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ABSTRACT

Riddhi Pratim Ghosh, Committee Chair

We investigate the asymptotic behavior of the posterior distribution of the canonical pa-

rameter within the exponential family when the dimension of the parameter space grows with the

sample size, specifically focusing on the Diaconis-Ylvisaker prior. This prior is notable as it acts

as a conjugate prior for the exponential family. Our analysis establishes that, under mild conditions

on both the true parameter value θ0 and the hyperparameters of the prior, the distance between the

posterior distribution and a normal distribution, centered at the maximum likelihood estimator with

a variance equal to the inverse of the Fisher information matrix, approaches zero in the expected

total variation distance norm. Our Bernstein-von Mises theorem requires only that the dimension

of the parameter space d grows linearly with the sample size n, with the condition d = o(n). In the

process, we derive a concentration inequality for the quadratic form of the maximum likelihood

estimator, circumventing the need for specific assumptions such as sub-Gaussianity. To illustrate

our findings, we offer a specific application to the Multinomial-Dirichlet model, extending our

analysis to deal with density estimation and Normal mean estimation problems.
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CHAPTER 1 INTRODUCTION

1.1 Basics of Bayesian Statistics

In Bayesian inference, to learn about the unknown parameter θ given data x, we utilize

a model f(x|θ) called the sampling distribution or data distribution, along with an appropriate

prior distribution for θ, to obtain the posterior distribution. The prior distribution captures our un-

certainty regarding θ before observing the data. The choice of prior distribution can significantly

impact the resulting posterior distribution and inference. It may reflect an integration of our sub-

jective beliefs and knowledge about the parameter, constituting a subjective prior, or it may be a

conventional prior representing minimal or no information, termed an objective prior.

Given the model and the prior, Bayesian inference determines the conditional probability

density of θ given X = x using Bayes’ theorem,

π(θ)f(x|θ)
π(θ|x) = ∫ ,

π(θ′)f(x|θ′)dθ′ (1.1.1)

Θ

where f(x|θ) denote the conditional density of X given θ, and π(θ) denote the prior density

function. The numerator represents the joint density of θ and X , combining information from

both the observed data and prior beliefs, while the denominator represents the marginal density of

X , containing solely information from the observed data. Here, the symbol θ represents both a

random variable and one of its realizations. Note that Equation (1.1.1) is defined for the contin-

uous parameters. In cases where the parameter θ is discrete, the integral in the denominator of

Equation (1.1.1) is substituted with a sum. Given that the denominator remains independent of θ

for fixed x, it can be regarded as a constant. Thus, an alternative representation of Equation (1.1.1)

is

π(θ|x) ∝ π(θ)f(x|θ). (1.1.2)

The conditional density π(θ|x) of θ given X = x is known as the posterior density, represent-
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ing our uncertainty about the parameter θ in view of the observed data. The prior beliefs π(θ)

regarding the parameter is updated to π(θ|x) by incorporating the insights gained from the data.

Unlike a Frequentist statistician, who typically reports properties of estimators such as un-

biasedness, consistency, and efficiency, a Bayesian statistician may choose to either simply report

the posterior distribution or provide summary descriptive statistics associated with it. As an illus-

tration, the posterior mean for a real-valued parameter θ might be presented

∫ ∞
E(θ|x) = θπ(θ|x)dθ,

−∞

and the posterior variance

{ }
Var(θ|x) = E (θ − E(θ|x))2|x∫ ∞

= (θ − E(θ|x))2 π(θ|x)dθ.
−∞

Alternatively, the posterior standard deviation could be presented as another measure of the dis-

persion or spread of the parameter, given a set of data points. Moreover, the posterior distribution

offers a powerful and flexible framework for tackling complex problems in statistics. In estima-

tion problems, the posterior distribution serves as a foundation for deriving point estimates (e.g.,

posterior mean, median) and interval estimates (e.g., credible sets) of the parameters of interest. In

Bayesian hypothesis testing, the posterior distribution provides a natural framework for comparing

competing hypotheses by evaluating their posterior probabilities, or odds.

1.2 Bayesian Inference

Bayesian inference, recognized for its robust and adaptable statistical framework, is renowned

for its inherent flexibility in updating beliefs, offering predictions, and making inferences. This

flexibility arises from its integration of multiple levels of randomness, encompassing both prior

knowledge and observed data. Adopting a recursive perspective, the previous posterior distribution

can serve as the updated prior distribution, amalgamating with new observed data to yield an up-

to-date posterior distribution. Its origins can be traced back to the foundational work of Reverend
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Thomas Bayes, who established the framework for this methodology. Grounded in probability the-

ory, Bayesian inference offers a structured approach for evaluating unknowns in light of the data

at hand. This approach enables the integration of information from diverse sources while compre-

hensively addressing all reasonable sources of uncertainty in inferential summaries. Its appealing

methodological elegance has drawn attention from practitioners in a variety of fields.

Important components of Bayesian inference include the posterior distribution, which rep-

resents refined beliefs after observed data has been assimilated; the likelihood function, which

measures the probability of observing data under various parameter settings; and the prior distribu-

tion, which acts as a store for prior knowledge or assumptions prior to data observation. Bayesian

methods, extensively used in artificial intelligence, machine learning, and statistics, offer a co-

hesive and accessible framework for quantifying uncertainty, estimating parameters, and making

decisions. Due to its adaptability and interpretability, Bayesian inference is a valuable tool for

solving complicated problems in a variety of fields. It gives practitioners the confidence and com-

prehension needed to navigate intricate environments effectively.

1.2.1 Example: Estimating the Normal Mean with a Normal Prior

An example of inference concerning the parameter µ in a normal distribution N (µ, σ2),

which is defined by mean µ and variance σ2, is used to demonstrate these ideas (Ghosh, De-

lampady, and Samanta, 2006). The dataset consists of x1, x2, · · · , xn observations from this dis-

tribution that are independent and identically distributed (i.i.d.). A normal distribution with an

appropriate mean and variance, η and τ 2, respectively, is a mathematically convenient and reason-

ably flexible prior distribution for µ. A higher prior variance τ 2 indicates greater uncertainty about

the true value of the parameter before observing any data, while a lower prior variance τ 2 suggests

more confidence or precision in the prior beliefs about the parameter. A method to calibrate τ 2 by

comparing it with σ2 was proposed by Jeffreys (1961). For example, setting the prior variance τ 2

to be the data variance of size m, σ2/m, indicates that the information concerning η is about equal

to the information in m observations. The posterior density, represented by a normal distribution
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expression, can be shown

{
2
( )2}

1 nτ 2 + σ σ2η + nτ 2x̄
π(µ|x) = √ exp − µ− .

2π τσ√
2 2

2τ 2σ2 nτ 2 + σ2
nτ +σ

Thus, the posterior mean is

σ2η + nτ 2x̄
E(µ|x) = , (1.2.1)

nτ 2 + σ2

and the posterior variance is

τ 2σ2

Var(µ|x) = . (1.2.2)
nτ 2 + σ2

The variability decreases from σ2 to τ 2σ2/(nτ 2 + σ2) when µ changes from the prior estimate

η to a weighted average of the prior estimate and the sample mean x̄. A large τ 2 or substantial

data presence indicates inadequate prior information. In such instances, the posterior mean closely

approximates the maximum likelihood estimator (MLE) x̄.

Later, by comparing the prior π(µ) and the posterior π(µ|x), we will look into how we

might quantify the knowledge obtained from the data. Both the prior and the data have an impact

on the posterior distribution. The impact of the data tends to outweigh the influence of the prior as

we get more and more data.

1.2.2 Example: Estimating the Probability of Success in Bernoulli Trials with a Beta Prior

Bernoulli trials consist of a sequence of independent experiments or observations, each

resulting in either “success” or “failure”. The objective is to estimate an unknown population

proportion of “success” from the outcomes of a sequence of independent and identically distributed

Bernoulli trials. The data can be summarized by the total number of successes in the n trials.

Suppose we select a random sample of n children, denoted as x1, . . . , xn, where each child
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can be categorized as either 0 or 1. For each i ∈ {1, . . . , n}, we define Xi as follows,

1 if the ith child in the sample has a food allergy.
Xi = 0 otherwise

Then, the random variables Xi’s are from B(1, p), i.e., Bernoulli random variables with probability

of having a food allergy p. Hence, the number of children in the sample x = (x1, . . . , xn)
⊤ who

have a food allergy follows a binomial sampling model,

( )
n ∑

π(x|p) = ∑ n ∑n

p i=1 xi
n (1− p)n− i=1 xi , 0 ≤ p ≤ 1, (1.2.3)
i=1 xi

and

∑n ∑n

π(x|p) ∝ p xi=1 i(1− p)n− xi=1 i .

The choice of the prior is flexible. We can opt for a non-informative prior, where the prior

distribution for p is uniform on the interval [0, 1]. Alternatively, we can explore a family of priors

for p that facilitate the computation of the posterior. For simplicity at this stage, let’s begin with a

conjugate prior. Let π(p) denote the prior distribution of p, then

Γ(α + β)
π(p) = pα−1(1− p)β−1, 0 ≤ p ≤ 1; α > 0, β > 0. (1.2.4)

Γ(α)Γ(β)

We refer to this distribution as a Beta distribution with hyperparameters α and β, denoted as

Beta(α, β). Removing the constant term in Equation (1.2.4), we have

π(p) ∝ pα−1(1− p)β−1.

The prior mean and variance are given by
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α

E(p) = ,
α + β

αβ
Var(p) =

(α + β)2
.

(α + β + 1)

Keep prior density π(p) in line with the sampling distribution Equation (1.2.3), π(p) is

equivalent to α− 1 prior successes and β − 1 prior failures. Using Bayes’ theorem, we can obtain

the posterior density as

∑n ∑n

π(p|X = x) ∝ pα+ xi−1(1− p)β+(n− x )−1i=1 i=1 i , 0 ≤ p ≤ 1; α > 0, β > 0. (1.2.5)

The posterior distribution has a Beta density, as can be seen by comparing it with Equation (1.2.4),∑ ∑
replacing β + (n n− i=1 xi) with β, α + n

i=1 xi with α. Note that the exact expression for the

posterior can be obtained by adding a constant term C(x) to Equation (1.2.5), where

Γ(α + β + n)
C(x) = ∑n ∑n .

Γ(α+ i=1 xi)Γ(β + n− i=1 xi)

The variance and mean of the posterior distribution can be computed

∑
α + n xi

E(p|x) = i=1 ,∑α + β + n
(1.2.6)

(α+ n ∑n−
Var(p|x) = i=1 xi)/(β + n i=1 xi)

.
(α+ β + n)2(α+ β + n+ 1)

As previously noted, a Bayesian statistician has two options for reporting: either they report the

posterior only, see Equation (1.2.5), or they report the posterior mean and variance, see Equa-

tion (1.2.6), which gives information about the location and dispersion of the posterior distribution.

It is important to note that the posterior variance is modest if n is big, and the posterior mean is∑
roughly equivalent to the maximum likelihood estimator, p̂ = n

i=1 xi/n = x̄. As a result, the

posterior distribution is centered at p for large n. This discovery supports the earlier idea that the

influence of the prior diminishes with an increasing amount of data.

The posterior mean can be expressed by a weighted average of the prior mean and the
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maximum likelihood estimator

(α + β) α n
+ x.¯

(α + β + n) α + β (α + β + n)

This implies that always the posterior mean lies between the sample proportion, x̄, and the prior

mean, α/(α + β). Again, the prior and the data both have significance, and (α + β) and n,

respectively, indicate the relative importance of the two information sources.

Let’s suppose our interest, based on the existing data, lies in predicting the posterior out-

come of a single new trial, rather than forecasting another set of n new trials. In this example,

we aim to predict the probability of a child having a food allergy in a new (n + 1)-th draw. This

prediction underscores a fundamental issue in scientific research. Employing the same estimate

as previously determined, the posterior mean E(p|x), makes intuitive sense. The following ex-

planation includes some commonly used priors and their corresponding values of the posterior

mean.

Let xi+1 denote the result of a new trial. Using α = β = 1 as the uniform prior, we obtain

a posterior prediction

∫ 1

Pr(xi+1 = 1|x) = Pr(xi+1 = 1|p,x)π(p|x)dp∫01
= pπ(p|x)dp

0

= E(p|x)∑n

= i=1 xi + 1
.

n+ 2

For further details on the calculation, refer to Gelman, Carlin, Stern, and Rubin (2004).

Although Laplace and Bayes favored this prior, it is not as widely used as it formerly was. As an∑
alternative, we derive the Jeffreys prior for α = β = 1/2, with a posterior mean of ( n

i=1 xi +

1/2)/(n + 1). This prior is frequently applied, particularly when dealing with one-dimensional

parameters. As Bernardo (1979) points out, it is also a reference prior. The use of reference priors
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is widespread. A Beta density that has α = 0, β = 0 integrates to infinity, which makes it an∑
improper prior. However, unless two extreme cases occur, where n

i=1 xi = 0 or n, the posterior

remains valid when calculating a posterior density using the Bayesian method. In this instance, the

posterior mean precisely corresponds to the maximum likelihood estimator.

Objective priors, also known as non-informative priors, are a type of prior distribution used

in Bayesian statistics. Unlike subjective priors, which are chosen based on prior knowledge or

beliefs about the parameters being estimated, objective priors are designed to be minimally infor-

mative and to reflect a lack of prior information about the parameters. Objective priors are typically

chosen to satisfy certain desirable properties, such as being invariant under reparameterization, be-

ing minimally informative in terms of influence on the posterior distribution, or being invariant

under transformations of the parameter space.

From the discussed examples, we learned that although objective priors are usually im-

proper, they can provide proper posteriors in order to be useful. Objective priors are particularly

useful when little or no prior information is available about the parameters being estimated, or

when it is desirable to minimize the influence of the prior on the posterior distribution.

Assume that the problem is represented by the production of both defective and non-

defective products in a factory that makes switches, where the functional switches are represented

by black and the defective ones by red. Engineers might have some prior knowledge in this case.

They could be able to determine the most likely value of p, which could be α/(α + β), the prior

mean. Two formulae to calculate α and β would be provided if one also knows the prior vari-

ability. In this case, Jeffreys prior, characterized by having a significant portion of its probability

mass concentrated at both extreme endpoints, might be appropriate. This is particularly true when

the process typically operates at a high level of quality, which corresponds to small values of the

parameter p. However, there are instances when the process deviates from this expected behavior,

leading to higher values of p indicating lack of control. The peak of the prior distribution near

p = 1 could signify frequent occurrences of such lack of control situations or could represent a

pessimistic prior belief aimed at anticipating and mitigating potential disasters.
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It is noteworthy advantages of objective priors, such as the uniform, Jeffreys, and reference

priors. These priors, even with small sample sizes n, tend to yield posterior means that closely

approximate the maximum likelihood estimator. Additionally, in situations where the maximum

likelihood estimator suggests p̂ = 0, which is unlikely in most cases, the classical statistical anal-

ysis based on frequency does not make sense. In contrast, objective Bayes estimates adjust signif-

icantly towards p = 1/2, representing a state of complete ignorance. This adjustment, known as

shrinkage, results in more plausible point estimates and more reliable confidence intervals.

1.2.3 Example: Hypothesis Testing for the Normal Mean with a Normal Prior

Assuming for convenience that σ2 is known, let X1, X2, . . . , Xn be independent and identi-

cally distributed random variables from N (µ, σ2). In the example discussed in Ghosh et al. (2006),

µ denotes the expected drop in blood pressure brought on by a novel medication. The hypothesis

to test is H0 : µ ≤ µ0 vs Ha : µ > µ0, where µ0 denotes the degree of efficacy of a standard

medication that is now available for purchase.

Let π(µ) denote the prior distribution. Determine the posterior density π(µ|X) first. Next,

find out

∫ µ0

π(µ|X)dµ = Pr{H0|X},
−∞

and

∫ ∞
π(µ|X)dµ = 1− Pr{H0|X} = Pr{H1|X}.

µ0

If one of the two hypotheses is much more likely than the other, one might choose that

hypothesis or just report the values.

Assuming that the prior for µ has a normal distribution with mean η and variance τ 2,

we show some computations. With mean and variance provided by Equation (1.2.1) and Equa-
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tion (1.2.2), the posterior for µ is also normal. If after that

π(µ ≤ µ0|X) = Φ(z) and π(µ > µ0|X) = 1− Φ(z),

where Φ denote the standard normal distribution function and

µ − (η/τ 2 + n/σ2 ¯
0 X)/(1/τ 2 + n/σ2)

z = √ .
(σ2τ 2/n)/(σ2/n+ τ 2)

Setting τ 2 to approach infinity is a common method that has the same result as assuming a

uniform prior

π(µ) = c, −∞ < µ < ∞.

Any of these could yield

√
n

z = (µ0 − X̄) .
σ

Assume that if the posterior probability of H0 is less than 0.05, we intend to reject the null hypoth-

esis. As a result, we reject H0 if

σ σ
µ0 − X̄ ≤ −1.64 or X̄ ≥ µ0 + 1.64 .

n n

At a significance level of α = 0.05, this decision rule perfectly is in line with the results of the

conventional test for this problem in Frequentist statistics.

