; normalization, which organizes data for

more efficient access; and feature extraction, which pulls out specified data

that is significant in some particular context.

In the NMES study we propose two steps to pre-process the raw data: (1)

Data Segmentation: this is a step for data cleaning. We distinguish between

the spatial regions of interest and the background in each data frame (pres-

22
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sure mapping) and then remove “spots” from the data sets. Segmentation is

important here in that it makes the next step, registration based on random

landmarks (estimated from data), more robust. 2) Data Registration: this

is a step for data calibration. Data acquired by recording the same subject

at different times and from different perspectives are in different coordinate

systems. Registration is the process of transforming the different sets of data

into one coordinate system. Registration is necessary both spatially and

temporally in order to be able to compare or model the data obtained from

different measurements.

In section 2.1, we develop a data segmentation method for the NMES

data sets. In section 2.2, we will introduce the background of registration and

review the existing methods for image registration. In section 2.3 we propose

new spatial and temporal registration algorithms for the NMES study. The

problem of registration error will also be discussed there.

2.1 Data Segmentation

In Figure 1.5, it can be seen that noise and outliers appear outside of the

sitting region (i.e. the buttock and thigh region). It is critical to detect the

edge of the sitting region of subjects and to remove the noise from the sitting

region by partitioning the data frame into distinct parts.

Data segmentation here refers to the process of partitioning a data frame

or an image into distinct regions by grouping together neighborhood data

cells or pixels based on some pre-defined criterion. In other words, our seg-

mentation is a data cell/pixel classification that allows the formation of re-

gions of similarities in the data frame or image.
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Figure 2.1: Segmentation by analyzing the histogram and density plot of a data
frame. A simple threshold is the red point which corresponds to the first deepest
valley point between the first two consecutive major peaks in the density curve.

2.1.1 Edge Detection by Histograms

We propose a histogram-based classification method to define a threshold

to classify a data frame cell-by-cell. The threshold for classifying cells into

classes is obtained from the analysis of the histogram or density plot of the

data frame. Let Z(i, j) denote the intensity value of the ith row and the jth

column of a data frame. In order to remove noise and segment the sitting

region of interest, the data frame can be segmented into two classes using an

intensity value threshold T such that

Z̃(i, j) =

{
Z(i, j), if Z(i, j) > T ;

0, if Z(i, j) ≤ T .

A simple approach is to examine the histogram or the density plot for

multi-modal distribution. If the histogram is multi-modal, the threshold can

be set to the intensity value corresponding to the first deepest point in the
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histogram valley. Figure 2.1 displays the histogram and density plot of the

data frame shown in the Figure 1.5. The density plot clearly displays tri-

modality. The simple approach to determine the threshold T is to find the

first deepest valley point between the first two consecutive major peaks in the

density curve. The validity of this criterion is equivalent to modeling intensi-

ties as from a mixture of two components: background (mostly small values

with a unimodal distribution) and signals (which can itself be a unimodal or

multimodal distribution.)

2.1.2 Data-driven EM Algorithm and Optimal Thresh-

olding

Rather than determine the threshold visually, it is better to develop a method

to find the optimal threshold. Due to the large sample size of the pressure

intensities in a data frame, it is reasonable to assume the distribution of

the pressure intensities is a finite mixture of m normal components, i.e. the

density of intensities is

f(z) =
m∑

i=1

αi
1

σi
φ

(
z − µi

σi

)
(2.1)

where φ is the standard normal density, and the parameters are

Θ = (α1, · · · , αm, µ1, · · · , µm, σ1, · · ·σm),

such that σi > 0, αi > 0 and
∑m

i=1 αi = 1.

The Expectation-Maximization algorithm proposed by Dempster et al.

(1977), popularly known as the EM algorithm, is a broadly applicable ap-

proach to the mixture-density parameter estimation problem. Let α1, · · · , αm,

µ1, · · · , µm and σ1, · · ·σm denote the unknown parameters. A simple EM al-

gorithm for computing maximum likelihood estimates of Θ = (α, µ, σ) is as

follows.
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Algorithm 2.1.1. EM algorithm for the mixture-density parameter estima-

tion.

1). Provide “good” initial values of Θ. (We recommend choosing the values

based on a under-smoothed histogram and summary statistics.)

2). Based on the sample Z1, · · · , Zn compute

τij =
αi

1
σi
φ
(

Zj−µi

σi

)

∑m
t=1 αt

1
σt
φ
(

Zj−µt

σt

) ,

αi =
1

n

n∑

j=1

τij, µi =

∑n
i=1 τijZj

nα
, σ2

i =

∑n
i=1 τij(Zj − µi)

2

nαi
.

3). Iteratively repeat step 2 until convergence.

Table 2.1 displays the results of parameter estimation using the EM al-

gorithm for the data frame displayed in Figure 1.5. A mixture with three

normal components is used to fit the data. Figure 2.2 shows the estimated

density curve by the EM algorithm with the sample histogram. The density

plots of three normal components are displayed by the three curves with thin

lines. It is clearly seen that the estimated density captures the bumps in

the sample histogram successfully. The first normal component shows a high

relative frequency due to the large repeat of zeros and nonnegativity of the

sample.

After all the parameters are estimated we are able to determine an optimal

threshold for data segmentation. The histograms of data in each of frames in

the NMES study often exhibit tri-modality or sometimes bimodality. Next

we derive the optimal threshold for tri-modal models. The optimal threshold

for bimodal or multi-modal models can be similarly derived.

Suppose that the data frame can be classified into two separate regions,

the background and the sitting region, where the intensities in the back-

ground follow a normal distribution N(µ1, σ
2
1), the intensities in the sitting
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Figure 2.2: The estimated density plots using the EM algorithm for a finite
normal mixture model. The estimated mixture captures the bumps in the sample
histogram sucessfully.

α µ σ
1 0.1923 2.080 2.259
2 0.2524 23.22 10.47
3 0.5553 57.65 26.59

Table 2.1: Parameters estimation by the EM algorithm for the data frame dis-
played in Figure 1.5. The data is fitted by a mixture of three normal distributions.
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region follow a mixture of normal distributions with density function g(z),

more specifically, we have two components here. The density of intensities

in a data frame (2.1) can be written as

f(z) = α1f1(z) + α2f2(z) + α3f3(z) = α1f1(z) + βg(z),

where

fi(z) = αi
1

σi
φ

(
z − µi

σi

)
,

β = α1 + α2, g(z) =
α1

α1 + α2
f2(z) +

α2

α1 + α2
f3(z).

In this case µ1 < µ2, µ3. We define an optimal threshold T so that all cells

with an intensity less than or equal to T belong to background region and

all cells with an intensity greater than T belong to the sitting region. The

probability of misclassifying a cell in the background as a cell in the sitting

region is

PMC1 =

∫ +∞

T

f1(z)dz,

and the probability of misclassifying a cell in the sitting region as a cell in

the background is

PMC2 =

∫ T

−∞

g(z)dz.

Our optimal threshold is to minimize the overall probability of misclassifica-

tion

min
T

PMC = min
T

{α1PMC1 + βPMC2},

i.e. find the threshold value T that satisfies

min
T

{
α1

∫ +∞

T

f1(z)dz + α2

∫ T

−∞

f2(z)dz + α3

∫ T

−∞

f3(z)dz

}
.
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Figure 2.3: Examples of comparison of images after data segmentation using
optimal thresholds. The upper two subplots are for Subject 1 and the lower two
subplots are for Subject 2. Note that the sitting regions in the data frames are
segmented and the background noises are removed.
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Differentiating PMC with respect to T by Leibnitz’s Rule and setting

dPMC/dT = 0, we have

α1f1(T ) = α2f2(T ) + α3f3(T ). (2.2)

Since the parameters Θ in (2.2) can be obtained by the EM algorithm,

one can easily obtain the optimal threshold by using Mathematica or Maple

software to solve (2.2).

Figure 2.3 shows two examples of our data segmentation methods using

the EM algorithm and optimal thresholds. The optimal thresholds in the

data frames of subject 1 and subject 2 are 12.7 and 14.3, respectively. The

sitting regions in the data frames are clearly segmented and the background

noise is removed. This data pre-processing step is valuable in that it will make

our next data pre-processing step – data registration much more robust.

2.2 Introduction to Registration

Registration is the process of transforming the different sets of data into the

same coordinate system. It has applications in many fields. The past 25

years have seen remarkable developments regarding registration techniques

in image analysis. We briefly review the background and existing methods

of image registration.

Image registration is the process of systematically placing separate im-

ages in a common frame of reference so that the information they contain

can be optimally integrated or compared. This plays a central role in anal-

ysis, interpretation and visualization of both medical and other images. In

many clinical scenarios images from several modalities may be acquired and

without a registration the diagnostician’s task would be mentally combine

or “fuse” this information to draw useful clinical conclusions. This generally

requires mental compensation for changes in subject position. Image registra-

tion aligns the images and so establishes correspondence between different
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features seen on different imaging modalities, allows monitoring of subtle

changes in size or intensity over time or across a population, and establishes

correspondence between images and physical space in image guided interven-

tions. Registration of an atlas or computer model aids in the delineation of

anatomical and pathological structures in medical images as an important

precursor to detailed analysis.

More specifically, registration is the determination of a geometrical trans-

formation that aligns points in one view of an object with corresponding

points in another view of that object or another object. We use the term

“view” generically to include a three-dimensional image, a two-dimensional

image, or the physical arrangement of an object in space. Three-dimensional

images are acquired by tomographic modalities, such as computed tomography

(CT), magnetic resonance imaging (MRI), single-photon emission computed

tomography (SPECT) and positron emission tomography (PET). In each of

these modalities a contiguous set of two-dimensional slices provides a three-

dimensional array of image intensity values. Typical two-dimensional images

may be x-ray projections captured on film or as a digital radiograph or pro-

jections of visible light captured as a photograph or a video frame. In all

cases we are concerned primarily with digital images stored as discrete ar-

rays of intensity values. In medical applications, which are our focus, the

object in each view will be some anatomical region of the body. Figure 2.4

displays an example of registration procedure using the iterative closest point

(ICP) algorithm for MR images.

2.2.1 Transformations in Registration

Image registration can be defined as a mapping between two images both

spatially and with respect to intensity. Let us define these images as two

2-dimensional (or 3-dimensional) and denote their intensities by I1 and I2
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Figure 2.4: Example of registration procedure using iterative closest point algo-
rithm for MR images.
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respectively. The mapping between images can be expressed as,

I2(x2) = g(I1(T (x1)))

where T (·) is a 2-dimensional (or 3-dimensional) spatial coordinate transfor-

mation and g(·) is an 1-dimensional intensity transformation.

The registration problem involves finding the optimal spatial and intensity

transformations so that the images are matched with regard to the mis-

registration source. However, the intensity transformation is not frequently

necessary except in the case where there is a change in sensor type (such as

from optical to radar). In this sense we are interested in finding T such that,

T : x1 7→ x2 ⇔ T (x1) = x2.

The primary general transformations for images are rigid, affine, projective,

and curved. These are all well-defined mappings of one image onto another.

Rigid Transformations

Rigid transformations are defined as geometrical transformations that pre-

serve all distances. These transformations also preserve the straightness of

lines (and the planarity of surfaces) and all nonzero angles between straight

lines. Rigid transformations are simple to specify and there are several meth-

ods of doing so. In each method there are two components to the specifica-

tion, a translation and a rotation. In three dimensions there are six param-

eters which can be defined as translation in the x, y and z directions, and

rotations α, β and γ about these three axes. The rigid transformation can be

represented as a rotation R followed by a translation t that can be applied

to any point x = (x, y, z)T ,

Tr(x) = Rx + t

where t = (tx, ty, tz)
T and the rotation matrix R is constructed from the

rotation angles as follows:



34

R =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1






cosβ 0 sin β
0 1 0

− sin β 0 cos β






1 0 0
0 cosα − sinα
0 sinα cosα




=




cosβ cos γ cosα sin γ + sinα sin β sin γ sinα sin γ − cosα sin β cos γ
− cosβ sin γ cosα cos γ − sinα sin β sin γ sinα cos γ + cosα sin β sin γ

sin β − sinα cosβ cosα cos β




Affine Transformations

An Affine transformation is a non-rigid transformation. It preserves the

straightness of lines and the planarity of surfaces. It preserves parallelism

but allows angles between lines to change. The affine transformation can be

represented as

Ta(x) = Ax + t

where there is no restriction on the elements aij of the matrix A.

Affine transformations are sometimes represented by means of homoge-

neous coordinates. In this representation both A and t are folded into one

4 × 4 matrix Ã,




x2

y2

z2
1


 = Ãx =




a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
0 0 0 1







x1

y1

z1
1




Projective Transformations

Projective transformations are more general non-rigid transformations which

preserve the straightness of lines and planarity of surfaces. However, paral-

lelism between straight lines is in general not preserved. Projective transfor-

mations can be represented by,

Tpr(x) = (Ax + t)/(px + u)
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and can be written in homogeneous coordinates,



v1

v2

v3

v4


 = P̃x =




a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
px py pz u







x1

y1

z1
1


 ,



x2

y2

z2


 =



v1/v4

v2/v4

v3/v4




Curved Transformations

Curved transformations are those which do not preserve the straightness of

lines. For instance, they may map a straight line onto a curve. The simplest

functional form for T(·) in curved transformations is a polynomial in the

components of x1 = (x1, y1, z1)
T ,

x2 = Tc(x1) =

I∑

i

J∑

j

K∑

k

cijkx
i
1y

j
1z

k
1

where cijk is the three-dimensional vector of coefficients for the i, j, k term

in the polynomial expression for the three components x2, y2, z2 of x2.

Other curved transformations such as cubic spline, B-spline, thin-plate

spline methods have been widely used for two-dimensional image problems.

2.2.2 Current Image Registration Methods

Different imaging modalities bring complementary information that can be

advantageously used to establish a diagnosis or assist the clinician for a ther-

apeutic gesture. To locally compare two or more measurements of different

natures a number of registration algorithms have been developed, especially

in brain imaging.

Registration is often necessary for 1) integrating information taken from

different sensors, 2) finding changes in images taken at different times or
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under different conditions, 3) inferring three dimensional information from

image in which either the camera or the objects in the scene have moved and

4) for model-based object recognition (Rosenfeld and Kak, 1982). To register

two images a transformation must be found so that each point in one image

can be mapped to a point in the second. This mapping must “optimally”

align the two images where optimality depends on what needs to be matched.

Gerlot and Bizais (1988) have presented a unified description of exist-

ing registration methods. They propose the following general registration

methodology: 1) extraction of features in each images, 2) pairing of these

features, 3) choice of a geometric transformation and estimation of its pa-

rameters, and 4) effectuation of this transformation. They classify registra-

tion methods into four categories, in which the above four steps are imple-

mented differently: 1) point methods, 2) edge methods, 3) moment methods,

and 4) similarity criterion optimization methods. An extensive classification

scheme for registration methods has also been presented in van den Elsen

et al. (1993). They classify techniques according to a number of criteria: 1)

dimensionality (1D vs. 2D vs. 3D), 2) type of features using for registration

(intrinsic vs. extrinsic), 3) domain of the transformation (local vs. global),

4) type of transformation (rigid vs. affine vs. projective vs. curved), 5) pa-

rameter determination (search vs. closed-form solution), and 6) interaction

(interactive vs. semi-automatic vs. automatic). For a detailed survey and

review of existing image registration techniques, see Maurer and Fitzpatrick

(1993); van den Elsen et al. (1993); Maintz and Viergever (1998); Fitzpatrick

et al. (2000); Hill et al. (2001).

The following briefly reviews some of the existing registration methods.

We divide our review of registration techniques into two main categories:

1) those based on geometric image features, and 2) those based on voxel

similarity measures. The geometric image feature-based methods are divided

into registration of a set of points and edges or surfaces. Registration methods
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based on voxel similarity measures include intensity difference and correlation

methods and methods based on joint entropy or mutual information.

Registration Methods Based on Geometric Features

Point-based Methods

Point-based registration methods, or corresponding Landmark-based Registra-

tion often use external markers or anatomical landmarks. Corresponding

point sets are usually manually defined in the reference and floating images.

The advantages of the point-based registration methods are that they can be

applied to any imaging modalities where markers or landmarks are visible

and that the calculation of the registration parameters between two point

sets is usually fast.

A noniterative least squares method can be used to register corresponding

point sets. The method uses a singular value decomposition (SVD) of a 3×3

covariance matrix to find a unique solution for the registration parameters

between two point sets. For example, Algorithm 2.2.1 provides a method

for point-based rigid registration. It is desirable to find R and t which

minimize
∑n

i=1w
2
i |Rxi + t − yi|2 where xi and yi (i = 1, · · · , n) are the

corresponding landmarks in image X and Y respectively, and wi is some

non-negative weighting factor.

Algorithm 2.2.1. Point-based rigid registration

1). Calculate the weighted centroid of the landmarks in each image,

x̄ =

∑n
i=1w

2
i xi∑n

i=1w
2
i

, ȳ =

∑n
i=1w

2
i yi∑n

i=1w
2
i

2). Compute the displacement from the centroid to each landmark in each

image,

x̃i = xi − x̄ , ỹi = yi − ȳ
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3). compute the weighted covariance matrix,

C =

n∑

i=1

w2
i x̃iỹ

T
i

4). Perform singular value decomposition of C,

C = UΛVT

where UTU = VTV = I, Λ = diag(λ1, λ2, λ3), λ1 ≥ λ2 ≥ λ3 ≥ 0.

We have R = V diag(1, 1, det(VU))UT , and t = ȳ − Rx̄.

Point-based affine registration, point-based projective registration and

point-based curved registration are also available. These landmark-based

registrations are widely applied in medical image registration because they

allow matching of any imaging modalities in which the positions of markers

can be accurately defined.

Surface-based Methods

Corresponding surfaces may be identified and used for registration. In these

algorithms corresponding surfaces are delineated in the two imaging modali-

ties and a transformation computed that minimizes some measure of distance

between the two surfaces. The first widely used method was the “head-and-

hat” algorithm, but the most popular method now is the iterative closest

point algorithm.

The head and hat algorithm was proposed by Pelizzari et al. (1989) who

were the first investigators to apply surface-based registration to a medical

problem. They used the algorithm to register CT, MR, and PET images of

the head. The “head” is the contours of the surface drawn on a series of slices

from one modality; the “hat” is a set of identified points that correspond to

the same surface in the other modality. The computer then attempts to fit

the hat points on the head contours iteratively. At each iteration the sum of
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the squares of the distances between each hat point and the head is calculated

and the process continues until the value is minimized. As its name implies,

this was first used on images of the head and, especially, the alignment of MR

and PET images. Unfortunately, just as there are many ways of placing a

real hat on a head, this algorithm can lead to a wrong solution. These types

of algorithms tend to fail when the surfaces show symmetries to rotation,

which is often the case for many anatomical structures.

The iterative closest point (ICP) algorithm, first proposed by Besl and

McKay (1992), has been widely applied to surface-based registration of medi-

cal images. They presented an algorithm which reduces the general nonlinear

minimization problem to an iterative point-based registration problem. The

ICP algorithm is a general-purpose, representation-independent, shape-based

registration algorithm that can be used with a variety of geometrical objects

including point sets, line segment sets, triangle sets and implicit and para-

metric curves and surfaces.

In the most usual form of this algorithm, one surface is represented by

a set of points while the other is represented by a surface made up of many

triangular patches or “facets”. The algorithm proceeds by finding the closest

point on the appropriate triangular patch to each of the points in turn. The

closest points form a set and these are registered using the corresponding

landmark-based registration and then the residual error is calculated. The

closest points are found from this new position and the process is repeated

until the residual error decreases to less than some preset value.

The ICP algorithm is described in more detail in the next chapter. It

uses more of the available data than landmark identification. It is robust,

accurate and has been reported in many applications. Unfortunately, the

technique is highly dependent on identification of corresponding surfaces,

yet different imaging modalities can provide very different image contrast

between corresponding structures.
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Registration Methods Based on Similarity Measures

Registration using voxel similarity measures involves calculating the registra-

tion transformation T by optimizing some measure calculated directly from

the voxel values (or pixel values) in the images rather than from geometrical

structures such as points or surfaces derived from the images. For registration

using voxel similarity measures it is very important to distinguish between

registration where images are from the same modality (intramodality) and

registration where images are from different modalities (intermodality).

Intramodality registration using voxel similarity measures

A common reason for carrying out the intramodality registration is to com-

pare images from a subject taken at slightly different times in order to ascer-

tain whether there have been any subtle changes in anatomy or pathology. If

there has been no change in the subject we might expect that, after registra-

tion and subtraction, there will be no structure in the difference image, just

noise. Where there is a small amount of change in the structure we would

expect to see noise in most places in the images, with a few regions visible in

which there has been some change. There can be considerable clinical bene-

fit to accurately aligning images of the same subject acquired with the same

modality at different times in order to detect subtle changes in intensity or

shape of a structure. This technique is most widely used for aligning serial

MR images of the brain.

One of the simplest voxel similarity measures is the sum of squared in-

tensity differences (SSD) between images, which is minimized during regis-

tration. It can be shown that this is the optimum measure when two images

differ only by Gaussian noise. It is obvious that this will never be the case

for intermodality registration. This strict requirement is not often true in

intramodality registration either, as noise in medical images such as modulus

MRI scans is frequently not Gaussian. The SSD measure makes the implicit
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assumption that after registration the images differ only by Gaussian noise.

