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ABSTRACT 

John Chen, Committee Chair 

This dissertation focuses on methodological innovation for multiple testing on hypotheses 

related to large-scale and correlated data, where error rate control is intrinsically critical. Research 

toward this goal necessitates rigorous discussions on a thorny concept, the strong control of 

familywise error rate (FWER). In the literature, published papers in this regard subsequently avoid 

this intricate issue by adapting feeble criteria such as the weak control of FWER or the false 

discovery rate. Different from conventional approaches, we directly tackle the problem with the 

strong control of FWER. 

Starting with Efron’s data on an inference problem related to 7128 genes of 72 patients, 

consisting of 47 acute lymphoblastic leukemia patients and 25 acute myeloid leukemia patients, 

the dissertation lays out fundamental terminologies facilitating the research on multiple inferences 

after discussing a method controlling the false discovery rate following the empirical approach of 

estimating the correlation parameter. 

Following a review of the current literature, one distinct feature of the dissertation 

attributes to multiple testing procedures on odds ratios when several populations are of interest. 

When the joint distribution of a cluster of subsequent populations is approximately available, such 

as the utilization of the Cochran-Mantel-Haenszel statistic, a sequential testing method of strong 

control of FWER is proposed. The new method outperforms the traditional Holm’s procedure 

(which also strongly controls FWER) in terms of substantiating any signifcant discovery that is 

detected by the latter. 

Another feature of the dissertation explores the sequential testing procedure for the 

comparison of the odds ratio. It effectuates a general stepwise exact inference procedure that 

strongly controls the FWER. The new procedure is robust and versatile for both parametric and 

nonparametric settings. When the new procedure was employed with the Jonckheere-Terpstra test, 

it distinctly improved power performance, as shown in a simulation. The new procedure was 
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applied to analyze a real-life dataset from CDC regarding the age effect on binge alcoholism. It 

reveals the fact that the rate of binge alcoholism steadily increases in the age group of 18-34. 

Finally, the dissertation shifts attention to the analysis of large-scale correlated data posted 

in Efron’s paper. It attributes more intrinsic inference outcomes to the new procedure proposed in 

this dissertation research. Specifcally, the new method was combined with a normality 

bootstrapping method. The outcome greatly enhances preceding analytic results on the gene 

expression data. An implementation adapting a nonparametric bootstrapping method on the data 

casts a new highlight on the robustness of the new procedure. 
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PREFACE 

It is a common practice in industry and academia to employ multiple hypotheses in 

scientifc research. The existing step-wise procedures for conducting simultaneous hypotheses 

testing are deemed inadequate for large-scale data analysis when considering strong control over 

the family-wise error rate (F W ER). Holm’s step-down method strongly controls the family-wise 

error rate at a given signifcance level of α. However, the procedure ends up being too punitive for 

large-scale simultaneous hypothesis testing as it uses the Bonferroni correction in a sequential 

manner . On the other hand, despite a statistically more powerful approach than Holm’s 

step-down procedure, Hochberg’s step-up procedure does not strongly control the family-wise 

error rate. Bradley Efron uses an estimated false discovery rate (F DR) based on an underlying 

distributional assumption in Efron (2010). Albeit, F DR can weakly control the F W ER when all 

null hypotheses under consideration are true. This dissertation aims to develop a robust rejective 

algorithm of multiple hypothesis testing to ensure strong control over the F W ER. First, I 

focused on improving the existing hypothesis-testing procedures involving multiple odds ratios. 

Following my research, I expanded the recently suggested methodology in a non-parametric 

framework. In addition, I compared the statistical power of the new algorithm and that of Holm’s 

step-down procedure under various setups. The real-life application of the newly proposed 

algorithm has demonstrated its effectiveness. Finally, I extended the new methodology for testing 

simultaneous hypotheses related to large-scale data analysis that involves signifcant correlation. 

A bootstrapped 95% confdence interval was constructed when the underlying distribution of the 

test statistics was unknown. This dissertation has successfully proposed a confdence procedure 

that meets the requirements of a robust simultaneous hypothesis technique in scientifc research. 

It guarantees strong control over the family-wise error rate, making it highly useful in today’s 

world of large-scale data analysis. 

Asmita Ghoshal 

Bowling Green, Ohio 

June 22, 2023 
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction and Background 

Researchers often encounter correlated data across various felds in today’s scientifc 

landscape. Conducting multiple hypothesis testing accurately presents a signifcant challenge. To 

mitigate the problem of high correlation, various methods can be used. False Discovery Rate 

(F DR), which is the expected value of the ratio of the number of false rejections to the total 

number of rejections, and the Family Wise Error Rate(F W ER), which is the probability of 

making at least one type I error, are two such methods that are in use. When conducting statistical 

analysis, it is more effective to prioritize the control of the family-wise error rate (F W ER) over 

the false discovery rate (F DR) in order to minimize false positives. This is because F DR can 

only offer weak control over F W ER when all the null hypotheses under consideration are true. 

Holm (1979) proposed a step-wise procedure for multiple testing that can control F W ER. 

However, when the number of hypotheses under consideration is large enough, Holm’s procedure 

ends up with overly strict rejection criteria, thus can lead to an erroneous conclusion. This 

research aims to develop a robust methodology for controlling the family-wise error rate in the 

presence of signifcant correlations. To achieve the objective of the proposed research topic, I am 

beginning by examining previous studies on large-scale data analyses as well as studies on 

simultaneous hypothesis testing. 

In large-scale hypothesis testing, Efron (2010) proposes a reliable method for calculating 

the empirical false discovery rate even when signifcant correlations are present. A confdence 

procedure proposed by Chen (2016) can conduct simultaneous hypothesis testing while 

controlling the family-wise error rate in a strong sense. In the literature review, I present a 

comprehensive understanding of the topics relevant to my research study in the two papers 

mentioned above. In addition, I have explored various defnitions from Casella and Berger (2021) 

relevant to simultaneous hypothesis testing and confdence procedures. To start, I examine the 

methodology outlined in the research conducted by Efron in 2010, as referenced in the 

bibliography. Following this, I will provide my interpretation of the confdence procedure 
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discussed in Chen’s non-parametric study from 2016, including any pertinent defnitions. 

Large-scale studies frequently involve a signifcant number of correlated instances. So, a 

practitioner must consider the correlation between different cases accurately. Without a sound 

methodology, a practitioner might end up underestimating the variability in the data raising severe 

consequences. The data set under consideration concerns a leukemia microarray study by Golub, 

Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, et al. (1999) that 

has been used in Efron (2010) paper for motivation and illustration. I have used the same data set to 

present a comparative study between Holm’s Algorithm and the proposed algorithm in Chapter 4. 

Corresponding to each of the 7128 genes, two disease categories are being studied, acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), with a total of 72 patients. 

There are 47 patients under ALL and 25 patients under AML. We aim to investigate any signifcant 

difference in gene expressions between ALL and AML for each of the N(= 7128) genes 

simultaneously. 

Problem Statement: 

The objective of this dissertation is to test multiple null hypotheses, labeled as H01, ...H0N , while 

accounting for signifcant pairwise correlations in a reliable manner. The primary goal is to create a 

simultaneous confdence procedure that can strongly control the family-wise error rate (as defned in 

2.2). The focus is on achieving exactness in the process by strongly controlling the family-wise error 

rate at a given signifcance level. 

1.2 Methodology for Empirical FDR (Efron (2010)) 

In Efron (2010), the author has used a microarray experiment involving thousands of genes 

to demonstrate the idea of capturing the correlation parameter while obtaining the cumulative 

distribution of the summary statistics. In the microarray experiment, numerous genes were 

scrutinized to identify the presence of a potential disease. Corresponding to each gene, a z value is 

produced. Essentially, these z values represent the correlated test statistics. An important assumption 

is that the z-values follow normal distributions with different means and variances. In 
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the microarray experiment under consideration, N=7128 genes are being examined to identify the 

genetic difference between two forms of leukemia, namely acute lymphoblastic leukemia (ALL) 

and acute myeloid leukemia(AML). 

The number of ALL patients and AML patients involved in the study are 47 and 25, 

respectively. The expression levels on 7128 genes are measured for each of these patients. The 

aim is to accurately calibrate the correlation structure between these 7128 gene expression levels. 

The main idea is to establish the suffciency of estimating the N (N 
2 
−1) pairwise correlations for 

capturing the correlation structure of the leukemia data robustly. 

The methodology in Efron (2010) computes two-sample t-statistic comparing the AML 

and ALL expression levels for each of the 7128 genes. After that, these t-statistic values are 

converted to z-values using the inverse of the cumulative distribution function for standard 

normal. These z-values approximate an empirical right-sided cumulative distribution function, 

namely Fb defned next.

#{Zi > x}bF (x) = (1.2.1)
N

Where, zi’s denotes the z-value corresponding to the ith gene. 

The primary concern of Efron (2010) is accurately obtaining summary statistics like 

empirical cumulative distribution function. Finally, the Efron (2010) deduces the properties of 

those above empirical cumulative distribution functions in the presence of substantial correlation 

using the root-mean-square of the pairwise correlations. A simple formula is derived for 

calculating the pairwise correlations. Usually, the presence of correlation decreases the accuracy 

of statistical models. So, practitioners must understand and analyze the correlation’s impact on 

summary statistics estimates. Additionally, it is pivotal to study the consequences of correlated 

variables on various statistical tests like hypothesis testing. Efron (2010) addresses all the 

above-noted aspects in a concise manner. 

The root means square correlation parameter is estimated using the leukemia data 

mentioned above. Using rigorous theory and reduction techniques, in Efron (2010) the author has 
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developed a simple formula for capturing the variability of the test statistic corresponding to the 

empirical cumulative distribution function, namely Fb. Without the correlation in the picture that

Fb(x)(1−Fb(x))is assuming independent zi’s, the variance of Fb can be given as 
N . However, the

presence of correlation leads to an additional penalty term while computing V ar 
�
Fb (x) . The 

ultimate goal of Efron (2010) is to estimate the penalty term effciently. Appendix D provides a 

detailed description of the methodology employed in Efron (2010). 

1.2.1 Estimation of the Correlation Parameter α (Efron (2010) ) 

Keeping in mind that the goal of Efron (2010) is to deduce a simple formula for the 

covariance of cov1, one must estimate the correlation parameter, namely α, robustly. The author has 

elucidated the estimation process using the data coming from the leukemia study. A brief description 

of the data is given next. X denotes the data matrix for the leukemia study with 

N=7128 rows with the ith row representing the two sample t-statistic comparing the expression 

levels on the ith gene for all the patients. And n=72 columns representing the total number of 

participants in the leukemia study (47 ALL and 25 AML patients). Thus xij of X is the expression 

level for ith gene on jth patient. To reduce the noise in the genetic expression, each column of the X 

is replaced by the corresponding z-values using the following transformation. 

xfij = Φ−1((rij − 0.5)/7128) where rij is the column rank of xij in the jth column. 

The rms correlation parameter α in Efron (2009) is estimated separately for ALL patients, 

AML patients, and both. A subset of the N × n matrix X namely X0 with 7128 rows and n0 columns 

for n0 = 47, 25, and 72 are used for computing the empirical distribution of the correlation 

distribution. Note that N(N − 1)/2 possible pairwise correlations in each of the three cases. Using 

these N(N-1)/2 pairwise correlations, one can determine the mean(m) and variance (ν) of the 

empirical distribution of correlation estimate, namely ρb. 

The distribution of possible pairwise correlations for the disease categories AML and ALL 

and the combined data is shown in Figure 1.1 with a total of N(N − 1)/2 = 25400628 correlations. 

From Figure 1.1, it can be inferred that the pairwise correlations follow an approximately normal 

distribution for ALL, AML, and the combined data. Additionally, the 
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centers of all three normal distributions are roughly centered around zero. This is a critical 

observation as in Efron (2010) for estimating the correlation parameter, various moments of the 

distribution of pairwise correlations (g(ρ)) are required (.0.21). 

Figure 1.1 Distribution of pairwise correlations 

1.2.2 Replications and Discussion of Relevant Results from Efron (2010) 

This section presents replications of some results in Efron (2010) that are relevant to my 

research. Additionally, I discuss some critical aspects of the estimated correlation parameter. 

Furthermore, the distributions of the two sample t-test statistics and the z-scores after transforming 

the t-values are presented in fgures 1.2 and 1.3, respectively. 

Table 1.1 below highlights the estimates of the standard deviation of the right-sided cdf 

Fb(x) at fve different values, namely 1,2,3,4 and 5. Fb(x) denotes the estimate of the empirical cdf
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at any given x; sdb corresponds to the estimate of standard deviation of Fb(x) computed

considering the presence of correlation between the z values;sdb 
0 is the estimate of standard

deviation ignoring the correlation; sdb perm represents the permutation standard deviation. The total

number of replications used for computing sdb perm is 2000.

Figure 1.2 Two sample t-test statistics 

sdb 
0 and sdb captures the variability in the empirical cdf at any given x . Whereas the

permutation standard deviation determines how precisely Fb(x) estimates the actual value of the

right-sided empirical cdf at x. A smaller value indicates a more precise estimate of the real value 

of the right-sided empirical cdf at x. The permutation standard deviation is computed from 

repeated permutations of the 72 patients under investigation, assuming the null hypothesis is true: 

there is no difference in gene expressions between AML and ALL. 

As can be observed from table 1.1 above, disregarding the correlation between z-values 
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Figure 1.3 z-scores 

always leads to underestimation of the variability in the right-handed empirical cdf. Additionally, 

the low values of sdb perm suggest the applicability of the methodology in large-scale hypothesis

testing. 

One of the main objectives of Efron (2010) is to compute the root-mean-square (rms) 

correlation (.0.21) in an accurate manner using both .0.34 and .0.35. The next table represents the 

estimated value of the rms correlation using two different formulas as in .0.32 and in .0.33. The 

rightmost column of the table below provides the result corresponding to the 100 simulations of 

the following model with N=6000, n1 = n2 = 40, and true α = 0.10. 

µ0, σ0) = (0, 1), p0 = 0.95 and (µ1, σ1) = (2.5, 1), p1 = 0.05 (1.2.2) 

The last column of the table 1.2 shows the simulated mean ± standard deviation values 
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Table 1.1 Estimated Standard Deviations for the Empirical Right-Sided Cumulative Distribution 
Function 

Estimates x=1 x=2 x=3 x=4 x=5 bF (x) 0.289 0.128 0.055 0.026 0.011 bsd 0.0063 0.0068 0.0062 0.0046 0.0031 bsd0 0.0054 0.0040 0.0027 0.0019 0.0012 bsdperm 0.0222 0.0192 0.0119 0.0063 0.0034 dFDR(x) 0.938 0.911 0.678 0.373 0.162 

Table 1.2 Root-Mean-Square Estimates of the Pairwise Correlation Parameter α (Efron (2010)) 

Estimates of α ALL AML Both Simulation bα 0.121 0.109 0.114 0.1054 ± 0.0074
α̃ 0.118 0.092 0.113 0.1045 ± 0.0075

obtained from 100 simulations of the model specifed in 1.2.2. As can be seen from the table 1.2 

above, the rms correlations computed using all 72 patients under the leukemia study are the same 

till the second place of decimal. The rms correlations for the simulation study also establish the 

accuracy of the estimation process. Note that the variability (sd) of the estimates only differs at 

the third place of decimal. So, based on the discussions above, we can conclude that the 

assumption of independence for the gene expression under the Leukemia study is erroneous. By 

considering the correlation, the statistical inference concerning the Leukemia study can be 

enhanced for improved accuracy. 

1.3 Relevant Defnitions, Theorems and Lemmas for Multiple Hypothesis Testing 

Within this section, I aim to thoroughly explain the theorems and lemmas that pertain to 

the research question. Initially, I will outline several pertinent defnitions to my research inquiry. 

Then I will discuss the primary theorem outlined in the research paper by Chen (2016), followed 

by two brief theorems related to the existing step-wise rejective algorithms. 

Defnition 1.1. Confdence Procedure (Casella and Berger (2021)): If X ∼ f(x|θ), where x ∈ X 

and θ ∈ Θ, then a confdence procedure is a set in the Cartesian product space X × Θ, defned as 

{(x, θ) : (x, θ) ∈ C}, where C ∈ X × Θ. 
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Defnition 1.2. Confdence Set (Casella and Berger (2021)): For fxed x, the θ-section or 

confdence set is defned as A(θ) = {x : (x, θ) ∈ C}. 

Defnition 1.3. Acceptance Region(Casella and Berger (2021)): For fxed θ, the x-section or 

acceptance region is defned as C(x) = {θ : (x, θ) ∈ C}. 

Defnition 1.4. Boole’s Inequality(Casella and Berger (2021)): If P is a probability function, then P∞for A1, A2, ... P(∪∞ 
i=1Ai) ≤ i=1 P(Ai). 

Defnition 1.5. Bonferroni Inequality(Casella and Berger (2021)): If P is a probability function, P nthen for any sets A1, A2, ..., An, P(∩n P(Ai) − (n − 1).i=1Ai) ≥ i=1

Theorem 1.1. (Chen (2016)) For multiple testing problems Hi0 : θi ∈ Θi versus Hi1 : θi ∈ Θc
i , 

i = 1, 2, ..., k assume that for any nested rejection region and permissible integers i and t, there 

exists inverted confdence set Ci
t(y) that is directed towards Θc

i . When screening down from the 

largest to the smallest ordered p-value, let m be the index that satisfes 

αi) Pb(m) ≥ 
k−m+1

ii) for any index i : m < i ≤ k,b αP(i) < , we have
k−i+1 

� � 
∩ Θk−m+1P θ ∈ Θc ∩ ... ∩ Θc

(m+1) ≥ 1 − α (1.3.1)(k) (m) � � 
where C0 

k y = Θ when m=0 (In this case, all p-values are smaller than the corresponding 

cut-off values) and Θc = Θ when m=k, for notational convenience. (k+1) 

The proof of Theorem 1.1 is provided in detail in Appendix E. 

Holm’s and Hochberg’s stepwise procedures are viable options for multiple hypothesis 

testing. However, it has been found that Hochberg’s step-up procedure is not as effective in 

controlling the family-wise error rate. As a result, this dissertation primarily focuses on Holm’s 

step-down Procedure and utilizes it for any subsequent comparative study. Next, I state and 

present two small theorems related to existing Holm’s step-down Procedure. 
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0 

Theorem 1.2. Holm’s procedure strongly controls the family-wise error rate (F W ER). 