In the broad field of research, our goal has been to test the sharp null hypothesis H0 : µ =

µ0 against Ha : µ = µ0. Dealing with this type of hypothesis testing would require selecting a

different prior, as the prior we would have chosen would assign zero probability to H0. In such

cases, Bayes factors often deviate significantly from those of classical results.

Johnson and Rossell (2010) proposes non-local prior densities in Bayesian hypothesis tests.

̸
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Non-local prior densities impact the accumulation of evidence by providing a more balanced ap-

proach towards true null and true alternative hypotheses. Traditional Bayesian hypothesis tests

using local alternative priors tend to accumulate evidence much more rapidly in favor of true al-

ternative models as the sample size increases. This asymmetry results in a linear increase in the

logarithm of the Bayes factor in favor of the true alternative hypothesis, while evidence for the true

null hypothesis accumulates at a slower rate.

On the other hand, non-local prior densities assign non-negligible probability to regions

of the parameter space consistent with null hypotheses, leading to exponential accumulation of

evidence in favor of true alternative hypotheses and sublinear accumulation of evidence in favor

of true null hypotheses. This balanced approach allows for a more equitable evaluation of both

hypotheses, addressing the issue of asymmetry in evidence accumulation seen in tests using local

alternative priors.

An example regarding the test of a normal mean is provided to contrast the performance

of local and non-local alternative priors (Johnson and Rossell, 2010). Consider independent and

identically distributed data from a normal distribution with mean parameter θ and unit variance.

The null hypothesis being tested is H0 : θ = 0 against various alternative hypotheses. Specifically,

the alternative hypotheses considered in the example are:

Ha
1 : π(θ) = N (θ; 0, 2)

Hb
1 : π(θ) = Cauchy(θ)

Hc : π(θ) ∝ (θ2)−1
1 exp(−0.318/θ2)

Hd
1 : π(θ) ∝ θ2n(θ; 0, 0.159)

These alternative hypotheses are defined using non-local densities, with Ha
1 corresponding to an

intrinsic prior, Hb
1 following Jeffreys’s recommendation, and Hc

1 and Hd
1 utilizing inverse moment

priors. The parameters of the inverse moment prior in Hc
1 were specified to match the tails of the

Cauchy prior in Hb
1. This example demonstrates how different types of non-local alternative priors

can be used in the context of testing a normal mean, showcasing the impact of these priors on the

accumulation of evidence in Bayesian hypothesis testing.
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1.3 Bayesian Decision Theory

According to Bayesian theory, the conditional law of X given a random variable θ is

defined as the distribution Pθ of a random variable X under a parameter θ. The conditional

distribution of θ given X is called the posterior distribution, and the distribution of the random

parameter θ is called the prior distribution. The posterior density is determined by Bayes’ theorem

if θ has a density of π and Pθ admits a density of pθ in relation to dominant measures,

pθ(x)π(θ)
π(θ|X = x) = ∫ .

pθ(x)π(θ)dθ

It’s essentially saying that even if the prior distribution π doesn’t strictly meet the criteria of being a

probability density function, e.g., it might not integrate to 1 over its domain, the Bayesian theorem

can still be applied to update our beliefs and derive a posterior probability distribution. Such

improper priors refer to prior distributions having infinite mass or where the integral diverges or

does not exist.

One could consider the main goal of a Bayesian analysis to be the computation of the

posterior distribution. As an alternative, one may use the posterior distribution in an attempt to

make a point estimator for the parameter θ. For this task, the posterior mean

∫
E(θ|X) = θπ(θ|X = x)dθ

is commonly used; however, other location estimators, including the posterior median and mode,

are also valid.

A loss function may be used to guide the choice of “best” point estimator. Refer to Van der

Vaart (2000), the definition of the Bayes risk of an estimator T ∗ in relation to the loss function L

is E ∗
θ|X [L(T − θ)].

In this case, the conditional risk E [L(T ∗ − θ)|θ] in Bayesian notation is the same as the

expectation of E[L(T ∗ − θ)], which in the classical framework reflects the risk function of T .
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The estimator T that minimizes the Bayes risk is the corresponding Bayes estimator. Given that

E [E (L(T ∗ − θ)|X)] is one way to describe the Bayes estimator, for any fixed x, the value T ∗ =

T (x) minimizes the posterior risk

∫
L(T ∗ − θ)pθ(x)π(θ)dθ

E [L(T ∗ − θ)|X = x] = ∫ .

pθ(x)π(θ)dθ

Reducing this expression could once more be a well-defined issue, even at earlier densities

that had an infinite total mass. The posterior mean E(θ|X) is the solution T ∗ for the loss function

L(y) = ∥y∥22. The posterior median provides a solution for the absolute loss L(y) = |y|.

Other Bayesian point estimators include the posterior mode, which, with a uniform prior

density, converges to the maximum likelihood estimator. The maximum probability estimator is

an additional technique that finds the center of the smallest ball that contains at least half of the

posterior mass.

1.3.1 Example: Bayes Estimators for the Normal Mean with a Normal Prior

Consider X1, . . . , Xn are iid with distribution N(θ, 1), and the prior π(θ) ∼ N(0, 1). The

likelihood function is

( ) { }
n n

1 1∑
L(θ) = f(x|θ) = √ exp − (xi − θ)2 ,

2π 2
i=1

and the prior is

{ }
1 1

π(θ) = √ exp − θ2 .
2π 2
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By Equation (1.1.2), the posterior can be computed by

p(θ|x) ∝ f(x|θ)p(θ){ [ ]}
n

1 ∑
∝ exp − x2

i − 2nxθ¯ + nθ2 + θ2
2{ i=1 }
1 [ ]

∝ exp − (n+ 1)θ2 − 2nxθ¯
2{ [ ]}
n+ 1

= exp − θ2
nx̄− 2 θ

2 n+ 1{ [ ( ) ]}2
n+ 1 x∝ exp − θ2

nx̄ n¯− 2 θ +
2 n+ 1 n+ 1{ [( ) ]}2

n+ 1 nx̄
= exp − θ − .

2 n+ 1

Therefore, the posterior follows a normal distribution as shown below

( )
nx̄ 1

π(θ|x) ∼ N , .
n+ 1 n+ 1

We are interested in the Bayes estimator for θ under squared error loss. This Bayes estimator for θ

corresponds to the posterior mean of θ under this loss function. That is,

T ∗ nx̄
= Eθ|x(θ) = .

n+ 1

Suppose the parameter of interest is θ2. In this case, the Bayes estimator for θ2 under

squared error loss is the posterior mean of θ2. That is,

( )2

T ∗ [ ]2 1 nx̄
= Eθ|x(θ

2) = Varθ|x(θ) + Eθ|x(θ) = + .
n+ 1 n+ 1

Under absolute error loss, the Bayes estimator for θ is the posterior median of θ. Given the

symmetric nature of the posterior distribution, the posterior median coincides with the posterior
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mean. Therefore, the Bayes estimator in this case is

T ∗ nx̄
= Eθ|x(θ) = .

n+ 1

1.3.2 Convergence of Bayes Estimators

In general, all these estimators are asymptotically equivalent if the underlying experiments

converge to a Gaussian location experiment in a reasonable sense. In this instance, the observation

comprises a random sample of size n drawn from a density pθ, which is smoothly dependent on

a θ Euclidean parameter. As a result, the density pθ takes on a product form, and the posterior

density, given a prior Lebesgue density π, follows the form as described in (Van der Vaart, 2000),

∏n
pθ(Xi)π(θ)

p(θ|X1, . . . ,Xn) = ∫ i=1∏n .

pθ(Xi)π(θ)dθ
i=1

akin to Equation (1.1.1). As the sample size n grows indefinitely, the distribution corresponding

to this measure typically tends to converge to a measure that is concentrated at the true parameter

value θ0. Bayesian estimators are usually consistent in this setting. In order to investigate a more

complex limit, we first normalize the parameter as usual and look at the sequence of posterior
√

distributions of n(θ − θ0), whose densities are given by

∏n √
p √
θ0+h/ n(Xi)π(θ0 + h/ n)

p n(θ−θ0)|X1,...,Xn
(h) = i=1√ ∫ n .∏ √

p √
θ0+h/ n(Xi)π(θ0 + h/ n)dh

i=1

√
If π is the continuous prior density, then π(θ0 + h/ n) behaves like the constant π(θ0) as n

grows, and π can be dropped from the expression for the posterior density. Local asymptotic( )
normality is demonstrated by the sequence of models P √

θ0+h/ n : h ∈ Rd with densities pθ that
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show appropriate smoothness in parameter space. This means that the likelihood ratio satisfies

∏n
h → p √

θ0+h/ n/pθ0(Xi).
i=1

( )
They behave like the likelihood ratio process of the typical experiment N (h, I−1

θ0
) : h ∈ Rd in

the asymptotic regime. As a result, we predict that the statement above is asymptotically equivalent

in distribution to

dN (h, I−1
θ0

)(X∗)∫ = dN (X∗, I−1
θ0

)(h), (1.3.1)
dN (h, I−1

θ )(X∗
0

)dh

where the normal distribution density is denoted by the expression dN (µ,Σ). In terms of the im-

proper Lebesgue prior distribution, the expression previously given exactly matches the posterior( − )
density for the experiment N (h, I 1

θ0
) : h ∈ Rd . This distribution is normal, as indicated by the

formula on the right in Equation (1.3.1), which has a mean of X∗ and a covariance matrix of I−1
θ0

.

According to this heuristic argument, for the true parameter θ0, the posterior distribution

of the Gaussian limit experiment respect to the Lebesgue prior is predicted to converge to the
√

posterior distribution of n(θn −θ0). In contrast, X∗ follows the N (0, I−1
θ0

)-distribution, and the

latter is equivalent to the N (X∗, I−1
θ0

)-distribution. Here, convergence is characterized in terms

of stochastic processes and probability measures; the details of the heuristics do not have to be

precisely defined at this point. However, the convergence should include the assumption that,

for well-behaved Euclidean-valued functionals applied to the posterior laws, there is a typical

convergence in distribution.

Because of this, it is expected that a sequence of Bayes point estimators, which are effec-

tively location functionals applied to the posterior distributions, will converge to the appropriate

Bayes point estimator in the limit experiment. The majority of location estimators that are judged

reasonable correspond to the centers of symmetry of symmetric distributions, such as the normal

distribution. As a result, X∗ is the Bayes point estimator in the limit. We expect the distribution of
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Bayes point estimators to converge to the random vector X∗, or to the N (0, I−1
θ0

)-distribution un-

der θ0. Specifically, assuming regularity criteria, they are anticipated to be asymptotically efficient

and asymptotically comparable to maximum likelihood estimators.

This result has an interesting side effect: the limit distribution of a sequence of Bayes

estimators is invariant with respect to the prior measure that is used. Apparently, the observed data

gradually modifies one’s prior ideas as the number of observations rises. This statement mostly

depends on the assumption that the previous distribution has a positive, smooth density in the

neighborhood of the true parameter value. In the absence of this attribute, the previously stated

conclusion is invalid. The sequence of posterior distributions of θ, for example, cannot even be

consistent if one strictly follows a fixed discrete distribution that gives θ0 zero probability mass.

We focus on the locally asymptotically normal situation, although the heuristic argument

holds for convergence scenarios beyond Gaussian location experiments. In particular, we consider

that the observations consist of a random sample x1, . . . , xn from a distribution Pθ, which admits

a density pθ with respect to a measure ν on a measurable space (X ,A). The true parameter θ0

is assumed to be an interior point of a measurable subset Θ of Rd, to which the parameter θ is

assumed to belong. The mappings (θ,x) → pθ(x) are also conjectured to be jointly measurable.

1.4 Advantages of Being a Bayesian

The Bayes’ theorem, a fundamental concept outlining the reassessment of uncertainty in

response to new data, lies at the heart of Bayesian inference. This iterative process generates a

posterior probability distribution that embodies updated beliefs conditioned on the observed data,

integrating prior knowledge with empirical evidence. Through successive iterations, Bayesian

inference develops a rational evolution of information, enhancing understanding continuously as

new data is incorporated.

The Bayesian approach provides a well-defined remedy for common problems in statistical

inference. In high-dimensional data analysis, Bayesian methods offer advantages such as regular-

ization through prior distributions, which help prevent overfitting and improve model robustness.

Additionally, Bayesian techniques facilitate uncertainty quantification, allowing for the incorpora-
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tion of uncertainty in both the data and the model parameters. This is particularly beneficial when

dealing with limited or noisy data. Furthermore, Bayesian approaches enable the integration of

prior knowledge, expert opinions, and observed data to form a coherent framework for decision

making. By explicitly modeling uncertainty and updating beliefs based on new evidence, Bayesian

methods provide a principled way to make decisions under uncertainty.

When there is access to subjective data, it is possible to elicit a subjective prior, which

makes it easier to include expert knowledge in the analysis. As an alternative, objective priors can

frequently be selected to offer a consistent method for inference. It is wise to assess how resilient

certain components of the posterior distribution are to slight changes in the prior specification,

regardless of the choice of the prior.

Wald’s Minimax Theorem (Wald, 1949), states that under certain conditions, the minimax

decision rule is optimal in decision making. The minimax rule aims to minimize the maximum

possible loss, assuming that the decision maker faces a worst-case scenario. In Bayesian decision

theory, this theorem can be interpreted in terms of Bayes risk, which is the expected loss under a

given decision rule and a prior distribution.

A number of axiom sets can be used to develop the Bayesian framework, which provides

a sound basis for statistical inference. Moreover, the subjective Bayesian method resolves some

paradoxes or principles violations related to classical statistics. These undesirable characteristics

result from the dependence of classical statistics on evaluations like risk functions or confidence

coefficients, which are derived by integrating over the entire sample space and may produce illog-

ical results when specific data are available, or measures like p-values, which can be difficult to

interpret. These paradoxes sometimes have a strong presence. Even while the objective Bayesian

approach helps to alleviate some of these problems, there are still some rules that it does not adhere

to.

Generally speaking, Bayesians emphasize the importance of real-world validation when-

ever feasible (Ghosh et al., 2006). Essentially, Bayesians advocate for the validation of statistical

models and predictions through real-world observations or experiments. However, in cases where
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direct real-world validation is not possible, Bayesians may resort to using conceptual constructs

derived from Frequentist approaches to represent plausible scenarios. Despite being based on

different statistical philosophies, these conceptual constructs serve as proxies for real-world situa-

tions. In such instances, Bayesians may seek validation by comparing the outcomes or predictions

derived from their Bayesian models with those derived from the Frequentist constructs.

This approach allows Bayesians to assess the performance and reliability of their models

in contexts where direct real-world validation is challenging or impractical. Compared to conven-

tional approaches, Morris (1983) and Ghosh (2021) demonstrate the effective application of the

parametric empirical Bayes methodology. Cross-validation is discussed in Morris (1983). The

Bayesian approach to model selection is validated in Hoeting, Madigan, Raftery, and Volinsky

(1999). Most Bayesian publications offer validation for novel methods. In this study, we examine

the validation of proposed theorems in the Multinomial-Dirichlet model in Chapter 4.

Furthermore, Bayesian methods are easy to interpret for the general public and can be

understood by individuals without a background in statistics. In many practical cases, clients

interpret interval estimates provided by statisticians as Bayesian intervals, meaning they view them

as probability statements regarding the likely values of unknown quantities based on the evidence

in the data.

Notwithstanding these advantages, the Bayesian paradigm has primarily gained traction

and broad adoption in recent times, especially in the last fifteen years. A major force behind this

explosion has been the incredible progress in computing techniques, most notably the widespread

application of Markov Chain Monte Carlo (MCMC) methods. These developments have made it

possible to compute posterior distributions efficiently even in high-dimensional parameter spaces,

which makes Bayesian analysis useful in a wide range of real-world situations. A fundamental

study on sampling-based techniques (Gelfand and Smith, 1990) marked the beginning of these

revolutionary breakthroughs.
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1.5 Bayesian vs. Frequentist in Normal Mean Estimation

Consider a set of independent random samples x1, . . . , xn that have the same distribution.

These samples come from a normal distribution, i.e., x = (x1, . . . , xn)
⊤ ∼ N (µ, σ2), where the

population mean is µ and the population variance is known to be σ2. The maximum likelihood

estimator x̄ is commonly used in Frequentist statistics to estimate the population mean µ.

Bayesian statistics, on the other hand, offers an alternative viewpoint. Suppose, for the

purposes of this discussion, that the prior distribution was a normal distribution with variance τ 2

and mean η, or µ ∼ N (η, τ 2). In this approach, the maximum likelihood estimator x̄ and the

previous mean η are weighted to get the posterior mean,

σ2 nτ 2
µ̂|x = · η + · x.¯

nτ 2 + σ2 nτ 2 + σ2

This combination is commonly termed as the convex combination of the prior mean and

the maximum likelihood estimator. It underscores the significance of both prior information and

observed data, where the relative importance is influenced by factors such as the prior variance,

data variance, and the sample size. As the prior variance τ 2 goes to infinity, that is considering a

flat prior, which is also known as non-informative prior, the coefficient associated with the prior

mean goes to 0 and the coefficient associated with the maximum likelihood estimator goes to 1.