A slightly less strict assumption would be that, at registration, there is a lin-

ear relationship between the intensity values in the images. In this case, the

optimum similarity measure is the correlation coefficient (CC). Another pop-

ular intramodality registration, the ratio image uniformity (RIU) algorithm

was introduced by Woods et al. (1992) for the registration of serial PET

studies but has more recently been widely used for serial MR registration

(Woods et al., 1998a,b). The algorithm can be thought of as working with a

derived ratio image calculated from images A and B. An iterative technique

is used to find the transformation T that maximizes the uniformity of this

ratio image which is quantified as the normalized standard deviation of the

voxels in the ratio image.

Intremodality registration using voxel similarity measures

Because of the similarity of the intensities in the intramodality images being

registered the subtraction and correlation techniques described above have

an intuitive basis. With intermodality registration the situation is quite dif-

ferent. There is, in general, no simple relationship between the intensities in

the images. Any algorithm that is used to register images from two differ-

ent modalities must be insensitive to modality-specific differences in image

intensity associated with the same tissue and also accommodate differences

in relative intensity from tissue to tissue.

The first successful application of a voxel similarity-based algorithm to the

registration of images from different modalities was the partitioned intensity

uniformity (PIU) algorithm proposed by Woods et al. (1993) for MR-to-PET

registration. The algorithm assumes that at each intensity in the MR im-

age the range of the corresponding PET intensities is small. Implementation

involved an almost trivial change to the source code of their previously pub-

lished RIU technique but proved to be robust for the registration of MR and

PET images of the head, provided the scalp was first removed from the MR
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images.

Registration can be thought of as reducing the amount of information

in the combined image, which suggests the use of a measure of information

as a registration metric. The most commonly used measure of information

in signal and image processing is Shannon entropy H , which is widely used

as a measure of information in many branches of engineering. Originally

developed as part of information theory in the 1940s (Shannon, 1948a,b),

it describes the average information supplied by a set of symbols s whose

probabilities are given by p(s),

H = −
∑

s

p(s) log(p(s)).

Initially it seems that image registration has little to do with measuring

the amount of information being transmitted down a communication chan-

nel. The use of entropy and other information-theoretic measures for image

registration came about, however, after inspection of joint histograms and

probability density functions. It was proposed by Collignon et al. (1995);

Studholme et al. (1995) that the entropy of the joint histogram calculated

from images A and T (B) should be iteratively minimized to register these

images. Minimizing joint histogram entropy to register images may be con-

sidered an extension of PIU minimization.

Joint entropy on its own does not provide a robust voxel similarity mea-

sure for all types of image registration. The mutual information measure

with modifications associated with normalization (Studholme et al., 1996,

1997, 1999) has proved fairly robust and has resulted in fully automated

3D-to-3D rigid-body registration algorithms that are now in widespread use.

In maximizing mutual information, we seek solutions that have a low joint

entropy together with high marginal entropies. The mutual information is
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defined by

I(A,B) = H(A) +H(B) −H(A,B) =
∑

a

∑

b

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)

where H(A), H(B), H(A,B) denote the entropy of A, B and the joint entropy

A and B, respectively.

2.3 Registrations Procedures for the NMES

study

In the NMES study the experimental methodology produced a large volume

of data for a relatively small subject population. Interface pressure data

stored as discrete arrays of intensity values can be represented as digital im-

ages. The data frame or image object was the anatomical seating region of

the body, specifically the buttock and thigh region. The current experimen-

tal protocol entailed obtaining several data sets from each subject during

their participation in the experiment. Since a subject may not sit at the

same relative position on the sensor mat or with the same posture as be-

fore, or the image target regions may differ from one session to another, it

was possible that some spatial change might exist between data sets from

different sessions. This is the case in our clinical study as shown in Figure

2.5 and Figure 2.6 where misalignment for some subjects is more obvious

than the others. Since the subjects were not restrained in any way during

the assessment it was also possible for some change in seating orientation

to occur from one assessment condition to another during the same session.

Thus in order to determine any changes due to the effect of using NMES we

first had to ensure that any changes due solely to seating orientation were

fully compensated. This was achieved by spatial registration.

In the middle segment of each session as shown in Figure 1.4, a left/right

alternating stimulation is given to a subject. To compare middle segments
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Figure 2.5: Raw data frames with representation as images for the subjects before
treatment
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Figure 2.6: Raw data frames with representation as images for the subjects after
treatment
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from two sessions a temporal registration is necessary to avoid artificial dif-

ferences caused by stimulation cycle phase obscuring true image differences

due to treatment.

Next we present methods for developing two types of intra-patient reg-

istration, spatial registration and temporal registration. Based on the suc-

cessful outcome from this study a larger Phase II study with a larger subject

population to permit an effective examination of potential differences across

the entire seat region between different groups of patients by age, gender and

health conditions can be planned. Inter-subject registration might be neces-

sary with a more diverse study population, for example, to quantify specific

differences at specific locations of the seating interface region in different

groups of patients.

2.3.1 A New Spatial Registration Scheme: SRLP

Figures 2.5 and 2.6 display the first still images from each of six movies

(representing six subjects) at the first segment of the first session (before in-

tervention) and at the third segment of the last session (after intervention).

Some of these images for identical subjects have different orientations and

some of them cover different image target regions. For example, the fourth

image in the second row for the fourth subject has been rotated 90 degrees in

the last session. The last image for subject 6 has non-overlapping areas be-

tween two images. Thus spatial registration is necessary to align images from

different sessions. Non-overlapping regions will be chopped out or trimmed

during final analysis. Fortunately, the images within one segment in one ses-

sion, and between different data sets in one session, do not appear to need

a spatial registration. Thus, the first (stable) image of the first movie in

each session can be used as a reference to register or align movies from dif-

ferent sessions, before we compute difference images or movies for statistical

analysis of clinical relevance.



46

The first step in achieving a spatially registered image pair is to define

a coordinate system for each image, thus defining a space for that image.

Registration is based on geometrical transformations, which are mappings of

points from the space A of one view to the space B of a second view. Thus,

the transformation T applied to a point in A represented by the column

vector a = (ai, aj)
T produces a transformed point a′ = (a′i, a

′
j)

T ,

a′ = T(a)

If the point b = (bi, bj)
T ∈ B corresponds to a, then a successful registration

will make a′ equal, or approximately equal, to b. Any nonzero displacement

T(a) − b is a registration error.

SRLP Algorithm

For spatial registration of seating pressure distribution images, the key is to

choose appropriate landmarks and estimate the landmark “midline” of the

seating contact area for each patient. The midline and an obvious “end”

point in each image will be used as our landmarks for registration which

leads to a midline-to-midline and endpoint-to-endpoint alignment. A scale

change of images is not expected unless a subject has a significant change in

body weight between two sessions. Thus we propose the following algorithm

for spatial registration of images based on a midline and an end point.

Algorithm 2.3.1. Spatial Registration by a line and a point (SRLP)

1). Determine the midpoints for each image,

midpt =
rowcount

2
+

(c1 − c2)

2

where c1 = the number of non-zero values from the lower half image,

c2 = the number of non-zero values from the upper half image, and the
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rowcount is the total number of non-zero values in each column of the

image.

2). Determine the midline. The midline is the regression line estimated by

fitting a simple regression to the midpoints.

3). Perform a rigid transformation based on the midline, by rotation and

translation through matrix R



a′i
a′j
1


 = R



ai

aj

1


 =




cos θ − sin θ u
sin θ cos θ v

0 0 1





ai

aj

1




where tan θ is the slope of the midline and (u, v) is the last point of the

fitted midline in the image that is to be transformed.

If the patient is sitting asymmetrically the two halves of the image will

have an unequal number of non-zero pixel values. For example, if the patient

is leaning toward the lower half of the image there will be more non-zero

pixel values in the lower half than in the upper half of the image, i.e c1 > c2.

A positive correction (c1 − c2)/2 to the rowcount/2 should then be applied

so that the location of the midpoint value moves up. After computation

of the corrected midpoints, the midline can readily be found through linear

regression. In Figure 2.7, the upper graph displays the midline of a patient

in one frame; the lower graph displays the images after spatial registration

for the same subject.

Remark. The idea of SRLP is simple, but is highly effective. It allows for

self-registering any image, and can correct the bias and save the labor in

determining the middle line manually. It is also a consistent algorithm in

statistical sense for a random landmark registration problem (as shown in

Theorem 2.3.1).
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Figure 2.7: An example of spatial registration by a line and a point (SRLP). The
middle line is determined by a simple linear regression and rigid transformation is
used in the registration.
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Registration Error of SRLP

As mentioned at the beginning of this section, any nonzero displacement

between a transformed point T(a) and its corresponding point b is an in-

dividual registration error. A naive measure of overall misalignment of a

registration is the mean square error (MSE). Overall registration error (RE)

of SRLP is defined as follows.

RE =
1

n2

n∑

i=1

n∑

j=1

||TSRLP (aij) − bij||2 (2.3)

where aij and bij (i, j = 1, · · · , n) are the corresponding points (i.e. coordi-

nates of data cells) in spaces A and B, respectively.

Theorem 2.3.1. Assume that the intensity values are bounded and we are

interested in a bounded domain. The overall registration error of spatial

registration by a line and a point tends to zero in probability as the number

of pixels increases. In other words, the SRLP is consistent.

Proof: After SRLP registration, the a′
ij = (a′i, a

′
j) has the representation

a′i = ai cos θ̂ − aj sin θ̂ + u, a′j = ai sin θ̂ + aj cos θ̂ + v̂

where tan θ̂ = β̂0, v̂ = tan θ̂u+ β̂1, and β̂0, β̂1 are the estimates of the slope

and intercept of the midline. Notice that u is not an estimated value because

the horizonal axis of the last point in the fitted midline keeps immovable.

A perfect registration will make the transformed point equal to bij , so

b′i = ai cos θ − aj sin θ + u, b′j = ai sin θ + aj cos θ + v

Then the registration error of SRLP is equal to

RE =
1

n2

n∑

i=1

n∑

j=1

{
[ai(cos θ̂ − cos θ) − aj(sin θ̂ − sin θ)]2

+ [ai(sin θ̂ − sin θ) − aj(cos θ̂ − cos θ) + (v̂ − v)]2
}
.
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Note that β̂0, β̂1 are consistent estimators in the midline regression (see

details in the Appdenix), and θ = g(β1, β2), v = h(β1, β2) where g and h

are continuous functions. Hence, θ̂ = g(β̂0, β̂1) and v̂ = h(β̂0, β̂1) are also

consistent by Slutsky’s theorem. Then by the boundedness of intensities and

ai, aj , it is easy to see that RE → 0 in probability as n→ ∞ or the number

of pixels tends to infinity. �

2.3.2 A Temporal Registration Scheme: ICR

As part of the assessment protocol for this study electrical stimulation of the

gluteal muscles was applied to produce dynamic weight-shifting from side to

side. Temporal registration is required to align stimulation periods (on-off

times) for all data sets collected for one subject under the same assessment

conditions. Temporally registered data may then be further analyzed to

determine the effects of dynamic weight shifting over time, i.e. over more

than one assessment.

If the intensities in images A and B are linearly related, then the corre-

lation coefficient can be shown to be the ideal similarity measure. Few reg-

istration applications will precisely conform to this requirement, but many

intra-modality applications, such as aligning on-off signals for two simulation

sessions in our case, come sufficiently close for this to be a useful measure.

If there were a registration error, we would expect to see artefactual

structure in the difference image resulting from the poor alignment. In this

application, various voxel similarity measures suggest themselves. We could,

for example, iteratively calculate T while minimizing the structure in the

difference image on the grounds that at correct registration there will be

either no structure or a very small amount of structure in the difference im-

age, whereas with increasing misregistration, the amount of structure would

increase. The structure could be quantified, for example, by the sum of

squares of difference values, or the sum of absolute difference values or the
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entropy of the difference image. An alternative, intuitive approach (at least

for those familiar with signal processing techniques) would be to find T by

cross correlation of images A and B.

Algorithm 2.3.2. Temporal Registration (ICP)

1). Discard the first m unstable data frames from each of the sub-data sets

with the NMES stimulation (Here we choose m = 10).

2). For the remaining images A1,...,An and B1,...,Bn from the middle seg-

ments of two on-off stimulation sessions, compute the correlation coef-

ficient corij(AB) of Ai and Bi+j for i = 1, ..., n− j and j = 0, ..., n−1.

Let

CorAvgj =
1

n− j

∑

i

corij(AB).

Find j0 such that

CorAvgj0 = max
j

(CorAvgj).

3). Align images Ai with Bi+j0.



Chapter 3

Statistical Smoothing Mapping

In the NMES study the primary questions of interest to biomedical re-

searchers are:

• Does the long-term gluteal NMES improve intrinsic characteristics of

the paralyzed muscles?

• Can we identify the areas in which interface pressure has significantly

improved?

To answer these questions we develop a statistical smoothing mapping

algorithm which is inspired from the popular statisical parametric mapping

approach in brain imaging. Our algorithm incorporates multivariate non-

parametric regression techniques combined with an efficient procedure for

computing an “FDR” movie/map to determine whether a change is clini-

cally relevant or merely spurious. In section 3.1, multi-dimensional smooth-

ing techniques are presented and their bandwidth selection and computation

aspects are discussed. In section 3.2, hypothesis testing for nonparametric

regression is addressed. In section 3.3, the multiple testing problem is dis-

cussed. The control of the false discovery rate under dependency is studied

there. Finally we propose our statistical smoothing mapping algorithm.

52
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3.1 Multivariate Local Regression

Intuitively, in order to identify improved areas in the sitting region from

the pressure data, one can simply take the difference between baseline and

treatment data after segmentation and registration. However, it is difficult

to draw a conclusion directly from the difference maps because the data

are corrupted by random variations in intensity. Nonparametric smoothing

techniques are designed to estimate and model the underlying structure. It

helps to extract structural elements of variable complexity from patterns of

random variation. More precisely, the aim of smoothing here is to remove

sampling variability that has no assignable cause, and to make systematic

features of the data more apparent which thereby enables us to capture the

improved areas from the statistical point of view.

Smoothing becomes more difficult as the dimension of the data set in-

creases. The multivariate local estimation approach that we apply in our

study is a powerful tool to be used in high dimensional smoothing. Instead

of estimating a constant locally (i.e. kernel estimation) one can locally fit a

polynomial model. This idea has superior behavior in particular at bound-

aries (Fan and Gijbels, 1996), which matches our application needs. More-

over, local linear (or quadratic) smoothing not only permits the estimation

of the regression function itself but also its derivatives.

In this section we present multivariate smoothing techniques using local

polynomial fitting, which includes the Nadaraya-Watson kernel estimator,

with a focus on application to the NMES data. The ideas in developing

asymptotic results and choosing bandwidth are similar for both local poly-

nomial and Nadaraya-Watson kernel estimators. However, we are only able

to introduce those relevant to the dissertation. For a more complete dis-

cussion of the subject see the monographs by Scott (1992), Fan and Gijbels

(1996) and Wand and Jones (1995).
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3.1.1 Multivariate Kernel and Density Estimation

The goal of multivariate nonparametric density estimation is to approximate

the probability density function (PDF) f(x) = f(x1, · · · , xp) of the random

variables X = (X1, · · · , Xp)
T . The multivariate kernel density estimator in

the p-dimensional case is defined as

f̂h(x) =
1

n

n∑

i=1

1

h1 · · ·hp
K

(
Xi1 − x1

h1
, · · · , Xip − xp

hp

)
(3.1)

where K : R
p → R denotes a multivariate kernel function. Note that (3.1)

assumes that the bandwidth is a vector of bandwidths h = (h1, · · · , hp)
T .

In order to localize in p-dimensions, we need a multivariate kernel. A

multivariate kernel function refers to a p-variate function satisfying

∫ ∞

−∞

· · ·
∫ ∞

−∞

K(x)dx = 1.

The second-order kernel requires that

∫
xiK(x)dx = 0, i = 1, · · · , p,

and the second-moment be finite. To simplify the notation, we use “
∫

” to

indicate multivariate integration over the p-dimensional Euclidean space.

What is the form of the multidimensional kernel function K(x)? There

are two common approaches for constructing multivariate kernels. One sim-

ple way is to use a product kernel :

K(x) =

p∏

i=1

k(xi)

where k denotes a univariate kernel function, for instance, the Epanechnikov

kernel k(x) = 3(1 − x2)/4 · I(|x| ≤ 1).
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An alternative method is to use a genuine multivariate kernel function

K(x) which uses observations from a ball around x to estimate the PDF at

x. This type of kernel is often called the spherically or radially symmetric

kernel since K(x) has the same value for all x on a sphere around zero. The

spherically symmetric kernel is defined as

K(x) = sK(||x||)

where s = (
∫
K(||x||)dx)−1 is a normalization constant and ||x|| = (x2

1 +

· · · + x2
p)

1/2. Common selections of K include the standard p-dimensional

normal density

K(x) = (2π)−p/2e−||x||2/2

and the multivariate Epanechnikov kernel

K(x) =
p(p+ 2)Γ(p/2)

4πp/2
(1 − ||x||2)I(||x||2 ≤ 1).

The latter is the optimal kernel according to Fan and Gijbels (1996).

In practice product kernels are recommended. However, for various the-

oretical studies, general multivariate kernels may be required. The general

multivariate kernel estimator includes not only an arbitrary multivariate den-

sity as a kernel but also an arbitrary linear transformation of the data.

Let H be a symmetric positive definite matrix called a bandwidth matrix.

The general form for the multivariate density estimator is

f̂H(x) =
1

n

n∑

i=1

1

det(H)
K(H−1(Xi − x)) =

1

n

n∑

i=1

KH(Xi − x) (3.2)

where det(·) denotes the determinant of a square matrix. The localization

scheme at a point x assigns the weight KH(Xi − x) with

KH(x) =
1

det(H)
K(H−1x)
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which is analogous to Kh = K(·/h)/h in the one-dimensional case. The

bandwidth matrix is introduced to accommodate the dependent structure in

the independent variables. In the implementation of our statistical analysis

in NMES we take the bandwidth matrix H to be a diagonal matrix. This

accommodates different scales in different independent variables. A further

simplification is to take an equal bandwidth h in all dimensions corresponding

to H = hIp where Ip denotes the p × p identity matrix, assuming that the

independent variables have the same scale.

3.1.2 Multivariate Local Regression

Multivariate nonparametric regression aims to estimate the functional re-

lation between a response variable Y ∈ R and a multivariate explanatory

variable X ∈ R
p. In image application, Y is the intensity and X is the spa-

tial location. Given observations of independent and identically distributed

R
p+1-valued random vectors (X1, Y1), · · · , (Xn, Yn), we are interested in the

multivariate nonparametric regression problem, estimating the conditional

expectation

m(x) = E(Y |X = x)

without the imposition that m(·) belongs to a parametric family of functions.

We assume the model

Yi = m(Xi) + εi, i = 1, · · · , n.

where m(·) is an unknown function and εi is an error term which represents

random errors in the observations or variability from sources not included in

the Xi. We further assume that the observations Yi have constant variance

σ2.

Note that

E(Y |X) =

∫
yf(y|x)dy =

∫
yf(y,x)dy

f(x)
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The denominator can be estimated by the multivariate kernel density esti-

mate (3.1) or (3.2). For the numerator we have

∫
yf(y,x)dy =

∫
y
(1

n

n∑

i=1

KH(Xi − x)Kh(Yi − y)
)
dy

=
1

n

n∑

i=1

KH(Xi − x)

∫
yKh(Yi − y)dy

=
1

n

n∑

i=1

KH(Xi − x)

∫
y

h
Kh

(Yi − y

h

)
dy

=
1

n

n∑

i=1

KH(Xi − x)Yi

Therefore the multivariate generalization of the Nadaraya-Watson estimator,

multivariate Nadaraya-Watson estimator is,

m̂H(x) =

∑n
i=1KH(Xi − x)Yi∑n
i=1KH(Xi − x)

(3.3)

Analogous to the univariate case, the multivariate Nadaraya-Watson esti-

mator is just a weighted sum of the observed responses Yi. The denominator

ensures that the weights sum up to 1. Depending on the choice of the kernel

m̂H(x) is a weighted average of those Yi such that Xi lies in a ball or cube

around x.

Note that the multivariate kernel regression estimator is based on a local

constant approximation; thus it is also called the multivariate local constant

estimator, that is, it is the solution of

min
b0

n∑

i=1

{
Yi − b0

}2
KH(Xi − x)

This kernel estimator has the advantage of being simple to understand intu-

itively and it is consistent for any smooth function m, provided the density
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of the Xi’s satisfies some minimal assumptions. However, it has some dis-

advantages especially when the design is random. Chu and Marron (1991)

discuss this issue in detail. It can be improved by using the local linear

approximation,

m(X) ≈ m(x) +m′(x)T (X − x)

for X in a local neighborhood of x. This leads to the following least squares

problem,

min
b0,b

n∑

i=1

{
Yi − b0 − bT (Xi − x)

}2
KH(Xi − x) (3.4)

The weight function (kernel function) is defined on the multivariate space,

hence observations close to a fitting point x receive the largest weight. The

problem (3.4) is a straightforward weighted least squares problem and, as-

suming that X̃TWX̃ is nonsingular, the solution is

[
b̂0
b̂

]
= (X̃TWX̃)−1X̃TWY

where

X̃ =




1 (X1 − x)T

...
...

