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DISPERSIONS AND DISCONTINUITIES INCLUDING ANISTROPIC SUBSTRATES

Abstract
by
CHUNGJEN HSU

This dissertation contains three main topics. The first one is the
development of the dynamic source reversal method, based on potential
theory with the help of the Tangent method, to characterize microstrip
discontinuities. Detailed analysis of microstrip open-end and symmetrical and
asymmetrical gap discontinuities, with anisotropic substrates, is carried out.

The second one is to develop an efficient and accurate method to solve
coplanar waveguide dispersion. The method uses the conformal mapping
technique to derive the general expressions, as seen for the first time in the
literature, for the sources on the central strip and ground planes of coplanar
waveguide. These expressions are also proved to be very useful and precise
to treat microstrip propagation characteristics.

The third topic is to extend the dynamic source reversal method to
characterize coplanar waveguide discontinuities with the help of the known
propagation characteristics for no discontinuity obtained in the second topic.
Detailed calculations for CPW open end discontinuities are accomplished in
the transform domain.

All the problems studied for these three topics include anisotropic
substrates. The results for the three topics show very good accuracy and
excellent efficiency. Some comparisons with the results obtained by other

methods proposed by authors are included.
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CHAPTER 1:
MICROSTRIP DISCONTINUITIES & COPLANAR WAVEGUIDE
DISPERSIONS AND DISCONTINUITIES



Chapter 1
Microstrip discontinuities & coplanar waveguide
dispersions and discontinuities

In this chapter, we review some of the analytical methods proposed by
other authors for characterizing microstrip discontinuities. These include both
quasi-static analysis and full-wave analysis. Experimental techniques for
some microstrip discontinuities, such as resonator measurements, are
mentioned. In order to more efficiently and precisely characterize microstrip
discontinuities we study the dynamic source reversal technique, based on
potential theory. Also we examine some of the methods used to treat coplanar
waveguide propagation characteristics. This is followed by a few discussions
of reported work on coplanar waveguide discontinuities along with
experimental work. The last part of the chapter gives a short summary of the
research carried out in this dissertation that develops the dynamic source
reversal technique for some microstrip discontinuities, including anisotropic
substrates, and applies the technique tc coplanar waveguide discontinuities
with the help of the method we develop to solve coplanar waveguide

dispersion characteristics.

1.1 Introduction

Microstrip and coplanar waveguide discontinuities are respectively the
basic constituent elements of microwave integrated circuits and monolithic
microwave integrated circuits. In the design of microwave circuits and
systems, it is preferable to represent the effects of the discontinuities in the
microstrip and coplanar waveguide interconnections by equivalent lumped
element networks since designers can then simulate the design in the software

program with time-saving steps. Obviously, if the elements of the equivalent



circuit for a discontinuity can be expressed in terms of the microstrip width-
to-height ratio or the coplanar waveguide width- and width-plus-slot-to-height
ratio and the dielectric constant of the substrate, a designer needn't be
involved in the electromagnetic boundary value problem and can determine
the associated element values for the discontinuity and include its effects in
the design with ease.

In early investigations, the techniques used to characterize microstrip
discontinuities were based on quasi-static analyses which considered wave
propagation on the line to be pure TEM and assumed only a perturbed charge
distribution on the conductor near a discontinuity. The techniques yielded
good results for frequencies only up to 1-2 GHz and gave poor outcomes for
the higher frequencies.

To overcome this limitation many researchers developed sophisticated
full-wave analyses which gave better results for characterizing microstrip
discontinuities at high frequencies. Because of the increased complexity, the
numerical calculation was much more demanding and required greater
computer power for the efficient finding of the equivalent circuit parameters.
’fherefore, the usefuiness of many of these techniques in microwave design is
limited.

Collin and Toncich developed a new approach called the dynamic
source reversal method for characterizing microstrip discontinuities with
isotropic substrates, based on potential theory {1]. It was an extension of the
line sources with charge reversal method presented by Silvester and Benedek
[2]. The major features of it are that an accurate representation of the sources
on the strips can be specified in terms of the dominant mode fields, only the
perturbed current and charge near the discontinuity appear as the unknown

quantities, and all three equivalent circuit parameters of a lossless two-port



Junction for a gap discontinuity can be found by using a single matrix
inversion. Some of the earlier methods developed to treat microstrip
discontinuities require three matrix inversions to be carried out, in turn
demanding more computational time.

A coplanar waveguide, consisting of a conductor centered between two
ground planes with all on the same plane surface, permits easy shunt
connection of external elements in hybrid and monolithic integrated circuits.
Because of many advantages over microstrip, coplanar waveguides are
popularly used as passive elements in microwave design. Hence, it naturally
attracted many researchers to investigate the dispersion characteristics and
discontinuities in coplanar waveguides.

Most investigations of coplanar waveguide propagation characteristics
dealt with structures without any enclosure whereas in practice a shielding
enclosure is normally used. Moreover, no accurate analytic expressions, at
least in the mathematical sense, for the sources on the centra! strip and ground
planes were found.

Although the parasitic effects which occur when the coplanar lines are
conductor-backed and/or shielded have been discussed and evaluated from a
quantitative point of view, the simple analytical formulas obtained for the
coplanar waveguide propagation parameters with quasi-static analysis are still
questionable for higher frequencies.

The full-wave numerical methods utilized to solve coplanar waveguide
ciiscontinuity problems are formulated in the spatial domain, the spectral
domain, or the time domain. Although these techniques are rigorous and

produce some good results, they require long computational time and often

large memories in the computer.



In this dissertation, we develop the powerful dynamic source reversal
method to solve microstrip discontinuity problems including anisotropic
substrates, derive the general expressions for the sources to accurately treat
coplanar waveguide dispersion characteristics, and apply the method to

coplanar waveguide discontinuities with the help of the obtained propagation
parameters.



1.2 Literature review of microstrip discontinuities

As the complexity and operating frequency range of microwave circuits
and systems increase, microstrip technology offers the designers the features
of small size, weight reduction, ease of component interconnection, and
realization of integrated passive circuits which other forms of the
waveguiding systems cannot provide.

Microstrip discontinuity effects at open ends, gaps, steps, bends,
Jjunctions, and crossings must be included when synthesizing the matching
networks in microwave circuit design. If the dimensions of discontinuities are
smaller than the wavelength of the propagating wave, their effects appear and
may be characterized by lumped equivalent circuits whose element values are
frequency-dependent. To improve the design, an accurate knowledge of the
discontinuity equivalent circuits along with their frequency dependence
becomes a necessity.

A microstrip line consists of a strip conductor over a ground plane
separated by a dielectric slab which also provides the structural support for
the line. Since the field lines between the conductor and the ground plane are
not entirely confined within the dielectric material, a pure TEM wave can not
propagate along the line. Instead, a quasi-TEM mode with longitudinal field
components may travel on the stripline. Fig. 1.1 shows the typical microstrip
geometry.

A discontinuity in microstrip is caused by abrunt change in the
geometry of the strip conductors. Therefore, electric and magnetic fields are
modified near the discontinuity. The change in electric field distribution gives
rise to an equivalent capacitance and that in the magnetic field results in an
equivalent inductance. However, most of the microstrip discontinuities are

predominantly capacitive over the operating frequency range of interest and



inductive effects are normally high frequency corrections to the capacitive
effects.

Some often encountered microsrtip discontinuities are shown in Fig.
1.2. In general, most techniques used theoretically to analyze microstrip
discontinuities fall into two categories ; namely, quasi-static and full-wave
analyses.

The quasi-static method which is a low frequency technique assumes
the wave propagating on the line to be a pure TEM wave which can be
characterized by the charge distribution on the conducting strip. The quasi-
static methods have been used to find static capacitances and inductances and
the element values of the equivalent circuits.

The full-wave method is a more rigorous approach to the analysis of
discontinuities than the quasi-static method since it retains all the field
components and solves Maxwell's equations. Therefore, it leads to a more
complete characterization of microstrip discontinuities at higher frequencies.

Several representative techniques for each analysis method is briefly
discussed in the next few sections, with an accompanying examination of

their limitations in microwave applications.



substrate

ground plane

€, - effective dielectric constant of substrate

u .- effective permeability of substrate
h - substrate thickness

w - strip width
Fig. 1.1 Typical microstrip geometry



(a) Open end

(b) Gap

(c) Step

(d) T junction

(e) Cross over junction

Fig. 1.2 Some discontinuities in microstrip line



1.3 Quasi-static analysis for microstrip discontinuities

Static capacitances associated with the discontinuity are able to be
determined by finding the excess charge distribution near the discontinuity.
Several techniques commonly used are :

(1)Moments method in the spatial domain [3].
(2)Variational expression [4].

(3)Galerkin's method in the spectral domain [5].
(4)Line charge reversal method [2], [6], [7].

Calculation of the static inductances for microstrip discontinuities can
be treated by determining the excess current density in the vicinity of the
discontinuity.

(5)Evaluating inductances by Galerkin's method in the spatial domain [8].

In [3], the potential at a point 1(x,y,z) due to a charge distribution

o(r') is given by the integral

&(r) = [ o(r")G(r,r )dr (1.1)
where G(r,r') is the Green's function which is the solution of Poison's
equation for a point charge source. The solution must satisfy the appropriate
boundary conditions and leads to an integral equation for the unknown charge
distribution.

If the conductor is assumed to be infinitely thin and located at a height
h above the ground plane, the volume integral becomes a surface integral.
Once a suitable expression for the Green's function is found, the integral
equation may be formulated and solved for the unknown charge distribution.
This is done by converting it to a matrix equation and inverting the matrix

equation numerically {3].



In this method, the charge density could be assumed to be constant
over every subsection of the strip conductor. The matrix equation associated

with Eq.(1.1) can be written as

[V]=[D]s] (1.2)
Because the conductor may be assumed to be at a known potential, such as
1.0 volt , Eq.(1.2) may be inverted to determine the unknown [o] in terms of
[D]. Then, the capacitance C can be found by summing over all the ;. This
technique was used to calculate the excess capacitances of open ends, gaps,
and steps.

Since the equivalent capacitance of a discontinuity is due to the excess
charge in the vicinity of the discontinuity, the TEM mode capacitance must be
subtracted from the computed capacitance. This results in the subtraction of
two nearly equal numbers which can yield significant errors. Another
limitation of this method is the slow convergence of the Green's function
series. As a result, large computer time is required to achieve good outcomes
in the calculation. Also, as shown by Silvester and Benedek [9], and recently
by Kobayashi [10], the source distribution on the conductor strip above a
ground plane is not uniform as shown in Fig.1.3. In view of the singular
behavior at the edges, smaller and smaller subsections at these areas are
needed, thus increasing the computational time.

Relatively little numerical data has been presented in useful form for
microwave design. Since this method is limited in accuracy, it has not been
extensively used.

In [4], the technique relies on the fact that the capacitance can be

calculated by a variational expression



1 J J o(r)G(r,r")o(r')dV'dV
o . (1.3)
[[o(r)dv]

where G(r,r') is the three dimensional Green's function. Since it is stationary

with respect to arbitrary first order variation in the charge distribution on the
strip, the exact nature of the distribution needn't be known in this technique.
But a suitable choice of the charge distribution as a trial function is necessary
to obtain the capacitance by minimizing the variational integral.

In a symmetric gap problem solved by this method, the three
dimensional Green's functions for electric wall and magnetic wall cases must
be determined first. These walls can be placed successively along the plane
located midway between the gap. The calculated capacitances are related to

the capacitances of the pi equivalent network through

C; = %(Ce -Ca) (1.4a)

C,=C, (1.4b)
where C, is the fringing capacitance, C, is the coupling capacitance, C, is
the excess capacitance at the gap with a bisecting magnetic wall, and C, is
the excess capacitance with a electric wall. An open end discontinuity is then
characterized by allowing the spacing between the gap to go to infinity. The
major disadvantages of this technique are that the two Green's functions are
slowly convergent series and the expression for the charge density must be
suitably chosen ; otherwise, it affects the numerical accuracy.

In [5] which formulates the problem in the spectral domain, the
potential at the interface between the conducting strip and the dielectric can
be expressed as the product of the two dimensional Green's function at the
interface and the charge density on the conducting strip. The equation can be



formed by solving Poison's equation along with the appropriate boundary
conditions in the Fourier transform domain. Expanding the charge distribution
by suitable basis functions and applying Galerkin's method, the unknown
coefficients associated with the basis functions can be found in the spectral
domain. From these coefficients, we can determine the total capacitance for
the discontinuous strip. Then, the fringing capacitance at the open-ends can
be found by the subtraction of two nearly equal capacitances. Also, this
technique can be utilized to calculate the edge capacitances for the gaps.

The major advantage of this technique is that the Green's function has a
closed form in the spectral domain. But, the procedure developed in this
method is numerically time consuming and involves the subtraction of two
nearly equal numbers. Moreover, the accuracy is dependent on the choice of
basis functions used to expand the charge distribution.

It should be mentioned that Galerkin's method is a general technique
applied to any linear operator equation and is not limited to the spectral
domain. When used in the spatial domain, it is a special case of the method of
moments.

In [6], the basic element common to all discontinuity analysis by the
charge reversal method is a semi-infinite line charge. In this analysis, the
residual potential near the discontinuity determines the excess charge which
in turn is responsible for the capacitances of the equivalent circuit. In reality,
the semi-infinite line charge can be considered as a superposition of two
infinite lines having reversed charges, with respect to each other, on the
extension intervals to form the infinite lines. The Green's functions for the
even and odd charge distributions on the infinite lines are determined. Based
on them, the residual potential in the vicinity of the discontinuity may be



found and used to find the excess charge from which the capacitances can be
calculated.

To economize on the computational time, this technique took into
consideration the essential charge edge singularities on the strip conductor
when expansion functions were used to represent the charge distribution. This
method was used to compute the excess capacitances existing in open ends,
gaps, steps, bends, junctions, and crossings. Its major feature is that this
technique avoids the use of the subtraction of two nearly equal numbers for
the capacitances [6], [7].

In [8], the integro-differential skin effect equation relating the vector
potential and the current density to the gradient of the scalar potential was
used along with the excess current technique, which is similar to the charge
reversal method proposed by Silvester and Benedeck, to find the quasi-static
inductance of a discontinuity. By applying Galerkin's method in the spatial
domain, we can calculate the excess currents in each region due to the
perturbation from the uniform field condition. Therefore, the increase in
inductance, associated with the discontinuity, can be found through the excess
current.

However, in the absence of any rigorous time-dependent solution, the
associated results for steps, bends, T junctions were estimated to be valid up
to 5 GHz. In addition, the quasi-static inductance calculation described above
vli/as based on a separate inductance calculation which doesn't include the
capacitive effects. Thus, it is an open question if the results obtained are
physically meaningful.



J;(x)

Q(x)
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Fig. 1.3 Longitudinal and transverse current distribution on a

microstrip line

Fig. 1.4 Planar waveguide model



1.4 Experimental technique for microstrip discontinuities

In the papers reviewed above only theoretical results for the quasi-
static capacitances and inductances of equivalent circuits for -microstrip
discontinuities have been given. However, useful data on single microstrip
discontinuities need to be of high accuracy, so it was important to carry out
measurements of the specific discontinuity. Therefore, some authors [11]
developed experimental methods of determining microstrip discontinuity
parameters which enabled a check on the validity of theoretical data and
provided data where the theory was not yet fruitful.

