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ABSTRACT

The competition graph of a digraph was first defined in 1968 by 

Cohen in the study of ecosystems. The competition graph essentially 

relates any two species which have a common prey.

In this work, a competition-common enemy graph of a digraph is 

defined and studied. As the term suggests, it relates any two species 

which have a common prey and a common enemy. Results analogous to 

those found for competition graphs are obtained.

Since strict double bound graphs are competition-common enemy 

graphs of transitive, acyclic digraphs, these graphs, as well as 

double bound graphs in general, are investigated. Some 

characterizations of double bound graphs analogous to those of upper 

bound graphs found by Myers in 1982 are proved.

Characterizing digraphs whose competition graph is interval is a 

problem that has been studied by Lundgren and Maybee, and Roberts and 

Steif, among others. This problem is addressed in a special sense: 

partially ordered sets whose upper bound graph is interval.
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PREFACE

It will be helpful to summarize in this short section the basic 

definitions and notation which will be used throughout this work. All

sets considered are finite.

A graph G = (V,E) is a nonempty set V and a set E of two element

subsets of V. V is called the vertex set of G and elements of V are

referred to as vertices. E is called the edge set of G and elements 

of E are called edges. For two vertices x and y, if {x,y}e E, then 

{x,y} will be denoted hereafter as xy or yx. Moreover, if xye E, then 

x and y are said to be adjacent. The set of all vertices adjacent to 

x is denoted Adj(x). The reader should be aware that at times V(G) 

and E(G) will be used to refer to the vertex set and edge set of G, 

respectively.

An induced subgraph of a graph G = (V,E) is a graph 

H = (V(H),E(H)) where V(H) is a nonempty subset of V and xye E(H) if 

and only if x,ye V(H) and xy e E. Henceforth, the mention of subgraph 

will be taken to be an induced subgraph. A complete subgraph of a 

graph G = (V,E) is a subgraph CSV such that xy e e for all x,y e C with 

x / y.

A clique of a graph G = (V,E) is a maximal complete subgraph of G 

with respect to set inclusion. An independent set of a graph G is a 

subgraph IcV such that xy/ E for all x,y« I.

A family = {Cj,C2,...,Cn} of subgraphs of a graph G = (V,E) is 

said to edge cover G if for each xy e E, there exists C^e £ such that
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x,ye VÍC^). If ¡ó is a family of cliques that edge cover G then fe is 

called an edge clique cover of G. If is an edge clique cover of G 

and there is no other edge clique cover of G with smaller cardinality, 

then 1^1 is the size of the smallest edge clique cover and this 

number is denoted 0e(G).

A path of a graph G is a finite sequence Vg,Vp...,vn of vertices 

of G such that vivi+i € E for each i = 0,l,...,n-l. The graph G is 

said to be connected if there exists a path v = vo»vl’“»vn = u 

between any two vertices, u and v, of G.

The complement of a graph G = (V,E) is the graph G =(V,E), where

xy eE if and only if x,y £ V and xy/ E. Kn will denote a graph

G = (V,E) where IV[ = n and xye E for all x ye V. A simple cycle is

a sequence of distinct vertices Vj ,V2 »•••>vn,v j with v^jV^e E for

i = 2,3,...,n and VjVne E. A chordless cycle is a simple cycle

vl’v2’”’’vn’vl such that v¿Vj^ E for i and j differing by more than 1

mod n. C will denote the chordless cycle on n vertices, n

A partial order will be defined as an irreflexive, transitive 

binary relation on a nonempty set P and a partially ordered set 

(poset) is a nonempty set together with a partial order defined on it. 

Let (P,<) be a poset. Then two elements x ye P are comparable if 

and only if x < y or y < x. Otherwise, x and y are not comparable and 

this is denoted x| |y. QsP is a chain if and only if any two elements 

of Q are comparable. Q is an antichain if and only if no two elements 

are comparable. The length of a poset (P,<) is the maximum 

cardinality of a chain in P. The height of a poset (P,<) is the 

length minus one. An element x e P is maximal (minimal) if and only if
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there does not exist a ye P with x < y (y < x). The converse of a 

poset (P,<) is the poset (P,< ) where x < y in (P,< ) if and only if 

y < x in (P,<). If (P,<) is a poset and a graph G = (P,E) is defined 

from (P,<) by some edge rule determined by the relation < on P, then 

we say P realizes G. A connected poset will be a poset whose Hasse 

diagram is a connected graph.

A digraph D = (V,A) is a nonempty set V and a set A of ordered 

pairs from V. V is called the vertex set of D and elements of V are 

referred to as vertices. A is the edge set (or arc set) of D and 

elements of A are called arcs. For two vertices x and y, if (x,y)e A, 

then henceforth (x,y) will be denoted xy.

Let D = (V,A) be a digraph. Define the graph G = (V,E) where 

xy e E if and only if x 4 y e V and xz, y-? e A for some z £ V. G is 

called the competition graph of D. Competition graphs were introduced 

by Cohen [1] and studied extensively in [2]. For a digraph D = (V,A), 

define the graph G = (V,E) where xy £ E if and only if x 4 ye V and wx, 

wy, xz, yz £ A for some w,z £ V. G is called the competition-common 

enemy (CCE) graph of D. Chapter 1 deals with CCE graphs and results 

analogous to those found for competition graphs are proved.

The reader should refer to [5] or [6] for the definition of any 

other graph theoretic notation or terms found in this paper.
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CHAPTER 1 COMPETITION-COMMON ENEMY GRAPHS

In 1968 Cohen [1] introduced competition graphs associated with 

food web models of ecosystems. In this chapter analogous results for 

competition-common enemy graphs are studied.

Section 1.1 The Double Competition Number

In 197 8 Roberts [14] observed that starting with any graph G, a 

competition graph is obtained by adding sufficiently many isolated 

vertices to G. Following this observation, it was natural for him to 

define k(G), the competition number of G, to be the smallest integer 

k such that G u1^ is a competition graph of an acyclic digraph, where 

1^ is a set of isolated vertices added to G.

Now analogously define dk(G), the double competition number of G, 

to be the smallest integer k such that Gu 1^ is a CCE graph of an 

acyclic digraph, where 1^ is again a set of k isolated vertices added 

to G. Note that dk(G) is well-defined since given any graph G, a CCE 

graph arising from an acyclic digraph can be constructed as follows.

For each edge a = xy in G, add a pair of isolated vertices

{x ,y } to G. Then define the digraph D such thata
V(D) = V(G) u {x ,y : a e E(G)} and with arcs from the endpoints xa a

and y of a to vertex y and from x to endpoints x and y of a . SeeJ a a

figure 1.
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The above construction gives an upper bound for dk(G), namely 

2’|E(G)|. But this can easily be improved. Note that for each 

edge a = xy in G, there must be a common prey and a common enemy in D. 

First find k(G) = k, which adds k isolated vertices to G. If D is the 

digraph with competition graph G u 1^, then endpoints of each edge in 

G have a common prey in D. A common enemy results by adding one more 

isolated vertex to G with arcs in D from it to each original vertex of

G. Hence,

dk(G) < k(G) + 1

For any graph without isolated vertices a lower bound for dk(G) 

is immediate. As Harary, Norman, and Cartwright proved in [7], if D 

is any acyclic digraph and |V(D)| = n, then integers 1, 2,...,n can be 

assigned to the vertices of D such that every arc goes from a lower 

number to a higher one. Thus, v^ has no incoming arcs and vQ has no 

outgoing arcs. The CCE graph G of D clearly has at least two isolated 

vertices, namely Vj and vQ, and thus for graphs without isolated 

vertices dk(G) _> 2.

The above observations lead to the following two propositions.

Proposition 1. For G = KQ, n >_ 2, dk(G) = 2.



6

Proof: Let V(G) = {vj, V2» ••• » vn). Since G has no isolated 

vertices, dk(G) 2. Add the isolated vertices vg, vn+j to G and 

define D such that V(D) = V(G) u {vg,vn + p with 

E(D) = {vQV*£,vi^n+i: >2 ,...,n}. D is illustrated in figure 2.

Clearly D is acyclic with CCE graph G u I2, where I2 = {vg, vn+i^*///

Proposition 2. If G is a graph without isolated vertices and 

IV(G)I < 4, then dk(G) = 2.

Proof : For G = K2» Kg, or K^ the result follows from 

Proposition 1. Otherwise G is one of the graphs (a) - (g) in 

figure 3.

Since G has no isolated vertices, dk(G) >. 2. Add isolated 

vertices Vg and vQ+| to G. The digraphs in (a) - (g) of figure 4 have 

CCE graph G u 12 (I2 = dg, vn+l^’ with G the 8raPh in d) - (g) of 

figure 3 respectively.///
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figure 3
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Notice that dk(C^) = 2 follows from Proposition 2. Roberts [14] 

proved that if G = Cn, n > 3, then k(G) = 2. Thus, is an example 

where dk(G) < k(G) + 1. In general, if G = CQ, n >. 4, then 

dk(G) = k(G). This follows directly from the next theorem. However, 

k(Cg) = 1 while dk(C3) = 2.

Theorem 1. For G = Cn, n >_ 3, dk(G) = 2.

Proof: Let {vp v2, ... , vn} be the vertices of G such that

E(G) = iv£V£+1, v1vQ : i = 1,2,...,n-l}. Since G has no isolated 

vertices, dk(G) >. 2. Add isolated vertices Vq and vn+j to G. Define D 

to be the digraph with V(D) = V (G) u {vg, vn + l^ and 

E(D)={vov*n>V]yn+1} u {vivr£+1:i=0,l,. ..,n} u {vp?i+2:i=0,l,...,n-l}. D 

is shown in figure 5. The reader can check that D is acyclic and has 

CCE graph G u I2, where I2 = {vq, vn+i}*///

figure 5
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Corollary JL For G = PQ, n > 2, dk(G) = 2.

Proof: Let {vj,V2,...,vn} be the vertices of G such that

E(G) = {v£V£+j : i=l ,2,...,n-l}. Since G has no isolated vertices, 

dk(G) >_ 2. Add isolated vertices Vq and vn+j to G. Define D to be 

the digraph with V(D) = V(G) u {v q,v n + j } and

E(D) = {v.p?£+2 : i=0,l,...,n} u iv£V£+2 : i=0,l ,...,n-l}. D is shown 

in figure 6. Clearly D is acyclic and has CCE graph G u I2, where 

T2 = {v0’vn+l}-///

figure 6

It is clear that if G = Cn u n > 3, then dk(G) = i;

if G = Cn u I2, n >_ 3, then dk(G) = 0;

if G = Pn u Tl’ n > 2, then dk(G) = i;

and if G “ Pn u I2> n 2 2, then dk(G) = 0.

The following theorem of Dutton and Brigham [4] will prove

useful.
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Theorem 2. G is a competition graph of an acyclic digraph if and 

only if G has an edge cover by complete subgraphs £ = {c1,c2,...,cn} 

and a labelling of vertices VpV2>...,vn such that 

v^ e Cj implies i < j.

In Theorem 2 complete subgraphs are allowed to be empty or

singleton sets.

Theorem 3, Let G = (V,E), IVI = n. If G is a competition graph, 

then dk(G) < 1.

Proof: Let {Cj,C2,...,Cn} be the edge cover and Vj,V2>«..,vn be 

the vertices such that v^ e Cj implies i < j as given by Theorem 2. 

Note that G has at least one isolated vertex, namely vn> Add an 

isolated vertex Vq to G and define D as V(D) = V u {vq} and 

E(D)={v£Vj : e C j , j=l,...,n}u {vgv^rv^ e V}. Clearly Dis acyclic 

and elements of any Cj have common prey Vj and common enemy Vq. Thus, 

an edge a in G implies a common enemy and common prey in D for 

endpoints of a .

Now suppose V£Vb, vjV*b, vflv£, vaVj£ E(D), a < i < j < b. By 

definition of arcs in D, v£vbe E(D) implies v^ = Vq or v^ e Cb< If 

V£ =Vq, then vaV£ is not defined, for there does not exist an a such 

that vavg e E(D). It follows that v^ £Cb. Likewise, VjVb implies 

Vj e Cb. Hence, V£VjeE(G). Thus, G u {vg} is the CCE graph of D.///

Example 1 below shows that it may actually be the case that 

dk(G) = 0 if G is a competition graph with more than one isolated

vertex
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Example 1. Consider the graph G = C^ u I2. It follows from 

Roberts [14] that G is a competition graph. Moreover, G is also a CCE 

graph by the remarks following Corollary 1. Hence, dk(G) = 0.