In this case, the posterior mean converges to the MLE. As the sample size n tends to infinity,

the coefficient associated with the prior mean tends to 0, while the coefficient associated with the

maximum likelihood estimator tends to 1. Consequently, the posterior mean converges towards the

maximum likelihood estimator. This implies that with substantial amounts of data, the influence

of the prior diminishes, and the data takes precedence in the estimation process.
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1.6 Bayesian vs. Frequentist in Consistency

In Frequentist statistics, an estimator θ̂n obtained from n independent and identically dis-

tributed random samples of θ0 is regarded as consistent if, for any ϵ > 0,

(∣ ∣ )∣ ˆ ∣
Pr ∣θn − θ0∣ > ϵ → 0 as n → ∞.

An estimator θ̂n of the true parameter is deemed consistent if, for every ϵ > 0, the probability

of the set lying outside a neighborhood centered around the true parameter tends towards 0 as the

sample size n approaches infinity. In other words, as the number of data points used increases

indefinitely, the resulting sequence of estimates converges in probability to θ0. This indicates that,

with an increasing sample size, the distribution of the estimator gradually converges towards the

true parameter.

Consider an illustrative scenario where our objective is to estimate the population mean

of a normal distribution N (θ, 1) with a known variance of 1. The maximum likelihood estimator

for θ is denoted by the sample mean x̄. In our analysis, we manipulate the sample size, choosing

n = 5, 10, and 50, while fixing the true parameter θ0 = 1. Remarkably, as we increase the

sample size, the estimators become progressively more tightly clustered around the true value θ0.

This phenomenon is visually depicted in Figure 1.1, illustrating that a larger proportion of the

probability mass is contained within the same neighborhood as the sample size grows.
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Figure 1.1 Density curves of the estimators for the mean of a normal distribution are illustrated for
sample sizes n = 5, 10, and 50. The true parameter value θ0 = 1 is indicated by a vertical dashed
line.

Assume that a series of data with density f(x|θ0) was produced as independent, identically

distributed random variables. As further information from the data is gathered, our initial under-

standing of θ is gradually transformed into the posterior distribution. As the sample size increases,

this updated knowledge about θ, as represented by its posterior distribution, should ideally be-

come more concentrated around the true parameter value θ0. This characteristic is an asymptotic

phenomenon and is called the consistency of the posterior distribution at θ0. In brief, it suggests

that with more data, our uncertainty about the true parameter value diminishes, and our estimate

becomes more accurate, eventually converging towards the true value.

Let x1, . . . , xn denote the observations at the nth stage, abbreviated as xn, with density

f(xn|θ), where θ ∈ Θ ⊂ Rd. Let π(θ) be a prior density, π(θ|xn) the posterior density defined

in Equation (1.1.1), and Π(·|xn) the corresponding posterior distribution. In Bayesian statistics,

π(θ|xn) is consistent if and only if for every open neighborhood U of θ0,

π(U c|xn) → 0 as n → ∞.

The consistency of π(θ|xn) is characterized by the property that, for every open neighborhood U
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of θ0, the probability π(U c|xn) tends to 0 as n → ∞, almost surely under the distribution specified

by θ0. Similarly, the posterior is deemed consistent if, for each open neighborhood U containing

the true parameter, the posterior probability of the complement of U approaches 0 as the sample

size n increases indefinitely. This indicates that, as the sample size grows, the posterior distribution

converges to the true distribution governing the data generation process.

The concept originated with Laplace, who proved that if x1, . . . , xn are independent, identi-

cally distributed Bernoulli random variables and Pr(xi = 1) = θ, and π(θ) is a continuous, positive

prior density on the interval (0, 1), then for all θ0 in the interval (0, 1), the posterior distribution is

consistent. This idea supplements Bernoulli’s weak law of big numbers, which functions as the first

fundamental rule. It is referred to as the second basic law of large numbers by Von Mises (1981).

Freedman (1963, 1965), and Diaconis and Freedman (1986) have highlighted the importance of

posterior consistency.

According to the definition of convergence in distribution, the observation that Π(·|xn)

converges, with probability 1 under θ0, to the distribution concentrated at θ0, is equal to the con-

sistency of Π(·|xn) at θ0. More generally, under some plausible conditions, the consistency of the

posterior distribution holds for situations involving a parameter of finite dimensions. In particular,

for a real-valued parameter θ, Var(θ|xn) → 0 and E(θ|xn) → θ0 with a probability of one under

θ0 are required to be shown to be consistent at θ0. The application of Chebyshev’s inequality can

demonstrate this.

Think about the case of Bernoulli-Beta that is discussed in Section 1.2.2. Let x1, . . . , xn

be independent and identically distributed Bernoulli observations with Pr(xi = 1) = θ for all

i = 1, . . . , n. Assume that for θ, we use a Beta(α, β) prior density. Next, for any given x1, . . . , xn,∑
the posterior density of θ takes the form of a Beta(α + n ∑

i=1 xi, β + n n− i=1 xi), as described in∑
Equation (1.2.4). The rule of large numbers implies that n

i=1 xi/n → θ0 with a probability of 1
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under Pθ0 , and

E(θ|x1, . . . , xn) → θ0

Var(θ|x1, . . . , xn) → 0

with a probability of 1 under θ0. As such, the posterior distribution of θ is consistent with the result

described in the previous paragraph.

We use the Bernoulli model to generate n = 5, 10, and 50 data points with a true param-

eter θ0 = 0.4. In other words, the probability of success is 0.4. We choose a prior distribution∑n ∑
Beta(4, 6), leading to a posterior distribution of Beta(4 + i=1 xi, 6 + n n− i=1 xi) according

to Equation (1.2.4). As depicted in the scenario illustrated in Figure 1.2, with an increase in the

sample size, the posterior distribution becomes increasingly concentrated around the true value,

which, in this instance, is 0.4.
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Figure 1.2 Density curves of the posterior distribution for a prior distribution Beta(4, 6), are de-
picted for sample sizes n = 5, 10, and 50. The true parameter value θ0 = 0.4 is indicated by a
vertical dashed line.

Another popular example is multinomial model with a Dirichlet prior. Let X ∼ Multinomial(n,θ)

where θ = (θ0, θ1, . . . , θd)
⊤ be a (d + 1)-dimensional parameter (d > 0). The multinomial model

with a Dirichlet prior is a generalization of the Bernoulli model and Beta prior of the previous



25

example. The Dirichlet distribution for d + 1 outcomes is the exponential family distribution on

the (d+ 1) dimensional probability is given by

∑
Γ( d αj)∏dj=0 α −1

π(θ) = ∏ θ j

d j ,
j=0 Γ(αj) j=0

where α = (α0, α1, . . . , αd)
⊤ is a non-negative vector of scaling coefficients, which are the param-

eters of the prior. For the multinomial model with d+ 1 outcomes, each observation of dimension∑
d+ 1 has d |j=0 xj = n. The probability mass function for X θ is defined as

∑
Γ( d

j=0 xj + 1)∏d∏ x
f(x|θ) = θ j

d j .
j=0 Γ(xj + 1) j=0

Then the posterior satisfies

∏d
x +α −1

π(θ|x) ∝ θ j j

j .
j=0

We see that the posterior is also a Dirichlet distribution: Dirichlet(α+ x).

The posterior mean of a multinomial with Dirichlet prior is

( )⊤
α0 + x0 αd + xd

E(θ|x) = ∑ , . . . , .
d ∑
=0 α

d
j j + n j=0 αj + n

The posterior mean can be viewed as smoothing out the maximum likelihood estimate by allocating

some additional probability mass to low frequency observations.

An illustration of this example is shown in Figures 1.3 to 1.5. We adopt a prior Dirichlet(6, 6, 6).

The ternary contour plot for the prior is shown below
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Figure 1.3 Contour plot of the prior distribution: Dirichlet(6, 6, 6).

We use the multinomial model to generate data points with parameter θ = (0.2, 0.3, 0.5)⊤.

The contours of the likelihood and posterior with n = 30 observed data are shown in Figure 1.4.

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

a

c b

5

10

15

20

25

Likelihood

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1c b

5

10

15

20

PDF

a

Figure 1.4 Contour plots of likelihood for Multinomial(30, [0.2, 0.3, 0.5]⊤) and posterior distribu-
tion with Dirichlet prior (6, 6, 6).

As a comparison, we also provide the contour of the posterior with n = 300 observed data

in Figure 1.5. From this experiment, we see that when the number of observed data is small, the

posterior is affected by both the prior and the likelihood; when the number of observed data is

large, the posterior is mainly dominated by the likelihood.
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Figure 1.5 Contour plots of likelihood for Multinomial(300, [0.2, 0.3, 0.5]⊤) and posterior distri-
bution with Dirichlet prior (6, 6, 6).

In the previous two examples, the prior is a Dirichlet distribution and the posterior is also a

Dirichlet. When a posterior distribution belongs to the same family of distributions as the prior, we

say that the prior is conjugate with respect to the model. Conjugate priors offer several advantages

in Bayesian inference. Firstly, they provide analytical simplicity by yielding closed-form solutions

for the posterior distribution, streamlining computational processes. This simplicity enhances com-

putational efficiency, particularly for large datasets, as it reduces the time and resources needed for

inference. Additionally, the interpretability of conjugate priors facilitates intuitive understanding

and communication of results, as the posterior distribution belongs to the same family as the prior.

Moreover, conjugate priors are valuable in teaching and learning Bayesian concepts due to their

straightforward nature, aiding in the comprehension of fundamental principles. They also offer

insight into prior selection, allowing practitioners to incorporate prior beliefs or knowledge ef-

fectively. Furthermore, conjugate priors enable sensitivity analysis by varying prior parameters,

providing insights into the robustness of conclusions. It will be discussed further in Chapter 3.

The robustness of posterior inference with respect to prior selection is a significant consis-

tency finding. Assume that x1, . . . , xn are independent observations with the same distribution. To

ensure that the resulting posterior distributions, Π1(·|xn) and Π2(·|xn), are consistent at θ0, let π1

and π2 indicate two prior densities, both of which are positive and continuous at θ0, an interior
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point of Θ. At that point, under θ0, with probability 1,

∫
|π1(θ|xn)− π2(θ|xn)| dθ → 0,

Θ

or equivalently, for any measurable set A ∈ Θ,

sup |Π1(A|xn)− Π2(A|xn)| → 0.
A

As a result, almost identical posterior distributions result from varying choices of prior distribu-

tions. A formal demonstration of this result is provided in Ghosh, Ghosal, and Samanta (1994).
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CHAPTER 2 BERNSTEIN-VON MISES THEOREM

2.1 Convergence in Total Variation Distance

In the realm of probability theory, the total variation distance serves as a metric for quanti-

fying the disparity between two probability distributions. Convergence in total variation signifies

that as a sequence of random variables or stochastic processes progresses, the distribution asso-

ciated with these variables or processes gradually approaches a specified target distribution. This

convergence is characterized by the total variation distance between the evolving distribution and

the target distribution diminishing to zero.

This concept of convergence is frequently employed to characterize the behavior of random

variables or stochastic processes as they approach a particular limiting behavior or distribution.

It represents a more stringent form of convergence compared to convergence in probability or

convergence in distribution.

For two probability measures P and Q defined on (X ,A). Suppose that ν is a σ-finite

measure on (X ,A) satisfying P ≪ ν and Q ≪ ν. The total variation distance is defined as

(Tsybakov, 2008)

∥ ∥∥P −Q∥ = sup |P (A)−Q(A)| .
TV

(2.1.1)
A∈A

By Scheffe’´ s lemma,

∫
1∥P −Q∥TV = |p(θ)− q(θ)| dν(θ),
2

where p and q are densities of P and Q. Consider an example of the total variation distance

between two high-dimensional normal distributions N (µ1,Σ1) and N (µ2,Σ2). Then refer to the

Proposition 2.1 (Devroye, Mehrabian, and Reddad, 2023), if Σ1 and Σ2 are positive definite, we
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have

√∥ ∥∥ 1N (µ ,Σ )−N (µ ,Σ )∥ ≤ tr(Σ−1Σ − I) + (µ − µ )⊤Σ−1
1 1 2 2 1 2 1 2 1 (µ1 − µ2)− log det(Σ −

2Σ
1

TV 2 1 ).

This inequality establishes an upper bound for the total variation distance suing the Hellinger

distance, which will be discussed on later with more detail.

A sequence of random variables converges in total variation to a variable X if

sup |Pr(Xn ∈ B)− Pr(X ∈ B)| → 0,
B

where the supremum is taken over all measurable sets B. According to the Portmanteau lemma,

this form of convergence is stronger than convergence in distribution. Not only is it necessary for

the sequence Pr(Xn ∈ B) to converge for every Borel set B, but the convergence must also be

uniform across all B. A straightforward condition for convergence in total variation is the point-

wise convergence of densities. If Xn and X possess densities pn and p relative to a measure ν,

then

∫
1

sup |Pr(Xn ∈ B)− Pr(X ∈ B)| = |pn − p| dν.
B 2

Hence, convergence in total variation can be established using convergence theorems for integrals

from measure theory.

The Kullback-Leibler divergence serves as a metric to quantify the dissimilarity between

two probability distributions. For a pair of probability measures P and Q defined on a common

probability space, the Kullback-Leibler divergence from Q to P is expressed as

∫ ( )
dP

DKL(P ||Q) = log dP,
dQ

where dP/dQ denotes the Radon-Nikodym derivative. It measures the information gain or loss
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incurred when P is approximated by Q.

The Kullback-Leibler divergence quantifies the average disparity in log-likelihood ratios

between corresponding events, offering insight into the overall information gain or loss when one

distribution is approximated by another. Convergence in Kullback-Leibler divergence signifies

a reduction in the relative entropy between the distributions, indicating a convergence in their

informational content.

The Hellinger distance between P and Q is defined as follows

(∫ )1/2√ √
H(P,Q) = ( p− q)2dν .

Hellinger distance is sensitive to differences in the shape and spread of distributions.

In contrast, total variation distance focuses on the maximal difference in probabilities as-

signed to identical events by two distributions, serving as a measure of the most significant po-

tential discrepancy between them. Convergence in total variation implies that the distributions

approach each other closely in terms of their greatest possible difference.

The relationship between total variation distance and Kullback-Leibler divergence is eluci-

dated by Pinsker’s inequality, first proposed in Pinsker (1964), expressed as

√∥ ∥∥ 1
P −Q∥ ≤ DKL(P∥Q).

TV 2

Le Cam’s inequalities in Cam (1960) shows the link between total variation distance and Hellinger

distance,

√
1 ∥ 2

H2 H (P,Q)
(P,Q) ≤ ∥P −Q∥ ≤ H(P,Q) 1− .

2 TV 4

2.2 Bayesian vs. Frequentist in Asymptotic Normality

In statistical inference, Bayesian and Frequentist methodologies represent two distinct

frameworks employed for drawing conclusions about population parameters. Asymptotic nor-
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mality, often examined in the context of large sample sizes, holds significance in both approaches.

In Frequentist statistics, the central limit theorem stands as a cornerstone concept concern-

ing asymptotic normality. It asserts that given a sufficiently large sample from any distribution

with finite mean and variance, the distribution of the sample mean will tend towards a normal dis-

tribution. Frequentist methodologies commonly utilize large-sample approximations, relying on

the asymptotic normality of estimators to construct confidence intervals and perform hypothesis

tests effectively.

In contrast, Bayesian statistics places less emphasis on the notion of asymptotic normality

relative to Frequentist statistics. Nonetheless, in practical applications, the posterior distribution

for certain parameters may exhibit asymptotic normality under specific conditions. Bayesian ap-

proaches center on characterizing the entire posterior distribution rather than solely focusing on

point estimates. Through MCMC techniques, prevalent in Bayesian analysis, posterior samples

can be obtained, with the posterior distribution converging towards normality as the sample size

increases.

2.2.1 Central Limit Theorem

During the interwar period, modern probability theory emerged as a distinct mathemati-

cal subdiscipline, characterized by the development of foundational concepts, fundamental the-

orems, and methodological frameworks. This evolution was marked by the synthesis of various

subfields, including axiomatics encompassing elements of measure theory, robust laws of large

numbers, stochastic processes, and limit theorems governing the distributions of sums of ran-

dom variables. Initially, these subfields were loosely connected under the overarching label of

“probability”. Among these, the domain of limit theorems stood out as it had made notable con-

tributions during the 18th and 19th centuries, assuming a pivotal role in the transition from classi-

cal to modern probability theory. Consider a sequence of random samples denoted as x1, . . . , xn

drawn from a population with a finite expected value E(xi) = µ < ∞ and a finite variance
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0 < Var(xi) = σ2 < ∞. The random variable zn, defined as

x̄− µ x1 + x2 + . . .+ xn − nµ
zn = √ = √

σ/ n nσ

converges in distribution to the standard normal random variable as n → ∞, meaning that

lim P (zn ≤ x) = Φ(x)
n→∞

holds for all x ∈ R, where Φ(x) represents the standard normal cumulative distribution function.

