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CHAPTER I

INTRODUCTION

1.1 Definition of.Laplace Transform,

If a suitable function x(t) is multiplied by ¢~ Pt
and the prcduct is integrated with respect to ¢ from zero
to infinity, there results a new function of the parameter
p, which is called the Laplace transform of x(t) and is
denoted by symbols such as X(p), or L{k(t{}. The opposite
procedure, that of obtaining the function x(t) from the
transform X(p), is called the inverse transform, and is
denoted by the symbol L"1[R(p)].

1.2 Conditions for Existence of Laplace Transform,

The Laplace transform of x(t) exists if x(t) is
sectionally continuous in every finite interval in the
range t 20, and if the function is of exponential order as
t >~, These are sufficient conditions,

A function x(t) is sectionally continuous in a finite
interval a <t £b, if it is possible to subdivide that inter-
val into a finite number of subintervals in each of which
x(t) is continuous and has finite limits as t approaches
either end point of the subinterval from the interior. Any
discontinuities of such a function in the interwval (a,b) are
of the type known as ordinary points of discontinuity, where
the value of the function makes a finite jump.

A function x(t) is of exponential order as t —>
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provided constants M and «< exist such that gt [x(t)h:M for
all t gregter than some fixed value of t,
1,3 Some Fundamental Results.
1.31 Transform of nth Order Derivative,
Since the transforms of derivatives play an important
part in the application of the Laplace transform to the
solution of differential equations, it is necessary to ob-

tain a formula for the transform of the nth order derivative,

Using customary notation, A
dx ~(“Lpt dx
Integration by parts gives
o0 n -
fe"Pt % at [e'pt x] +pfwe"pt x dt o =x(0) + pE(p),
where x( 0) represents the value of x(t) when t o 0o Also
[ept &5 d [e"P*' ax +p f P g
= -x! (O)+pf d.'b dtﬂ
where x'{0) represents the value of == i & ynen ¢ g 0, But
.J e"Pt & dx dt has already been found above., Therefore

j oPt 4 X d % at o -x1(0)=px(0)+p%2(p) o
in a similar marmer of applying successive integra-

-tion by parts, the nth order derivative will follow, That isj

dnx ~pt dnx
Lyoeh o [joPt 4 ot

= p(p) ~pP=tx(0)~p™ 2t (0)me oo px(n-z)(o) x(n-l)(g)
1.32 The Shifting Theorem,
A fundamental result useful in extending the table of

14, 5. Carslaw and J. C. Jaeger, Qpexationsl Hethods |
in Applied Mathematics (second edition; London: Oxford Universw

aApplilea
ity Press, 19435, PP. 1=2,



transforms is called the shifting theorem, This theorem
states that if X(p) is the transform of x(t), and a is any
constant, then ¥(p+a) is the transform of o 8t :et('t;).,2

-2t

Thus, to find the transform of te ", first observe

that l@ is the transform of t, Therefore
d L{te'zt} s 1 o
- = (p+2)
1,33 The Cornvolution Theorem,

If it is recognized that a given transform consists
of the product of the transforms of two known functions, use
can be made of the convolution theorem to find the inverse
transform of the product., That is;

-l{z x( fx £ +) 4r

L { (D) xlp)} ), x(t=t) xfr) ar =[ox,(1~) z(t=t) av,
where the inverse transforms of X[p) and igp) are x{t) and
ﬁét) respectively.s

As an example of the use of this theorem, the inverse

transform of —2—"]"—*"" is

?° (p=a) | |
- 1 [ ar 1 at
L ° te? € = 2y (677=1l=pt
(o) = [ (00 @7 a2 & (o Paea,
since t and ea't are the inverse transforms of ;12 and ;?—_‘-;

respectively,
1,3¢ Differentiation Under the Integral Sign.
Another method of extending the table of transforms is

by differentiation under the integral sign with respect to a

BCarslaw and Jaeger, Operational Methods in Applied
Mathematics, P, 6.