Proof. Let H = {H1, H2, ..., Hn} be a given collection of null hypotheses. Let H ′ ⊆ H . Suppose T T|HH0 =
n {Hiis true} and H ′ = 

′ |{H ′ is true}. The strong control of F W ER is defned asi=1 0 i=1 j 

′PH (RejectingH0 
′ 
) ≤ α ∀H ′ ⊆ H . 

Consider testing n null hypotheses simultaneously against their respective alternatives. 

Let I be the set of indices of true hypotheses and m be the number of elements in I . We must 

show that P(Rejecting Hi for some i ∈ I)≤ α for a given signifcance level α. 

P(Rejecting Hi, i ∈ I) [As we can reject I even if only one of the hypotheses in I is false] S 
=P( i∈I Rejecting Hi) P 
≤ i∈I P(Rejecting Hi) [Using Boole’s Inequality] 

A hypothesis is rejected if the corresponding p-value is smaller than the threshold the 

sequentially rejective procedure obtained. Let pi be the p-value corresponding to the ith 

hypothesis test. Considering that p-values ∼ Uni(0, 1), we consider the following scenarios. 

Case 1: Let pi > α/m ∀i ∈ I . 

Then P({i : pi > α/m})=1. 

Therefore, P({i : pi ≤ α/m})=0. 

Thus P(Rejecting Hi)=0 ∀i ∈ I . 

Therefore, P(Rejecting Hi, i ∈ I)=0 < α 

Case 2: ∃i ∈ I s.t.pi ≤ α/m. 

This i can be one or more of the m hypotheses in I . 

Therefore, P(Rejecting Hi, i ∈ I) S 
=P( i∈I Rejecting Hi) P 
≤ P({i : pi ≤ α })i∈I m P 

α= P({pi ≤ })i∈I m P 
= α [As pi ∼ Uni(0, 1)∀i ∈ I]i∈I m 

=m. α [AS |I| = m]=α. 
m 

Thus, P(Rejecting Hi, i ∈ I)≤ α. 
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Theorem 1.3. The Extended Simes (1986) procedure (step-up procedure) is stronger than Holm’s 

Procedure (step-down Procedure). In other words, the Extended Simes (1986) procedure will 

reject any sub-collection of hypotheses rejected by Holm’s procedure. 

Proof. Let H = {H1, H2, ..., Hm} be a given collection of hypotheses. Suppose we arrange the 

p-values of the individual hypothesis in ascending order. Let P(1), P(2), ...P(m) be the ordered

p-values. Let H(i) denote the null hypothesis corresponding to the ith ordered p-value P(i).

Then according to the Holm’s Procedure at a signifcance level α if 

P(1) < α/m we reject H(1) and proceed to check whether 

P(2) < α/(m − 1) if true, we reject H(2) and proceed to check whether 

P(3) < α/(m − 2) ... 
...

P(k) < α/(m − k + 1)if true, we reject H(k) and proceed to check whether 

P(k+1) < α/(m − (k + 1) + 1) = α/(m − k)... 
...

P(m) < α Therefore, for1 ≤ k ≤ m, we sequentially check whether 

P(k) < α/(m − k + 1); if true, we reject the corresponding hypothesis and proceed to the next 

step; else, we stop and terminate the algorithm. On the other hand, Simes (1986) Procedure 

sequentially rejects all H(i ), i 
′ ≤ i if P(i) ≤ α/(m − i + 1) for i = m, m − 1, ..., 1.′ 

So, the step-up procedure starts with checking P(m) ≤ α if true, we reject all of the 

hypotheses in consideration, namely H(1), H(2), ..., H(m). 

If P(m) > α, then we proceed to check whether 

P(m−1) ≤ α/(m − (m − 1) + 1) = α/2 if true, then reject H(1), H(2), ..., H(m−1). If 

P(m−1) > α/2, then we proceed to check whether P(m−2) ≤ α/3 ... 
...

If P(1) ≤ α/m reject H(1). So, if P(k) is rejected by Holm’s procedure then by 

construction P(k) < α/(m − k + 1). Now if one of the P(k+1) ≤ P(k+1) ≤ ... ≤ P(m) is less than 

α/(m − k + 1), then P(k) is automatically rejected by the Simes (1986) procedure. If not, then as 
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P(k) ≤ α/(m − k + 1) Simes (1986) procedure rejects P(1), P(2), ..., P(k). Thus Simes (1986) 

procedure rejects any hypothesis that Holm’s procedure rejects. Moreover, Simes (1986)’s 

procedure can reject a hypothesis even if Holm’s procedure does not reject it due to its top-down 

approach. 

It’s essential to recognize that while Holm’s procedure effectively controls the 

Family-Wise Error Rate (F W ER) in a strong sense, it may not be the most effective test for 

simultaneous hypothesis testing. Hence, there is a need for a new algorithm capable of surpassing 

the statistical power of Holm’s step-down Procedure and ensuring strong control over the 

F W ER. In the following section, I will delve into the potential inquiries pertinent to my 

dissertation research, which I introduced in my literature review. These questions are based on my 

understanding of the existing literature in the feld of simultaneous hypothesis. Additionally, I 

will outline the structure of my dissertation, which will conclude this chapter on literature review. 

1.4 Research Plan 

An area of potential expansion, enhancement, or application of Efron’s work on correlated 

data in Efron (2010) involves the simultaneous control of FWER for 7128 hypotheses. Efron used 

the Golub et al. (1999) data set for a large-scale statistical estimation of empirical F DR using the 

False Discovery Rate. Whereas, in my research, the Golub et al. (1999) data set is used for 

large-scale simultaneous hypothesis testing that can strongly control the family-wise error rate 

(F W ER) at a given signifcance level (α). For each of the 7128 genes, a two-sample t-statistic is 

computed under the assumption that the variability of a given gene expression is the same in ALL 

and AML. Under H0, it is assumed that there is no signifcant difference in the gene expressions 

between ALL and AML. Now, Corresponding to each gene, there are 72 patients. So the degrees 

of freedom, in this case, is 72-2=70. Then the observed two-sample t test statistics are 

transformed into a standard normal variate (z-values) by probability integral transformation. 

zi = Φ
1(F70(ti)), i = 1, 2, ..., N where Φ is the cumulative distribution function (cdf) of standard 

normal distribution, and F70 is the cdf of Student’s-t distribution with 70 degrees of freedom. 
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Creating an algorithm that considers all 7128 z-values simultaneously and effectively controls the 

F W ER is possible. 

Another approach is to create an innovative statistical method for handling vast sets of 

related data that can control the family-wise error rate (F W ER) without relying on the 

probability integral transformation. To be precise, one can calculate two sample t-test statistics 

based on the hypothesis that gene expressions in ALL and AML have different variances. Then 

construct a bootstrap-based exact confdence procedure that can control the F W ER in the strong 

sense. While performing multiple hypothesis testing, controlling the probability of making one or 

more type one errors in the family is pivotal. By making the F W ER not exceed a given threshold 

α, the probability of making at least one type 1 error is controlled at level α. Below is a brief 

discussion on F W ER. 

Let M = {1, 2, ..., m} be the index set associated with the null hypothesis H1, H2, ..., Hm

and M0 ⊆ M be the set of m0 = |M0| true hypotheses. Let V denote the number of Type-I errors. 

Then the family-wise error rate (F W ER) is defned as F W ER = P(V > 0). The F W ER is 

used ubiquitously in large-scale multiple testing where strong evidence is required. 

The last one is to study the robustness of the newly proposed confdence procedure by 

investigating various models, including Cauchy, Student’s t-distribution, skew-normal, and others. 

Since the Efron (2010) is grounded on the normality assumption, but the approach Efron used is a 

general method, there is a possibility to extend that to non-parametric or empirical Bayesian 

analysis. Suppose we want to explore the effectiveness of the rms correlation on gene expressions 

that do not originate from correlated normal variates but instead from a correlated Cauchy 

distribution. However, we know that Cauchy does not have a mean or variance. Therefore, it can 

be interesting to investigate this methodology’s relevance in such a scenario. Additionally, a 

comprehensive simulation study that includes four or more hypotheses can be presented to 

demonstrate the effectiveness and validity of the proposed methodology. 
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1.5 Dissertation Structure 

In Chapter 1 on Introduction and Literature Review, I thoroughly discuss the current 

knowledge of existing materials on large-scale correlated data analyses by Efron (2010). As part 

of my research, I was able to reproduce signifcant fndings from Efron (2010). Additionally, I 

provided thorough evidence and explanations for defnitions and theorems pertinent to my study 

area, including a critical theorem from Chen (2016). 

Chapter 2 comprehensively examines simultaneous inference related to multiple odds 

ratios. In this chapter, I use step-wise algorithms on simulated data to analyze the statistical 

power and computational complexity of different testing procedures concerning odds ratios to 

assess their applicability and aptness. 

In the third chapter, I propose a simultaneous exact inference procedure that can strongly 

control the family-wise error rate with ample evidence. In addition to the above, I am comparing 

the statistical power of the recently introduced simultaneous inference algorithm with Holm’s 

step-down procedure in different scenarios. Furthermore, I demonstrated the usability of the new 

algorithm through a non-parametric test setup. 

In Chapter 4, I compare the applicability of Holm’s step-down procedure and the newly 

proposed algorithm in large-scale data analysis. The analysis is based on microarray data from 

Golub et al. (1999) under different underlying assumptions about the data. Specifcally, I compute 

two-sample t-test statistics assuming unequal variances between AML and ALL. I utilize these 

test statistics to get the bootstrapped p-values and the bootstrapped 95% confdence interval for 

Holm’s procedure and the new algorithm, respectively. 

Chapter 5 of this dissertation thoroughly summarizes all the topics discussed in the 

previous chapters. Furthermore, potential areas for future research are emphasized. 
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CHAPTER 2 ADVANCED SIMULTANEOUS INFERENCE FOR MULTIPLE ODDS RATIOS

2.1 Motivation 

Multiple testing, aka simultaneous hypotheses testing, is useful to counter cognitive bias. In 

this chapter, we try to analyze existing procedures that can strongly control family-wise error rates 

for hypothesis testing related to multiple odds ratios. The odds ratios are used to check whether the 

odds of getting cured of a disease among patients in the treatment group (receiving treatment) is 

higher than those in the control group (receiving placebos). In the case of the cohort data, odds ratios 

can be used to check whether the odds of catching an infectious disease are higher among the people 

exposed to an infected individual than those who have not come in close contact with an infected 

person. Efron (2010) defned a robust way of fnding test statistics’ empirical cumulative 

distribution function in the presence of signifcant correlation. Efron’s procedure estimate the 

empirical false discovery rate (F D\R) and thus can be used to conduct multiple hypothesis testing at 

a given signifcance level. However, only when all null hypotheses are true, F DR weakly controls 

the family-wise error rate (F W ER)Benjamini and Hochberg (1995). 

Suppose the number of hypotheses for drawing simultaneous inference under 

consideration is m. Table 2.1 shows the total number of true null and true alternative hypotheses. 

Table 2.1 Contingency Table of True Null and Non-true Null Hypotheses Benjamini and Hochberg 
(1995) 

Failed to Reject Rejected Total 
True Null U V m0 
Non-True Null T S m − m0 
Total m − R R m

Defnition 2.1. Let Q = V/R when V + S > 0 and Q = 0 when V + S = 0. Then, the false 

discovery rate is defned as F DR=E[Q]. 

Defnition 2.2. The family-wise error rate is defned as F W ER=P(V ≥ 1). 
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Lemma 2.1. Controlling F DR controls F W ER weakly if all the null hypotheses under 

consideration are true(Benjamini and Hochberg (1995)). 

Proof. We want to show that E[Q] ≤ P(V ≥ 1). 

Case 1: m0 = m, that is when all null hypotheses are true. As m0 = m then T + S = 0. 

Therefore S = 0. Thus, V = R in this case. Now, if V = R = 0 from defnition 2.1, we have 

Q = 0. If V > 0 then V = R. Thus Q = 1. Therefore, 

P(V ≥ 1) = P(Q = 1) = 1.P(Q = 1) + 0.P(Q = 0) = E[Q] 

Thus F DR = F W ER when all null hypotheses are true. 

Case 2: m0 < m If S = 0 then we have F DR = F W ER. Suppose, S > 0 then V ≤ R. 

Now, when V = 0 we get Q = V/R = 0 and when V > 0 then Q = V/R ≤ 1. Thus, 

Q = V/R ≤ 1 for V ≥ 1. Therefore Q ≤ 1{V ≥1}. Taking the expectation of both sides, we get 

E[Q] ≤ P(V ≥ 1). 

Thus, by combining cases 1 and 2, we can say that controlling F DR implies control of 

F W ER in the weak sense. 

Holm’s step-down procedure strongly controls the family-wise error rate (F W ER) at a 

signifcance level of α (Theorem 1.2). However, Holm’s procedure is conservative, using the 

Bonferroni correction sequentially. On the other hand, Hochberg’s step-up procedure does not 

strongly control the family-wise error rate. Bradley Efron in Efron (2010) uses an estimated false 

discovery rate (\F DR) based on an underlying distributional assumption of correlated z-values. 

Specifcally, Efron (2010) defned the empirical right-handed cdf of the test statistic as an 

estimate of the false discovery rate and showed that a high correlation has minimal impact on the 

F DR. But controlling F DR can only ensure a weak control over F W ER when all null 

hypotheses under scrutiny are true. The ongoing research aims to develop an exact simultaneous 

confdence procedure that strongly controls the family-wise error rate (F W ER). I start by 

exploring existing step-wise procedures that strongly control the F W ER for several odds ratios 
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involving multiple 2 × 2 tables. 

2.2 Existing Step-wise Multiple Testing Algorithms and Tests 

In this section, I briefy discuss Holm’s (Step-Down) procedure (Holm (1979)) and 

Hochberg’s (Step-Up) procedure (Hochberg (1988)). Then I talk about two statistical tests used 

for conducting hypothesis testing related to multiple odds ratios in practice. After that, I 

investigate the feasibility of the step-wise confdence procedure in Chen (2016) to improve the 

existing step-wise procedures. Let H = {H1, H2, ..., Hm} be a given collection of hypotheses. 

We arrange the p-values of the individual hypothesis in ascending order. 

Suppose,P(1), P(2), ...P(m) denote the ordered p-values. Let H(i) denote the null hypothesis 

corresponding to the ith ordered p-value P(i). 

2.2.1 Step-wise Rejective Algorithms 

Holm’s Step-Down Rejective Algorithm for Multiple Testing (Holm (1979)) : 

According to Holm’s Procedure at a signifcance level α if P(1) < α/m we reject H(1) and 

proceed to check whether P(2) < α/(m − 1) if true, we reject H(2) and proceed to check whether 

P(3) < α/(m − 2) ... 
...

P(k) < α/(m − k + 1)if true, we reject H(k) and proceed to check whether 

P(k+1) < α/(m − (k + 1) + 1) = α/(m − k)... 
...

P(m) < α

Therefore, for1 ≤ k ≤ m, we sequentially check whether P(k) < α/(m − k + 1); if true, we 

reject the corresponding hypothesis and proceed to the next step; else we stop and terminate the 

algorithm. 

Hochberg’s Step-Up Rejective Algorithm for Multiple Testing (Hochberg (1988)): 

′The step-up procedure sequentially rejects all H(i ), i 
′ ≤ i if P(i) ≤ α/(m − i + 1) for 

i = m, m − 1, ..., 1. If P(m) ≤ α, we reject all the hypotheses under consideration namely 
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H(1), ..., H(m). 

If P(m) > α, then we proceed to check whether P(m−1) ≤ α/(m − (m − 1) + 1) = α/2 if true, 

then reject H(1), H(2), ..., H(m−1). If P(m−1) > α/2, then we proceed to check whether 

P(m−2) ≤ α/3 ... 
...

If P(1) ≤ α/m reject H(1)

The step-up procedure is stronger than Holm’s step-down procedure because it will reject 

any hypothesis rejected by Holm’s algorithm due to its top-down approach (Theorem 1.3). 

Step-wise Confdence Procedure (Chen (2016)): 

In case of the step-wise confdence procedure if Pb 
(m) ≥ α then we fail to reject H(m) and stop and

report the (1 − α) × 100 % simultaneous confdence interval for the parameters of interest 

θ(1), ..., θ(m) corresponding to H(1), ..., H(m). 

If Pb 
(m) < α then we reject H(m) and proceed to check whether Pb 

(m−1) ≥ α/2. If true, we fail to

rejectH(m−1) and report the (1 − α/2) × 100% simultaneous confdence interval for 

H(1), ..., H(m−1). Otherwise, we reject H(m−1) and go to the next step... 
...

If Pb 
(i) ≥ α/(m − i + 1)then we fail to rejectH(i) and report the (1 − α/(m − i + 1)) × 100%

simultaneous confdence interval for H(1), ..., H(i). Otherwise, we reject H(i) and go to the next 

step... 
...

If Pb 
(1) ≥ α/m then we fail to reject H(1) and report (1 − α/m) × 100% confdence interval for

H(1). Else, we reject H(1). 

The sequentially rejective step-wise confdence procedure strongly controls the F W ER 

(Theorem 1.1). 

2.2.2 Tests Involving Multiple Odds Ratios 

Cochran-Mantel-Haenszel (CMH) Test: 
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Table 2.2 Case Control Data 

Case Control 
Exposure ai bi m1i 

Unexposed ci di m2i 
n1i n2i Ni 

The Mantel-Haenszel odds ratio estimates the odds ratio for the association between exposure to 

an infection and having the disease caused by the infection, controlling for the possible 

confounding effects of the stratifying variable. Suppose we have K categories of the stratifying 

variable. Then the multiple hypotheses under consideration can be expressed as next. 