The following corollary is immediate from Theorem 3.

Corollary 2. dk(G) = k(G) + 1 if one of the following holds:

(i) k(G) = 0 and G has exactly one isolated vertex

(ii) k(G) = 1 and G has no isolated vertices.

The following theorem of Roberts [14] is used to obtain an 

example where dk(G) < k(G).

Theorem 4^. If G is connected, I V(G) I > 1, and G has no 

triangles, then k(G) = |E(G) I - I V(G) I + 2.

Note that it follows from Theorem 4 and Corollary 1 that if 

G = Pn, n > 2, dk(G) = k(G) + 1.

Example 2. Let G be the graph in figure 7(a). G satisfies the 

conditions of Theorem 4 and thus k(G) = 6-5+2=3. However, the digraph 

shown in figure 7(b) has CCE graph G u I2, where I2 = {vq, Vg)- Thus, 

dk(G) < k(G).
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figure 7

The following corollaries are immediate from Theorem 3 and 

Corollaries 3 and 4 of Roberts [14].

Corollary 3. Every chordal graph G has dk(G) <_ 2.

Corol lary 4. Every interval graph G has dk(G) <_ 2.

From a corollary of Roberts [14], it follows dk(G) = 2 for a tree

G.

Corollary 5. If G is a tree, then dk(G) = 2.

I have not yet found a graph for which dk(G) > 2. In searching 

for such a graph G, I have looked mainly at connected graphs without 

triangles. For these graphs, the largest complete subgraph is an edge 

and hence, each edge needs a distinct pair associated with it as a
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common enemy and common prey in D. Moreover, for these graphs 

k(G) = |E(G)I - |V(G)I + 2.

The following graphs in (a) - (e) of figure 8 are examples where 

k(G) = 3,4,5,6 and 7, respectively. The digraphs in (a)-(e) of 

figure 9 have CCE graph G u I2, G the graph in (a)-(e) of figure 8, 

respectively.

figure 8
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(a)

(b) Add VqV3 to the digraph in (a).

(d)

(e) Add v3v’g to the digraph in (d).

figure 9
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Section 1.2 Competion Number and Double Competion Number for 
Transitive Acyclic Digraphs

Definition 1. Let kt(G), the transitive competition number, be 

the smallest integer k such that G u 1^ is a competition graph of a 

transitive acyclic digraph, where 1^ is a set of k isolated vertices 

added to G.

Define dkt(G), the transitive doable competition number , to be 

the smallest integer k such that G u is a CCE graph of a transitive 

acyclic digraph, where 1^ is a set of k isolated vertices added to G.

In this section, graphs with kfc(G) = k (k>0) are characterized 

and examples are given of graphs G with dkt(G) > 2. First, recall 

some definitions.

Let X be a nonempty set with a partial order < defined on it. 

Define the following graphs associated with the poset (X,<). The 

upper bound graph (UB-graph) is the graph U = (X,E(U)) where xyeE(U) 

if and only if x 4 y and there exists an m e X such that x,y £ m. We 

say a graph G is a UB-graph if there exists a poset whose upper bound 

graph is isomorphic to G. The strict upper bound graph corresponding 

to the poset (X,<) has vertex set X and an edge between x 4 y in X if 

and only if there exists meX such that x,y < m.

The double bound graph (DB-graph) of a poset (X,<) is the graph 

D = (X,E(D)) where xyeE(D) if and only if x 4 y and there exist 

m,ne X such that n <. x,y _< m. We say that a graph G is a DB-graph if 

there exists a poset whose double bound graph is isomorphic to G. The 

strict double bound graph corresponding to the poset (X,<) has vertex



17

set X and an edge between x £ y in X if and only if there exist m,ne X 

such that n < x,y < m.

As observed by Roberts [15], the strict upper bound graph of a 

poset (X,<) is the competition graph of the transitive, acyclic 

digraph corresponding to the partial order. (x < y in (X,<) 

corresponds to x^ in the digraph.) Similarly, the strict double bound 

graph of a poset (X,<) is the competition-common enemy graph of the 

transitive, acyclic digraph corresponding to the partial order. With 

these observations, the following two facts are evident.

Fact X« A graph G is a strict UB-graph if and only if kt(G) = 0.

Fact 2. A graph G is a strict DB-graph if and only if 

dkt(G) = 0.

Strict UB-graphs have been characterized by McMorris and 

Zaslavsky [11]. The characterization is given below in Theorem 5.

Theorem 5. The graph G = (V,E) is a strict UB-graph if and only 

if there exists a family ]6 = {C| ,C2 ,...,Cm} of cliques that edge 

covers G and V = C, u C, u... UC„ u K„ for some n > m, where K_ has no 

vertices in common with any Cp

Theorem 5 above will be used to determine kt(G) for any graph G. 

Let fe= {C1,C2,...,Cm} be an edge clique cover for a graph G such 

that ©e(G) = m. Then G must have at least m isolated vertices to be 

a strict UB-graph.
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Theorem 6. Let G = (V,E) be a graph, and )£, = {Cp...,Cm} be an 

edge clique cover of G where 0g(G) = m, and let t be the number of 

isolated vertices of G. Then kt(G) = 0 if and only if t > m and 

kfc(G) = k (k > 0) if and only if m-t = k.

Proof: Suppose kt(G) = 0. Fact 1 implies that G is a strict UB- 

graph and it follows from Theorem 5 that t >_ m. If kt(G) = k (k > 0), 

then G u 1^ is a strict UB-graph. It then follows from Theorem 5 that 

t + k >_ m or m - t <_ k. But by definition of kt(G), k is the smallest 

integer such that G u 1^ is a competition graph of a transitive, 

acyclic digraph. Thus, m - t = k.

The converse follows immediately from the fact that 

0e(G) = m.111

In [11], strict DB-graphs were mentioned but not characterized. 

A characterization for strict DB-graphs might lead to a 

characterization of graphs for which dkfc(G) = k, k > 0. However, 

Theorem 7 below shows that any graph G with a sufficient number of 

isolated vertices is a strict DB-graph.

Theorem 7. Let G = (V,E) be a graph. If there exists a family 

= {Cp...,C } of cliques that edge covers G and

V = C, u .... uC u *K„, where n > m + 1 and K has no vertices in common1 m n’ — n

with any Cp then G is a strict DB-graph.

Proof: Assign exactly one vertex a^ e Kn to each clique Cp JS

and define the poset (V,<) as follows.

For each ap define v < a^ for all v e Cp There is at least one 

vertex ae Kn remaining. For each i, set a < v, for all
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v eC^ (i=l ,2,...,m). Clearly, G is the strict DB-graph of (V,<).y y y

Example 3 illustrates that n ^m + 1 is not necessary for G to be 

a strict DB-graph, where n and m are as stated in Theorem 7.

Examp 1 e 3.. Let G be the graph in figure 10(a), with 

£ = {CpC^CpC^ where Cj = {v3,v4>, C2 = {v4,v5}, C3 = {v4,vfi}, and 

C4 = {v4,Vy}. KQ = {v1,v2,v8,v9} and so m = n = 4. But G is the 

strict DB-graph of the poset in figure 10(b).

figure 10

In fact, n may be strictly less than m.

Examp 1 e Let G be the graph in figure 11(a), with

£ = {C2,C2,C3,C4,C3,C6} where Cj = {v3,Vg}, C2 = {v4,Vg},

C3 = {v5»v6}’ C4 = {v6’v7}’ C5 = {v6’v8}’ and C6 = {v6»v9J’ 

Kn = ivi>v2»v10’vll,v12^ and so n = 5 < 6 = m. But G is the strict 

DB-graph of the poset in figure 11(b).
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(a) (b)

figure 11

Let G be a strict DB-graph and fe = {C^,...Cm} be an edge clique 

cover for G such that 0g(G) = m. Let (P,<) be any poset realizing G. 

Throughout the remainder of this section let M be the set of 

nonisolated maximal elements in (P,<) and N be the set of nonisolated

minimal elements. Then it must be the case that |M|*|N| > m.

Theorem .8. If G = (V,E) is a strict DB-graph, then there exists 

a family = {Cj,...,Cm} of cliques that edge covers G and

V = C| U ... U Cm U K , where Kn has no vertices in common with any Cp 

Furthermore,

(i) n - 1 >. 4m, if n is odd 

(ii) n >_ 4m, if n is even.

Proof: Recall that given an integer n, if x and y are integers

whose sum is n and whose product is a maximum, then 

(i) x = (n-l)/2, y = (n+l)/2, if n is odd

and (ii) x = y = n/2, if n is even.

Let G be a strict DB-graph and (V,<) be a poset with strict DB-
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graph isomorphic to G. Let M be the set of nonisolated maximal 

elements of V, and let N be the set of nonisolated miminal elements of 

V. For convenience, let I be the set of isolated vertices of (V,<). 

For each x e M, ye N with y < x, define C(x,y) = {ve V : y < v < x}. 

Then note that some C(x,y)'s may be empty or singleton sets. However, 

the collection of these C(x,y)'s clearly edge cover G. Let £ be the 

collection of those C(x,y) which are maximal complete subgraphs in G. 

Since no element of M or N is contained in any C(x,y), Mu N is a set 

of isolated vertices of G. It follows that Kn = M u N u I. Let 

x = IM |, y = IN |. Then x + y _< n and x» y >_ m.

Case 1. n is odd.

Then (n+l)/2 + (n-l)/2 = n and [ (n-1)/2] • [(n+l)/2] gives 

the maximum product. Since x + y <. n , it follows 

m £ x-y < [(n+1 )/2] • [(n-l)/2] = (n2-l)/4.

Case 2. n is even.

Then n/2 + n/2 = n and (n/2)* (n/2) gives the maximum 

product. Since x + y _< n, m < x*y _< (n/2)*(n/2) <_ nz/4.///

Theorems 7 and 8 give upper and lower bounds, respectively, for 

dkt(G). Let G be a graph and & = {Cj,...,Cm} be a family of cliques 

that edge covers G and such that 9e(G) = m. Then n <_ dkt(G) _< m + 1, 

where n is the smallest integer such that n >. 4m, If G' is the graph 

in example 3 or 4 without the isolated vertices, then 

dkt(Gx) = 4 or 5, respectively. These are cases where the lower bound 

n is achieved. Example 5 below will be used later to give a graph 

where the upper bound is assumed.
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Examp 1 e 5_. Let G be the graph in figure 12 with 

£ = {C1,C2,C3,C4} where = { v3 , v4, v 5 , v6 }, C2 = {vy.vg.vg},

Co = { v c , v ? , v o } , and Cz = { v o , v r , v z , v 7 } . Note that

V = Cj U c2 U c3 u c4 U k4 n = 4, m = 4, ®e(G) = 4, and

n2 = 16 > 16 = 4m. If (P,<) were a poset realizing G, then 

|M|'|N| >. 4. It follows that |M| = |N| = 2. Without loss of 

generality, set M = {vj,v2} and N = Tvio,vll^* For G to be a strict 

DB-graph, to each clique S there must correspond a unique pair 

(m,n)e M x N such that n < v < m for all ve Cp The possible pairs to 

correspond to a £ are {(vj ,v1q),(v1,v11),(v2,v1q),(v2,v11)}. The 

reader can check by exhaustion that in all cases it will happen that 

Vy < vpv2 and v10’vll < v7 and thus, the DB-graph of any poset would 

have v4Vy as an edge which G does not. Hence, G is not a strict DB- 

graph.

V1 V2 V10 V11

figure 12

In each of examples 3, 4 and 5 above, if

G' = G — {v e V : v is an isolated vertex}, then G' would be an example 

of a graph for which dkt(G) > 2. Recall that an example for which
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dk(G) > 2 was not found. The following is yet one more case for which 

dkfc(G) >2. In a sense, it is the "minimal" such example.

Example 6. Let G be the graph in figure 13(a). An edge clique 

cover for G is ¿> = {CpC2} where Cj = {v|,V2) and C2 - {v2jV3}. 

Using Theorem 7, if we add 3 isolated vertices to G, G u I3 is surely 

a strict DB-graph. Theorem 8 implies that if n is the number of 

isolated vertices added to G, then for G to be a strict DB-graph, the 

smallest n could possibly be is 3. It follows that dkt(G) = 3 and a 

transitive, acyclic digraph with CCE graph G u 1^ is shown in 

figure 13(b).

(a)

v.

(b)

figure 13

Example 7 below gives a graph Gx for which dkfc(G) = m + 1, where 

0g(G') = m. Note that the graph in example 6 has dkt(G) = m + 1. 