Measurement procedures were devised to employ microstrip resonant
configurations incorporating the discontinuity to be characterized. This
approach has the advantage that only light coupling to the microstrip circuit is
required to determine the resonant frequency, and errors attributable to the
coaxial-to-microstrip transition by conventional measurement techniques can
thus be much reduced. The technique was used to characterize several types
of discontinuities such as right angle bends, T-junctions, and cross-over
junctions. Although the measured data seem to agree with some of the quasi-
static theoretical results, this experimental approach is limited in its
repeatability and by the experimenters' laboratory experience. Also, the
fabrication of test circuits used for measurements can vary in quality and thus
yield non-repeatable data.

An accurate method for the measurements on microstrip open ends,
which is an extension of the resonator technique, was presented by C. Gupta
et. al. , [12]. In this technique, an electrically centered gap identical to a feed-
line gap width was etched into the straight resonator. Since the original
straight resonator had been laid down for the measurements and was

subsequently etched to the other resonmator configurations for further



measurements, the effects of the variations in the dielectric height, strip
width, and relative dielectric constant was reduced. However, some of the
drawbacks mentioned above along with etching precision problems still exist.

Although the quasi-static techniques were utilized extensively to
characterize microstrip discontinuities, the microstrip, as pointed out in the
literature, can not support a pure TEM mode. Therefore, the results for the
microstrip discontinuities are only valid up to a few gigahertz when the quasi-
static analysis is used. Moreover, the measuring techniques for the microstrip
discontinuities have their special limitations ; for example, no capability to
supply the bountiful results of interest and no assurance of the accuracy for
the measured data. This led many researchers to develop other useful analytic
methods. Since the hybrid modes present in the microstrip can not be
described by the quasi-static method, one has to introduce the time varying
electric and magnetic fields and solve the wave equation. Moreover, the
charge density used in the electrostatic analyses becomes time varying and so

we must include the current density for full-wave analysis.



1.5 Full-wave analysis for microstrip discontinuities

By full-wave analysis, we mean the process of rigorously solving the
electro-magnetic boundary value problems by retaining all field components.

Many main techniques which were used to carry out the full-wave
characterization of microstrip discontinuities are
(1)Fourier transform domain method [13].

(2)Planar waveguide model [14], [15].
(3)Cavity method [16], [17], [19], [20].
(4)Time domain finite difference method [21].
(5)Other methods [22], [23], [24].

In [13], Itoh used Galerkin's method in the spectral domain to calculate
the excess capacitance of open ends, and gaps by analyzing a resonator
enclosed in conducting walls with a cover plate. The fields in the resonator
are assumed to be a superposition of TE and TM modes and are transformed
into the Fourier transform domain. Along with the required boundary
conditions, the wave equations are solved in the spectral domain. The feature
of this method is that solutions are extracted from algebraic equations rather
than from coupled integral equations of the convolution type. This simplifies
the numerical calculation. By the application of Galerkin's method, the
charactenstic equation with unknown coefficients for the current density in
the spectral domain can be obtained. Seeking the wave number of the
resonator ; i.e. , the root of the resulting characteristic equation, one can set
the determinant of the coefficient matrix equal to zero. Based on it, the
effective increased length /for a microstrip resonator and herewith the
discontinuity capacitance can be obtained.

The results track well with those found by quasi-static approaches ;

b

however, the / computed by this method is smaller. Since very few



expansion functions were used for the current, it seems likely that this was the
cause of the discrepancy. Accuracy and computational time are inversely
related to the number of basis functions used and also depend on the choice
of the functions.

In [14], the planar waveguide model for microstrip represents an
intermediate stage of complexity between transmission line and waveguide
models. In the planar waveguide approach, the microstrip line was modeled
as an equivalent dielectric-filled waveguide with magnetic side walls, with an
effective width and dielectric constant as shown in Fig.1.4. The effective
dielectric constant of the filling and width of the guide are assumed to be
frequency dependent and determined in such a way that the waveguide model
and the actual microstrip line have the same propagation constant and
characteristic impedance.

In this model, the fundamental TEM mode was assumed to propagate
in the waveguide and higher order waveguide modes may be generated near
microstrip discontinuities. The discontinuities may be characterized by
matching the modes on both sides of the discontinuity for the electric and
magnetic fields. From the matching coefficients, the scattering parameters can
be obtained for the discontinuity. This mode-matching method is particularly
suited for the characterization of symmetric discontinuities such as steps and
T-junctions.

However, this model is not correct and doesn't give accurate results for
the phase angles of the scattering matrix elements. This results from those
realities that it didn't take into account the radiation effects and surface wave
generation, and that the actual modes which are excited in microstrip

discontinuities are not the same as those used in the model.



Jansen et. al. , [16], [17] employed a three dimensional spectral domain
resonator approach to treat the asymmetrical series gap and step
discontinuities. The resonance condition is formulated in terms of strip
lengths for a fixed given operating frequency. This approach is a rigorous
hybrid-mode method, in conjunction with the use of a modification of the
Tangent method [18], originally developed as an experimental technique to
characterize the discontinuities by the equivalent circuits containing three
parameters. The complex wave amplitudes on the stubs can be derived for
each of the experiments and these amplitudes may be used to determine the
scattering parameters. However, in this technique, the scattering matrix of a
strip discontinuity is derived from resonance experiments which are not
performed in reality but are simulated on a computer. Since this approach
éoesn’t include radiation effects, it can't be applied for the systems where the
radiation loss mechanism is appreciable.

Katehi et. al. , [19] started with Pocklington's integral equation which
expresses the radiated electric field in terms of the unknown current
distribution on the transmission-line sections for the discontinuities. By
applying Galerkin's method and using proper impressed source mechanism,
the unknown coefficients for the current were found. This technique was used
to characterize open ends, gaps, and coupled resonators by lumped
parameters of the equivalent circuits, for the various discontinuities, which
éan be derived by determining the equivalent guide wavelength and the
characteristic impedance of the line. This model accounts for the surface-
wave effects, strip finite thickness, and radiation losses.

In [20], Dunleavy and Katehi used the reciprocity theorem to obtain the
integral equation which relates the fields caused by a test current to a frill

current and the excited conduction current on the strip inside a cavity. The



longitudinal conduction current is expanded into overlapping sinusoidal basis
functions, along with the built-in edge condition for the transverse variation of
the current. By choosing the proper expression for the frll current and
applying the method of moments to deal with the integral equation, the
current distribution was found through the matrix inversion. In the paper, they
worked a lot to discuss the convergences of impedance matrix, the excitation
vector elements, and network parameters for an open-end discontinuity to
prove the numerical accuracy of the technique.

In the above mentioned investigations, the full-wave analyses were
done in the frequency domain ; that is, the data for the whole frequency range
are calculated one frequency at a time. This led Zhang and Mei to seek an
alternative way of calculating the data for a wide range of frequencies [21].

Since a pulse response contains all the information of a system for the
whole frequency range, it is a natural approach to use a pulse in the time
domain to excite a microstrip structure. From the time domain pulse response
one can extract the frequency-domain characteristics of the system via the
Fourier transform. This method directly solved Maxwell's equations using the
finite difference approach in the time domain with the initial conditions
specified for the electric and magnetic fields, along with the boundary
conditions and Sommerfeld's radiation condition.

In the algorithm, the placement of the electric and magnetic field nodes
are spaced by half a space step. Also, the time instants at which the electric or
magnetic fields are calculated are spaced by half a time step. The excitation
pulse used at the front surface in this investigation was chosen to be Gaussian
in shape.

In order not to accumulate the numerical error generated in one step of

the calculation, the stability criterion called the Courant condition must be



obeyed. From the scattering parameters defined in terms of the associated
voltages transformed in the spectral domain, we can extract the element
values of the equivalent circuits for the discontinuities. This method was used
to calculate the scattering parameter data for open ends, gaps, steps, and T-
junctions. However, except for the open ends, only the magnitudes for the
scattering parameters were shown.

The major disadvantage of this technique is that the Fourier transform
of the time domain results is very sensitive to numerical error. The absorbing
boundary conditions used to truncate the numerical components must be
accurately treated ; otherwise, even though the time domain results are
reasonably accurate, the frequency domain outcomes obtained from their
Fourier transforms may not be acceptable as useful data.

Uzunoglu et. al. {22] employed a mode matching technique to analyze
the frequency-dependent characteristics of a step discontinuity in width
enclosed in a waveguide structure. The fields on both sides of the
discontinuity are expanded in terms of the hybrid modes. By applying the
boundary condition that the continuity of the transversal field components
must be met at the location of the step, these modes are matched to find the
unknown coefficients associated with the hybrid modes by which scattering
parameters are determined for the step.

Jackson and Pozar [23] formulated the integral equations for open-end
and gap discontinuities in terms of the grounded dielectric slab and four
different types of expansion modes for the electric surface current density,
including the piecewise sinusoidal modes to model the nonuniform current
near the discontinuities. Obviously, the accuracy of this method relies on the
number of unknown coefficients associated with piecewise modes used to

represent the excess current. It is questionable that they used a sufficient



number of expansion functions to obtain accurate characterizations of the
discontinuities. However, with the formulation, surface wave excitation and
space wave radiation can be included to determine the amount of radiation
from the open end.

In [24)], finite element expansion currents are used to formulate a full-
wave analysis of stubs, bent stubs, and steps in width, including radiation,
surface wave effect and coupling between closely spaced junctions. This
method modeled microstrip junctions on an open substrate by using rooftop
functions and sinusoidal pre-computed expansion currents for input and
output microstrip lines. This setup achieved a substantial improvement in
accuracy and numerical efficiency and measurements were presented to verify
stub calculations. The technique used has a natural limitation to the strip

dimensions that are multiples of the element size.



1.6 Dynamic source reversal method based on potential theory [1]

The technique developed in Toncich's thesis for solving microstrip
discontinuity problems is based on using the dynamic source reversal method
formulated in terms of the vector and scalar potentials.

The discontinuous microstrip structure analyzed is enclosed in a
dielectric loaded waveguide as shown in Fig.1.5. It has dimensions chosen
such that at the frequency of operation for the dominant mode, all waveguide
modes are nonpropagating. The substrate with zero-thickness strip conductor
is assumed to be lossless, non-magnetic and isotropic. No radiation loss is
accounted for since the structure is completely enclosed by the waveguide.

Inside the waveguide, let G,, G,, and G be scalar Green's functions
corresponding to the components of A . and A, the vector potentials, and
that of ¢, the scalar potential respectively. Define J ., J,, and p, as the
relative currents and the charge for a propagating dominant mode on the
ipﬁm'te microstrip line.

The potentials are then related to the dominant mode sources by

Age =lo| [ Gu(X,ZX,Z Woq(x e P dx dz (1.52)
Ay =l j_"‘; j_‘"sz(x,z;x',z)Jw(x' Ye 2 dx' dz (1.5b)
V= salfmwa(x,z;x',z’ P, (x e Pdx' dz (1.5¢)

where the prime coordinates are the source points and the unprimed
coordinates are field points.

Expressions for the Green's functions in Eq.(1.5) can be obtained by a
Fourier transform method in which they are properly chosen to ensure that the

corresponding boundary conditions are satisfied.



Precise expressions with the edge conditions built in for the dominant
propagating charge and longitudinal current on the infinite strip are given in
[1] and can readily be derived through conformal mapping techniques. There
is no dominant mode transverse current J,, assumed on the strip since its
effect is negligible for a wide range of useful geometries. For some
discontinuities like asymmetrical gap problems, this current is included as a
fading dominant term plus a perturbation term which are localized near the
discontinuity.

From Eq.1.5b and 1.5¢, an iteration technique was developed by
Kretch and Collin [25] to determine the coefficients associated with the
source expressions and to find the effective dielectric constant for a given
Wavegdde geometry without a top cover.

In this approach, g, is set equal to 1 on the strip, and A/, is
also set equal to 1 on the strip where ¢, is an absolute value for the scalar
potential, and A . is the reference value for the vector potential caused by the
relative current J . which is related to the true current by J, = (Bc/ ko) -

Applying Galerkin's method, one can reduce the above two integrals to
a system of linear equations. Then, using a trial value of § in the matrix, the
iteration is repeated , if the new value of the effective dielectric constant, €,
differs from the old value of €, by more than 1% ; otherwise, the iteration is
terminated after the condition is satisfied.

Now assume that instead of an infinite line, the line is terminated at
some point in a discontinuity. The presence of a discontinuity causes a
reflected dominant mode charge and current to appear on the line along with a
perturbation in the sources localized in the vicinity of the discontinuity. For
the gap problem, the total charge and relative current expressions on the

coupling line can be also found. We can form the equations for the vector and



scalar potentials for the discontinuity due to the total source distributions
including the perturbations on the line or lines. Actually, we can make the
dominant mode sources extend over the other semi-infinite interval to form an
infinite line, and then subtract the effects of these sources in the extension
interval, in the mathematical sense.

When the tangential components of the electric field, E, and E,, are
calculated by the potentials through E = ~joA - V¢, the contributions from
the dominant mode sources on the infinite line already satisfy the boundary
conditions so that these terms can be dropped. The terms involving integrals
from the extension interval may be considered as the source reversed terms
and produce the impressed field on the original semi-infinite line.

Since these source reversal terms are given in terms of the solved
dominant mode amplitudes of charge and current for the infinite line, they
now make up a known forcing function. This is the basis of the dynamic
source reversal technique presented in [1].

Applying the moment method, and using suitable testing functions to
enforce the boundary conditions that the tangential components of the electric
field, E, and E,, vanish on the conducting strip, one can construct a set of
linear equations. Then, by inverting the matrix, the unknown perturbed charge
and current along with the unknown input susceptance can be determined.

After finding the input susceptance, one can extract the element values
of the equivalent circuits for the discontinuities. The equivalent circuit of an
open end discontinuity is represented by an excess capacitance. It can be
computed immediately by a very simple equation. However, that of a gap is a
two port network and must be represented by a three-element equivalent
circuit, such as the capacitive pi network. For this problem, one can use the

Tangent method [18] to find the equivalent element values.



The Tangent method was developed as an experimental technique to
characterize the discontinuity by an equivalent circuit with three parameters
as shown in Fig.1.6.a. The measurement should be made at reference planes

located sufficiently far away from the discontinuity so that only dominant
modes are present on the line. A plot of the null positions ¢, as a function of

the short circuit position ¢, yields a curve as shown in Fig.1.6.b. An analysis

of the equivalent circuit gives expressions for the equivalent circuit
parameters 6, , 6, , and n:1 in terms of the curve parameters ¢, vs. ¢,.

With reference to these Figures, a bilinear relationship between
electrical null positions ¢, and ¢, may be expressed as

A +Btan(¢,) (1.6)
C+ Dtan(¢,) '

where ¢, is the location of an electric field null on the input side of the

tan(¢,) =

discontinuity with a given short circuit position ¢, on the output side. In the
dynamic source reversal method the coefficients A, B, C, and D can be
obtained from a single matrix inversion of the equations that determine the
perturbed currents and charges. A similar bilinear equation can be derived for
any lossless two-port network with A, B, C, and D being functions of the
equivalent circuit parameters that are used. A comparison of two sets of
coefficients enables the equivalent circuit parameters to be found.

The above is the dynamic source reversal technique presented in
Toncich's thesis and used to find the excess capacitances of microstrip open

ends and gaps with isotropic substrates.
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1.7 Literature review of coplanar waveguide dispersion

A coplanar waveguide (CPW) whose configuration is shown in Fig.1.7
consists of a conductor centered between two ground planes, all on the same
plane surface. This structure permits easy shunt connection of external
elements in hybrid and monolithic microwave integrated circuits (MMIC).
Coplanar Waveguides have the advantage over microstrip of not requiring
substrate vias. Also, coplanar waveguide losses can be less than those of
microstrip.