1 (Xn − x)T


 , Y =



Y1
...
Yn


 ,

and W = diag{KH(X1 − x), · · · , KH(Xn − x)}. The local least squares

estimator of m(x) is then

m̂H(x) = eT
1 (X̃TWX̃)−1X̃TWY (3.5)

where e1 is a (p+ 1) × 1 vector having

e1 =




1
0
...
0


 .
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Estimator (3.5), introduced by Stone (1977), has been used in time series

analysis for a long time and it is a special case of the robust local regression

estimators in Cleveland (1979). The major advantage of (3.5) is that it is

very simple to visualize the estimator using the data when estimating m at

a point x. The other important advantage is that the asymptotic bias and

variance expressions are particularly appealing and appear to be superior to

those of the Nadaraya-Watson estimator. This has been demonstrated in the

univariate case by Fan (1992, 1993) and in the multivariate case by Ruppert

and Wand (1994).

Estimator (3.5) is just one member of a hierarchical class of local least

squares kernel estimators since one can locally fit polynomials of arbitrary

order. This class includes the multivariate Nadaraya-Watson estimator which

corresponds to a local constant fit. Cleveland and Devlin (1988) successfully

used a local quadratic fit in several examples, which improved fits obtained

by the local quadratic rather than the local linear estimator.

For the multivariate local quadratic estimator we consider the second

order Taylor’s expansion,

m(X) ≈ m(x) +m′(x)T (X− x) +
1

2
(X − x)Tm′′(x)(X − x).

This leads to the problem,

min
b0,b,C

n∑

i=1

{
Yi− b0−bT (Xi−x)− 1

2
(Xi−x)T C(Xi−x)

}2
KH(Xi−x). (3.6)

The solution m̂H(x) is still defined by (3.5) but now X̃ changes to

X̃ =




1 (X1 − x)T vechT{(X1 − x)(X1 − x)T}
...

...
...

1 (Xn − x)T vechT{(Xn − x)(Xn − x)T}




where vech(·) returns the vector obtained by eliminating all supradiagonal
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elements of the square matrix and stacking the result one column above the

other, and e1 is a {1 + p + 1
2
p(p+ 1)} × 1 vector.

Remark. Ruppert and Wand (1994) give a deep discussion about the asymp-

totic conditional bias and variance of nonparametric regression estimators

using locally weighted least squares. The asymptotic conditional variance of

the multivariate Nadaraya-Watson estimator, the multivariate local linear

estimator and the multivariate local quadratic estimator have the same form,

Var{m̂H(x)|X} =
σ2(t)

∫
K(x)2dx

n · det(H)f(x)
{1 + op(1)}

where f(·) denote the true density of X having support supp(f) ⊆ R
p and

σ2(x) denotes the variance function Var(Y |X).

The asymptotic conditional bias of the multivariate local quadratic esti-

mator is Op{(tr(HTHm(x)H))3/2} rather than Op{(tr(HTHm(x)H))} for the

multivariate local linear estimator, where Hm(x) denotes the p × p Hessian

matrix of a sufficiently smooth p-variate function m at x and tr(·) is the trace

of the matrix.

Fan et al. (1997) point out that the multivariate local linear fit with an

Epanechnikov kernel is a best linear estimator and has a minimax efficiency

of at least 89.4 % among all estimators.

3.1.3 Bandwidth Selection

Multivariate local polynomial fitting requires a choice for the bandwidth ma-

trix, the degree of the polynomial and the kernel function. The optimization

over the bandwidth matrix H can be cumbersome hence a diagonal band-

width matrix H = diag{h1, · · · , hp} (or even H = hIp with appropriate

standardization of the data, where Ip denotes p × p identity matrix.) is

preferred in practice, as is the case in our NMES image analysis.
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As with every kernel-type estimator, bandwidth selection in the multivari-

ate local polynomial regression estimation is of great importance. When the

bandwidth is too small the resulting curve is too wiggly, reflecting too much

of the sampling variability. When the bandwidth is too large the resulting es-

timate tends to smooth away important features. For this reason data-driven

choice of H has been a key issue in kernel type nonparametric estimation.

Theoretically the bandwidth selection problem of multivariate local polyno-

mial regression can be handled the same way as in the one-dimensional case.

Two approaches are frequently used: plug-in bandwidths, in particular rule-

of-thumb bandwidths, and cross-validation bandwidths. Manual bandwidth

selection or eye-balling method (where one tries several bandwidth values and

chooses based on visual examination of the resulting observations and pre-

dictions) also may be used; however, it may be time-consuming and rather

subjective. Different methods for bandwidth selection can produce rather

different values, so bandwidth selection remains a subjective process.

Rule-of-thumb

In data analysis one would like to get a quick idea about how large the amount

of smoothing should be. A rule-of-thumb (ROT) bandwidth selection is suit-

able in such a case. Although it is a rather crude bandwidth selector, it gives

a first idea of an appropriate magnitude for the bandwidth parameter. With

the local polynomial regression method such a crude bandwidth selector can

be obtained by minimizing the mean squared error theoretically, and then use

a plug-in estimate to obtain the optimal bandwidth estimate. Consider the

asymptotically optimal constant bandwidth which minimizes the asymptotic
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Weighted Mean Integrated Square Error (WMISE)

WMISE =E
{∫

(m̂H(x) −m(x))2w(x)f(x)dx
}

=

∫ {[
Bias

(
m̂H(x)

)]2
+ V ar

(
m̂H(x)

)}
w(x)f(x)dx

with w ≥ 0 some weight function and f(x) the density of x. This leads

to a theoretical optimal constant bandwidth. An asymptotically optimal

constant bandwidth can be obtained by using the asymptotic expression of

conditional bias and variance of the local linear regression estimator. Sub-

stituting the estimated value for the optimal bandwidth we obtain the rule

of thumb bandwidth selector. Here we refer to Fan and Gijbels (1996) who

summarize the bandwidth selection methods and Yang and Tschernig (1999)

who investigate the rule-of-thumb bandwidth selector for multivariate local

linear regression.

Cross-validation

In the NMES image application we concentrate on the data-driven bandwidth

selector least squares cross-validation (CV), whose basic idea is to choose H

by minimizing the Integrated Squared Error (ISE)

ISE =

∫
{m̂H(x) −m(x)}2w(x)f(x)dx

To motivate the discussion we first consider the averaged residual sum of

squares (ARSS) as a naive way to assess the goodness of fit

ARSS(H) =
1

n

n∑

i=1

{Yi − m̂H(Xi)}2w(Xi)

where the weight function w(·) ≥ 0, the same as in ROT section, may be

used to assign less weight to observations in regions of sparse data (to reduce
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the variance in this region) or at the tail of the distribution (to trim away

boundary effects). The typical choice of w(·) is the sample density function

or just let w(·) = 1 for the non-random design as is the case in the NMES

image application.

The problem with the ARSS is that Yi is used in m̂H(Xi) to predict itself.

As a result, the averaged squared error (ASE), a discrete approximation to

ISE

ASE(H) =
1

n

n∑

i=1

{mH(Xi) − m̂H(Xi)}2w(Xi)

can be made arbitrarily small by letting H → 0.

For each i, we use the data {(Xj, Yj), j 6= i} to build a regression function

m̂H,−i(x), the leave-one-out estimator, and then validate the model by exam-

ining the prediction error Yi − m̂H,−i(Xi). The least squares cross-validation

function

CV(H) =
1

n

n∑

i=1

{Yi − m̂H,−i(Xi)}2w(Xi) (3.7)

uses the weighted average of squared errors as an overall measure of the

effectiveness of the estimation scheme. The least squares cross-validation

bandwidth selector is the one that minimizes (3.7). More discussion about

cross-validation bandwidth selector is provided in later sections.

Akaike Information Criterion

The third possibility for chosing the bandwidth matrix H is by using the

Akaike (1970) criterion, which balances the goodness of fit with the com-

plexity of the fitted model. This is expressed in the Akaike Information

Criterion (AIC) function,

AIC(H) = n log(σ̂2) + 2ν1 (3.8)
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where

σ̂2 =
1

n

n∑

i=1

(Yi − m̂H(Xi))
2

ν1 = tr(P)

P is called the hat matrix or smoothing matrix because it maps the vector of

observed values into a vector of fitted values and ν1 is a measure for the de-

grees of freedom. In a later section we give a detailed description of variance

estimation and the degrees of freedom for multivariate local regression.

The small sample behavior for AIC(H) can thereby be improved by re-

placing the latter component in (3.8). Hurvich et al. (1998) show that the

bias corrected AIC avoids the tendency to undersmooth which often occurs

when using the classical AIC or generalized cross-validation (GCV) (defined

by (3.14)). This criterion is given by

AICC1
(H) = n log(σ̂2) + n

(δ1/δ2)(n+ ν1)

δ2
1/δ2 − 2

where

δ1 = tr{(I − P)T (I − P)}

δ2 = tr{[(I − P)T (I − P)]2}

Again, a suitable choice for bandwidth matrix H is obtained by minimizing

AIC(H) or AICC1
(H).

Regardless of the method being used, it can be shown theoretically and in

simulations, that the convergence of the bandwidth estimate is slow (Härdle

et al., 1988). As a consequence, one should not blindly accept an auto-

matically selected bandwidth but assess the smoothness of the resulting

fit m̂(·) visually as well. In principle this means one should try different

bandwidths around the optimum to validate the sensitivity of the fit on the

bandwidth choice. In practice, we recommend graphical techniques such as

cross-validation plots (Loader, 1999) to help us make a decision.
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3.1.4 Computational Aspects

A drawback of local polynomial smoothing techniques is the computational

difficulties one faces with this approach. The local idea says that one locally

fits a model to data. This means that in order to visualize the functional

shape of a regression function m(·) one has to estimate m(x) at a number of

points x and then connect the resulting estimates. If the local fit is complex

and numerically intensive, then local estimation at a number of points can

readily lead to the limits of numerical feasibility.

In principal, because multivariate local regression estimators can be ex-

pressed as local polynomial estimators, their computation can be done by

any statistical package that is able to run weighted least squares regression.

However, when we consider cross-validation bandwidth selection in the mul-

tivariate local regression case, this weighted least squares regression has to

be performed on all observation points. This can be extremely computation-

ally intensive. Therefore, explicit formulae are extremely useful to improve

the algorithm and to save valuable time and resources. In the following, we

derive formulae for the multivariate local quadratic estimator and bandwidth

selector. Formulae for the multivariate kernel and local linear cases are just

special cases of the formulae that we derive.

Consider the sums

S0 = S0(x) =

n∑

i=1

KH(Xi − x),

S11 = S11(x) =
n∑

i=1

KH(Xi − x)(Xi − x),

S12 = S12(x) =

n∑

i=1

KH(Xi − x)vech{(Xi − x)(Xi − x)T},
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S21 = S21(x) =
n∑

i=1

KH(Xi − x)(Xi − x)(Xi − x)T ,

S22 = S22(x) =

n∑

i=1

KH(Xi − x)vech{(Xi − x)(Xi − x)T}(Xi − x)T ,

S23 = S23(x) =
n∑

i=1

KH(Xi − x)·

vech{(Xi − x)(Xi − x)T}vech{(Xi − x)(Xi − x)T}T ,

and

Z0 = Z0(x) =

n∑

i=1

KH(Xi − x)Yi,

Z11 = Z11(x) =
n∑

i=1

KH(Xi − x)(Xi − x)Yi,

Z12 = Z12(x) =

n∑

i=1

KH(Xi − x)vech{(Xi − x)(Xi − x)T}Yi.

Note that S11 and Z11 are p × 1 vectors, S12 and Z12 are 1
2
p(p + 1) × 1

vectors, S21 is a p × p matrix, S22 is a 1
2
p(p + 1) × p matrix and S23 is a

1
2
p(p+ 1) × 1

2
p(p+ 1) matrix. To simplify the notation let,

S1 =

[
S11

S12

]
=

n∑

i=1

KH(Xi − x)

[
Xi − x

vech{(Xi − x)(Xi − x)T}

]

Z1 =

[
Z11

Z12

]
=

n∑

i=1

KH(Xi − x)

[
Xi − x

vech{(Xi − x)(Xi − x)T}

]
Yi

S2 =

[
S21 ST

22

S22 S23

]
=

n∑

i=1

KH(Xi − x)·




(Xi − x)(Xi − x)T vech{(Xi − x)(Xi − x)T}(Xi − x)T

vech{(Xi − x)(Xi − x)T} vech{(Xi − x)(Xi − x)T}
·(Xi − x)T ·vech{(Xi − x)(Xi − x)T}T
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where S1 and Z1 are {p+ 1
2
p(p+1)}×1 vectors and S2 is a {p+ 1

2
p(p+1)}×

{p+ 1
2
p(p+ 1)} matrix. Therefore, the multivariate local quadratic estimate

can be written as

m̂H(x) = eT
1

[
S0 ST

1

S1 S2

]−1 [
Z0

Z1

]
.

Applying 2 × 2 block matrix inversion we derive an explicit expression for

the multivariate local quadratic estimator,

m̂H(x) =
Z0 − ST

1 S−1
2 Z1

S0 − ST
1 S−1

2 S1

. (3.9)

Moreover,

S0,−i = S0 −KH(0),

S1,−i = S1,

S2,−i = S2,

Z0,−i = Z0 − YiKH(0),

Z1,−i = Z1,

which implies that the leave-one-out estimator is,

m̂H,−i(x) =
Z0 − YiKH(0) − ST

1 S−1
2 Z1

S0 −KH(0) − ST
1 S−1

2 S1

. (3.10)

Using (3.9) and (3.10) the cross-validation function changes to,

CV(H) =
1

n

n∑

i=1

{Yi − m̂H,−i(Xi)}2w(Xi)

=
1

n

n∑

i=1

{Yi − m̂H(Xi)}2

{
Yi − m̂H,−i(Xi)

Yi − m̂H(Xi)

}2

w(Xi)

=
1

n

n∑

i=1

{Yi − m̂H(Xi)}2

{
1 − KH(0)

S0(Xi) − S1(Xi)TS2(Xi)−1S1(Xi)

}−2

w(Xi).

(3.11)
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Notice that running weighted least-squares regression point by point is avoided

if (3.11) is used for finding the CV bandwidth. The computational loading

is then remarkably reduced.

Let us denote P as the hat matrix which maps the vector of observed

values into a vector of fitted values. P is the n×n matrix with rows p(Xi)
T ,

where

p(x)T = (p1(x), · · · , pn(x)) = eT
1 (X̃TWX̃)−1X̃TW. (3.12)

Therefore,


m̂(X1)

...
m̂(Xn)


 =




p(X1)
T

...
p(Xn)T


Y = PY.

The diagonal element pii of the hat matrix P is defined as the leverage or

influence of the ith data point, which measures the sensitivity of the fitted

values to the individual data points. We denote l(Xi) = pi(Xi) = pii as the

leverage of the ith data point. It is easy to verify that in multivariate local

quadric regression,

l(Xi) =
KH(0)

S0(Xi) − S1(Xi)TS2(Xi)−1S1(Xi)
.

This leads to, by (3.11)

CV(H) =
1

n

n∑

i=1

{
Yi − m̂H(Xi)

1 − l(Xi)

}2

w(Xi). (3.13)

Equation (3.13) has the same expression as in the univariate nonparamet-

ric regression case (Simonoff, 1996, chap. 5). The motivation for general-

ized cross-validation (GCV) criterion, first proposed by Craven and Wahba

(1979), follows from the approximation of (3.13) by simply replacing l(Xi)

by the average value tr(P)/n,

GCV(H) =
n
∑n

i=1(Yi − m̂H(Xi))
2

(n− tr(P))2
w(Xi). (3.14)
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3.2 Statistical Tests and Confidence Regions

Almost all nonparametric regression techniques are weighted averages of the

response observations Yi, where the weights depend on the technique and on

the distance between x and Xi scaled by a smoothing parameter h or H. In

multivariate local estimation, the estimated function also can be written as

a linear combination of the response observations,

m̂H(x) =

n∑

i=1

pi(x)Yi (3.15)

where p(x)T = (p1(x), · · · , pn(x)) is defined by (3.12).

The weighted average expression leads to compact forms for the mean

and variance of the local estimator,

E(m̂(x)) =

n∑

i=1

pi(x)m(Xi), (3.16)

Var(m̂(x)) = σ2
n∑

i=1

pi(x)2 = σ2||p(x)||2. (3.17)

So far, our discussion has focused on function estimation and choosing

the amount of smoothing. In this section we discuss some other inference

topics including inference about the true mean function m(x), asymptotic

normality and goodness-of-fit test.

3.2.1 Degrees of Freedom and Variance Estimation

The degrees of freedom of the local regression provide a generalization of the

number of parameters in a parametric model. The usefulness of the degrees

of freedom is to provide a measure of the complexity of the fitted function

and the amount of smoothing that is comparable between different estimates
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applied to the same data. The two kinds of degrees of freedom are defined

as follows,

ν1 =

n∑

i=1

l(Xi) = tr(P),

ν2 =

n∑

i=1

||p(Xi)||2 = tr(PTP). (3.18)

For a parametric regression model the two degrees of freedom are identical

and usually equal to the number of parameters. For local regression models

they are often not equal and have 1 ≤ ν1 ≤ ν2 ≤ n.

The degrees of freedom and variance estimation have already been dis-

cussed in Section 3.1.3. There σ̂2 is defined as

σ̂2
N =

1

n

n∑

i=1

(Yi − m̂H(Xi))
2 =

1

n
YT (I − P)T (I − P)Y

which can be viewed as a naive estimate of the error variance σ2. However,

in analogy with parametric regression, the residual variance estimate is often

used in practice. Consider the expected residual sum-of-squares,

E
n∑

i=1

[
Yi − m̂H(Xi)

]2
=

n∑

i=1

[
E
(
Yi − m̂H(Xi)

)]2
+

n∑

i=1

Var
(
Yi − m̂H(Xi)

)

=

n∑

i=1

[
Bias

(
m̂H(Xi)

)]2
+

n∑

i=1

Var
(
Yi − m̂H(Xi)

)
.

Note that by (3.15), (3.17) and independence of Yi, we have

Var
(
Yi − m̂H(Xi)

)
= Var(Yi) − 2Cov

(
Yi, m̂H(Xi)

)
+ Var

(
m̂H(Xi)

)

= σ2 − 2

n∑

j=1

pj(Xi)Cov(Yi, Yj) + σ2||p(Xi)||2

= σ2(1 − 2pi(Xi) + ||p(Xi)||2).
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Hence,

E

n∑

i=1

[
Yi − m̂H(Xi)

]2
=

n∑

i=1

[
Bias

(
m̂H(Xi)

)]2
+ σ2(n− 2ν1 + ν2).

This motivates the residual variance estimate of the error variance using the

normalized residual sum of squares,

σ̂2
R =

1

n− 2ν1 + ν2

n∑

i=1

[
Yi − m̂H(Xi)

]2
. (3.19)

Similar to parametric regression, (n− 2ν1 + ν2) is called the residual degrees

of freedom. Notice that the expectation of residual variance estimate σ̂2
R is

E(σ̂2
R) = σ2 +

1

n− 2ν1 + ν2

n∑

i=1

[
Bias

(
m̂H(Xi)

)]2
.

Obviously, σ̂2
R is unbiased only if the estimate m̂(x) is unbiased.

3.2.2 Hypothesis Testing

Typical questions of nonparametric estimates that arise in NMES study are:

1). Is there indeed significant pressure improvement at location x?

2). Is there any impact of X on Y , i.e. is m(x) = 0, ∀x? If yes, is the

estimated function significantly different from the traditional parame-

terization (e.g. the linear model)?

To answer these questions, we shall next discuss the t-type test and the

goodness-of-fit test in the nonparametric regression context.

T-type Test

We are interested in testing the following hypothesis in order to answer ques-

tion 1):

H0 : m(x) = 0 vs. H1 : m(x) > 0. (3.20)
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In order to derive a proper test statistic, let us assume that m̂(x) is the

unbiased estimate of m(x). Also, assume the εi are normally distributed

with mean zero and variance σ2. The multivariate local estimate m̂(x) has

the distribution

m̂(x) −m(x)

σ||p(x)|| ∼ N(0, 1),

and an approximate confidence band for m(x) is

(
µ̂(x) − z1−α

2
σ||p(x)||, µ̂(x) + z1−α

2
σ||p(x)||

)
.

If σ2 is unknown we can replace it by the residual variance estimate σ̂2
R. So

we have

m̂(x) −m(x)

σ̂R||p(x)|| ∼ T (n− 2ν1 + ν2),

if m̂ and σ̂2
R are independent and (n− 2ν1 + ν2)σ̂

2
R/σ

2
R ∼ χ2(n− 2ν1 + ν2).

Unfortunately the assumption that m̂(x) is unbiased is seldom true (for

instance m̂(x) is biased in the multivariate local regression) even though it

might be reasonable to assume the bias is negligible with small bandwidth.

Moreover, P is no longer a projection operator in the multivariate local

regression. Recall that the estimate vector PY and the residual vector (I −
P)Y are independent in the parametric least squares theory, i.e.

cov((I − P)Y,PY) = σ2(I −P)TP = 0,

where PTP = P2 = P. The property does not hold in the multivariate

local regression. Therefore the T distribution above is incorrect. To solve

the dilemma consider alternative estimates of σ2. Note that, because of

unbiasedness,

E(RSS) = E

{
n∑

i=1

(Yi − m̂H(Xi))
2

}

= E{YT (I −P)T (I −P)Y} = σ2tr[(I −P)T (I −P)],
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and we can estimate σ̂2 by

σ̂2 =
YT (I − P)T (I −P)Y

tr[(I − P)T (I − P)]
. (3.21)

It is difficult to find the exact distribution σ̂2 but we can approximate it by

the distribution of a quadratic form in normal variables. In fact, using the

eigenvalue decomposition technique,

1

σ2
YT (I −P)T (I −P)Y =

n∑

i=1

λiU
2
i ,

where λi are the eigenvalues of (I − P)T (I − P) and Ui are independent

standard normal variables leads to a χ2 distribution. Finding the exact

eigenvalues is not easy due to the large dimension of hat matrix. The degrees

of freedom can be chosen so that the first two moments of the approximating

distribution match those of the distribution of the quadratic form (Kendall

et al., 1998). Recall that a χ2 distribution with ν degrees of freedom has

mean ν and variance 2ν. Let us denote δ1 = tr{(I − P)T (I − P)} and

δ2 = tr{[(I− P)T (I − P)]2}. It is easy to verify that

E(σ̂2) = σ2δ1, Var(σ̂2) = 2σ4 δ2
δ2
1

.