H0 : OR1 = OR2 = OR3 = ... = ORK = 1

vs 

Ha : At least one of the OR1, OR2, OR3, ..., ORK ≠ 1

Test Statistic for the Cochran-Mantel-Haenszel (CMH) test is given by 

PK (ai − m1in1i )i=1 NiCMH = PK (m1im2in1in2i )i=1 Ni(Ni−1) 

Under the null hypothesis CMH ∼ χ2 
df=1. The null hypotheses for the CMH test are 

OR1 = OR2 = ... = ORK = 1, where K is the total number of null hypotheses that must be 

verifed simultaneously. Using the CMH test, rejecting the null hypothesis only tells us that at 

least one of the ORs is not equal to 1. Thus, we lack specifc details about the individual null 

hypothesis. Thus we need an approach that does not consider all strata simultaneously. The 

Sequential-Mantel-Haenszel test can be considered a potential solution to our concern. 

Sequential-Mantel-Haenszel Test: 

The Sequential-Mantel-Haenszel test, instead of considering all of the strata together, tests 

H0 : OR = 1 versus Ha : OR ≠ 1 for each stratum sequentially. That is the same as testing 

H0 : p1 = p2 = p versus Ha : p1 ̸= p2 for each stratum sequentially. In this section, I explain the 



20 

usage of the well-known two-proportion z-test for employing the sequentially rejective algorithm. 

I have also employed Holm’s step-down procedure using individual χ2 tests. The test statistic is 

defned below for i = 1, 2, 3, 4. 
(ai − m1in1i ) 

X2 Ni = i )(m1im2in1in2i 
Ni(Ni−1) 

Under H0,Xi 
2 ∼ χ2

1 ∀i. 

Here, we are testing the equality of two proportions for each stratum. So, we can employ 

the two-proportion z-test for the step-wise procedures and construct a 95% confdence interval for 

the test statistic for the step-wise confdence procedure. The test statistic for the two proportional 

z-test for i = 1, 2, 3, 4 is defned below.

p1 − p2 
z = p 

p(1 − p)/m1 + p(1 − p)/m2 

Under H0, z ∼ N(0, 1) asymptotically. The step-wise confdence procedure can be used 

for testing multiple odds ratios as it strongly controls the family-wise error rate. 

2.3 Simulation 

K = 4 strata(groups) have been chosen for the simulation study and power analysis. The 

hypotheses under consideration are stated below. 

H01 : p11 = p12 vs Ha1 : p11 ̸= p12 

H02 : p21 = p22 vs Ha2 : p12 ≠ p22 

H03 : p31 = p32 vs Ha3 : p31 ̸= p32 

H04 : p41 = p42 vs Ha4 : p41 ≠ p42 

The chosen level of signifcance (α) for all the subsequent analyses is 0.05. 

Defnition 2.3. 

p1 = P(D|E), p2 = P(D|Ec) 
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Where E denotes the event of Exposure, and D indicates the event of being under the case group, 

the group of individuals afficted by the disease. 

For Group 1 we are simulating x1 and x2 from two random variables X1 and X2 that 

follow Binomial(100, p1) and Binomial(100, p2) respectively. Where, p1 = 0.9 and p2 = 0.5. 

For Group 2 we are simulating x1 and x2 from two random variables X1 and X2 that follow 

Binomial(200, p1) and Binomial(200, p2) respectively. Where, p1 = 0.5 and p2 = 0.5. For 

Group 3 we are simulating x1 and x2 from two random variables X1 and X2 that follow 

Binomial(150, p1) and Binomial(150, p2) respectively. Where, p1 = 0.5 and p2 = 0.5. For 

Group 4 we are simulating x1 and x2 from two random variables X1 and X2 that follow 

Binomial(50, p1) and Binomial(50, p2) respectively. Where, p1 = 0.8 and p2 = 0.5. 

Next, I discuss the output of the multiple testing procedures mentioned above using the 

simulated data set in the statistical programming language R. 

As shown in fgure 2.1, the Cochran-Mantel-Haenszel test can successfully highlight that 

there is a signifcant difference between p1 and p2 in at least one of the four groups. However, the 

CMH test can not determine which of these four groups has a signifcant difference between p1 

and p2 (2.3) in a specifc manner. Thus, we need a step-wise algorithm to detect the groups with a 

signifcant difference between p1 and p2 in a precise way. 

Figure 2.1 Output of the CMH test 

Figure 2.2 shows the output of the step-wise rejective algorithm using the χ2 test. 

According to Holm’s step-down procedure, the two groups with a signifcant difference between 

p1 and p2 (2.3) are group 1 and group 4. As Holm’s Step-Down Algorithm terminates after the 

second step in this case. Thus, Holm’s step-down procedure can detect the specifc groups with 
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non-true null hypotheses. 

Figure 2.2 Output of Step-Wise Procedure using χ2 test 

I ran the step-wise rejective algorithm using the two proportionalz-test to verify the 

soundness of the conclusion of Holm’s step-down procedure. And we end up with the same 

conclusion as using the χ2 test. The output of the two proportionalz-test is shown in fgure 2.3. 

Figure 2.3 Output of Step-Wise Procedure using proportional z- test 

In the case of the step-up procedure, as soon as we fail to reject the two hypotheses 

corresponding to the most signifcant and second-largest p-values (fgure 2.2), respectively, we 

proceed to the third step and compare the second smallest p-values with respective step α and 

eventually end up rejecting the hypotheses corresponding to the smallest and second smallest 

p-values. Thus, the Step-Up Procedure also declares groups 1 and 4 with the non-true null

hypotheses. 

2.3.1 Step-Wise Confdence Procedure 

This section employs the step-wise confdence procedure (as described in section 2.2) 

using the two-proportion z test. The 95% simultaneous confdence interval for the z-test statistic 

is reported as shown in fgure 2.5 as an output of the Step-Wise Confdence Procedure. Figure 2.4 

shows that the result of the simultaneous hypothesis testing is inconclusive. Thus, we do not have 
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any particular group highlighted as the one with an untrue null. However, it is possible to create a 

simultaneous confdence interval of 95% that corresponds to the test statistics. 

Figure 2.4 Output of the Step-Wise Confdence Procedure 

As can be noted from fgure 2.5 for groups 1 and 4, the corresponding confdence intervals 

do not contain 0, indicating that these two groups might have a signifcant difference between p1 

and p2 (defnition 2.3). 

Figure 2.5 The 95% simultaneous C.I. for the z-test statistic 

2.3.2 Bootstrapped Distribution of Odds Ratios 

Here we focus on the bootstrapped distribution of odds ratios (ORs) as we don’t know the 

shape of the underlying sampling distribution of ORs. We generate 10,000 bootstrapped samples, 

with replacements from the available data, for both the exposed and unexposed categories. The 

sample sizes used for resampling corresponding to group 1, group 2, group 3, and group 4 are 

100, 200, 150, and 50, respectively. Then we compute the d , d , ..., dORboot1 ORboot2 ORboot10,000 

corresponding to all four hypotheses under consideration. After that, we report the 95% 

simultaneous confdence interval based on the bootstrapped distributions. Specifcally, by 

utilizing Bonferroni correction, we cap the simultaneous type I error rate at 0.05. A null 

hypothesis is rejected if the corresponding confdence interval does not contain 1. 
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Figure 2.6 showcases the 95% simultaneous confdence interval based on the bootstrapped 

distributions of odds ratios and the four observed values of the odds ratios. Here we are capping 

the overall type I error rate at 0.05. Therefore, at an individual level, we get a 98.75% confdence 

interval for each of the four strata under scrutiny. The confdence intervals corresponding to group 

1 and group 4 do contain 1. Therefore the null hypotheses corresponding to groups 1 and 4 are 

rejected, and we claim that for groups 1 and 4, p1 (defnition 2.3) is signifcantly different than p2 

(defnition 2.3). 

Figure 2.6 The 95% simultaneous C.I. based on the bootstrapped distribution of odds ratios 

2.4 Power Analysis 

In this section, I compare three statistical methods: Bonferroni Correction, Holm’s 

step-down procedure, and simultaneous confdence interval using the bootstrapped distribution of 

the odds ratios. When computing the overall power of a statistical test procedure, it’s important to 

note that here the instances are independent. Therefore, to determine the statistical power of a 

procedure, we can multiply the proportion of rejections corresponding to Group 1 and Group 4, as 

these two groups are where the alternative hypothesis is true. And by defnition, power is the 

probability of rejecting the null hypothesis when the alternative hypothesis is true. The 

well-known Fisher’s exact test and Wilcoxon’s rank sum test are utilized on the simulated data to 

employ Bonferroni Correction and Holm’s step-down procedure. 

For Fisher’s test and Wilcoxon rank sum test, we compare the p−value with the 

corresponding signifcance level, and we reject the null hypothesis if the p− value is smaller than 
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the step-wise threshold. For the bootstrap method, the null hypothesis is rejected if the 

corresponding confdence interval does not contain 1. The number of simulations used for power 

analysis is 2000; for the bootstrapped C.I., the number of bootstrapped samples (with 

replacement) used is 10,000. Below I present a comparative study of the powers of the statistical 

tests mentioned above. 

Table 2.3 Statistical Powers of Different Step-Wise Procedures 

Test Name Bonferroni(Fisher) Bonferroni(Wilcoxon) Step Down(Fisher) Step Down(Wilcoxon) Bootstrapped C.I. 
Power 70% 74% 72% 81% 89% 

Time(mins) 0.14 0.09 0.15 0.011 51.53 

As seen from table 2.3, the bootstrapped-based confdence procedure has a much higher 

power over the well-known Bonferroni correction and Holm’s Step-Down Algorithm. However, 

the time complexity of the bootstrapped-based procedure is much higher than the rest. I did not 

report the power corresponding to the step-up approach because we want to concentrate on the 

step-wise methods that can strongly control the F W ER. 
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CHAPTER3 STEP-WISEPROCEDUREANDIMPROVEMENT

3.1 Introduction 

Suppose we want to test the association between exposure and disease, controlling for the 

possible confounding effects of the stratifying variable. Say, we have K 2 × 2 tables, each 

corresponding to a category of the stratifying variable under consideration. 

Table 3.1 Case Control Data 

Case Control 
Unexposed ai bi m1i 
Exposure ci di m2i 

n1i n2i Ni 

i = 1, 2, ..., K

In conjunction with the above scenario, consider the following. Say, we are interested in 

comparing the efficacy of different treatments for a particular disease. Now, the task at hand is to 

compare the outcome of each treatment against the control group and fnd out which of the K 

treatments works best for curing the disease under consideration. In this case, we are interested in 

whether the odds of getting cured are the same for all of the K treatments or if any specifc 

treatment is signifcantly effcient in curing the disease. 

Table 3.2 Cohort Data 

Cured Not Cured 
Treatment ai bi m1i 

Control ci di m2i 
n1i n2i Ni 

i = 1, 2, ..., K

In the latter scenario, we are interested in the simultaneous comparisons of the treatments 

with a control group. Specifcally, we want to test whether the odds of getting cured by treatment 

i are equal to that of getting cured by treatment j, ∀i ̸= j simultaneously. The null and alternative 

hypotheses can be stated below. 
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pi/(1 − pi) pi/(1 − pi)
: = 1 vs : ̸= 1 i, j = 1, 2, ..., K and i ≠ jH0ij Haijpj /(1 − pj ) pj /(1 − pj )

Where pi = P (Cured|T reatment i) for i = 1, 2, ..., K and p0 = P (Cured|Control).Now the 

above can be simplifed as 

pi/(1 − pi)
= 1, i ̸= j

pj /(1 − pj )
pi/(1−pi) 
p0/(1−p0)⇐⇒ = 1, i ≠ j
pj /(1−pj ) 
p0/(1−p0)

pi/(1 − pi) pj /(1 − pj )⇐⇒ = , i ̸= j
p0/(1 − p0) p0/(1 − p0)

pj /(1−pj )A special case for the above is pi/(1−pi) = = 1 for i ̸= j which can be re-written as 
p0/(1−p0) p0/(1−p0)

below. 

pi/(1 − pi) pi/(1 − pi)
H0i : = 1 vs Hai : ̸= 1, i = 1, 2, ..., K

p0/(1 − p0) p0/(1 − p0)

pi/(1−pi)Lemma 3.1. If ORi = = 1 then pi = p0. 
p0/(1−p0)

Proof. 
pi/(1 − pi)

= 1
p0/(1 − p0)

⇒pi/(1 − pi) = p0/(1 − p0)

⇒pi(1 − p0) = p0(1 − pi)

⇒pi − pip0 = p0 − p0pi

⇒pi = p0 

Thus we need to test whether treatment i works as well as the placebo (control group) for 

i = 1, 2, ..., K simultaneously. Ideally, we would like to develop simultaneous confdence 
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intervals for the difference between treatment i (pi) and placebo (p0) and gain some insight into 

the effcacy of the treatments under consideration. Finally, we would like to draw a meaningful 

inference in the sense that we would like to identify the most effective treatment for curing the 

underlying disease. 

3.2 Refned Step-Down Algorithm 

Let H = {H1, H2, ..., HK } be a collection of hypotheses examining the plausibility of a 

particular claim for K different strata. Suppose x1, x2, ..., xK are the observed values of the test 

statistics corresponding to H1, H2, ..., and HK , respectively. Say, x(i) denotes the ith ordered test 

statistic and H(i) denotes the hypothesis corresponding to x(i). 

Let TK−i+1 be the test statistic representing the combined data from H(1), H(2), ... and 

H(K−i+1) for i = 1, 2, ..., K and RK−i+1 be the rejection rejection region corresponding to 

TK−i+1 such that P∩i (TK−i+1 ∈ RK−i+1) = α for all i = 1, ..., K where α denotes the 
j=1H(K−i+1) 

signifcance level. Then the Refned Step-Down Algorithm can be employed by following the 

steps provided below. 

• Step 1: If TK ∈/ RK , we stop and declare that there is no signifcant statistical evidence

against any of the K hypotheses under consideration. Otherwise, we go to the next step.

• Step 2: If TK−1 ∈/ RK−1 we stop and declare H(K) false. Else, we go to the next step.

...

• Step K-1: If T2 ∈/ R2 we stop and declare H(K), H(K−1), ...,, and H(3) false. Else, we go to

the next step.

• Step K: If T1 ∈/ R1 we stop and declare that all hypotheses except H(1) are false. Else, we

declare all hypotheses under consideration are false.

Theorem 3.1. Let H = {H1, H2, ..., HK } be a collection of hypotheses examining the plausibility 

of a particular claim for K different strata. Suppose x1, x2, ..., xK are the observed values of the 
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test statistics corresponding to H1, H2, ..., and HK , respectively. Then the Refned Step-Down 

Algorithm is more powerful than Holm’s step-down procedure. 

Proof. Let H ′ = {Ht1 , ..., Htn0 
} ⊆ H where n0 ≤ K be a collection of hypotheses rejected by 

Holm’s step-down procedure.. Without loss of generality, let t1 < t2 < ... < tn0 . As Holm’s 

procedure follows a step-down approach therefore Hti = H(i) for i = 1, ..., n0 and the 

corresponding p-values are p(1), ..., p(n0−1) and p(n0). 

Keeping in mind that the hypotheses under consideration are related to the very same 

claim across K strata and more extreme values of the test statistics lead to smaller p-values, the 

test statistics corresponding to p(i) is x(K−i+1) for i = 1, 2, ..., K. Thus the test statistics 

corresponding to H(1), ..., H(n0) are x(K), ..., x(K−n0+1). 

Now by construction, TK−i+1 represents the test statistic for the combined data set 

corresponding to H(1), H(2), ..., H(K−i+1) for i = 1, 2, ..., K. Therefore the presence of extreme 

observations in at least one of the data sets corresponding to H(1), H(2), ..., H(K−i+1) will lead to 

TK−i+1 ∈ RK−i+1 for i = 1, 2, ..., K. 

As x(K) > x(K−1) > . . . > x(K−n0+1) representative of the extreme observations 

corresponding to the untrue hypotheses, therefore, the combined test statistics 

TK , TK−1, ..., TK−n0+1 will fall in their respective rejection regions by construction. In other 

words, TK ∈ RK , TK−1 ∈ RK−1, ..., TK−n0+1 ∈ RK−n0+1. 

• Case 1: If TK−n0 ∈/ RK−n0 then the hypotheses H(1), ..., H(n0) are declared untrue by the

Refned Step Down Algorithm

• Case 2: If TK−n0 ∈ RK−n0 and TK−n0−1 ∈/ RK−n0−1 then the hypotheses H(1), ..., H(n0) 

and H(n0+1) are declared untrue by the Refned Step Down Algorithm.

So, the Refned Step-Down Algorithm rejects either H ′ or a collection of hypotheses containing 

H ′ . Hence, the Refned Step-Down Algorithm is proven to be more powerful than Holm’s 

step-down procedure. 
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Lemma 3.2. Let k be the number of categories of a chosen stratifying variable. Suppose we are 

interested in testing the following hypotheses simultaneously at a selected signifcance level α. 

H0i : ORi = 1 vs Hai : ORi ̸= 1 for at least one i ∈ {1, 2, ..., K} 

p1i p2iWhere p1i = P(Di|Ei) and p2i = P(Di|Ei
c) and ORi = / for i = 1, 2, ..., K.

(1−p1i) (1−p2i) 

Then Procedure A strongly controls the family-wise error rate at α. 

Precedure A: 

Suppose a set of multiple 2 × 2 tables is given. Say, there are K 2 × 2 tables. 

Step 1: Compute the observed value of ORs for the given K 2 × 2 tables 

Step 2: Arrange the the ORs in an ascending order d OR(K), whereOR(2) ≤ ... ≤ dOR(1) ≤ ddOR(i) denotes the ith ordered dOR

Step 3: Next, we employ the Cochran-Mantel-Haenszel (CMH) test for testing the

following null and alternative hypotheses at the given signifcance level of α. 

H0 : OR(1) = OR(2) = ... = OR(K) = 1 vs Ha : OR(i) ̸= 1 for at least one i ∈ {1, 2, ..., K} 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 

Step 4: We employ the CMH test for testing the following null and alternative hypotheses 

at the given signifcance level of α. 

H0 : OR(1) = OR(2) = ... = OR(K−1) = 1 vs Ha : OR(i) ≠ 1 for at least one i ∈ {1, 2, ..., K−1} 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 
...

Step m: We employ the CMH test for testing the following null and alternative 
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hypotheses at the given signifcance level of α. 