“Ruel Vv, Churchill, Modern Operational HMathematies in
Eng izggarigg (New Yorks McGraw-Hill Book Company, iInc,, 1944),
PP. -Te




suitable parameter., This procedure is valid provided that
the resulting integral is uniformly convergent,4 Thus, if
the result .
[ -2

e Y% gin at dt :
o a 8 e 0
is given, the transform of t cos at can be found by differ-

entiating both sides with respect to a. Thgrefore;

© 2
‘g o"Pt ¢ cos at dt o zngﬁ-%*z °

p*ra’)
Again, since
(2] - t d}{ - -
~ L e”? at dt & pX(p)-x(0),

the transform of ¢ - is found by differentisting both

sides with fespect to p. That isg
foe"?‘-’t t %—- dt & =D ‘-"i;éﬁ -£(0) .
This result indicates the method used to transform differente
ial equations with variable coefficients which are polynomials
in the independent variable,
1,35 Integration Under the Integral Sign,

The defining integral of the laplace transform may be
integrated under the integral sign with respect to p, providgd
that it is uniformly convergent for some interval of p. Thus,

© : P , ©
{ %(») dpvnf:)(o e"PY x(¢) at dp o fo ?%l e Pt at,

F
With this result, differential equations which contain variae~

ble coefficients of the form t"2 can be transformed by repeated

41van s, Sokolnikoff, Advanced Calculus (New York:
McGraw-Hill Book Company, Inc., 1999)s; DPe 906,



integration under the integral sigms

l.4 General Methods of Application of Iaplace Transform to
the Solution of Linear Differential Equations,
1.41 Partial Fractions Method,

vWhen a given‘differential equation has been transformed
and solved for ¥(p), the problem of completing the solution
by finding the inverse transforms of the various terms arisges
gsince these terms normally become rather complicated,

The most elementary method used and perhaps the most
difficult to apply is that of partial fractioms, If X(p) is
of the form ﬁ%, where g(p) and h(p) are polynomials in p
with h(p) of higher degree than g(p)s; and h(p) is factorable,

write : ’
A B N
(1.411) gp) g R i F 600 iy
* h(p) ~ pea p=b p-n
where p~ap, p=b, ®*°, pen are the factors of h(p) and A, B,
°*o. N are constants to be determined, If any factors of h(p)
are irreducible quadratics, then the numerators of these
terms mist be of the form Ap +B. The solution x(t) will follow
directly by obtaining the inverse transforms of the terms in
(1.411).
1.42 Fourier-Mellin Theorem,
The Fourier-Mellin theorem states that if
oQ -Pt
i"(p)_afo e x{t) dt,

where the real part of p>0,

5Church111, lodern QOperational Mathematigs in
E;;gﬁ.neering; PP. 50w 3,
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(1421)  x(t) o g 1m [ ST EO) Al

In thig line integral, p has becen replaced by,l, where A is

a complex number such that the real part of L e, a constant
greater thap the real part of all the singularities of i(l).6
The line integral in (1.421) may be evaluated by the calculus
of residues, since it can be shown that the line integral may
be replaced by a closed curve of a semicircular nature, and,
furthermore, that the integral taken over the arc portion of
the cloged curve tends to zero as the radius inoreases indefe
initely.v But the integral taken around a closed curve is
equal to the sum of its residues multiplied by 2T1 8 Therefore

(1.422) x(t) =) Residues of T()).
To find the residues of ¥()\), the poles must first be found.

This is done by equating the denominator of x(l) to zero and
solving for;l. Use is then made of one of the applicable
formulae for determining the residue at a pole depending on
the order of the pole. These formulae may be found in the
1iterature.” Then the solution follows in view of (1.422),

6oarslaw and Jaeger, Operational Methods in Applied
Mathematics, Po 71,

71bid., Pp. 75-6.
8Rue1 V. Churchill, Introduction to Complex Variables
and Applications (New Yorks WcGraw-Hill Book Company, inc.
1948 » Po 118,
Ibid., pp. 122-4,



1,43 Heaviside's Partial Fractions Expansion,

A less tedious method of finding the inverse transform
vhen X(p) = g%a%’ is called Heaviside's Partial Fractions
Expansion, As before g(p) and h(p) are polynomials in p and
the degree of h(p) 1s at least one higher than that of g(p).
A further condition for the validity of this expansion is
that all the factors of h{p) must be linear and non-repeating.

This expansion may be written as a formula as follows;

-1 g%&% 8 am. eant°
n=1 ht (8n)

The ay are the poles of X(p) including imaginary poles. An

oxample may serve to clarify its use, Let
p2+3

o
5(p~3) (p2) |
For the pole at zero, g(0) n 3, and since h'(p) o 3p==2p=6y
h'{0) = =6, The first term in the solution is therefore =%,
8% and 7/10 =3t
other terms corresponding to the poles at 3 and =2 respect-
ively. Therefore, x(t) = =}+4/5 e°t+7/10 ¢~ =%,