An intriguing aspect of the central limit theorem is its independence from the underlying

distribution of the random variables xi’s. The theorem holds regardless of the xi’s have a discrete,

continuous, or mixed distribution. In order to better understand the central limit theorem, let us

examine a few examples. Assume that a Bernoulli distribution with parameter p dominates the

xi’s values. Following that, Var(xi) = p(1 − p) and E(xi) = p. In addition, the sum yn =

x1 + x2 + · · · + xn is represented by yn ∼ Binomial(n, p), which is a Binomial distribution with

parameters n and p. Consequently,

y − np
zn = √ n

,
np(1− p)

where yn ∼ Binomial(n, p).
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Figure 2.1 Histograms of zn when n = 1, 2, 3 and 30, and p = 0.3

The probability mass function of zn for a range of n values is shown in Figure 2.1. As n

increases, the shape of the probability mass function progressively approaches a normal probability

density function curve. Interestingly, since zn is a discrete random variable, its probability mass

function is what matters instead than its probability density function. As a result, the central limit

theorem states that zn’s cumulative distribution function (also known as the CDF) converges to

the conventional normal CDF. However, the image helps to visualize the convergence to a normal

distribution because of their conceptual closeness.

Now, let us examine an alternative situation in which the xi’s are selected from a Uniform(0, 1)

distribution. Here, E(xi) = 1/2 and Var(xi) = 1/12 are the values we have.

x1 + x2 + · · ·+ xn − n/2
zn = √ .

n/12
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Figure 2.2 Histograms of zn when n = 1, 2, 3 and 30

When the xi’s are drawn from a Uniform(0, 1) distribution, the probability density function

of zn for a range of values of n is shown in Figure 2.2. As n increases, the shape of the probability

density function gradually gets close to a normal probability density function curve.

A direct analysis of the sum yn = x1 + x2 + · · · + xn would have been possible. Why

then should we adjust it first and say that zn becomes roughly normal after normalization? This

makes sense since as n gets closer to infinity, both the variance and mean of zn, represented by

Var(zn) = nσ2 and E(zn) = nE(xi), respectively, tend to infinity. In order to correct this, we

normalize zn such that E(zn) = 0 and Var(zn) = 1, the mean and variance, respectively, are finite.

On the other hand, scaling and shifting can be used to derive the cumulative distribution function

of zn from that of yn for any fixed n. As a result, the forms of the two cumulative distribution

functions are comparable.
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The central limit theorem is of ultimate importance due to its relevance in numerous prac-

tical scenarios, where a particular random variable of interest arises as the summation of a large

number of independent random variables. This theorem provides a solid foundation for justifying

the use of the normal distribution in such cases. Such random variables are pervasive across vari-

ous disciplines, highlighting their broad applicability. For instance, laboratory measurement errors

are frequently modeled as normal random variables. Similarly, in communication and signal pro-

cessing, Gaussian noise is commonly employed as a model for noise. Additionally, in finance, per-

centage changes in asset prices are sometimes represented by normal random variables. Moreover,

when conducting random sampling from a population to extract statistical insights, the resulting

quantity is often viewed as a normal random variable.

When many independent, identically distributed random variables are added together, the

central limit theorem provides a large computing advantage. Take, for example, a case where the

total of a thousand independent and identically distributed random variables is of interest. Finding

the distribution of this total directly may out to be extremely difficult, if not impossible. But if we

know the mean and variance of each individual xi, we can quickly determine the distribution by

applying the central limit theorem.

A frequently asked question concerns the suitability of the normal approximation and the

necessary sample size n. The distribution properties of the xi’s usually determine the response.

However, a widely used heuristic indicates that the normal approximation is typically very accurate

if n is more than or equal to 30.

2.2.2 Bernstein-von Mises Theorem

The normal distribution is widely used in large sample Bayesian methods to approximate

the posterior distribution of θ. When n is large enough, the posterior distribution tends to nor-

mality under certain regularity requirements as sample size increases. This allows for an efficient

approximation by a suitable normal distribution. The posterior distribution is more tightly packed

in a smaller area around the posterior mode as n increases. This posterior distribution mode can be

represented by the notation θ̃n. A Taylor expansion of log π(θ|Xn) at θ̃n yields, under appropriate
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regularity conditions

∂ 1
log π(θ| ˜ ˜ ˜ ˜ ˜Xn) = log π(θn|Xn) + (θ − θn)

′ log π(θ|X ′
n)|˜ − (θ − θn) In(θ − θn) + · · ·

∂θ θn 2
1≈ ˜log π(θn|Xn)− ˜ ˜ ˜(θ − θn)

′In(θ − θn),
2

(2.2.1)

where Ĩn is a d× d matrix defined as

( ) ∣
∂2 ∣

˜ ˜In = − log π(θn|Xn) ∣∣ .
∂θi∂θj ˜θ=θn

The local curvature of the log posterior density at the posterior mode θ̃n is characterized by the ma-

trix incorporating second derivatives, which is called the generalized observed Fisher information

matrix. The expression is made simpler by the first derivative term, which vanishes at the mode

θ̃n. Furthermore, because of θ’s close proximity to the mode, higher-order derivative terms asymp-

totically become insignificant as θ gets closer to θ̃n. As a function of θ, the posterior ˜π(θn|Xn)[ ]
can be approximated by a density proportional to exp −1(θ − θ̃ )′Ĩn(θ − ˜

n θn)2
. This is because

the first term in Equation (2.2.1) is independent of θ. The distribution is similar to a N ˜ ˜
d(θn, I

−1
n )

distribution, in which d denotes the dimension of θ.

The posterior density π(θ|Xn) approximates the likelihood f(Xn|θ) when the posterior

distribution becomes extremely concentrated in a narrow neighborhood around the posterior mode

θ̃n, where the prior density π(θ) remains almost constant. Thus, in the previously mentioned

setting, we can replace θ̃n with the maximum likelihood estimate θ̂n and Ĩ−1
n with the observed

Fisher information matrix

(
∂2

) ∣∣
I = − log f(X |θ) ∣
n n ∣ .

∂θi∂θj θ̂n

This means that the posterior distribution of θ is roughly N ˆ
d(θ

−1
n, In ).

Consequently, we arrive at the following deduction: Assume that Xn represents the set
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of i.i.d. observations, where θ ∈ Θ ⊂ Rd. Let X1, X2, . . . , Xn be these observations. Assume

that, according to Equation (1.1.1), the posterior density is π(Xn) and the prior density is π(θ).

Let ˜ ˆθn be the posterior mode and θn be the maximum likelihood estimator. Also, consider the

previously mentioned forms of the Fisher information matrix, denoted as Ĩn and In, evaluated at

the posterior mode and maximum likelihood estimator, respectively. Then, for large n, any of the

normal distributions, N ˜ ˜
d(θn, I

−1
n ) or N ˆ

d(θ
−1

n, In ), can approximate the posterior distribution of θ,

given appropriate regularity conditions.

In particular, the true data-generating model approaches Nd(0, I) with probability 1 under

the posterior distribution of I1/2(θ − θ̂n), conditioned on Xn. Here, I denotes the identity matrix

of size . With repeated sampling, the distribution of 1/2 − ˆp I (θ θn), given θ, also tends to Nd(0, I),

according to this convergence, which is consistent with conclusions drawn from classical statistical

theory.

The classical Bernstein-von Mises theorem, often referred to as the Bayesian central limit

theorem, states the asymptotic behavior of the posterior distribution in Bayesian statistics.

Theorem 2.1. Under certain regularity conditions,

∥ ( ) ∥
E∥N θ̂ −1 ∥

n, In − π(θ|Xn) → 0
TV

as n → ∞.

The asymptotic posterior normality in Theorem 2.1 is in terms of the convergence mode

of expected total variation distance with respect to the posterior distribution. In simpler terms, the

theorem suggests that when we have a large amount of data, the posterior distribution becomes

approximately normal, centered around the maximum likelihood estimate of the parameter, and

with a variance that reflects the uncertainty in our parameter estimation process.

This theorem has profound implications in Bayesian inference, as it allows practitioners

to make probabilistic statements about the parameters of interest based on their observed data,

leveraging the asymptotic normality of the posterior distribution.
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2.3 Literature Review on the Bernstein-von Mises Theorem

Under specific assumptions on the statistical models and the prior, it is well known that

increasing the sample size washes away the influence of the prior distribution, leaving the like-

lihood function as the sole determinant. As a result, Bayesian approaches approximately agree

with likelihood-based frequentist approaches as the sample size grows. This result has been veri-

fied in regular smooth parametric models, such as linear regression models, through the so-called

Bernstein-von Mises theorem. The Bernstein-von Mises theorem states that under adequate con-

ditions on the prior, the posterior distribution asymptotically converges to a Gaussian distribution

with the mean, maximum likelihood estimator, and variance, the inverse of the observed Fisher

information matrix. The asymptotic posterior normality allows us to construct approximate credi-

ble sets for θ, especially when sampling from the posterior distribution is challenging. Benefiting

from the alignment between frequentist and Bayesian approaches, these credible sets can act as

valid frequentist confidence intervals Giné and Nickl (2021).

The Bernstein-von Mises theorem has been broadly studied in the growing dimension

(Bontemps, 2011; Boucheron and Gassiat, 2009; Ghosal, 1999, 2000; Ghosal, Ghosh, and Van

Der Vaart, 2000; Johnstone, 2010), semiparametric (Bickel and Kleijn, 2012; Castillo, 2012; Shen,

2002; Rivoirard and Rousseau, 2012) and nonparametric (Castillo and Nickl, 2013, 2014; Leahu,

2011; Ray, 2017) frameworks. Inevitably, there is substantial overlap among the scopes of these

frameworks. Le Cam and Yang (2000) offer a rigorous proof for the Bernstein-von Mises theorem,

which holds true under the assumption of a parametric i.i.d. scenario. Van der Vaart (2000) pro-

vides explicit proof of the parametric Bernstein-von Mises theorem under remarkably weak condi-

tions that the differentiability in quadratic mean and the existence of a sequence of uniformly con-

sistent tests. Similarly, according to Bickel and Kleijn (2012), the semiparametric Bernstein-von

Mises theorem requires an additional condition on a parametric convergence rate under the premise

of general conditions, such as differentiability. They investigate the effectiveness of Bayesian point

estimators utilizing Hajek’´ s convolution theorem and extend these findings to the estimation of lin-

ear coefficients in partial linear regression scenarios with a Gaussian prior. This theorem, under
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specific conditions, demonstrates that the sequence of marginal posteriors converges to a normal

distribution, offering valuable insights into semiparametric estimation. Their study delves into the

convergence of Bayesian point estimators within the context of semiparametric estimation prob-

lems, establishing the necessary conditions for the application of the Bernstein-von Mises theorem

in such settings. In addition to exploring the conditions of asymptotic posterior normality, some

preceding works develop the semiparametric Bernstein-von Mises theorem in several situations.

Rivoirard and Rousseau (2012) present the posterior consistency of linear functionals of the den-

sity within the framework of infinite-dimensional exponential families. Their work investigates the

asymptotic posterior distribution of these linear functionals and establishes conditions for a semi-

parametric version of the Bernstein-von Mises theorem. The study sheds light on both positive and

negative phenomena that may emerge during the analysis of Bernstein-von Mises results, with a

specific focus on the challenges and insights posed by infinite-dimensional exponential families.

Additionally, they underscore the significance of defining a change of parameter and examines the

influence of different types of priors on the theorem’s applicability. In Castillo (2012), two semi-

parametric Bernstein-von Mises theorems with Gaussian process priors are established, contingent

upon whether the efficient information aligns with the information in the associated parametric

model. His work delves into the realm of Bayesian estimation, particularly emphasizing the semi-

parametric Bernstein-von Mises theorem. The focus is on estimating the parameters (θ, f), where

θ represents the parameter of interest, and f is an infinite-dimensional nuisance parameter. The

study explores the incorporation of Gaussian process priors and provides application scenarios for

the theorems, including instances such as estimating the center of symmetry in Gaussian white

noise.

As highlighted by Cox (1993) and Freedman (1999), certain nonparametric priors, seem-

ingly natural and innocuous, may lead to posterior inconsistency. In the realm of Bayesian infer-

ence for nonparametric regression models, Cox (1993) investigates an observation model where the

response variable is a smooth function of a covariate, characterized by unknown parameters and

Gaussian prior distributions. The study rigorously examines estimation errors, providing asymp-
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totic posterior and sampling distributional approximations. It further explores topics such as the

coverage probability of posterior probability regions and continuous-time signal estimation prob-

lems. Emphasizing the versatility and accuracy of Bayesian methods in addressing statistical infer-

ence problems, the author underscores their role in providing flexible solutions. Freedman (1999)

contributes to the discourse by discussing the Bernstein-von Mises theorem within the context

of infinite-dimensional parameters. He illuminates the distinctions between Bayesian and fre-

quentist approaches in statistical modeling, underscoring the significance of employing smooth,

finite-dimensional models for precise estimation. His research delves into the implications of the

theorem for confidence intervals and coverage properties in statistical inference, offering insights

into the challenges and considerations inherent in the infinite-dimensional scenario.

However, the extension of the Bernstein-von Mises theorem to growing or increasing di-

mension settings has received significant attention in the past two decades. To achieve asymptotic

posterior normality in increasing-dimensional linear regression models, Ghosal (1999) suggests

imposing the constraint on the parameter dimension, specifically that “d4n ln(dn)/n is small”. In his

work, he delves into the asymptotic normality of posterior distributions within the context of high-

dimensional linear models. The study is centered on investigating the consistency and asymptotic

behavior of posterior distributions as the parameter dimension experiences growth. Key outcomes

of the research include establishing conditions for consistency and asymptotic normality, exploring

implications for statistical inference in high-dimensional settings, and examining the use of prior

distributions to achieve desired properties. Ghosal (2000) subsequently establishes that the growth

rate on parameter dimension, specifically “d3n ln(dn)/n is small” leads to the asymptotic conver-

gence of the posterior distribution of the natural parameter for an exponential family to a Gaussian

distribution. This work delves into the consistency and asymptotic normality of posterior distribu-

tions in the context of exponential families as the number of parameters approaches infinity. The

study explores conditions regarding the growth of the parameter dimension for the posterior distri-

butions to concentrate around the true parameter. Additionally, it touches upon the approximation

of posterior distributions with normal distributions, especially for exponential families with a large
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number of parameters.

The reference priors examined by Clarke and Ghosal (2010) are grounded in independent

and identically distributed data within an exponential family, while the entropy estimation investi-

gated by Boucheron and Gassiat (2009) is specifically applied to families of discrete distributions.

Clarke and Ghosal explore reference priors in exponential families with increasing dimensions,

scrutinizing the asymptotic properties of the posterior distribution and delving into the Shannon

mutual information. The authors concentrate on identifying optimal rates of parameter growth to

ensure asymptotic normality, emphasizing the significance of the expected Kullback-Leibler dis-

tance in exponential families. Additionally, they showcase how Jeffreys’ prior can be derived as

the reference prior by optimizing certain terms in the asymptotic expansion. In a related vein,

Boucheron and Gassiat introduce a Bernstein-von Mises Theorem for discrete probability distribu-

tions, with a specific focus on the asymptotic normality of the posterior distribution as the model

dimension grows with the sample size. This theorem carries implications for Bayesian estimators

of Shannon and Ren´ yi entropies, shedding light on the convergence properties of the posterior

distribution to a Gaussian distribution.

Within a nonparametric framework, Bontemps (2011) demonstrates that the convergence

rate on parameter dimension, specifically “dn ln(dn)/n is small” holds in Gaussian linear regres-

sion models with an increasing number of regressors, providing clarification on an earlier propo-

sition by Ghosal (1999). Bontemps examines Bernstein-von Mises Theorems for Gaussian regres-

sion with a growing number of regressors. The study delves into the asymptotic normality of the

posterior distribution in Gaussian linear regression models as the number of regressors expands

with the sample size. It applies these theorems to the Gaussian sequence model and regression

of functions in Sobolev and Cα classes, emphasizing the crucial aspect of adaptivity for Bayesian

estimators of functionals across diverse applications.

In the case of i.i.d. data, the results of the Bernstein-von Mises theorem are applicable to

any smooth parametric family, provided the condition “d3n/n is small” as discussed in Spokoiny

(2013). This work delves into the Bernstein-von Mises theorem within the context of expanding
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parameter dimensions, addressing challenges such as model misspecification and small sample

sizes. It builds upon classical results, including the Fisher and Wilks Theorems, extending insights

into non-asymptotic frameworks and Bayesian procedures. The study offers explicit bounds and

expansions, providing a clearer understanding of the behavior of estimators and excess functions.