Hence, both are graphs for which the upper bound on dkt(G) is 

achieved.
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Examp 1 e ]_. Let G' be the graph in example 5 without the isolated 

vertices. Then ®g(G') = 4 and £ = {Cj , V2 ,Cg ,C^}, where CpC2,Cg, 

and Care as in example 5, is an edge clique cover of G". The 

transitive, acyclic digraph in figure 14 has CCE graph G' u 1^, where 

I5 = jv2’v10’v11’v12^* Since the graph in example 5 with 4

isolated vertices is not a strict DB-graph, it follows that 

dkt(G') > 4. Thus, dkt(G") = 5 = m + 1.

figure 14

The reader should be aware that transitivity played a key role in 

obtaining graphs G for which dkt(G) > 2.

Section 13 CCE Graphs of Various Digraphs

In this section, graphs G for which dk(G) = 0 are characterized, 

that is, graphs which arise as competition-common enemy graphs of 

acyclic digraphs. Graphs which are CCE graphs of arbitrary digraphs



25

without loops and digraphs in general (loops allowed) are also

characterized.

The following theorem is analogous to a result by Dutton and 

Brigham [4].

vie Cab’ a<i<b} 

vje Ccd’ c<J<d>

Theorem 9. G = (V,E), |V| = n, is the CCE graph of an acyclic 

digraph if and only if G has an edge cover by complete subgraphs 

jo = {Cjj : where l£i<j_<n} and a labelling of the vertices 

vl’v2’..’,vn such the following hold:

(i) vke Cjj implies i<k<j, 

and (ii) For any i and j, define 

Ti = U b'>i Cib' Uivb

Jj = U c'<j Cc'j U<vc

If H£ n J j I >1, then I£ n Jj = C^.

Proof: Assume G is the CCE graph of an acyclic digraph D. Then

since D is acyclic, the vertices can be labelled vi>v2»*”’vn such

that v^vj£ E(D) implies i < j. Define C|j = {v^ : v^v^jV^vj e E(D)}.

Let & be the collection of nonempty, nonsingleton Cjjj's. Clearly

is an edge cover for G and the C^j are complete subgraphs of G.

Moreover, condition (i) is satisfied because of the choice of the

labelling of vertices in D. It remains to show condition (ii) holds.

Fix i and i and let I.- and J • be sets as defined in the Theorem. J l j

Since C- • £ I- and Cj- £ j.} clearly C-c I- n J-. Now assume J" J J” J J ■** J J
|I- n J. | >1 and let vve I,- n J-. There are 4 cases which are 1 j K 1 J
possible and it follows easily in each case that I^ n Jj £ which 

proves (ii).

Conversely, let G have an edge cover £ = {C^j : where l<i<j<n}
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by complete subgraphs of G and a labelling of the vertices 

vl’v2’,,,,vn such that (i) and (ii) hold. (Observe that G must have 

at least two isolated vertices, namely, Vj and vn by condition (i)). 

Define D as follows: V(D) = V and v^^, v^v'je E(D), for all vp C^j. 

Condition (i) guarantees that D is acyclic. Since endpoints of every 

edge in G are contained in some C^j (the C^'s edge cover G), there is 

a common prey Vj and a common enemy v^ for vertices of an edge.

Now suppose V£?k» v'^v, v^vj, v-^Vj £ E(D). We show v^e E(G). 

Since vivk’vivle it follows Ip Likewise, v^v j,

vp^e E(D) implies ivjpVj} £ Jj. Thus, £ h n Jj =Cij and

this implies v^v^e E(G). Hence, G is the CCE graph of D.///

Note that condition (i) of Theorem 9 ensures that the digraph D 

constructed as in the proof above will be acyclic. Modifying 

condition (i) as in Corollary 6 below gives a characterization for CCE 

graphs of digraphs without loops. This Corollary is analogous to a 

result by Roberts and Steif [16].

Corollary 6. G = (V,E), |V| = n, is the CCE graph of a digraph 

without loops if and only if G has an edge cover 

£= <Cij * j € {l»2,—»n}} by complete subgraphs and a labelling of

the vertices VpV2>...jVn such that the following hold:

<i) VpV./C^,

and (ii) For any i and j, define

Zi “ Ub' Cib' U {vb : vie Cab>

Jj = UC' Cc'j U <vc : vj£ Ccd}

Then Ii n Jj = C^, if Hi n | > i.
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Proof: Assume G is the CCE graph of a digraph D without loops. 

Define for i / j, C^ = {vk : vi^k’vkv>j e E(D)}. If 

= {C^j: ICijl > 1}, then clearly io edge covers G and the C^j e £* 

are complete subgraphs of G. Since D has no loops, v-,Vj / C^j and 

(i) holds. Condition (ii) is checked similar to that in Theorem 9

above.

The converse follows analogously to the proof of Theorem 9.///

Observe that condition (i) does not exclude the possibility of 

C^i being a complete subgraph for consider the digraph D in figure 15. 

D has no loops and has CCE graph G shown in figure 16. Taking 

S = (Cjj}, where Cjj = (v2,v3}, the conditions of the Corollary are 

satisfied.

figure 15 figure 16

Example 8 below shows that different digraphs can be constructed 

(as in the proof of Corollary 6) with the same CCE graph if different 

labels are chosen for the complete subgraphs in the edge cover, so 

long as conditions (i) and (ii) of Corollary 6 are satisfied.

Examp 1 e jJ. Let G be the graph in figure 17. Choose

^^12,^14,^’34,^’25,^52’^56^’ where C j 2 = 3 , 6 1
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C14 = C34 = ^v2’v5^’ C25 =^v3»v4^’ C52 = ^vl’v6^ and C56 = ^vl’v4^- 

The reader can check that the conditions of Corollary 6 are satisfied.

Constructing the digraph as in the proof of the corollary, the digraph 

in figure 18 is obtained.

figure 17

figure 18

Now let io — C g > 3 2 5 3 45 5 2 ’ 5 4 5 where ^26 ~ ^v2’v5^’

C32 = ^vl»v4^’ c34 = ^vl’v6^’ C52 = ^v3’v4^ and C54 = ^v3’v6^* The 

conditions of Corollary 6 are again satisfied but this time the 

digraph in figure 19 is obtained.
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figure 19

A characterization for CCE graphs of arbitrary digraphs, loops 

allowed, follows immediately from Theorem 9 and Corollary 6.

Coro 1 lary T_. G = (V,E), IVI = n, is the CCE graph of an 

arbitrary digraph (loops allowed) if and only if G has an edge cover 

by complete subgraphs, io = {C^j : i,j e {l,...,n}} and a labelling of 

the vertices VpV2>.«.,vn such that for any i,j e {l,2,...,n}, define

= (Ubz Cibz) \J (vb:vie Cab}

Jj = (^c' Cc'j}U {vc:vje Ccd> 

if ll£ n JjI >1, then Ii n Jj = Cpj.///

A reflexive digraph, a digraph with loops on all the vertices, is 

such that its CCE graph includes all edges of the digraph (considered 

undirected in the CCE graph), with possible additional edges. Adding 

one condition to Corollary 7, a characterization of CCE graphs of 

reflexive digraphs follows.
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Corollary 8. G = (V,E), |V| = n, is the CCE graph of a reflexive 

digraph if and only if there exists a set of complete subgraphs 

to = {Cjj : i, j e {1,2.......n} } that edge covers G and a labelling of the

vertices VpV2»...,vn such that the following hold:

(i) For all vp V, v^ (Ub Cib) \J (UaCai),

and (ii) For any i,j e {l,2,...,n} define

Ii = (Up Cip) \J {vb:vi€ Cab}

Jj = (UC' ^'^U {vc:vj6 Ccd>

Then I£ n Jj = C^ if Hi n J j I >1-///

Example 9. The graph G in figure 20 is the CCE graph of each of 

the digraphs (a) and (b) of figure 21. Notice that the digraph in 

figure 21(b) is just an orientation of the edges in G with the 

addition of loops on all the vertices.

figure 20
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(a) (b) 

figure 21 V,

The reader may have noticed that the digraph in figure 21(b) of 

Example 9 is the digraph of figure 21(a) with the addition of an 

orientation on the remaining edges of G. Given a reflexive digraph D 

and its CCE graph G, is it always possible to give an orientation to 

the edges of G such that the edges that appear in both D and G have 

the same orientation? Example 10 shows that the answer to this 

question is no.

Example 10. The digraph in figure 22(a) has for its CCE graph 

the graph in figure 22(b). The reader can check that if the edges in 

G which appear in D are given the orientation of those in D, then the 

remaining edges in G cannot be oriented so that after adding loops to 

all vertices it becomes a reflexive digraph with CCE graph G.
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(b)

figure 22

However, the edges of G can be oriented such that adding loops to 

all the vertices yields a reflexive digraph with CCE graph G of 

figure 22(b). Such a digraph is shown in figure 23.

figure 23
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Given a graph G, is it possible to orient the edges of G so that 

adding loops to all the vertices yields a reflexive digraph with CCE 

graph G? This remains an interesting open problem. A few elementary

observations can be made at this time.

Let D be a digraph. Define D to be class-C^ if and only if D has 

an induced subdigraph isomorphic to one of the digraphs of figure 24.

figure 24

Observe that any graph G for which there exists an orientation 

G' of the edges in G such that G' is not class-C4 is a CCE graph of a 

reflexive digraph. The following statements now follow from this

observation.

Any graph G with no cycle of length 4 is a CCE graph of a 

reflexive digraph.

Every tree is the CCE graph of a reflexive digraph.

Note also that G = Kn, n 2, is a CCE graph of a reflexive 

digraph.
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CHAPTER 2 RESULTS FOR DOUBLE BOUND GRAPHS

Myers [12] characterized UB-graphs of interval orders and semi

orders. In this chapter, some analogous results for DB-graphs are 

proved. All posets considered will be connected.

Section 2.1 Uniqueness of the DB-clique Cover

Let G = (V,E) be a graph, M and N disjoint independent subsets of 

V, and ve V - (M u N). Define the following sets as in [3]:

U(v) = {xe M : xve E}

L(v) = {ye N : yve E} 

and let u(v) = |U(v)|, l(v) = |L(v)l.

Theorem 10 stated below is proved in [3] and will be referred to 

throughout this chapter.

Theorem 10. A graph G = (V,E) is a DB-graph if and only if there 

exist a family of cliques = {C j ,C 2 ,...,Cn } and disjoint,

independent subsets M and N of V such that

(i) % edg e covers G,

(ii) For each Cp there exist x^e M, y^e N such that 

{xi,yi}£Ci and {xpy^^Cj for any j * i, and

(iii) For each ve V - (MUN),

u(v)’l(v) equals the number of cliques of £ containing v.

Furthermore, £ is the unique, minimal edge covering family of cliques

in G.
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Let G = (V,E) be a DB-graph. Throughout this chapter, M and N 

will represent sets defined as in Theorem 10 and C(x,y) will denote a 

clique in G defined by C(x,y) = {z : xz, yze E}, where xe M, ye N and 

xy e E. This notation follows that used by McMorris and Zaslavsky [11] 

and is also found in [3].

Corollary 9 and Lemma 1, which follow, are analogous to the 

results for UB-graphs proved by Myers in [12].

Corollary 9. Let G = (V,E) be a DB-graph, & = {CpC2,...,Cn} a 

family of cliques of G, and M and N disjoint, independent subsets of V 

satisfying (i)-(iii) of Theorem 10. Then there exists a partial order 

< on V realizing G that has M for its set of maximal elements and N 

for its set of minimal elements.yyy

The Corollary is a direct result of the proof of Theorem 10, but 

the definition of the partial order < on V will be stated here for

convenience.

For each C^e , let {xpy^} be a fixed set given by (ii) of 

Theorem 10. Define the partial order < on V by setting y^ < x^ and 

y£ < z < x^ for each z e C^ - {xpyp with no other comparabilities.

Any poset constructed as above will be referred to as a canonical 

poset realizing G.
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Lemma 1_. Let G = (V,E) be a DB-graph and & , M and N be sets 

satisfying (i)-(iii) of Theorem 10. Let (V,<) be a poset realizing G, 

X the set of maximal elements of (V,<) and Y the set of minimal 

elements. Then there exists a one-to-one correspondence between the 

set & = {(x,y) : x£ X, y e Y, and y < x} and io such that the pair 

(xpy£) associated with clique is such that tepy^jEC^ and

{xpy^J^Cj for any j 4 i, for each i = l,2,...,n.