Because of the built-in elliptically polarized magnetic field which is
easily accessible in the slots at the air-dielectric interface, CPW lends itself to
non-reciprocal gyromagnetic device applications. In addition, low loss
substrates with high dielectric constant may be used to reduce the longitudinal
dimension of the integrated circuits due to the fact that the characteristic
impedance of coplanar waveguide is relatively independent of the substrate
thickness.

An early paper on coplanar waveguide propagation characteristics was
presented by Wen who used a zero-order quasi-static approximation and
conformal mapping [26]. This paper calculated some propagation and
characteristic impedance data and demonstrated that it is a natural structure to
incorporate in nomreciprocal gyromagnetic devices, such as resonator
isolators and differential phase shifters. However, his method assumed a non-
shielded configuration and the infinite ground planes and substrate thickness,
to derive simple formulas for the CPW characteristics. The dispersion
qharacteristics are, to some extent, influenced by these parameters and are a
function of frequency.

In [27], the analysis of coplanar waveguide dispersion characteristics
was developed in the spectral domain. All hybrid-field components can be



obtained from a superposition of TE and TM modes expressed in terms of
two scalar potential functions. By applying Fourier transforms to these
functions and the boundary conditions of the fields at the interfaces separating
three regions, one can form a matrix relating the current density to the electric
field components. By choosing the appropriate basis functions for the
electric-field components and applying Galerkin's method to the matrix, the
authors solved the generated set of homogeneous linear equations to find the
propagation constant by an iteration scheme. The first-order approximation,
which is the assumption that E, =0, was utilized to achieve greater
computational efficiency. Also, the even and odd mode characteristic
impedances were calculated by using the power-voltage definition for
characteristic impedance.

Although this work involved the extensive manipulation of the
equations to reduce the calculation time the simplified structure under
investigation and choice of a one-term basis function caused inaccuracy so
the results have limited accuracy.

Naldi et. al. , considered several possible configurations of coplanar
waveguide which are shielded or/and conductor-backed in their paper [28].
The influence of the finite extent of lateral ground planes on the impedance
level of the line was dealt with, also. The equations they derived by
cbnformal mapping techniques have very simple closed forms and are user
handy. However, all analytical formulas were obtained by quasi-static
analysis which produces inaccurate results at the higher frequencies where
most applications are found for coplanar waveguide.

In [29], a full-wave analysis of coplanar waveguide using the time-
domain finite-difference method was proposed. Mei et. al. , treated the open
structure coplanar waveguide so artificial boundaries must be employed to



truncate the mesh. Due to its smoothness in time and the easy adjustment of
the specific pulse width, a retarded Gaussian pulse was used as an excitation
in the time domain calculations.

After setting up the simulation area and subsequent pulse excitation,
they evaluated the field distributions produced by the given Gaussian pulse
over the whole computation region. With the field distributions in the time
domain, the frequency-domain parameters, such as the effective dielectric
constant and the complex characteristic impedance, were found by the Fourier
transform inversion of the time domain data.

In this approach, since Fourier transforms are very sensitive to errors
caused by reflected waves from the artificial boundaries, the reflection from
these walls must be minimized. Unlike the microstrip case where one may
apply exact Dirichlet or Neumann boundary conditions to the bottom plane,
the structure of the coplanar waveguide under their investigation didn't allow
any simple way to enforce these boundary conditions.

Chang et. al. {30] presented a rigorous full wave analysis of coplanar
Waveguide dispersion characteristics, based on reaction theory. It is the
combination of variational method and a modification of Wen's conformal
mapping technique to facilitate a finite solution. The mapping function
transforms the infinite original domain into finite image domain and also
overcomes the difficulty of field singularities near the conductor edge. In this
paper, particular attention is paid to the electric field distributions over the
air-dielectric interface of slots and the current distributions on the conducting
strip varying with frequency. The authors also showed that the calculated
results for characteristic impedance are different from each other with the

various definitions. However, this method needs very long computational time



and the data for characteristic impedance shows that there is something
wrong at the higher frequency range.

Kitazawa and Itoh [31] analyzed the propagation characteristics of
coplanar waveguide with lossy media. The analysis used in the paper is
founded on the hybrid-mode formulation by using both the spectral-domain
method and the perturbation method. The unknown aperture fields are
expanded in terms of the appropriate basis functions for which they proposed
two sets of expansion functions with the different edge conditions built-in.
One set is expressed by Chebyshev polynomials and the other is given by
Gegenbauer polynomials to account for the conductor loss calculated by the
perturbation scheme. This special choice of basis functions with Gegenbauer
polynomials for the thick conductor model prevents the integrals , which are
used for the calculation of the conductor losses, from becoming singular when
evaluated at the conductor edge. Numerical results show that these special
functions chosen but not derived in the mathematical sense result in
convergence rates as fast as those for the zero-thickness cases.

In [32], a scattering-type formulation of the tramsverse resonance
technique was applied to treat a variety of currently practically used (M)MIC
configurations. By introducing transverse boundary conditions in terms of
reflection coefficient matrices, the transverse resonance procedure can easily
be adapted to include open, conductor-backed, and shielded configurations
while the resonance condition itself remains unchanged. Also this method
preserves numerical stability by allowing the number of expansion terms in
different subregions to be individually selected. Although the author claimed
that the FORTRAN software code is operational on 386-type personal
computers, the CPU time required to calculate the effective dielectric



constant and characteristic impedance per Irequency sampi€ varies rom nve

to twenty minutes.
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Fig. 1.7 Coplanar waveguide geometry



1.8 Literature review of coplanar waveguide discontinuities

Since coplanar waveguide is popularly used as passive elements in the
design of monolithic microwave integrated circuits, CPW discontinuities are
often encountered. In this section, we review the following techniques to
characterize the discontinuities including quasi-static analysis and full-wave
analysis
(1)Three dimensional finite difference method [33].

(2)Mode conversion method [34].

(3)Moments method in the spatial domain [35].

(4)Mode matching method [36].

(5)An extension of the spectral domain method [37].

(6)Three dimensional time domain finite difference method [38].

Ingo Wolff et. al. , used a three dimensional finite difference approach
to treat coplanar waveguide discontinuity problems [33]. This is a quasi-static
analysis and is a modified version of the well-known finite difference method.
The planar structure containing a discontinuity and the semi-infinite
transmission lines was surrounded by the electric and magnetic shielding
walls. The two magnetic walls were defined at suitable distances away from
the discontinuity where the input and output ports were formed such that
perturbations due to the discontinuity can be neglected at these ports.

Using Laplace's equation, the electrical potential at any point inside the
box can be written in finite difference form as a linear combination of the
neighboring potentials at the grid points. The relaxation method, where the
relaxation constant has the optimal value, determines the speed of
convergence, and was used for the solution of the resulting system of

equations.



Because of the small dispersion of coplanar lines, the good agreement
between the calculated data and the measurements up to 25 GHz was found.
However, for other dispersive lines the wvalidity of this method is not
guaranteed.

In [34], for the coplanar waveguide embedded in a waveguide, it was
found that the structure supports modes which can be categorized into three
groups ; namely, the modes guided by the CPW slots, the parallel plate modes
guided between the CPW plane and lower conducting plane, and the parallel
plate modes guided by the cover. The third group of modes is relatively less
important than the first two groups. The second microstrip-like lowest mode
is usually present and can serve as a vehicle for energy leakage from the
CPW. The leakage occurs when the velocity of the parasitic mode is slower
than the phase velocity of the fundamental mode. To confine the propagating
energy at the desired frequencies, the mode degeneracies or interactions
between the CPW mode and the waveguide or microstrip-like mode which
depends on the sidewall conditions must be avoided.

For the configuration with magnetic side walls, there are overmoding
problems the same as those of an overmoded rectangular waveguide. In [34],
the energy coupling from one mode to the other for the open end and shorted
end discontinuities was calculated. In this structure, there are three significant
modes which are coplanar waveguide mode (CPW), coplanar microstrip
mode (CPM), and microstrip mode (MS). Actually, part of the incident CPW
wave is reflected back as a CPW wave, part is reflected back as a CPM wave
traveling on the same line, and part is transmitted beyond the discontinuities
as an MS mode. This conversion is important since the CPM or MS modes
do not couple to active devices on the CPW surface. It may result in

resonances and power suck-outs which could render a circuit inoperable.



Using a finite element technique, which is rigorous in the moments
method sense, Jackson concluded from the theoretical results that a smaller
structure for the center conductor converts less power, and the power
converted at a shorted end is much less than at a gap end. However, the
measurement of the transmission for an open end indicates that the calculated
results are somewhat greater than the measured ones by about 1 dB, but no
meaningful data for the shorted end were reported.

In [35], the method used to study CPW discontinuities is based on a
space domain integral equation (SDIE) which was solved by the method of
moments. Thus, in the SDIE approach, the Fourier transforms of the basis
functions which are used in the spectral domain are not needed. This makes it
simpler to handle complicated geometries.

By introducing an equivalent magnetic current on the slot aperture and
applying the continuity of the tangeniial components of magnetic field on the
surface of the slot aperture, we can form a space-domain integral equation as
shown in Eq.1.8. The unknown magnetic current is then expressed as a finite
double summation with a family of rooftop functions where the subdomain
basis functions for each current components have piecewise-sinusoidal
variation along the longitudinal direction and constant variation along the
transverse direction. The required integral equation is

5, x [ [[Go+G]-M(P)ds'=T, (1.8)
where Sg is the surface of the slot aperture, _Go_l is the dyadic Green's

functions in the two waveguide regions, M(F) is the unknown equivalent

magnetic surface current density, and J, vanishes everywhere on the plane of



the slot apertures except at the position of the electric current sources exciting
the CPW.

By this method, theoretical results for the scattering parameters of two
CPW discontinuities ; that is, open ends and shorted ends , were computed.
From the scattering parameters, the lumped element equivalent circuits have
been derived and used to model the discontinuities by closed-form equations,
as functions of the stub length. The agreement between the theoretical results
and the experimental data in both magnitudes and phase angles for the
scattering matrix elements is very good for the frequency range 5 to 25 GHz

In [36], Itoh et. al. , presented the mode matching method to analyze
the shielded junction discontinuities in coplanar waveguide including the
finite metal thickness effect since neglecting this effect in MMIC design may
result in substantial inaccuracy, especially when the dimensions of the circuits
are comparable to the wavelength and the thickness becomes significant.
Electromagnetic fields for coplanar waveguide with no discontinuity in each
region can be formulated in terms of the mode voltages and currents which
were derived by applying conventional circuit theory to the equivalent circuit
in the y direction. After some mathematical manipulations, the mode voltages
and currents can be expressed as the Fourier transforms of the unknown
aperture electric fields. Using the boundary conditions that the magnetic fields
are continuous at the interfaces of the conducting lines and the dielectric or
the air, one can obtain a system of equations relating these Fourier transforms
to the surface current distribution on the top and bottom surfaces of the
metallization.

For the numerical calculation, the unknown aperture electric fields
were expanded by appropriate basis functions with the edge condition. Then,
applying Galerkin's method to the system of equations, the propagation



constant was found. With this, electromagnetic fields on both sides of the
discontinuity are expressed as the eigenmodes of the individual transmission
lines. Since the tangential components of the fields are continuous across the
plane the discontinuity is located at, the set of mode-matching equations on
both sides was obtained. Utilizing the inner product where the electric field
equations were taken from the waveguide having the smaller aperture and the
magnetic field equations were used for the larger aperture, the unknown
coefficients associated with the eigenmodes were solved and from them the
scattering parameters are found.

The calculated magnitudes and phases of the scattering parameters for
coplanar waveguide step discontinuity with different metallization thickness
were shown in this paper which notes that throughout the frequency range of
interest, the finite metallization thickness effects the reflection coefficient
significantly only at the high frequency range.

Ingo Wolff and Thomas Becks [37] used an extension of the spectral
domain method to analyze various types of air-bridges within CPW bends and
T-junctions. This method starts with the introduction of magnetic surface
currents to restore the slot electric fields at the apertures. Then, in the
following, the derivation of the integral equation, application of image theory
in connection with superposition principle, and the technique to extract
generalized S-parameters are described briefly. In order to check the accuracy
of the algorithm, four coplanar T-junctions on a GaAs substrate, containing
three standard modified air-bridges, were built and measured. For the even
mode scattering parameters, a very good agreement over the whole frequency
range was obtained when compared with the calculated results. Various data
for the conversion from the even-mode to the odd mode within these structure

is also given.



Visan et. al. [38] presented a rigorous and efficient full-wave analysis
for characterizing air bridges and via holes, based on a 3D finite difference
time domain method. To obtain the discrete formulations to approximate
Maxwell's curl equations, the centered difference approximation is used in the
first order partial derivative with respect to both time and space. This method
can be used to accurately determine the structure field solution in a very
broad frequency band, by simulating the propagation of a gaussian pulse
through each studied structure. Then, by the Fourier transform of the transient
results, the parameters in the frequency domain can be calculated over the
whole required frequency range. In this paper, they analyzed an air bridge and
two via holes which can be used to suppress the coupled slotline-like mode in
MMIC conductor-backed coplanar waveguides. It can be seen from the data
shown in the article that the via hole solution gives better transmission
property than the air bridge one although the via hole can complicate the
fabricaticn of the structure.



1.9 Experimental techniques for coplanar waveguide discontinuities

Since little information is available in the literature on discontinuity
models for coplanar waveguide, it has limited the application of CPW in
microwave circuit design. In [39], the discontinuities characterized are an
open end, a series gap in the center conductor, and a symmetric step in the
center strip as shown in Fig. 1.8. The element values of the corresponding
equivalent circuit are de-embedded from the measured scattering parameters
of the discontinuities through a two-tier de-embedding technique which
consists of calibrating the automatic network analyzer (ANA) using precision
coaxial standards and then making use of the calibrated ANA to characterize
the test fixture.

A CPW open circuit is formed by terminating the center conductor
away from the slot ends by a short distance. The open circuit capacitance is a
parallel combination of the capacitance due to the fringing fields across the
gap and those across the slot. It is known that the gap-dependent capacitance
changes proportionally as the inverse of the short distance while the slot-
dependent capacitance is relatively constant.

A series gap is still modeled as a lumped pi network, consisting of one
coupling capacitance and two fringing ones. The coupling capacitance
decreases proportionally as the inverse of the distance between the gap.

The step discontinuity perturbs the normal CPW electric and magnetic
fields which give rise to additional reactances. The modeling experiments
show that the reactances can be modeled as a shunt capacitance located in the
plane of discontinuity. The influence of this capacitance is to effectively
lengthen the lower impedance CPW line towards the higher impedance CPW

line.



All the above-mentioned capacitances of the equivalent circuits for the
discontinuities have the same feature that the capacitances are larger for the
line with wider center conductor if two CPW lines with identical aspect ratio
on the same substrate are compared.

However, there are three basic sources of error for the equivalent
circuit element values ; i.e. , modeling errors, RF measurement errors, and
geometrical errors. Therefore, some modifications and optimization routines

must be used to reduce errors.
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1.10 Overview of dissertation research

The research work in this dissertation involves the following topics
(1)Applications of the dynamic source reversal method to microstrip open end
and gap discontinuities in which anisotropic substrate materials, frequently
encountered in practice, are used in analytical computation.

(2)Treatment of the propagation characteristics for coplanar waveguides
containing anisotropic substrates.

(3)Development of the dynamic source reversal method to analyze some
coplanar waveguide discontinuities including anisotropic substrates.