H0 : OR(1) = OR(2) = ... = OR(m) = 1 vs Ha : OR(i) ̸= 1 for at least one i ∈ {1, 2, ..., m} 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 
...

Step K-1: We employ the CMH test for testing the following null and alternative 

hypotheses at the given signifcance level of α. 

H0 : OR(1) = OR(2) = 1 vs Ha : OR(i) ̸= 1 for at least one i ∈ {1, 2} 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 

Step K: We employ the CMH test for testing the following null and alternative hypotheses 

at the given signifcance level of α. 

H0 : OR(1) = 1 vs Ha : OR(1) ≠ 1

If we fail to reject the null hypothesis, we stop the procedure and conclude we have signifcant 

statistical evidence that except OR(1), the rest of the ORs are not equal to 1. Otherwise, we 

conclude that all ORs are signifcantly different than 1. 

It is worth noting that Holm’s procedure control the overall signifcance level by utilizing 

a progressively increasing signifcance level α/K, α/(K − 1), ..., α/2, and α. However, the 

newly proposed Procedure-A tests for all (n − j) hypotheses simultaneously at a signifcance 

level α, resulting in a more effective test procedure as compared to the use of 

α/(n − j), for j = n − K, n − K + 1, ..., n − 2, n − 1 in Holm’s step down procedure. Note that 

we can either use the Cochran-Mantel-Haenszel (CMH) or the Chi-Square goodness of ft test at 

each stage, based on the relevant dataset, and compare the p-values to the designated signifcance 

level (α). 
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Theorem 3.2. Procedure A strongly controls Family Wise Error Rate (FWER) 

Proof. The hypothesis test considered under procedure A is as below. 

H0i : ORi = 1 vs Hai : ORi ̸= 1 for at least one i ∈ {1, 2, ..., K} 

dGiven K, 2 × 2 tables the observed values (test statistics) of the ORs, ORi, i = 1, ..., K are

computed. Then, the observed test statistics are arranged in an ascending order d OR(2) ≤ ... ≤ dOR(1) ≤ d OR(K) and hypotheses are re-written as below.

H0 : OR(1) = OR(2) = ... = OR(K) vs Ha : OR(i) ≠ 1 for at least one i ∈ {1, 2, ..., K}.

Now, we employ the Cochran–Mantel–Haenszel (CMH) test stepwise. Say, Tm denotes 

the test statistic representing the data from all of the m 2 × 2 tables corresponding to 

OR(1), OR(2), ..., and OR(m) respectively, m ∈ {1, 2, ..., K}. And Rm denotes the rejection 

region for the mth step, m ∈ {1, 2, ..., K}. 

Suppose TK ∈ Rk and TK−1 ∈/ RK−1. Then 

PH0 (OR(K) ≠ 1) = P(At least one ORi ≠ 1|H0) = P(TK ∈ RK ) = α. 

As we are testing every level at a signifcance level α. Thus P(Ti ∈ Ri) = α ∀i. 

Let K0 ⊆ {1, ..., K} be an arbitrary subset such that OR = 1 for i ∈ K0 and 

OR ̸= 1 for i ∈/ K0. Suppose |K0| = n0. 

Say, K0 = {t1, ..., tn0 } and without loss of generality suppose t1 < t2 < ... < tn0 . As we 

arrange the observed ORs in ascending order, we are considering 

H0 : ORt1 = ORt2 = ... = ORtn0 
= 1 vs Ha : ORi ̸= 1 for at least one i ∈ K0. Now, rejecting 

at least one Hi, i ∈ K0 only happens when the test statistic involving that Hi belongs to the 
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corresponding rejection region. Thus, in this case, the 

FWER 

= P(Reject at least one Hi, i ∈ {1, 2, ..., K}|Hi, i ∈ K0) 

= P(TK−n0+1 ∈ RK−n0+1) 

≤ α as at every step of the procedure the level of signifcance is α 

Lemma 3.3. Ordering pbs is the same as ordering dORs.

Proof. dORi ≤ d i = jORj ̸ 
pbi/(1 − pbi) pbj /(1 − pbj )⇔ ≤ i ̸= j
pb0/(1 − pb0) pb0/(1 − pb0) 
pbi pbj⇔ ≤ i ̸= j

1 − pbi 1 − pbj
⇔ pbi(1 − pbj ) ≤ pbj (1 − pbi) i ̸= j 

⇔ pbi ≤ pbj i ̸= j 

3.3 Power Analysis 

This section thoroughly compares the statistical power exhibited by the newly Refned 

Step Down Algorithm and Holm’s step-down procedure. under various scenarios. It is important 

to note that in this chapter, if the alternative hypothesis is true, the observed odds ratios for the 

four considered hypotheses are no longer independent. This is because they all share the same 

control group. Therefore, one cannot simply multiply the power corresponding to the individual 

untrue null hypotheses to get the overall power for the testing procedure. This section provides a 

comprehensive power analysis using simulation to compare the statistical powers of the suggested 

algorithm and Holm’s step-down procedure. A detailed description of the power computation has 

been given for every scenario. Table 3.3 summarizes the power comparison by varying the 
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parameter value for the control group (p0) for the simultaneous hypotheses involving proportionality 

tests. 

Defnition 3.1. If P is a probability function,then Power=P(Rejecting at least one Hi, i ∈ I | I is the 

collection of untrue null hypothesis) 

In the context of non-parametric analysis, table 3.4 provides a comparison between 

Procedure B (the suggested algorithm) and Holm’s step-down procedure, showcasing their 

statistical powers. The comparison is based on varying the parameter for the control group (µ0). 

Based on the statistical power analysis, it is evident that the Refned Step-Down Algorithm 

outperforms the step-down procedure by a signifcant margin. 

Table 3.3 Power Comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm Using Proportionality-tests 

p0 Holm’s Step-Down Procedure (χ2) Refned Step-Down Algorithm(χ2) Holm’s Step-Down Procedure (χ2) Refned-Step Down Algorithm (CMH) 
0.40 76% 96% 86% 98% 
0.41 73% 95% 84% 97% 
0.42 71% 95% 80% 96% 
0.43 69% 94% 77% 94% 
0.44 67% 94% 74% 93% 
0.45 65% 93% 70% 91% 
0.46 63% 93% 66% 88% 
0.47 62% 93% 62% 86% 
0.48 61% 93% 58% 83% 
0.49 60% 92% 53% 79% 
0.50 60% 92% 49% 75% 

Table 3.4 Power Comparison between Holm’s Step-Down Procedure and Refned Step-Down Al-
gorithm Using Non-parametric Tests 

µ0 0.25 0.28 0.30 0.33 0.35 0.38 0.40 0.43 0.45 0.48 0.50 
Holm’s Step-Down Procedure 64% 62% 62% 60% 59% 57% 56% 55% 53% 52% 51% 
Refned Step Down Algorithm 95% 95% 94% 94% 93% 93% 93% 92% 91% 91% 90% 

3.3.1 Power Comparison Holm’s Procedure versus Refned Step-Down Algorithm Using Chi-square 

Goodness of Fit Test 

• Step-1: Suppose we have one control group and four treatment groups and the

corresponding success probabilities P(cured|group) are p0, p1 = 0.3, p2 = 0.7, p3 = p0,
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and p4 = p0 respectively. The corresponding sample sizes are n0 = 50, n1 = 50, n2 = 50, 

n3 = 50, and n4 = 50 respectively. 

• Step-2: We generate ni observations from Bernoulli(pi) for i = 0, 1, 2, 3, 4

• Step-3: Run the step-wise algorithms. We employ Holm’s Step down procedure using the

chi-square goodness of ft test for the pairwise comparison. For the Refned Step-Down

Algorithm, we start by applying chi-square goodness of ft test on the combined data set of

5 groups. Then as described in the Refned Step-Down Algorithm, we remove one column

at a time starting with the treatment column corresponding to the table with largest

observed odds ratio (dOR)

• Step-4: If the algorithm rejects the null hypothesis for either group 1 or group 2, we

consider that as a valid rejection of the hypotheses simultaneously

• Step-5: Finally we run steps 2, 3, and 4 N = 50, 000 times and report the average as the

power

• Step-6: By varying p0 from 0.4 to 0.6 with a step size of 0.01, we generate the power curve

The power curve shown in fgure 3.1 is generated by using the algorithm specifed above.

The same algorithm generates the power curve shown in fgure 3.2 mentioned above except 

in step-3 we remove one column at a time starting with the treatment column corresponding to the 

largest observed sample proportion among the treatment groups 

3.3.2 Power Comparison Holm’s Procedure versus Refned Step-Down Algorithm Using the CMH 

Test 

• Step-1: Suppose we have one control group and four treatment groups and the

corresponding success probabilities P(cured|group) are p0, p1 = 0.6, p2 = 0.7, p3 = 0.6,

and p4 = 0.7 respectively. The corresponding sample sizes are n0 = 50, n1 = 50, n2 = 50,

n3 = 50, and n4 = 50 respectively.
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Figure 3.1 Power Comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm (proposed algorithm) using chi-square goodness of fit test, with fxed alternative p=0.3, 0.7 
(arranging observed ORs) 

• Step-2: We generate ni observations from Bernoulli(pi) for i = 0, 1, 2, 3, 4

• Step-3: Run the step-wise algorithms. We employ Holm’s Step down procedure using the

chi-square goodness of ft test for the pairwise comparison. For the Refned Step-Down

Algorithm, we use Cochran-Mantel-Haenszel (CMH) test on the combined data set by

assuming the presence of a stratifying factor. Then as described in the Refned Step-Down

Algorithm, we remove one table at a time, starting with the the table with largest observed

odds ratio (dOR)

• Step-4: If the algorithm rejects the null hypothesis for either group 1 or group 2 or group 3,
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Figure 3.2 Power comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm (proposed algorithm) using chi-square goodness of fit test, with fxed alternative p=0.3, 
0.7 (arranging sample proportions) 

or group 4, we consider that as a valid rejection of the hypotheses simultaneously 

• Step-5: Finally we run steps 2, 3, and 4 N = 50, 000 times and report the average as the

power

• Step-6: By varying p0 from 0.4 to 0.6 with a step size of 0.01, we generate the power curve

Figure 3.3 represents the power curve generated by using the algorithm specifed above.

3.4 Holm’s Procedure versus Refned Step Down Algorithm Using Non-parametric Tests 

 Say, We have patients’ blood glucose data for 4 medications besides the control group, the 

group without any medication. And we are interested in testing the effcacy of the medications 
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Figure 3.3 Power comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm (proposed algorithm) by using Cochran-Mantel-Haenszel test for the proposed algo-
rithm, with fxed alternative p=0.6, 0.7 

against the control group. One can interpret that as comparing the center of 4 random variables 

X1, ..., X4 with the center of the baseline random variable X0. Suppose we want to test whether 

the centers of the distributions of K different random variables are the same as that of the baseline 

random variable. However, we don’t know the shape of the distributions. Say, µ0 denotes the 

center of the distribution of the baseline random variables; for the example above, K=4. Then one 

of the many possible ways of formulating the null and alternative hypotheses could be 

H0 : µ0 = µ1 = ... = µK−1 = µK vs Ha : µ0 ≤ µ1 ≤ ... ≤ µK−1 ≤ µK , with at least one strict ineqality 
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Where µi denotes the centers of the underlying unknown distributions for i = 0, 1, ..., K. 

Procedure B is an exact simultaneous testing algorithm for the testing above. We employ 

the Jonckheere Terpstra test at every step and compare the p-values with the given signifcance 

level (α). 

Precedure B: 

Step 1: Compute the observed value of the sample median ( \median) for the given K data 

sets. 

Step 2: Arrange the the sample medians in an ascending order 

\ \ \ \ \median(1) ≤ median(2) ≤ ... ≤ median(K), where median(i) denotes the ith ordered median 

Step 3: Next, we employ the Jonckheere Terpstra test for testing the following null and 

alternative hypotheses at the given signifcance level of α. 

H0 : µ0 = µ(1) = ... = µ(K) vs Ha : µ0 ≤ µ(1)... ≤ µ(K) with at least one strict inequality. 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 

Step 4: We employ the Jonckheere Terpstra test for testing the following null and 

alternative hypotheses at the given signifcance level of α. 

H0 : µ0 = µ(1) = ... = µ(K−1) vs Ha : µ0 ≤ µ(1)... ≤ µ(K−1) with at least one strict 

inequality. 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 
...

Step m: We employ the Jonckheere Terpstra test for testing the following null and 

alternative hypotheses at the given signifcance level of α. 

H0 : µ0 = µ(1) = ... = µ(m) vs Ha : µ0 ≤ µ(1)... ≤ µ(m) with at least one strict inequality. 

If we fail to reject the null hypothesis, we stop the procedure. Else, we go to the next step. 
...

Step K-1: We employ the Jonckheere Terpstra test for testing the following null and 

alternative hypotheses at the given signifcance level of α. 
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H0 : µ0 = µ(1) = µ(2) versus Ha : µ(0) ≤ µ(1) ≤ µ(2) with at least one strict inequality. 

If we fail to reject the null hypothesis, we stop the procedure and conclude we have 

signifcant statistical evidence that signifcant differences exist between µ0 and µ(i), i = 3, ..., K. 

Otherwise, we conclude that at least one of the µ(1) and µ(2) along with µ(i), i = 3, ..., K is strictly 

greater than µ0. 

Holm’s procedure control the overall signifcance level by using 

α/K, α/(K − 1), ..., α/2, α, which can be improved by Procedure-B in which the test is for all 

(n − j) hypotheses simultaneously, instead of α/(n − j). 

Theorem 3.3. Procedure B strongly controls Family Wise Error Rate (F W ER) 

Proof. The hypothesis test considered under procedure B is as below. 

H0 : µ0 = µ1 = ... = µK−1 = µK vs Ha : µ0 ≤ µ1 ≤ ... ≤ µK−1 ≤ µK , with at least one strict inequality 

Where µi denotes the centers of the underlying unknown distributions for i = 0, 1, ..., K. 

K sample medians are computed as estimates of the centers the µbi, i = 1, ..., K are 

computed. Then, the observed test statistics are arranged in an ascending order 

\\ median\ 
(2) ≤ ... ≤ median(K) and hypotheses are re-written as below. median(1) ≤ 

H0 : µ0 = µ(1) = ... = µ(K) vs Ha : µ0 ≤ µ(1)... ≤ µ(K) with at least one strict inequality.

Now, we employ the Jonckheere Terpstra test stepwise. Say, Tm denotes the test statistic 

representing the data from all of the m hypothesis corresponding to µ(1), µ(2), ..., and µ(m) 

respectively together with the control group that is the data corresponding to µ0, 

m ∈ {1, 2, ..., K}. And Rm denotes the rejection region for the mth step, m ∈ {1, 2, ..., K}. 

Suppose TK ∈ Rk and TK−1 ∈/ RK−1. Then 

P(At least one µi, i ∈ {1, ..., K} > µ0|H0) = P(TK ∈ RK ) = α. 

As we are testing every level at a signifcance level α. Thus P(Ti ∈ Ri) = α ∀i. 

Let K0 ⊆ {1, ..., K} be an arbitrary subset such that µ0 = µi, i ∈ K0. Suppose |K0| = n0. 

Say, K0 = {t1, ..., tn0 } and without loss of generality suppose t1 < t2 < ... < tn0 . As we 
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arrange the observed sample medians in ascending order, we are considering 

H0 : µ0 = µt1 = µt2 = ... = µtn0 
vs Ha : µ0 ≤ µt1 ≤ µt2 ≤ ... ≤ µtn0 

with at least one strict 

inequality. Now, rejecting at least one Hi, i ∈ K0 only happens when the test statistic involving 

that Hi belongs to the corresponding rejection region. Thus, in this case, the 

FWER 

= P(Reject at least one Hi, i ∈ {1, 2, ..., K}|Hi, i ∈ K0) 

= P(TK−n0+1 ∈ RK−n0+1) 

≤ α as at every step of the procedure the level of signifcance is α 

I have also analyzed the power of the Refned Step-Down Algorithm against the power of 

Holm’s Step Down Procedure to cover scenarios where underlying Distributional assumptions do 

not hold. The null and alternative hypotheses under consideration are as below. 

H0 : µ0 = µ1 = µ2 = µ3 = µ4 vs Ha : µ0 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ4, with at least one strict inequality 

Where µi denotes the centers of the underlying unknown distributions for i = 0, 1, 2, 3, 4. 

• Step-1: Suppose we have one control group and four treatment groups, and the outcome

variable follows unknown distributions centered around µ0, µ1 = 1, µ2 = 1.5, µ3 = 1.5,

and µ4 = 2 respectively. The corresponding sample sizes are n0 = 20, n1 = 20, n2 = 20,

n3 = 20, and n4 = 20 respectively.

• Step-2: We generate ni observations from Cauchy(µi, 1) for i = 0, 1, 2, 3, 4

• Step-3: Run the stepwise algorithms. We employ Holm’s Step- Down procedure using the

Wilcoxon test for the pairwise comparison (H0i : µ0 = µi versus H0i : µ0 ≠ µi for i=1, 2, 3,

4). Figure3.5 shows the power curve using the Wilcoxon test for pairwise comparison with
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one-sided alternative (H0i : µ0 = µi versus H0i : µ0 < µi for i=1, 2, 3, 4). For the Refned 

Step-Down Algorithm, we use the Jonckheere Terpstra test on the combined data set. Then 

as described in the Refned Step-Down Algorithm, we remove one data set at a time, 

starting with the data set with the largest sample median ( \median) 

• Step-4: If the algorithm rejects the null hypothesis for either group 1 or group 2 or group 3,

or group 4, we consider that as a valid rejection of the hypotheses simultaneously

• Step-5: Finally we run steps 2, 3, and 4 N = 50, 000 times and report the average as the

power

• Step-6: By varying µ0 from 0 to 0.5 with a step size of 0.025, we generate the power curve

Figure 3.4 represents the power curve generated by using the algorithm specifed above.

As can be seen from fgures 3.1, 3.2, 3.3, and 3.4, the statistical power of the new 

simultaneous inference exact procedure can be substantially higher than that of the Holm’s step 

down procedure for the scenarios especially where the differences between the null-values and 

non-null values of the parameter of interest are negligible. 