Proof: Let (x,y)e (P . Since (V,<) realizes G and y < x in

(V,<), it follows xye E and hence {x,y}£ for some C^e Q since (¡» 

edge covers G. Now suppose {x,y}cCp Cj for some i,j = l,2,...,n, 

where i 4 j. Choose {x^y^ C^ and {x£,y£}£ C^ for k * i and 

{xj,yj}cCj and {xj,yj}$(Ck for k j> where XpXjg M and ypYje N.

Since {x,y} cCp Cj, it follows that xxp yxp xyp yyp xxj, 

yxj, xyj, yy j e E. But (V ,<) realizes G so xxp xxj£ E imply that 

there exist a, b, c, de V such that a £ XpX £ b and c <_ Xj,x £ d. 

Maximality of x in (V,<) then implies that XpXj £ x* Similarly x^y, 

Xjye E imply that y £ XpXj. It follows that x£xje E and an analogous 

argument can be used to show y£yj£ E* However, this contradicts the 

fact that XpXj e M and ypyj e N where M and N are independent. Thus, 

every pair (x,y)e(P belongs to exactly one clique of (o .

Suppose there exist two pairs (x^,yj), (x2,y2)e® which belong 

to the same clique C^e . Then XjX2» yjy2e E. This implies there 

exist a,b,c,de V such that a £ XpXj £ b and c £ypy2 £ d. The 

maximality of Xj and X2 in (V,<) and the minimality of y^ and in 

(V,<) implies Xj = b = and y^ = c = Thus no two distinct pair

(x,y)ebelong to the same clique of fe .
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It remains to show that every clique C^e^ contains an element 

(x,y)eiP. To achieve this, let be arbitrary and choose 

^Xi’yi^-Ci and {xi’yi>£Ck for k i where x^ M, yp N. Thus, 

xiyie E and since (V,<) realizes G there is a maximal element x and a 

minimal element y in (V,<) such that y _< £ x. This implies that 

x and y are contained in a clique which contains x^ and y^. Since 

^Xi’yi^-Ci and {xi’yp£Ck for k Allows that <x,y}c Cp///

Recall that for G = (V,E) a graph and ve V the set of neighbors 

of v is N(v) = {v} u {ue V : uve E}. Observe that if G = (V,E) is a 

DB-graph with a family fe = {CpC2,...,Cn} of cliques and sets M and N 

satisfying (i)-(iii) of Theorem 10, and if {xpy.}£C- and {xpy^XjL Cj 

for any j t i, then Nix^) n N(y^) = Cp This observation, together 

with Corollary 9 and Theorem 10, leads to the next theorem.

Theorem 11. If G = (V,E) is a DB-graph, then the family of 

cliques which satisfies the conditions of Theorem 10 is the unique 

such family.

Proof: Suppose there exist two such families £ - <C,,C2...... cn>

and (3 = {BpB2»...,Bm} both satisfying the conditions of Theorem 10. 

Let M and N be disjoint, independent subsets of V such that for each 

C^ e fe, there exist x^ e M and y£e N such that {xpy^E C^ and

Cj for any j t i and such that (iii) of Theorem 10 holds.

By Corollary 9, there exists a partial order < on V realizing G 

with M the set of maximal elements and N the set of minimal elements. 

Note that there are n distinct pairs (x^yp with X£ e M, y^e N and 

such that y^ < xp
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By Lemma 1, there exists a one-to-one correspondence between the 

pairs (xpyp, where y^ < X£ in (V,<), and © such that for each 

i = l,2,...,n there exists j(i) = l,2,...,m with {x^jy^Jc and

{xi’7i>i ®k f°r any k follows that n = m. Moreover, since

<xi,yi}£Ci and for any k =# i and from the observation

made prior to the statement of the Theorem, Bj(jj = N(xpn N(y^) = 

for all i = l,2,...,n. Hence, and 0 are the same family of 

cliques.Ijj

In regard to the above Theorem, if G = (V,E) is a DB-graph and 

^2= {Cj ,C2,...,Cn} is the unique family of cliques satisfying the 

conditions of Theorem 10, then £will be called the DB-clique cover 

of G.

Definition 2. Let G = (V,E) be a DB-graph of a poset (V,<). G 

is said to be a unique DB-graph if and only if (V,<) and the converse 

of (V,<), (V,< ), are the only posets realizing G.

Observe that a connected graph G = (V,E) is a unique DB-graph of 

a height-1 poset if and only if G is bipartite. That is, no graph 

with a cycle of odd length is a DB-graph of a height-1 poset.

A characterization for unique DB-graphs in general is somewhat 

difficult. One must characterize those DB-graphs for which there 

exists exactly one pair of subsets M,Nc V satisfying the conditions of 

Theorem 10. Since every canonical poset realizing a given DB-graph G 

is height-1 or height-2, it is necessary that there do not exist 

elements u,ve V-(MU N) such that L(u)c L(v) and U(v)£U(u), for sets M 

and N satisfying the conditions of Theorem 10. This condition
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guarantees that any poset realizing G is at most height-2, which leads 

to the following theorem.

Theorem 12. Let G = (V,E) be a DB-graph and £ be the DB-clique 

cover of G. Then every poset realizing G is height-2 if and only if

(i) There exists Cp S such that lC.pl >.3, 

and (ii) For all sets M and N satisfying the conditions of

Theorem 10, there does not exist elements u,ve V-(Mu N) 

such that L(u)c L(v) and U(v)£U(u).

Proof: Assume every poset realizing G is height-2 and let (V,<) 

be such a poset. Since (V,<) is height-2, (V,<) contains a chain of 

length 3 which implies G has a clique of order at least 3. Hence, (i) 

holds. Suppose (ii) fails. Construct a height-3 poset (V,<') by 

setting u <' v and all other comparabilities the same as in (V,<). 

Then (V,<') realizes G but is not height-2. Thus, (ii) holds.

Conversely, let G be a DB-graph satisfying (i) and (ii) and let 

(V,<) be any poset realizing G. Since G has a clique of order 3 or 

more, (V,<) is at least height-2. If (V,<) is height-n, n 2. 3, then 

there exists a chain in (V,<), say xn+j < xn < < xp If M is the

set of maximal elements in V and N is the set of minimal elements, M 

and N are sets satisfying the conditions of Theorem 10. But 

L(xg) £ L(x2) and U(x2) £ U(xg), where x3e V-(M u N), which

contradicts (ii). Thus, no such chain exists in (V,<) and (V,<) must 

be height-2.///

As noted above, to characterize DB-graphs which are unique, one 

must first examine DB-graphs for which exactly one pair of subsets
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M,Nc v exist satisfying the conditions of Theorem 10. To find such 

DB-graphs is not an easy task. Example 11 below illustrates the 

difficulty in finding all sets M and N satisfying the conditions of 

Theorem 10. If an easier method could be found to obtain all such sets

M and N, then the uniqueness problem for DB-graphs might be answered.

Examp 1 e 11 ♦ Consider the graph G in figure 25.

)o = {c J ,C2 ,C3 ,C4} where Cj = {a,b,c,f}, C2 = {a,b,g,e},

C^ = {a,d,e,i} and C^ = {a,c,d,h} is an edge clique cover of G. To

find sets M and N satisfying the conditions of Theorem 10, first list

for each clique C^ all possible pairs {x,y} such that (x,y}£.C£ and

{x,y}^ Cj for all j i. This gives four distinct pairs for each

clique C|, C2, C^ and C^ which results in 4^ possibilities for the

sets M and N. However, if vertex a is used in a particular pair

{x,y}, it alone must form either set M or set N since every vertex is

adjacent to vertex a and M and N must be independent sets. This

leaves no choice for the other set N (or M). It must consist of the

vertices {f,g,h,i}. Let M = {a} and N = {f,g,h,i}. The conditions of

Theorem 10 hold and the corresponding canonical poset is shown in 
o ....

figure 26. If vertex a is not used, 3 possibilities remain for sets 

M and N, but only one of these results in sets M and N satisfying 

conditions (ii) and (iii) of Theorem 10. The canonical poset is given 

in figure 27. Observe that every poset realizing G is height-2.
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figure 27
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Section 2.2 DB-graphs of Interval Orders

Let (V,<) be a poset. (V,<) is an interval order if and only if 

for x,y,z,we V, if x < y and z < w then x < w or z < y.

Definition 3. Let (V,<) be a poset and v e V. Define the set of 

lower holdings of v to be the set LH(v) = {u£ V: u < v} and the set of 

upper holdings of v to be the set UH(v) = {u£ V: v < u}. Denote 

/// (V) = {LH(v): veV} and 2^(V) = {UH(v): v« V}.

Rabinovitch [13] proved that for a poset (V,<), the following are 

equivalent:

(i) (V,<) is an interval order,

(ii) (oj^ (V),£ ) is a chain,

(iii) (2^ (V),£ ) is a chain.

Let G = (V,E) be a DB-graph and M and N subsets of V satisfying 

the conditions of Theorem 10. Recall that L(v) = {y£ N: vy e E} and 

U(v) = {xe M: xve E} for ve V-(MuN). Modify this slightly and define 

L'(v) = {ye N: vy e E} for ve V-N and U'(v) = {xe M: vxe E} for ve V-M. 

Denote ^(V) = {L'(v): ve V-N} and ?4(V) = {lT(v): ve V-M}.

Theorem 13. Let G = (V,E) be a DB-graph of a height-1 poset. 

Then the poset is an interval order if and only if o^f(V) (or *2((V)) 

forms a chain with respect to set inclusion.

Proof: Let G = (V,E) be a DB-graph of a height-1 poset which is

an interval order and let (V,<) be the unique poset realizing G. 

Thus, if N and M are subsets of V satisfying the conditions of 

Theorem 10, then N is the set of minimal elements of (V,<) and M is



43

the set of maximal elements of (V,<). Suppose (e£(V),c ) is not a 

chain. Then there exists distinct u,ve V-N such that L'(u) £ Lx(v) and 

L'(v)$£l/(u). Let ae L'(u)-L'(v) and be L'(v)-L'(u). By definition, 

a,be N and au, bv e E but av, bus? E. It follows that a < u and b < v 

but b / u and a / v in (V,<).

A similar argument shows (lt(V),£ ) is a chain.

Conversely, suppose G = (V,E) is a DB-graph of a height-1 poset 

(V,<), where N is the set of minimal elements of (V,<) and M is the 

set of maximal elements. Suppose (<»£(V),£ ) is a chain and let 

x,y,z,we V such that x < y and z < w. Since (V,<) is height-1, 

x,zeN. Then L'(y) £. L'(w) or Lx(w) £ L'(y). Without loss of 

generality, assume L'(y)c L'(w). This implies xe L'(w) and so xwe E. 

Hence, x < w and (V,<) is an interval order.///

Example 12. The graph in figure 28 is a DB-graph of a height-1 

poset which is an interval order, while the graph in figure 29 is a 

DB-graph of a height-1 poset which is not an interval order. Note 

from this observation and Theorem 10 that every C2n, n >_ 3, is a DB- 

graph whose realizing poset is not an interval order. Hence, any 

bipartite graph with an induced cycle of length greater than or equal 

to 6 is not a DB-graph of an interval order.

figure 28 figure 29
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For convenience, the characterization in [12] for UB-graphs of

interval orders is stated below.

Theorem 14. Let G = (V,E) be a connected UB-graph with UB-clique 

cover £ where I I = n. Then every partial order realizing G is an 

interval order if and only if the following two conditions hold:

(i) IV|-(ft Ceg C)| < n + 1, 

and (ii) |C| _< 4 for all Ge .

Unlike the above characterization for UB-graphs of interval 

orders, there is no restriction on clique order for DB-graphs of 

interval orders, as example 13 illustrates.

Examp 1 e 13. Let (V,<) be the poset shown in figure 30. Observe 

that (V,<) is an interval order. In addition, notice that the DB- 

graph of (V,<) will have cliques of order 3,4,5,6 and 7. If 

M = {x1,x2,x3,x4,x5} and N = (yjthen

L'(a) £ L'(b) £ L'(c) £ L'(d) £ L'(e) and 

U'(a) £ U'(b) £ U'(c) £ U'(d) £ U'(e).

In a similar manner, one can construct posets which are interval 

orders and for which the DB-graph contains a clique of whatever order

one desires.
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figure 30

Observe that if (V,<) is a poset with DB-graph G, and if M and N 

are the sets of maximal and mimimal elements, respectively, then M and 

N satisfy the conditions of Theorem 10. This follows from the proof

of Theorem 10 and will be used in the next theorem.