A refinement of the formula is needed when h(p)

x(p) o

In a similar manner 4/5 e are found as the

contains repeated factors., For the case when h(p) contains a

linear factor to the power s, write

2lo) o EB) = 8B .
%(p) = 5} = ea)® b (3) (10--"LB

The inverse transform corresponding to the factor (p-a)® is

10

lochurchill, Modern Operational Mathematics in
ineering, pp. 48=Y,
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1.5 Advantageé and Digadvaniages of Laplace Transform Method,
The particular advantage of the Laplace transform

method in dealing with linear differential equations with
constant coefficients is that the given differential equation

tranaforms inte an algebraic equation whlch.may be much

easier to solve,

Vhen the differential equation to be solved involves
coefficients containing the independent variable,!the advante
age of the'iapléce transform method is much more restricted,
In geneial, if the degree of the independent variable is
lower than the order of theAderivative in aﬁy terp, then the
'order of the corresponding.térm in the transformed equation

will be lowered by their difference.



CHAPTER II
SECOND ORDER EQUATION WITH CONSTANT COEFFICIENTS,

Let it be required to find the genersl solution of

an equation of the type

dzx ax
R A +B == +Cx = 0
(241) ;;2 e ’

where Ay, By, and C are real constants, x(0) z a, and x'(0) = b,
With the aid of a table of transforms, transform each

term of equation (2.,1), obtaining

- 11
Ap%%(p)=-Aap-ab + BpE(p)=Ba+ CE(p) = O,
This is an algebraic equation in X(p) for which the solution

is
- ‘ +
Ap~+ Bp +C
Since this ig of the form §£25’ and the degree of h(p) is one

h(p)
greater than that of g(p), it satisfies the conditions for

Heaviside's partial fractions expansion, Therefore
m

x(t) = %;; hv(:n) e,

where the a, are the simple poles of X(p), including imagine

ary poles, The poles of X(p) are

-B+VB2-4AC «BayVBR=4AC

n - :
oA ada.g_ A P

which will be simple provided the discriminant does not

818

vanish, Then

llCarslaw and Jaeger, Operational Methods in Applied
Mathematics, p. 4; pp. 2B7=8, PP, Bo3=6,



‘/;:;r) 10

t

(e
DAD + Ba + a/Bo=4AC

Y v = v
Jrjg———- —B- -4AC )
2A‘b+Ba-a B «4AC e

=4AC

-4

Thus x(t) may take any one of three different forms

depending upon the value of the discriminant,
If BR=4AC> 0 and 1s not a perfect square, (2.2)

becomes
x(t) = kelE FEIY ol -k )t

where %k, k,p k, o and k, are real constants, of which k, k,

and k, will contain radicals.
if 32-4A070 and is a perfect sguare, (2.2) is
C x(t) = ke bek, ket
where k, K,y k,, and k, are real constants.
If B2-4AC <0, (2.2) becomes
(2.3) x(t) = xell* )t o (ki =k;)t
wvhere X, is a real constant and k, k,, and kX, are complex

constants, Using the Euler relationships _
i<t -ict it -idt
ging t o Lo =8 and cosd t p St o
21 2
(2.3) can be expressed as

x(t) = ke’ ¥ ain k,t + ke

kot cos k,t,

where k, k,y k,, and k, are real constants,

When X(p) has a pole of order two, that is,

B2-4AC = 0,

(2.4) =x(t) = E(Pupaah tea”‘t+[a% s(r?]psam e2n?



where a, s« &, = 8, » = ‘2% s 50 that (2.,4) becomestS

x(t) =[A‘.b+ %] te %%)t-f-.&aeé%)t R

This can be expressed as

x(t) z &% [re+ k],

123‘. Ce Jaegér, An Introduction to the Laplace
Transformation (London: Methuen and Co, Ltd., igq,g;, Pe 12,
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CHAPTER 11X
CERTAIN FIRST ORDER EQUATIONS

Some special types of linear differential equations
of the first'order will be dlscussed,
3.1 Variables Separable,
The general form for this type equation is
(3.11) & s 2(x) alt),
where x(0) = a.

In order to obtain the Laplace transformation of the
right hand side of (3.11), f(x) must equal x or some constant,
For, from the definition of the Laplace trangform,.i(p) is
the transform of x{t), a function of ¢t that represents the
unknown solution of (3.11), If the explicit relationship
between x and t is known, then the solution of (3.,11) is
known and further investigation is unnecessary.