Therefore, the first two moments of (δ2
1σ̂

2)/(δ2σ
2) match those of a χ2 distri-

bution with δ2
1/δ2 degree of freedom. Using this approximate χ2 distribution

we have the following approximation

m̂(x) −m(x)

σ̂||p(x)|| ∼ T (δ2
1/δ2). (3.22)

We can use this result to construct an approximate t test for our hypoth-

esis and also get approximate confidence bands,

(
µ̂(x) − tα

2
σ̂||p(x)||, µ̂(x) + t1−α

2
σ̂||p(x)||

)
.
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From (3.22) it is easy to construct the test statistic for hypothesis (3.20).

The approximate t statistic is

T (xi) =
m̂(xi)

σ̂||p(xi)||
(3.23)

where m̂(xi) and σ̂ are computed by (3.15) and (3.21) respectively. The null

hypothesis H0 will be rejected if T (xi) > t1−α(δ2
1/δ2) with a given significance

level α.

Remark 1. Although the above test statistic T is a “t-type test” statistic,

it differs from the conventional t test in the following way. It is a weighted

average of y values in a neighborhood of x, while the standard t test statistic is

a simple average of an independent and identically distributed sample (divided

by an appropriately estimated standard deviation). Therefore, T (x) and T (x′)

are often correlated if x and x′ are not far away.

Remark 2. The discussions above are based on normal error assumption.

What happens for tests with non-normal data? By the central limit theorem,

under some regularity conditions below,

m̂(x) −m(x)

σ||p(x)|| → N(0, 1).

The Lindeberg condition maintains that the central limit theorem holds if the

maximum contribution of any single observation converges to 0. In smoothing

context, we need

max
1≤i≤n

|pi(x)|
||p(x)|| → 0

In practice, a sufficient and necessary condition for most distributions is that

nhp → ∞ where p is the dimension of x. This is the same condition as that

required for Var(m̂(x)) → 0. Recalling usual asymptotic bandwidth condi-

tions, we want both the bias and variance to converge to zero as n → ∞.
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Based on bias considerations we require hp → 0 so that local polynomial ap-

proximation becomes better; based on variance considerations, we want more

data within the smoothing window, i.e. nhp → ∞.

The central limit theorem justifies that confidence intervals are asymp-

totically valid when data is not normal. However, linear smoothing will not

be robust since we know that the sample average is not a robust estimate of

location when the distribution has heavy tails.

Goodness of Fit

Can the mean function be adequately described by a constant, or is there

really a regression effect?

Let X be the domain of interest, consider testing the following hypotheses:

H0 : m(x) = C, ∀x ∈ X H1 : otherwise; (3.24)

or more generally, consider whether the target regression function signifi-

cantly differs from a linear regression function. The hypothesis testing prob-

lem can be stated as

H0 : m(x) = b0 + b1x, for some b0,b1, ∀x ∈ X

H1 : otherwise. (3.25)

Analagous to the theory of linear models, an F-ratio can be formed by residual

sums of squares from both the null and alternative models (Cleveland and

Devlin, 1988; Loader, 1999). Under the null model the parametric least

squares estimate is used. Consider the residual sums of squares:

RSS0 =
n∑

i=1

(Yi − (b̂0 + b̂1x))2 = YTR0Y,

RSS1 =
n∑

i=1

(Yi − m̂(x))2 = YTR1Y.
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where

R0 = (I − P0)
T (I −P0),

R1 = (I − P1)
T (I −P1).

P0 and P1 are hat matrices for the parametric fit and local fit respectively.

Let ν1 = tr(R0 − R1), ν2 = tr[(R0 − R1)
2], δ1 = tr(R1) and δ2 = tr[(R1)

2].

Then the F-ratio statistic is

F =
(RSS0 −RSS1)/ν1

RSS1/δ1

Its distribution is approximated by an F distribution with ν2
1/ν2 and δ2

1/δ2 de-

grees of freedom. An α-level test of (3.25) rejects H0 if F ≥ F1−α(ν2
1/ν2, δ

2
1/δ2).

Bootstrap Method

The F-tests discussed above are approximate, based on the two-moment χ2

approximation for the numerator and the denominator. Additionally, the

degrees-of-freedom computations require expensive computations. For this

reason approximations of the critical values corresponding to the finite sample

distribution can be used. The most popular way to approximate this finite

sample distribution is via a resampling scheme: simulate the distribution of

your test statistic under the hypothesis (i.e. “resample”) and determine the

critical values based on that simulated distribution. This method is called a

Monte Carlo method or bootstrap, depending on how the distribution of the

test statistic can be simulated.

For our current testing problem we propose the following nonparametric

bootstrap approach to evaluate the p-value of the test.

Algorithm 3.2.1. Nonparametric Bootstrap

1). Compute the estimate of the regression function m̂(·) under the null

hypothesis and construct the residuals εi = Yi − m̂(Xi); calculate our
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test statistic:

T =
RSS0 − RSS1

RSS1
.

2). Generate the bootstrap residuals {ε∗i }n
i=1 from the empirical distribution

of the centered residuals {εi − ε̄}n
i=1 where ε̄ =

∑n
i=1 εi/n.

3). Define Y ∗
i = m̂(Xi) + ε∗i and compute the test statistic T ∗ based on the

re-sampled data.

4). Step 2 and 3 are repeated a large number of times. Reject the null

hypothesis H0 if T is greater than the upper α-point of the distribution

of T ∗.

3.3 Multiple Testing Problem

An important and common question in the NMES experiment is the identifi-

cation of spatial locations where the intensity of spatial locations are signifi-

cantly different in treatment versus baseline. Recall in Figure 1.7 and 1.8 we

already showed the idealized changes in pressure contour across the region of

the ischial tuberosities. How can we identify those pressure-changed regions?

This biomedical question can be restated as a multiple hypothesis test, or

the simultaneous test for each spatial compartment of the null hypothesis.

A common approach to identifying active spatial compartments in the

NMES data is to perform compartment-wise hypothesis “t-type” tests (which

we have stated in section 3.2.2) after performing bivariate local smoothing

over the data. At each spatial compartment the null hypothesis is that there

is no pressure difference between baseline and treatment. The compartments

for which the test statistics exceed the threshold are then classified as active.

Images of statistics can be created which assess evidence for an experimental

effect. This approach has proved reasonably effective for a wide variety of
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testing methods. However, a basic problem remains: how to choose the

threshold?

In any testing situation two types of errors can be committed. A false

positive, or Type I error, is committed by declaring that the pressure between

baseline and treatment in one compartment is significantly different when it

isn’t. A false negative, or Type II error, is committed when the test fails

to identify a truly differential spatial compartment. When one uses naive

thresholds for the individual tests, ignoring the fact that many tests are

being performed, the probability that there will be false positives among

all the tests becomes very high. This is well-known as the multiple testing

problem.

For example, there are 1600 hypotheses; if a significance level of 0.05

pointwise procedure is used for each hypothesis, there will be 0.05×1600 = 80

false positives even if the null hypotheses are true. Actually, a p-value of

0.01 for one compartment among a list of several thousands will no longer

correspond to a significant finding, as it is inevitable that such small p-values

will occur by chance when considering a large enough set of compartments.

This is the well-known multiplicity problem which must be solved.

Special problems arising from the multiplicity aspect include defining an

appropriate overall Type I error rate and devising powerful multiple testing

procedures which control this error rate and account for the joint distribution

of the test statistics. In the following we illustrate the basic background of

multiple testing, describe the Benjamini and Hochberg (1995) step-up proce-

dure for (strong) control of the false discovery rate (i.e. BH-FDR procedure)

that we will use in NMES data analysis, and discuss the validity of the BH-

FDR procedure under dependency in our multiple t-type tests.
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3.3.1 Background

Consider the problem of testing simultaneously m null hypotheses H0i, i =

1, · · · , m, and denote by R the number of rejected hypotheses. Each test

can be classified into one of four types, depending on whether or not the

pixel (or data cell) is truly active and whether or not it is declared active, as

shown in table 3.1. U is the number of null hypotheses correctly classified

as true; V is the number of null hypotheses incorrectly classified as false;

T is the number of null hypotheses incorrectly classified as true; S is the

number of null hypotheses correctly classified as false. The specific number

m is assumed to be known in advance, the numbers m0 and m1 = m−m0 (of

true and false null hypotheses) are unknown parameters, R is an observable

random variable, and U , V , T , and S are unobservable random variables.

In the NMES data analysis there is a null hypothesis H0i for each special

compartment i and rejection of H0i corresponds to declaring that the pressure

in this compartment i is significantly improved. For each compartment i

the null hypothesis H0i is tested based on a statistic Ti, where ti denotes

a realization of the random variable Ti. To simplify matters, and unless

specified otherwise, we further assume that the null H0i is rejected for large

values of Ti (we have one-sided hypotheses in the NMES case). In general,

one would like to minimize the number V of false positives and the number

T of false negatives. The standard approach is to pre-specify an acceptable

Type I error rate α and seek tests which minimize the Type II error rate, i.e.

maximize power, within the class of tests with Type I error rate α.

Type I Error Rates

When testing a single hypothesis H01, the probability of a Type I error, i.e.,

of rejecting the null hypothesis when it is true, is usually controlled at a

designated level α. This can be achieved by choosing a critical value cα such
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H0 is not rejected H0 is rejected

True null hypotheses U V m0

Non-true null hypotheses T S m1

m−R R m

Table 3.1: Cross-classification in m Simultaneous Tests

that Pr(T1 ≥ cα|H01) ≤ α and rejecting H01 when T1 ≥ cα. In order to

control for the multiplicity effect, alternative Type I error rates given below

are the most standard (Hochberg and Tamhane, 1987; Ge et al., 2003).

• Per-family error rate (PFER). The PFER is defined as the expected

number of Type I errors,

PFER = E(V )

.

• Per-comparison error rate (PCER). The PCER is defined as the ex-

pected proportion of Type I errors,

PCER = E(V )/m

.

• Family-wise error rate (FWER). The FWER is defined as the proba-

bility of at least one Type I error,

FWER = p(V ≥ 1)

.
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• False discovery rate (FDR). The FDR is the expected proportion of

Type I errors among the rejected hypotheses,

FDR = E(Q),

where by definition

Q =

{
V/R, if R > 0,

0, if R = 0.

In general, for a given multiple testing procedure, PCER ≤ FDR ≤
FWER ≤ PFER. Thus, for a fixed criterion α for controlling the Type I

error rates, the order reverses for the number of rejections R. Procedures

controlling the PFER are generally more conservative than those controlling

either the FDR or the FWER or the PCER, and procedures controlling the

FWER are more conservative than those controlling the FDR or the PCER.

FWER had reigned in the field of multiple comparison procedures (MCP)

until Benjamini and Hochberg (1995) proposed FDR. Much research has been

generated since then.

Strong Control and Weak Control

A fundamental, yet often ignored distinction, is that between strong and weak

control of the Type I error rate. Strong control refers to control of the Type

I error rate under any arbitrarily combination of true and false hypotheses,

i.e., any value of m0. In contrast, weak control refers to control of the Type I

error rate only when all the null hypotheses are true, i.e., under the complete

null hypothesis with m0 = m. In this case, we have FDR = FWER (since

S = 0, V = R). This is called FDR control FWER weakly.

In the NMES study, where it is very unlikely that no spatial compartments

have differential pressure, it is particularly important to have strong control

of the Type I error rate.
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Adjusted p-values

Given any testing procedure, we can define the adjusted p-value correspond-

ing to the test of a single hypothesis H0i as the level of the entire testing

procedure at which H0i would just be rejected. The adjusted p-value with

FDR controlling for hypothesis H0i (Yekutieli and Benjamini, 1999) is

p̃i = inf {α ∈ [0, 1] : H0i is rejected at FDR = α} . (3.26)

Similarly, the adjusted p-value with FWER controlling for hypothesis H0i is

p̃i = inf {α ∈ [0, 1] : H0i is rejected at FWER = α} . (3.27)

The corresponding random variables for unadjusted (or raw) and adjusted p-

values are denoted by pi and p̃i, respectively. Hypothesis Hi is then rejected,

i.e. at FDR or FWER α, if p̃i ≤ α depending on which p̃i is used in (3.26)

or (3.27).

As in the single hypothesis case an advantage of reporting adjusted p-

values, as opposed to only rejection or not of the null hypotheses, is that the

level of the test does not need to be determined in advance. Some multiple

testing procedures are also most conveniently described in terms of their

adjusted p-values.

Stepwise Procedures

One usually distinguishes among three types of multiple testing procedures:

single-step, step-down, and step-up procedures. In single-step procedures,

equivalent multiplicity adjustments are performed for all hypotheses, regard-

less of the ordering of the test statistics or unadjusted p-values. That is, each

hypothesis is evaluated using a critical value that is independent of the results

of tests of other hypotheses. Improvement in power, while preserving Type I

error rate control, may be achieved by stepwise procedures, in which rejection
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of a particular hypothesis is based not only on the total number of hypothe-

ses, but also on the outcome of the tests of other hypotheses. In step-down

procedures, the hypotheses corresponding to the most significant test statis-

tics (i.e., smallest unadjusted p-values or largest absolute test statistics) are

considered successively, with further tests depending on the outcomes of ear-

lier ones. As soon as one hypothesis is accepted, all remaining hypotheses are

accepted. In contrast, for step-up procedures, the hypotheses corresponding

to the least significant test statistics are considered successively, again with

further tests depending on the outcomes of earlier ones. As soon as one

hypothesis is rejected, all remaining hypotheses are rejected.

3.3.2 False Discovery Rate under Dependency

The classical approach to multiple testing calls for strong control of the

FWER (e.g. Bonferroni procedure). However, the Bonferroni procedure

is too conservative when the number of hypotheses is very large. The con-

servativeness of the Bonferroni procedure comes from two sources: (1) the

Bonferroni procedure was based on a very conservative upper bound for the

FWER:

FWER = P (∪Ai) ≤
∑

P (Ai) = α;

(2) FWER is a more stringent error test than FDR as illustrated on page 81.

Remark. To overcome (1), there are sharper upper bounds for FWER de-

veloped for finite m cases (see Hsu (1996) and reference therein); there are

also exact and accurate approximations by tube formulae such as those shown

in Sun (1991, 1993, 2001). As to when to use FWER or FDR as allowed in

(2), see Zhang (2005, section 4.2). In this thesis, we opt for FDR.

The step-up procedure for strong control of the false discovery rate in-

troduced by Benjamini and Hochberg (1995) is easily implemented, even for

very large data sets, which can be less conservative than FWER.
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Algorithm 3.3.1. Benjamini & Hochberg step-up procedure for strong con-

trol of the false discovery rate.

1). Select a desired FDR level α between 0 and 1. This is the maximum

false discovery rate that the researcher is willing to tolerate.

2). For the m hypothesis tests, compute the raw p-values p1, · · · , pm.

3). Order the p-values from smallest to largest:

p(1) ≤ p(2) ≤ ... ≤ p(m).

4). Set p(0) = 0,

kBH = max{0 ≤ k ≤ m : p(k) ≤
αk

mcm
}

where cm is a predetermined constant described below.

5). Declare that the null hypotheses H0k are rejected if pk ≤ p(kBH).

Alternatively, we can compute the adjusted p-values for the BH-FDR

step-up procedure above,

p̃(i) = min
k=i,...,m

{
min

(mcm
k

p(k), 1
)}
. (3.28)

Hypothesis H0k will be rejected, at FDR level α, if p̃k ≤ α.

The choice of the constant cm depends on assumptions about the joint

distribution of the test statistics of the hypotheses family. When the test

statistics are independent we have cm = 1.

Returning to the NMES study, it is observed that the approximate T

statistics of the multiple tests are dependent as they are from the estimate

regression function. Is the BH-FDR procedure appropriate to our case? Ben-

jamini and Yekutieli (2001) showed that the BH-FDR procedure is valid un-

der “positive regression dependency on subsets” (PRDS). They also proposed
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a simple conservative modification of the procedure which controls the false

discovery rate for arbitrary dependence structures by letting cm =
∑m

i=1 1/i.

Note that
∑m

i=1 1/i ≈ lnm + γ where γ is the Euler’s constant. For a large

number m of hypotheses, the penalty in this conservative procedure is about

logm, as compared to the Benjamini and Hochberg (1995) procedure, which

can be still too large and can be more conservative than the tube methods

or random field methods by Sun and Loader (1994), and Sun (2001).

Rather than using this conservative procedure with a factor lnm + γ,

we prove that the joint distribution of the approximate T test statistics is

PRDS on the subset of test statistics corresponding to true null hypotheses,

and thereby the BH-FDR procedure (1995) is still valid.

Recall that a set D is called increasing if x ∈ D and y ≥ x, implies that

y ∈ D as well. The following property is called positive regression dependency

on each one from a subset I0, or PRDS on I0 (Benjamini and Yekutieli, 2001).

Property 3.3.1 (PRDS). For any increasing set D, and for each i ∈ I0,

P (X ∈ D|Xi = x) is nondecreasing in x.

Proposition 3.3.1 (PRDS of test statistics in multivariate local regression).

Consider a vector of test statistics T = (T1, T2, · · · , Tm)T . Each Ti tests the

hypothesis m(xi) = 0 against the alternative m(xi) > 0 for i = 1, · · · , m,

where Ti is defined by (3.23). The distribution of T is PRDS over I0, the set

of true null hypotheses.

Proof: Let U = (U1, · · · , Um)T where Ui = m̂(xi)/||p(xi)||. We first verify

that U is PRDS on a subset I0. By (3.15), for any i 6= j,
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cov(Ui, Uj) =
cov
(∑n

t=1 pt(xi)Yt,
∑n

k=1 pk(xj)Yk

)

||p(xi)|| · ||p(xj)||

=

∑n
t=1

∑n
k=1 cov

(
pt(xi)Yt, pk(xj)Yk

)

||p(xi)|| · ||p(xj)||

=
σ2
∑n

t=1 pt(xi)pt(xj)

||p(xi)|| · ||p(xj)||
> 0

Under the normality assumption of errors, U follows a multivariate normal

distribution with the covariance matrix having positive elements. Then U is

PRDS on a subset I0 because the conditional distribution U(i) given Ui = ui

increases stochastically as ui increases (where U(i) denotes the remaining

m− 1 test statistics except Ui).

Since σ̂2 approximately follows a χ2 distribution, we let V = 1/σ̂. Then

for j = 1, · · · , m the components of T, Tj = UjV are strictly increasing

continuous functions of the coordinates Uj and of V . Therefore, U is PRDS

on I0 by applying Lemma 3.1 of Benjamini and Yekutieli (2001). �

3.4 Statistical Smoothing Mapping

In statistical methods of brain imaging (e.g. MRI), one of the most common

analysis approaches currently in use, called statistical parametric mapping

(SPM) (Friston et al., 1995; Friston, 2004), analyzes each voxel’s change

independently of the others and builds a map of statistic values for each

voxel. The significance of each voxel can be ascertained statistically with a

Students t-test, an F-test, a correlation coefficient, etc. SPM is widely used

to identify functionally specialized brain regions and is the most prevalent

approach to characterizing functional anatomy and disease-related changes.

The success of SPM is due largely to the simplicity of the idea. Namely,

one analyzes each and every voxel using any standard (univariate) statistical
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parametric test. The resulting statistical parameters are assembled into an

image – the SPM.

Inspired by the SPM, we propose a statistical smoothing mapping (SSM)

procedure in the NMES data analysis. The approach is called SSM because

we use multivariate smoothing techniques on the data and our test statistics

are constructed based on multivariate nonparametric regression. Since we

are comparing many voxel values simultaneously across the entire image, the

multiplicity of these tests must be adjusted to overcome an overall false-

positive error rate. Our significance threshold for deciding which voxel is

significantly different (between two sessions) will be chosen with a BH-FDR

controlling procedure that accounts for the multiplicity of tests. Then an

FDR map can be built to provide the significance of voxels. Those with

p-values less than the BH critical value are the points or areas for which

stimulation has had a significant effect (difference) in terms of measurements.

Let x̃ = (x1, x2) denote a cell (or pixel) of a data frame. Then rx̃,C , rx̃,T

denote the intensities of the images before treatment and after treatment.

We propose the following statistical smoothing mapping algorithm.

Algorithm 3.4.1. Statistical smoothing mapping

1). Compute the difference map,

yx̃ = rx̃,T − rx̃,C

which is the cell-by-cell subtraction data frame of the differences in r

before treatment and after treatment.

2). Smooth yx̃ by multivariate local polynomial regression.

3). Compute adjusted p-values using the BH-FDR controlling procedure.

Generate an FDR map based on the adjusted p-values.

Examples to implement the SSM algorithm will be discussed in the next

chapter.



Chapter 4

Mining Spatial-temporal Data

This chapter consists of two parts. The first describes a new data-mining

technique, longitudinal analysis with self-registration (LASR) procedure for

interface pressure “intra-subject” data that is based on the techniques de-

scribed in chapters 2 and 3. The second describes semiparametric regres-

sion for modeling spatial-temporal trend for interface pressure “inter-subject”

data.