Next, I demonstrate the applicability of the newly Refned Step Down Algorithm using a 

real-life example. Appendix C has the R code for implementation. 

3.5 Real Life Example 

The Refned Step Down Algorithm is demonstrated by implementation using the binge 

alcohol use data available on cdc.gov for the year 2019. 

Table 3.5 Percentages of Binge Alcoholism in 2019 across Different Age Groups 

Age Group 2019 
12-13 0.5%
14-15 3.2%
16-17 10.8%
18-25 34.3%
26-34 37.4%

https://www.cdc.gov/nchs/data/hus/2020-2021/SubUse.pdf
https://www.cdc.gov/nchs/data/hus/2020-2021/SubUse.pdf
https://www.cdc.gov
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Figure 3.4 Power comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm (proposed algorithm) using non-parametric tests with fxed alternative µ =1, 1.5, 1.5, 2

Here we are trying to analyze the trend of binge alcoholism in the past month among people 

aged between 12 and 34. Binge Alcoholism among youth can lead to detrimental health effects. 

So, in this study, alcoholism in young adults is simultaneously compared with that in teenagers and 

adults over 25 to identify whether binge alcoholism spikes among people aged between 18 and 25. 

Specifcally, we are looking at the prevalence of binge alcoholism in four age groups, namely 

12-13, 14-15, 16-17, and 26-34, compared to the age group 18-25. Thus null and alternative 

hypotheses for this particular example could be formulated as follows. 

H0i : pi = p0 − 0.2 vs Hai : pi < p0 − 0.2 for i = 1, 2, 3 and H04 : p4 = p0 + 0.2 vs 

Ha4 : p4 > p0 + 0.2. 

Where p0 denotes the percentage of binge alcoholism in young adults, that 
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Figure 3.5 Power comparison between Holm’s Step-Down Procedure and the Refned Step-Down 
Algorithm (proposed algorithm) using non-parametric tests with fxed alternative µ = 1, 1.5, 1.5, 
2 using Wilcoxon test with one-sided alternative 

is, people aged between 18-25 years, and p1, p2, p3 and p4 denote the percentage of binge 

alcoholism in age groups 12-13, 14-15, 16-17, and 26-34, respectively. The sample size for each of 

the age groups is n = 100. 

For Holm’s Step Down Procedure, we compute the test statistics for four simultaneous 

comparisons, namely 12-13 versus 18-25, 14-15 versus 18-25, and 16-17 versus 18-25, defned 

(pbi−pb0)+0.2 (pbi×100+pb0×100)next. z = √ where pb = for i = 1, 2, 3. And for 26-34 versus 18-25, 
(pb(1−pb)(2/200)) 200 

(pb4−pb0)−0.2 (pb4×100+pb0×100) H0the test statistic is z = √ where pb = . Now, z ∼ N(0, 1). So, for 
(pb(1−pb)(2/200)) 200

Holm’s procedure, we can compute the tail probabilities accordingly. For the Refned Step Down 

Algorithm, we sort the observed z-test statistics w.r.t. the ascending order of the absolute 
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the observations are independent when the null hypothesis is true, the test statistics used at every 

step for the new method follow a χ2 distribution with degrees of freedom 4, 3, 2, and 1, 

respectively. 

Table 3.6 Conclusion Based on Holm’s Step-Down Procedure for the Binge Alcoholism Data 

Age Groups p − value step-wise α Rejected Rejected by the Refned Step Down Algorithm 
12-13 vs. 18-25 0.005 0.0125 YES YES 
14-15 vs. 18-25 0.022 0.0167 NO YES 
16-17 vs. 18-25 0.277 0.0250 NO YES 
26-34 vs. 18-25 0.994 0.0500 NO YES 

In this example, Holm’s Step Down Procedure can detect that binge alcoholism in only 

one group, namely the young teens (aged 12-13 years), signifcantly differs from that of young 

adults (aged 18-25 years). However, it would be highly alarming if there is no difference in binge 

alcoholism between teens and young adults, as the legal drinking age in most states is 21 years. 

Thus, in this case, we cannot draw meaningful conclusions based on the output of Holm’s 

step-down procedure. The reason for such an erroneous conclusion is the punitive nature of the 

step-down approach. As can be noted from table 3.6 for the comparison of the rate of binge 

alcoholism between the age groups of 14-15 and 18-25, we get a p-value of 0.022. It can be 

argued that the small p-value provides compelling evidence that the null hypothesis of binge 

alcoholism being the same in the age groups of 14-15 and 18-25 is false. However, Holm’s 

step-down approach fails to reject the null hypothesis as we compare the p-value with the 

step-wise signifcance level of α = 0.0167. 

On the other hand, the Refned Step-Down Algorithm can identify signifcant differences 

between all groups and the baseline group of young adults regarding binge alcoholism. In this 

case, the fnding made sense as we see a gradual increase in binge alcoholism amongst the youth. 

We would generally expect people between 12-18 years to not have access to alcoholic beverages 

as college-going young adults. Moreover, the legal drinking age in most states is 21, which falls 

within the age group 18-25. In addition to that, the Refned Step-Down Algorithm gives an 
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essential insight that between 18-34 years, the rate of binge alcoholism might steadily increase, 

which makes sense as most of us pursue higher studies, try to fnd a stable career, try to buy a 

home, etc. between the age of 18-34 years which can be pretty stressful sometimes and might 

lead to an unhealthy lifestyle choice. 
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CHAPTER 4 LARGE SCALE STATISTICAL ANALYSIS 

4.1 Brief Description of the Data Set in Use 

The data set under consideration concerns a leukemia microarray study by Golub et al. 

(1999) that has been used in Efron (2010) for motivation and illustration. I have used the same to 

present a comparative study between Holm’s step-down procedure and the Refned Step-Down 

Algorithm. There are two disease categories: acute lymphoblastic leukemia (ALL) and acute 

myeloid leukemia (AML). There are 47 patients under ALL and 25 patients under AML. The goal 

is to investigate the difference between the gene expressions of ALL and AML for each of the N(= 

7128) genes simultaneously. Efron (2010), used this data set for large-scale statistical estimation 

using the False Discovery Rate. Since the false discovery rate does not control the error of 

incorrectly rejecting non-difference genes between ALL and AML patients, which means targeting 

a wrong gene location for the difference, we use the Golub et al. (1999) data set for large-scale 

simultaneous hypothesis testing that controls the family-wise error rate (F W ER) at a given 

signifcance level α = 0.05. 

A two-sample t-statistic is calculated for each of the 7128 genes, assuming equal variances. 

This is based on 47 observations of gene expressions for ALL and 25 observations of AML. Thus 

we end up having 7128 values of a random variable that follows a Student’s t− distribution. Under 

H0, it is assumed that there is no signifcant difference in the gene expressions between ALL and 

AML. Now, for each gene, we have 72 patients. So the degrees of freedom, in this case, is 72-2=70. 

Then the observed two sample t-statistics are transformed into z− values by probability integral 

transformation.zi = Φ1(F70(ti)), i = 1, 2, ..., N where Φ is the cdf of standard normal distribution 

and F70 is the cdf of Student’s-t distribution with 70 degrees of freedom. 

Under two scenarios, I employed the Refned Step-Down Algorithm on the Golub et al. 

(1999) microarray data set and compared its performance against Holm’s Step Down Procedure for 

simultaneous hypothesis testing. First, by utilizing the fact that when the null hypotheses are true, 

the zi follows a normal distribution with mean 0 and variance 1 for i = 1, 2, ...7128. In the 

http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv
http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv
http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv
https://transformation.zi
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second scenario, we disregard the normality assumption. 4.1 shows how the z-values mostly 

clustered around zero. 

Figure 4.1 z-values against gene index 

4.2 Resampling Assuming Normality 

The null and alternative hypotheses get transformed to H0i : zi ∼ N(0, 1) vs 

Hai : zi ≁ N(0, 1) for i = 1, 2, ..., 7128. And we want to perform simultaneous hypotheses testing 

using all of these 7128 scenarios for which the F W ER is controlled at the signifcance level α. 

This section covers the implementation of Holm’s Step Down Procedure and the Refned Step-

Down Algorithm, assuming normality. 

 At frst, Holm’s Step Down Procedure is employed. We compute pi = 2 × P(Z > |zi|) 

where Z ∼ N(0, 1) using the observed zi’s, i = 1, 2, ..., 7128. Suppose, p(i) denotes the ith 
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ordered p-value. 

Then if p(1) < α/7128, we reject H(1) and proceed to check whether p(2) < α/7127 if true, 

we reject H(2) and proceed to check whether 

p(3) < α/7126 ... 
...

p(k) < α/(7128 − k + 1)if true, we reject H(k) and proceed to check whether 

p(k+1) < α/(7128 − (k + 1) + 1) = α/(m − k)... 
...

p(7128) < α

Therefore, for 1 ≤ k ≤ 7128, we sequentially check whether p(k) < α/(7128 − k + 1); if true, we 

reject the corresponding hypothesis and proceed to the next step; else we stop and terminate the 

algorithm. 

Holm’s step-down algorithm identifed 315 genes out of the 7128 to be signifcant. In other 

words, for 4.42% of the genes, there are substantial differences in the gene expressions between the 

two disease groups AML and ALL. This is due to the over-punitive nature of Holm’s Step Down 

Procedure. Table 4.1 shows the top 10 signifcant genes that Holm’s step-down algorithm failed to 

identify. This phenomenon is more evident when we run Holm’s algorithm without any underlying 

distributional assumption. 

Table 4.1 Output of Holm’s Procedure Assuming Normality (Top 10 Unidentifed Signifcant Genes 
are Reported) 

Gene Index z − value p − value step-wise α Rejected Rejected by Procedure C 
1113 4.332 7.38E-06 7.34E-06 NO YES 
3504 4.325 7.63E-06 7.34E-06 NO YES 
833 -4.319 7.84E-06 7.34E-06 NO YES 

4831 -4.312 8.10E-06 7.34E-06 NO YES 
5931 4.307 8.28E-06 7.34E-06 NO YES 
5122 4.302 8.47E-06 7.34E-06 NO YES 
2945 4.301 8.52E-06 7.35E-06 NO YES 
4925 -4.297 8.64E-06 7.35E-06 NO YES 
794 -4.286 9.08E-06 7.35E-06 NO YES 

3692 4.286 9.09E-06 7.35E-06 NO YES 
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Procedure C below implements the Refned Step-Down Algorithm with the z-scores 

computed using the Golub et al. (1999) data set. The critical task here is determining the genes 

that signifcantly differ between the two groups, ALL and AML. Under the null hypotheses, we 

assume no particular gene is signifcant in detecting differences between the two disease groups, 

namely ALL and AML. Therefore, assuming all the null hypotheses are true, it makes sense to 

consider the 7128 z-values as realized values from a standard normal distribution. Rejecting the 

null hypothesis will indicate that the pool of z-values is not generated from normal a variate with 

mean 0 and standard deviation 1. In other words, we can infer the presence of extreme cases from 

rejecting the null hypothesis. Therefore, we remove the extreme observations sequentially until 

the algorithm terminates. 

Precedure C: 

• Step-1: Take a random sample of size B = 2000 from the collection of 7128 z-scores with

replacement

¯• Step-2: Compute the mean score based on the bootstrapped sample XB 

¯ ¯ ¯• Step-3: Repeat the previous two steps N=10,000 times to get XB1 , XB2 , ..., XB10,000 

1
PN ¯• Step-4: Compute the test statistic as the mean of N sample means, X̄ = 

N i=1 XBi

√
• Step-5: p − value = 2 × P(Z > |X̄ |) where Z ∼ N(0, 1/ B.N)

• Step-6: If p − value < α exclude the smallest 5 and the largest 5 z−values. Then repeat

steps 1 to 6. If p − value > α, then stop

• Step-7: Declare the genes corresponding to the excluded z−values as the signifcant ones

Proposition 4.1. Procedure C strongly controls F W ER. 

Proof. Let K0 ⊆ {1, ..., 7128} be an arbitrary subset such that µi = 0, i ∈ K0. Suppose 

|K0| = n0. 
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Say, K0 = {t1, ..., tn0 } and without loss of generality suppose t1 < t2 < ... < tn0 . As we 

arrange the observed zi’s in ascending order, we are considering 

H0 : µ0 = µt1 = µt2 = ... = µtn0 
= 0 vs Ha : µi ̸= 0 for at least one i ∈ K0. Now, rejecting at 

least one Hi, i ∈ K0 only happens when the test statistic involving that Hi belongs to the 

corresponding rejection region. By construction, the test statistic T, defned in procedure C, 

follows a normal distribution with mean 0 and variance 1/(2000*10,000). Thus, in this case, the 

rejection is well-defned as R = for every step of the newly proposed rejective algorithm as 

R = {T : |T | > Zα/2} where Z ∼ N(0, 1/
p
(2000 ∗ 10, 000)). We must remember that after 

every step where the algorithm rejects the null hypothesis, the initial pool of z-values got reduced 

by 10. Thus, after every step of rejection, the test statistic represents fewer hypotheses in the 

subsequent step. 

FWER 

= P(Reject at least one Hi, i ∈ {1, 2, ..., 7128}|Hi, i ∈ K0) 

= P(TK−n0+1 ∈ R) p 
= 2 × P(Z > Zα/2), Z ∼ N(0, 1/ (2000 ∗ 10, 000)) 

≤ α

The Refned Step-Down Algorithm identifes 980 genes out of the 7128 to be signifcant. 

This means around 13.75% of the genes are worthy of further exploration. As highlighted in 

section 3.3, we can see that the Refned Step-Down Algorithm is statistically more powerful than 

Holm’s step-down procedure since Holm’s method is based on the Bonferroni upper bound if 

Holm’s procedure rejects a null hypothesis, it means that the joint probability will be smaller than 

α/k for k = K, (K − 1), ..., 1, thus by controlling the exact value of the simultaneous probability 

for the occurrence of those events, we reject the hypothesis that is rejected by the Holm’s 

procedure. Therefore, the Refned Step-Down Algorithm is expected to detect more non-null 
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cases pragmatically. 

Figure 4.2 Bounds by the Holm’s Procedure and by the Refned Step-Down Algorithm (proposed 
algorithm) 

Figure 4.2 highlights the lower tail and upper tail boundaries detected by both Holm’s step-

down procedure and the Refned Step-Down Algorithm. 

4.3 Bootstrapping without Normality 

The main objective of the algorithm is to identify genes that exhibit a substantial disparity 

between AML and ALL. As a result, the null and alternative hypotheses can be expressed in the 

following manner. 

H0i : µALLi = µAMLi versus Hai : µALLi ̸ = µAMLi for i = 1, 2, ..., 7128. Where µALLi and 

µAMLi denote the mean of the random variable of gene expression corresponding to the ith gene for 

ALL and AML, respectively. Under null, we assume no signifcant gene detects the 
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difference between AML and ALL. Thus we can treat the test statistics computed under the null 

hypothesis as observations from a random variable centered around zero. It is important to note 

that when the test statistics show extreme observations, it’s improbable that the corresponding 

null hypotheses are true. 

The step-wise procedures are conducted in this section without converting the two-sample 

t-test statistics into a standard normal variate. First, I will compute two-sample t statistics for

each of the 7128 genes by assuming unequal variances. The computation will be based on 47 

gene expressions for ALL and 25 gene expressions for AML. Then I calculate the bootstrapped 

p-values corresponding to each of the 7128 test statistics under consideration using the observed

two samples t-test statistics for Holm’s procedure as below. 

To obtain the bootstrapped p-values, we will apply the following procedures 

corresponding to each of the 7128 observed values of the test statistic. 

• Step 1: Take a random sample of size n = 7128 with replacement from the 7128 observed

values of the test statistic x1 
∗ , ..., x7128 

∗ 

#{|x |>|teststatisticobserved|}i• Step 2: Compute prob = 
∗ 

7128 

• Step 3: Repeat step 1 and step 2, N = 10, 000 times and obtain prob1, ..., prob10,000

PN 
i=1 probi• Step 4: Compute the bootstrapped p − value =

N

To construct a confdence interval for the Refned Step-Down Algorithm, we used 

bootstrapping and obtained a 95% level of confdence. Here is the process for building a 95% 

bootstrapped confdence interval for the Refned Step-Down Algorithm, which we will refer to as 

Procedure D. 

Precedure D: 

• Step 1: Take a random sample of size n = 7128 with replacement from the 7128 observed

values of the test statistic x1 
∗ , ..., x7128 

∗ 
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• Step 2: Construct a 95% confdence interval, say given by (CL, CU )

• Step 3: Repeat step 1 and step 2, N = 10, 000 times and obtain

(CL1 , CU1 ), ..., (CL10,000 , CU10,000 )

PN 
i=1 CLi• Step 4: Compute the bootstrapped confdence interval (CL

∗ , CU 
∗ ) where CL 

∗ = 
N

and PN 
i=1 CUiC∗ = U N

Proposition 4.2. Procedure D strongly controls F W ER. 

Proof. In Procedure D, the observed test statistics are treated as a sample from the underlying 

distribution of the test statistic of non-signifcant genes under the null hypotheses. In this 

scenario, we can declare a signifcant gene if it corresponds to a test statistic value outside the 

bootstrapped 95% confdence interval (−4.265061, 4.726258). Therefore, in this case 

FWER 

= P(Reject at least one Hi, i ∈ {1, 2, ..., 7128}|Hi, i ∈ K0) where K0is the collection of true null hypotheses 

= P(T ∈/ (CL 
∗ , CU 

∗ )) 

= 1 − P(T ∈ (CL 
∗ , CU 

∗ )) 

= 1 − 0.95

= 0.05

= α

Thus, we can achieve an exact procedure for conducting simultaneous hypothesis testing 

for the large-scale gene study under consideration using the bootstrapped confdence intervals. 

Figure 4.3 shows the tail boundaries detected by the Refned Step-Down Algorithm. 

Using the bootstrapped 95% confdence interval (−4.265061, 4.726258), 355 out of the 7128 

genes are labeled signifcant. Thus, noteworthy differences between the two disease groups, AML 

and ALL, are recognized in around 4.98% of the genes. 