If £(x) is a constant, it may be taken as unity and
then

ax

‘a"“" = g(t)t

Applying the laplace transform to each side gives

»E(p)=a = G(p),
where G(p) is the transform of g(t), (assumed to exist),

Solving for ®(p) gives

X(p) = §—(£%-té .
The solution can be found by the method of (1.43),

Vhen £(x) = %, £(t) must be a function of t such that
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the transform of x g{t) exists. In order to obtain varipus
forms of g(t) that satisfy this condition, different devices
are used and it is necessary to demonstrate their wvalidity,

As stated in (1,34), differentiation under the integral
sign with respect to a suitable parameter is valid when the
resulting integral is‘uniformly convergent, Thus, the transg-

forms of xt, xtz, ese  xt! can be obtained from the definition

of the Laplace transform,

Similarly, if the defining integral of the Laplace
transform is uniformly convergent, it may be integrated under

the integral sign to obtain the transform of %‘ Repeating the

process a sufficient number of times will give the transforms

of i%, ﬁ%, see, i%. Thus, g(t) will be taken as a polynomial

in t or in t~1,

Yow, if g(t) = t,

31, ax o .
(3.12) Z = xt

Applying the Laplace transform to each side gives

pR(p)~a o - Q%%El °

This is a ligear differential equation of the first order
P
which has e* ag an integrating factor. Hence, it is less

easily solved than {3.,12),
If g(t) = t°, the transfgrmed equation 1is
p%(p)-n = SfRRL ,
a second order linear equation with variable coefficients,
In general, if g(t) = t%

(3.13) ax a2 xths
dt
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and the transformed equation is

pX(p)-a = (-1)" dq:(p)

Thus, the order of the transformed equation will be equal to
the degree of the'iﬁdependent variable in (3.,13). The same
result can be extended to the case when g(t) is any general
polynomial in t,
When g(t) = % 0
(3.14)

&l
o

- Transforming (3,14) gives
pX(p)-a = fpp‘i(p) dap,
vhich is an integral equation that is less easily solved
than (3.14).
If g(t) = %2 s the tZ?Dszfmed equation is
pR(p)-s = [ apf E(p) ap,
an integral equation which is more complex than the original
differential equation,

For the general case when g(t) = -3

tl » the transformed

equation becomes o

0
px(p)=a :Vﬁadpfp dp °*° ‘gi(p) dp, (n times),
which is of little use in solving the given differential
equation,
Therefore the Laplace transform method is applicable
to only the simplest case of the variables separable type
of linear differential equation,

342 Linear Differential Equations of the Firsat Order,
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The general form Tor this type equation can be written

(3.21) %"gw(t) x = g(t),

where x(0) = a.

wWhen £(t) = ¢, a constant,

dx
at +0X = g(t)o
Transforming this equation yields
px(p)=-a + cX(p) = G(D),
where G{p) is the transform of g(t). Solving for X(p) gives

() = ERlta .,

P+
The solution follows from one of the methods of (1.4).
From the discussion of the previous section, if f£(t)
is any function of % other than a polynomial in powers of
t or t'l, the Laplace transform of xf(t) is either very
difficult or impossible to find,
When f(t) & t, the transformed equation is

pE(p)ea- EE o g(p),

dp
that is,
%2). -px(p) = -a=G(p),

which is the same iype as the original equation,

If £(t) = tz, the transform of (3.21) is

o
'pf(p)-wgﬁém o &(p),
-
ax = -
-§é§l+m(p) = G(p)+ a.

This is of higher order than (3,21) and has variable

or

coefficlents,
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When f£{t) is a polynomial in t, the order of the
transformed equation is equal to the degree of f£(t). Thua'
the Laplace transform method is useful only when f(t) = ¢,

some constant,
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CHAPTER IV
SECOND ORDER EQUATION WITH VARIABLE COEFFICIENTS

The Laplace transform method will be applied to the
second order lineay differential equation of the form
(4.1) £ %m(t-a)” & io(tn)  x20p
where 0 Zmyn,r<2; A, Cy%, and¥ are fixed constants;

x(0) = a, and x*(0) = b,
4,2 Consider the Case Yhenm = 2,

The transformed equation becomes

p° d?ﬁ Rl +4p ...Lel +2%(p} + A ) [m(p] .-A«n(- --) [pﬁ(g)
! n-}. 4 *_5)!1-2 N(Pﬂﬂ‘( 1)n +1 pad” + ¢(~1)T ______(g)_

i .' - - ! P’ .