Overall, it makes a significant contribution to advancing our comprehension of statistical theory in

complex settings.

Some positive Bernstein-von Mises results in the Gaussian white noise model, Gaussian

nonparametric regression, and i.i.d. sampling model in the same spirit are obtained in (Castillo

and Nickl, 2013, 2014). They dig into nonparametric Bernstein-von Mises theorems within the

context of the Gaussian white noise model. The study illustrates how these theorems validate the

use of Bayesian methods as efficient frequentist inference procedures for various nonparametric

problems. The document encompasses the construction of Bayesian credible sets with precise fre-

quentist coverage levels and shrinking L2-diameter. It explores applications to linear and nonlinear

functionals, credible bands for auto-convolutions, and considers nonconjugate product priors de-

fined on orthonormal bases of L2. The results underscore the robust performance of Bayesian

methods in nonparametric settings. In 2014, Castillo and Nick extend their exploration of the

Bernstein-von Mises phenomenon to nonparametric Bayesian procedures, with a specific focus on

Gaussian nonparametric regression and i.i.d. sampling models. The study introduces multiscale

spaces for defining nonparametric priors and posteriors, emphasizing the alignment of posterior-

based inference with efficient frequentist procedures. Insights into the application of Bernstein-von

Mises theorems in nonparametric settings are provided, along with practical implications, includ-

ing applications to Donsker- and Kolmogorov-Smirnov theorems for random posterior cumulative

distribution functions.

A substantial portion of existing research on the nonparametric Bernstein-von Mises the-

orem revolves around addressing constraints on the parameter dimension to ensure posterior con-

sistency. The primary challenge lies in meeting the rigorous condition imposed on the growth rate

of the parameter dimension, limiting the broader applicability of the nonparametric Bernstein-von
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Mises theorem. Classical results by (Portnoy, 1984, 1985, 1988) establish certain constraints on

the parameter dimension to ensure consistency and asymptotic normality of the M-estimator in

regression models. The extension of Schwartz’s theorem has facilitated the derivation of asymp-

totic posterior normality in various setups, leading to a relaxation of restrictions on the parameter

dimension to some extent. This is evident in works such as (Ghosal, 1999, 2000) concerning linear

regression and exponential family models, as well as Bontemps (2011) in the context of regres-

sion models. Despite these advancements, the current growth rate of the parameter dimension still

poses limitations on the applicability of the nonparametric Bernstein-von Mises theorem, consid-

ering computational demands and algorithmic criteria. This limitation prompts the exploration of

further relaxation in the growth rate of the parameter dimension, particularly in exponential family

models, through the lens of a nonparametric Bernstein-von Mises theorem. In this context, we

choose the Diaconis-Ylvisaker prior due to its conjugate properties. The Diaconis-Ylvisaker prior

belongs to a family of conjugate priors designed for the natural parameter of an exponential fam-

ily. This work aims to establish sufficient conditions under which the asymptotic normality of the

posterior distribution, utilizing the Diaconis-Ylvisaker prior, becomes achievable, thereby making

the increasing-dimensional Bernstein-von Mises result attainable.

The primary focus of our endeavor in this work is to ascertain an efficient growth rate for

the parameter dimension, offering enhanced insights into the underlying problem while remaining

practically applicable across a spectrum of diverse applications. This pursuit aims to contribute a

nuanced understanding of the parameter dimension’s expansion, shedding light on optimal rates

that balance computational feasibility and theoretical efficacy.

A significant facet of our work involves extending and refining the existing literature by es-

tablishing asymptotic posterior normality with the Diaconis-Ylvisaker prior under the assumption

that “dn/n is small” (Jin, Bhattacharya, and Ghosh, 2024). This extension serves as a valuable

enhancement to the current body of knowledge, providing a more encompassing perspective on

the behavior of the posterior distribution under varying conditions. By incorporating the Diaconis-

Ylvisaker prior, we aim to offer a comprehensive and nuanced understanding of the asymptotic
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behavior in scenarios where the ratio of the parameter dimension to the sample size remains small.

Furthermore, this works makes a noteworthy technical contribution by developing a general result

that bounds the tail probability of the quadratic form of the maximum likelihood estimator. Im-

portantly, this contribution is achieved without relying on the sub-Gaussianity assumption, thereby

broadening the applicability and robustness of our findings. The exploration of tail probabilities

offers valuable insights into the behavior of the maximum likelihood estimator, contributing to a

more comprehensive understanding of its statistical properties. This endeavor adds a layer of so-

phistication to the existing methodologies, providing researchers and practitioners with a versatile

tool for robust statistical inference in various settings.

The rest of this work is organized as follows: Section 3.1 provides some notations used

in this research. The exponential families and their conjugate priors are discussed in Section 3.2

along with an example of the Multinomial-Dirichlet model. In Section 3.3, we derive the condi-

tions for the asymptotic posterior normality with the Diaconis-Ylvisaker prior. By conducting a

simulation outlined in Chapter 4, we confirm the validity of these conditions within the framework

of the Multinomial-Dirichlet model. Our proposed theorem is evaluated and demonstrated to ex-

hibit superior convergence rates compared to preceding theorems in Section 4.1. Besides that, we

present the practical applications of this theorem in Bayesian density estimation in Section 4.2 and

the estimation of the mean of an infinite-dimensional normal distribution in Section 4.3.
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CHAPTER 3 EXPONENTIAL FAMILY MODEL AND DIACONIS-YLVISAKER PRIOR

3.1 Preliminaries

In this section, we introduce some terminologies and notations that are used throughout the

work. ( )∑ 1/2

For a vector x = (x1, . . . , x
⊤, ∥x∥2 denotes its Euclidean norm, d

j x2
d) =1 j . For a{ }

square matrix A, ∥A∥2 denotes its operator norm defined by sup ∥Ax∥2 : x⊤x = 1, x ∈ Rd .

The spectral norm of a tensor B ∈ Rd×d×d is defined as

{ }
∥B∥ = sup ⟨B,x⊗ y ⊗ z⟩ : x⊤x = y⊤y = z⊤z = 1, x,y, z ∈ Rd .

Additional properties of the spectral norm of a third-order tensor can be found in Qi and Hu (2019)

(see also Appendix .3). For two sequences of real numbers {an} and {bn}, we write an = o(bn)

if an/bn → 0 as n → ∞. Throughout the thesis, c1, c2, . . . are generally used to denote constants

whose values might change from one line to another but are independent of everything else.

3.2 Exponential Families and Conjugate Priors

Referring to Diaconis and Ylvisaker (1979), let ν be a fixed σ-finite measure on the Borel

sets BRd , and let F be the interior of the convex hull of the support set of ν. Assume that F∫ { }
is a nonempty open set in Rd. For θ ∈ Rd, define Ψ(θ) = ln exp x⊤θ dν(x) and let{ } F
Θ = θ ∈ Rd|Ψ(θ) < ∞ . Assume that the natural parameter space Θ is a nonempty open set in

Rd. The exponential family is defined by

{
dP (x|θ) = exp x⊤ }

θ −Ψ(θ) dν(x), θ ∈ Θ. (3.2.1)

Given an independent sample x = (x1, . . . ,xn)
⊤ from Equation (3.2.1), the density takes the form

{
f(x|θ) = exp nx̄⊤ }

θ − nΨ(θ) , (3.2.2)
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where x̄ is the sample mean; see also Ghosal (2000). In this model, the natural parameter θ is a dn-

dimensional vector where dn is allowed to grow with the sample size n. The family of conjugate

priors for the parameter θ of the regular exponential family, referred to as Diaconis-Ylvisaker

priors is given by

{ }
π(θ;n0, s0) = exp s⊤0 θ − n0Ψ(θ) h(n0, s0), n0 ∈ R, s0 ∈ Rdn . (3.2.3)

Then the posterior distribution belongs to the same family Equation (3.2.3), with parameters n0+n

and s0 + nx̄ (Johndrow and Bhattacharya, 2018).

3.2.1 Multinomial-Dirichlet Model

As an example, we consider one member of the exponential family, the multinomial distri-

bution with (dn + 1) cells. Suppose that x = (x0, x1, . . . , xdn)
⊤ is a multinomial sample from n

trials, with cell probabilities p = (p0, p
⊤ ∑dn

∑
1, . . . , pdn) , where j=0 xj = n and dn

j=0 pj = 1. The

probability mass function is given by

∑
Γ( dn d

j x
f( |p) = ∏ =0 j + 1)∏n

x
x p j .

dn j

j=0 Γ(xj + 1) j=0

The Dirichlet distribution is a conjugate prior for the multinomial distribution. Let p have

the Dirichlet prior with density function

d
1 ∏n

α
π(p|α) = p j−1

,
B(α) j

j=0

∏
where B(α) = dn

∑
j=0 Γ(αj)/Γ(

dn
j=0 α

⊤
j). Denoting the canonical parameter by θ = (θ1, . . . , θdn) ,



48[ ( ∑
where θj = ln pj/ 1 d− n

)]
pk , j ∈ {k=1 1, . . . , dn}. Then the joint distribution of x is

∏dn
x

f(x|θ) ∝ p j

j

j=0 {∑dn }
= exp xj log pj

j=0{ dn ( dn ) ( )}∑ ∑ ∑dn
= exp xj log pj + n− xj log 1− pj

j=1 j=1 j=1{ dn ( ) ( dn )}∑ p ∑
j

= exp xj log ∑ + n log 1− pj
=1 1 d− n

j j=1 pj j=1{ (∑dn dn )}∑
= exp xjθj + n log 1− pj

j=1 j=1{∑dn [∑dn ]}
= exp xjθj − n log exp(θj) + 1 .

j=1 j=1

The Dirichlet prior density can be expressed as follows:

d
1 ∏n

αj−1
f(θ|α) = p

B(α) j

j=0 { d
1 ∑n }

= exp (αj − 1) log pj
B(α)

j=0{ dn ( dn )}
1 ∑ ∑

= exp (αj − 1) log pj + (α0 − 1) log 1− pj
B(α)

j=1 j=1{
1 ∑dn ( dn ) ( n )}∑ ∑dn ∑d

= exp (αj − 1) log pj + αj − dn − 1− (αj − 1) log 1− pj
B(α)

j=1 j=0 j=1 j=1{ dn ( ) ( dn ) ( dn )}
1 ∑ p ∑ ∑

j
= exp (αj − 1) log ∑ + αj − dn − 1 log 1− pj

B(α)
j=1 1 d− n

j=1 pj j=0 j=1{∑d ( d
1 n ∑n ) }

= exp (αj − 1)θj − αj − dn − 1 Ψ(θ) .
B(α)

j=1 j=0

The multinomial model and the Dirichlet prior render to Equation (3.2.2) and Equation (3.2.3)



49[ ]∑
with Ψ(θ) = ln dn

∑
j=1 exp(θj) +1 , hyper-parameters n0 =

dn
j=0 αj − dn − 1, s0j = αj − 1 for

j ∈ {1, . . . , dn}, and the normalizing constant h(n0, s0) = 1/B(α).

3.3 Bernstein-von Mises Theorem for the Diaconis-Ylvisaker Prior

In this section, we develop the Bernstein-von Mises theorem with the Diaconis-Ylvisaker

prior under sufficient conditions. Those conditions call for the prior to concentrate its mass on

a moderately-sized neighborhood of the true parameter θ0. Moreover, the prior is required to be

sufficiently flat such that the prior density fraction of any two arbitrary local parameters approaches

1 as the sample size grows. The key idea of the proof is along the lines with Bontemps (2011);

Boucheron and Gassiat (2009); Van der Vaart (2000), see Appendix .2.

3.3.1 Theorem

The Bernstein-von Mises theorem manifests sufficient conditions on the prior under which

the posterior distribution converges to a normal distribution centered at the maximum likelihood

estimator with variance, the inverse of the observed Fisher information matrix.

Let θ0 be the true parameter. Then the Fisher information matrix is equal to Ψ′′(θ0) Ghosal

(2000). Let U be a square root of Ψ′′(θ ⊤
0), i.e., UU = Ψ′′(θ0). For R > 0, define the ellipsoid

{ ⊤ ′′ }
εθ0,U (R) = θ ∈ Rdn : n(θ − θ0) Ψ (θ0)(θ − θ0) ≤ R .

Theorem 3.1. Suppose that the following conditions, referring to them by C1, C2, and C3, re-

spectively, hold

C1. d ′′′
n = o(Rn) and sup ∥Ψ (θ)∥ → 0 as Rn → ∞.

θ∈ε√c (Rn/4)θ ,U0

C2. n0 = o(n/Rn) and 1/n0 ∥U−1 (s0 − n0Ψ
′ (θ0))∥2 is bounded.

C3. Rn = o(n).

Then ∥ ( ) ∥∥
E ∥N ˆ ∥

θ, (nΨ′′(θ0))
−1 − π(θ|x)∥ → 0 as n → ∞.

TV

In the theorem, θ̂ is the maximum likelihood estimator of θ and E[·] refers to the expecta-
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tion under P (·|θ0). The above conditions illustrate mild constraints on the prior such that a high-

dimensional Bernstein-von Mises theorem result follows. By condition C1, we require that the

prior concentrates on a neighborhood of θ0. With condition C2, the prior needs to be flat enough

in this neighborhood. Through condition C3, we ensure a moderate size of this neighborhood.

C1 implies that dn becomes insignificant relative to Rn as n approaches infinity and the

spectral norm of the second derivative of the mean vector approaches zero as the parameter ap-

proaches the true parameter. C2 restricts the standardized distance between two arbitrary parame-

ters to be bounded. C3 requires that Rn becomes negligible relative to n.

In this work, Ψ′(θ0) is the true mean vector and the maximum likelihood estimator θ̂ of θ( )
uniquely satisfies Ψ′ ˆ(θ) = x̄. Let N be the normal distribution N θ̂, (nΨ′′ (θ0))

−1 , and let NRn

be the normal distribution N restricted and renormalized to the ellipsoid εθ0,U (Rn). Similarly, π

stands for the posterior distribution π(θ|x), and πRn stands for the truncated posterior distribution.

Thus, we have

∥ ( ) ∥∥ ∥ ∥
E ∥N θ̂, (nΨ′′(θ ))−1 ∥

0 − π(θ|x)∥ = E ∥N −NRn +NRn − πRn + πRn − π∥ .
TVTV

We prove the Bernstein-von Mises theorem by splitting the above expected total variation distance

expression into three terms,

∥ ( ) ∥∥ ˆ ′′ −1 ∥
E ∥N θ, (nΨ (θ0)) − π(θ|x)∥

TV∥ ∥ ∥ ∥
≤ E ∥N −NRn ∥TV + E∥NRn − πRn∥ + E ∥πRn − π∥ .

TV TV

By noting that

∥ ( ) ∥∥
E ∥N ˆ ∥

θ, (nΨ′′(θ0))
−1 − π(θ|x)∥ → 0,

TV
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if there exists a sequence {Rn} such that

∥ ∥ ∥ ∥ ∥ ∥
E ∥N −NRn∥ → 0, E ∥NRn − πRn∥ → 0, and E ∥πRn − π∥ → 0 n

TV TV TV
as → ∞.

We refer to these three terms as T1, T2, and T3 in order. To prove T1, we use Cirelson’s

inequality Bontemps (2011) and concentration inequality which is shown by Lemma 3.2. We

illustrate T2 by Lemma 3.3 following from the Cauchy-Schwarz inequality. Based on Lemma 3.2,

we propose Lemma 3.4 to show T3. The proofs of T1, T2, and T3 are separated into Section 3.3.2,

Section 3.3.3, and Section 3.3.4, respectively where one needs to put conditions on prior such as

concentration and flatness, and on the size of the neighborhood of the true parameter θ0.

3.3.2 Prior Concentration

The magnitude of the eigenvalues in the Fisher information matrix reflects the extent to

which the data captures the parameter θ. We have sup ′′′
θ∈εc (Rn/4) ∥Ψ (θ)∥ bounded by the largest

θ ,U0

eigenvalue of the Fisher information matrix; see more details in Section 4.1 for the Multinomial-

Dirichlet example. The condition states that, as the neighborhood size grows, the largest eigenvalue

of the Fisher information matrix for parameters outside this neighborhood becomes smaller. In

other words, the data carry less information about the parameter, far from the true value, as the

neighborhood expands. This indicates that the prior mass becomes asymptotically negligible for

parameters that fall into the complement of the expanding neighborhood. That is to say, we demand

that the prior assign the majority of its mass to the neighborhood of θ0. Later on, a supplementary

requirement for such neighborhoods will be introduced by Lemma 3.4.

Lemma 3.1. If dn = o(Rn) and sup ∥Ψ′′′(θ)∥ → 0 as Rn → ∞, then
θ∈εc (Rn/4)θ ,U0

∥ ( ) ( )∥∥
E ∥N θ̂, (nΨ′′(θ ))−1 ∥− Rn ˆ

0 N θ, (nΨ′′(θ0))
−1 ∥ → 0.

TV
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Proof of Lemma 3.1: For any measurable set B ⊆ Rdn ,

∥ ∥ ∣( ) ( )∣∥N (B)−NRn(B)∥ = ∣ N (B|εcθ ,U (Rn))−N (B| c
0

εθ0,U (Rn)) · N ε ∣
TV θ0,U

(Rn) .