55 

0.025Figure 4.3 Bounds by the Refned Step-Down Algorithm (proposed algorithm); se(C∗        
 )=0.13,

se(C∗ )=0 .11 0.025 

Without the normality assumption, Holm’s step-down procedure fails to highlight anyone 

out of the 7128 genes as signifcant in having notable differences between the AML and ALL 

disease groups. The bootstrapped p-values are always more signifcant than the corresponding 

step-wise threshold of the signifcance level (α = 0.05/k , k = 7128, 7127, ..., 1). 

Table 4.2 shows the observed test statistics corresponding to the smallest fve bootstrapped 

p-values along with their respective step-wise thresholds as an output to Holm’s step-down

procedure. As can be noted from table 4.2, the step-wise thresholds are too small to reject even 

those hypotheses with an observed test statistic as signifcant as 12.558 or as small as -12.985. 

This is due to the over-corrective nature of Holm’s step-down procedure while conducting 
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Table 4.2 Output of Holm’s Procedure using Bootstrapped p-values (Top 5 Signifcant Genes are 
Reported) 

Gene Index test-statistic p − value (se) step-wise α Rejected Rejected by Procedure D 
3252 -12.985 1.38E-04 (1E-04) 7.01E-06 NO YES 
6854 12.558 2.84E-04 (2E-04) 7.02E-06 NO YES 
1882 -12.383 4.24E-04 (2E-04) 7.02E-06 NO YES 
4847 -11.591 5.58E-04 (3E-04) 7.02E-06 NO YES 
1834 -11.249 7.02E-04 (3E-04) 7.02E-06 NO YES 

large-scale simultaneous hypotheses testing. On the contrary, the new method can highlight 355 

genes as necessary for further explorations in identifying crucial differentiating factors between 

the two disease groups under study, namely AML and ALL. 

Through this example, we can showcase the effectiveness of the recently introduced 

algorithm for extensive statistical data analysis, specifcally in testing multiple hypotheses 

simultaneously. In addition, this new approach can be considered an enhancement to the current 

method that utilizes both Holm’s step-down algorithm and Efron’s empirical FDR approach for 

estimation. 
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion 

The primary objective of this dissertation was to develop a reliable approach for 

performing simultaneous hypothesis testing that can strongly control the family-wise error rate (F 

W ER). The driving force behind this was the inadequacy of Holm’s step-down procedure, which 

can strongly control the F W ER but lacks statistical power in large-scale data analysis due to its 

strict step-down approach. However, it is essential to note that Hochberg’s step-up procedure is 

more robust than Holm’s step-down procedure. Despite this, it may not be as effective in 

controlling the Family-Wise Error Rate (F W ER). In large-scale data analysis with signifcant 

correlation, Efron (2010) provides a reliable method to determine the empirical False Discovery 

Rate (F DR). However, relying on the empirical F DR with a q threshold (Benjamini and 

Hochberg (1995)) of 0.05 for hypothesis testing was found to be insuffcient. After conducting 

thorough research, it was discovered that only 22 out of the 7128 genes held signifcance when 

using the q = 0.05 (Benjamini and Hochberg (1995)) on the empirical F DR. However, this 

approach left numerous extreme values of the test statistics unexplored and required further 

investigation. Furthermore, it’s important to note that controlling the F DR is only possible when 

all the null hypotheses being considered are true, which is a signifcant constraint. One of the 

primary obstacles involved fnding a way to handle the relationship between test statistics for 

various hypotheses while simultaneously devising a new methodology capable of confdently 

addressing the problem of family-wise error rate (FWER). After reviewing the existing literature 

on correlated simultaneous hypotheses testing methods, I started exploring procedures for 

conducting multiple hypotheses testing related to correlated contingency tables in Chapter 2. 

When testing multiple odds ratios in Chapter 2, the step-up algorithm was more robust than 

the step-down algorithm. A step-wise confdence procedure was deemed valid, while 

step-wise methods were inconclusive. Moreover, the step-wise confdence procedure strongly 

controls the family-wise error rate. The simultaneous confdence interval based on the 

bootstrapped distribution of odds ratios was found to be a prudent way of drawing meaningful 
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inferences while testing multiple hypotheses involving odds ratios. However, its time complexity 

is too high compared to the existing step-wise procedures. Based on my understanding of the 

analyses presented in Chapter 2, a novel methodology to conduct simultaneous hypothesis testing 

was developed and discussed in the subsequent chapters. The Refned Step-Down Algorithm is 

less punitive compared to Holm’s step-down procedure. Additionally, it can ensure strong control 

over the F W ER. 

The third chapter introduces a meticulous method for testing multiple hypotheses. The 

effectiveness of the newly developed algorithm was demonstrated under both the parametric and 

non-parametric frameworks. After a comprehensive analysis of statistical powers using 

simulation, it has been determined that the new method is more effective than Holm’s step-down 

algorithm. In addition to the above, I have analyzed a real-life data set from cdc.gov on binge 

alcoholism among the youth and demonstrated the effectiveness of the Refned Step-Down 

Algorithm compared to Holm’s step-down procedure. Next, I broadened my knowledge of 

analyzing a substantially correlated data set using the latest technique. 

Golub et al. (1999) data on 7128 gene expressions with 25 acute myeloid leukemia (AML) 

patients and 47 acute lymphoblastic leukemia (ALL) patients is thoroughly analyzed in Chapter 4. 

This study aimed to identify any signifcant genes that show contrasting gene expressions 

between AML and ALL patients. Compared to Holm’s step-down procedure, a comparative study 

was conducted to showcase the effciency of the recently proposed algorithm for large-scale 

multiple hypotheses testing. The proposed exact confdence procedure was proven more effective 

when conducting simultaneous hypothesis testing for large-scale data analysis. 

In summary, this dissertation accomplished its objective of creating a reliable 

methodology that exhibits greater statistical power than Holm’s procedure while effectively 

managing the Family-Wise Error Rate (F W ER). In addition, this research has effectively 

confrmed the suitability of the new confdence approach of simultaneous hypothesis testing 

across a range of scientifc studies and frameworks. The following section delves into the 

signifcant research extensions that intrigued me and that I plan to explore in the near future. 

https://www.cdc.gov
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5.2 Future Work 

In the future, I plan to investigate the applicability of rms correlation in scenarios where 

gene expressions are not derived from correlated normal variables but rather from a correlated 

Cauchy distribution. Since Cauchy distributions lack both mean and variance, exploring the 

usefulness of the recently proposed methodology in such cases would be an intriguing exercise. 

Another critical step is to conduct a sensitivity analysis by altering the correlation value 

from -1 to +1 to gauge the methodology’s dependence on correlation α. Furthermore, the 

computational time effciency can be assessed by analyzing a range of N (e.g., number of genes) 

values and varying values of n1 (number of patients in ALL) and n2 (number of patients in AML). 

The current methodology focuses on the specifc scenario when we want to test the 

plausibility of a particular claim for K different strata. So, the types of underlying hypotheses are 

the same. For example, when we want to check whether all income groups’ mean expenditure is 

the same. An exciting task would be extending this to a generic situation where the type of 

underlying hypotheses might differ. Some may be parametric some may be non-parametric. For 

example, one might be interested in simultaneously testing different attributes of an individual or 

subject of an experiment. Some features can be quantifable (age, height, weight, blood pressure, 

etc.), and some can be qualitative (blood group, lifestyle, smoking habits, etc.). 

• Simultaneous Confdence Set: Chen (2016) discusses an approach for constructing

simultaneous confdence regions for multiple hypothesis testing. In other words, one can

build a k-dimensional rejection region considering all hypotheses simultaneously. A

simultaneous rejection is declared when the data in hand fall into the aforementioned

rejection region. Here, one is constructing the rejection region based on the joint

distribution of the test statistics corresponding to all the k hypotheses under scrutiny. As

mentioned in theorem 1.1 for multiple testing problems Hi0 : θi ∈ Θi versus

Hi1 : θi ∈ Θc
i i = 1, 2, ..., k there exists inverted confdence set that is directed towards θi

c 

such that the family-wise error rate can be strongly controlled at the given signifcance level.
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To construct such a simultaneous confdence set based on the joint probability distribution 

of k test statistics, one must accurately capture the pairwise correlation structure of the test 

statistics. By utilizing the joint distribution of the test statistics, it is possible to accurately 

establish the confdence region for evaluating multiple hypotheses simultaneously. 

• Estimation of the unknown correlation: As highlighted in Appendix D (section .0.4), a

robust way of estimating the pairwise correlation for the gene expression data set is defned

in Efron (2010). It essentially computes the value of the root mean square correlation based

on the distribution of the observed pairwise correlations. However, it would be helpful to

develop an algorithm for estimating the complete variance-covariance matrix corresponding

to the joint distribution of the test statistics. Once the entire correlation structure of the test

statistics corresponding to all k hypotheses is captured, one can pragmatically defne the

simultaneous rejection region.

Apart from those mentioned above, it is possible to examine the effect of altering means 

and standard deviations individually while keeping the correlation fxed on the methodology. It is 

worth noting that the methodology’s effcacy can be observed in a model with a low correlation 

value and considerably high standard deviations. 
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APPENDIX A SELECTED R PROGRAMS FROM CHAPTER 2 

• This code is used to implement the step-wise procedures using the χ2 test in Chapter 2.

step.alpha<-alpha/seq(4,1,-1)

gr.names<-c("gr1","gr2","gr3","gr4")

chi.pval<-sapply(TBL.list,chi_pval)

df.chi<-data.frame(cbind(gr.names,chi.pval))

df.chi<-df.chi[order(as.numeric(chi.pval),decreasing = FALSE),]

df.chi$alpha<-as.numeric(step.alpha)

df.chi$chi.pval<-as.numeric(df.chi$chi.pval)

m=length(gr.names)

i=1

while (i<=m){

if (df.chi$chi.pval[i]<df.chi$alpha[i]){

df.chi$rej[i]<-TRUE

}else{

break

}

i=i+1

}

if (i<m){

df.chi$rej[i:m]<-FALSE

}

df.chi

• The function Boot.rej defnes the rejection criterion based on the bootstrapped confdence

interval in Chapter 2.

Boot.rej<-function(alpha=0.05){

r1.gr1 = r2.gr1 = 100; p1.gr1 = .9; p2.gr1 = .5

https://Boot.rej<-function(alpha=0.05
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x1.gr1<-rbinom(r1.gr1, 1, p1.gr1)

x2.gr1<-rbinom(r2.gr1, 1, p2.gr1)

r1.gr2 = r2.gr2 = 200; p1.gr2 = .5; p2.gr2 = .5

x1.gr2<-rbinom(r1.gr2, 1, p1.gr2)

x2.gr2<-rbinom(r2.gr2, 1, p2.gr2)

r1.gr3 = r2.gr3 = 150; p1.gr3 = .5; p2.gr3 = .5

x1.gr3<-rbinom(r1.gr3, 1, p1.gr3)

x2.gr3<-rbinom(r2.gr3, 1, p2.gr3)

r1.gr4 = r2.gr4 = 50; p1.gr4 = .8; p2.gr4 = .5

x1.gr4<-rbinom(r1.gr4, 1, p1.gr4)

x2.gr4<-rbinom(r2.gr4, 1, p2.gr4)

### Defining Bootstrap rejection region

nsim<-10000

OR.boot<-replicate(nsim,stat.fun(x1.gr1,x2.gr1,x1.gr2,x2.gr2,

x1.gr3,x2.gr3,x1.gr4,x2.gr4))

m<-nrow(OR.boot)

CI.boot<-apply(OR.boot,1,quantile,

probs=c(alpha/(2*m),1-alpha/(2*m))) 

rej<-1-c(CI.boot[1,1]<1 && 1<CI.boot[2,1],

CI.boot[1,4]<1 && 1<CI.boot[2,4])

rej

}
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APPENDIX B SELECTED R PROGRAMS FROM CHAPTER 3 

• This code is used to implement the newly proposed algorithm for simultaneous hypotheses

testing with contingency tables in Chapter 3.

while(m>0){

dat=props.list[names(sorted_stats)[1:m]]

teststat<-sum(sapply(dat,z.sq))

p.value<-pchisq(teststat,df=m,lower.tail = FALSE)

if(p.value<alpha){

rej_gr<-c(rej_gr,names(sorted_stats[m]))

}else{

break

}

m<-m-1

}

• This code is used for implementing the newly proposed algorithms in the non-parametric

paradigm.

gr.list.jt<-list(x0,x1,x2,x3,x4)

names(gr.list.jt)<-c("gr0","gr1","gr2","gr3","gr4")

medians<-sapply(gr.list.jt,median)

sorted_stats<-medians[order(medians,decreasing = FALSE)]

m<-length(medians)

rej_gr<-c()

while(m>=2){

dat=gr.list.jt[names(sorted_stats)[1:m]]

https://teststat<-sum(sapply(dat,z.sq
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group<-c()

for (k in seq(1,length(dat),1)){

group<-c(group,rep(k,n))

}

space<-c()

for (k in seq(1,length(dat),1)){

space<-c(space,dat[[k]])

}

test_jt<-jonckheere.test(space,group,

alternative="increasing")

if(test_jt$p.value<alpha){

rej_gr<-c(rej_gr,names(sorted_stats[m]))

}else{

break

}

m<-m-1

}

if("gr1" %in% rej_gr | "gr2" %in% rej_gr){

rej_gc<-1

}else{

rej_gc<-0

}

• This code is used for generating the power curve in fgure 3.3

N<-50000 ## Number of simulations

## Setting the sample sizes

n<-50
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## Defining the level of significance

alpha<-0.05

cmh_chi_pval<-function(TBL.list){

diff<-function(TBL){

TBL[1,1]/sum(TBL[1,])-TBL[2,1]/sum(TBL[2,])

}

wt<-function(TBL){

(sum(TBL[1,])*sum(TBL[2,]))/(sum(TBL[1,])+sum(TBL[2,])) 

}

wtd_mn_dif<-function(TBL.list){

w<-sapply(TBL.list,wt)

d<-sapply(TBL.list,diff)

sum(w*d)/sum(w) 

}

marginals<-function(TBL){

w<-wt(TBL)

p_hat_mar<-sum(TBL[,1])/sum(TBL)

w*p_hat_mar*(1-p_hat_mar) 

}

SE<-function(TBL.list){

w<-sapply(TBL.list,wt)

sqrt(sum(sapply(TBL.list,marginals)))/sum(w)

}

https://alpha<-0.05
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w<-sapply(TBL.list,wt)

d<-sapply(TBL.list,diff)

stat<-sum(w*d)/(sqrt(sum(sapply(TBL.list,marginals)))) 

pchisq(statˆ2,df=1,lower.tail = FALSE)

}

OR.stat<-function(tab){

(tab[1,1]*tab[2,2])/(tab[1,2]*tab[2,1]) 

}

# Defining Rejections for Holm’s and the proposed algorithm

rej.holm.gc<-function(alpha){

n0=n1=n2=n3=n4=n

x0<-rbinom(n0,1,prob=p0)

x1<-rbinom(n1,1,prob=p1)

x2<-rbinom(n2,1,prob=p2)

x3<-rbinom(n3,1,prob=p3)

x4<-rbinom(n4,1,prob=p4)

r1.gr1=n1

r2.gr1=n1

r1.gr2=n2

r2.gr2=n2

r1.gr3=n3

r2.gr3=n3
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r1.gr4=n4

r2.gr4=n4

## Tab1 p0 vs p1

x1.gr1<-x0

x2.gr1<-x1

g1.gr1<-c(sum(x1.gr1), r1.gr1 - sum(x1.gr1))

g2.gr1<-c(sum(x2.gr1), r2.gr1 - sum(x2.gr1))

TBL.gr1<-rbind(g1.gr1, g2.gr1)

colnames(TBL.gr1)<-c("Disease","Control")

rownames(TBL.gr1)<-c("Unexposed","Exposure")

## Tab2 p0 vs p2

x1.gr2<-x0

x2.gr2<-x2

g1.gr2<-c(sum(x1.gr2), r1.gr2 - sum(x1.gr2))

g2.gr2<-c(sum(x2.gr2), r2.gr2 - sum(x2.gr2))

TBL.gr2<-rbind(g1.gr2, g2.gr2)

colnames(TBL.gr2)<-c("Disease","Control")

rownames(TBL.gr2)<-c("Unexposed","Exposure")

# Tab3 p0 vs p3

x1.gr3<-x0

x2.gr3<-x3

g1.gr3<-c(sum(x1.gr3), r1.gr3 - sum(x1.gr3))

g2.gr3<-c(sum(x2.gr3), r2.gr3 - sum(x2.gr3))
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TBL.gr3<-rbind(g1.gr3, g2.gr3)

colnames(TBL.gr3)<-c("Disease","Control")

rownames(TBL.gr3)<-c("Unexposed","Exposure")

# Tab4 p0 vs p4

x1.gr4<-x0

x2.gr4<-x4

g1.gr4<-c(sum(x1.gr4), r1.gr4 - sum(x1.gr4))

g2.gr4<-c(sum(x2.gr4), r2.gr4 - sum(x2.gr4))

TBL.gr4<-rbind(g1.gr4, g2.gr4)

colnames(TBL.gr4)<-c("Disease","Control")

rownames(TBL.gr4)<-c("Unexposed","Exposure")

gr1<-cbind(x1.gr1,x2.gr1);gr2<-cbind(x1.gr2,x2.gr2)

gr3<-cbind(x1.gr3,x2.gr3);gr4<-cbind(x1.gr4,x2.gr4)

gr.list<-list(gr1,gr2,gr3,gr4)

TBL.list<-list(TBL.gr1,TBL.gr2,TBL.gr3,TBL.gr4)

names(TBL.list)<-c("TBL.gr1","TBL.gr2","TBL.gr3","TBL.gr4")

step.alpha<-alpha/seq(4,1,-1)

gr.names<-c("gr1","gr2","gr3","gr4")

chi.pval<-sapply(TBL.list,chi_pval)

df.chi<-data.frame(cbind(gr.names,chi.pval))

df.chi<-df.chi[order(as.numeric(chi.pval),decreasing = FALSE),]

df.chi$alpha<-as.numeric(step.alpha)

df.chi$chi.pval<-as.numeric(df.chi$chi.pval)