4.1 LASR – A New Data Mining Procedure

4.1.1 LASR

The assessment protocol produced multiple large volume data files for a rela-

tively small number of subjects. In statistical terms this represents a “huge-p,

small-n” problem. Further complexity was added to the analytical process

because, although the subjects are seated carefully at each assessment, it is

often not feasible to ensure a true reproduction of seating posture on each

visit. In assessing the effects of dynamic stimulation over time it is also nec-

essary to ensure that comparison is made between pressure maps obtained

at the same phase of stimulation, e.g. when left gluteal stimulation is on.

88
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Thus the challenges to be met include both spatial registration to align static

pressure maps obtained at different times and temporal registration to ensure

dynamic pressure maps are synchronous. The LASR algorithm uses a multi-

stage procedure to sequentially address these challenges (see Figure 4.1).

Longitudinal Analysis with Self-Registration (LASR) Procedure

Step 1: Segment all images by the EM algorithm. We distinguish the

spatial regions of interest from the background in each data frame and then

remove background noise and outliers from the data sets.

Step 2: Spatially register all images via our newly developed self-registration

scheme. The self-registration algorithm is built on an end point and a middle

line estimated by a regression analysis applied on “apparent middle points”

computed from each column of an image. This step is done automatically

for all images so that all registered images have the middle line placed hori-

zontally in the middle of each image and the end point at the same location.

Step 3: If both movies are static movies, go to Step 4; if both are dynamic

movies, temporally register the spatially-registered movies. The temporal

registration is based on a fast algorithm to maximize the correlations between

images from two candidate movies, frame-by-frame so that the left side that

is stimulated in one movie is compared with the left-side stimulated image

in another movie (See movies at http://stat.case.edu/lasr/).

Step 4: Create difference images and movies by taking differences pixel-

by-pixel (and frame-by-frame) between two sessions that are potentially of

clinical interest.

Step 5: Filter the difference images. The nonparametric filtering proce-

dure used is a local-polynomial smoothing technique which is suitable for a

great variety of images.

Step 6: Create T image/maps and movies. T images are obtained by

computing a t-type test statistic at each pixel in the spirit of a two-sample t

http://stat.case.edu/lasr/
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Figure 4.1: LASR procedure flow chart
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test. However, it differs from the standard t test in the following way. Our

test statistic at each pixel x is Tx = Dx/Sx, where Dx is the pixel value

of a filtered difference image from Step 5, i.e. a weighted average of the

difference values in a neighborhood of x from a difference image in Step 4

(versus a simple average of an independent and identically distributed sample

drawn at the same location x, in a two-sample t test statistic), and Sx is an

appropriately estimated standard deviation of Dx.

Step 7: Compute FDR-controlled P maps and movies. Based on the T

images and movies, we can compute p-values at all pixels. Each of the p-

values allows us to decide if two images are significantly different at that

pixel. The BH-FDR method is applied to adjust the p-values. If a p-value

p at x is less than the critical value derived from a 0.05 FDR-controlled

procedure, we change the pixel value to 1 − p; if p is greater than the FDR

cut-off value, the pixel value is set to zero. These resulting FDR-controlled

P maps or movies show which areas (the elevated areas) show improvement

of interface pressures (implying improved tissue health).

In summary, the LASR output map gives a graphical representation of

statistically significant pressure changes across the entire mapped region, i.e.

it helps us to decide if the NMES is effective at a particular region, with an

FDR no more than 0.05, an analogy of P-value for simultaneously comparing

differences at many locations (e.g. pixels). The algorithm is applied frame-

by-frame to aligned pressure data sets. LASR maps can thus be viewed as

single frame “snapshots”, suitable for comparison of static seating postures,

or as videos for comparison of dynamically changing pressures.

4.1.2 Statistical Analyses and Results

In this section we present two typical analyses and results for both static and

dynamic mappings.
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Static pressure mapping

Subject A. Pressure mapping assessment for subject A “appeared” to show

reasonable spatial alignment (Figure 4.2a), but a spatial registration was

still conducted to align images and correct any differences in alignment that

are not visually obvious. Qualitative evaluation of baseline/post-treatment

pressure maps appeared to indicate some positive changes in pressure distri-

bution over time, i.e. ischial region pressures appeared to decrease. However

this could not be shown to be statistically significant without further detailed

analysis.

After applying the LASR algorithm to assess changes between baseline

and post- treatment interface pressure data sets it could be seen that pres-

sures were reduced bilaterally over time (Figure 4.2b). The left sacro-ischial

region was more extensively affected than the right side.

Subject B. Pressure mapping assessment for subject B showed poor spa-

tial alignment, with both translation and rotation occurring between the

baseline and post-treatment images (Figure 4.3a). Qualitative evaluation of

longitudinal changes could not readily be performed.

After applying the LASR algorithm to assess changes between baseline

and post- treatment interface pressure data sets it could be seen that pres-

sures were reduced bilaterally over time (Figure 4.3b). The left and right

sacro-ischial regions were equally affected.

Dynamic pressure mapping

In developing the temporal registration stage of the LASR algorithm it was

assumed that the pressure variations exhibited a regular periodicity. This

allowed them to be brought into phase (temporally registered) for direct inter-

assessment comparison. Dynamic changes in interface pressure distributions

can then be presented in a video format, comparable to a motion analysis
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a: Unprocessed pressure data maps, assessments repeated at a 6-month interval

b: LASR analysis of long-term changes in static mode seated pressure distribution

Figure 4.2: Pressure mapping analysis: subject A. LASR analysis results iden-
tify the regions of the pressure reduction. The left sacro-ischial region was more
extensively affected than the right side
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a: Unprocessed pressure data maps, assessments repeated at a 6- month interval

b: LASR analysis of long-term changes in static mode seated pressure distribution

Figure 4.3: Pressure mapping analysis: subject B. LASR analysis results identify
the regions of the pressure reduction. The left and right sacro-ischial regions were
equally affected.
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output.

In the current study the effects of dynamic gluteal NMES were assessed

using real-time interface pressure mapping. Over several months of regular

use it was proposed that the response to gluteal stimulation would increase

as the stimulated muscles became stronger. Application of the LASR algo-

rithm to initial stimulation data sets and response after 6 months of regu-

lar use showed significant changes in interface pressures for both subjects.

Subject A showed changes predominantly on the left side, under the thigh

region as well as the ischial region, with some areas of change also occurring

in the right ischial region. Subject B showed changes bilaterally in the is-

chial region. Relevant LASR movies can be viewed at stat.case.edu/lasr/ or

sun.case.edu/lasr/.

One clear advantage of examining FDR movies over FDR maps is to help

decide which 5% of reported activations are most likely to be the false ones.

This is because the false ones will not persistently appear to be significant

over time (see our difference- and FDR- movies on stat.case.edu/lasr/ or

sun.case.edu/lasr/). As shown on our LASR webpage, those in the upper

left corner (reflecting the lower right thigh) of subject A and in the middle

right for subject B (reflecting the sacral area), are most likely to be false

positives. Note that for subject A we compared the baseline session with

the third session in producing both the static and dynamic data movies. For

subject B we did not have the baseline dynamic data, so the difference movie

for the dynamic data is taken between the second and the third session,

while the difference movie for the static data is taken between the first and

third session. Nevertheless, looking at both dynamic and static P-movies

for subject B, we still have more information (than if we had no movies) to

decide which 5% of reported activations might be false ones.
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4.2 Semiparametric Regression for the Spatial-

Temporal Data

The LASR procedure above gives us a complete solution for analyzing the

“intra-subject” data. Note that in the NMES study we have two “time”

variables; one is the time over data frames in each sub-data set; the other is

the time at intervals of roughly 12 months during the patient’s participation

in the study. Clinicians also would like to know the overall treatment effect

or temporal trend of roughly 12 months (i.e. the second time variable)

for all the subjects. Modeling the temporal trend from this large-p-small-n

data is not easy. In order to solve the problem we first implement a further

mining step – data reduction after data segmentation and registration. Recall

that there are 400 frames in each sub-data set. To increase the efficiency of

modeling overall treatment effect we reduce the huge data set to a smaller

representative. That is, we take an average over 400 frames for each sub-data

set. A single data frame is obtained at each assessment for each subject. We

refer to the summarized data as “inter-subject” data. Our semiparametric

regression model described below is proposed for analyzing this data.

Linear regression can be applied to the “inter-subject” data by modeling

the intensities yi as a function of spatial location si = (s1i, s2i) and treatment

ti:

yi = β0 + β1s1i + β2s2i + β3ti + β4tis1i + β5tis2i + εi

where yi is the intensity value of subject i, s1i and s2i are the coordinates of

yi in the data frames, ti is the dummy variable denoted before treatment or

after treatment (t can be a continuous variable if one has enough assessments

over the time) and εi is the normally distributed random error.

The linear regression model assumes independence of εi’s which makes

much of the statistical theory tractable. However, the data in the NMES

study involves both spatial-correlation structures and temporal-correlation
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structures. The spatial dependence is present in all directions and becomes

weaker as data locations become more dispersed. Models that involve these

dependencies are often more realistic than the ones ignoring the dependen-

cies. Moreover, it is not reasonable that we assume there be only simple linear

relations between spatial coordinates and the corresponding intensity values.

To control the spatial heterogeneity (correlation) we introduce a Gaussian

random field Z(s) where si = (s1i, s2i) to replace location covarites s1, s2 in

the linear predictor. The new model is

yi = β0 + β3ti + β4tis1i + β5tis2i + Z(si) + εi (4.1)

where Z is a stationary Gaussian random field on a bounded region S ∈ R
2

with mean E{Z(s)} = 0 and isotropic covariance

cov{Z(s), Z(s′)} = σ2γ(‖s− s′‖) = σ2γ(r) (4.2)

with ‖ · ‖ denoting Euclidean norm (see Appendix 3 for the definition of

random fields). Conditioning on Z the intensities yi are independent normal

observations.

Our approach to solve the spatial-temporal model is a semiparametric

method based on mixed models, Karhunen-Loève expansion and regression

splines. In the next subsection we introduce reproducing kernel Hilbert space

(RKHS) and Karhunen-Loève expansion on a fairly elementary level with spe-

cial emphasis on characteristics relevant to our solution of the semiparametric

model. A more comprehensive discussion about RKHS and Karhunen-Loève

expansion can be found in the monographs by Wahba (1990); Gu (2002);

Adler (1981) and Berlinet and Thomas-Agnan (2004).

4.2.1 RKHS and Karhunen-Loève Expansion

We first give the definition of Hilbert space.
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Definition 4.2.1 (Hilbert space). Every inner product 〈·, ·〉 on a linear space

H gives rise to a norm || · || as

‖x‖ =
√

〈x, x〉.

We call H a Hilbert space if it is complete with respect to this norm. Com-

pleteness in this context means that any Cauchy sequence of elements of the

space converges to an element in the space, in the sense that the norm of

differences approaches zero.

RKHS

A reproducing kernel Hilbert space (RKHS) is, first of all, a Hilbert space.

Intuitively speaking, an RKHS is a space of functions with the nice property

that if a function f is close to a function g in the sense of the distance derived

from the inner product, then the values f(x) are close to the values g(x).

Among Hilbert spaces of functions an RKHS is characterized by the property

that the evaluation of functions at a fixed point x, f 7→ f(x) is a continuous

mapping.

Definition 4.2.2 (reproducing kernel Hilbert space). Consider a Hilbert

space H of functions on domain X . If the evaluation functional δxf = f(x)

is continuous in H, ∀x ∈ X , then H is called a reproducing kernel Hilbert

space.

This implies that there exists a kernel C(x,x′) s.t. C(·,x) ∈ H for all

x ∈ X and

f(x) = δxf = 〈C(·,x), f〉 (4.3)

for all f ∈ H where 〈·, ·〉 is the inner product in H. By the Riesz representa-

tion theorem (Gu, 2002, page 27) there exists a unique representer Cx ∈ H
such that (4.3) holds with C(·,x) = Cx. It can be seen that the kernel C

is positive semidefinite (Berlinet and Thomas-Agnan, 2004, chapter 1). C
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is called a reproducing kernel (RK) of H. The reproducing kernel of such a

space H is a function of two variables C(y,x) with the property that for fixed

x, the function of y, C(y,x), denoted by C(·,x) belongs to H and represents

the evaluation function at the point x. Note that

〈Cx, Cx′〉 = 〈C(·,x), C(·,x′)〉 = C(x,x′). (4.4)

In essence the RKHS is made up of functions that have about the same

smoothness properties that C(s, t) has, as a function in t for fixed s, or vice

versa. Let us consider

S =

{
u : X → R : u(·) =

n∑

i=1

aiC(si, ·), ai real, si ∈ X , n ≥ 1

}
.

The inner product on S is

〈u, v〉 = 〈
n∑

i=1

aiC(si, ·),
m∑

j=1

biC(tj, ·)〉

=
n∑

i=1

m∑

j=1

aibjC(si, tj) ≥ 0.

Note that by the reproducing kernel property

〈u, C(t, ·)〉 = 〈
n∑

i=1

aiC(si, ·), C(t, ·)〉

=
n∑

i=1

aiC(si, t)

= u(t). (4.5)

For the sake of exposition assume that the covariance function, C, is

positive definite (rather than merely positive semidefinite) so that 〈u, u〉 = 0

if and only if u(t) ≡ 0. In this case (4.5) defines a norm ‖u‖ = 〈u, u〉 1

2 .
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For {un}n≥1 a sequence in S we have

|un(t) − um(t)| = |〈un − um, C(t, ·)〉|

≤ ‖un − um‖ · ‖C(t, ·)‖

≤ ‖un − um‖C(t, t),

where the last line follows directly from (4.4) and (4.5). Hence it follows

that if {un} is Cauchy in ‖ · ‖H then it is pointwise Cauchy. The closure of

S under this norm is a space of real-valued functions, denoted by H(C), the

RKHS of C, since every u ∈ H(C) satisfies (4.5) by the separability of H(C)

(Adler, 1981). (The separability of H(C) follows from the separability of X
and the assumption that C is continuous.)

As a concrete example of RKHS take X = {1, 2, · · · , n} and f to be cen-

tered Gaussian process with covariance matrix C = (cij), cij = E{fifj}.
Let C−1 = (cij) denote the inverse of C, which exists by positive defi-

niteness. Then the RKHS of f is made up of all n-dimensional vectors

u = (u1, u2, · · · , un) with inner product

〈u, v〉 =

n∑

i=1

n∑

j=1

uic
ijvj .

Karhunen-Loève Expansion

It is noted that L2(µ) is not an RKHS in general, but for many kernels C

it contains a (unique) RKHS as a subspace (Gu, 2002; Seeger, 2004). Recall

that L2(µ) contains all functions f : X → R for which

∫
f(x)2 dµ(x) <∞

holds. The standard inner product is

(f, g) =

∫
f(x)g(x) dµ(x).
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Often µ is taken to be an indicator function of a compact set such as the

unit hypercube. A positive semidefinite C(x,x′) can be regarded as a kernel

(or represent) of a positive semidefinite linear operator C in the sense

(Cf)(x) = 〈C(·,x), f〉.

Now, φ is an eigenfunction of C with eigenvalue λ 6= 0 if

(Cφ)(x) = 〈C(·,x), φ〉 = λφ.

For C all eigenvalues are real and non-negative. Furthermore, suppose C is

continuous and ∫
C(x,x′)2 dµ(x) dµ(x′) <∞.

For simplicity take X = [0, 1]N . Let λ1 ≥ λ2 ≥ · · · , and φ1, φ2, . . . ,

be, respectively, the eigenvalues and normalized eigenfunctions of operator

C : L2(X ) → L2(X ) defined by (Cψ)(t) =
∫

T
C(s, t)ψ(s) ds. That is, the λn

and ψn solve the integral equation

∫

X

C(s, t)ψ(s) ds = λψ(t), (4.6)

with the normalization

∫

X

ψn(t)ψm(t) dt =

{
1 m = n
0 m 6= n

These eigenfunctions lead to a natural expansion of C, known as Mercer’s

Theorem.

Theorem 4.2.1 (Mercer). Let C, {λn}n≥1 and {ψn}n≥1 be as above. Then

C(s, t) =

∞∑

n=1

λnψn(s)ψn(t), (4.7)

where the series converges absolutely and uniformly on [0, 1]N × [0, 1]N .
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The Mercer theorem leads to an important representation of a zero-mean

Gaussian random field Z(s) with covariance function C – the Karhunen-

Loève expansion,

Z(s) =

∞∑

n=1

λ
1

2

nψn(s)ξn (4.8)

where ϕn = λ
1

2

nψn is an orthonormal expansion for the RKHS H(C) and ξn

are i.i.d N(0, 1). Sun (1993) gave general conditions for (4.8) to exist for a

fairly arbitrary smooth Gaussian random field.

4.2.2 Mixed Modeling

From the discussion of the Karhunen-Loève expansion above, every Gaussian

random field whose covariance function satisfies weak constrains (specified

by Sun (1993) which includes all smooth second order stationary process)

can be written as

Z(s) =

K∑

l=1

Z̃l(s)ul = Z̃(s)Tu (4.9)

where u = (u1, · · · , uK)T are random variables following N(0, σ2
uI), where K

can be finite or infinite.

To develop this view we consider the Karhunen-Loève expansion for Z(s).

Under mild conditions on the covariance function C(s, s′) of Z(s) we can

construct a sequence

K∑

l=1

λ
1

2

l ψl(s)ξl,

which converges to Z(s) in quadratic mean (K → ∞). Here the ξl are i.i.d.

N(0, 1) variables. ψl are orthonormal eigenfunctions of the operator induced

by C with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 ,
∑

l≥1 λ
2
l < ∞,.

Thus, if u =
[
σuξl

]
1≤l≤K

and Z̃(s)T =
[
λ

1

2

l ψl(s)/σu

]
1≤l≤K

, then Z̃(s)Tu →
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Z(s) in quadratic mean.

The random field models of interest to us have their origin in spline

smoothing techniques and penalized likelihood estimation. Also, for low-

dimensional input spaces spline kernels are widely used due to the favor-

able approximation properties of splines and their computational advantages.

Spline smoothing is a special case of penalized likelihood methods which pro-

vides another view on the reproducing kernel via the Green’s function of a

penalization operator. We refer the monographs by Gu (2002) and Wahba

(1990) who give excellent discussions of spline techniques from the RKHS

perspective.

Returning to our model (4.1), by the Karhunen-Loève expansion of the

random field Z(s) our model can be rewritten as a standard linear mixed

model, i.e.

Y = Xβ + Z̃u + ε (4.10)

where β = (β0, β1, · · · , β5)
T , u = (u1, · · · , uK)T ,

[
u
ε

]
∼ N

([
0
0

]
,

[
σ2

uI 0
0 σ2

εI

])
.

Z̃ can be derived by using a spatial extension of the penalized spline.

Our choice of the penalized spline is the general radial spline (Ruppert

et al., 2003) which corresponds to the thin plate spline family. The low-

rank radial spline is computed based on a matrix of correlation functions

C =
[
C(‖κk − κk′‖)

]
1≤k,k′≤K

, where C(r) is a radially symmetric function

that approximates γ(r) (defined by the correlation function (4.2)); κ are

knots and K < n is the number of the knots. The radial centers for the

correlation are a set of K knots. Following Ruppert et al. (2003, page 254)

we model the correlation by using the function

C(r) = ‖r‖2 log ‖r‖.
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Singular value decomposition of the K ×K matrix

C =
[
‖κk − κk′‖2 log ‖κk − κk′‖

]
1≤k,k′≤K

yields

C = Udiag(d)VT ,

where d consists of singular values C: {λl : λ1 > λ2 > · · · > λK > 0}. The

matrix square root of C is then

C1/2 = Udiag(
√

d)VT .

Notice that for each data frame in the NMES study we have inputs

y1, · · · , yS ∈ R and two-dimensional spatial locations s1, · · · , sS ∈ R
2. Now

we can define the S ×K matrix Z̃ as

Z̃ = ZKC−1/2,

where

ZK =
[
‖si − κk′‖2 log ‖si − κk‖

]
1≤i≤S, 1≤k≤K

The choice of K will be discussed later.

Therefore, the spline technique helps us to find the Karhunen-Loève ex-

pansion of the random field. Then the form of model (4.9) allows fitting

through standard mixed model software. Our spatial-temporal model can

then be obtained by applying (restricted) maximum likelihood to β, σ2
u and

σ2
ε and best prediction to u.

Test for the Random field

A hypothesis of interest in the spatial-temporal model is that there is no

random field effect, i.e.