Basically, the concepts used to extend the dynamic source reversal
technique are the same as those used in Toncich's work. The major
differences are that
(a)We develop this powerful dynamic source reversal method to characterize
mucrostrip discontinuities including anisotropic substrates which are often
encountered in reality.

(b)We utilize two pairs of expansion functions for the perturbed charge and
current. One is called TP representation , the same as that used by Toncich,
which uses triangle functions to expand the perturbed current and bipolar
functions for the perturbed charge. The other is denoted QT representation
that uses a quadratic approximation for the current and triangle functions for
the charge expansion. This leads us to take advantage of two different testing
functions, offset and nonoffset.

(c)We maintain the source vector terms when the transverse current is
considered in the gap problem. These source vector terms were originally
assumed as a zero vector in Toncich's thesis. As it is a time-saving approach,
we attack the gap problem directly, and then allow the gap spacing to go to
infinity to solve the open-end problem.



(d)Also, we use another testing technique in the x direction for E,, different
from Toncich's, when the transverse current is included. We find that his
testing approach in this problem causes some troubles, which make the terms
summed over the index n not accurate unless a very large number of terms are
used, especially when the line width is narrow.

The dynamic source reversal method developed to treat microstrip
discontinuities can be applied to coplanar waveguide discontinuities, with
some techniques modified. The discontinuous coplanar waveguide to be
characterized is similar to that in Fig.1.5, but containing two ground planes on
each side of the central strip. Obviously, the expressions for the Green's
functions have the same forms as those obtained for microstrip lines.

As a first step, we develop an efficient way to find the dominant mode
charge and current expressions on the central strip and ground planes for a
coplanar waveguide without any discontinuities. This method uses the
conformal mapping to establish the exact low frequency charge and current
distributions in a shielded coplanar waveguide. This new expression is
sufficiently general to cover the shielded microstrip line as well by letting the
ground planes have a vanishing width.

The general expressions for the sources, derived for the first time in the
literature, are applicable to both coplanar waveguide and microstrip line.
Also, included are expressions for the charge and current on the ground
planes, with the same form relative to those on the central strip in the
transform domain.

The iteration technique used for microstrip line is revised to find the
effective dielectric constant for an enclosed coplanar waveguide structure

with a top cover. Then, having the dominant mode charge and current



coefficients, we can obtain the characteristic impedance, which is defined as
the ratio of the voltage across the slot to the total current in the central strip.
The analysis that we develop for discontinuities in coplanar waveguide
is an extension of the dynamic source reversal method used in microstrip,
except for the consideration of also requiring the dominant mode and
perturbations in charge and current on the ground planes. Since the method
presented to describe the source distributions is an excellent and accurate first
step static approximation, we can obtain very efficient numerical calculation
of those parameter values of the equivalent circuits for coplanar waveguide

discontinuities. Detailed evaluations are accomplished for the open-end.



Chapter 2
Formulation of integral equations
In this chapter, we derive the Green's functions which are necessary to
develop the dynamic source reversal method with the satisfaction of the
boundary conditions for a dielectric loaded waveguide including anisotropic
substrates. The expressions for the sources, the charges and currents existing
on the microstrip line, are given. Then, integrating the product of the Green's
functions and the sources over the width of the line yields the scalar and
vector potentials, from which we can determine the electric fields existing

mside the enclosure.

2.1 Derivation of Green's functions

Considering Fig.1.5 with anisotropic substrates, we can express the
dielectric constant as

K =xl+[x(y)- x(y),3, .1
where I is the unit dyadic function, k,(y) is the dielectric constant in the y
direction of the substrate and k(y) is the dielectric constant in both the x and
z direction. In this configuration it is assumed that the microstrip line with
negligible thickness is located at a height just above the slab. The sources on
the strip are defined as the transverse and longitudinal sources which are both
x and z dependent. First of all, we start with Maxwell's equations to derive
the equations for the potentials A and ¢, in terms of the sources J and p on

the strip with all source and field quantities having a time dependence e/*.

w]l

(2.22)

V-D=p
V-B=0 (2.2b)

los]}
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VxE=-joB (2.2¢)
VxB=p,J+jopei-E (2.2d)
Since the magnetic flux density vector B is always solenoidal, it may

be given in terms of the curl of a vector potential function

B=VxA (2.3)
When Eq.(2.3) is substituted into Eq.(2.2c¢), it yields

Vx(E+joA)=0 2.4)
and, in turn, the vector in the parenthesis can be expressed as the gradient of
a scalar potential function by

E=-joA -V (2.5)
Starting with Eq.(2.2d) into which Eq.'s(2.3) and (2.4) are substituted,

we have, after some arrangement of terms,

< < = = . . o< .
V(V-A)= VA = o] + kiKA — jous,V(xd) + o3, + jou,

go(ky —~ K)%ﬁy + kg(xy -K)A,3, (2.6)

By using Lorentz condition, V-A =- jopge,xd, and separating each
equation utilizing the fact that J=J,a_ +J 3 , three scalar equations are
produced

VA, +xk2A = -pnJ, (2.7a)
VA, +xk2A, = —uJ, (2.7b)

VA, +xkIA, = jo poso[(Ky - x)% +(x - D§(h)S(y - h)] (2.7¢)



where % =(1-x)8(y—-h) is used

Now tackling Eq.(2.2a) by noting that D = - E and using Eq.(2.5), we
obtain

[a@+%}+g(x %)+k =2+ ja(k, ~DA, (180~

. OA
) - jo(k, - K)—gy (2.8)

A dielectric loaded waveguide can support longitudinal section electric
(LSE) and longitudinal section magnetic (LSM) modes. An LSE mode has no

component of E normal to the air-dielectric interface, while an LSM mode
has no H component normal to the interface. Consequently, H, may be given

in terms of LSE modes, while E, requires LSM modes. It can be understood
from Eq.(2.5) that ¢ which contributes to all three components of E must be

represented by both LSE and LSM modes.
The Green's functions G,, G,, and G respectively associated with A,

A,, and ¢ can be determined in such a way to satisfy the appropriate

boundary conditions which are listed below

(1)A = [8 a ’;Z(ﬁ (2.92)
(2 =0 aty=0,b 2.9b)
(3)Ay= 0 atx=ia,%=0 aty=0,b (2.9¢)
@e=[g 21 299

Besides these, all of the above components are continuous at y=h and the first

derivatives of them with respect to y are discontinuous at y=h.



Expressions for the Green's functions can be obtamned Dy a rourner
transform method. Since G, and G, are similar, the expression for G, is

derived first from

(V2 +kk2)G, = -8(x - X' )8(y — h)8(z - 2') (2.10)

Assume a general solution for G, to have the form

i JTQCOS(unX)fn(y)e""”‘dm (2.11)

1
2n n=13

where u, = ;—n n=1,3,5 * * *.The x dependence for G, has been chosen as a
a

G, =

Fourier series expansion in terms of cos(u,x), ensuring that the boundary
conditions are satisfied at x = *a.

After substituting Eq.(2.11) into (2.10), taking the Fourier transform of it,
multiplying both sides by cos(u,x), and integrating it between +a, we obtain

a(§+ xk? —ul - coz)ﬁ,(}’) = —cos(u,x'Y(y - h)e’” (2.12)

In order to satisfy continuity conditions for G,, it is assumed that

o[y 273
where I* = kk2 - u? - 02 and p> = k3 - u - 0>

Integrating (2.12) over an infinitesimal interval in y centered at y=h results in
the other required condition

a%ﬂ,(y]:: = —cos(u,x' e’ (2.14)

from which we find, after substituting Eq.(2.13),



cos(u, x' Jei*
a[p sin(lh)cos(pc) + Icos(lh)sin(pc)]

(2.15)

Therefore, the desired expression for G, is

el ) 1 < @ 1\ or . 1 —-jo(z-z")
G,(x,zx',2')= >m Z J'_Qcos(unx)cos(unx )sm(lh)sm(pc)D—e . do

n=1.3 In
(2.16)
where D, = psin(lh)cos(pc) + 1 cos(lh )sin(pc).
Similarly we have, with sin(u_ x) in place of cos(u,x), the expression

for G, as follows

Gx(X,Zx',z') = ﬁ Z J:osin(unx)sm(unx')Sin(lh)sin(pc)D_l_e-jm(z—z')dm

n=1,3 1n

2.17)

To solve the Green's function for the scalar potential, we need to
consider both G and G, because Eq.'s (2.7.c) and (2.8) are coupled. Let us

assume
G, = 51— Y. |7 cos(u,x)g,(y)e*do (2.18a)
=1
== 3 [7 cos(ugnh, () e (2.18b)
L B

With the same procedures as used in deriving G,, we obtain

(f;—ﬂk%— )&(y) Jmuoeo[(x —x) af,)”" 1>hn<y>8<y—h>]



(2.19a)
(:yKy % +k2k3 —xul - K“)z]hn(Y) = jm['(‘(y - K)‘a%%)' +(xy =1)gy (h)

3(y-h)- ———ng— b) cos(u,x' )ej‘”"]

€0
(2.19b)
The functions of y may be chosen as
_[Biacos(qy)+By,cos(ly)  0<y<h
8.(y)= [B;n COS[p(b—yﬁ] h<y<b (2.20a)
_[ Ciasin(qy)+Cy,sin(ly) ~ O<y<h
ha(y) = [CBn sin[p(b-y)] h<y<b (2.20b)

K
where q* = ;—(Kykg -u? -a?).
y

The first derivatives of g,(y) and h_ (y) with respect to y satisfy the

conditions
5
agn(yx = joroge(k —Dh,(h) (2.21a)
S (y)| = L cos(u,x )6 +ajo(x, ~Dga(h)  (221b)
aY €9

After solving for the unknown coefficients corresponding to g, (y) and
h_(y), we get the expression for G, which is

e-jm(z-Z')dm

N
G(x,zX ,z)-i—n_Zhsf cos(ux)eos(UX) T 5 5 B

(2.22)
where N_ = {xk3[pcos(gh)sin(pc) + qsin(qh)cos(pc)]sin(th) - Iq[pcos(lh)
sin(pc)+ lsm(lh)cos(pc)]sm(qh)}sm(pc) and D, = xpcos(gh)sin(pc) +q
sin(qh)cos(pc).



The integrals over @ can be evaluated by the method of residues,
which states that §f(z)dz =27 Zresidues. To achieve this we must use the

following partial fraction expansion

N, _ kg sin(lh)sin(pc) _ qpsin(gh)sin(pc)
(Kk(z) - lz)DlnDZn (Kktz) - 12 )Dln (k% - P2 )DZn

Let v, be the roots of D,; and ¥ be the roots of D, . Then, the residues

(2.23)

of Eq.(2.23) at y,, are R jand those at y,, are R jas shown in the

following

ki sin(th)sin(pc) 1

R,, =| X Kiz)_lz (o) B (2.242)

0 ——a

L o0 0=ty

= gpsin(gh)sin(pc) 1

R, =|2 153?—)52 (Bo) o (2.24b)
L o0 =i‘-Y-nm

where v, = (12 —xkZ +u? )% and ¥, = (%qﬁ, -k kg +ul )%. Note that
the zeros of D, correpond to LSE mode eigenvalues while those of D, are
the LSM ones. Note that the residues at the poles 1 = +vkk, or p =k, for
each term are canceled respectively.

Since the integral range is in tco, the contour can be closed at infinity
in the upper half plane if z<z', or in the lower half plane if z> z'. Considering
the case 2>z, we obtain, after a lot of manipulations,

2 2 . .
Pmlm Sin{l;h)sin(p,c)
Ry = Kk}‘j PR (2.252)
0 m JYnm inm



_ QuPuXy sin(@yh)sin(p,c)
" K;-Pn  JTwmDRom
where DR, = (kx — 1)k3 cos(l,h)sin(p,c) + bp? ], sin(l,h)sin(p,c) - p,,(
pZh + 2 c)cos(l h)cos(p,c) and DR,,, = kk3(x, — D)sin(q, h)cos(P,c) +
P (K*PL1 + KT ¢)sin(Tn h)sin(P ) — KPATn (K, + h)cos(q 5 h) cos(P,¢)

. Note that p, 1,, Dy»> Qm can be found from the following transcendental

R

(2.25b)

equations

I% = Pr = (x = Dkg

pp sin(l h)cos(pyc) + 1, cos(l,h)sin(p,c) =0 (2.26a)
K
Srql - Bl = (x, - DK}

P COS(T D) SIN(P ) + T SIN(T 1) 0OS(BnC) = 0 (2.26b)

The expression for G, evaluated at y=h, can now be written as

=13 m=12 Kk(z’ —llzn o
eTmb k. glpl sin(ﬁmh)sin(ﬁmc)e_mlz_z'} (2.27)
=2 a7 ’
DR, k-7, Y an DR 3o

It is useful to define the new quantities F,,, H,, and H, as

G(X,Z;x',z')=li i cos(unx)cos(unx')[ ks Palasin(lyh)sin(p,c)

2 . .

Pula sin(l;h)sin(p,,c)
F = 2.28
A D (2282)

2

H_ = Ké‘{mlz (2.28b)
= K, QaP, sin(@,h)sin(p,c)

=— 2.28
) DRy (2.25¢)

, then the expressions for G,, G,, G can be finally expressed as



G,(x,zx',z)=~ cos(u,x)cos(u,x')—e 1=zl (2.29a)
z a y
G (x,zx',2)= ! sin(u,x)sin(u x')E‘ie'”z'Z" (2.29b)
X a n Y
G(x,zx',z )= lz > cos(unx)cos(unx')[ Hy g-ie-z1 +i__‘“—e'7"‘z":|
a Y

Y

(2.29¢)
where we simplify the notation by dropping the subscripts on the y's and ¥'s.

These are the required Green's functions for the dielectric-loaded waveguide.



2.2 Expressions for the source representations

In a microstrip or coplanar waveguide discontinuity, both the dominant
mode and perturbed sources exist where the former can be derived and the
latter are chosen to have the same forms accordingly. In microstrip, an
accurate expression for the x dependence of the dominant propagating mode

charge and current on the infinite strip is given by

NI-—‘

Po(x')=[Qo — QT (x'/ W)+ QT (x'/w)] [1 - (x /w)*| (2.29a)

Jar(x) = [Io = [T(x'/ W)+ LT, (x'/w)] [1 - (x /w)?| (2.29b)
where T, (x'/w) is the n'th Chebyshev polynomial and Q; and I, i=0+* <2,
are the unknown amplitudes respectively for the dominant mode charge and
the dominant mode relative current, which is related to the true current by
Joz =(Bc/ky ). Note that the edge conditions are already built into these
expressions.

In a later chapter, we derive new general expressions for the dominant
mode sources applicable for both microstrip and coplanar waveguides. For
the microstrip line, it is assumed that there is no dominant mode transverse
current J,, on the strip since its effect is negligible for a wide range of useful
geometries. When a component of J, is required, such as for the case of an
asymmetrical gap and a step, it is included as a fading dominant term plus a
perturbation term, localized near the discontinuity.

The sources given in Eq.(2.29) can be transformed, with x'=sin(6'),

into

p(8)= 3 Q, 02i8)

Z cos(8) (2.30a)



cos(er' )

J (6 L 2.30b
(8)= z;) o) (2.30b)
These sources can also be expressed by a Fourier series expansion as
Pa(X)= . p,cos(u,x') (2.31a)
n=1,3
Jz(X')= z J oy cos(u,x') (2.31b)
n=1,3

where the coefficients in both sets of equations are respectively related to

each other by
2w = . e
=— E QiJOZ cos(218")cos[u,wsin(6')]dO (2.32a)
a
2w = . e
I = —a—z I, joz cos(2i8")cos[u, wsin(6')}d6 (2.32b)

Since the integral in Eq.(2.32) is used many times hereafter, it is

computed once and stored as

Pni = 2J;§cos(2i6' )cos[u, wsin(0')]d6' (2.33)

This integral is given by p, =nJ,;(nnw/2a), where J,, is the Bessel
function of order 2i. The backward recursion method is used to find J,;(x),
then, in turn, p,; for each particular value of x.