When B ⊆ εcθ0,U (Rn),

∣ ( ) ∣
sup ∣N B|εcθ0,U (Rn) −N (B|εθ0,U (Rn))∣
B ∣ ( ) ( )∣
= ∣N εc c c ∣

θ U −
0,

(Rn)|εθ0,U (Rn) N εθ0,U (Rn)|εθ0,U (Rn)

= |1− 0|

= 1.

∣ ( ) ∣
Similarly for B ⊆ εθ0,U (Rn). In all other cases, sup ∣N B|εcθ0,U (Rn) −N (B|ε ∣

θ0,U (Rn)) < 1.∣ ( ) ∣B
So sup ∣N B|εcθ0,U (Rn) −N (B|εθ0,U (R ∣

n)) = 1. Thus,
B⊆Rdn

∥ ∥ ( ) ∣ ( ) ∣∥N −NRn∥ ≤ N εcθ0,U (R ) ∣
n · sup N B|εcθ0,U (Rn) −N (B|εθ0,U (R ))∣nTV

B⊆Rdn( )
= N εcθ0,U (Rn) .

Let N 0 be the normal distribution N (θ0, (nΨ
′′(θ0))

−1). Then

∥ ∥ ( )∥N −NRn∥ ≤ N 0 ˆ ˆεcθ0,U (Rn/4) + I(n(θ − θ0)
⊤Ψ′′(θ0)(θ − θ0) > Rn/4).TV

Let T ∼ χ2
dn

. Taking the expectation of total variation distance, we have

∥ ∥ ( )∥N −NRn∥ ≤ ˆ− ⊤ ′′ ˆE Pr (T > Rn/4) + Pr n(θ θ0) Ψ (θ0)(θ − θ0) > Rn/4 . (3.3.1)
TV

√ √ √ √
Since T ∼ χ2

d , T ∼ χdn . So E T ≤
n

dn and Var( T ) ≤ 1. By Cirelson’s inequality, If
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dn = o(Rn), for n large enough,

(√ √ √ √ )
Pr T > dn + ( Rn − 2 dn)/2 ≤ exp {−Rn/8} .

Hence, the first term on the right-hand side of the inequality Equation (3.3.1) converges 0 as

n → ∞. We will show that the second term on the right-hand side of the inequality Equa-

tion (3.3.1) also converges 0 as n → ∞ by the following Lemma 3.2. It is instructive to note that

our Lemma 3.1 is reminiscent of Proposition 3.11 of Boucheron and Gassiat (2009) and Lemma

5 of Bontemps (2011). While for regression model in Bontemps (2011), it is relatively simple to

bound the second term in Equation (3.3.1) using the χ2 distribution, it runs into difficulty in our

case. Therefore, to bound the second term we develop a non-trivial concentration inequality of the

maximum likelihood estimator in Lemma 3.2 which goes beyond the standard assumptions such

as sub-Gaussianity.

Lemma 3.2. If sup ∥Ψ′′′(θ)∥ → 0 as Rn → ∞, then
θ∈εc (Rn/4)θ ,U0

( )
ˆPr n(θ − θ0)

⊤Ψ′′ ˆ(θ0)(θ − θ0) > Rn/4 → 0, n → ∞.

The proof of Lemma 3.2 is deferred to Appendix .1. Depending on the prior concentration

condition, a concentration inequality of the quadratic form of the maximum likelihood estimator

is established. Hence,

∥ ( ) ( )∥∥
E ∥N θ̂, (nΨ′′(θ ))−1 ∥− Rn ˆ

0 N θ, (nΨ′′(θ0))
−1 ∥ → 0.

TV

We have θ If dn = o(Rn), then as n → ∞,

{ }∥ ∥
E ∥N −NRn∥ Rn≤ exp − .

TV 8

Because the second probability term is bounded up by 4dn/Rn, T1 converges faster than
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2 exp {−Rn/8} as shown in Bontemps (2011). ( )
Since the largest eigenvalue of Ψ′′(θ −

0) is of the order d 2
n , sup λ Ψ′′

max (θ) is of
θ∈εθ ,U (Rn/4)0

the order d−2
n .

3.3.3 Prior Flatness

Lemma 3.3 plays a crucial role in guiding the shape of the prior distribution used in the

analysis. It imposes a condition that the prior should be approximately uniformly distributed in

the neighborhood of θ0, the true parameter of interest. In order to show the right-hand side of

Equation (3.3.2) converges towards 0, the prior density fraction between any two arbitrary local

parameters is expected to approach 1 (see also Condition 3.4 of Boucheron and Gassiat (2009) and

Condition 1 of Bontemps (2011)), indicating that the prior mass is spread out uniformly through√
the condition of bounded 1/n ∥U−1 (s ′

0 0 − n0Ψ (θ0))∥2. By employing this specific form of

an improper local prior, the posterior distribution becomes highly influenced by the likelihood of

the observed data. This kind of assumption is quite common in the literature dealing with the

concentration of the posterior distribution. Subsequently, Taylor’s approximation comes into play,

making the exponential family density and the normal density almost identical under condition

n0 = o(n/Rn). As the sample size n increases, the term T2 in the theorem tends to 0.

√
Lemma 3.3. If n0 = o(n/Rn) and 1/n0 ∥U−1 (s0 − n ′

0Ψ (θ0))∥2 is bounded, then

∥ ( )∥∥
E ∥πRn ∥

( | ˆθ x)−NRn θ, (nΨ′′(θ0))
−1 ∥ → 0, n → ∞.

TV

Proof of Lemma 3.3: The total variation distance between two arbitrary probability measures L
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and K can be expressed in the form ∥L−K∥TV = 2 (1− l/k)+dK. So

∥ ( )∥1 ∥∥πRn(θ|x)−NRn θ̂, (nΨ′′(θ0))
−1 ∥∥

2 ∫ ( ) TV
+

dNRn(θ)
= 1− dπRn(θ|x)

dπRn(θ|x) +∫ (3.3.2) dNRn(θ) 
= 1−  dπRn(θ|x)

1ε (R )(θ)π(θ)f(x|θ)θ ,U n ∫ 0

π(τ )f(x|τ )dτε (Rn)∫ ∫ ( θ ,U0 )+
π(τ )f(x|τ )dNRn(θ)≤ 1− dNRn(τ )dπRn(θ|x).
π(θ)f(x|θ)dNRn(τ )

The integrand can be expanded as

{
1− exp s⊤0 (τ − θ)− n0[Ψ(τ )−Ψ(θ)] + nx̄⊤(τ − θ)− n[Ψ(τ )−Ψ(θ)]}

n
+ [(τ − τ̂ )⊤ ˆΨ′′(θ )(τ − τ̂ )− (θ − θ)⊤ ′′

0 Ψ (θ0)(θ − θ̂)] .
2

√
We rescale the parameters τ and θ to the local parameters h = n(τ − θ0) and g =

√
n(θ − θ0), respectively. Then the integrand can be written as

{
1 [ 1 1 ]

1− exp √ (h− g)⊤s0 − n0 Ψ(θ0 + √ h)−Ψ(θ0 + √ g)
n n n
√

+ n(h− g)⊤
[ 1 1 ]

x̄− n Ψ(θ0 + √ h)−Ψ(θ0 + √ g)
n n

n 1 1
+ [(θ0 + √ h− τ̂ )⊤Ψ′′(θ0)(θ0 + √ h− τ̂ )

2 n n }
1− (θ0 + √ g − ˆ ˆθ)⊤Ψ′′ 1

(θ0)(θ0 + √ g − θ)] .
n n

By the second-order Taylor’s approximation,

1 1 1 1
Ψ(θ0 + √ h)−Ψ(θ0 + √ g) ≈ √ (h− g)⊤Ψ′(θ0) + [h⊤Ψ′′(θ0)h− g⊤Ψ′′(θ0)g].

n n n 2n
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Then the integrand can be rewritten as

{
1 ⊤ ′ ′ n0 + n

1− exp √ (h− g) [s0 − n0Ψ (θ0) + nx̄− nΨ (θ0)]− [h⊤Ψ′′(θ0)h− g⊤Ψ′′(θ0)g]
n 2n

n ˆ ˆ+ [(τ̂ − θ0)
⊤Ψ′′(θ0)(τ̂ − θ0)− (θ − θ0)

⊤Ψ′′(θ0)(θ − θ0)]
2 }
1 √

+ [h⊤Ψ′′(θ )h− g⊤Ψ′′ [ ⊤
0 (θ0)g]− n h Ψ′′(θ0)(τ̂ − θ0)− g⊤Ψ′′ ˆ(θ0)(θ − θ0)] .

2

Then, by the first-order Taylor’s approximation,

¯ − ′ ≈ ′′ ˆnx nΨ (θ0) nΨ (θ0)(θ − θ0).

Thus, we have

{
1 n n

1− exp √ (h− g)⊤
0 +

[s0 − n ′(θ0) + nΨ′′ ˆ
0Ψ (θ0)(θ − θ ⊤

0)]− [h Ψ′′(θ0)h− g⊤Ψ′′(θ0)g]
n 2n

n
+ [(τ̂ − θ ⊤ ˆ) Ψ′′(θ )(τ̂ − θ )− (θ − θ )⊤ ′′ ˆ

0 0 0 0 Ψ (θ0)(θ − θ0)]+
2 }

1 √⊤ ′′ − ⊤ ′′ − ⊤ ′′ ˆ − − ⊤ ′′ ˆ[h Ψ (θ0)h g Ψ (θ0)g] n[h Ψ (θ0)(τ θ0) g Ψ (θ0)(θ − θ0)] .
2

Further simplifying it,

{
1 n

1− exp √ (h− g)⊤
0

[s0 − n ′
0Ψ (θ0]− [h⊤Ψ′′(θ0)h− g⊤Ψ′′(θ0)g]

n 2n

n
+ [(τ̂ − ˆθ )⊤Ψ′′(θ )(τ̂ − θ )− (θ − θ )⊤ ′′ ˆ

0 0 0 0 Ψ (θ0)(θ − θ0)]
2 }√

+ nh⊤Ψ′′ ˆ(θ0)(θ − τ̂ ) .

√
Note that ˆ ˆn[(τ̂−θ ⊤

0) Ψ′′(θ0)(τ̂−θ0)−(θ−θ )⊤Ψ′′
0 (θ0)(θ−θ0)] → 0 and ˆnh⊤Ψ′′(θ0)(θ−τ̂ ) →

0 as n → ∞. So we have

{ }
1 n

1− exp √ (h− g ⊤ 0 ( )
) (s − n ′

0Ψ (θ0))− ′′
0 h⊤Ψ (θ0)h− g⊤Ψ′′(θ0)g .

n 2n



57

Note that

n0 n Rn
sup h⊤Ψ′′ 0

(θ0)h = .
∥Uh∥2≤Rn

2n 2n
2

If n ⊤ ′′
0 = o(n/Rn), then (n0/2n)h Ψ (θ0)h → 0 by squeeze law. Thus,( )

(n0/2n) h⊤Ψ′′ (θ0)h− g⊤Ψ′′ (θ0) g → 0 as n → ∞.

By Cauchy-Schwarz inequality

1 1√ (h− g)⊤ (s0 − n0Ψ
′ (θ0)) = √ (h− g)⊤UU−1 (s0 − n0Ψ

′ (θ0))
n n√

n0 1 ∥ ∥
≤ ∥U (h− g)∥ ·2 √ ∥U−1 (s0 − n0Ψ

′ (θ0))∥ .
n n 2

0

√ √
Since n0/n ∥U(h− g)∥ →2 0 as n → ∞, if 1/n0 ∥U−1 (s ′

0 − n0Ψ (θ0))∥2 is bounded, then

1
inf √ (h− g)⊤ (s0 − n ′

0Ψ (θ0)) → 0 as n → ∞.
∥Uh∥2≤R ,∥Ug∥2n ≤Rn2 2 n

Therefore,

∥ ( )∥∥
E ∥πRn(θ|x)−NRn ˆ ∥

θ, (nΨ′′(θ0))
−1 ∥ → 0 as n → ∞.

TV

3.3.4 Moderately-sized Neighborhood of θ0

By combining dn = o(Rn) in C1 and Rn = o(n) in C3, we request a moderately-sized

neighborhood of θ0. The radius of the ellipsoid Rn grows faster than the parameter dimension but

slower than the sample size. Such a neighborhood can capture sufficient posterior mass to claim

posterior consistency.

Lemma 3.4. If Rn = o(n), then∥ ∥
E ∥π(θ|x)− πRn(θ|x)∥ → 0,

TV
as n → ∞.



58

Proof of Lemma 3.4:

[ ( )]
E∥π − πRn∥TV = E π εcθ0,U (Rn)∫ { }
= exp (s0 + nx̄)⊤θ − (n0 + n)Ψ(θ) h(n0, s0)dθ

θ∈ϵc∫ (Rn)θ ,U0 { }
1 1

= exp (s0 + nx̄)⊤(θ0 + √ h)− (n0 + n)Ψ(θ0 + √ h) h(n0, s0)dh
∥Uh∥2 n n∫ >Rn2 { }

= 1− x̄)⊤
1 1

exp (s0 + n (θ0 + √ h)− (n0 + n)Ψ(θ0 + √ h) h(n0, s0)dh∫∥Uh∥2≤Rn
n n

2 {
= 1− exp (s0 + nx̄)⊤

1
(θ0 + √ h)

∥Uh∥2≤Rn
n

2 [ ]}
1 1− (n0 + n) Ψ(θ0) + √ h⊤Ψ′(θ0) + h⊤Ψ′′(θ0)h h(n0, s0)dh
n 2n∫ {

= 1− exp (s ⊤
0 + nx̄) θ0 − (n0 + n)Ψ(θ0)

∥Uh∥2≤Rn2 }
1 0

+ √ h⊤( ) n + n
s + nx̄− n Ψ′(θ )− nΨ′(θ ) − h⊤ ′′
0 0 0 0 Ψ (θ0)h h(n0, s0)dh

n 2n∫ {
= 1− exp (s0 + nx̄)⊤θ0 − (n0 + n)Ψ(θ0)

∥Uh∥2≤Rn2 }
1 ⊤( ′ ) n0 + n

+ √ ˆh s0 − n0Ψ (θ0) + nΨ′′(θ0)(θ − θ0) − h⊤Ψ′′(θ0)h h(n0, s0)dh
n 2n{ }

= 1− exp (s0 + nx̄)⊤θ0 − (n0 + n)Ψ(θ0) h(n0, s0)∫ { }
1 ( ) n0 + n

exp √ ˆh⊤ s0 − n ′
0Ψ (θ0) + nΨ′′(θ0)(θ − θ0) − h⊤Ψ′′(θ0)h dh

∥Uh∥2≤Rn
n 2n{ 2 }

≤ 1− exp (s0 + nx̄)⊤θ0 − (n0 + n)Ψ(θ0) h(n0, s0)∫ { }
1 nˆexp √ ⊤(s0 − n0Ψ

′ ) (n0 + )Rn
h (θ ′′

0) + nΨ (θ0)(θ − θ0) − dh
∥U{h∥2≤Rn

n 2n
2 }

= 1− exp (s0 + nx̄)⊤θ0 − (n0 + n)Ψ(θ0) h(n0, s0)∫ { }
1 ′ ) √

exp √ h⊤(s − n Ψ (θ ) + nh⊤Ψ′′ (n0 + n)Rˆ n
0 0 0 (θ0)(θ − θ0)− dh.

∥Uh∥2≤Rn
n 2n

2

Note that the posterior density evaluated at the true parameter θ0,

{
exp (s0 + nx̄)⊤

}
θ0 − (n0 + n)Ψ(θ0) h(n0, s0) → 1 as n → ∞.
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By Cauchy-Schwarz inequality,

1 1√ h⊤ (s0 − n0Ψ
′ (θ0)) = √ h⊤UU−1 (s − n ′

0 0Ψ (θ0))
n n

1 ∥ ∥ ∥ ∥
≤ √ ∥h⊤U∥ · ∥U−1 (s ∥

0 − n0Ψ
′ (θ0))

n 2 2√
Rn ∥ ∥

≤ · ∥U−1 (s0 − n0Ψ
′ (θ0))∥√ n 2

Rn≤ |c2 − n0|.
n

If Rn = o(n), then

1√ h⊤ (s0 − n0Ψ
′ (θ0)) → 0 as n → ∞.

n

Since n0 = o(n/Rn),

(n0 + n)Rn Rn→ as n → ∞.
2n 2

Notice that ( )
√ Rˆ n

Pr sup nh⊤Ψ′′(θ0)(θ − θ0) =
∥Uh∥2≤Rn

2( 2 )
√ Rˆ n

= Pr sup nh⊤UU (θ − θ0) =
∥Uh∥2≤Rn

2( 2 )∥ ∥ ∥ ∥∥ ∥ ∥√ ∥· ˆ= Pr sup h⊤ Rn
U nU(θ − θ0) =

2
∥ ∥

2∥Uh∥2≤Rn
2( 2 )∥ ∥ √∥√ ∥ R

= Pr ∥ ˆ n
sup nU(θ − θ0)∥ = .