The transformed equation is of the same order as the original
equation, The coefficient of the second order term iz a polye
nomial ih p of degree two, Thus {4.1) has not been simplified
by taking its Laplace transform,

4,3 Consider the Case Whenm & .1,

Vhen 04 n <2, the transformed equation beeames

(4,31) =p2 ._.__(P.)_ ~20%(p)+ a2t Al= -— [ﬁ(:p] Adn ) [FK(P]
a(e-)ad® [ g - 1)1 )T &

+ . ( dp) [px(p)] + (=1) Aad'+C{=1) «-&l;?l

~Crv(=1) 7=t %%+Q§Lr§}.)!f (-1)7°% %ﬁ%@l s O,

This equation will be of the second order if n » 2, The coef«
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ficient éf thé second order term will be a poiynomial in p.
Thus, the Laplace transform method would not be useful under
these conditions,

When n = 1 and r = 2, (4,31) becomes

¢ %ﬂ « (p®+ Ap=20r) %‘,ﬂ - (2p+ adp+ A=CY") X(p)

+a(A«tl) = 0,
The coefficient of the second order term is now a constant
Cy 30 that the transformation has produced a useful result,
If A= =2, and A = C¥", the coefficient of the X(p) term
will be zero, A sgbstitution may then be uged to reduce this
second order equation to one of the first order,

: Wheans1and raoly, (4.,31) 18 _
(4,32) g&X(p) (Ad +2p+ A+ CY aéAd'-I-l) '
‘ dp pe+ Ap+C (p) pHAD+C | = o
This is a linear differential equation of the first order.

If AK gz «1, the constant term will vanish and (4.32) can be

solved since the variables are separable, Ifd g ¥ = 0, the
numerator of the coefficient of X(p) will be an exact differ-

ential of the denominator, An integrating factor could then
be used to solve (4,32).

For the case when n g 1 and r o 0, (4,31) becomes
(4.33) dj..(.nh(&ﬂ.%@&i.&ﬁ 2(p) -/ eyt ] . g
which is a linear differential equation of the first order,

Again, if A e 1, the constant term will vanish and the

variablee will be separable,
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When n = 0, transforming (4.1) gives

(4.34) .p? -—-‘m- -2p%(p) + &+ APE(p)~as + C(-1)¥ .._.gﬁld;;
~orv(-1) d—;g%@* -——1——)—-" e ()2 T Ep) or-z- = O

Equation (4.34) will be of the second order when T s 2
(4.35) C deg + (-p+ 200 ELB 4 (ap-zp+ c¥’) El)

+a(l=A) = 0,
The coefficient of the seéond order term here is C as compared
to t in (4.,1). Thus, the transformation has reduced (4.1) %o a
simpler form, If A = 2, and ¥ =z 0, the ®(p) term will vanish
and 5 substitution is possible to reduce (4,35) to a linear
differentlal equation of the first order,
If r = 1, (4.34) becomes

ax () - .
(4.36) .Eipﬁl+<_2.%ﬁ.t5§r) X(p)+ a (p A c) = O

This is a linear differential equation of the first order,
When A = 1, the constant term vanishes and (4,.36) can be
solved since the variables are separable.13 Also, if A = 2
and ¥ = 0, the ¥(p) term vanishes and the variables are
again separable,

When r = 0, equation (4,34) becomes
di. as C | ul - 0
(4.,37) -aéﬁ)--} (@.ﬁ%‘_.) ¥(p)+ 9.(%—2) = Oy

which is a linear differential equation of the first order,

13Chnrch111, Modern Operational Mathematics in
Engineering, pp. 32-3,
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If A = 1, the constant term vanishes, and (4.37) may be solved
since the variables are aeparablé,
4.4 Consider the Case Whenm » O, v
When 0< n £2, the tranasformed equation is

(4,41)  D™R(p)=pa=d +A6-- -;%)n [pz‘(Pz]-A«n(- a%)n.l[m(p)]
+alzllAd Al («- %)n*g[ﬁ(p_)%(—l)‘ml aa 4 c(-1)% %ﬁ
~cry(-1)%% ﬂ—;ﬁf_‘:@- + _C_!_’_{_?_?_LIE (=1)¥=2 C}?‘_?%E%l 2 Oo

This 'équa,tion will be of the second order if n or r egquals
2orifngsra 2 Whenn g 2, the coeffieieni; of the gecond
order term wili be & polynomial in p, Thus, thé transformation
~is not usefuj. in simplifying the original equation,

If n 2 1, (4,41) will be of the second order when
r = 2, The coefficient of the second ofder term in both the
original equation and (4.41) will be a constant, Thus, the
Laplace transform method has not simplified (4,1). If r = 1,
(4.43.) becomes