2.3 Formulation of potential equations
With the proper Green's functions and the accurate expressions for the
dominant mode sources we can find the potentials, for the microstrip with an

infinite line enclosed in the structure with a top cover, by using

A =tof, [.Go(x,5X,2Wer(x',2)dx'd2 (2.34a)
Ay = Ho L' [ Gx(%, 2%, 2 o (x', 2 dx'd2 (2.34b)
0, = &5 jz, L.G(x,z;x',z')po(x',z')dx'dz' (2.34c)

From Eq.(2.34a) and (2.34c), an iteration technique is developed to determine
the coefficients, Q; and I;, and to find the effective dielectric constant for a

given waveguide geometry.

In this approach [25], €40, is set equal to 1 on the strip, and A ./,
is also set equal to 1 on the strip where ¢, is an absolute value for the scalar
potential, and A . is the reference value for the vector potential caused by the
relative current J .. Carrying out the integration over the source points in
Eq.'s (2.34a) and (2.34c) and applying Galerkin's method to them, we can
reduce the two integral equations to a system of linear equations as shown

below

F,
ZYLY Y 7+ p? PP 50, (2.35a)
a n m 2

w 'ﬁ

— i =8,: 2.35b

Tl e pppeahy o
where §;=1 for j=0 and 0 for _]>0. Note that the double sums over n and m,

involving the terms like pnipnj /(y* +PB?), are slowly convergent. The

anZ[

asymptotic values of Z decay as 1/n

7]
+B VB TR



where Z cos(u,x)cos(u x )

represents the dominant part of G and G,,
n

arising when the field and source points coincide, and can be expressed as

i cos(unx):os(“nx') _ —%ln|tan[1r(x —x')/4a] tan[n(x + x')/ 4a|
n=13

(2.36)
Note that we see the singularity of the Green's functions in this equation.
Fortunately, as described in Appendix 1, the integral involving this term can
be efficiently calculated.

By using a trial value for B, the unknowns for Q; and I; are found from
this matrix. Then the total charge and relative current on the strip are given by
I;, = I, and Qpy, = nQ,. To satisfy E, =0 we set 0A,; = B¢, on the strip.
Next we use V, -J = —jop, giving BITo; = ®Q™ when integrated across the

strip, to obtain a new estimate of the propagation constant

B=Vemko (2.37)
where I7,; is the total z-direction current and Q™ is the total charge per unit
length on the strip, and €., = Qrp /Ity = Qg /1, is the effective dielectric
constant.

If the new value of €, differs from the old value of €, by less than
1%, the iteration is terminated ; otherwise, the iteration is repeated. The latest
values of B, Q,, and I; are used as the new entries in the matrix for each
successive iteration until the condition is satisfied. The iteration converges
very fast, and typically 1, 2, or 3 iterations are all that is required.

After a convergent value of €, is found, the characteristic impedance

of the microstrip is calculated. It is defined as the ratio of the voltage between



the center of the conducting strip and the ground plane to the total current

flowing along the strip which is reduced to that equation in [10] if we assume
there is no top cover. Since A, can also be expressed in terms of a Fourier

series we have

I I _ 120 @
" = Jo Edy=— fo (ay+JmA°") dy —m{l+z

I
TOT TOT

x=0 n=13
pnk(z) K&— Sinh(c.mc)Sinh(c2nh) —
Bz + Uﬁ C2n [CZn COSh(Cnc)smh(CZnh) + KCn Siﬂh(CnC) COSh(§2nh)]
sinh (§,0)sinh (&) 238)
[Cln Sinh(CnC) COSh(Clnh) + Cn COSh(Cnc) Sinh (Clnh)] .

where the integral of E, is carried out at x =0 and &, = (B> -k + uf,)%,
Gin = (B? —xk§ + Uf,)%, and §,, = (x /Ky)%(l32 - k&G +uj )%-

This completes the determination of the dominant mode charge and
relative current, the propagation constant, and the characteristic impedance
for the enclosed microstrip with anisotropic substrates. The dominant mode
charge and current distributions, as well as knowledge of the propagation
constant and characteristic impedance, are required in order to analyze

microstrip discontinuities.



Chapter 3
Microstrip open-end and gap discontinuities
In this chapter, we discuss the choices for the expansion functions for
the perturbed mode sources and formulate the potential integral equations for
the microstrip gap discontinuity, which are also applicable to the open end
discontinuity. In addition we point out the importance of selecting the testing
functions which are used to generate as many equations as there are
unknowns. Then, we consider the effects of the transverse current in the
asymmetric gap problem. In the last section we show how the connection of

the matrix of the set of linear equations to the Tangent method is obtained.

3.1 Expansion functions for perturbed sources

In a discontinuity the perturbed mode charge and current exist and
must be added to the dominant mode sources to account for the total source
distributions near the discontinuity. Since the line is terminated arbitrarily at
some point in a discontinuity we can assume that it is located at z=0. Taking

the reflection into account, we express the dominant mode sources as follows

po](xl', le) = pol(x]' Xe—jblzi + ReJBlz‘ )
= Poi (X' X1+ R)[By; sin(B,z,') + cos(B,z")] (3.1a)
Jml(xl"zll) = Joz;rl (xlv)(e'.lﬁlzi _ Relﬁlzi )
=J o (X;")i(d + R}By, cos(B,z,') - sin(B,z,")] (3.1b)
where B, = —j(1-R)/(1+R) is the normalized input susceptance and R is
the reflection coefficient. Note that since the amplitude of the incident mode
is arbitrary, (1+R) can be chosen as its amplitude and set equal to 1.

For this reason, the perturbed sources can be expressed as follows

62



cos(216' )

T (8, z)——JZZ C. U, wos(8) =" 24(2) (3.2a)
-Os-
0. (0,2) = 33 C,H, ZXH) . (1) (3.2b)
i=03=0 (e)

where s is the expansion function number beginning with 0, i is the mode
number, k is the line number, C, U and C,H; are the unknown amplitudes,
and d (z') and e,(z') are functions of z' which must be chosen so as to give
an accurate representation of the dependence of the sources on 2.

In our research work we use two kinds of representations for the
functions in Eq.(3.1) that satisfy the continuity equation, V . =-jop, when
no transverse current is considered. One set is denoted the TP representation
where triangle functions are chosen for the perturbed current and bipolar
rectangle functions are chosen for expanding the perturbed charge ; that is to

say,

d(2)=T,(Z) and e(Z)=P(2) (3.3)
as shown in Fig.3.1. Unipolar pulses are used in the calculations because of
their simplicity and then bipolar pulses are formed from them.

The other set is called the QT representation where the quadratic
approximations are used for the current and the triangle functions are used for
the charge expansion ; namely,

K2 (2
e(Z)=T,(z)and ). C,U;d(2)= F vena;

s=0

where J,[6',—(N +1)A] = 0 is assumed.

chH e,(z)dz (3.4)

Therefore, the total charge and relative current distributions on the

input line may be written as



P1(%,,21") = P (%52, ) + Ppu(%),2)") (3.5a)

J(%.2") = T (%/,2,") + T i (%5 2') (3.5b)
where the subscript 1 stands for line 1, the input line.

For the gap discontinuity the total charge and relative current on the

terminated output line can be chosen in the forms

P2(X2'52,") = 1Po2(%,")sin[B2(2,' =1+ pya (x5, 2,") (3.6a)

Ja2(X2',25") = W ara(X5")008[B, (25" ~ D] + T2 (27, 25") (3.6b)
where 1 is the unknown transmission coefficient and the output line has been
assumed to be terminated in a short circuit at z,'=1 where 1 is a long distance
away from the discontinuity.
| With these total source expressions and the corresponding Green's
functions derived, we can formulate the equations, for the vector and scalar
potentials on the discontinuous lines. From these the electric fields existing on
the strip are generated. The boundary condition which forces the total
tangential electric field on the strips to vanisll is used to formulate the

required integral equations that determine the unknown quantities.



Fig. 3.1 Testing pulses used for the expansion pulses. Half pulses
are shown for the charge pulses for the sake of clarity



J.« UPpEn-€nd ana gap aisconunuines

We treat the gap problem first. We then let the gap spacing be
theoretically infinite, actually €™ and e¢™® equal to zeros in the software
programs so that we can kill out the coupling effects, to obtain the excess
capacitance for the open-end discontinuity where 8 is the gap spacing. The
electric field can be given in terms of the potentials through the expression,
E =-joA -V¢. On the conducting striplines the tangential components of

the electric field must wvanish. Applying the boundary condition
E, =-(joBc/ ko)A, — 8 / 8z =0 to each line, we have, for line 1,
. 0 rw . . J (o w) . .
JBII_QJ_‘:,‘ GJ pnidx, ' dz, *‘EZ‘J‘_WJ‘_Wl Gp,dx;'dz,
. ® W, , , O popw , ,
+3Bafy [, Gel aaada'dz’+ — [ [ Gppadxy'dz
=iBuf; [ GaiVemBi cos(Bizy) = sin(Byz,")]dx, 'dzy
a ®© Wy . 1 1 ' ]
=21 s, GPalBu sin(iz)") + cos(Bz, Y]dx,'dz,
+iBaf; [ Guithams cosl(Ba(zy'~Dldx; ' dz,’

+ =[] Gipp sinfBa(zy ~Didx;'dz;'= 0 37

where the dynamic source reversal technique is used. These source reversed
terms are given in terms of the known dominant mode amplitudes of charge
and current, thus making up a forcing function in the equation.

For line 2,



B, Glmmdxida’+ =] | | Gppdx'dz)
. @© PW, f ' a @O W ' [
+JBzJ5 J_w2 G J paradx,'dzy" + EJ.S J_WZ Gp,,dx,'dz,

. 0 W . ' . ] 1 1
+3B)_ [ Guilean[By, cos(Biz,') - sin(Biz,")dx, ' dz,
a o w . ] ] ] ]
“"52‘,[_@_[_;1 Gp,[Bi, sin(B,z,") + cos(B,z,')1dx, ' dz,

- 5 ot . ' t t
=382 Guitles cosl(Ba (2, ~Dldx, ' dz,

0 (8 (w . ' o
~— LI GrpaasiniBa(z,'~Dldx,'dz;' = 0 (38)
Substituting the source and Green's function expressions gives

BIZZCZU ZZ PlepnﬂJ d,(z,' Je T ldz "'ZZCH ZZ

i=0s=0 i=0s=0

Pui1ZPg1 %[%“ljfm e, (z,')e TF ™ "dzl'+-H?—‘“ fw e,(z,')e 4 dz, ] +
.33 C3U, ZZ szpn,lj 4(z)e 4z + Y S CH, D))
i=03=0 i=03=0

pniZanjl %[%‘-I—m e;(%' )e—Y[z—zz'lsz '+ -—_—m—J‘—m es(ZQ' )e‘ﬂz‘zz'ldzzl] + Bin

Z{II.ZZPMZPE,I thzpmzpm[H A&7 Hmevz ]}_1

'*‘Bl 12 +Bf

2 e?(z9)
Zo{ ZIZIZmeZanjl I‘Z B )[Y COS(S) BZ SID(S)] szzzpmzanﬂ
i= n m 2

e'!(z-ﬁ) f5 1 e*{(z-s)

2
4+ 5 [52005(9)+Ysin(9)1+mmzwd9)+78m(9)]]} ;

e
2, Eme 3. [YH ne” , THpe" }
{B L2 PuPa Bl) * Qu 2Pl (e G )

m




(3.9)

where z<0 for line 1 and

ZZCZU ZZ - PuiPnz j_md (z,)e T4z, +}:ZCH ZZ

i=0s=0 i=0s=0

Pri1ZPaj2 %[I—i—mffmes(l")e‘ﬂz-z; 'Idzl-_*____mj_mes(zl')e‘ﬂz-zl'ldzlv] +
BzZOZOCzU ZZ szzpnjzf dy(z,")e T2 dz,! +§§C2H ZZ

o|H, ¢0 yiz—zate. o Hp e
pnjzzpnjza[ij_mes(zQ')e Yl Z'dz,z +__:__I:°es(22 Ye 1l ZIdZQ}—Bm

He” H ~¥
Z{quzpmzpn,z 3 Qx.ZZPmlzpn,z[ 2me 2+—me 2]}"T

Y +B 72 +PB
2 -1(z-5)
Z {lezl Z Z Pni2ZPnj2 F( 62 [3—: )[Y cos(8)+ B, sin(8)]-Qy Z me'zanjz
i=0 n m 2 n m

—Y(Z—S) -7(z-9)

fai 2
[ m [BzCOS(S) —ysin($)]+ 55 [BzCOS(S)-Ysin(S)]]}=Z

(¥* +B3) i=0

yH_e ™ YH e ”
o T Q"?%"”‘z"“‘z[(v ) @ +Bf)]}

(3.10)

Blth Z Z pmlzanZ

where z > & for line 2.

The integrals over Z' in the above integral equations can be carried out
analytically, leaving the expressions in terms of the field points. By choosing
suitable testing functions these integral equations are reduced to a set of
algebraic linear equations.

For the testing in x the unweighted Chebyshev polynomials are used

since testing with the edge condition places a greater emphasis on the field



_ near the edge of the strip but de-emphasizes the rest. Asa result the complete

integrals to be evaluated are given by

Zp,; = 2W J’Oi cos[u, wsin(8)]cos(2j0)cos(8)d8 (3.11)
where j=0,1,2.

For the TP pair, the testing rectangle pulses in the z direction are offset
by a A/2 since the field E, arising from a bipolar charge pulse is even-
symmetric about its center as shown in Fig.3.1. This kind of testing procedure
which tests near a field maximum in one expansion of bipolar pulses for the
charge produces the largest contributions to the diagonal elements of the
coefficient matrix. If the testing pulses were not offset by any amount, the
result would be almost zero.

On the contrary, in the QT pair, the z-direction testing pulses are not
shifted and begin with the terminated ends for each line. Since it is proved
that this sort of testing is successful in our research, we are sure that the
conclusion made in [40] is not necessarily correct.

For gaps that are not too narrow the charge density varies like 1/,/@
near the open ends. For very narrow gaps the charge density varies more like
1/|z| near the end. Because of the singular behavior of the charge density near
the gap narrow pulse widths must be used for expanding the charge
distribution in the region close to the gap. Further away from the gap wider
pulse widths can be used. In the computer program three or five pulses were
combined to form wider pulses in regions remote from the gap. This has the
advantage of reducing the number of unknowns and thus the size of the
matrix that must be inverted.



When there is no transverse current J, on the line the perturbed charge

and current coefficients for the TP pair are related by
C.H - b C Uy (3.12)
and for the TQ pair the current at each node position of triangles is related to

the charge by

2
J(6',~sA) = kAZ°°S(2‘9)<CkH'+CkH,,_n+--+leHsi) (3.13a)
= B & cos(8) it

At in-between points, for —sA<z< —(s+1)A

(] ' COS(216' C Hsi _C Hs+ K1 '
J(6,2) =T (8, —sA Z e [CkHsi+ k 2A“ : (z+sA):|(

Z'+sA) (3.13b)
Moreover, the perturbed current must cancel the dominant mode current at
each terminated end, so as to assure that the total current at each end is zero.