θ∈ 2ϵθ ,U (Rn) 2
0

( )
From Lemma 3.2, we have ˆPr n(θ − θ0)

⊤ ˆΨ′′(θ0)(θ − θ0) > Rn/4 → 0 as n → ∞. Thus,

( ∥ ∥ √ )∥√ ∥ Rˆ n
Pr sup ∥ nU (θ − θ0)∥ = → 1 as n → ∞.

θ∈ 2ϵθ ,U (Rn) 2
0
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Hence,

{√ }∥ ∥∥ −Rn ∥ Rn|c2 n0| n0Rn
E π(θ|x)− π (θ|x) ≤ 1− exp √ − .

TV n 2n

If n0 = o(n/Rn), then as n → ∞,

{√ }∥ ∥
E ∥π(θ|x)− πRn

Rn|c2|
(θ|x)∥ ≤ 1− exp √ .

TV n

√ √
It is worth noting that Bontemps (2011) shows that T3 converges to 0 at a rate of rn/ 2π for a

sequence of positive numbers {rn} with rn = o(1) and − ln(rn) = o(Rn/dn), whereas we show
√ √

that T3 converges exponentially at a rate of Rn/ n. Under our circumstance, T3 converges

somewhat faster. Taking into account the trade-off between the rate of convergence and the growth

rate of parameter dimension, we can still acquire posterior concentration by assuming dn = o(n)

rather than dn ln(dn) = o(n) Bontemps (2011).

From Theorem 3.1 one can establish the consistency of the posterior distribution in the

following corollary. For more details and proof, we refer to Corollary 2.1 of Ghosal (2000).

Corollary 3.1. (Posterior consistency) Under the condition of the Theorem 3.1, there is a positive

real number c such that the posterior probability of

{ √ }∥ ∥
θ : ∥θ − θ0∥ ≤ ∥

2 cdn (Ψ′′(θ ))−1∥
0 /n

2

converges to 1 in probability.

Proof. To demonstrate the corollary, utilize the fact that Prn−1/2 |U−1ξ|2 < δ approximates, ac-

cording to Theorem 3.1, the posterior probability of {θ : |θ − θ0| 2 < δ}, where ξ follows a normal
√

distribution N (∆, Idn) and ∆ = nU−1(x̄ − µ). Hence, it suffices to establish that the latter
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converges to 1 in probability. Now

√∥ ∥ ∥ ∥
n−1/2 ∥U−1∆∥ ≤ ∥∆ −∥ ∥(Ψ′′(θ0))

1∥
2 2 /n√ 2∥ ∥
= Od ( d ∥

n n (Ψ ( −′′ θ0))
1∥ /n)

2

= odn(1),

so that the probability tends to 1 over the entire set,

( )( ∥ ∥ ∥−1/2 ∥ − ) ∥
1 ∥ −1/2 ∥ −1∥ δ

Pr n U ξ ≥ δ ≤ Pr n U ∥ξ −∆∥ ≥
2 2 2 2( ∥ ∥ (3.3.3)

= Pr n−1 ∥ 2
)∥(Ψ′′ −1∥ δ

(θ0)) ∥ W ≥ ,
2 4

where W has a central chi-square distribution with dn degrees of freedom. As

( ∥ ∥ ) ∥ ∥
−1 ∥ ′′ −1∥ ∥ ∥

)) ∥ −
E n ∥(Ψ (θ0 ∥ W = dn (Ψ′′ 1

(θ0)) ∥ /n → 0,
2 2

Equation (3.3.3) tends to 0. With a sufficient constant c, end up with the bound Pr (W > cdn/4)

on Equation (3.3.3). The posterior consistency result now follows.
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CHAPTER 4 APPLICATIONS

By demonstrating the Bernstein-von Mises theorem through a simulation study in the

Multinomial-Dirichlet model and discussing its applications in Bayesian density estimation and

the estimation of the mean of an infinite-dimensional normal distribution, we provide further in-

sight into the practical relevance and versatility of this theorem, particularly when dealing with

high-dimensional setup where dn = o(n).

4.1 Application to the Multinomial-Dirichlet Model

We validate the conditions of Lemma 3.2 and Lemma 3.3 in the multinomial model with

the Dirichlet prior case. Meanwhile, the condition of Lemma 3.4 is free of validation since merely

the existence of such {Rn} is needed.

Denote the true mean vector p = (p1, . . . , pdn)
⊤ and D = diag(p1, . . . , pdn). Then

Ψ′′(θ0) = D − pp⊤. Note that the spectral norm of Ψ′′′(θ) equals the largest singular value

of Ψ′′′(θ), see more details in Appendix .3. Since tensor Ψ′′′(θ) is symmetric on Rdn×dn×dn , the

largest singular value of Ψ′′′(θ) is the same as the largest eigenvalue of Ψ′′(θ). Thus,

sup ∥Ψ′′′(θ)∥ = sup λ (Ψ′′
max (θ)) ,

θ∈εc (R 4) θ∈εcn/ (Rn/4)θ ,U θ ,U0 0

where λmax (Ψ
′′(θ)) is the largest eigenvalue of Ψ′′(θ). We notice that

sup λ (Ψ′′
max (θ)) ≤ λmax (Ψ

′′(θ0)) .
θ∈εc (Rn/4)θ ,U0

According to Watson (1996), without loss of generality, we assume p1 < · · · < pdn , then

there is an eigenvalue of Ψ′′(θ0) at 0 and there is one eigenvalue of Ψ′′(θ0) in each gap between

the ordered pis,

p1 ≤ λ1 ≤ p2 ≤ λ2 ≤ p3 ≤ · · · ≤ λdn−1 ≤ pdn .
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In the sparse case where many pj = 0, Ψ′′(θ0) will possess only a few non-zero eigenval-

ues, and the largest among them will be bounded by the non-zero values of pdn−1 and pdn . This

implies that λ ′′
max (Ψ (θ0)) might converge to a finite value within the range of pdn−1 and pdn as dn

increases. However, this scenario does not align with our objectives, as the prior concentration con-

dition is not satisfied. Therefore, we assume that only few pj = 0 for j ∈ {1, . . . , dn} as dn → ∞.

Then pdn → 0 as dn → ∞, which in turn implies λmax (Ψ
′′(θ0)) → 0 as n → ∞. Hence,

sup ∥Ψ′′′(θ)∥ → 0 as Rn → ∞.
θ∈εc (Rn/4)θ ,U0

In such a way, the condition of Lemma 3.2 is validated.

In terms of the condition of Lemma 3.3, let c1 = max αj −1 be a positive constant. Then
0≤j≤dn

( )∑dn
n0R j=0 αj − dn − 1 Rn

n
=

n ( n )
(dn + 1) max αj − 1 Rn

0≤j≤dn≤
n

c1(dn + 1)Rn
= .

n

Choose Rn such that Rn = o(n/dn), then n0 = o(n/Rn). Select s0 of the form s0 = c ′
2Ψ (θ0),

where c2 is a constant. Then

1 ∥ ∥ |c2 − n0| ∥ ∥
√ ∥U−1 (s − ′ ))∥ ≤ ′( ∥

0 n0Ψ (θ0 √ ∥U−1Ψ θ0)
n 2
0 n 2

0√ ( )
dn|c2 − n0|≤ √ max ϕj(θ0) .

n 1≤j≤d0 n

where ϕ(θ0) = U−1Ψ′(θ0). Since

−1 ⊤ −1/2

U−1 = D−1/2 D pp D
+ √ (Ghosal, 2000)

1− p⊤D−1p+ 1− p⊤D−1p
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and Ψ′(θ0) = p, max ϕj(θ0) is of the order −1/2

d . −1
n Therefore, 1/n0 ∥U (s0 − n ′

0Ψ (θ0))∥2
1≤j≤dn √

is bounded up by |c2 − n0| / n0. In the following section, we demonstrate our result for the

Multinomial-Dirichlet model by simulation.

4.1.1 Simulation

The Bernstein-von Mises theorem result is demonstrated with simulations for the Multinomial-

Dirichlet model under conditions C1, C2, and C3 in Section 3.3.1. This configuration presupposes

that the parameter dimension increases as the sample size grows at a rate satisfying dn = o(n).

To validate the performance of the proposed theorem in terms of convergence rate, we compare

it with other three scenarios: d2n = o(n) Portnoy (1988) and dn ln(dn) = o(n) Bontemps (2011);

d3n ln(dn) = o(n) Ghosal (2000); and d3n = o(n) Spokoiny (2013), in terms of the expected total

variation distance between the posterior distribution and normal distribution centered at the max-

imum likelihood estimator with variance, the inverse of the observed Fisher information matrix.

For simplicity, we set d1.01n = o(n) in our theorem to ensure that dn grows slower than n as n

approaches infinity. In other words, the growth rate of dn is sublinear compared to n. The other

three scenarios can be represented as d2n = o(n), d3n = o(n), and d4n = o(n), respectively.

According to the Multinomial-Dirichlet model in Section 3.2.1, the posterior follows a

Dirichlet distribution with the hyper-parameter α + x, i.e. π(p|α + x). Because the maximum

likelihood estimator of p is p̂ = x/n, the estimated mean vector of the normal distribution is( ) [ ]∑ ∑
θ̂ = ln x/(n d− n

j=1 xj) . Since Ψ(θ) = ln dn
j=1 exp(θj) +1 , the estimated covariance( )−1

matrix of the target normal distribution is ˆnΨ′′(θ) satisfying

 p̂i(1− p̂i), if i = j,
ˆΨ′′(θ)ij = i, j ∈ {1, . . . , d }. n −p̂ip̂j, if i = j,

In our simulations, the total variation distance is computed by Scheffe’´ s lemma

∫
1∥P −Q∥TV = |p(θ)− q(θ)| dν(θ) (Tsybakov, 2008),
2

̸



65( )
where p(θ) is the multivariate normal density function of MVN ˆ ˆθ, (nΨ′′(θ))−1 , q(θ) is the den-

sity function of Dirichlet(p|α+ x) |∂p/∂θ|, and

exp(θi)
pi = ∑ for i ∈ {1, . . . , dn}.

1 + dn
j=1 exp(θj)

Note that the Jacobian term |∂p/∂θ| appears in the above expression because we are using built-in

function in R to generate samples from the Dirichlet distribution and then using Jacobian to convert

it to the density of the canonical parameter θ.

Let β ∈ {0.01, 1, 2, 3} be a dimensional factor characterizing the interplay between the

sample size (n) and dimension (dn). For each dn ∈ {15, 30, 100, 500, 1000}, the sample size n =

d1+β
n . The hyperparameter α is chosen to be a vector with all elements set to (dn−1)β/d

1+d n
n /(dn+

1). In this manner, conditions C1, C2, and C3 concerning the prior can be satisfied. All elements

in the hyperparameter vector ensure the concentration of the prior, while elements slightly larger

than 1 result in a roughly “flat” prior. The true parameter p = (p1, . . . , pdn)
⊤ is generated from the

Dirichlet distribution with concentration parameter α.

For the visual representation, as outlined in Monard, Nickl, and Paternain (2021), we plot

the marginal densities of θ1, θ2, and θ3, generated by 1000 samples from the posterior distribution

π(θ|x), superimposed with their corresponding target Gaussian curves. As depicted in Figure 4.1

below, the posterior distributions exhibit bell-shaped curves, closely resembling the target normal

curves in the histograms.

The expected total variation distances evaluated using a Monte Carlo method, which ap-

proximates the values over 1000 runs with 100 observations in each simulation, are given by

( )∥ ( ) ∥ ∑ ∑∥ ∥ 1000 100
1 1 1

E ∥N θ̂, (nΨ′′(θ0))
−1 − π(θ|x)∥ ≈ |p(θl)− q(θl)| .

TV 1000 100 2
r=1 l=1 r

The parameter p is generated from Dirichlet(p|α), and subsequently, the canonical parameter θ in

the above equation is obtained through variable transformation. The approximated expected total

variation distances between the posterior distribution and the approximated normal distribution are
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Figure 4.1 Marginal posterior densities of θ1, θ2, θ3 when dn = 30 and n = 32

presented in the table below. As the sample size increases, the approximated distances converge to

zero in each of the four scenarios. Our simulation results are shown in Table 4.1.

∥ ( )
Table 4.1 ∥ ˆ∥ Approximations of the expected total variation distances E N θ, (nΨ′′(θ0))

−1 −
π(θ|x)∥

TV
under four scenarios: n = d1.01; n = d2 ; n = d3 ; n = d4n n n n as dn grows

dn = 15 dn = 30 dn = 100 dn = 500 dn = 1000

n = d1.01n 8.19e-13 1.03e-26 4.74e-78 0 0

n = d2n 1.22e-09 1.64e-48 0 0 0

n = d3n 1.78e-14 3.72e-113 0 0 0

n = d4n 5.71e-12 1.65e-126 0 0 0

To ensure that the sample size n = d1.01n is an integer in simulations, we use the ceiling

function to round up d1.01n to the nearest integer. As shown in Table 4.1, when dn = 15, the

emergence of asymptotic posterior normality is not yet as apparent as other cases. This is evident

from the observed instability in the reduction of approximated expected total variation distances

between the posterior distribution and the target Gaussian distribution as the sample size increases.

Nevertheless, asymptotic posterior normality is still achieved at a relatively rapid rate when n =
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d1.01n . Overall, the convergence performance is just as good when using n = d1.01n as it is for the

other three scenarios. This suggests that the result of the Bernstein-von Mises theorem can be

attained without imposing a significant constraint on the growth rate of the parameter dimension,

such as when dn = o(n).

4.2 Application to Bayesian Density Estimation

Our result has an interesting connection to a Bayesian density estimation problem. Sup-

pose one wants to estimate a positive Lipschitz continuous density, denoted by f , on the unit

interval using a Bayesian method. Suppose y1, . . . , yn is a sample of size n from f . For an in-

teger d = dn satisfying d → ∞ and d/n → 0, divide the unit interval into (d + 1) subintervals

∆0,∆1, . . . ,∆d of length 1/(d + 1). Let Hn be the set of all histograms on {∆0,∆1, . . . ,∆d},

and define p0, p1, . . . , pd to be the probabilities of the subintervals under the density f . For each

observation yi, we can obtain xij = I{yi ∈ ∆j} for all j ∈ {0, 1, . . . , d}. Therefore, we have a

set of i.i.d. multinomial observations xi = (xi0, xi1, . . . , xid)
⊤, i ∈ 1, . . . , n with (d+ 1) cells and

probabilities p0, p1, . . . , pd. Let

∑d
fn(x) = (d+ 1) pjI{x ∈ ∆j}

j=0

be the approximated density. Then fn ∈ Hn. Let the true density of f be f0 and its approximation

fn and cell probabilities pj’s be denoted by f0n and p0j’s, respectively. Suppose the prior has a

Dirichlet distribution. The identical model has been verified in Section 4.1, so all three conditions,

including C1, C2, and C3, stated in the Theorem 3.1 are satisfied. We refer to Ghosal (2000) to

show the consistency of the posterior and achieve the convergence rate. By the definition of f0n,

∫
(f(x)− f0n(x)) (f0n(x)− f0(x)) dx = 0.
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Hence, the error in the estimation of f0(x) is given by

∫ ∑d ∫
(f(x)− f0(x))

2 dx = (d+ 1) (pj − p0j)
2 + (f0n(x)− f 2

0(x)) dx. (4.2.1)
j=0

The error can be decomposed into two terms as shown in Equation (4.2.1). The first term

is related to the discrepancy between the prior and the true distribution of θ, while the second term

measures the difference between the estimated density f0n(x) and the true density f0(x). Because

pj and p0j , j ∈ {0, 1, . . . , d}, are of the order d−1, for a generic positive constant c3,

∣ ∣∣ ∣∣ exp(θ ) exp(θ ) ∣|pj − p0j| = ∣ ∑ j 0j− ∑∣1 + d ∣
k=1 exp(θk) 1 + d

k=1 exp(θ0k)∣√
≤ c3d−4 ∥θ − θ 2

0∥2.

Given δ > 0, on ∥θ − θ0∥2 > δ, for a constant c4,

∑d
(d+ 1) (p 2

j − p0j)
2 < c4d

−2 ∥θ − θ0∥2 .
j=0

∥ ∥
In line with the result presented in Corollary 3.1 and the condition ∥(Ψ′′(θ0))

−1∥ = O (d2)
2

, the

posterior probability of the set

{ }∑d
θ : (d+ 1) (pj − p0j)

2 ≤ c5d/n
j=0

converges to 1 in probability, where c5 is a sufficiently large constant. It’s worth noting that in

Equation (4.2.1), the second term

∫
(f0n(x)− f0(x))

2 (
dx = O d−

)
2 .