# Defining the rejection crtiteria for Holm’s
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m=length(TBL.list)

i=1

while (i<m){

if (df.chi$chi.pval[i]<df.chi$alpha[i]){

df.chi$rej[i]<-TRUE

}else{

break

}

i=i+1

}

if (i<m){

df.chi$rej[i:m]<-FALSE

}

df.chi<-df.chi[df.chi$rej==1,]

if("gr1" %in% df.chi$gr.names | "gr2" %in% df.chi$gr.names |

"gr3" %in% df.chi$gr.names | "gr4" %in% df.chi$gr.names ){

rej_holm<-1

}else{

rej_holm<-0

}

## Rejection for proposed algorithm

OR.stats<-sapply(TBL.list,OR.stat)

sorted_stats<-OR.stats[order(OR.stats,decreasing = FALSE)]

m<-length(OR.stats)

rej_gr<-c()

while(m>=2){
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dat=TBL.list[names(sorted_stats)[1:m]]

# dat=unlist(TBL.list[names(sorted_stats)[1:m]])

if(cmh_chi_pval(dat)<alpha){ # #cmh.pval(dat,m)<alpha

rej_gr<-c(rej_gr,names(sorted_stats[m]))

}else{

break

}

m<-m-1

}

if("TBL.gr1" %in% rej_gr | "TBL.gr2" %in% rej_gr|

"TBL.gr3" %in% rej_gr|"TBL.gr4" %in% rej_gr){

rej_gc<-1

}else{

rej_gc<-0

}

c(rej_holm,rej_gc)

}

## Computing power for Holm’s and Proposed Algorithm

pow.holm.gc<-function(alpha=0.05){

rp<-replicate(N,rej.holm.gc(alpha))

apply(rp, 1,mean)

}

# Power curve ## fixed p-alts 0.3,0.7

p1<-0.6;p2<-0.7

p0.seq<-seq(0.3,0.5,0.01)#c(0.4,0.5,0.6)

https://pow.holm.gc<-function(alpha=0.05
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holm.pow.seq<-c()

gc.pow.seq<-c()

for(p0 in p0.seq){

p3=p1;p4=p2

res<-pow.holm.gc(alpha=0.05)

holm.pow.seq<-c(holm.pow.seq,res[1])

gc.pow.seq<-c(gc.pow.seq,res[2])

}

df<-data.frame(cbind(p0.seq,holm.pow.seq,gc.pow.seq))

names(df)<-c("p0","Holm’s Step Down Procedure","Proposed Algorithm")

library(reshape2)

library(ggplot2)

df<-melt(df,id=c("p0"))

names(df)<-c("p0","Method","Power")

p<-ggplot(df,aes(x=p0,y=Power,group=Method))+

geom_line(aes(linetype=Method, color=Method, size=Method))+

geom_point()+

scale_linetype_manual(values=c("dashed", "dotted"))+

scale_color_manual(values=c(’darkgreen’,’navyblue’))+

scale_size_manual(values=c(1, 1.5))+

theme(legend.position="bottom")+

ggtitle("Power Curve")+

theme(plot.title = element_text(hjust = 0.5))

p

}

• This code is used for section 3.5

https://res<-pow.holm.gc(alpha=0.05


73 

props.gr1<-c(0.343,0.005)

props.gr2<-c(0.343,0.032)

props.gr3<-c(0.343,0.108)

props.gr4<-c(0.343,0.374)

# Applying Holm’s Algorithm

## Defining the level of significance

alpha<-0.05

thres<-0.2

pval.left<-function(props,n=100){

p<-(props[1]*100+props[2]*100)/(2*n) 

z<-((props[2]-props[1])+thres)/(sqrt(p*(1-p[1])*(1/n+1/n))) 

pnorm(z,lower.tail=TRUE)

}

pval.right<-function(props,n=100){

p<-(props[1]*100+props[2]*100)/(2*n) 

z<-((props[2]-props[1])-thres)/(sqrt(p*(1-p[1])*(1/n+1/n))) 

pnorm(z,lower.tail=FALSE)

}

props.list<-list(props.gr1,props.gr2,props.gr3)

step.alpha<-alpha/seq(4,1,-1)

gr.names<-c("gr1","gr2","gr3","gr4")

pval<-sapply(props.list,pval.left)

pval<-c(pval,pval.right(props.gr4))

df<-data.frame(cbind(gr.names,pval))

df<-df[order(as.numeric(pval),decreasing = FALSE),]

df$alpha<-as.numeric(step.alpha)

df$pval<-as.numeric(df$pval)

# Defining the rejection crtiteria for Holm’s

https://alpha<-0.05
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m=4

i=1

while (i<m){

if (df$pval[i]<df$alpha[i]){

df$rej[i]<-TRUE

}else{

break

}

i=i+1

}

if (i<m){

df$rej[i:m]<-FALSE

}

map_names<-data.frame(cbind(c("12-13","14-15","16-17","26-34"),gr.names))

colnames(map_names)<-c("Age","Group")

map_names[map_names$Group %in% df[df$rej==1,1],"Age"]

# Implementing the Proposed Algorithm

p_hats<-c(props.gr1[2],props.gr2[2],props.gr3[2],props.gr4[2])

names(p_hats)<-c("gr1","gr2","gr3","gr4")

sorted_stats<-p_hats[order(abs(p_hats-props.gr1[1]),decreasing = FALSE)]

z.left<-function(props,n=100){

p<-(props[1]*100+props[2]*100)/(2*n) 

z<-((props[2]-props[1])+thres)/(sqrt(p*(1-p[1])*(1/n+1/n))) 

z

}

z.right<-function(props,n=100){

p<-(props[1]*100+props[2]*100)/(2*n) 
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z<-((props[2]-props[1])-thres)/(sqrt(p*(1-p[1])*(1/n+1/n))) 

z

}

props.list<-list(props.gr1,props.gr2,props.gr3)

z_vals<-sapply(props.list, z.left)

z_vals<-c(z_vals,z.right(props.gr4))

names(z_vals)<-c("gr1","gr2","gr3","gr4")

m<-4

rej_gr<-c()

while(m>0){

dat=z_vals[names(sorted_stats)[1:m]]

teststat<-sum(datˆ2)

p.value<-pchisq(teststat,df=m,lower.tail = FALSE)

if(p.value<alpha){

rej_gr<-c(rej_gr,names(sorted_stats[m]))

}else{

break

}

m<-m-1

}

# We reject the null hypothesis for the following groups

map_names[map_names$Group %in% rej_gr,"Age"]
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APPENDIX C SELECTED R PROGRAMS FROM CHAPTER 4 

• This code implements the proposed algorithm assuming normality in Chapter 4

set.seed(123456)

B<-2000

N<-10000

alpha<-0.05

Bt_stats<-function(dat_vals){

bt<-sample(x=dat_vals,size=B,replace=TRUE)

mean(bt)

}

tail_genes<-c()

dat<-gene_df

sorted_df<-gene_df[order(z_vals,decreasing = FALSE),]

tail_sorted_df<-tail(sorted_df)

head_sorted_df<-head(sorted_df)

## Computing p-value based on the bootstrapped distribution of means

iteration=1

while(iteration<=200){

reps<-replicate(N,Bt_stats(dat$z_vals))

pval<-2*pnorm(abs(mean(reps)),mean=0,sd=1/(sqrt(N*B)), 

lower.tail = FALSE)

if(pval<alpha){

idx<-sorted_df$gene_index[c(1:5,(nrow(dat)-4):nrow(dat))]

## Why 5? We have largest 5 vals as inf

https://alpha<-0.05
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dat<-dat[!(dat$gene_index %in% idx), ]

sorted_df<-sorted_df[!(sorted_df$gene_index %in% idx),]

tail_genes<-c(tail_genes,idx)

}else{

break

}

iteration<-iteration+1

}

tail_df<-gene_df[gene_df$gene_index %in% tail_genes,]

#number of genes rejected by proposed algorithm

nrow(tail_df)

# tail_df$gene_index #significant genes

round((nrow(tail_df)/nrow(gene_df))*100,3)#percentage 

• This code implements the newly proposed algorithm using Bootstrapped quantiles in

Chapter 4

two_sample_t<-function(x){

t_test<-t.test(x[1:47],x[48:72],alternative = "two.sided",

var.equal = FALSE)

t_test$statistic

}

## Observed 2-sample t-statistics with unequal variance

obs_t_stats<-apply(gene_dat,1,two_sample_t)

df<-data.frame(cbind(gene_index,obs_t_stats))

B<-10000
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Boot_quantile<-function(x){

qs<-function(x){

rm_sample<-sample(df$obs_t_stats,size=n,replace=TRUE)

q<-quantile(rm_sample,probs=c(alpha,1-alpha))

q

}

boot<-replicate(B,qs(x))

mn<-apply(boot,1,mean)

se<-apply(boot,1,sd)

c(mn=mn,se=se)

}

prop_algo_threshold<-Boot_quantile(df$obs_t_stats)

tail_df<-df[which(df$obs_t_stats<prop_algo_threshold[1]|df$

obs_t_stats>prop_algo_threshold[2]),]

95% confidence interval

prop_algo_threshold[c(1,2)]

The corresponding standard Errors

prop_algo_threshold[c(3,4)]

# %tage of genes rejected by the proposed algorithm

round((nrow(tail_df)/nrow(df))*100,3) 
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APPENDIX D METHODOLOGY FOR COMPUTING EMPIRICAL FDR (Efron (2010)) ) 

The input to the methodology in Efron (2010)) is a collection of correlated standard 

normal variables. Using a sample of N observations, the method appropriately determines the 

summary statistic for these correlated normal variates, say, the empirical cumulative distribution 

function. In addition to the above, the methodology also provides a reasonable estimation of the 
variance of Fb by considering the correlation in the data. The methodology splits the correlated 

random variables into a fnite number of classes. The z-values in the same class follow a normal 

distribution with an identical mean and standard deviation. These classes are characterized by 

different means and standard deviations. So, a fnite collection of (µc, σc) denoting the mean and 

standard deviation of the normal distribution for the cth class. 

The two major constituents of Efron (2010)) are 

1) Finding the distribution (Fb)of correlated normal variables

2) Estimating the correlation parameters in addition to the means, standard deviations of the

normal distribution, and the proportion of each predefned class in the sample

The critical assumptions of the methodology described in Efron (2010)) are 

i) zi’s follow normal distributions for i = 1, 2, ..., N with different means and variances.

zi ∼ N(µi, σi 
2), i = 1, 2, ..., N .

ii) zi’s might not be independent.

Efron (2010)) used a right-sided cumulative distribution function for convenience.

The author presents competent formulas for computing the mean and covariance of the 

process {Fb(x), −∞ < x < ∞} in Efron (2010)). However, instead of working with the

right-handed cdfs immediately, some valuable results are deduced using a discretized version of 

the z-values. The mean and covariance of the process {Fb(x), −∞ < x < ∞} are deduced

leveraging the results of the discretized version. Using a Poisson Spline Regression, a smooth 

curve for Fb is obtained from the histogram of the z-values. Moreover, the methodology uses the
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binning strategy to transform the correlated N-random standard normal variables into 

K-correlated discrete random variables. As per my understanding, K ≤ N . As mentioned earlier,

the transformation is because it is easier to deal with the K × K covariance matrix of the discrete 

variables than with the N × N covariance matrix of the initial correlated standard variables. 

The range of the observed zi values Z is partitioned into K bins namely Z1, Z2, ..., ZK

having an equal bin width of ∆. 

K[
Z = Zk (.0.1) 

k=1

Additionally, xk and yk denote the midpoint and the number of observations in ZK , 

respectively. 

yk = # zi ∈ Zk , k = 1, 2, ..., K (.0.2) 

Firstly, the mean and covariance of the vector y = (y1, y2, ..., yK ) ′ are computed. Note 

that as ∆ → 0 yk → 0 or 1 with xk values for non-void bins denoting the locations of the ordered 

zi’s under the assumption of no ties. The methodology deduces various properties of z through y. 

zi’s are grouped into a fnite number of classes.µc and σc denote the mean and standard deviation 

of the zi’s in class Cc respectively. 

zi ∼ N(µc, σc 
2) for zi ∈ Cc (.0.3) 

Nc and pc are defned as the number of elements in class Cc and the proportion of class Cc 

in the entire sample respectively. 

Nc = # Cc and pc = Nc/N (.0.4) 

P P 
Note that Nc = N and c = 1. c pc 

Let x be the vector of bin midpoints having K components. The methodology defnes xc 
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as below. 

xc = (x − µc)/σc = (x1c, ..., xkc, ..., xKc)′ (.0.5) 

and xkc = (xk − µc)/σc.Additionally,any vector valued function h of xc will be defned as 

below. 

hc = (h(x1c), ..., h(xkc), ..., h(xKc))′ (.0.6) 

.0.1 Expected value of the count vector y 

Suppose, P(zi ∈ Zk|zi ∈ Cc) = πkc. Here, Probc{zi ∈ Zk} = P(zi ∈ Zk|zi ∈ Cc) Thus 

πkc is denoted by Probc{zi ∈ Zk} and is defned as below. 

πkc = Probc{zi ∈ Zk} = ∆φ(xkc)/σc (.0.7) 

√
Where, φ(x) = exp(−x2/2)/ 2π. Note that πc = (π1c, ..., πkc, ..., πKc). So, P 
P(zi ∈ Zk) = pcπkc as P(zi ∈ Cc) = pc and P(zi ∈ Zk|zi ∈ Cc) = πkc. c

Notice that when ∆ is suffciently small, for P 
k = 1, ..., K yk ∼ Binomial(N, pk) where, pk = P(zi ∈ Zk) = pcπkc. So, E{yk} = NpkcP 
Therefore, for suffciently small ∆, E{y} = N pcπc. c

Thus the following holds using .0.7. 

X X X 
E{y} = N pcπc = N∆ pcφ(xc)/σc = N∆ pcφ /σc (.0.8)c 

c c c

.0.2 Covariance matrix of the count vector y 

The covariance matrix (K × K)of the count vector y is expressed in terms of the N × N 

correlation matrix of z.The correlation between two zi’s is defned as follows corr(zi, zi′) = ρii′ 

Note that when i = i′, ρii′ = 1. The total number of possible pairwise correlations is N(N-1)/2 as 

z is an N-dimensional vector. Let M=N(N-1)/2. g(ρ) denotes the uniform correlation density on 

1 N (N−1)defned these M possible values. Therefore, g(ρ) = 
M where, M = 

2 . 
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Suppose φρ(u, v) denotes the bivariate density between two correlated standard normal 

variables, namely u and v with correlation ρ. λρ(u, v) (a quantity dependent on ρ)is defned as 

below. 
λρ(u, v)

φρ(u, v)
= − 1

φ(u)φ(v) (.0.9)( ) 
2ρuv − ρ2(u2 + v2) 

= (1 − ρ2)−1/2 exp − 1
c(1 − ρ2)

and λ(u, v) (a quantity free of ρ) is defned as the following. 

Z 1 
λ(u, v) = λρ(u, v)g(ρ)dρ (.0.10) 

−1

The integral above is used as a generalization of the mathematical expression below. 

X 1
λρ(u, v)g(ρ) where, g(ρ) = and #{corr(zi, zi′)} = M. 

M
ρ∈{corr(zi,zi′)} 

The covariance of the count vector y is below. 

cov(y) = cov0 + cov1 (.0.11) 

Where, X 
cov0 = N pc{diag(πc) − πcπc′} (.0.12) 

c

and 

XX X 
cov1 = N2 pcpddiag(πc)λcddiag(πd) − N pcdiag(πc)λccdiag(πc) (.0.13) 

c d c

In the expressions above the summations are over all classes; diag(πc) and diag(πd) 

denote the K × K diagonal matrices with diagonal elements πkc and πkd respectively; λcd

denotes the K × K matrix whose klth element is 
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λ(xkc, xld) using the defnitions in .0.5 and.0.10.Essentially, cov0 is the covariance when zi’s are 

independently distributed, and cov1 is the penalty due to the correlation between zi’s. An increase 

in N (the number of observations) severely impacts the covariance of the count vector y through 

cov1.λp(u, v).0.9 is simplifed as below using Mehler’s Identity. 

X ρj
λρ(u, v) = hj (u)hj (v) (.0.14)

j!
j≥1

In the equation above, hj denotes the jth Hermite Polynomial. The jth moment of the 

correlation distribution g(ρ) is represented by αj and defned below. 

Z 1 
αj = ρj g(ρ)dρ (.0.15) 

−1

The covariance structure Fb is expressed in the covariance structure of y. Now,

Z 1 
λ(u, v) = λp(u, v)g(ρ)dρ .0.10Z−1 �1 �X ρj

= hj (u)hj (v) g(ρ)dρ .0.14
−1 j!�Zj≥ 

1

1 �X hj (u)hj (v)
= ρj g(ρ)dρ [as ρj is uniformly convergent on [-1,1] for j=1,2,...] 

−1 j!
j≥1X αj

= hj (u)hj (v) .0.15
j!

j≥1

Thus, X αj
λ(u, v) = hj(u)hj (v) (.0.16)

j!
j≥1

Using the identity above λcd in .0.13 is expressed as the following. 

X αj
λcd = hj (xc)hj (xd)′ (.0.17)

j! 
j≥1
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We can obtain the following using .0.7. 

diag(πc)hj (xc) = ∆diag(φ(xc)hj (xc)/σc 
(.0.18) 

= (−1)j ∆.φ( 
c
j)/σc 

where φ( 
c
j) indicates the jth derivative of φ(u) evaluated at each component of xc using 

φ(j)(u) = (−1)j φ(u)hj (u). Next, the methodology defnes a new quantity, namely ϕ−(j) as 

below. X 
ϕ−(j) ≡ φ(j)/σc (.0.19)pc c 

c

The above .0.13 can be simplifed as follows. 