This gives

GU, =1;B, and C3Uq; =1I,tcos(B,]) (3.19)
With these relations the number of the unknowns ; namely, the size of the
coefficient matrix and, in turn, the number of testing functions is diminished.

Among the testing results in z, most terms have an exponential decay
because the exparsions of the fields inside the waveguide is carried out in
terms of its evanescent modes. But those terms caused by the coincidence of

the source and field points have no exponential decay and can be efficiently
summed into closed forms like those in Eq.(2.34) except that B° =0 and
instead of a p,;, there is a zp,;.



3.3 Consideration of transverse current
When the transverse current is included its mode expressions are

related to the charge and the longitudinal current by

P21 k2 a,, .k Al .k aJ
-~ - —P; Pl J—pol—._,_.)_ppl—_.
ox, B 0z, B 0z, B, 0z,

DI GRS S LI CERELECED RD )
_CiUg  k§nqp |cOS2i0Y) .,
( ——S 4 B, CIH“)__cos(e') e(z,') (3.15)

for line 1 with a similar form for line 2, except that the quantity in the
brackets is replaced by tsin[B,(z,'-1)] and the subscript 1 in all quantities is
changed to 2.
By using the boundary condition, E, = —-(joBc/ky)A,—-0¢/0x=0
for each line we have, for line 1,
: 0w [ ' a 0 w ' '
JBIJ’_QDJ_;‘ G J X' dz, +§J_QJ-_“|I‘ Gp,dx;'dz,
. D FWy , . a @ pW,y , \
+iBaf; | Gty dzy + = [7 [ Gp,adey'dz,
=3B, [ Gudlwn [Bio coS(Byz1') ~ sin(Byz, N, d’
3 D LWy . ' ' ' '
_&J'o I—w, Gpy [Bis sin(Byz,') + cos(By2")]dx,'dz,
+3BaJ; |2 Guitlouz cosl(Ba(z,'~1)ldx, ' dz;'

+%I: ,[_wjz Gtpo2 siniP,(z,'-1)]dx,'dz," = 0 (3.16)

and for line 2,



B, GTpndxi'dz’' + = | | Gppdx,'dz,
. D LWy . . a @© FW,y . ,
+iBaf; oo, Ol padta'dzy" + [ [ Gppadxy'dz,

. 0 w . ' . ' [} '
+3B1)_ [ Gl om[Bin cOS(Bizy') - sin(Brz,)]dx,'dz,
a 0 w : 1 1 ] ]
+&I_QJ._;‘ Gp,i[Bin sin(B,z,') + cos(B,z,)]dx, ' dz,

M 5 w : t ' t
=3B GuitT oz cOSl(Ba(z'-D)ldx,'dz,

0 5 (w . , ' '
[ Gtpuysin[By(zy ~Dldx;'dz;' = 0 (317)

where the x component, A, , of the vector potential, like A, is a relative

value and related to the absolute value by A, =(Bc/kq)A .
To make use of Eq.(3.15) but not deal directly with the integration

containing J, (x',z') over x, we convert these integrals to those involving
a. (x,z)

P explicitly, with the help of an integration by parts,

J:"wa(x,z;x',z')Jx,(x',z')dx'= [Jn(x',z')J'x'Gx(X,Z;X',Z')dx'lfw —J.:Nw[fx'

Gx(x,z;x',z')l%;‘,’i)dx'] (3.18)
The first term vanishes since J(x',z') =0 for x'=0 and w, while the second
term gives
1 (w aJ . (x',2')
— NLalf,2) 40 3.19
o 7, costux) == (3.19)

where J,, the relative transverse current, is related to the true current by
J,=(Bc/ ko V-



In both Eq.'s (3.16) and (3.17), we retain the source vectors which
were assumed to be zero in [1]. Actually, we consider that maintaining the
source terms in this problem is necessary since the contributions come mostly
from the charge term which may be signiﬁcant unlike the fading term.

_ Clesx

Setting Cf k°C H,; where l=1,2, substituting the

B
source and Green's function expressions, and testing in the x direction with

the proper testing functions produces

5,33 CU, zz e T p b [ ez ez - S CH, )

i=03=0 i=0s=0

a H 0 1 -yiz=2," ' ﬁm 0 . —Fiz—z," ,
pMIanjl'a_x'[“}r_n‘J_mes(Zl e Yiz-2 'dzl +7J’_mes(zl Ye iz 'ldzl ]+

B, ZZC"U ZZ ooy PP [ ez 4z, - ZZCsz.ZZ

i=0s=0 i=0s=0

0 Hm 0 1\a—YIZ-2Z5" ' m 0 1\, —Tiz-2y' '
pniZanjlgx'l:TJ‘_wes(Zz Je T 22ldz, +—7—J_Qes(zz )e e 2 dz, }+Bin

2 S H.e” H_e"
Z{ZZ 12pmlzpn_|l 2 thzpmlzpnﬂ[ 2 © 2 +-—2 © ]}_t
=0 nm

i n m n +Bl Y +B12

2 S2|
Z{Z§ uz PeizPuily o 7Ty

F e‘!(z-s)

[BZ COS(S) +Y sm(S)] + Q2l Z meZanJl

e\r(z-ﬁ) H 7z ® .
[132 cos(8)+ysin(8)]+ ———1[B, cos(9)+ysm(8)]]} =>-
(¥" +B32) i=0

Hpe®”  yH_eP
{ T bPaPa 1o Q“?%"’"‘z"“"[z oM :CB%)]}

(3.20)

2

where z<0 for line 1 and



BlZZCxU ZZ 2 plePng_[ e,(z,' )e-ﬂz_z”dz' ZZCH ZZ

i=0s=0 i=0s=0

2 I’Im 0 "\a-YIZ=2;'l ' m a-Yiz-2;' '
az[?f-w"*zl R Co A

ﬁzZZCzU ZZ 2 szzpn;zj e,(zz')e-m_zz"d""z chzH ZZ

i=03=0 i=0s=0

Phi1ZPaj2

pniZanjZ %[%’Jles(zz')e_YlZ-Zz'lezv_*_EJ_n_J‘;es(zzl)e—ﬂz—zz'[dz’z,] + Bin

2

S F e He?” HeP"
z{zz S s TE +Ql.zzpmzp.,,z[ ]}
n m

i=0 U, +B— n m Y +Bl Y +Bl

2 S, F 3_7(2-8)

z{zzu; PusZPra ¢ g (B2 cOS(9) =7 SIn(9)] - Qu 2, 2. PP
i n om 2

[H e~ Y(z=9) H ez

m[ﬁz cos(9)—-ysin(8)]+ W[Bz cos(8)—-¥y Sin(S)]:l} =

{?%%p”‘zp“" G Q"?%"““Z"“’z[(yﬁfs;) ’ (?Eiesg)]}
(3.21)
where z> 3§ for line 2. Note that the source difference terms in both of the
above equations are Sy = (BZI; — kiQ;). Note that for the testing in the x
direction, we first evaluate the indefinite integration of Eq.s'(3.18) and (3.19)

with respect to x so that we can use the existing testing results Eq.(3.11). If
only one J, mode is used in the expansion, then j=1. If two modes are used,

then j=1,2.
For simplicity we just consider the TP pair for the perturbed source

(8]

i=0

expansions when the transverse current is included. In this problem, the

testing pulses in the z direction are not shifted and begin with the terminated
ends for each line because the field E, arising from a bipolar pulse is odd-
symmetric about its center contrary to the case for E,.



3.4 Tangent method

A gap is a two port network, so it must be represented by a three
element equivalent circuit, such as the capacitive pi network as shown in
Fig.3.2. To obtain three unknowns we would have to solve the above set of
equations three times by using three different positions of the short circuit
plane terminating line 2. Fortunately, a more efficient way to extract
equivalent circuit values is to use the Tangent or Weissfloch method [18],
mentioned in Chap. 1.

In the equations (3.9), (3.10), (3.20), and (3.21), it is clear that the
transmission coefficient t is affiliated with a function of cos(8) or sin(8).
Now we define T = tcos(9), then the Tt column contains the terms with the
forms T -constant and Ttan($8 )-constants.

After Ttan(8) is brought over to the right hand sides of the equations

and viewed as a second source term, the matrix can be written as

[A] T |=[w:]+T-tan(8)u;] (3.23)

where [A] is the coefficient matrix, [y;] is the original source vector, and [u; ]

associated with T- tan(8) is the second source vector.
Assume that T is in row k and [A]" = [cij], then inverting the matrix

gives

By, = c;y; + T-tan(8 )Y Sl (3.24a)

and after arrangement of these equations we obtain



Zc“yi [Zch Zchy, Zchu Zchyl]tan(S)

Bia = 1- Zchu tan(S)

mn

_ A + Btan(8) (3.25)
C+Dtan(9) '

where the coefficients A = Z%Yn B= ZchulZcmyl Zchu Zchy,,
c=1, D=—-Zchul, and tan(8) = tan[B, (5~ 1)] =  tan(B,d).

For the circuit shown in Fig.3.2, B, can be expressed as

(B1+B2) - (Bl- B2 +B2- B3+ B3-Bl)tan(B,d)/ ¥

B, = — (3.26)
1-(B2+B3)tan(B,d)/ Y,,
Comparing Eq.(3.25) with (3.26) gives
_ _ -1
Bl=A-(-B-Y;+A-D-Y3) 2 (3.27a)
1
B2=(-B-Y53+A-D-Y3)? (3.27b)
1
B3=Y3-D-(-B-Y3+A-D-Y3)? (3.27¢)

Since B1, B2, and B3 are normalized admittances relative to the

characteristic impedance of the input line, the capacitances can be related to
them by

Cl= Bl , C2= B2m , and C3= B3 =Cl (3.28)
oZ3 ®Z3 o

where Z7 is the characteristic impedance of the input line, Y3 is the
pnomalized admittance of the output line with respect to , and C3=Cl.

cl



Note that C1 and C3 have different expressions and thus provides one way to

investigate if our software program is written correctly.

P Q Cy
P 41 Q
Ca=+ :E C,,
Pl Ql P' Q'
Fig. 3.2 Top view of MS gap Equivalent circuit of gap
P
P
FCo
Pl
Pl

Fig. 3.3 Top view of MS open end Equivalent circuit of open end



Chapter 4
Coplanar waveguide dispersions
In this chapter, we develop an efficient way in the conformally mapped
domain to find the charge and current distribution on a coplanar waveguide
without discontinuities. By using the modified iteration technique and the
same Green's functions as in microstrip, we obtain the dispersion

characteristics.

4.1 Derivation of source expressions

An enclosed coplanar waveguide (CPW) to be characterized is similar
to that in Fig.1.5, but containing two ground planes on each side of the central
strip as shown in Fig4.la. Obviously, the expressions for the Green's
functions have the same forms as those obtained for microstrip lines. In order
to derive accurate expressions for the sources, we develop a method based
on a conformal transformation that gives a numerically convenient
representation for the singularity of the sources at the conductor edges.

Let us consider the geometries shown in Fig.4.1b and 4.1¢ and assume
that the coordinates in the Z plane are transformed to those in the & plane by

z=| DodE _p,sin"'g+D, 4.1)

J1-8

where D, = % and D, = 0. Note that the point w in the Z plane is converted

to o, =sin(nw / 2a) in the £ plane, (w+s) to o, = sin[x(w +s)/2a], and a to
1.

Now consider the following conformal mapping by which Fig.4.1c is
transformed to Fig.4.1d

78



c,dE da
W= 2 = (4.2)
Ich—gz\ﬁ)’%—gz JJI—Xz«fl—kzkz
. 2 . 2
where A= < SMT2/28) g2 Ot SIN(WW/28) e gy
o, sin(nw/2a) c; sin“[n(w+s)/ 2a]

the point o, in the & plane is transformed to K in the W plane and o, to

K+jK' where K and K’ are the first kind of complete elliptic integrals with the
modules k and k' respectively as calculated by

1 dAa
K= (4.3a)
Lh—#h-wﬁ
1 dA
K'= (4.3b)
-[0 ‘Jl - k2 \/1 _ ka AZ

1

where k'= (1-k?)2.
Since there is a singular component existing in the Green's functions
when the source and field points are coincident as shown in Eq.(2.36), it is

necessary to extract this first and formulate the dominant part of the integral
equations in closed form. Assume that the Green's function for Fig.4.1a is G,

and that for Fig.4.1c is G, where one is derived in the original domain and

the other is in the transform domain. From the geometry, the Green's function
G, satisfies

& & :
(y*’ ?)Gl =-8(x-x')(y-y) (4.4)
with the boundary conditions G, =0 at x = ta, %‘—:0 at y=0,and G; =0

at y= o0,

A reasonable choice of the form for G, is



Gl = ian(Y)COS(UnX)

n=],3

where u, is defined as before. Following the same steps as those in chap. 2,

we have

2
(g”?mﬁ)an(y) = —cos(u,x' Y¥(y-y) 4.5)

Ajcosh(u,y) y<y
Be () ysy

By applying the continuity of a (y) and the discontinuity of its first

where a_(y) = [

derivative with respect to y, both at y = h, and solving for the unknowns we

obtain

G,(x,0;x',0) = i —2—cos(unx)cos(unx’) (4.6)

o=1,3 07
where this G, has been evaluated at y=y'=0.

In the transform domain, we must work out the Green's function for G,

by solving
(.a_auz_z. + gz"]GZ ==3(u—-u')d(v-v") 4.7)

along with the boundary conditions %=0 at u=tK, %=0 at v=0,

and G, = 0 at v=K'. With similar procedures to that used above, we obtain,

as evaluated at v=v'=0,

G, (u,0;u',0) = LS D —l-cos(anu) cos(a,u')tanh(a K')  (4.8)
K S,om

nr
where a,= E—



Although one may note that we selected different boundary conditions

for the two Green's functions, our choice is based on the theory as follows

oG .o
=HloZZ-cXlds 4.9
¢ ﬁ[d» - an] 0 (4.9)
which for this problem gives
1 1
o= g—[ﬁGlpwl dS, + §fG 1peg: dSo | =;—§;J£G2pocz ds, (4.10)
0 [

where ¢ denotes the source on the central strip and g stands for the ground
planes.

Therefore, the above transformation gives the static approximation for the
current on the central strip, after we formulate the equation for the scalar

potential in the transform domain and set it equal to a constant Q' ; namely,

K IR >
J_KGzpoc [x' ()] 7 -du'=Q (4.11)

To ensure that the integration over the range [-K,K] is a constant, we

dx' 2 ., du 2 __ dW
t h ! ] —_— t t 1 - L sl — 1 .
must have p . [x'(u')] g = @ constant or Py (x") K'Q o K'Q iz

Therefore, we have

Q' S‘“[mzvaﬁl]\/ -sin” (%)
TS (3 e (5 5

4.12)
Note that the current expression is chosen accordingly and that when we set

(w+s) equal to a, the structure becomes a microstrip line and Eq.(4.12) is

Poc (X)) =



reduced to the first term in Eq.(2.29b) for microstrip if we make the further
assumption, a >> w. This is the reason why we called it the quasi-static
expressions for the sources, which are very good first approximations to the
source distributions at higher frequencies.

Therefore, if a is not much larger than w in microstrip, it is suggested
that the reduced form of Eq.(4.12) with the Chebyshev polynomials in the
numerator instead of Eq.(2.29) should be used to achieve greater accuracy.