∫
By choosing d = n1−ϵ, where 0 < ϵ < 1 so that d/n → 0, the integral (f(x)− f0(x))

2 dx

converges. Therefore, for a sufficiently large constant c6, given a random sample of y1, . . . , yn,
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(i) if ϵ ≥ 2/3, then the posterior probability of the set

{ ∫ }
f : (f(x)− f0(x))

2 dx ≤ c6n
−2(1−ϵ)

converges to 0 in probability;

(ii) if ϵ < 2/3, then the posterior probability of the set

{ ∫ }
f : (f(x)− f0(x))

2 dx ≤ c6n
−ϵ

converges to 0 in probability.

Furthermore, this result can be extended to Holder¨ classes of order α with an optimal convergence

rate of n−α/(2α+1), as explained in Wong and Shen (1995). A Lipschitz function corresponds to the

special case where α = 1, resulting in ϵ = 1/3 or 5/6. In general, these findings provide valuable

insights into the convergence properties of posterior in Bayesian density estimation.

4.3 Application to the Estimation of the Mean of an Infinite Dimensional Normal Distribution

Assume that we have n i.i.d. random samples x1, . . . ,xn from an infinite dimensional

normal distribution with mean θ = (θ1, θ2, . . .)
⊤ and covariance as the identity operator on

{ }∑∞
L = (y , y , . . .)⊤ : y22 1 2 j < ∞ .

j=1

Ghosal (2000) noted that although the normal approximation to the posterior distribution of the

infinite dimensional parameter does not hold, posterior distribution of a sequence of parametric

functions that depend only on θ1, . . . , θd may be approximated using the normal distribution under

the condition of “d3(ln d)/n is small”.

In particular, Ghosal (2000) showed that by assigning a prior on first d components of

θ and the rest to 0, the posterior distribution converges at the rate n−q/(2q+1), which is in line

with Pinsker (1980) who provided the minimax rate of convergence is n−q/(2q+1) on the ellipsoid



70{ }∑
θ : ∞ ≤j j2qθ2=1 j Q . Towards this end, Ghosal (2000) considered independent priors on the

components of θ whose logarithms satisfy Lipschitz condition where the Lipschitz constant is

tailored to meet the assumptions of the theorem.

Likewise we also consider independent priors on the components of θ which will lead to

the prior

{
π(θ;n0, s0) = exp s⊤

}
0 θ − n0θ

⊤θ∏d { }
= exp s0jθj − n0θ

2
j ,

j=1

where Ψ(θ) = θ⊤θ, Ψ′(θ) = 2θ,Ψ′′(θ) = 2Id, and Ψ′′′(θ) = 0d×d×d. With such a choice,

the conditions C1 and C2 related to Ψ are trivially satisfied. Let θ0 denote the true mean and

θ0,n = (θ1, . . . , θd, 0, 0, . . .)
⊤. Then following the calculations of Ghosal (2000)[p.65], one can get

∥θ0 − θ0,n∥2 = O (d−2q), and finally achieve the posterior convergence rate to be n−q/(2q+1) with

a similar choice of the dimension, d = n1/(2q+1) for which our condition d = o(n) is also satisfied.

The Bernstein-von Mises theorem is a fundamental result in Bayesian statistics that estab-

lishes a connection between Bayesian inference and Frequentist asymptotic theory. It provides

a way to approximate the posterior distribution with a Gaussian distribution as the sample size

increases.

This work presents a high-dimensional Bernstein-von Mises theorem, which delineates the

necessary conditions on the prior to attain asymptotic posterior normality. Specifically, it centers

on the Diaconis-Ylvisaker prior and presupposes that the problem’s dimensionality, denoted as dn,

grows sublinearly with the sample size n, expressed as dn = o(n). Three modest conditions are

delineated, mandating the prior to concentrate and retain a flat profile within a reasonably sized

vicinity of the true parameter value θ0.

The Multinomial-Dirichlet model is a widely used statistical model that describes the dis-

tribution of counts across multiple categories. By conducting a simulation study within this model,

we can assess the behavior of Bayesian estimators and examine the convergence properties of pos-
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terior distributions. The effectiveness of these conditions is exemplified through the Multinomial-

Dirichlet model, suggesting that asymptotic posterior normality is attainable when there exists a

linear relationship between the parameter dimension dn and the sample size n. This more lenient

condition on the parameter dimension in high-dimensional settings broadens the theorem’s appli-

cability.

Furthermore, the practical applications of Bayesian density estimation and the estimation

of the mean of an infinite-dimensional normal distribution offer valuable insights into the utility

of the Bernstein-von Mises theorem, particularly when the dimensionality of the problem, denoted

as dn, is sublinear in the sample size n, represented by dn = o(n). This scenario arises when the

number of parameters or features grows at a slower rate than the number of observations, which is

common in many modern statistical problems.

In Bayesian density estimation, the goal is to estimate the underlying probability density

function of a random variable. The Bernstein-von Mises theorem facilitates this task by providing

a way to approximate the posterior density with a Gaussian density. This approximation allows

for efficient computation and facilitates subsequent inference tasks, such as computing credible

intervals or conducting hypothesis tests.

Similarly, the estimation of the mean of an infinite-dimensional normal distribution is a

challenging problem that arises in various fields, including functional data analysis and Bayesian

nonparametric statistics. The Bernstein-von Mises theorem enables us to derive asymptotically

valid confidence intervals for the mean parameter in this infinite-dimensional setting. By leverag-

ing the Gaussian approximation provided by the theorem, we can make robust and reliable infer-

ences about the unknown mean.

Importantly, the utility of the Bernstein-von Mises theorem under the condition dn = o(n)

highlights its effectiveness in high-dimensional statistical problems. In such scenarios, traditional

asymptotic results may fail due to the curse of dimensionality.

The Bernstein-von Mises theorem revolutionizes Bayesian inference by facilitating the ap-

proximation of complex posterior distributions with Gaussian densities. This Gaussian approxima-
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tion significantly simplifies computational tasks, rendering Bayesian analysis more accessible and

efficient. By replacing intricate posterior distributions with Gaussian approximations, the theorem

enables practitioners to swiftly compute credible intervals and conduct hypothesis tests, essential

components of statistical inference. Moreover, in complex scenarios like estimating the mean of

an infinite-dimensional normal distribution prevalent in fields such as functional data analysis and

Bayesian nonparametric statistics, the theorem furnishes asymptotically valid confidence intervals

for the mean parameter. Relying on the Gaussian approximation provided by the theorem ensures

robust and dependable inferences concerning the unknown mean.

To enhance the relevance of the theorem across a wider range of scenarios, forthcoming

research endeavors could dig into formulating an extended high-dimensional Bernstein-von Mises

theorem tailored specifically for exponential family models incorporating non-conjugate priors.

This expansion would facilitate a more comprehensive understanding of the behavior of poste-

rior distributions in complex, high-dimensional settings. Additionally, there is a need to develop

more efficient methodologies for managing the intricate interplay between the dimensionality of

the problem dn, and the sample size n. By devising innovative strategies that strike a balance

between computational complexity and statistical accuracy, Bayesian statisticians can enhance the

theorem’s practical utility and applicability in real-world contexts.

In addition, exploring the Bernstein-von Mises theorem within the framework of misspec-

ified models and delineating conditions that ensure the persistence of convergence properties is

an area of significant interest. Future research in this realm requires an in-depth examination of

several critical aspects. Primarily, there is a necessity for deeper theoretical inquiries to construct

more comprehensive frameworks capable of characterizing the behavior of the posterior distri-

bution under diverse forms of model misspecification. This entails understanding how different

types and degrees of misspecification affect the convergence properties of the posterior distribu-

tion. Additionally, investigating the robustness properties of Bayesian inference methodologies

under model misspecification remains pivotal. Bayesian statisticians can examine the circum-

stances where Bayesian inference retains validity, even when the assumed model diverges from the



73

true data-generating process. Furthermore, empirical studies and applications across various fields

offer valuable insights into the practical implications of model misspecification on Bayesian in-

ference. Such investigations can inform the development of robust Bayesian methodologies better

suited to navigate real-world complexities and uncertainties.
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APPENDIX A PROOFS

.1 Proof of Lemma 3.2

Proof.

( )
ˆPr n(θ − θ0)

⊤Ψ′′ ˆ(θ0)(θ − θ0) > Rn/4( { })
= Pr x̄ ∈ Ψ′(θ) : θ ∈ εcθ0,U (Rn/4)(√ √
= Pr nU− { })

1 (x̄−Ψ′(θ0)) ∈ nU−1 (Ψ′(θ)−Ψ′(θ0)) : θ ∈ εcθ0,U (Rn/4)(√ √
= Pr nU− )

1 (x̄−Ψ′(θ0)) = nU−1 (Ψ′(θ)−Ψ′(θ0)) for some θ ∈ εcθ0,U (Rn/4) .

{√ √ }
Denote set A = nU−1 (x̄−Ψ′(θ0)) = nU−1 (Ψ′(θ)−Ψ′(θ c

0)) for some θ ∈ εθ0,U (Rn/4) .

Then

(∥∥√ ∥ ) (
E nU−1 (x̄−Ψ′(θ ))∥2 ∥

≥ E ∥√ ∥ )
nU− 21 (x̄−Ψ′

0 (θ0))∥ 1A2 ( 2 )∥ 2≥ E inf ∥√ ∥
nU−1 (Ψ′(θ)−Ψ′(θ0))∥ 1A

θ∈εc 2(Rn/4)θ ,U0 ∥√ ∥2
= E (1 ) inf ∥

A nU−1 (Ψ′(θ)−Ψ′(θ0))∥
θ∈εc 2(Rn/4)θ ,U0 ∥ ∥

= Pr (A) inf ∥√ )−Ψ′(θ ))∥2nU−1 (Ψ′(θ 0 .
c 2θ∈ε (Rn/4)θ ,U0

Thus,

(∥ ∥ )
U− 2

E ∥√n 1 (x̄−Ψ′(θ0))∥2
Pr (A) ≤ ∥

inf ∥√ ∥
nU− 2 .1 (Ψ′(θ)−Ψ′(θ0))∥

θ∈εc 2(Rn/4)θ ,U0

√
By Central Limit Theorem, 2

x̄ ∼ N (Ψ′(θ0),Ψ
′′(θ0)/n) as n → ∞, so ∥ nU−1 (x̄−Ψ′(θ0))∥( ) 2

√
is a Pearson’s chi-square statistic. Thus, E ∥ nU− 21 (x̄−Ψ′(θ0))∥2 = dn. So we have

(∥
E ∥√ ∥ )

nU−1 (x̄−Ψ′ 2
(θ ∥

0))∥ 2 d
.

inf ∥√ ∥ n
= ∥√ ∥

nU−1 (Ψ′ ′ 2
(θ)−Ψ (θ ))∥ inf ∥ nU− 21 ′

0 (Ψ (θ)−Ψ′(θ0))∥
∈ c 2 2θ ε (Rn/4) θ∈εc (Rn/4)θ ,U θ ,U0 0
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By the first-order Taylor’s approximation, if sup ∥Ψ′′′(θ)∥ → 0 as Rn → ∞, then
θ∈εc (Rn/4)θ ,U0

d d∥ n ∥ ∥ n≈ √ ∥
inf ∥√nU−1 (Ψ′(θ)−Ψ′ 2

( ))∥2θ inf ∥
0 nU(θ − θ0)∥

θ c 2 2∈ε (Rn/4) θ∈εc (Rn/4)θ ,U θ ,U0 0

dn
=

inf n(θ − θ0)
⊤Ψ′′(θ0)(θ − θ0)

θ∈εc (Rn/4)θ ,U0

dn
= .

Rn/4

Since , ddn = o(Rn) n → 0
Rn/4

as n → ∞. Hence,

( )
ˆ− ⊤ ′′ ˆPr n(θ θ0) Ψ (θ0)(θ − θ0) > Rn/4 → 0 as n → ∞.

.2 Key Idea of the Bernstein-von Mises Theorem Proof

This section outlines the key idea behind the proof of the Bernstein-von Mises theorem

as presented in Van der Vaart (2000), a fundamental reference that has significantly influenced

subsequent versions of the Bernstein-von Mises theorem. For the observation X , it possesses an

asymptotic equivalent of the “locally sufficient” statistics

n
1 ∑

∆ −1
n,θ0 = √ I

n θ0
ℓθ0(Xi),

i=1

where ℓθ represents the score function of the model, i.e., the derivative of the log-likelihood. Ac-

cording to the Bernstein-von Mises theorem, there is a tendency towards 0 for the total variance dis-
√

tance between the posterior distribution of n(θn − θ0) and N (∆n,θ0 , I
−1
θ0

). As ∆n,θ0 approaches
√

X , the posterior distribution of n(θ −
n−θ0) converges to N (X, I 1

θ0
). Therefore, in differentiable

parametric models, the heuristic argument implies that the posterior distribution converges to the

Gaussian distribution N (X, I−1
θ0

).
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The subsequent version of the Bernstein-von Mises theorem has weak requirements on the

prior. It assumes the presence of a sequence of uniformly consistent tests for testing H0 : θ = θ0

against H1 : |θ−θ0|2 ≥ ϵ, for every ϵ > 0. This is in addition to the need for differentiability in the

quadratic mean of the model. Balls centered at the true value θ0 should be able to separate θ0 from

the complements of the balls. In other words, by introducing a neighborhood around the true value

θ0, the entire parameter space is divided into two sub-spaces: the neighborhood containing θ0 and

its complement, which does not contain θ0. This separation hypothesis appears rather logical, as
√

the theory suggests the eventual concentration of posterior distributions on balls of radii Rn/ n

around θ0, for every Rn → ∞.

Separation by tests of H0 : θ = θ0 from H1 : |θ − θ0|2 ≥ ϵ for a single ϵ > 0 already

implies separation for every ϵ > 0, under the assumptions of continuity and identifiability of the

model. Even without the separation condition, the model remains valid, and the inference can be

carried out reliably if Θ is compact and the model is both continuous and identifiable.

Theorem 10.1 (Van der Vaart, 2000) [p.141] Let the experiment (Pθ : θ ∈ Θ) be differentiable in

quadratic mean at θ0 with nonsingular Fisher information matrix Iθ0 , and suppose that for every

ϵ > 0 there exists a sequence of tests ϕn such that

P n
θ ϕn → 0, sup P n

θ (1− ϕn) → 0.
∥θ−θ0∥2≥ϵ

Furthermore, let the prior measure be absolutely continuous in a neighborhood of θ0 with a con-

tinuous positive density at θ0. Then the corresponding posterior distributions satisfy

∥ ∥∥P√
n(θn−θ0)|X1,...,Xn

−N (∆ −
n,θ0 , I

1
θ )∥→ 0 in P n

θ0
.

For details of the proof, interested readers can refer to Van der Vaart (2000), p. 141-

143. Instead of working on the entire parameter space, the concept of a neighborhood around

the true parameter θ0 is introduced creatively. This approach allows the proof to be separated

into two parts. Firstly, demonstrating that the posterior, truncated by the neighborhood of the true
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parameter, converges to the complete posterior. Secondly, showing that the truncated posterior

converges to the target normal distribution centered at the maximum likelihood estimator, with

variance given by the inverse of the observed Fisher information matrix. These two convergences

occur simultaneously for certain neighborhoods with a growing radius. Naturally, the Bernstein-

von Mises result follows.

.3 Some Useful Results

Suppose that real number λ is a singular value of a third order tensor B = (bijk), for all i ∈

{1, . . . , d1}, j ∈ {1, . . . , d2}, and k ∈ {1, . . . , d3}. Then singular vectors x = (x1, . . . , xd1)
⊤ ∈

Rd1 , y = (y1, . . . , yd2)
⊤ ∈ Rd2 , z = (z1, . . . , zd3)

⊤ ∈ Rd3 satisfy the following equations (Qi and

Hu, 2019):

∑d2 ∑d3
(i) bijkyjzk = λxi for i ∈ {1, . . . , d1};

j=1 k=1

∑d1 ∑d3
(ii) bijkxizk = λyj for j ∈ {1, . . . , d2};

i=1 k=1

∑d1 ∑d2
(iii) bijkxiyj = λzk for k ∈ {1, . . . , d3};

i=1 j=1

(iv) x⊤x = y⊤y = z⊤z = 1.

Thus,

∑d1 ∑d2 ∑d3
bijkxiyjzk = λ.

i=1 j=1 k=1

Notice that

∑d1 ∑d2 ∑d3
⟨B,x⊗ y ⊗ z⟩ = bijkxiyjzk.

i=1 j=1 k=1
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The spectral norm of B,

{
∥B∥ = sup ⟨B,x⊗ y ⊗ z⟩ : x⊤ }

x = y⊤y = z⊤z = 1∑d1 ∑d2 ∑d3
= sup bijkxiyjzk

i=1 j=1 k=1

= λmax,

where λmax is the largest singular value of B. Hence, the spectral norm of B is equal to the largest

singular value of B.
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