H0 : Z(s) = 0 v.s. H1 : otherwise
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This hypothesis is equivalent to

H0 : σ2
u = 0 v.s. H1 : σ2

u > 0 (4.11)

Thus the problem is converted to variance component testing in linear

mixed models. In general linear model, if L(θ) be the likelihood of the

parameter vector θ based on the data, the classical likelihood ratio test is

under H0,

− 2 log
L(θ̂0)

L(θ̂)
∼ χ2

ν , (4.12)

where θ̂0 = (β̂0, σ̂
2
ε0

) and θ̂ = (β̂, σ̂2
ε , σ̂

2
u) are the maximum likelihood esti-

mates of θ under the null model and unrestricted model, respectively. The

degrees of freedom ν is the difference between the number of parameters in

the unrestricted model and the null model. However, (4.12) assumes that the

parameter of interest is not on the boundary of its parameter space. This

assumption is violated for hypothesis test (4.11) since the parameter space

for σ2
u is [0,∞). A correction for the asymptotic distribution under H0 of

(4.11) (Self and Liang, 1987) is:

− 2 log
L(β̂, σ̂2

ε)

L(β̂, σ̂2
ε, σ̂

2
u)

∼ 1

2
χ2

0 +
1

2
χ2

1. (4.13)

Choice of smoothing parameter

The low-rank radial spline technique uses a truncation of the decomposed

smoothing basis to compute the covariates of the random effect in the mixed

model. This truncation corresponds to the K-rank approximation to the

covariance matrix of the random field. Choosing K is critical in that K

determines the accuracy of how well the spline approximates the true covari-

ance. We suggest a model selection approach for choosing the rank K, i.e.

use the AIC of the fitted model. In practice the model is fitted by using

increasing numbers of K; the optimal K is chosen by minimizing the AIC.
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Effect Treatment Estimate Standard Error Pr > |t|
Intercept 17.89 0.96 <0.0001
Treatment Before 5.83 1.58 0.009
Treatment After 0 . .
Trt*s1 Before 0.88 0.09 <0.0001
Trt*s1 After 0 . .
Trt*s2 Before -0.35 0.19 0.01
Trt*s2 After 0 . .

Table 4.1: Statistical results for semiparametric model fitting. The solution for
fixed effects is given here. The treatment effect is significant indicating the effi-
ciency of NMES.

Statistical Results

Table 4.1 displays the solution for the fixed effects of our semiparametric

model. MIXED Procedure in SAS software is used to solved the mixed mod-

els. Each exploratory variable is significant. Note that treatment effect is

highly significant indicating the efficiency of NMES on paralyzed muscles.

The optimal number of knots of the radial splines is K = 20 by the AIC

criterion.

From this study it is seen that the semiparametric model we proposed is

an effective tool for the analysis of spatial-temporal data and allows a fast

processing of large databases. Spatial models are a more recent addition

to the statistics literature (Cressie, 1993). Image processing, epidemiology,

ecology, geology, forestry, astronomy, climatology or simply any discipline

that works with data collected from different spatial locations, need to de-

velop models that indicate when there is dependence between measurements

at different locations. Our proposed semiparametric model is applicable to

these research areas and can easily be implemented by standard software.



Chapter 5

Measurement Error Problems

In this chapter we study the estimation problems of nonparametric densities

and regression functions in which variables are measured with error. Non-

Fourier based estimators are developed in the case of both homogeneous and

nonhomogeneous normal errors. The asymptotics of the new estimators are

investigated.

5.1 Density Estimation for Data with Mea-

surement Errors

The problem of nonparametric estimation of curves such as probability den-

sities and regression functions in the presence of measurement error has been

studied considerably in the literature. In the density estimation setting the

problem has been stated in Chapter One. LetX be the measurement of inter-

est and U the measurement error. Assume thatX and U are continuous inde-

pendent random variables, with X having densities f and U having densities

w. Then the random variable Y = X+U has density g = f ∗w where ∗ is the

convolution operator. The problem of estimating f from a sample Y1, · · · , Yn

is referred to as the deconvolution density estimation problem. The usual

107
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procedure is by a Fourier inversion. Let φX , φU , φY denote the characteristic

function of X, U and Y , respectively. Then φY (t) = φX(t)φU(t). So an

inverse Fourier transformation leads to,

f(x) =
1

2π

∫
e−itxφX(t)dt =

1

2π

∫
e−itxφY (t)

φU(t)
dt. (5.1)

An estimator of f(x) can be obtained by substituting φY (t) in (5.1) by its

estimate

φ̂Y =
1

n

n∑

i=1

eitYi ,

and φU(t) by its explicit expression (assumed known); let’s call the resulting

estimate the plug-in estimate. However, in practice this plug-in estimate is

unstable because its characteristic function has large fluctuations at tails.

To avoid this defect, a “tamper” function W (hnt) is inserted into the

integral (5.1) where hn → 0 is an appropriately selected tuning parameter.

When W = φK , the characteristic function of a kernel function K such that

φK(0) = 1, the plug-in estimator with W = φK is the following deconvolving

kernel density estimator introduced by Stefanski and Carroll (1990),

f̂(x) =
1

nhn

n∑

i=1

K∗

(
x− Yi

hn

)
, (5.2)

where

K∗(z) =
1

2π

∫
e−itz φK(t)

φU(t/hn)
dt (5.3)

is called the deconvolving kernel.

Observe that by (5.2) the deconvolving kernel estimate (DKE) is just an

ordinary kernel estimate but with specific kernel function equal to (5.3) and

the bandwidth hn. The convergence rate for DKE can be very slow for some

error distributions. Especially, when errors belong to the normal family, the
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convergence rate is onlyO
(
(logn)−1/2

)
(Zhang, 1990; Fan, 1991). In addition,

the Fourier estimate above is based on the assumpution that errors are ho-

mogeneous. Therefore, in this chapter we look for “non-Fourier” estimators

that are effective and that work for both homogeneous and nonhomogeneous

errors.

Sun et al. (2002) considered non-Fourier estimators of density estimation

in the uniform error case, which opened a completely new line of attack. In

the homogeneous error case, Ui ∼ U(−θ, θ) independently. It is easy to see

that the common density g of an independent simple Y1, · · · , Yn is

g(y) =
1

2θ
[F (y + θ) − F (y − θ)].

where F is the distribution of X. Therefore, F can be recovered from the

density g by either a “left” series representation F− or a “right” series rep-

resentation F+ defined below,

F−(x)
△
= 2θ

∞∑

t=0

g (x− (2t+ 1)θ) , (5.4)

F+(x)
△
= 1 − 2θ

∞∑

t=0

g (x+ (2t+ 1)θ) . (5.5)

In another word,

F (x) = F−(x) = F+(x)

provided the both series converge.

Moreover, the equations (5.4) and (5.5) lead to expressions for the density

function f ,

f−(x) = 2θ

∞∑

t=0

g′ (x− (2t+ 1)θ) , (5.6)

f+(x) = −2θ

∞∑

t=0

g′ (x+ (2t+ 1)θ) , (5.7)



110

so that a usual density estimation of g can be used to estimate F and f :

F̂−(x) = 2θ
mn∑

t=0

ĝ (x− (2t+ 1)θ) , F̂+(x) = 1 − 2θ
mn∑

t=0

ĝ (x+ (2t+ 1)θ) ,

f̂−(x) = 2θ

mn∑

t=0

ĝ′ (x− (2t+ 1)θ) , f̂+(x) = −2θ

mn∑

t=0

ĝ′ (x+ (2t+ 1)θ) ,

where mn → ∞ and ĝ can be a typical kernel estimator

ĝ(x) =
1

nh

n∑

i=1

K(
x− Yi

h
),

or any reasonable nonparametric estimator. Here the kernel K is assumed

to have the properties of
∫
K = 1,

∫
K2 <∞ and

∫
xK(x)dx = 0.

In the nonhomogeneous case a similar procedure leads to estimators:

F̂−(x) = 2

mn∑

t=0

ĝ−(x, t), F̂+(x) = 1 − 2

mn∑

t=0

ĝ+(x, t),

f̂−(x) = 2
mn∑

t=0

ĝ′−(x, t), f̂+(x) = −2
mn∑

t=0

ĝ′+(x, t),

where mn → ∞ and a kernel-type estimator ĝ− and ĝ+ are

ĝ+ =
1

nh

n∑

i=1

θiK

(
x− 2(t+ 1)θi − Yi

h

)
,

ĝ− =
1

nh

n∑

i=1

θiK

(
x+ 2(t+ 1)θi − Yi

h

)
.

The estimators above are stable and easy to compute - there are no Fourier

transformations needed in the calculation. Sun et al. (2002) also show that

the rates of their optimal estimators are n−2/5 for the cumulative distribution

and n−1/5 for the density of X. This is in contrast to the slow convergence

rates of Fourier deconvolution estimators when errors are either ordinary or

super smooth as defined by Fan (1991).
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5.1.1 3U Deconvolving Density Estimators

Following the sucess of Sun et al. (2002), in this section we study the den-

sity estimation problem when measurement errors are approximately normal.

Our idea is inspired from random number generation (RNG). Most RNG are

built on the uniform RNG. For example, normal pseudo random deviates can

be generated well by the sum of 12 uniform random variables (Gentle, 2003)

or by the popular Marsaglia-Bray algorithm. The Marsaglia-Bray compo-

sition method (Ripley, 1987, page 84) for normal RNG generates 97.45%

normal random variables using linear combinations of 2 or 3 uniforms and

another (99.73-97.45)% normal random variables using a rejection method

based on 2 uniforms. In summary, more than 97% times, a sum of 3 uniforms

provides adequate approximation to a normal RNG.

Indeed, there is little visual difference between the densities of the stan-

dard normal and a rescaled sum of three uniforms. Figure 5.1 shows his-

tograms and density plots for random numbers from normal and 3 uniforms.

The upper two subplots are from standard normal random numbers and the

lower two subplots are from a sum of three uniforms (i.e. generate X from

X = 2(U1 + U2 + U3) − 3 where U1, U2, U3 are from U(0, 1)). We also im-

plement a simple Monte Carlo simulation to compare the two distributions.

1000 random numbers are generated from standard normal and the sum of 3

uniforms separately. Then Kolmogorov-Smirnov test is used to test the nor-

mality of each sample. We repeat the procedure 100 times. Table 5.1 shows

that the average p-values are very large in both distributions which indicates

the samples are not significantly different from the standard normal. Among

the 100 tests, only 7 and 5 samples are rejected at level 5% in the random

number generations of the normal and the 3 uniforms, respectively.

In practice, any model including normal assumption of measurement error

is only approximately true. So, in the case of measurement error models
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Figure 5.1: Histograms and density plots for random numbers from normal and
3 uniforms. It is hard to distinguish the visual difference between the densities of
the standard normal and a rescaled sum of three uniforms. The upper plots are
from normal; the lower plots are from a sum of the three uniforms.

Distribution Average p-value Percentage of rejection
3 uniforms 0.411 7/100

Normal 0.549 5/100

Table 5.1: Monte Carlo simulation to compare random numbers from normal
and 3 uniforms: Kolmogorov-Smirnov test is used to test the normality for each
sample. 1000 random numbers are generated for each distribution in each time
and the procedure is repeated 100 times.
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with normal error we propose to use the mixtures of sums of 3 uniforms

to approximate the normal errors. Let us first focus on the homogeneous

normal errors. Consider Y = X + E, where X and E are independent

and E
appr∼ N (0, σ2). We would like to estimate the cumulative distribution

function (CDF) and probability density function (PDF) of X. Note that

E = σV where V
appr∼ N (0, 1). By the Marsaglia-Bray algorithm, we consider

the following approximation,

E ≈ σ (2(U1 + U2 + U3) − 3)

where U1, U2, U3 ∼ U(0, 1) independently.

Let Ũ1 = σ(2U1 − 1), Ũ2 = σ(2U2 − 1), Ũ3 = σ(2U3 − 1), we have

Y = X + E ≈ X + Ũ1 + Ũ2 + Ũ3

where Ũ1, Ũ2, Ũ3 ∼ U(−σ, σ) independently.

Consider the 3-fold estimating procedure of Sun et al. (2002):





Y = Y1 + Ũ3

Y1 = Y2 + Ũ2

Y2 = X + Ũ1

Denote g1(y), g2(y) as the PDF of Y1, Y2 and apply (5.6) and (5.4),





f(y) = 2σ
∑∞

t3=0 g
′
2 (y − (2t3 + 1)σ)

g2(y) = 2σ
∑∞

t2=0 g
′
1 (y − (2t2 + 1)σ)

g1(y) = 2σ
∑∞

t1=0 g
′ (y − (2t1 + 1)σ)

Hence the CDF and PDF of x are,

F−(x) = 8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) (5.8)

f−(x) = 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g′′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) . (5.9)
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Similarly, if we apply (5.7) and (5.5), we obtain:

F+(x) = 1 − 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) (5.10)

f+(x) = −8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g′′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) . (5.11)

Then a usual density estimate of g can be used to estimate (5.8) – (5.11).

Our three-fold estimators are:

F̃−(x) = 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

ĝ′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) (5.12)

f̃−(x) = 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

ĝ′′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) (5.13)

F̃+(x) = 1 − 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

ĝ′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) (5.14)

f̃+(x) = −8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

ĝ′′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) (5.15)

where

ĝ(x) =
1

nh

n∑

i=1

K(
x− Yi

h
) =

1

n

n∑

i=1

Kh(x− Yi).

Note that we use Kh(x) = K(x/h)/h thereafter, h is a bandwidth, and K

is a symmetric kernel with a finite variance such that
∫
K = 1,

∫
K2 < ∞

and
∫
xK(x)dx = 0. We call these three-fold estimators 3U deconvolving

estimators.

5.1.2 Asymptotic Performance

We explore the asymptotic behavior of the 3U deconvolving estimators in

this section under some regularity conditions. First we state the regularity
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conditions that are inherited from Sun et al. (2002).

Condition 1 (Kernel). The kernel K is nonnegative such that
∫
K = 1,

∫
K2 <∞,

∫
xK(x)dx = 0,

∫
K ′′(x)dx = 0 and

∫
xK ′′(x)dx = 0.

Condition 2 (Density). The density g has continuous fourth derivatives and

satisfies that
∑∞

t3=0

∑∞
t2=0

∑∞
t1=0 |g′′(x− (2t1 + 2t2 + 2t3 + 3)σ)|1/2 converges

uniformly in x.

Condition 3 (CDF). The cumulative distribution function F of X is twice

integrable.

Condition 4 (Errors). The error E
D
= Ũ1 + Ũ2 + Ũ3 exactly, where “

D
= ”

denotes the equal in distribution; and Ũ1, Ũ2, Ũ3 are identically independently

distributed from U(−σ, σ).

Remark. A typical kernel that satisfies condition 1 is the Gaussian kernel

K(x) = (2π)1/2e−x2/2. For a discussion of condition 2 see Sun et al. (2002).

Theorem 5.1.1. Under Conditions 1 ,2, 3 and 4,

EF̃−(x) = EF̃+(x) = Kh ∗ F (x)

Ef̃−(x) = Ef̃+(x) = Kh ∗ f(x)

where ∗ is the convolution operator.

Proof: We shall prove EF̃−(x) = Kh∗K(x). One can easily obtain the other

results similarly. To simplify the notation we denote t̃ = 2(t1 + t2 + t3) + 3.

Note that

EF̃−(x) = 8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

1

n

n∑

i=1

E
[
K ′′

h(x− σt̃− Yi)
]

= 8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

E
[
K ′′

h(x− σt̃− Y1)
]

= 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′

h(x− σt̃− y)g(y) dy. (5.16)
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Let s = x− σt̃− y and

H(x) = 8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g(x− σt̃), (5.17)

then

EF̃−(x) =

∫
K ′′

h(s)H(x− s) ds.

Note that F (x) = H ′′(x) and by condition 1 and using partial integration,

we show the assertion. �

Remark. It is clear that Kh∗F (x) → F (x) and Kh ∗f(x) → f(x) as h→ 0.

Theorem 5.1.2. Under Conditions 1 ,2, 3 and 4, we have

√
nh5

[
F̃−(x) − EF̃−(x)

]
D−→ N

(
0, 8σ3H(x)‖K ′′‖2

)

as h → 0, nh5 → ∞, where H(x) =
∫ x

−∞

∫ s

−∞
F (v) dv ds and ‖K ′′‖2 =

∫
K ′′(x)2 dx is the L2 norm of K ′′.

Proof: By equation (5.16) we then can write

√
nh5

[
F̃−(x) − EF̃−(x)

]
=

n∑

k=1

ξnk

with

ξnk = 8σ3

√
h5

n

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

(
K ′′

h(x− σt̃− Yk) −
∫
K ′′

h(x− σt̃− y)g(y) dy

)
.

By the Lindeberg-Feller central limit theorem for triangular arrays (Fer-

guson, 1996, Section 5), we have

∑n
k=1 ξnk

sn

D−→ N(0, 1),
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where

s2
n =

n∑

k=1

Varξnk = nEξ2
n1

= (8σ3)2h5Var

(
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

K ′′
h(x− σt̃− Y1)

)

= (8σ3)2h5

∫ ( ∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

K ′′
h(x− σt̃− y)

)2

g(y) dy

− (8σ3)2h5

(∫ ∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

K ′′
h(x− σt̃− y)g(y) dy

)2

= 8σ3(A1 − A2
2).

Because K follows condition 1 and for sufficiently small h, we have,

A1 = 8σ3h5
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′

h(x− σt̃− y)2g(y) dy

= 8σ3
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′(z)2g(x− σt̃− hz) dz (Let z = (x− σt̃− y)/h)

Notice that by (5.8) and (5.17),

8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g(x− σt̃− hz) =

∫ x

−∞

(∫ s

−∞

F (v − hz) dv

)
ds

= H(x− hz).

By interchanging the order between integral and summation,

A1 =

∫
K ′′(z)2H(x− hz) dz −→ H(x)

∫
K ′′(z)2 dz = H(x)‖K ′′‖2
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as h→ 0, by dominated convergence. On the other hand,

A2 =
√

8σ3h5

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫ [
K ′′

h(x− σt̃− y)
]2
g(y) dy

=
√

8σ3h

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′(z)2g(x− σt̃− hz) dz

=
√
h/(8σ3)

∫
K ′′(z)2H(x− hz) dz

which is of smaller order than the first term. Therefore, s2
n → 8σ3H(x)‖K ′′‖2.

Now let us verify the Lindeberg condition. For every ε > 0,

1

s2
n

n∑

k=1

E
[
ξ2
nkI{|ξnk| > εsn}

]
=

1

Eξ2
n1

E
[
ξ2
n1I{|ξn1| > ε

√
nEξ2

n1}
]

(5.18)

Since Eξ2
n1 <∞ and I{|ξn1| > ε

√
nEξ2

n1} → 0 as n → ∞, by the dominated

convergence theorem, (5.18) goes to zero. Thus, the Lindeberg condition is

satisfied. �

To see how good the F̃− is to the target function F , next we see how close

EF̃− is to F .

Theorem 5.1.3. Suppose that f(x) is twice differentiable at x. Then under

conditions 1,2 and 3

lim
h→0

{
h−2

(
EF̃−(x) − F−(x)

)}
=
f ′′(x)K2

2
,

where K2 =
∫
z2K(z) dz.
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Proof: From (5.16),

EF̃−(x) = 8σ3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′

h(x− σt̃− y)g(y) dy

= 8σ3h−3

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′

(
x− σt̃− y

h

)
g(y) dy

= 8σ3h−2
∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

∫
K ′′(z)g(x− σt̃− hz) dz

= h−2

∫
K ′′(z)H(x− hz) dz

= h−2

∫
K ′′(z)

{
H(x) − hzH ′(x) + h2z2H

′′(x)

2!

−h3z3H
′′′(x)

3!
+ h4z4H

(4)(x− ηhu)

4!

}
dz.

We use a Taylor series expansion in the last step. Note that K is a symmetric

PDF with zero mean and satisfies the condition 1 (a typical choice is a

standard normal kernel). Using partial integration,

EF̃−(x) ≈ 0 + 0 + F−(x) + 0 +
h2H(4)(x− ηhu)

2

∫
z2K(z) dz.

Then

h−2
(
EF̃−(x) − F−(x)

)
−→ f ′′(x)

2

∫
z2K(z) dz

as h→ 0. �

Now, combining Theorems 5.1.2 and 5.1.3, we have the convergence of

F̃− to the target function F below.

Theorem 5.1.4. If hn ∼ c · n1/9, for some c > 0, then,

n2/9
{
F̃−(x) − F (x)

}
D−→ N(λ, ρ2)
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as n→ ∞. Where

λ =
c2f ′′(x)K2

2

ρ2 = 8σ3c−5H(x)‖K ′′‖2.

Proof: From theorem 5.1.2 and 5.1.3 it is easy to verify that when hn ∼
cn1/9.

n2/9
{
F̃−(x) − F (x)

}
= c−5/2(nh5)1/2

{
F̃−(x) −EF̃−(x)

}

+n2/9
(
EF̃−(x) − F (x)

)

D−→ N(λ, ρ2)

as n→ ∞, h→ 0, and nh→ ∞ by Slutsky’s Theorem. �

Corollary 5.1.1. The bandwidth h that minimizes the asymptotic mean

square error of F̃−(x) in estimating F (x) has a rate n−1/9. The optimal band-

width is given by hopt = copt · n−1/9 with

copt =

(
40σ3H(x)‖K ′′‖2

(f ′′(x)K2)
2

)1/9

.

Proof: To obtain the optimal bandwidth minimize the asymptotic mean

square error, i.e., the sum of the variance and the squared bias in theorem

5.1.4, as a function of c,

min
c
{λ2 + ρ2} = min

c

{
1

4
c4 [f ′′(x)K2]

2
+ 8σ3c−5H(x)‖K ′′‖2

}

which leads to copt. �

In practice one can use “truncated sums” in the estimators. That is, for
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a large number mn,

F̂−(x) = 8σ3
mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) (5.19)

f̂−(x) = 8σ3

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′′ (x− (2t1 + 2t2 + 2t3 + 3)σ) (5.20)

F̂+(x) = 1 − 8σ3

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) (5.21)

F̂+(x) = −8σ3

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′′ (x+ (2t1 + 2t2 + 2t3 + 3)σ) (5.22)

Corollary 5.1.2. Under conditions 1 – 4,

i) if h → 0 and mn = [ x
6σ

]+ + kn

6σ
, then F̂−(x) is asymptotically unbiased,

where [·]+ indicate the positive integer part and kn → ∞ is independent

of x.

ii) if further, h → 0 and nh5 → ∞, the mean square error of F̂−(x) is

asymptotically equal to zero.