Since we have to include more terms to account for the high frequency
effects, we attach some complete functions, like Chebyshev polynomials in
microstrip, to the form of Eq.(4.2). Here we choose the Fourier series in the

transform domain as follows

1 3
Bur (1) = P [ (W = (0 5= >Q, cos(au) (4.13)

where the subscript denotes the central strip and a; = —

These general expressions, given for the first time in the literature, are
applicable to both coplanar waveguide and microstrip line. Actually, we use
them to obtain the dispersion characteristics for microstrip, too. Besides,
included are the expressions for the charge and current on the ground planes,
with the same form relative to those on the central strip in the transform
domain except that the subscript c is replaced by g.

Although all expressions for the charge and current are obtained in the
conformally transformed domain, it is not hard to transform them back to the
original domain and work out the problem in this domain. This is practically
and successfully proved in our software program. However, it is more

convenient to solve the problem in the transform domain.
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Fig. 4.1b. Simplified CPW structure outline
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Fig. 4.1d. The transformation of Fig. 4.1c. by Eq. (4.2)



4.2 Calculation of the integrals for potentials

Since the ground planes must be always taken into consideration for
coplanar waveguides, the transverse current is included and expressed in
terms of the longitudinal current and the charge by the continuity equation.
With the source expressions we can formulate the potential equations in both

the original domain and the transform domain as follows

A =Hg [J': J'jvw G, (%, X, Z ) o (X' )e P dx' dz' + J'_: J’:Hsz(x, z;x',2)
J o (X' Ye 7 dx' dz' +j:° J::W+S)Gx(x,z;x', Z') e (X' )e I gy’ dz'}
= Hq U:Ji G (x,zx.", 2 )T o (0)e P du'dz' - J:j:‘ G,(x,zx,',Z)
T (W) a0z~ [ [ G 0,25, 2) (0o P’z |
(4.14a)

A, = uo[ I j_“’w G,(x,zx,Z ) o (x)e P dx' dz' + j: jw+ G,(x,zX,2)
Na=BZ 3ot 4. [ —(w+s) Lol ot 1\ o= IBZ 4t 30
T ()6 a2+ 7 [776,00,2,2 W () P 2
o K ~ sy o K
= uo[ [ [ Gxzmx 2 e (W) dudz - [ [ Gy(x,3%,,2)
T -ifz' 3.1 30 © K, 1 INT 1\o=iBZ' 3.1 1.
Jage(U')e #qu' dz —J'_QJ'_K G, (x,z%,",Z' M g (u')e B2 qu dz}
(4.14b)



b= [ I Gx, X, 2PV e+ [ 1 Glx,zx.2)
0
Do (e dxdz +[” [, (x, 5,2 )P (X ) H dz’]
= EI_D:J-I-(K G,(x,zX,."',Z )Py (u)e P du'dz — J:J': G(x,zx,',2)
) .

Pog (U’ Ye i du' dz’ —j:oj__:' G(x,z,x,',2' )P, (0’ Ye P du' dz':l (4.14¢)

In the above integrals, K, and the evaluations of x.' and x,' in terms

of u' are respectively given by

dA
4.1
e J V2 -1V -1 @12
xc'=-2—a-sm [sm(nw)sn(u k)] (4.15b)
T 2
Xg'= %Sm I:sm( > )sn(u +jK', k)] (4.15¢)

where sn(u') = sin.am(u'") is one of the Elliptic functions.

As we mentioned in Chap. 2, there is a singularity in the Green's
function, which accounts for the dominant part. Therefore, we can compute
the integrals of these Green's functions first with respect to z' to extract this
term, as also shown in Appendix 1,

G, (x.5x) = [__G,(x,zx,',2)e P dz = { > [TF(n) - AF(n)]cos(u,x)
n—1,3

cos(u,x.')+ 1 i lco;,(u,,x)cos,(uux;)}e'iIaz (4.16a)

o3l



G(x,zx,') = fmG(x,z;xc',z’)e‘sz'dz' = {% i [TG(n) - AG(n)]cos(u,x)
n=1,3

©

cos(u,x.') + x, 2 > lcos(unx)cos,(unxc')} e (4.16b)
T

n=1,311
and similarly for the ground planes by replacing x.' by X, 1n the equations
where the parameter x can be x, or x, and TF(n), AF(n), TG(n), AG(n), and
K, are defined the same as in Appendix 1.
By calculating the remaining integrals in the transform domain over u'

after substituting (4.13) into (4.14) shows that we have these results for the
correction terms

t = 2j: cos(u,x.')cos(o;u' )du' (4.17a)
Sy = 2_[: cos(u,x,')cos(o;u' ydu' (4.17b)
Note that these expressions are also the testing results when we apply the

3
testing functions, Zcos(aiu), to the central strip and the ground planes.
i=0

For the dominant terms the summation over n is manipulated into the

same form as Eq.(2.36). Then we have, after testing over u,

t; = —I:JOK ]nltan[n(x° — x°')]tan[7t(x° * x°')]lcos(aiu')cos(aju)du'du

4a 4a
(4.18a)
K (K (x, —x,') (x, +X,') , ,
== J'K. lnltan[——i;‘—-]tan[—iﬁ]lcos(am )cos(o;u)du’du
(4.18b)

c, =I:L: lnltan[n(x;; xg'):ltan[ n(xc4-; xg')‘Ilcos(cziu')cos(oaju)du'du



(4.18¢)
d = f:: JoK mitan[”(xs4; Xe )]tan["(xfi;; Xe )}|cos(aiu')cos(a ju)du'du

(4.18d)
where we note that t; = t; and s; =s; are the self-testing results and c¢;; = d;

are the cross-testing results.

For the self-testing results, only part of the terms need calculating
numerically while all terms for either of the cross-testing results must be
computed. Since there are singularities in each In function for self-testing,

special treatment is taken when we perform the integration by a numerical
method.



4.3 Modified iteration technique

In microstrip lines we assumed there is no dominant mode transverse
current J . on the strip since its effect is negligible for a wide range of useful
geometries. But, this is not true for coplanar waveguides especially since the
ground planes must always be taken into consideration.

Therefore, unlike microstrip lines where A . /py, =1 and g4, =1 are
assumed to execute the iteration method, we have to use the boundary
conditions that the tangential components of the electric fields must vanish on
both the central strip and the ground planes.

By using the conditions that E, =-jBc/ky)A, —0¢/0z=0 and
E,=-jBc/ky)A, -9 /x=0 and applying the moment method, we
generate a system of linear equations. Note that in evaluating A the

techniques such as those used in Eq.s'(3.17) and (3.18) are again taken
advantage of, and we utilize J, (w,z)=0 and J, (w+s,2)=0 which are
proved mathematically.

Since there is sin(u,x) in E, instead of cos(u,x), we perform the
indefinite integration of E, over x first to facilitate the use of the existing
testing results ; namely, Eq.(4.17). Note that it is also adopted in our software
programs for the microstrip gap discontinuity for the computational time-
saving purpose and improved accuracy.

Similarly, using a trial value of {3, the unknowns Q. and I_,; are
found from this matrix. Now, the total charge and relative current on the
central strip are given by I, = 2Kl , and Q. = 2KQ,.

A new estimate of the propagation constant can be calculated from
Eq.(2.37) except that €, is replaced by €. = Q. /I3, = Q.o /I, defined as

the effective dielectric constant for coplanar waveguide. If the new value of
g, differs from the old value of €, by less than 1%, the iteration is



terminated ; otherwise, the iteration is repeated with the latest values of j,
Q4> and I used as the new entries in the matrix for each successive
iteration until the condition is satisfied. By this way, the iteration also
converges very fast for coplanar waveguide dispersion problems.

After a convergent value of € is found, the characteristic impedance
of coplanar waveguide is computed. It is defined as the ratio of the voltage
between the center of the central strip and the ground planes to the total
current flowing along the central strip. Since A, can also be expressed in

terms of Fourier series we have

Zg: cl JO —Exdx= c1 JO (ad)'{"JmA ) d-x=60—1t'
I1or “(*9) Tor "+ \0x y=h KT:0Qco

{1 12 3 B =CeTum sinh (&,c)sinh(&,h)
° n=13 un [Cln Sinh (Cnc)COSh(CInh) + Cn COSh(CnC)Sinh(Clnh)]
cos[u, (w +s)]- l]

u

(4.19)

n

where I3, is the total z-directed current on the central strip, J__ and p_, are
defined as

%i(lc,tm+1 ) (4.200)
=0

3

Z( +Qg;sn;) (4.20b)
i=0

which can be obtained by the Fourier series expansions for the sources in the
original domain as mentioned in Chap. 2, and all of the other quantities in
Eq.(4.19) are the same as before.



This completes the determination of the dominant mode charge and
relative current amplitudes on both the central strip and the ground planes, the
propagation constant, and the characteristic impedance for the enclosed

coplanar waveguide with isotropic and anisotropic substrates.



Chapter S
Coplanar waveguide discontinuities
In this chapter, we extend the dynamic source reversal method to
coplanar waveguide open-end discontinuity including anisotropic substrates
with the help of the known dispersion characteristics for no discontinuity. In
order to treat the problem more efficiently we only use the TP pair for the

perturbed source expansion functions.

5.1 Extensions of the dynamic source reversal technique

The dynamic source reversal method used to well-treat microstrip
discontinuities can be applied to CPW open end discontinuities, with some
techniques modified. For this open-end coplanar waveguide discontinuity, we
still assume that the discontinuity is located at z=0. Then, the dominant mode
sources have the same forms as in Eq.(3.1) except that the x' dependence in
the equation for the microstrip case must now be replaced by Eq.(4.12). Also,
the perturbed sources which are used in this problem are quite similar to
Eq.(3.2) with the x' dependence revised accordingly.

Because the discontinuous coplanar waveguide to be characterized
contains two ground planes, one on each side of the central strip as shown in
Fig. 5.1, the transverse current, at least on these two ground planes when the
width of the central strip is small, must be taken into consideration.
Therefore, unlike some microstrip discontinuities, we must utilize the
vanishing of both tangential components of the electric fields in the x and z
directions on the central strip and the ground planes as the boundary
conditions that will give the required integral equations.

First considering the condition E, =0, in which the perturbed sources
are included, we obtain
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Bl [ Gl dz + 2 [° [* Gpdx'dz
Bf” [ Gyt s 2" [ Gpyivaz
~3BJ [, e [Bia cos(B2) - sin(Bz')dx'dz
—% [7 Gpe[Byy sin(pz ) + cos(Bz)dx' dz
~JBJ; [ G2l aglBia cos(B2 ) - sin(pz')ldx'dz

=2 [ ], o [Basin(B2) + cos(Bz dx'dz= 0 51)

Then using the other condition E, = 0 produces

B[ 0yt a2 + Z[" [* Gpdxdr
+3B]__ ] G e dz' + % J .| Gppaxdz
B[ Gyil el By sin(B2) + cos(Bz Y]dx'dz
— 2 [ GpulBy sin(B2) + cos(Bz)kix dz
=3B}, [ G2il g [Ba sin(B2) + cos(Bz)ldx dz’

_% 5 | Gpog[Basin(B2) + cos(Bz')]dx'dz'= 0 (5.2)

After the above integral equations are computed over x' and Z' they
have the similar forms to Eq.'s (3.9) and (3.20) where just one line is needed
for the open end microstrip discontinuity. In order not to repeat too much of

the analysis, their final expressions are not listed here explicitly.



Since we found that the TP pair of representations for the perturbed
sources in microstrip gap discontinuities resulted in less computational time
than the QT pair, we only use the TP pair for the perturbed sources in this
problem. The compression techniques used for the microstrip case can be also
applied to reduce the number of unknowns. All of the testing results in the z

direction for microstrip discontinuities can be used here.

p’ P’

Fig. 5.1 Top view of CPW open end Equivalent circuit



5.2 Calculation of some testing results and the excess capacitance
Applying testing functions in the x and z direction to the above
equations, which are already calculated over the source points, a system of
linear equations is obtained. Like the microstrip case, the unweighted edge
condition for the testing in x is used for this open-end coplanar waveguide
discontinuity. For this reason, the resulting integrals which must be made use

of are listed below. For testing the central strip,

x

2t =2 F cos(u,x,)cos(a;u,
0 J1-k*sin?(0)

and, for testing the ground planes,

do (5.3a)

s =2 %cos(unxg)cos(ozjug)de

% J1-k?sin?(8)
where all the symbols have the same definitions as in Chap. 4 and 01, X\ X,

(5.3b)

u,, and u, are calculated by

0, = % (5.42)
%, = z—asin-‘[sin(lw—) sin(e)] (5.4b)
)4 2a
X, = ésin’l {sm[m]csde)} (5.4c)
14 2a
9 d(p
- 5.4d
e 0 J1-Kk2sin(g) 49
K- [0 54
s o \/1-1(2 sin?(q) (5.4¢)

Because all of the calculations for this problem are based on numerical

methods, the summation approach over n in the Appendix can not be taken



advantage of. Although this is the case, we can still treat these dominant

terms very efficiently in the numerical sense as follows

£ = _FJK Injtan (X, — X, )]tan[n:(xc +X, )][ cos(a;u )cos(aju°)du'd6
S 4a 4a J1-K2sin(9)

(5.5a)

g = _J;%J: ln[tan-n(xg -x,") an (X, +X,') | cos(aiu')cos(ajug)du'de
j 1K, 4a 4a J1-Kk?sin?(6)

(5.5b)

a; - J%J: m[tan[ﬂ()% -xg")] tan'n(xc + xg'):|I cos(aiu'ZCOSEajuc)du'de
0 K, 4a 4a J1-k?sin?(0)

(5.5¢)

x -x Y] 3 +x.' u' .
b, =I2J.Km[mn (X, —X.') o (X, +X.") | cos(a;u )cos(ozjug)dulde
& Jo 4a 4a V1-Kk?sin?(9)

-l -

(5.5d)

Similarly, the same technique as used in Chap. 4 to facilitate the use of
the existing testing results for E, = 0 is applied for this problem ; that is,
instead of Eq.(4.17), we now utilize Eq.(5.3).

After the matrix formed by the linear equations is inverted, we can find
the normalized input susceptance which is simply related to the excess
capacitance by the expression

B.

= (5.6)

[

C=



Chapter 6
Simulation results
In this chapter, we show the theoretical results, calculated from the
programs written in the C language and run on an HP workstation computer,
for the microstrip open-end and gap discontinuities, the coplanar waveguide
dispersions, and the coplanar waveguide open-end discontinuity. Anisotropic
substrates are included for all the configurations studied. In addition to these
results, an accompanying detailed discussion and some comparisons with the
existing data for each case of the problems can be found in the corresponding

sections.

(6-1)Results for microstrip open-end and gap discontinuities

The unit width, A, of the expansion functions in the TP pair is chosen
as 0.2h and in the QT pair is chosen as 0.045h. Table I shows the capacitance
values for the microstrip open end discontinuity with a sapphire substrate,
x =9.4 and x, =11.6, as a function of microstrip line width. The line width
W in the table is equal to 2w. These results obtained using the dynamic
source reversal technique are produced by letting €™ and e™® be equal to
zeros in the programs originally written for the microstrip gap discontinuities.

From the data, we know that there is always a drop in the open end
equivalent capacitance values when we include the effects of the transverse
current. However, as we can see in the data, only one mode of J, current
needs to be taken into consideration for more accurate results for the
equivalent capacitance in microstrip open end discontinuity. Also, the results
yielded by using the TP pair as the expansion functions and including no J,

current are in quite good agreement with those by using the QT pair and
considering no J, current.
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Since we have to utilize much narrower widths of the expansion
functions in the QT pair to obtain the accurate results, the number of
unknowns is increased on a large scale, in turn, much ihcreasing the size of
the coefficient matrix and the computational time. Therefore, the results
generated by the QT pair of the expansion functions are shown only for
microstrip open end discontinuity.