Theorem 15. Let G = (V,E) be a DB-graph such that every poset 

realizing G is at most height-2 and let be the DB-clique cover for 

G. Then every poset realizing G is an interval order if and only if

(i) For all sets M and N satisfying the conditions of 

Theorem 10, (X(V),£ ) and (*t((V),£ ) are chains,

and (ii) For any two cliques Cixpyp, C(xj,yj)e£ with lC(x£,y£)|, 

|C(xj,yj)| >.3, it follows that x^yj and xjy^e E.

Proof: Let G be a DB-graph such that every poset realizing G is

at most height-2 and an interval order. Let £ be the DB-clique cover 

for G and let M and N be sets as in Theorem 10. If (V,<) is a poset
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realizing G which is height-1, then Theorem 13 implies that (i) holds 

and (ii) is vacuously true since no cliques of order greater than or 

equal 3 exist in G. Thus, assume any poset realizing G is height-2.

Suppose (i) fails. Without loss of generality, assume G»C(V),£ ) 

is not a chain. Then for some x,y£ V-N. L'(x)^. L'(y) and 

L' (y) L'(x). Let a e L'(x)-L'(y) and be L'(y)-L'(x). Note that by

definition a,b e N. If (V,<) is a canonical poset of G with M the set 

of maximal elements and N the set of minimal elements, then a < x and 

b < y in (V,<). Furthermore, by assumption, a / y and b / x. Also, x 

and y are not comparable in (V,<) for otherwise L'(y)£ L'(x) or 

L'(x)cLx(y) would hold. This implies (V,<) is not an interval order, 

a contradiction. A similar argument shows (^((V),£ ) is a chain, and 

thus (i) holds.

Since every realizing poset of G is height-2 (by assumption), G 

has a clique of order three or more by Theorem 12. Let C(xp,yp), 

C(xj,yj) be cliques in iS of order greater than or equal to 3. Then 

there exist elements a,b e V-(M u N) such that ae C(xp,yp) and 

beC(xj,yj). Let (V,<) be a canonical poset of G. If a = b, then 

yj < a < xp and yp < a < Xj in (V,<). This implies Xpyj, *j,yp€ E* 

So assume a 4 b. Since (i) holds, U'(a)cU'(b) or U'(b)£ U'(a). 

Without loss of generality, assume U'(a)£U'(b). Then Xpe U'(a) 

implies Xp£ U"(b) and b < Xp in (V,<). Also by (i), L'(a)£L'(b) or 

L'(b)£L'(a). If L'(a) £. L'(b), then yp£ L'(a) implies yp£ L'(b) and 

yp < b in (V,<). It follows that yp < b < Xpj yj < b < Xj and thus 

Xpyj, xjype E. So assume L'(b)c L'(a). Then yj < a in (V,<) and 

xpXj eE. Figure 31 illustrates this.
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In (V,<):

figure 31

Now if xjYi/ E, then Xj does not cover a or and b does not 

cover y^ in (V,<). Note that a and b are not comparable since every 

realizing poset of G is height-2. But then y^ < a; b < Xj; y^ < Xj, 

and b < a which implies (V,<) is not an interval order. It follows 

that Xjy^e E and (ii) holds.

Conversely, let G be a DB-graph such that every realizing poset 

of G is at most height-2 and assume (i) and (ii) hold. Let (V,<) be a 

poset realizing G, M the set of maximal elements in (V,<) and N the 

set of minimal elements. Let x,y,z,w£ V with y < x and w < z.

If (V,<) is height-1, then (i) implies that (V,<) is an interval 

order. So assume that (V,<) is height-2.

Case J: x,z e M.

By (i), Ux(y)£ U'(w) or lT(w)c.U'(y) which implies y < x or

w < x.

Case 2: y,w e N.

Follows as in Case 1.

Case 3: xe M, we N, y,z/ MUN.

Then ye C(x,y£) for some y^e N and ze C(xj,w) for some
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x-e M. By (ii) we have that xw, x-y£e E. Since x«e M, we N and xwe E,
J

it follows that w < x in (V,<).

Case 4: z e M, yeN, x,w / MU N.

Follows as in Case 3.

Since every poset realizing G is height-2, this exhausts all 

possibilities for x,y,z,w and in all cases (V,<) is an interval 

order.yyy

The next theorem characterizes DB-graphs of arbitrary interval

orders.

Theorem 16. Let G be a DB-graph and & the DB-clique cover for 

G. Then every realizing poset of G is an interval order if and only 

if for all sets M and N as in Theorem 10, the following hold:

(i) (^ (V), £ ) and (^(V)^) are chains,

(ii) For any two cliques Cix^.y^), C(xj,yj)eg with IC(x£,y£|,

|C(xj,yj)| > 3, it follows that x^Yj and Xjy^e E.

(iii) There does not exist distinct x,y,z,we V-(MU N) such that

L'(y)£ L'(x), U'(x)£U'(y) and L'(w)£ L'(z), U'(z) £ U'(w), 

and (iv) For x,y e V-(Mu N) with L'(x)£ Lx(y), U'(y)£ U'(x), and for

all we M UN,

(a) if we Cp ICjJ _> 3 for some i, then xw or ywe E 

and (b) if we C^ and C^ = {w,z}, then xz,xw,yz or ywe E.

Proof: Assume every poset realizing G is an interval order.

Since' a canonical poset of G is height-1 or height-2, (i) and (ii) 

hold by Theorems 14 and 15 above.

Let M and N be sets as in Theorem 10 and suppose (iii) fails. Let
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x,y,z,w£ V-(Ma N) with x,y,z, and w distinct such that L'(y)£I/(x), 

U'(x)c U'(y), I/(w)£.L'(z) and U'(z)£ U'(w). Let (V ,<) be the

corresponding canonical poset of G with the additional comparabilities 

y < x and w < z. Since x,y,z,w/ MU N, we have x X z, y X z, z/x 

and w i x. Thus, (V,<) realizes G but is not an interval order, so 

(iii) holds.

To prove (iv)(a), assume x,ye V-(MU N) with L'(x)c L'(y) and 

U'(y)£ U'(x). Let w e M UN and w e Cj where |Cj I > 3 for some Cj£ fe , 

Without loss of generality, assume we M and Cj = C(w,yj). Since 

L'(y)cL'(x) and U'(x)cU'(y), there exists a C(x£,y^) e such that 

{x,y}c C(x£,y£). Consider the corresponding canonical poset (V,<) 

with the added comparability x < y. If X£ = w, (iv)(a) holds. So 

assume X£ £ w.

Case 1: Y£ = Yj-

Let z e C(w,yj), z w,yj. Such an element exists since 

|C(w,yj)| >3. If z = x or z = y, (iv)(a) holds. Thus, assume 

z t x,y. By (i), U'(y)c U'(z) or U'(z)c U'(y). If U'(z)£U'(y), then 

weU'(y). Hence, yw, xw e E and (iv)(a) holds. So assume 

U'(y)£ U"(z). See figure 32.

figure 32

In (V,<):
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If xw or yw/ E, these are the only comparabilities among Xp, y, x, yp, 

z and w. But then (V,<) is not an interval order.

Case 2: yp / yj.

Suppose -zUfynif E. Then U'(y) £U'(z), because U'(z)c U'(y) 

implies ywe E. There two subcases.

Subcase (I): L'(z) c L'(x).

This implies y j e L'(x) which implies yj < x in (V,<). It 

follows that xpyj e E. From (ii), wype E, so w covers y, x or yp in 

(V,<). But if xw, yw jf E, w must cover yp and these are the only 

comparabilities among xp, x, y, w, z, yp, and yj. See figure 33.

figure 33

But then (V,<) is not an interval order.

Subcase (II): L'(x)cL'(z).

This implies yp£ L'(z) and thus yp < z in (V,<). See

figure 34.

In (V,<):
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In (V,<)

figure 34

If xw, yw 4 E, these are the only comparabilities among Xp y, x, z, w 

and y£. But then (V,<) is not an interval order.

Hence, in all cases (iv)(a) holds.

To prove (iv)(b), again assume x, y e V-(M u N) with L'(x)£ L'(y) 

and U'(y)£U'(x). Assume we MUN and for some Ce£ , C = {w,z}. 

Since L'(x) c L'(y) and U('y) £Uz(x) and x,y i MU N, we have 

{x,y} £ C(x£,y£) for some C(x£,y£)e £ . Without loss of generality, 

assume we M and ze N. Let (V,<) be the corresponding canonical poset 

of G with the added comparability x < y so that y£ < x < y < X£ in 

(V,<). If z = y£, then xz, yze E and (iv)(b) holds. Similarly if 

w = x £, then xw, ywe E. So assume w ? X£, z 4 y £. By (i), 

U'(y)cUz(z) or U'(z)c U'(y). If U'(z)c U'(y) then we U'(y). Thus, 

xw, ywe E. So assume U'(y)£U'(z). Also by (i), L'(x)c L'(w) or 

L'(w) £ L'(x). If L'(w)£L'(x), then ze L'(x) and xz, yze E. So 

assume L'(x)c Lz(w). See figure 35.
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figure 35

If xw, yw, xz and yz t- E, then (V ,<) is not an interval order, a 

contradiction. Hence, (iv)(b) holds.

Conversely, let G be a DB-graph with DB-clique cover io and such 

that (i)-(iv) hold. Let (V,<) be any poset realizing G with M the set 

of maximal elements and N the set of minimal elements. Let x,y,z,we V 

such that y < x and w < z.

Case 1: x,ze M.

By (i), U'(y)£ U'(w) or U'(w)c U"(y). This implies y < z or

w < x.

Case 2: y,we N.

Analogous to Case 1.

Case 3 : x,y,z,w i M uN.

Then y < x implies L'(y)£ L'(x) and U'(x)c U'(y), and w < z 

implies L'(w) £ L'(z) and U'(z)s, U'(w). But this contradicts (iii), so 

this case is not possible.

Case 4: ye N, xe M, w,z/ MuN.

Let w,ze C(xp,yp) for some C(xp,yp)e £ . If yp = y, then 

y < z. Similarly, if xp = x, then w < x. Thus, assume yp # y and

In (V,<):
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4 x. By (iv), wx,zx,wy or zy £ E.

If wx e E, then x e U'(w); hence, w < x.

If zx e E, then x e U'(z) £ U'(w); hence, w < x.

If wye E, then ye L'(w) £ L'(z); hence y < z.

If zy e E, then y e L'(z); hence, y < z.

Case 5 x e M, y,z,w t M u N.

Let y eC(x,yp, z,we C(Xj,yj). Note that L'(w)£ L'(z) and 

U'(z)£ U'(w) and xi C(x,y£>, where IC(x,y£)| > 3. Thus, by (iv)(a), 

xz or xwe E. If xz e E, then xe U'(z) which implies w < z < x. If 

xw e E, then x£ U'(w) and w < x.

Case 6: y e N, x,z,w/ Mu N.

Analogous to Case 5.

Case 7: x e M, w e N, y,z t MU N.

Let y e C(x,y£>, zeC(xj,w). If x = Xj, clearly w < x. 

Likewise, if y^ = w, then w < x. So assume x 4 Xj, y^ 4 w. Then 

y^ < y < x and w < z < Xj are chains in (V,<). From (ii) it follows 

that w < x.

Any other possibility is analogous to one of the cases above. In 

any case, w < x or y < z and thus (V,<) is an interval order.///

Example 14 illustrates that G can be a DB-graph of a height-2 

poset which is an interval order and also the DB-graph of a height-3 

poset which is not an interval order.

Examp 1 e 14. Let G be the graph in figure 36. The reader can 

check that G is the DB-graph of both posets Pj and P2 shown in 

figure 36. Let M = {a,b}, N = {c,d}. Although Px is an interval
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order, since G fails to satisfy (iv)(a), define the poset P2 with the 

same comparabilities of Pj and the added comparability y < x so that 

P2 realizes G but is not an interval order.

a b

figure 36

Corollary 10. Let G be a DB-graph and £ the DB-clique cover of 

G. Then there exists a poset realizing G which is an interval order 

if and only if for some M and N of Theorem 10 the following hold:

(i) (<*£ (V),£ ) and (?1(V),£ ) are chains.

and(ii) For any cliques C(xpyp, C(xj,yj)e of order 2 3, it

follows that xjYj and Xjy^e E.
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Proof: Clearly if (V,<) is an interval order which realizes G-

then (i) and (ii) hold by Theorem 16 above.