XX X 
cov1 = N2 pcpddiag(πc)λcddiag(πd) − N pcdiag(πc)λccdiag(πc) 

c d c�X �XX αj
= N2 pcpddiag(πc) hj (xc)hj (xd)′ diag(πd)

j! 
c d j≥1X �X � 

αj−N pcdiag(πc) hj (xc)hj (xc)′ diag(πc) using .0.17 
j! 

c j≥1�X �X Xαj
= N2 pcdiag(πc)hj (xc) pdhj (xd)′diag(πd)

j!
j≥1 c dX �X � 

αj−N pcdiag(πc)hj (xc)hj (xc)′diag(πc)
j!

j≥1 c�X �X Xαj (j)′
= N2 pc∆φc 

(j)/σc pd∆φd /σd
j!

j≥1 c dX �X � 
αj 

∆φ(j) ∆φ(j)′ −N pc c /σc c /σc using .0.18 
j!

j≥1 c �X �X Xαj αj
ϕ−(j)ϕ−(j)′ φ−(j)φ−(j)′ = N2∆2 /σcσd − N∆2 pc c c /σc 

2 using .0.19 
j! j!

j≥1 j≥1 c

Thus .0.13 can be re-written as 
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( )X X �X �αj 1 αjcov1 = N2∆2 ϕ−(j)ϕ−(j)′ /σcσd − pcφ
−(j)φ−(j)′ /σ2 (.0.20)c c cj! N j!

j≥1 j≥1 c

α the root mean square (rms) correlation is defned using the second moment of the distribution of 

the correlation parameter ρ. � Z 1 �1/2
α = α2

1/2 
= ρ2 g(ρ)dρ (.0.21) 

−1

Using multiple reduction techniques, the methodology provides a simple formula for rms 

approximation of cov1 as specifed below. 

= . (N∆α)2ϕ−(2)ϕ−(2)′ cov1 /2 (.0.22) 

with ϕ−(2) in .0.19 depending on the second derivative of the normal 

density,φ(2)(u) = φ(u).(u2 − 1). 

.0.3 Derivation of the covariance of the right-sided empirical cumulative distribution function 

To derive the expectation and covariance matrix of Fb, a K × K matrix, namely B, is

defned below. ( 
1 if k ≤ k′

Bkk′ = (.0.23) 
0 if k > k′,

A K-vector Fb is defned as next. 
1

Fb = By (.0.24)
N 

Following the defnition .0.24 the kth component of Fb is actually the proportion of zi’s in 

bins Zk ′, where k′ ≥ k. As ∆ and xk denote the bin width and mid-point of the bin respectively 

for all k ∈ 1, 2, ..., K. 

Therefore mathematically, 

� 
Fc 
k = # zi ≥ xk − ∆/2 /N k = 1, 2, ..., K (.0.25) 
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Now, we know that E{dF } = BE{y} and the covariance matrix of E{Fc} can be given by

Bcov(y)B′ /N2 . Thus, 

�X � � �X xk′ − µc
E{Fc 

k} = pc ∆φ /σc
σc c k′≥kZ ∞X .

= pc φ(u)du (.0.26) 
xkc cX 

= pcΦ
+(xkc) 

c

where Φ+(u) = 1 − Φ(u). Letting ∆ → 0 make .0.26 exact. Fb has covariance matrix 

Bcov(y)B′/N2 . Using the equations .0.11 .0.12 and .0.13 and the fact that Fb has covariance 

matrix Bcov(y)B′/N2 one can express Fb as below. 

Cov(Fb) = Cov0 + Cov1 (.0.27) 

where Cov0 has the klth entry is 

X1 
pc{Φ+(max(xkc, xlc)) − Φ+(xkc)Φ

+(xlc)} (.0.28)
N

c

and �X αj 1 X αj

�X 
φ−(j−1)φ−(j−1)′ φ−(j−1)φ−(j−1)′Cov1 = − pc c c (.0.29)

j! N j!
j≥1 j≥1 c

Where, pc is defned in .0.4, xkc and xlc are from .0.5, αj is defned in .0.15 and 

X X 
φ−(j−1) φ−(j−1) φ−(j−1)(xc = = pc ) (.0.30)pc c 

c c

Applying reduction steps similar to that used to fnd cov1, the rms approximation of Cov1 

is computed below. 

= . α2φ−(1)φ−(1)′ /2Cov1 (.0.31) 

.Where, φ−(1) depends on the frst derivative of the normal density, φ(1)(u) = −φ(u)u. 
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.0.4 Estimation of the correlation parameter α (Efron (2010)) ) 

Two effective estimates of α as highlighted in Efron (2010)) are used for computing the 

root mean square correlation as a function of aforesaid m and ν. The formulas for computing the 

effective rms correlation are presented below. 

� � 
n0 1

αb2 = ν − (.0.32) 
n0 − 1 n0 − 1

� � 
3 (n0 − 3)ν − 1

α̃2 = ν̃ − ν̃2 ν̃ = (.0.33) 
n0 − 5 n0 − 5

As seen above, computing αb is simpler than computing α̃ Efron (2010)) prefers αb as the rms 

correlation value. 

Based on the discussion so far, it may seem like class components like pc, µc and σc are 

also required to be estimated. However, the computations above can be reduced to simpler ones 

under certain assumptions. Below is how the computational redundancies are avoided, as 

presented in Efron (2010)). 

Using the equations .0.3 and .0.4 the marginal density f(z) can be expressed as below. 

� �X z − µc 1
f(z) = pcφ (.0.34)

σc σc c

Now if f is denoted by f(x) which is the density evaluated at the K-vector of bin P 
midpoints, then assuming Nc’s are fxed ∆.f = c pcπc .0.7 and .0.12 can be expressed as below. 

� �X 
cov0 = N diag(∆f) − pcπcπ ′ c (.0.35) 

c

Instead of assuming fxed Nc’s, a more pragmatic approach would be assuming that 

N1, N2, ..., NC are a multinomial sample of size N with probabilities p1, p2, ..., pC . Under the 

assumption mentioned earlier, the above equation .0.35 can be written as next. 
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� � 
cov0 = N diag(∆f) − ∆2ff′ (.0.36) 

Now, a smooth estimate of f, namelybf, is obtained using a Poisson spline regression. Thus 

under the assumption that all σc values are the same, without knowing the class-specifc structure, 

the Cov(Fb) can be obtained from the equations mentioned below. Cov0 for Fb is given by 

1 
(Covd 

0)kl = 
� 
Fb 
max(k,l) − Fb 

kFb 
l (.0.37)

N 

and acknowledging the fact that a smooth estimate of fb(z) of f(z) can be differentiated the

penalty terms are given by 
(σ2α)2 

0 f(1)f(1)′Cov1 = 
2 (.0.38)

(N∆σ2α)2 
0 f(2)f(2)′cov1 = 
2 

Therefore the correlation penalty standard deviation of Fb(xk) can be obtained below.

σ2 
Fk} = ( d 1/2 b √0 α |fb(1)(xk)|sd1{c Cov1) = (.0.39)kk 

2
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APPENDIX E PROOF OF THEOREM 1.1 (Chen (2016))) � � 

Proof. Θc = Θ and Ck y = Θ make sense as in this case θ ∈ Θc ∩ Θc ∩ ... ∩ Θc and(k+1) 0 (k) (k−1) (1) 

Θ = Rk . 

Thus, � � 
∩ Ck+1Θc ∩ Θc ∩ ... ∩ Θc 

0 y(k+1) (k) (1) 

=Θ ∩ Θc ∩ ... ∩ Θc ∩ Θ(k) (1) 

=Θc ∩ ... ∩ Θc [As Θ = Rk ](k) (1) � �c

where, Θc = R × ... × R × Θ∗ × R × ... × R(i) (i)� � � � � �c c c

Thus, ∩k Θc = Θ∗ × Θ∗ × ... × Θ∗ 
i=1 (i) (k) (k−1) (1)

Notations: A ∩ B = AB and Θ0 = Θ = Rk 

Let ∆1 = Θ(k) [Θ(k) = Rk−1 × Θ∗ 
(k)], � �c

∆2 = Θ
c [Θ(k) = Rk−2 × Θ∗ × Θ∗ ](k)Θ(k−1) (k−1) (k) 

...

∆i = Θ
c Θ( 

c
k−1)...Θ

c Θ(k−i+1)(k) (k−i+2) 

[Θ( 
c
k)Θ( 

c
k−1)...Θ( 

c
k)Θ( 

c
k−i+2)Θ(k−i+1) = Rk−i × Θ( 

∗ 
k−i+1) × (Θ( 

∗ 
k−i+2))

c × ... × (Θ( 
∗ 
k−1))

c × (Θ( 
∗ 
k))

c] 

= Θc Θc 
(k−1)...Θ

c Θc∆i+1 (k) (k−i+2) (k−i+1)Θ(k−i) 

[Θc Θ( 
c
k−1)...Θ

c Θc Θc Θ(k−i+1) = Rk−i−1 ×Θ∗ ×(Θ∗ )c ×...×(Θ∗ )c ×(Θ∗ )c](k) (k) (k−i+2) (k) (k−i) (k−i+1) (k−1) (k) 
...

∆k−1 = Θ
c Θ( 

c
k−1)...Θ

c 
(k) (3)Θ(2)

[Θc Θc 
(k−1)...Θ

c Θ(2) = R × Θ∗ × (Θ∗ )c × ... × (Θ∗ )c × (Θ∗ )c](k) (3) (2) (3) (k−1) (k) 

= Θc Θc 
(k−1)...Θ

c Θc∆k (k) (3) (2)Θ(1)

[Θ( 
c
k)Θ( 

c
k−1)...Θ(3) 

c Θc Θ(1) = Θ
∗ × (Θ∗ )c × (Θ∗ )c × ... × (Θ∗ )c × (Θ∗ )c](2) (1) (2) (3) (k−1) (k) 

∆k+1 = Θ
c Θc 

(k−1)...Θ
c Θc Θc Θ0(k) (3) (2) (1) 

[Θc Θ( 
c
k−1)...Θ

c Θc Θc Θ0 = (Θ∗ )c × (Θ∗ )c × (Θ∗ )c × ... × (Θ∗ )c × (Θ∗ )c] where (k) (3) (2) (1) (1) (2) (3) (k−1) (k) 

Θ∗ 
(i) ⊆ R denotes the one-dimensional null parameter space corresponding to the hypothesis H(i). 

Then, 
k+1[ 

as H( 
∗ 
i) ∪ (H( 

∗ 
i))

c = R ∀i and Θ = Rk (.0.40) 
i=1
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i 

Defne Dk+1(y) = 
Sk Ci

k(y) where Ci
k(y) = {θ |Pi(y|θ) > α/k}.i=1

Ci
k(y) can be re-written as Ci

k(y) = Ri−1 × (Ci
k(y))∗ × Rk−i where 

(Ck(y))∗ = {θi|Pi(y|θi) > α/k} ⊆ R. 

Thus, S S S S 
Dk+1(y) = C1 

k(y))∗ × Rk−1 ... Ri−1 × (Ci
k(y))∗ × Rk−i ... Rk−1 × (Ck

k(y))∗ where 

(Ci
k(y))∗ = {θi|Pi(y|θi) > α/k} ⊆ R . 

Defne Di = Ci (y) i = 1, 2, ..., k .k−i+1 

Ck
i 
−i+1(y) = {θ|P(k−i+1)(y) > α/i} = Rk−i × (Ck

i 
−i+1(y))

∗ × Ri−1 ∀i. 

Where (Ci (y))∗ = {θ(k−i+1)|Pk−i+1(y|θ(k−i+1)) > α/i}.k−i+1 

(Ci (y))∗ essentially denotes the confdence set corresponding to the (k − i + 1)th 
k−i+1 

ordered hypothesis. 

The following statement is true from lemma 3.1 in Chen (2016)). 

P(y : θ ∈ Ck−i+1 
(i) (y)) ≥ 1 − α i = 1, 2, ..., k. 

= Ck−1Now, Dk = Ck (y), Dk−1 (y), ..., D1 = C1 (y)(k) (2) (k) 

In other words, 

Di = C( 
i
k−i+1) for i = 1, 2, ..., k (.0.41) 

Thus, 

= Ck−i+1Dk (i) with i=1, 

= Ck−i+1Dk−1 (i) with i=2, 
...

and 

= Ck−i+1D1 with i=k. (i) 

Therefore using lemma 3.1 in Chen (2016)), we get 

P(θ ∈ Di) ≥ 1 − α ∀i (.0.42) 

S 
Also, Dk+1(y) = i Ci

k(y). 
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Therefore, Dk+1 ⊇ Ck (y) and from lemma 3.1 in Chen (2016)),, we know that(1) 

P(θ ∈ Ck (y)) ≥ 1 − α.(1) 

Thus, P(θ ∈ Dk+1(y)) ≥ P(θ ∈ Ck (y)) ≥ 1 − α.(1) Sk+1To show that P(θ ∈ i=1 ∆iDi(y)) ≥ 1 − α. 

Where ∆i and Di are defned as above for i = 1, 2, ..., k + 1. 

From equation .0.41, we have the following. 

P(θ(i0) ∈ Ci0 ) = P(Pb 
(k−i0+1) ≥ α/i0) = 1 − α/i0 as Pb ∼ Uniform(0, 1).(k−i0+1) 

Now, we have an index m s.t. 

αi) Pb(m) ≥ and
k−m+1

ii) for any index m < i ≤ k,b αP(i) < 
k−i+1

∩ Ck−m+1To show P(θ ∈ Θc ∩ Θc ∩ ... ∩ Θc 
(m) ) ≥ 1 − α we need to prove that(k+1) (k) (m+1)Sk+1 ∩ Ck−m+1∆iDi ⊆ θ ∈ Θc ∩ Θc ∩ ... ∩ Θc .i=1 (k+1) (k) (m+1) (m) 

Now, 
k+1 � � � �[ [ [ 
∆iDi = ∆iDi ∪ ∆iDi (.0.43) 

i=1 i≤k−m i>k−m

Observe that i ≤ k − m implies that k − i + 1 > m. Now from the 2nd criterion mentioned in the b αstatement of the theorem we get ∀is.t.k ≥ i ≥ m, P(i) < .
k−i+1 

αThus by putting (k − i + 1) in place of i we get Pb 
(k−i+1) < 

i as 

α = α = α/i. Now, from lemma 3.2 in Chen (2016)),, we know that if 
k−(k−i+1)+1 k−k+i−1+i

Pb 
(k−i+1) < α/i then C( 

i
k−i+1)(y) ⊆ Θc 

(k−i+1).

Therefore, ∀i ≤ k − m (in other words ∀i s.t. (k − i + 1) > m) we have 

∆iDi = Θ
c 
(k)...Θ

c 
(k−i+2)Θ(k−i+1)C( 

i
k−i+1)(y) ⊆ Θc 

(k)...Θ
c 
(k−i+2)Θ(k−i+1)Θ

c 
(k−i+1) = ϕ 

as Ci (y) ⊆ Θ( 
c
k−i+1). Therefore, ∆iDi = ϕ ∀i ≤ k − m as(k−i+1) 

Θ(k−i+1) ∩ Θc 
(k−i+1) = ϕ∀i. Thus, [ 

∆iDi = ϕ (.0.44) 
i≤k−m
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Now, substituting .0.44 in .0.43 we get 

k+1 k+1[ [ 
∆iDi =

i=1 i>k−m
k+1[ 

= ∆iDi 
i=k−m+1

=[∆k−m+1Dk−m+1] ∪ ... ∪ [∆k+1Dk+1]

Θ(m)C
k−m+1=[Θc 

(k)...Θ
c (y)] ∪ ... ∪ [Θc 

(k)...Θ
c Θc 

(m−1)...Θ
c Θc (∪iC

k (y))](m+1) (m) (m) (2) (1) (i) 

=Θc 
(k)Θ( 

c
k−1)...Θ

c 
(m+1)[Θ(m)C

k−m+1(y) ∪ (Θc 
(m)Θ(m−1)C

k−m+2(y)∪(m) (m−1) 

(Θc 
(m)Θ( 

c
m−1)Θ(m−2)C

k−m+3(y) ∪ ... ∪ (Θ( 
c
m)Θ

c 
(m−1)...Θ

c 
(i)(y)))](m−2) (1)(∪iC
k 

by using the defnition of ∆i and Di for i = 1, 2, ..., k + 1. Thus, 

k+1[ 
∆iDi ⊆ Θ( 

c
k)Θ( 

c
k−1)...Θ( 

c
m+1)[Θ(m)C( 

k
m 
− 
) 
m+1(y) ∪ Θ( 

c
m)] (.0.45) 

i=1

αAs Pb 
(m) > (criterion i) in the theorem statement), therefore by lemma 3.2 in Chen (2016)), 

k−m+1

we have Ck−m+1 ⊇ Θc as Ct(y) is directed towards Θc for i, t = 1, 2, ..., k.(m) (m) i i 

Therefore, 

Θ(m)C
k−m+1(y) ∪ Θc 
(m) (m)

) ∩ [Ck−m+1=(Θ(m) ∪ Θc (y) ∪ Θc ](m) (m) (m) 

=Θ ∩ Ck−m+1 ⊆ Ck−m+1 ∪ Ck−m+1(y) = Ck−m+1(y) [As Θc (y), Θc (y)](m) (m) (m) (m) (m) (m) 

=Ck−m+1(y)(m) Sk+1 Ck−m+1Thus, .0.45 becomes ∆iDi ⊆ Θc Θc 
(k−1)...Θ

c (y).i=1 (k) (m+1) (m) 

Ck−m+1 Sk+1Therefore, P(Θc Θ( 
c
k−1)...Θ

c
(m) (y)) ≥ P( ∆iDi). Now, we just need to (k) (m+1) i=1Sk+1show that P( i=1 ∆iDi) ≥ 1 − α. Sk+1Let θ ∈ i=1 ∆iDi be arbitrary. 

Then, θ ∈ ∆iDi for some i by construction as ∆i 
′ s form a partition on Θ = Rk . 

Therefore, P(θ ∈ ∆i) = 1. 



93 

From .0.42 we have P(θ ∈ Dj ) ≥ 1 − α ∀j. 

Therefore, it is suffcient to show that P(θ ∈ ∆iDi) ≥ 1 − α. 

Now, 

P(θ ∈ ∆iDi) 

=1 − P(θ ∈ ∆c
i ∪ θ ∈ Di

c) by using De-Morgan’s Law 

≥ 1 − P(θ ∈ ∆i) − P(θ ∈ Di
c) [As P(θ ∈ ∆c

i ∪ θ ∈ Di
c) ≤ P(θ ∈ ∆i) + P(θ ∈ Di

c)] 

≥ 1 − 0 − α [As P(θ ∈ Di) ≥ 1 − α] 

=1 − α 
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