In all the data shown for symmetrical and asymmetrical microstrip gap

discontinuities, the following relations are used that the line width of the input
line W, is equal to 2w, and the line width of the output line W, is equal to

2w,. In addition, all the units for the shunt and coupling capacitances of pi
equivalent networks for microstrip gaps are fano Farads.

The results for the capacitances of pi equivalent network modeled for
microstrip gap discontinuity with an alumina substrate, k = 9.7, are shown in
Fig. 6.1.1 and Fig. 6.1.2. They are varied as a function of the line width and
the gap spacing all for the symmetrical gap cases. The gap spacing used to
obtain the results in the programs is increased every step by 0.2 times the
substrate height h.

The lower lines right below the corresponding line with the same marks
represent the results with the inclusion of both one mode and two modes for
the transverse current. Although they look like one line for each mark, they
are actuaily two lines nearly overlapped. It means that the inclusion of one
mode produces almost the same results as those by the consideration of two
modes. Therefore, it is suggested that for symmetrical microstrip gap
discontinuities, the inclusion of one mode for the transverse current is good
enough to obtain accurate results.

From the data shown in these two figures, it is obvious that as the gap

spacing increases, the coupling effect decreases. The results for the inclusion



of one mode and two modes for the transverse current are also shown in the
figures. For the symmetrical gap cases, consideration of one mode for the
transverse current is quite enough for accurate results.

Fig. 6.1.3 shows the shunt capacitances of pi equivalent network
modeled for microstrip gap discontinuity with a Epsilam 10 substrate, x =13
and k, =10.3, and the coupling capacitance of that network is shown in Fig.
6.1.4. The capacitances for both figures are as a function of frequency with 2
GHz as each increment. Accompanied in the figures are the results for an
isotropic substrate with K., = JKTY and h, = /x/x h.

In the low frequencies, the shunt and coupling capacitances for the
anisotropic substrate should be reduced to those for the equivalent isotropic
substrate as also proved in these figures. To understand it further in the
r;lathematical sense, Eq.(15) in [25] gives us the self-explanation for this
problem. Thus, computer programs that solve the open ends and gaps with
the corresponding isotropic substrates can, with the equivalent substrate
thickness and dielectric constant as input values, give good approximate
outcomes for the capacitance(s) of the modeled networks for the same
discontinuities with anisotropic substrates.

In the frequency range of interest ; that is, up to 20 GHz, there is less
than 1.5% difference between the shunt capacitances for the anisotropic
substrate and those for the equivalent isotropic substrate. Also, included in
the figures are the outcomes for the consideration of the effects of two modes
for the trz'msverse current.

‘ Table I shows the capacitance values of pi equivalent network
rhodeled for microstrip gap discontinuity with a GaAs substrate, k = 12.9,
including the asymmetrical cases. They are shown as a function of the output
line width and the gap spacing. Note that some values of the shunt



capacitances in the capacitive pi network are negative, indicating the
equivalent inductances. This phenomenon occurs for the tight coupling and is
manifested by the shunt element on the end side of the line with the narrower
width.

For the cases of tight coupling, some of the electric field from the
narrower line divergently terminate on the wider line or those from the wider
line convergently terminate on the narrower line. This effect decreases the
capacitance value below that of the capacitance per unmit length that is
normally associated with a uniform microstrip line and results in negative
values for the shunt capacitances on the narrower line side. However, when
the gap spacing is increased, the capacitive effects eventually predominate,
regardless of the degree of asymmetry between the two lines. This is due to
the fact that a lightly coupled gap will behave more like two uncoupled open
ends.

Table I

Open end equivalent capacitance C, as a function of the line width for
sapphire, k =9.4 and K, =11.6. Units are pF/Meter for C/W. a=1.0,

h=0.1, b=1.1, and £=2 GHz.

TPpairwith ~ TPpair with TP pair with QT pair with

noJ, one J, mode  two J, modes no J,

- Wh Ce /W Coe /W C./W Co /W
0.5 62.28 58.14 58.08 61.90
1.0 53.61 49.75 49.62 54.46

2.0 48.23 44.53 44.29 49.38
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Table II

Capacitance values of pi equivalent network as a function of the output line
width and the gap spacing for GaAs, x =12.9. Units are fF for C, C,, and

C,,. W, / h=1.0, 2=0.4, h=0.03, b=1.03, and =14 GHz.

(@)d/h=0.2
TP pair with TP pair with
no J, two J, modes
W,/h Cy Cs Ca Ca Cs Ca
0.25 11.62 9.47 -1.38 10.98 8.76 -1.20
1.0 5.13 18.18 513 4383 16.88 4.83
4.0 -4.05 27.21 4293 -2.78 25.37 40.64
(b) 5/h=0.6
TP pair with TP pair with
no J, two J, modes
W,/h Cy Ce2 Ca Ce Co
0.25 15.13 4.12 293 1424 3.99 2.66
1.0 11.82 7.85 11.82 11.00 7.62 11.00
4.0 6.64 13.18 5031 6.12 12.75 47.86
(¢)8/h=1.0
TP pair with TP pair with
noJ, two J, modes
W,/h Ca Ce Cs Ca Ce Co
0.25 17.04 1.87 498 1598 1.97 4.52
1.0 15.39 3.61 1539 14.27 3.717 14.27

4.0 12.56 6.52 5535 1132 6.79 52.48



(6-2)Results for coplanar waveguide dispersion characteristics

Many ways are used to verify the validity of our method. First of all,
our results obtained in the transformed domain from the general expressions
for the sources are checked against those from the Fourier series expansions
in the original spatial domain for the sources. The results in both cases are
obtained for the propagation characteristics of microstrip line (MS) including
anisotropic substrates. Although the method using Eq.(2.35) to find the
dispersions of MS with a top cover is also developed and included in the
dissertation, it produces, if the cover is far enough away from the substrate,
almost the same data as those in [25] which discussed and compared with a
lot of the results shown by many other authors.

We compute the microstrip line dispersion data shown in Fig. 6.2.1 and
6.2.2 for an alumina substrate whose typical dielectric constant is quoted as
9.7. Fig. 6.2.3 and 6.2.4 give the microstrip line dispersion data for a sapphire
substrate with x =9.4 and k, =11.6. All the lines in these four figures with
diamond marks are our results by the method using Eq.(2.31) for the source
expressions and solving the problem in the original domain. The other lines
with triangular marks are our results by the method using Eq.(4.13) for the
source expressions and solving the problem in the transformed domain.

In addition, we examine the results produced by this method for
coplanar waveguide dispersions against those that were given by the quasi-
static approximation equation in {28]. This equation was derived by assuming
that the semi-infinite ground planes on each side of the central strip which, as
mentioned above, contradicts the real structures usually encountered.

Also, we find that the finite widths of the ground planes do influence
the dispersions to some extent and this fact was not taken into consideration

in the quasi-static equation. Because this kind of the structures of coplanar



waveguides can support a perturbed TE,, rectangular waveguide mode, this
phenomenon results in a limitation for the width of the dielectric-loaded
waveguide ; namely, the value of a.

The CPW dispersion data for a GaAs substrate using the dielectric
constant k =12.9 are shown in Fig. 6.2.5 and 6.2.6. The lines with circle
marks are our results and the other lines with cross marks are those by the
quasi-static equation. We use an Epsilam-10 substrate as an example to
obtain the CPW dispersion data, with anisotropic substrates, as shown in Fig.
6.2.7 and 6.2.8. The substrate has anisotropic dielectric constant with k =13
and x, =10.3.

. In all four figures for coplanar waveguide propagation characteristics,
our results with both isotropic and anisotropic substrates show a slight
increase for effective dielectric constants with frequency and a very slight

decrease for characteristic impedances against frequency.
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(6-3)Results for coplanar waveguide open-end discontinuities

First of all, we check our result against the result shown in [33] on the
same condition that the structure parameters for a GaAs substrate are chosen
as h=0.01, w=0.01, s=0.01 except that a=0.5 and ¢=0.1 are used for our
shielded configuration. In this case, ours is 11.75 fF obtained for 1 GHz and
that in [33] is 12.56 fF calculated by a static three-dimensional finite
difference method with no consideration of the effects of the currents, let
alone, the transverse current which must especially be taken into account for
the ground planes of coplanar waveguides.

Like the similar phenomenon to that mentioned in the previous section,
we find that the finite widths of the ground planes actually influence the
equivalent capacitance to some extent and this fact was not considered for the
structure studied by the static method in [33]. This kind of the structures of
coplanar waveguides which can support a perturbed TE,, rectangular
waveguide mode results in a limitation for the width of the dielectric-loaded
waveguide.

We compute the equivalent shunt capacitance, right at the end side of
the coplanar waveguide open end discontinuities, shown in Fig. 6.3.1 for an
alumina substrate, k = 9.7. For the two lines shown in the figure we maintain
all the other structure parameters and change the slot spacing. From the data,
ii shows that this does not influence the capacitances much. For the frequency
range of interest, the sample values by 2 GHz for each increment show very
few differences. The maximum and the minimum capacitances for each line in
this figure deviate from each other by less than 1%.

Fig. 6.3.2 gives the capacitance data of CPW open end discontinuity
for a sapphire substrate with x = 9.4 and x, =1L6. For these two lines in the

figure the width of the central strip line is varied, and so is the slot spacing.



Obviously, the wider the central strip is, the larger the capacitance for the
coplanar waveguide open end is.

The CPW open end capacitance data for a GaAs substrate using the
dielectric constant k =12.9 is shown in Fig. 6.3.3. The same indication of the
outcomes as that for an alumina substrate is observed for this substrate. We
use an Epsilam-10 substrate as another example for anisotropic substrates to
obtain the CPW open end equivalent capacitance as shown in Fig. 6.3.4. The
substrate has anisotropic dielectric constant with ¥ =13 and x, =10.3. Also,
the increase of the open end capacitances with the width of the central strip is
seen for this anisotropic substrate.

In all four figures for coplanar waveguide open end capacitanées, our
results for both isotropic and anisotropic substrates indicate a very slight
change against frequency. The maximum and the minimum capacitances for
each line in the four figures vary from each other by at most around 1% for

frequencies up to 20 GHz.
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Chapter 7
Conclusion

There are three main topics contained in this dissertation. First of all,
we develop the dynamic source reversal method, based on potential theory, to
characterize microstrip discontinuities including anisotropic substrates. In
microstrip open-end and symmetrical gap problems, only one mode for the
transverse current needs to be included to obtain accurate results. However,
for asymmetrical gap problems two modes for the transverse current are
needed.

In treating these microstrip discontinuities, we use two pairs of
expansion functions for the perturbed current and charge. From the data
produced by using the shifted and unshifted unipolar testing functions for
each pair respectively, we find that QT pair is not so efficient as TP pair. It is
suggested that the efficiency of QT pair might be much improved by utilizing
the bipolar testing functions.

For microstrip open ends and gaps with anisotropic substrates, the
assumption of an equivalent isotropic substrate is found to be a useful
technique to obtain the equivalent capacitance(s) of the modeled network.

In the second place, we develop an efficient method to solve coplanar
waveguide propagation characteristics in the transform domain. The use of
the sources on coplanar waveguides as obtained by conformal mapping
allows a very effective iteration method to be implemented to find the
dispersions containing anisotropic substrates. Owing to these new general
expressions for the sources, it is proved that this method can also be reduced
to work out the problems of microstrip dispersions containing anisotropic
substrates.
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Finally, we apply the dynamic source reversal method to characterize
coplanar waveguide open end discontinuity with the help of the efficient
method used to find the dispersions of coplanar waveguides. In all the above
results for these three topics, very good accuracy and excellent efficiency has
been observed.

It is believed that the dynamic source reversal method can be applied
to treat a few more microstrip discontinuities such as steps, some more
discontinuous configurations of coplanar waveguides, and a lot of finline
discontinuities. In addition, the efficient method used to solve coplanar
waveguide dispersions can be modified further to treat the propagation
characteristics of finlines.



Appendix 1 Summing results of some series expressions over m and n

In the development of our method there are a few sets of double sums,
over the index n and m, which do not have the exponential decay associated
with them. Since their convergence is very slow, these terms must be first
summed over m by a mathematical method. As proved in [1], we can use the
residue theory to accomplish this. Only the results are shown here, but the
readers who have interest in the details of the derivation can refer to [1].

With the help of the residue theory applied to the chosen functions of

spatial frequency, we obtain
s Fu_1 sinh(&,c)sinh (& ,h)
= Yom + B2 2[Ly, sinh(Goe)cosh(§yyh) + &, cosh(&,¢)sinh (G )]
=TF(n)
(a.l1.1)
and

3B, Ha |_ sinh(Cuo) [Kk3sioh(Guh) | Gyl Sinh(Gzoh)
Yim +B° ¥, +B2] 22+p%)| D D
=TG(n)

m

vnl vn2

(a.1.2)
where Dy, = [&,, sinh(&,c)cosh(E,,h) +&, cosh(4,c)sinh(¢,,h)] and D,y
= [x&, sinh (&) cosh(Z5,h) + &y, cosh(&,c)sinh (G, h)].
As n approaches to infinity we have the approximations for the above two
equations as follows

= AF(n) ard Lim TG(n)= 2“*

n n

Lim TF(n) = 41

n—o

= AG(n) (a.1.3)
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(x/xy)?

where x_ = —.

[k +(x /x,)?]

With these we can rewrite the expressions including double testing results as

S o upy = ZITF®) - AF@)]papy + = T 2pupy

nm ‘Ynm n
(a.1.4a)
and
er H, + 2ﬁm q]p_.n_. = Z[TG(n)—AG(n)]p Do +
n ml_7§m+B2 7nm+j“ s o w
a 1
;Kr§;pmpnj
(a.1.4b)
In these equations let us consider
Z _pnipnj
a=131

]

4j j Z%cos[——sm(e)]cos[—sm(e )]cos(2i0)cos(2 j6')d6de’
0=13

(a.1.5)
where x = sin(0) is used. Note that we can extract the summation item in the
double integrals first and simplify it as follows

[ g 1

> lcc)s(u x)cos(u,x)= ) = cos[—sm(e)]cos[——sm(e )]

a=130 a=1301

_ —lnltan[n(x -X )]tan[n(x+ X )]l
4a 4a




2
m(%) - :tl—lnlsinz (8) - sin? (8")]

1 ( 8a )2 N icos(2n6)cos(2n6')

2n

n=1

(a.1.6)
Therefore we obtain, after substituting Eq.(a.1.6) into (a.1 .5),
1,

2

n=13

B |-

pnipnj =

£ 2| » 2 P .
J'OEJ.OE{ Z M(Si) + Z 2005(2[16)003(2116 ) ]cos(zie)cos(zjev )da de'

n=l,3 \TW n=I n
(@.1.7)
where the orthogonal property can now be applied to yield the final results as
shown below
-, s
E_m(fi) i=j=0
4 W
- 1 n .
—pm'pnj = = 1=J=1 (318)
n=130 8
. 2
L i=j=2
16

Similarly we can calculate the other summation over n. For the case of
testing that does not emphasize the field at the edge we get

; 2
O () -
220 =1 \aw
3 Lpumpy=| ZpM | 2] i=1 @l
S F-@2i) 2-@Qi) ‘
5(-1))’*‘2[ 5 3 -
4 2 |- 32-(21‘)2] =
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