Conversely, if G is a DB-graph such that (i) and (ii) hold for 

some M and N of Theorem 10, then the corresponding canonical poset

which has M as its set of maximal elements and N as its set of minimal 

elements is an interval order by Theorems 14 and 15.///

Section 2.3 DB-graphs of Strict Weak orders and Semi-orders

A strict weak order is a poset (V,<) such that for distinct 

x,y,ze V, if x < y then x < z or z < y.

Let (V,<) be a partial order. Then (V,<) is a semi-order if and 

only if

(i) For x,y,z,we V, x < y and z < w implies x < w or z < y 

and (ii) For x,y,z,w£ V, x < y and y < z implies x < w or w < z.

Clearly every semi-order is an interval order.

Note that if G = (V.E) is a DB-graph of a height-1 poset (V,<), 

then (V,<) is a strict weak order if and only if G is a complete 

bipartite graph.

Proposition 3. Let G = (V,E) be a DB-graph with DB-clique cover 

and such that every realizing poset of G is at most height-2. Then 

every poset realizing G is a strict weak order if and only if for all

sets M and N of Theorem 10 the following hold:

(i) I J? I = |M I • |N I,

and (ii) For all ve V-(Mu N) it follows that Mu N cAdj(v).
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Proof: If G is realized by a height-1 poset then G is a complete 

bipartite graph which implies (i); moreover, (ii) is vacuously true. 

So assume every poset realizing G is height-2 and a strict weak order. 

Let M and N be subsets of V satisfying the conditions of Theorem 10 

and choose C(x,y)e £ with |C(x,y)| > 3. Such a clique exists because 

G is realized by a height-2 poset. Let ze C(x,y) with z / x,y. Let 

C(u,w) be any other clique in £ , and suppose u or w I Adj(z). 

Construct the corresponding canonical poset (V,<) for M and N where 

x,ue M and y,we N. Then (V,<) has one of the posets in figure 37 as a 

subposet. In any case, (V,<) is not a strict weak order. Hence, 

u,weAdj(v) and since C(u,w) was arbitrary, (ii) holds. Condition (i) 

now follows from (ii) since we assumed every realizing poset is 

height-2.

x

Z ,1

w

figure 37

Conversely, assume (i) and (ii) hold. Let (V,<) be any poset 

realizing G and let x,y,ze V with x < y. Condition (i) implies that G 

is connected and thus z is not an isolated vertex. Since (V,<) is at 

most height-2, either xe M or ye N. If xe M and z^ Mu N, then (ii) 

implies that xz e E and hence z < x in (V,<). If xe M and z e M u N, 

then (i) implies that either xz e E if z e N, from which it follows that 

z < x, or that yz e E if z £ M, from which we have that y < z.
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A similar argument is used if ye N. In any case, (V,<) is a 

strict weak order.///

Theorem 17. Let G = (V,E) be a DB-graph with DB-clique cover £. 

Then every realizing poset is a strict weak order if and only if for 

all sets M and N of Theorem 10 the following hold:

(i) I g| = |M|- |N|

(ii) For all ve V-(Mu N) it follows that MuNcAdj(v), 

and (iii) There does not exist aCeS such that |C| > 5.

Proof: Conditions (i) and (ii) follow from Proposition 3 above.

It remains to prove that (iii) holds. Let M and N be any subsets of V 

satisfying the conditions of Theorem 10 and suppose C(x,y)e £ such 

that |C(x,y) | > 5. Let a,b,c e C(x,y) be distinct with a,b,c <t (M UN). 

Construct the corresponding canonical poset for M and N and add the 

comparability a < b and denote this poset by (V,<). Then (V,<) has 

the poset in figure 38 as a subposet, which implies that (V,<) is not

a strict weak order.

figure 38

Conversely, assume (i)-(iii) hold and let (V,<) be any poset 

realizing G and choose a,b,ce (V,<) with a < b.
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Case be M and c/ (Mu N).

Then condition (ii) implies that c < b.

Case 2: a e N and c / (Mu N).

Then condition (ii) implies that a < c.

Case 3: b e M and c e(M u N).

Then if ceN, (i) implies that c < b.

If c e M and yeN then (i) implies that a < c.

Finally, if ce M and y£ N, then (ii) implies that a < c.

Case 4: ae N and ce (MU N).

It follows analogously to Case 3.

Case 5: a,b / (M u N) and c e (MU N).

If ce M, then (ii) implies that a < b < c.

If ceN, then (ii) implies that c < a < b.

Case 6: a,b,c/ (MuN).

Then (ii) implies that there exists a clique Ce£ such that 

|C| > 5 which contradicts (iii).

Hence, in any case, (V,<) is a strict weak order.///

Corollary 11. Let G be a DB-graph with DB-clique cover £ - Then 

there exists a poset realizing G which is a strict weak order if and 

only if there exist sets M and N of Theorem 10 such that the following

hold:

(i) Igl = IMI-INI,

and (ii) For all v£ V-(Mu N) it follows that MU N £Adj(v).///
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Observe that every height-1 poset which is an interval order is a 

semi-order, so G is a DB-graph of a height-1 poset which is a semi

order if and only if G is bipartite and (pif(V),c ) is a chain.

Theorem 18. Let G = (V,E) be a DB-graph such that every 

realizing poset is at most height-2. Let £ be the DB-clique cover of 

G. Then every poset realizing G is a semi-order if and only if for 

all sets M and N of Theorem 10 the following hold:

(i) (e£(V), c) and (fy.(V), c ) are chains,

(ii) For all C(xp,yp), C(xj,yj)e(J? , it follows that 

XiYj, Xjyie E,

and(iii) For all C(x-,y-), C(x•,y•)e £ such that |Cx-,y-)|,
1 X J J XX

|C(xj,yj)| > 3 , if xe C(xp,yp) and x + Xp,yp, then xxj£ E 

or xy^e E.

Proof: Assume G is a DB-graph with DB-clique cover £ and that 

every poset realizing G is a semi-order and at most height-2. Let 

(V,<) be such a poset realizing G with M and N the sets of maximal 

elements and minimal elements, respectively. Then since (V,<) is a 

semi-order, it is also an interval order and (i) holds.

If every C(xp,yp)e £ has cardinality 2, then (V,<) is height-1 

and (i) implies (ii). Thus, assume |C(xp,yp)| > 3 or |C(xj,yj) I > 3.

Case 1: |C(xp,yp)| > 3, |C(xj,yj)| = 2.

Let z e C(xp,yp), z * Xp,yp. Then yp < z < Xp in (V,<) and

since (i) holds , U'(z)£ U'(yj) or U'(yj)c U'(z) and L'(z)<= L'(xj) or 

L'(xj)c L"(z). There are 4 subcases.

Subcase (I): U'(z)c U'(yj) and L'(z) £ L'(x j).

Then yj < Xp in (V,<) and xpyj e E. Also yp < xj in (V,<)
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and thus xjYi6 E.

Subcase (II): U'(z)£ Ux(yj) and Lx(xj)£ L'(z).

Then yj < X£ in (V,<) and x£Yj£ E. Moreover, L'(xj)c L'(z)

implies yj < z < X£ in (V,<). Consider Yj. < 2 < x£ and Xj. Since 

(V,<) is a semi-order, y^ < Xj or Xj < Xp Since Xj and xp M, x^ and 

xj are not comparable, which implies y^ < Xj in (V,<) and hence 

xjYi e E.

Subcase (III): U'(yj)£U'(z) and L'(z) £ L'(xj).

Then z < Xj in (V,<) and since y^ < z » it follows that

xjyie E« Now consider y£ < z < X£ and yj. Since (V,<) is a semi

order, yj < x£ or y£ < yj. But yp yje N and so are not comparable in 

(V,<) which implies yj < X£ and X£Yje E.

Subcase (IV): U'(yj)£ U'(z) and Lz(xj)£ Lz(z).

Then z < Xj and y£ < z which imply y£ < Xj. Thus, xjY£e E.

Also L'(xj)c L"(z) implies yj < z. But z < X£ implies yj < X£ and 

thus xiYje E.

Case 2: |C(x£,y£)|, |C(Xj,yj)| > 3.

Since (V,<) is a semi-order, (V,<) is an interval order and

condition (ii) follows from Theorem 15.

Thus, in all cases (ii) holds.

To prove (iii), let C(x£,y£), C(Xj,yj)e£ such that |C(x£,y£)|, 

|C(xj,yj)| >3 and xeC(x£,y£), x 4 Xpyp Since |C(xj,yj)| > 3, 

there exists we C(xj,yj) with w 4 xj>Yj* x = w, clearly (iii)

holds. Thus, assume x * w. Since (i) holds , U'(x)c U'(w) or 

U"(w)£ U'(x). If U'(w) £ U'(x), then xxj e E. So assume U'(x)c U'(w). 

This implies w < X£ in (V,<) and wx£e E. Also by (i), L'(x)'£ L'(w) or
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L'(w)c L'(x). If L'(w)£ L'(x), then it follows xy j e E. So assume 

L'(x)c L'(w). See figure 39.

figure 39

Now consider yj < w < Xj and x. Since (V,<) is a semi-order, yj < x 

or x < Xj which implies xxj or xyje E.

Conversely, let G be a DB-graph with DB-clique cover and such 

that every realizing poset is at most height-2, and conditions (i)- 

(iii) hold for all set M and N of Theorem 10. Let (V,<) be a poset 

realizing G and let M and N be the sets of maximal elements and 

minimal elements, respectively. If (V,<) is height-1, (i) implies 

that (V,<) is a semi-order by the observation made prior to the 

statement of the Theorem. Thus, assume (V,<) is height-2 and let 

x,y,z,w£ V with z < y < x. The goal is to show z < w or w < x. Since 

(V,<) is height-2, x£ M and z £ N.

Case 2: w £ M.

Since (V,<) is connected, there exists yje N such that 

yj < w. Consider C(x-z), C(w.yj). By (ii), wz e E which implies 

z < w.

Case 2: w e N.

Analogous to Case 1.

Case 3: w M u N.

In (V,<):
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If we C(x,z), then w < x and z < w. So assume w t C(x,z). 

Then there exists (¡(x^y^) such that we C(xpyp which implies 

y^ < w < x^ in (V,<). If x = Xp then w < x and if z = y^ then z < w. 

So assume x # Xp z t- yp See figure 40.

x X .
1

y
In (V,<):

w

z 11 y.
i

figure 40

Since |C(x,z)| and ICix^y^)! > 3, and we CUpy^), where w 4 Xpyp 

condition (iii) implies wx or wze E. It follows that w < x or z < w 

in (V,<).

Hence, in all cases, w < x or z < w which implies (V,<) is a 

semi-order.// /

The following corollary is immediate from the Theorem.

Corol lary 12. Let G be a DB-graph and & the DB-clique cover of 

G. Then there exists a poset realizing G which is a semi-order if and 

only if there exist sets M and N of Theorem 10 such that conditions 

(i)-(iii) of Theorem 18 above hold.///
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CHAPTER 3 POSETS WITH INTERVAL UB-GRAPHS

Cohen [2] discovered that most competition graphs arising from 

food webs are interval graphs. This discovery prompted others to 

characterize those digraphs which have interval competition graphs. 

Lundgren and Maybee [9] give a characterization in terms of a 

competition cover. In view of the forbidden subgraph characterization 

for interval graphs Steif [17] has proved that a forbidden sink 

induced subdigraph list exists, but no one has yet found this list.

In Section 1.2 it was observed that competition graphs of 

transitive acyclic digraphs are strict UB-graphs. If one can derive 

results for posets which have interval UB-graphs, analogous results 

may possibly be attained for competition graphs. This approach was 

suggested in [9] and is attributed to McMorris.

Section 3.1 Immediate Results

In 1964, Gilmore and Hoffman [5] proved that a graph G is 

interval if and only if the cliques of G can be linearly ordered such 

that for every vertex x eG, the cliques containing x occur 

consecutively.

One can make an analogous statement for posets which have 

interval UB-graphs. First, let (P,<) be a poset and 

M = {m^ ,m2,...,mk} be the set of nonisolated maximal elements in
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(P,<). Observe that the set of all elements less than or equal to mp 

for each i, 1 < i < k, induces a clique in the UB-graph. If xe P-M 

and M(x) = {mp M: x < m^}, then the Gilmore and Hoffman result for 

posets translates to Theorem 19.

Theorem 19. A poset (P,<) with M the set of nonisolated maximal 

elements of (P,<), has an interval UB-graph if and only if there 

exists a linear ordering of M = {m^ ,m2,...,mk} such that for every 

xe P-M, M(x) = {m£,m£+p.../m£+j} for some i > 0 and j > 0.///

Recall the forbidden subgraph characterization of interval graphs 

by Lekkerkerker and Boland [8],

A graph G is interval if and only if it does not contain the 

graphs GpG^ of figure 41 as induced subgraphs.