Proof: It is easy to see that

F̂−(x) − F (x) = 8σ3

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

[
ĝ′′(x− σt̃) − g′′(x− σt̃)

]

−8σ3

∞∑

t3=mn+1

∞∑

t2=mn+1

∞∑

t1=mn+1

g′′(x− σt̃)

△
= A1 − A2.
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The last term of the above equation has,

A2 = 8σ3
∞∑

t3=mn+1

∞∑

t2=mn+1

∞∑

t1=mn+1

g′′(x− σt̃)

= 8σ3

∞∑

t3=mn+1

∞∑

t2=mn+1

∞∑

t1=mn+1

g′′
(
x− 6σ(mn + 1) − σt̃

)

= F (x− 6σ(mn + 1)) ≤ F (−kn) → 0

uniformly as n→ ∞.

EA1 = 8σ3
mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

[∫
K ′′

h(x− σt̃− y)g(y) dy− g′′(x− σt̃)

]

= 8σ3
mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

[
1

h2

∫
K ′′(s)g(x− σt̃− sh) ds− g′′(x− σt̃)

]
.

Consider a Taylor series expansion of g(x−σt̃−sh) in x−σt̃ and notice that

K is a “Normal” kernel with mean zero by partial integration

1

h2

∫
K ′′(s)g(x− σt̃− sh) ds

=
1

h2

∫
K ′′(s)

{
g(x− σt̃) − g′(x− σt̃)sh +

1

2
g′′(x− σt̃)s2h2

−1

6
g′′′(x− σt̃)s3h3 +

1

24
g(4)(x− σt̃)s4h4 + o(s4h4)

}
ds

= 0 − 0 + g′′(x− σt̃) − 0 +
h2

2
g(4)(x− σt̃)

∫
s2K(s) ds+ o(h2).

Hence,

EA1 =
K2h

2

2
(f ′(x) − o(1)) (1 + o(1)) → 0

as h→ 0.
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To show ii), notice that, by the asymptotic unbiasedness of the estimate,

VarF̂−(x) = Var

(
8σ3

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

1

n

n∑

i=1

K ′′
h(x− σt̃− Yi)

)

=
8σ3

n
(B1 +B2) − o(1),

where

B1 = 8σ3

∫ ∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

[
K ′′

h(x− σt̃− y)
]2
g(y) dy

=
8σ3K ′′(s)2

h5

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g(x− σt̃) (1 + o(h)) .

B2 = 8σ3
∑

t̃1 6=t̃2

∫
K ′′

h(x− σt̃1 − y)K ′′
h(x− σt̃2 − y)g(y) dy

≤ 8σ3
∑

t̃1 6=t̃2

[∫ [
K ′′

h(x− σt̃1 − y)
]2
g(y) dy

]1

2

[∫ [
K ′′

h(x− σt̃2 − y)
]2
g(y) dy

]1

2

=
8σ3K ′′(s)2

h5

∑

t̃1 6=t̃2

[
g(x− σt̃1)

1

2 g(x− σt̃2)
1

2 (1 + o(h))
]
.

Therefore, as nh5 → 0, V arF̂−(x) → 0. �

Now consider cases with nonhomogeneous normal errors. We have Yi =

Xi + Ei where Xi is from F , Ei is normally distributed on N (0, σ2
i ) and

independent of Xi, for i = 1, 2, · · · , n. Analogous to the homogeneous case

we use a sum of three uniforms to approximate the normal errors

Yi = Xi + Ei ≈ Xi + Ũi1 + Ũi2 + Ũi3,

where Ũi1, Ũi2, Ũi3 ∼ U(−σi, σi) independently.
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Following the derivation for the nonhomogeneous uniform error case in

Sun et al. (2002) we also derive the three-fold estimators of the CDF of X,

F (x) = 8

∞∑

t3=0

∞∑

t2=0

∞∑

t1=0

g̃′′(x)

where g̃(x) = 1
n

∑n
i=1 σ

3
i gi [x− σi(2t1 + 2t2 + 2t3 + 3)] . The 3U deconvolving

estimators in nonhomogeneous case are:

F̂−(x) = 8

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′(x)

f̂−(x) = 8

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

ĝ′′′(x).

where mn → ∞ and a kernel type estimator of ĝ(t) is

ĝ(x) =
1

nh

n∑

i=1

σ3
iK

(
x− σi(2t1 + 2t2 + 2t3 + 3) − Yi

h

)

=
1

n

n∑

i=1

σ3
iKh (x− σi(2t1 + 2t2 + 2t3 + 3) − Yi) .

A similar consideration leads to

F̂+(x) = 1 − 8

n

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

σiK
′′
h

(
x+ σ3

i (2t1 + 2t2 + 2t3 + 3) − yi

)

f̂+(x) = −8

n

mn∑

t3=0

mn∑

t2=0

mn∑

t1=0

σ3
iK

′′′
h (x+ σi(2t1 + 2t2 + 2t3 + 3) − yi)

Condition 2 ′ (Density). The density g has continuous fourth derivatives

and satisfies that
∑∞

t3=0

∑∞
t2=0

∑∞
t1=0 |g′′i (x−(2t1+2t2+2t3+3)σ)|1/2 converges

uniformly in x.
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Condition 4 ′ (Errors). The error Ei
D
= Ũi1 + Ũi2 + Ũi3 exactly, where “

D
= ”

denotes the equal in distribution; and Ũi1, Ũi2, Ũi3 are identically indepen-

dently distributed from U(−σi, σi). There is a finite number M > 0 such that
∑n

i=1 σ
2
i /n < M.

Given the additional conditions above, we can show the following asymp-

totic properties analogous to the homogeneous case. Most parts of the proofs

are similar to the derivations above.

Corollary 5.1.3. Under conditions 1, 2 ′, 3 and 4 ′,

i) If h → 0 and mn = [ x
6σ0

]+ + kn

6σ0

, then F̂−(x) and f̂−(x) are asymp-

totically unbiased, where 0 < σ0 = miniσi ; [·]+ indicates the positive

integer part and kn → ∞ is independent of x.

ii) If further, nh5 → ∞ as h → 0, the mean square error of F̂−(x) is

asymptotically equal to zero; if further, nh7 → ∞ as h → 0, the mean

square error of f̂−(x) is asymptotically equal to zero.

iii) Under the condition in i) and ii) the bandwidth h for F̂−(x) and f̂−(x)

that minimizes the asymptotic mean square error has rate of n−1/9 and

n−1/11 respectively.

5.1.3 Simulation

In the simulation study we consider the true distribution to be Gamma(2, 2)

and the error distribution to be N(0, 1). Our kernel is the standard Gaussian

kernel. The sample size is 100 and mn = 50.

Bandwidth selection in nonparametric estimation is always an impor-

tant issue as discussed in Chapter 3. Sun et al. (2002) suggest two ways

of computing the bandwidth of their estimators, bootstrap method and

the one based on Silverman’s rule of thumb. In our simulation we sim-

ply compute the bandwidth hw from the observations zi only, using hw =
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0.9n−1/5 min(SD, IQR/1.34) (Silverman, 1986, page 48) where SD is the

standard deviation of the data and IQR is the interquartile range of the

data. Then we use a graphical method to select the bandwidth. For exam-

ple, we compute the estimates using a sequence of hi = cihw, where ci is

some specified constant. Thus, we choose the optimal one based on graphics.

Figure 5.2 displays some plots based on our simulation results. F̂− and

f̂− are used to compute the corrected CDF and PDF. The left upper subplot

is the true density from a Gamma random sample data. The right upper

subplot is the density plot for the data with normal measurement error. The

left lower subplot displays the density of our corrected estimate using 3U de-

convolving estimators. It is clear that the 3U deconvolving estimate captures

the location and bumps of the true density successfully by comparing it with

the plot of the contaminated sample, although there is some over-estimation

in the right tail of the density. The right lower subplot shows the compari-

son of CDF curves. The red dash line is the CDF curve of the contaminated

sample. The blue solid line is the CDF curve based on our 3U deconvolving

estimate which almost matches the true CDF except in the tails.

Regarding the problem of tail-effects, we expect the variance reduction

estimators, which are similar as Sun et al. (2002), to have better performance

than F̂− and f̂−. Chapter 6 discusses this further.

5.2 Nonparametric Regression with Errors in

Variables

Deconvolution problems arise in a variety of situations in statistics. A very

interesting and challenging problem is related to nonparametric regression

when the predictor X cannot be observed directly. More specifically, let

(X,Z) denote a pair of random variables and consider the problem of estimat-

ing the regression function m(x) = E(Z|X = x). Due to the measurement
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Figure 5.2: Simulation for 3U deconvolving estimators. The true data are from
Gamma(2,2) and the measurement errors are from N(0,1). The 3U deconvolving
estimates capture the location and bumps of the true density and CDF successfully.
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mechanism or the nature of the environment, the variable X is not directly

observable, instead what is observable is Y = X+U , called X measured with

error. Let Yi = Xi + Ui where Ui is random error with either known density

h in the homogeneous case or hi in the nonhomogeneous case. In the section

we develop new SWAP regression estimators for data with measurement er-

rors and study the asymptotics of the new estimators. Here we focus on the

case with homogeneous uniform errors. Estimators in the case of other error

distributions and nonhomogeneous error cases will be studied in the future.

Remark. The new estimators for the nonparametric regression with errors in

variables are named “SWAP” estimators here because this type of estimators

were initially proposed by Sun and Woodroofe for uniform errors, then were

generalized by Sun and Wang here for other errors and the form of the new

estimators has some similarity to the form of Shannon Weighted Average

Procedure.

5.2.1 SWAP Estimators

Since the variables X1, ..., Xn are not observable, the estimator f̂n(x) can be

constructed from our non-Fourier Deconvolution estimators. When the errors

have a uniform distribution on [−θ, θ], independently of Xi, for i = 1, ..., n,

the non-Fourier Deconvolution estimator (Sun et al., 2002) is,

f̂(x) =
2θ

nh2

mn∑

k=0

n∑

i=1

K ′

(
x− (2k + 1)θ − Yi

h

)
(5.23)

where mn → ∞.

Note that equation(5.23) can be rewritten in the kernel form:

f̂(x) =
1

nh

n∑

i=1

K̃

(
x− Yi

h

)
, (5.24)
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with

K̃(x) =
2θ

h

mn∑

k=0

K ′

(
x− (2k + 1)θ

h

)
. (5.25)

K̃ has many properties of an ordinary kernel. For example, it is easy to

show that
∫
K̃(x)dx = 1 implies that

∫
f̂(x)dx = 1. Appealing to these

facts, we propose the following non-Fourier SWAP estimator involving error-

in-variables,

m̂(x) =

∑n
i=1 K̃

(
x−Yi

h

)
Zj∑n

i=1 K̃
(

x−Yi

h

) . (5.26)

5.2.2 Asymptotic Performance

Consider our non-Fourier kernel estimator:

m̂(x) =

∑n
i=1 K̃(x−Yi

h
)Zi∑n

j=1 K̃(x−Yi

h
)

=
1

nh

∑n
i=1 K̃(x−Yi

h
)Zi

f̂(x)
. (5.27)

Note that we are interested in estimating the true regression function

m(x) = E(Z|X = x) =

∫
zf(x, z) dz

f(x)
. (5.28)

Here f(x, z) denotes the joint density of (X,Z) and f(x) the marginal density

of X. In the model with errors-in-variables we denote g(y, z) as the joint

density of (Y, Z). By the independence of U and (X,Z), and Y = X + U

where U ∼ U(−θ, θ) we have,

g(y, z) =

∫ θ

−θ

f(y − u, z)
1

2θ
du. (5.29)

The fact that the numerator and denominator of the statistic m̂(x) are both

random variables presents added difficulty to the problem. In order to study

the expectation and variance of m̂(x) let us denote

r(x) =

∫
zf(x, z) dz = m(x)f(x), (5.30)
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then

r̂h(x) =
1

nh

n∑

i=1

K̃(
x− Yi

h
)Zi =

1

n

n∑

i=1

K̃h(x− Yi)Zi

The regression function estimate is thus given by

m̂h(x) =
r̂h(x)

f̂h(x)
.

Lemma 5.2.1. If r(x) has continuously second derivatives, then the expec-

tation of r̂h(x) asymptotically converges to u∗ r(x) as h→ ∞, where ∗ is the

convolution operator and u is the density function of the error distribution.

Proof: Notice that

Er̂h(x) = E

(
1

n

n∑

i=1

K̃h(x− Yi)Zi

)

= E
(
K̃h(x− Y1)Z1

)

=

∫ ∫
zK̃h(x− y)g(y, z) dy dz

=

∫ ∫
zK̃h(x− y)

(∫ θ

−θ

f(y − u, z)
1

2θ
du

)
dy dz

=
1

2θ

∫ θ

−θ

[∫
K̃h(x− y)

(∫
zf(y − u, z) dz

)
dy

]
du

=
1

2θ

∫ θ

−θ

[∫
K̃h(x− y)f(y − u)m(y − u) dy

]
du

=
1

2θ

∫ θ

−θ

[∫
K̃h(x− y)r(y − u) dy

]
du

=
1

2θ

∫ θ

−θ

[∫
K̃(s)r(x− sh− u) ds

]
du.

The above derivation is by using (5.28) and (5.30), and by changing variable

s = (x− y)/h.
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Consider the Taylor series expansion of r(x− sh− u) in x− u. Then

Er̂h(x) =
1

2θ

∫ θ

−θ

[∫
K̃(s)

(
r(x− u) − shr′(x− u) + o(s2h2)

)
ds

]
du

→ 1

2θ

∫ θ

−θ

[∫
K̃(s)r(x− u) ds

]
du

=
1

2θ

∫ θ

−θ

r(x− u) du = u ∗ r(x).

�

Theorem 5.2.1. Under modest conditions,

m̂(x)
p−→ u ∗ r(x)

r(x)
m(x).

as n→ ∞, h→ 0 and nh→ ∞.

Proof: First let us show Var (r̂h(x)) → 0. We denote q(x) =
∫
z2f(x, z) dz.

Note that

E
[
K̃h(x− Y )Z

]2
=

∫
K̃2

h(x− y)z2g(y, z) dy dz

=

∫
K̃2

h(x− y)z2

(∫ θ

−θ

f(y − u, z)
1

2θ
du

)
dy dz

=
1

2θ

∫ θ

−θ

[∫
K̃2

h(x− y)

(∫
z2f(y − u, z) dz

)
dy

]
du

=
1

2θ

∫ θ

−θ

[∫
K̃2

h(x− y)q(y − u) dy

]
du

=
1

2θ

∫ θ

−θ

1

h

[∫
K̃2(s)q(x− sh− u) ds

]
du

=
1

h

[
1

2θ

∫ θ

−θ

(
q(x− u)

∫
K̃2(s) ds+O(h)

)
du

]



132

Then combining with the lemma 5.2.1 we have

Var (r̂h(x)) = Var

[
1

n

n∑

i=1

K̃h(x− Yi)Zi

]

=
1

n
Var

[
K̃h(x− Y1)Z1

]

=
1

n

[
1

h
O(1) +O(h) +O(1)

]
−→ 0

as h → 0, n → ∞, nh → ∞. Hence, r̂h(x) converges to u ∗ r(x) as nh → ∞
by lemma 5.2.1. Note that the denominator of m̂n(x) is the non-Fourier

deconvolution density estimate f̂h(x), which is consistent for same asymptotic

of h . Using Slutzky’s theorem, we obtain

m̂(x) =
r̂h(x)

f̂h(x)

p−→ u ∗ r(x)
f(x)

=
u ∗ r(x)
r(x)

m(x).

�

5.2.3 Simulations

In the simulation study we consider the true regression function to be z =

sin(x). We generate xi from U(0, 10) and random noise εi fromN(0, 1). Then

our observed zi is equal to sin(xi)+εi. The measurement error ui is generated

from a uniform distribution U(−1, 1), so the contaminated covariate is yi =

xi + ui.

Figure 5.3 displays our simulation results. The solid black line is the true

function z = sin(x). The short, red dashed line is the kernel regression esti-

mate with the contaminated data, i.e. ẑ = m̂(y). The long, blue dashed line

is based on our error-corrected SWAP estimate. The kernel of our estimate is

still the standard Gaussian kernel. The sample size is 100 and mn = 50. Sim-

ilarly, for our simulation in density estimation, we compute the bandwidth

hw from the observations zi only, using hw = 0.9n−1/5 min(SD, IQR/1.34)
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Figure 5.3: Simulation for non-Fourier SWAP regression estimators. The solid,
black line is the true function z = sin(x); the short, red dashed line is the nonpara-
metric regression estimate for the contaminated data; the long, blue dashed line is
our error-corrected SWAP estimate which is much closer than the true function.

where SD is the standard deviation of the data and IQR is the interquar-

tile range of the data. Then we use a graphical method to determine the

bandwidth by specifying a sequence of hi = cihw.

It is clearly seen that the non-Fourier SWAP estimate corrected the re-

gression line based on the contaminated sample. It is much closer to the

true regression function. The left tail of the regression line is slightly mis-

estimated, but overall the corrected estimate captures the trend of the true

function.

Our second stimulation example uses the famous “ethanol” data (Si-

monoff, 1996, page 134). The ethanol data frame contains 88 sets of mea-

surements for variables from an experiment in which ethanol was burned in a
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single cylinder automobile test engine. The covariate is the equivalence ratio

at which the engine was run - a measure of the richness of the air/ethanol

mix. The response is the concentration of nitric oxides in the engine exhaust,

normalized by engine work.

We artificially add measurement errors to the covariate, where the mea-

surement errors are generated from the uniform distribution U(−0.3, 0.3).

Figure 5.4 displays the comparisons of the regression lines. The solid, black

line is the nonparametric kernel regression estimate based on the original

data. The short, red dashed line is the kernel regression estimate based on

the contaminated data. The long, blue dashed line is our error-corrected

SWAP estimate. The kernel of our estimate is still the standard Gaussian

kernel and mn is set to 50. The regression line based on the contaminated

data is fairly different from the true line, while our corrected line is very close

to the true line. Although the corrected line slightly shifts toward the right

of the true line, it captures the shape of the true line successfully.

Remark (Bias correction estimator). The SWAP estimator we developed in

previous sections has already had good performance on the error correction

of regression function. However, it still has some tail-effects as shown in the

simulations. This effect is due to the bias of our estimator m̂(x) in (5.26) as

proved in theorem 5.2.1.

In the proof of lemma 5.2.1, we obtained the following equation

Er̂h(x) =
1

2θ

∫ θ

−θ

r(x− u) du.

This inspires us to derive an unbiased estimator of r̂(x). Let R(x) =
∫ x

−∞
r(x) dx,

then

Er̂h(x) =
R(x+ θ) − R(x− θ)

2θ
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Figure 5.4: Simulation study for ethanol data. The solid, black line is the non-
parametric regression estimate for the original data; the short, red dashed line is
the nonparametric regression estimate for the contaminated data; the long, blue
dashed line is our error-corrected SWAP estimate. Our estimate successfully cap-
tures the shape of the true function.
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Using the same skill described in the first section of this chapter, we have

R(x) ≈ 2θ
∞∑

t=0

Er̂h

(
x− (2t+ 1)θ

)

then

r(x) ≈ 2θ

∞∑

t=0

Er̂′h
(
x− (2t+ 1)θ

)
.

So, a revised estimator of m(x) is

m̃(x) =
r̃(x)

f̂(x)
(5.31)

where

r̃(x) = 2θ
∞∑

t=0

r̂′h
(
x− (2t+ 1)θ

)
.

Note that m̃(x) is an asymptotical unbiased estimator of m(x) because it is

easy to see that Er̃(x) → r(x) and then

E(m̃(x)) → r(x)

r(x)/m(x)
= m(x),

as n→ ∞, h→ 0 and nh→ ∞.

The stimulation and other asymptotical properties will be studied in the

future.



Chapter 6

Discussion and Further Issues

Both spatial-temporal data mining and measurement error problems are rich

research areas in modern statistics. In this chapter, we discuss the applica-

tions of our methods and address future research issues in these two areas.

6.1 Applications of LASR

The development of the multi-stage statistical LASR algorithm allows both

clinicians and researchers to derive more useful, objective information from

pressure maps, such as the location of significant pressure changes or the rel-

ative efficacy of pressure relief procedures. Furthermore, spatial registration

allows global analysis of pre- and post-intervention differences without any

subjective bias in selecting areas of interest.

In the specific study of the effects of gluteal NMES it was found that sub-

jects who received a gluteal stimulation system showed statistically significant

changes in ischial region pressure over time, when baseline/post-treatment

comparisons were made. The region of significant change was not symmetri-

cal in all cases which reflects the asymmetric nature both of gluteal muscle

recruitment area and contractile responses. However, in the two cases where

137
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we did not have baseline data, pressure distributions obtained in the first

session for which we had data (already after at least initial conditioning or

treatment) and the last session of the assessment we had, did not show sig-

nificant changes. This implies that for these two subjects the majority of

the intrinsic changes in tissue characteristics occurred acutely, during early

treatment, and that continued regular use of gluteal stimulation maintains

these improved responses. This motivates us, given that NMES is effective

as shown in this dissertation, to study the length of treatment suitable for

each patient, and to examine if the experience of these two patients applies

to other subjects after a “critical” time point.