2 .
a%(p) , (=p"+ aap+Ov+A) = ( -A¢a+’b) -
(442) S5+ AP+ 0 Zo)+ (BEp%8) = O
which is a linear differential equation of the first order,
The variables will be separable in (4.,42) if a = b g 0, When
axi{p) - 24 P+ A= . 4 Y \ .
.éa}.:,(ﬁ + 422 g_.q) %(p)+ (m_.g.m) 2 0o

This first order differential equation will have the variables
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separable when a = b o 0.14

When n = 0, transforming (4.1) glves

(4.43) pz‘g(‘p)-pa-b + ApE(p)=Aa +C(“1)r ir%%)‘

-crv(-1) 71 _-Ti{ldr;;?_ +Sx(r=1)y 3‘;1 x? (-1)%=2 _—--(gldr"?%_ = Oo

dp
This will be a second order differential equation when

r = 2, The coefficients of the second order terms will be
constants in both (4.1) and (4,43). Therefore, the transfore
mation has not simplified the original equation, If r = 1y
(4,43) becomes

(¢.44) %P-h (-E—-&E-—-G-" 2"0 * ") z-(p)+(2..--——-2' artlhra ) = o,

which is a linear differential equation of the first order,
When a = b « O, the variables will be separable in (4.44),
Setting r = 0 reduces (4,1) to a linear differential equation
of the second order with constant coefficients,

It should be emphasized that completing the sclution
for ¥(p) in any of the above transformed differential equations
does not constitute the final solution, After solving for %(p)o
1t is necessary to find the inverse transforms of both sides
of the equation involving X(p). This process is often accom=

plished by the use of infinite series,

14churenill, Modern Operational Mathematics in
Engineering, pp 31=2,



CHAPTER V

| TAWLAR sm@m FOR t% g%}-m(t-«)n %+G-(t-r)r x=0

Result of Result of

Applying - . Applying
'Laplace ‘ : - Laplace

n n Transform n n r Transfoxm
) o " 1. 8 11 1 a
0 0 2 ¢ i 1 2 b
0 1 0 - - L 2 1 ¢
0 -2 "0 a - S 2 2 c.
0 1 1 a 2 0 0 c
' - ¥ 2 o 1 €
g % 1 4 2 0 2 ¢
0 2 - S d - i 0 e
1 0 0. a 2 2 0 ¢
1 o - 1 a 2 1 1 e
o 2 b 2 1 2 ¢
% g N '‘a 2 2 1 ¢
) A 2 0 - 8 2 2 2 ¢

amReduction to first order equation
b=Reduces m by one

c=No simplification in either order orm
deIncreases m by one

22



A3

CHAPTER VI
TWO EXAMPLES

Consider the second order equation (4.1) withm = 1,

nely,andre=0: t -3%‘2+A(t*¢) %%H)x s 0, The transform

of this equation is ,
ax(p) , [adp + +A-C) Z;‘A(-f 1)] =
: 2(n)e L] = o,
ap P+ AP (e} P<+ AP

When A = «1, the last term is zero so that this becomes
ax(; -( -
..énh(w) 2(p) = 0.

Let Az 1 and C 2 2 to obtain

S, (g1 = o,

{(p~+ p)

Then

aZ(p) . . (p=1 dp‘
@ = (p*+p)

Integrating this gives

log %(p) = ~ ¥ log(p®+p) +3/2 log(g%f)n

and therefore

Taking the inverse transforms of both sides by the method of
{1.,43) gives the solution
z(t) = =¥ (2-¢),

For the case vhenm =z nazr = 1, (4.1) is

t %gxg‘l-a-(t-o() %-&-c(t-b’) X = 0, Transforming this gives
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LE). n (u""gp“‘A‘l‘ CT) g(p) &ggc{‘f"ll

PP +ap+C pe+Ap+C
Let A= C gz 2 and Ad = Cr = =1, and the transformed equation

becomes
ﬁ‘;‘é’) Z(p) = 0y
since the constant term vanishes, Separating variables and
integrating gives
= log %(p) = % log(v®+ 2p+2) + log
where 1ng42.is the constant of integration, Iherefcre

Z(p) = k(p3+2p+ 2)‘*

This can be expresseﬁ as

QL,L&T)'*
Making use of the binomial expansion,
X(P) ']'" - + 1 39 + coo)
Taking inverse transforms of both sides gives the solution

'\ . L X 2 I 3 °L
4 ————— LA X ]
x(t) - é K & 12 576 ¢
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