G.

G

C. , n > 4 n

1 G.3

2

n + 5 vertices, n > 1n + 4 vertices, n s 2
GG 54

figure 41
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The graphs G^-Gg in figure 41 will be referred to throughout the 

remainder of this chapter.

We next consider various posets with interval UB-graphs. Let 

(P,<) be a poset. (P,<) is said to be a tree poset if and only if for 

all distinct x,y,ze P, if x,y < z then x < y or y < x.

Let (P,<) be a poset. Define the comparability graph G = (P,E) 

of P where xye E if and only if x < y or y < x. The fol lowing is a 

result of the work done by Wolk in [18] and [19].

Theorem 20. A graph G = (V,E) is the comparability graph of a 

tree poset if and only if G contains no induced subgraph isomorphic to 

C4 or P4.

Observe that if (P,<) is a tree poset, then the UB-graph of (P,<) 

is the comparability graph of (P,<). (The UB-graph is also the DB- 

graph of a tree poset.)

Corollary 13. The UB-graph G of a tree poset is an interval 

graph.

Proof: Let (P,<) be a tree poset and let G be the UB-graph of 

(P,<). From Theorem 20 above, G has no induced or P^. Since each 

of the graphs in figure 41 has either an induced or P4, it follows 

that G is an interval graph.///

Theorem 21. If (P,<) is an interval order, then the UB-graph of 

(P,<) is an interval graph.

Proof: Let M be the set of nonisolated maximal elements of (P,<) 

and let the elements of P-M be labelled V|,V2»...,vk such that
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UH(vj)c UH(v2)£ ...cUHivjj). Such a labelling is possible because 

(P,<) is an interval order which implies ( (P),£ ) is a chain by

[13]. But since MivpcUBivp for all i = l,...,k and M(v£)£ M, it 

follows that M ( v j ) £ M(v ) - • • • £ M ( v k ) . Set

M(vj) = {mp >m|2> • • • »min(l)}«

M(v2) = imp >m22»• • • »mln(l) ,m21 ,m22 ’ * * * ’m2n(2) ’

and M(vk) = imi j , ) j™21,m2n(2)’••*»mkl’mkn(k)

Then, ml 1 *ml 2’**‘^mln(l) ,m21,m2n(2)’“,,mkl’”*,mkn(k) a desired 

ordering of the elements in M such that for each x e P-M, the maximal 

elements in M(x) occur consecutively. It follows from Theorem 19 that 

the UB-graph of (P,<) is interval.///

Corollary 14. If (P,<) is a semi-order, then the UB-graph of 

(P,<) is an interval graph.///

Section 3.2 A Characterization for the Canonical Poset of (P,<)

In 1982-, Steif [17] showed that no forbidden induced subdigraph 

characterization was possible for digraphs with interval competition 

graphs. It also follows that no forbidden subposet characterization 

exists for posets with interval UB-graphs, for suppose such a 

characterization did exist with (Q,<) a forbidden subposet. Let (P,<) 

be the poset (Q,<) with an added vertex m and added comparabilities 

q < m for each qe Q. (P,<) obviously has subposet (Q,<) but its UB- 

graph is complete and therefore interval.
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However, some results were obtained for special subdigraphs, 

called sink induced subdigraphs. (See [9] and [17] for specific 

details.) Defining a special subposet similar to a sink induced 

subdigraph does allow one to obtain some analogous results.

Definition 4. Let (P,<) be a poset and Qc p. Then Q is a m- 

subposet of (P,<) if and only if Q is a subposet with the additional 

property that if x,y e Q and x,y < m for some me P, then there exists 

m' e Q with x,y < m'.

Definition 5. Let (P,<) be a poset and let M be the set of 

maximal elements of (P,<). The canonical (sub)poset of (P,<) is the 

height-1 poset (P,<0 where x <' y if and only if ye M, x/ M and x < y 

in (P,<).

Observe that if G is a UB-graph, then all posets realizing G have 

isomorphic canonical posets.

The graphs Gj-G^ of figure 41 and the posets P^-P^ of figure 42 

below will be referred to in the five lemmas which follow.

As an aid in determining the posets P4 and P^ for various n, 

figure 43 illustrates the posets P^ and P^ for the first three values 

of n.
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4 + 2n vertices, n > 1

figure 42

Pl:

P2:

P3:

P4:
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P^ with n = 3

figure 43

In the following five lemmas, let G = (V,E) be a UB-graph and let 

(V,<) be the canonical poset realizing G.

Lemma 2, Cn, n > 4, is an induced subgraph of G if and only P^ 

is a m-subposet of (V,<).

Proof: Suppose that CQ} n > 4, is an induced subgraph of G.
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Label the vertices of CQ, as vi>v2>,,*»vn such that VjV^e E for

i = l,...,n, where vn+j = Vp Since G is a UB-graph, for any edge

V£V£+^e E, there exists a a^^e V such that V£,V£+j < and

Vj 4 a£+i f°r all j i,i+l in (V,<). This follows from Theorem 1 of

[11]. Hence, (V,<) contains the poset in figure 44 as a subposet Q. 

(Note that Q is isomorphic to Pp)

figure 44

But 0 is also a m-subposet of (V,<) for the existence of any me V with 

v-,v- < m but v-,v- 4 m" for all m'e Q would yield a chord in C .
1 J 1 j **

Conversely, if (V,<) contains Pj as a m-subposet, then no VpV j 

are below the same maximal element m in (V,<) unless both are below 

some m' e Pp This implies that edges among {vj ,v2»—|Vn} arise from 

(V,<) if and only if they arise from Pj. Moreover, the UB-graph of Pj 

is Cn, n > 4. Thus G has Cn, n > 4, as an induced subgraph.///

Lemma 3. G has G2 as an induced subgraph if and only if (V,<) 

has P2 as a m-subposet.

Proof: Suppose *-s an induced subgraph of G. Label the

vertices of G 2 as vl>v2’’**’v7 such that 

E ~ , V2V3 > VgV^, v^Vg, VgVg, vgV-¡}• Since G is a UB—graph,

Q:
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Theorem 1 of McMorris and Zaslavsky [11] implies that there exist 

a^ ,a2, • • • »a^e V such that ^2 < a^ and v^ <_ ap v2»v3 < a2’ v3’v4 < a3’

v4 < a4 and v5 — a4» v3’v6 < a5 and v7 < a6 and v6 — a6 w:*-tk no other 

comparabilities between vi»v2»***»v7 and aj ,a2 ,...,ag. Thus, (V,<) 

contains the poset in figure 45 as a subposet Q. (Q is isomorphic to 

P,.)

figure 45

Moreover, Q is a m-subposet because the existence of any me V with 

V£,Vj < m but V£,Vj / nT for all m'e Q would yield an edge which is 

not in G2.

Conversely, if (V,<) contains P2 as a m-subposet, then edges 

among {v2’v3’v4’v6^ arise form (V,<) if and only if they do from P2. 

Thus, the UB-graph of P2 is an induced of G and contains G2 as an 

induced subgraph. Hence, G contains G2 as an induced subgraph.///

Lemma 4. G has Gg as an induced subgraph if and only if (V,<) 

contains P3 as a m-subposet.

Proof: Suppose G3 is an induced subgraph of G and let

v1’v2»“*jv7 be a labelling of the vertices such that vjV2, VjV^,

v2v3’ v1v4> v3v4’ v1v5’ v4v5’ v1v6’ v5v6» v4v7e E’ Let 

{C •£ ,C2,...,Cm} (m >. 5) be the UB-clique cover of G and

Q:
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aj ,a2,... ,ame V such that a£ e ci“( Cj), for all i = l,2,...,m.

Assume the labelling of G3 is such that Cj n {vj,....Vy} = {vj^Vj}, 

C2 n {vj ,...,Vy } = {vj,v3,v4}, C3 n {v1}...,v7} = {vpVpV^},

c4 n {vj ,... ,v7> = {v2,v5,v6} and C5 n{vp...,v7} = {v4,v7>. Then 

(V,<) must have the poset in figure 46 as a subposet Q. (Note that it 

is possible for a^ = v2, a4 = vg and a^ = v7 because aj, a4 and a3 are 

contained in only one clique of G3. This conclusion follows from 

Theorem 1 of [11].)

figure 46

0 is isomorphic to P3 and is in fact a m-subposet by an argument 

similar to that used in Lemma 3 above.

Conversely, if (V,<) contains P3 as a m-subposet, then any two 

elements of {v£,v3,v4,Vij} are below the same maximal element in (V,<) 

if and only if both are below a same maximal element in P3. Thus, the 

UB-graph of P3 is an induced subgraph of G. It follows that G3 is an 

induced subgraph of G since it is an induced subgraph of the UB-graph 

of P3.z//

Lemma 5. G has G4 (for some n > 2) as an induced subgraph if and 

only if (V,<) has P4 (same n) as a m-subposet.

Q:
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Proof: Fix n > 2 and suppose G has G^ as an induced subgraph. 

Assume G4 is labelled as in figure 47.

figure 47

Let fc? = {CpC2,...,Cm} (m > n+2) be the UB-clique cover for G and a^, 

a2,...,ame V such that a^e -<V j j. ¿Cj) for all i = l,...,m. Assume 

the labelling of G is such that {v1,v2}£Cj, {v2,v3,v3}£ C2,

^v3’v4^~ C3 and:

if n = 2, then {vn+3, vn+4>£C4;

if n = 3, then {v2,vn+2,vn+3}cC4> {vn+3,vn+4>£C5;

«

if n = k, then ^(Vj.vgJc C4, {v2,vg,vy}£ Cg, ... ,

^v2»vn+2’vn+3} - Cn+1 and {vk+3’vk+4}^ Cn+2- Then (V’<} has the Poset 

in figure 48 as a subposet Q. (Q is isomorphic to P4.)
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figure 48

Q is also a m-subposet of (V,<) by an argument similar to that used 

previously.

Conversely, if (V,<) contains (for a fixed n) as a m-subposet, 

then any two elements of Tv2*v3’v5*v6’v7’***’vn+3^ are below the same 

maximal element in (V,<) if and only if both are below a same maximal 

element in P^. Thus, the UB-graph of P^ is an induced subgraph of G. 

It follows that G4 is an induced subgraph of G since it is an induced 

subgraph of the UB-graph of P^.///

Lemma 6. G has G^ (for some fixed n > 1) as an induced subgraph 

if and only if (V,<) has P^ (same n) as a m-subposet.

Proof: Fix n > 1 and suppose G has G^ as an induced subgraph.

Assume the vertices of G^ are labelled as in figure 49.

Q:
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figure 49

Let £ = {CpC2,...,Cm} (m n+2) be the UB-clique cover of G and 

a^ ,a2, • • • ,ame V such that a^e 4 ¿Cj) f°r *• = l>2,...,m.

If n X: Assume the labelling of G is such that 'tvi»v2»v6^ — Cj, 

^v2’v3,v4^- ^2* ^v4’v5’v6^- ^3* Then (V,<) has the poset in figure 50 

as a subposet Q. (Q is isomorphic to with n = 1.) Note that it is 

possible for aj = Vp a2 = v3, or a3 = v^.

Q is also a m-subposet of (V,<) for the existence of a me V with 

vi’vj < m but vi’vj f°r a^ e 9 would yield an edge which is 

not in G^.

If n 2: Assume the labelling of G is such that {vpV2»v7} £Cj, 

{v2,v4,v6,v7}cC2, {v2,v3,v4}£ C3, and {v4,v5,v6} £ C4. Then (V,<) has

9-
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the poset in figure 51 as a subposet Q and 0 is isomorphic to with 

n = 2. Again, Q is also a m-subposet of (V,<) by an argument similar

to that above.

figure 51

If n = k, k > 2 and odd: Assume that the labelling of G is such that 

ivi ,v2,vk+5}c Cj, <v2,v4,vk+4,vk+5} c C2, {v2,v4,vk+3,vk+4}c C3,..., 

{v2,v4,v(k+11)/2,v(k+13)/2}c C(k+ £ j i 2 , iv2,v3,v4} c C(k+3)/2,

{v2’ v4' v(k+9)/2’ v(k+ll)/2^- C(k+5)/2’

{v2,v4,V(k+7)/2,v(k+9)/2}£ C(k+7)/2, ... , <v4,v5,v6} £ Ck+2. Then

(V,<) has the poset in figure 52 as a subposet Q and 0 is isomorphic 

to P^ with n = k.