The last two decades have seen remarkable developments in medical imag-

ing technology. Universities and industries have made huge investments in

inventing and developing the technology needed to acquire images from mul-

tiple imaging modalities. Medical images are increasingly widely used in

health care and biomedical research; a wide range of imaging modalities is

now available. The clinical significance of medical imaging in the diagnosis

and treatment of diseases is overwhelming. While planar X-ray imaging was

the only radiological imaging method in the early part of the last century,

several modern imaging techniques are available today for the acquisition

of anatomical, physiological, metabolic and functional information from the

human body. The commonly used medical imaging modalities capable of

producing multidimensional images for clinical applications are: X-ray Com-

puted Tomography (X-ray CT), Magnetic Resonance Imaging (MRI), Single

Photon Emission Computed Tomography (SPECT), Positron Emission To-

mography (PET) and Ultrasound (US).

It should be noted that these modern imaging methods involve sophis-

ticated instrumentation and equipment which employ high-speed electronics

and computers for data collection. Spatial-temporal image data occur in a

broad range of medical imaging applications. It is now common for patients
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to be imaged multiple times, either by repeated imaging with a single modal-

ity, or by imaging with different modalities. It is also common for patients to

be imaged dynamically, that is, to have sequences of images acquired, often

at many frames per second. The ever increasing amount of image data ac-

quired makes it more and more desirable to relate more than one statistical

tool to assist in extracting relevant clinical information.

Application of the LASR algorithm enhances data extraction and acquires

statistical inferences from complex spatial-temporal data sets, as shown in

the NMES study. Thus the LASR analytical methodology has the potential

to become a powerful new tool in the field of image analysis. It should also

be noted that our spatial registration technique (with random landmarks)

has wide potential applications, even beyond the field of clinical care. Other

potential clinical applications include images of soft tissues, which may not

include bony landmarks. Applications could include situations where an

imaged object may change dimensions and/or orientation over time.

6.2 I-Map – FDR Ratio Mapping

The multiple testing problems of multivariate local regression were studied in

Section 3 of Chapter 3. Benjamini & Hochberg’s step-up procedure for strong

control of the false discovery rate was used to control the multiplicity in the

tests of the NMES study. We declared the FDR level to be 0.05, which means

we were subject to 5% false discovery that the pressure between baseline and

treatment (in one compartment) was significantly different when it actually

wasn’t. It is of interest to identify these 5% falsely discovered locations for

clinicians and researchers. Replication of data frames over time for each

assessment enables us to identify them. We propose an FDR ratio mapping

algorithm as follows.

Algorithm 6.2.1. FDR ratio mapping algorithm.
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1). Based on the LASR procedure we obtainem adjusted p-values, pi1, · · · , pim

in the data frame i. Compute

Ĩij =

{
1, if pij < α,

0, if pij ≥ α.

where i = 1, · · · , n (n is the total number of the data frames), j =

1, · · · , m, α is the pre-determined FDR level, and m is the number of

compartments or pixels.

2). Compute I-values which are defined as

Ij =

∑n
i=1 Ĩij
n

,

where j = 1, · · · , m.

3). Compute the α-quantile qα for the sequence A = {Ij > 0}.

4). Declare that the null hypothesis H0k (i.e. the hypothesis test at location

k) is falsely rejected if 0 < Ik < qα. Then generate a map based on

I-values and declared results.

As an example, we generate an I-map for one subject in the NMES study

by applying the FDR ratio mapping algorithm above. Figure 6.1 shows an

I-map in the case of static pressure mapping. The light blue blocks indicate

the true discovered regions that the subject’s pressures in these regions are

significantly improved. The red blocks are the locations that were falsely

discovered as significantly improved locations, which happened in a single

frame. The simulation experiment will be conducted in a future paper to

assess the validity of this I-map; the asymptotic properties of it will also be

studied.
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Figure 6.1: An example of I-map based on FDR ratio mapping algorithm. The
red blocks indicate the locations that were falsely discovered significant. The light
blue blocks are the true significant improved regions.
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6.3 Backfitting Algorithm for Semiparamet-

ric Regression

In Chapter 4, we proposed a semiparametric regression model for spatial-

temporal data in the NMES study. The semiparametric regression can be

viewed as a standard linear mixed model when using general radial splines

to expand the zero-mean random field. The log likelihood of the fixed pa-

rameters for model (4.10) is

l(β, θ) = logL(β, θ) = − 1

2
log |V| − 1

2
(y −Xβ)TV−1(y − Xβ)

− n

2
log(2π), (6.1)

where V = σ2
εI + σ2

uZ̃Z̃T and θ = (σ2
ε , σ

2
u).

For fixed θ, taking the derivative of the log-likelihood with respect to β,

we find the estimate of β as the solution of

(XTV−1X)β = XTV−1y, (6.2)

which is the well-known generalized least-squares (GLS) formula.

To estimate the random effects, consider the log-likelihood of all the pa-

rameters. First, note that

L(β, θ) = f(y|u)f(u).

From the mixed model specification, the conditional distribution of y given

b is normal with mean E(y|u) = Xβ + Zu and variance σ2
εI. The random

effects u is normal with mean zero and variance σ2
uI. Hence,

l(β, θ) = logL(β, θ)

= − 1

2
log |σ2

εI| −
1

2
(y −Xβ − Z̃u)T (σ−2

ε I)(y − Xβ − Z̃u)

− 1

2
log |σ2

uI| −
1

2
uT (σ−2

u I)u − n

2
log(2π). (6.3)
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Given the fixed parameters (β, θ), the estimate of u is the solution of

(
σ−2

ε Z̃T Z̃ + σ−2
u I
)
u = σ−2

ε Z̃T (y − Xβ). (6.4)

This estimate is also known as the best linear unbiased predictor (BLUP).

In practice the unknown fixed parameters are replaced by their estimates

through the profile log-likelihood of V.

lp(V) = logL(V) = − 1

2
log |V| − 1

2
yTV−1

[
I −X(XTV−1X)−1XTV−1

]
y

− n

2
log(2π). (6.5)

That is, the log-liklihood above is obtained by plugging the GLS estimate of

β into the log-likelihood function (6.1).

Note that our model consists of two components, the fixed effect and

nonparametric random field. It is interesting to estimate the β and u si-

multaneously. The derivative of the log-likelihood of all the parameters (6.3)

with respect to β is

∂ l(β, θ)

∂β
= σ−2

ε XT
(
y − Xβ − Z̃b

)
. (6.6)

Setting (6.6) equal to zero and then combining the equation (6.4) (the deriva-

tive of the log-likelihood of all the parameters (6.3) with respect to u and

setting equal to zero), we obtain the mixed model equations.

[
σ−2

ε XTX σ−2
ε XT Z̃

σ−2
ε Z̃T X σ−2

ε Z̃T Z̃ + σ−2
u I

][
β

u

]
=

[
σ−2

ε XTy

σ−2
ε Z̃T y

]
(6.7)

The estimates we compute from this simultaneous equation (6.7) are exactly

the same as those from (6.2) and (6.4). This suggests fitting the model by a

iterative backfitting algorithm to fixed effect component and nonparametric

random field component. Our algorithm is similar to the backfitting algorithm
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in the additive model (Hastie and Tibshirani, 1990; Hastie et al., 2001) which

is a general algorithm that enables one to fit an additive model using any

regression-type fitting mechanism.

Algorithm 6.3.1. Backfitting algorithm for the semiparametric model

1). Given the initial estimate β̂ by the ordinary least squares estimate

β̂ = (XTX)−1XTy.

2). Compute the estimate û from a nonparametric (spline smoothing) model

y∗ = Z̃u + ε,

where y∗ = y−Xβ̂. The estimate of û is still the BLUP by the formula

as before,
(
σ−2

ε Z̃T Z̃ + σ−2
u I
)
u = σ−2

ε Z̃T ỹ.

3). Re-estimate β̂ from a fixed effect model

y∗∗ = Xβ + ε,

where y∗∗ = y − Z̃û.

4). Iterate step’s 2 and 3 until convergence.

As a next step, we propose to study the efficiency of the backfitting algo-

rithm and compare it to the convenient mixed model fitting. Moreover, we

use the AIC of the full log-likelihood as the criterion for our smoothing pa-

rameter in Chapter 5. AIC is justified from a model prediction perspective.

It is designed to choose the model with the lowest predictive log-likelihood

and is related to cross-validation and Mallows Cp. In the context of smooth-

ing, AIC has been used mostly for selecting the smoothing parameter (see

chapter 3). However, for complex semiparametric models, model selection is

still in its infancy. The backfitting algorithm also inspires us to study the

marginal AIC of the model as the criterion for the smoothing parameter.
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6.4 Extensions of Measurement Error Prob-

lems

In Chapter 5 we successfully developed new fast non-Fourier estimators for

the densities and regression functions in measurement error models. There

are many interesting and challenging problems open to our research.

Variance Reduction Estimators

It is observed that F̂−(x) has smaller variance in the left tail of F while

F̂ +(x) has small variance in the right tail. Sun et al. (2002) consider a form

of combined estimator of F ,

F̂ ∗(x) = [1 − p(x)]F̂−(x) + p(x)F̂+(x)

where p is a distribution function. Two typical choices of p are an ad hoc

choice ex/(1 + ex) and one that minimizes the variance of F̂ ∗(x). This es-

timator is asymptotically unbiased and normally distributed. It has better

performance in practice than F̂−(x) and F̂+(x).

The simulation of Chapter 5 suggests that our 3U deconvolving estimators

and non-Fourier kernel estimators did not perform well in the tails. We

propose to study the combined estimators following the same idea above with

the expectation of better performance. Since our 3U deconvolving estimators

are inspired from the principle of random number generation, we will be able

to develop error-corrected estimators for any arbitrary distribution.

Nonparametric Estimation of ARAM and GARCH-processes

GARCH, generalized autoregressive conditional heteroscedasticity process (Boller-

slev, 1986; Engle, 1982), is a popular stochastic process which has been used

fairly successfully in modeling time series in finance. As a basis for analyzing
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the risk of financial investments the GARCH model has been frequently used

to modeling asset price volatility over time.

GARCH processes are closely related to autoregressive moving average

(ARMA) processes. If we square a GARCH(1,1) process then we get an

ARMA(1,1) process. Therefore, as an intermediate step towards GARCH

processes, we study the nonparametric estimation for ARMA models, which

is closely related to the regression with errors-in-variables we studied in Chap-

ter 5. A linear ARMA(1,1) model with mean w is given by

Xt+1 = w + aXt + bεt + εt+1 (6.8)

where εt is zero-mean white noise. So, the nonparametric generalization of

this model is,

Xt+1 = f(Xt, εt) + εt+1 (6.9)

for some unknown function f(x, u) which is monotone in the second argu-

ment u. If f does not depend on the second argument, (6.9) reduces to a

nonparametric autoregression of order 1:

Xt+1 = f(Xt) + et+1. (6.10)

The autoregression function f(x) under this model (6.10) can be estimated

by common kernel estimates or local polynomials (Fan and Yao, 2003). How-

ever, in the general case of (6.9) we have the problem of estimating a function

of “unobservable” variables. As f depends also on the observable time series

Xt, the basic idea of constructing a nonparametric estimate of f(x, u) is to

combine a common kernel smoothing in the first variable x with a decon-

volution smoothing in the second variable u. We plan to study the further

properties of nonparametric SWAP estimators of ARMA and GARCH pro-

cesses under this general setting.
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PLM and GPLM with Measurement Errors

Recall that in Chapter 5 we studied a semiparametric model for the spatial-

temporal data,

Y = Xβ + Z(s) + ε

where Z(s) is a random field. This model has a strong relationship with

a partial linear model (PLM) (Engle et al., 1986; Speckman, 1988) which

consists of two additive components, a linear and a nonparametric part.

Y = Xβ + g(T) + ε, (6.11)

where β = (β1, · · · , βp)
T is a finite dimensional parameter and g(·) is any type

of smooth function. Here we assume a decomposition of the explanatory vari-

ables into two vectors, X and T. There is a straightforward generalization of

this model to the case with a known link function L(·). This semiparametric

extension of the generalized linear model (GLM)

E(Y |X,T) = L(Xβ + g(T)) (6.12)

is denoted as a generalized partial linear model (GPLM) (Härdle et al., 1998;

Severini and Staniswalis, 1994).

PLM and GPLM have received a considerable amount of research in the

past two decades. One reason is that it is much more flexible than the

standard linear model since it combines both parametric and nonparametric

components. Another reason is that it allows easier interpretation of the

effect of each variable compared to a completely nonparametric regression.

The typical estimate of model (6.11) is based on the profile likelihood.

Consider a simple case of the smoothing part where T is one-dimensional.

Then a kernel estimate of g is

gj(Tj) =

∑n
i=1Kh(Ti − Tj)(Yi −XT

i β)∑n
i=1Kh(Ti − Tj)

. (6.13)
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If we define a smoother matrix S by its elements

Sij =
Kh(Ti − Tj)∑n
i=1Kh(Ti − Tj)

,

then (6.13) has a matrix form

g = S(Y − Xβ).

The Speckman estimators (Speckman, 1988) of PLM are

β̂ = (X̃T X̃)−1X̃T Ỹ,

ĝ = S(Y − Xβ̂),

where X̃ = (I − S)X and Ỹ = (I− S)Y.

It is of interest to study PLM and GPLM with error-in-variables. More

specifically, we are interested in models when the nonlinear variable is mea-

sured in error, i.e. when T is one-dimensional

E(Y |X, T ) = Xβ + g(T )

Z = T + U (6.14)

where U is a measurement error.

The model we studied in Section 2 of Chapter 5 is just a special case of

the model 6.14, where β = 0 and T is observed with uniform measurement

error U ∼ U(−θ, θ). Let us denote

m∗
ni(t) =

K̃h(t− Zi)∑n
i=1 K̃h(t− Zi)

,

where K̃h(t) = K̃(t/h)/h and K̃ is defined by (5.25).

The error-corrected estimators of PLM with nonlinear variable-in-error

are

β̂∗ = (X̃∗T X̃∗)−1X̃∗T Ỹ

ĝ∗(t) =
n∑

j=1

m∗
nj(t)(Yi − X̃∗

i β̂) (6.15)
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where Ỹ = (Ỹ1, · · · , Ỹn)T with

Ỹi = Yi −
n∑

j=1

m∗
nj(Zi)Yj,

and X̃ = (X̃1, · · · , X̃n)T with

X̃i = Xi −
n∑

j=1

m∗
nj(Zi)Xj.

We intend to study the asymptotics of the estimators 6.15. Moreover, the

backfitting algorithm we proposed in Section 6.3 will also be examined in

this case.



Appendix

A.1 Consistency of Midline Regression

Consider the case of simple linear regression of the midline defined in section

2.3.1,

Yi = β0 + β1zi + ǫi,

where the horizontal axis zi = 1, 2, · · · , n and the ǫi are independent with

mean 0 and variance σ2. If we define

ωi =
zi − z̄∑n

j=1(zj − z̄)2
and vi =

1

n
− z̄ωi,

then the least square estimators of β0 and β1 are:

β̂0n =
n∑

i=1

viYi and β̂1n =
n∑

i=1

ωiYi

respectively. Since EYi = β0 + β1zi, we have

Eβ̂0n = β0 + β1z̄ − β0z̄

n∑

i=1

ωi − β1z̄

n∑

i=1

ωizi

and

Eβ̂1n = β0ω̄ − β1

n∑

i=1

ωizi.

150
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Note that
∑n

i=1 ωi = 0 and
∑n

i=1 ωizi = 1. Therefore, Eβ̂0n = β0 and

Eβ̂1n = β1 which is to say that β̂on and β̂1n are unbiased. A sufficient

condition for the consistency of Eβ̂0n and Eβ̂1n is that their variance tends

to zero as n→ ∞. Since VarYi = σ2, we have

Varβ̂0n = σ2
∞∑

i=1

v2
i and Varβ̂1n = σ2

∞∑

i=1

ω2
i .

with
∑n

i=1 ω
2
i = {∑n

i=1(zi − z̄)2}−1
. These expressions simplify to

Varβ̂0n =
σ2

n
+

σ2z̄2

∑n
j=1(zj − z̄)2

,

and

Varβ̂1n =
σ2

∑n
j=1(zj − z̄)2

.

Therefore, β̂0n and β̂1n are consistent because

z̄2

∑n
j=1(zj − z̄)2

=
(n + 1)2/4

n(n + 1)(2n+ 1)/6 − (n + 1)2/4
−→ 0

and
1∑n

j=1(zj − z̄)2
=

1

n(n + 1)(2n+ 1)/6 − (n+ 1)2/4
−→ 0.

Here we use the fact zi = 1, · · · , n.

A.2 Explicit Formulae for Bivariate Local Es-

timators

In the image application we are interested in a two-dimensional smoothing

problem. The explicit formulae of bivariate local estimators are useful in

order to reduce the computational loading. Following the notation of Section

3.2, the local regression model with a bivariate covariate becomes

Yi = m(X1i, X2i) + ǫi,
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wherem(·, ·) is unknown. A suitably smooth functionm can be approximated

in a neighborhood of a point x = (x1, x2) by a bivariate local polynomial.

A local linear approximation is

m(x1, x2) ≈ b0 + b1(x1 −X1) + b2(x2 −X2).

A local quadratic approximation is

m(x1, x2) ≈b0 + b1(x1 −X1) + b2(x2 −X2)

+
b3
2

(x1 −X1)
2 +

b4
2

(x2 −X2)
2 + b5(x1 −X1)(x2 −X2).

The local coefficients are estimated by solving the weighted least squares

problems (3.4) and (3.4). Here m(x1, x2) is the first component of the local

coefficient, b̂0.

In order to derive explicit formulae for bivariate local linear estimators,

consider the sums

Spq =

n∑

i=1

KH(Xi − x)(X1i − x1)
p(X2i − x2)

q

Zpq =
n∑

i=1

KH(Xi − x)(X1i − x1)
p(X2i − x2)

qYi

where p, q = 0, 1, 2, · · · . Then for the local linear estimate we can write

m̂H(x1, x2) =
[

1 0 0
]


S00 S10 S01

S10 S20 S11

S01 S11 S02



−1 

Z00

Z10

Z01


 (A.1)

We are able to fit the explicit formula for the estimated regression function

on one line,

m̂H(x1, x2) =
(S20S02 − S2

11)T00 + (S10S11 − S01S20)T01 + (S01S11 − S02S10)T10

2S01S10S11 − S02S2
10 − S00S2

11 − S2
01S20 + S00S02S20

(A.2)
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Then by (3.11) the CV bandwidth selector function for the bivariate local

linear estimator is,

CV(H) =
1

n

n∑

i=1

{Yi − m̂H(Xi)}2w(Xi)·

{
1 − (S20S02 − S2

11)KH(0)

S00(S20S02 − S2
11) + S10(S01S11 − S10S02) + S01(S10S11 − S01S20)

}−2

(A.3)

For the local quadratic estimate we can write

m̂H(x1, x2) =
[

1 0 0 0 0 0
]




S00 S10 S01 S20 S02 S11

S10 S20 S11 S30 S12 S21

S01 S11 S02 S21 S03 S12

S20 S30 S21 S40 S22 S31

S02 S12 S03 S22 S04 S13

S11 S21 S12 S31 S13 S22




−1 


Z00

Z10

Z01

Z20

Z02

Z11




(A.4)

Formulae (A.2), (A.3) and (A.4) are very useful in terms of reducing the

numerical burden.

A.3 Gaussian Random Fields

Gaussian random fields have been applied in a large number of fields to a

diverse range of ends, and very many deep theoretical analyses of various

properties are available. Adler (1981) gives a good introduction to the area.

For modeling spatial data we refer to the monograph by Cressie (1993). Here

we give a few basic definitions related to our semiparametric model.

Definition A.3.1 (Gaussian random field). {Z(s) : s ∈ D} is a Gaussian

random field with mean function µ(s), s ∈ D and covariance function C(h)

if for every finite collection of sites,

s1, s2 · · · , sn
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the vector

Z =




Z(s1)
Z(s2)

...
Z(sn)




is multivariate normally distributed (i.e. Z ∼ N(µ,Σ)) with mean vector

µ = E(Z) =




µ(s1)
µ(s2)

...
µ(sn)




and variance-covariance matrix

Σ = var(Z) =




σ2 C(s1 − s2) · · · C(s1 − sn)
C(s2 − s1) σ2 · · · C(s2 − sn)

...
...

. . .
...

C(sn − s1) C(sn − s2) · · · σ2


 .

Consider a random field {Z(s) = µ + ε(s): s ∈ D}, where µ is the

population mean, the error function ε(s) is a zero-mean random function of

the spatial location s. Next we define a stationary Gaussian random field.

Definition A.3.2 (Second-order stationary). The random field {Z(s) : s ∈
D} is second-order stationary if assumptions (1) ∼ (3) are satisfied.

Assumption 1. The errors have mean zero, i.e., E{ε(s)} = 0, s ∈ D. Then

E{Z(s)} = µ, s ∈ D.

Assumption 2. Homoscedasticity, i.e., var{ε(s)} = σ2, s ∈ D, does not

depend on spatial locations s ∈ D. Then var{Z(s)} = σ2, s ∈ D.

Assumption 3. The covariance function

C(s− u) = cov{ε(s), ε(u)}; s,u ∈ D
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only depends on the difference in locations (distance and direction) of the

pair of sites s,u ∈ D. Then

C(s− u) = cov{Z(s), Z(u)}; s,u ∈ D.

Definition A.3.3 (Isotropic). The random field {Z(s) : s ∈ D} is isotropic

if assumption (4) is satisfied.

Assumption 4. The covariance function

C(‖s− u‖) = cov{ε(s), ε(u)}; s,u ∈ D

depends on the distance ‖s− u‖ between the sites s,u ∈ D.
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