2 2 2

figure 52

Q,:
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Q is also a m-subposet of (V,<) by the usual argument.

If n = k, k > 2 and even: Assume the labelling of G is such that

{vl»v2»vk+5}- Cl’ {v2’v4’vk+4’vk+5}^ C2’ {v2*v4’vk+3>vk+4} C3............

{v2’v4’v(k+10)/2’v(k+12)/2}- C k / 2 , <v2’v3’v4} ~ C ( k+ 2 ) / 2 ’

<v2, v4> v(k+10)/2, v(k+8)/2}- C(k+4)/2’

{v2’v4’v(k+8)/2’v(k+6)/2}s C(k+6)/2’ ’ {v4’v5’v6}- Ck+2’ Then

(V,<) has the poset in figure 53 as a subposet Q and Q is isomorphic 

to P^, with n = k.

2 2 2

figure 53

Again, 0 is a m-subposet of (V,<) by the usual argument.

Conversely, if (V,<) contains P5 (for some n) as a m-subposet,

then an argument similar to the ones in the previous four lemmas imply 

that G contains G^ (same n) as an induced subgraph.///

The five lemmas now yield Theorem 22.

Theorem 22. Let (V,<) be a poset and (V,<') the canonical 

poset of (V,<). Then the UB-graph G of (V,<) is an interval graph if 

and only if (V,<') does not contain any of the posets in figure 42 as 

a m-subposet.///

Q:
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Section 3.3 Posets with Interval UB-graphs

In this section, lemmas analogous to those in Section 3.2 are 

proved for a general poset (P,<), resulting in a characterization of 

posets with interval UB-graphs.

Let (P,<) be a poset and M the set of nonisolated maximal 

elements of P. Define P(x) = {ye P: x < y} for xe P-M.

Definition 6. Let (P,<) be a poset and x^ ,X2,...,xke P-M. 

Then the subposet (l,<) of P, where I = {xj ,X2,...,xk}'J ( U P(xp) is 

called the order ideal (or upset) of P generated by xi»x2»***»xk and 

is denoted l(x£,X2,...,xk).

The graphs Gj-G^ of figure 41 will be referred to in the 

following lemmas. Also, in the five lemmas which follow, let 

G = (V,E) be a UB-graph and (V,<) be any poset realizing G, with M the 

set of maximal elements of (V,<).

lemma 7. Cn, n > 4, is an induced subgraph of G if and only 

if there exists an antichain {x j ,X2,... ,xn} £ v-M such that 

l(xj ,X2,...,xn) contains the poset in figure 54 as a m-subposet.

(2n vertices)

figure 54
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Proof: Suppose Cn, n > 4, is an induced subgraph of G. Label

the vertices of CQ as where x£x£+2e E for all i = l,...,n

and vQ+2 = Vj. It follows from Theorem 1 of [11] that

Xj ,-&2i • • • >xn/ M> 80 consider the set {x^ ,X2,...,xn}£ P-M. If x^ < Xj 

for some i i j e {l,...,n}, then P(xj)s Pix^). It follows 

Adj(xj)-{x£}c Adj(x£)-{xj}, with x^Xje E. Thus, x^Xj is an edge in Cn 

which implies j = i+1. But for such an i and j the adjacency 

relationship is not possible. Hence, {x^ ,X2,.-.»xn} is an antichain 

in (V,<).

Since G is a UB-graph, any two endpoints of an edge in G (hence 

in CQ) have a common upper bound (thus a common maximal element) in 

(V,<). It easily follows that I(xj ,X2,...,xn) contains the poset in 

figure 54 as a subposet Q. Moreover, Q is a m-subposet, for if there 

exists xpXje Q such that x£>xj < m in (V,<), then j = i+1 and hence 

there is a m'e Q such that x£»xj <

Conversely, suppose there exists an antichain {x^ ,X2,-..,xn), 

n > 4, in (V,<) such that the poset in figure 54 is a m-subposet of 

l(xj ,...,xn). Then no two x£»xj have common upper bound in (V,<) 

unless they do in the m-subposet. Hence, the UB-graph G contains CQ, 

n > 4, as an induced subgraph.///

Recall that a graph G = (V,E) is chordal if and only if every 

cycle of length greater than or equal to four has a chord. 

(Equivalently, G does not contain an induced subgraph isomorphic to 

Cn, n > 3.)

The following corollary is an immediate consequence of Lemma 7.
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Corol lary 15. A poset (P,<) has UB-graph that is chordal if 

and only if there does not exist an antichain {x^ ,X2,...,xn} £ P-M 

(n > 4) such that l(xj,...,xn) contains the poset in figure 54 as a m- 

subposet./jj

Lemma 8. G has G2 as an induced subgraph if and only if there 

exists an antichain {xj ^jX^x^H V-M such that l(xj ,x2,x3 ,x4) 

contains the poset in figure 55 as a m-subposet.

figure 55

Lemma 3.

Proof; Suppose G2 is an induced subgraph of G with the vertices 

of G2 labelled Xj,X2,...,Xy such that x|x5> xix2» X2X3» X3X6’ X2X4’ 

x^x^e E. It follows from the Theorem 1 of McMorris and Zaslavsky [11] 

that xj,xx,x3,x4/ M. So consider the set {xpXjjX^x^H V-M. If 

< Xj, i ¥ je {1,...,4}, then P(Xj)£ P(x^) in (P,<) which implies 

xixj e E(G2) and Ad j(xj)-{x£} £ Adj(x£)-{xj } in G2. But this is 

impossible for i / j e {1,...,4}. Thus, {xpx2,x3,x4} is an antichain

in (V,<).

The remainder of the proof follows analogously to that for

III
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Lemma 9. G has G^ as an induced subgraph if and only if there 

exists an antichain {xj,x3,x4}c v-M and an element X2e V-M such that 

X2llx3 and KxpXjjXpX^) contains one of the posets in figure 56 as a 

m-subposet.

(ii) The poset in (i) with the addition of any combination of 

the following comparabilities: X2 < x^; < x4*

figure 56

x,

Proof: Suppose G^ is an induced subgraph of G with the vertices

of G3 labelled as in figure 57. It follows from Theorem 1 of [11] 

that XpX2,XpX^ M. Thus, consider the set {xpXpX^S V-M. If any 

two elements x¿,xj of the set {xpx^x^} are comparable in (V,<), say 

Xi < x j , then P (x j ) £. P (x ¿ ) which would imply that 

Ad j (xj )-{x¿}£ Ad j (x¿). But this is impossible for distinct 

xi*xj€ ixl >x3 >x4^" It follows that {xpXpX^} is an antichain of 

(V,<). A similar argument can be used to show X2I lx3 ■’■n (V,<).

(i)
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The remainder of the proof follows similarly to that of Lemma 4 

with an additional argument similar to that above for the various 

comparabilities for X2.///

figure 57

Lemma 10, G has G^ (for some n > 2) as an induced subgraph if 

and only if there exists an antichain {x2,x3 ,...,xm_pxm}£ V-M and an 

element x^ e V-M such that Xjl^, Xj | |xm and I(xpX2,...,xm) contains 

one of the posets in figure 58 as a m-subposet.

Proof: Suppose G has G^ as an induced subgraph with the vertices 

of G4 labelled as in figure 59. It follows from Theorem 1 of [11] 

that XpX2,...,xm«í M. Consider the set {x2,Xp...,xm}c V-M. If any 

two distinct elements x£»xj 6 {x2»x3»***-xm^ are comparable in (V,<), 

say xi < xj, then P(Xj)£ Pix^) which implies that x^Xj e E and 

Adj(xj)-{x£} £ Ad j (x £). But this is impossible for any 

XpXjC (x2»x3 ,...,xm}. A similar argument is used to show x^ | IX2 and 

xll|xm*

The remainder of the proof is similar to that for Lemma 5 with an 

additional argument similar to that above for the various 

comparabilities for Xp///
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5 + 2(n-l) vertices, (n > 2)

(ii) The poset in (i) with the addition of any combination of 

the following comparabilities: x^ < x^; x^ < x^;...; 

Xj < xm_|. There are 2m_ combinations and hence, 2m-J 

posets.

figure 58

figure 59

Lemma 11. G has G^ (for some n > 1) as an induced subgraph if 

and only if there exists an antichain {x2»x3 ,...,xffl_£ } c V-M and two 

vertices x1,xme V-M such that ^ll^, xjlx^j, xml|x2 and 

I(xj ,X2,...,xm_j ,xm) contains one of the posets in figure 60 as a m-

subposet.

(i)
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4 + 2n vertices, (n > 1)

(ii) The poset in (i) with the addition of any combination of

the following comparabilities: x^ < ~x-2> xl < x3» •••>

x, < x„ xm < x,; x„ < x, ; ... ;x„ < xm ,. There are I m—2’ m j’ m 4 ’ m m— I
22m-6 combinations and hence 22m-6 posets.

figure 60

Proof: Suppose G has G^ (for some n > 1) as an induced subgraph

with the vertices of G^ labelled as in figure 61. It follows from

Theorem 1 of [11] that Xj, X2,...,xme V-M. So consider the set

<X2»x3......... xm-l^~ V-M* If any two distinct x-.xp {x2Jx3»‘««>xm-i

are comparable in (V,<), say x^ < xj, then P(xj)£ P(xp. This implies

XpKj e E and Adj(xj)-{X|}£ Adjix^). But this is impossible for

xi>xj e Hence, {x2,x3,...,xm_|} is an antichain in

(V,<). By a similar argument, it can be shown that x^ I |xm, x^ I lxm-i

and xmI|x0. m 2

The remainder of the proof follows analogously to that for 

Lemma 6 with an additional argument similar to that used above for the 

various comparabilities for x^ and xm*///
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n + 5 vertices, (n > 1)

figure 61

The following theorem is a direct consequence of the preceding

five lemmas.

Theorem 23. A poset (P,<) has an interval UB-graph if and only 

if P does not contain a set {xj,X2,...,xm}, satisfying the conditions 

of Lemma 7,8,9,10, or 11, such that l(xj ,X2,...,xm) contains a poset 

in figure 54,55,56,58, or 60, respectively, as a m-subposet.///
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CHAPTER 4 OPEN PROBLEMS AND FUTURE WORK

Open problems and future work on the material which has been 

presented are summarized below.

In Section 1.1 no graph G was found for which dk(G) > 2. This 

problem remains open. Does such a graph exist or is it true that for 

all graphs G, dk(G) < 2? If the latter is the case, what does this 

mean in terms of ecosystems?

Using the characterization for strict UB-graphs, Theorem 6 of 

Chapter 1 determines kt(G) for any graph G. However, only upper and 

lower bounds were obtained for dkt(G) since strict DB-graphs have not 

been characterized. Characterizing strict DB-graphs is not a 

straightforward result of the characterization for strict UB-graphs as 

one might at first suppose.

Section 1.3 closed with the question of whether, given a graph G, 

it is possible to orient the edges of G so that adding loops to all 

the vertices yields a reflexive digraph with CCE graph G. This 

remains an interesting open problem.

Uniqueness of DB-graphs and/or CCE graphs has not been addressed 

in general. It was observed that bipartite graphs are unique DB- 

graphs of height-1 posets. From the work done in Chapter 2, it should 

be obvious that no DB-graph of a poset of height-n, n > 3, is unique. 

Thus, it is necessary that a DB-graph be realized by at most a height- 

2 poset if it is to be unique, and hence, the condition that there do
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not exist elements u,v e V-(M u n) such that Lx(u)c L'(v) and 

U'(v)£ U'(u), for sets M and N of Theorem 10 is necessary for 

uniqueness of DB-graphs, but not sufficient. Conditions for 

sufficiency remain open problems. However, uniqueness results for UB- 

graphs have been proved by McMorris and Myers [10].

In Chapter 3, a list of forbidden m-subposets was obtained for 

posets with interval UB-graphs. In 1982, Steif [17] proved that a 

forbidden sink induced subdigraph list exists for (acyclic) digraphs 

with interval competition graphs. Lundgren and Maybee [9] point out 

that to find such a list appears to be a difficult problem and they 

give an example to illustrate the difficulty. They suggest finding 

some modification of the notion of sink induced subdigraph. In view 

of Theorem 22 and the definition of m-subposet, perhaps redefining a 

sink induced subdigraph H of a digraph D as an induced subdigraph with 

the additional property: if x,ye H and xz, yze E(D), then there 

exists a weH such that xw, yi^e E(D), may be a more useful definition 

than the original definition by Steif [17]. With this definition, the 

problem Lundgren and Maybee encounter in their example [9] is 

eliminated.
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