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ABSTRACT

Benjamin Ward, Committee Chair

In this thesis, we study the free Lie algebra on two generators and a deformation of the
free Lie bracket. Our goal is a hands-on derivation of relations which this deformed Lie bracket
satisfies. The technical achievement that makes this possible is the identification of a basis for
where the relations occur. Using that basis, we verify and extend the calculations found in

Schneps| (2006). An interesting connection to the Euler polynomials is also discussed.
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PREFACE

In this paper, we begin by studying Lie algebras and their derivations. We recall a couple
results about derivations, including that the set of derivations on a Lie algebra is itself a Lie
algebra.

Then, we specialize to discussing the free Lie algebra on two generators x and y and its
derivations. We further our research by focusing on a deformation of the free Lie bracket. This
bracket is partially constructed from derivations and has the same underlying vector space as the
free Lie algebra on two generators: . = @ ILZ. It also has antisymmetry and the Jacobi identity,
and so is itself a Lie bracket. Working with said Lie bracket raises questions of generators and
relations, which we then find when d = 1 and d = 2, where d is the number of 3’s in the Lie word.

In[Schneps (2006), the author shows that the space of relations may be identified with the
space of Modular cusp forms. Using this, she calculated these relations for n < 22. One goal of
this thesis is to give a hands-on derivation of these relations which requires no background in
Modular forms. The technical achievement which makes this possible is the identification of a
basis for L2, which is eventually used to recalculate Schneps’s relations. Said basis was found
with the help of planar binary trees, which were used to formulate a correspondence. Specifically,
we identified a new set of Triples (n — s — t — 2, s, t), which can be mapped to an zy—Tree that is
then mapped to a specific Lie word. This correspondence helped reveal that triples where s = 0
and ¢ is odd map to a basis for 2. Because of our graphical intuition, we call the basis elements
odd combs.

Once the basis was determined, we formulated how to write any given Lie word as a linear
combination of odd combs. Note that we are slightly abusing notation to refer to both the graphs
and their corresponding Lie words as combs. To do this, the main objective was to find how to
rewrite even combs in terms of odd combs, which we then accomplished. The resulting
coefficients bear a striking similarity to those appearing in the even-indexed Euler polynomials.
We conjecture that the coefficients are always the same and verify the conjecture for the first 12

even-indexed Euler polynomials.
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Once we are able to write any Lie word in our basis, we are then able to carry out the
calculations to verify Schneps’s relations, which were mentioned above. Furthermore, we are able

to calculate all relations in L% for n < 26.



CHAPTER 1 LIE ALGEBRAS AND LL
1.1 Lie Algebras and Derivations

We will begin our discussion by defining the main object that we will be working with

throughout this paper.

Definition 1.1. A Lie algebra is a vector space V over Q along with a bilinear map

VxV =YV,

(@,y) = [z,y]
such that [z, y| = —[y,z|,Ve,y € V

and [[z,y], 2] + [y, 2], 2] + [[z,2],y] = 0,Va,y,2 € V

Within this context, we can now discuss one of the ways we can manipulate the elements

of a Lie algebra.

Definition 1.2. Let L be a Lie algebra. A derivation of a Lie algebra is a linearmap D : L — L

such that

forall a,b € L.

a b a b a b

Figure 1.1 Derivation of a Lie Algebra

Lemma 1.1. For any two derivations D, and Dy, D1 o Dy — Dy o Dy is a derivation.

Proof: Let ' = Dy o Dy — Dy 0 Dy and let a,b € L. From Definition [I.2] derivation of a

Lie algebra, we get the following:



F(la,b]) = (Djo Dy— Dyo Dy)([a,b])
= Di([Da(a), b] + [a, Da(b)]) = Da([Di(a), b] + [a, Dy (b)])
= [Di(D2(a)), b] + [Ds(a), D1 (0)] + [Di(a), Da(b)] + [a, D1 (Da(b))]
—[D2(D1(a)), 0] = [Di(a), Da(b)] = [Da(a), Di(b)] = [a, Da(Di(b))]
= [Di(D2(a)), b] = [D2(D1(a)), 8] + [a, D1(Da(b))] = [a, D2(D1(b))]

= [F(a),0] + [a, F(b)].

Therefore, Dy o Dy — Dy o D is a derivation. [J
Theorem 1.1. The set of derivations on a Lie algebra L is itself a Lie algebra.

Proof: Firstly, since derivations are closed under scalar multiplication and addition, the
derivations on a Lie algebra are a vector space.

Secondly, since Dy o Dy — D5 o D; is a derivation, the bilinear map is

Der(L) x Der(L) — Der(L),

(Dl,Dg) — [Dl,DQ] =DioDy— Dyo D;.

It’s easy to see that the map is antisymmetric, since
DyoDy— Dyo Dy =—(Dyo Dy — DyoDs).

Next, we need to show that the map has the Jacobi identity. Let Dy, D5, and D3 be
derivations.

We can then calculate the following: [[D1, Ds], D3] + [[Ds, D3], D1] + [[Ds, D1], Ds]

= [D1,Ds] 0 D3 — D3 o [Dy, Ds] + [Dy, D3] o Dy — Dy o [Dy, D3] + [D3, D1] 0 Dy

—D2 @) [Dg, Dl]



= (DyoDy—Dy0Di)oDy— Dyo (D 0Dy — DyoDy)+ (DyoDs— DyoDy) oD
—Dyo(DyoDs— DsoDy)+ (Dy0Dy —DyoDs)oDy— Dyo (D30 Dy — Dy o D)
= (DyoDy)oDs— (DyoDy)oDs— Dyo(DyoDs)+ Dso(DyoDy)
+(Dy 0 D3)o Dy — (D30 Dy) o Dy — Dy o (Dy 0 Ds) + Dy o (D30 D)
+(D30Dy)o Dy — (Dy 0 Ds) o Dy — Dyo (D30 Dy) + Dy o (Dy o Ds)

= 0.

The above calculation works because addition is distributive with the composition of
functions and because the composition of functions is associative. []
Note that the above proof would work for any associative operation, not just the

composition of functions.
1.2 The Free Lie Algebra, L

Definition 1.3. The free Lie algebra on two generators has the underlying vector space

L = @ L L4 is a span of Lie words with two generators, x and y. Specifically, the elements are
of word length n where y appears d times. Note that d < n, where n > 1 and d > 0. The Lie
words in L% are then bracketed together with the bracket |—, —| to generate more Lie words.

Therefore, we can see that [L3 | L%2] C Litd

Examples of elements in L include the following:

y € L
—ly, 2] = [z,y] € [L}, L] CL,
[ya .Z'] - —[.CE, y] S L%

[, [y, [[ly, =], 2], [z, 9]l]] € [L3,Ly] C L7



[, [[, 9], 1y, [l 9], v]]]], ([l 9], 2], [y, 2]]) € [L7,13] € Li,

[, [z, [z,9]]] € Ly

[z, 9], [ [z, yll] = [z, [z y]]. [z,9]] € Ls.

Lemma 1.2. Let a,b € L. There exists a unique derivation D : L. — L such that D(x) = a and

D(y) =b.

Proof: We will induct on word length to prove that a derivation which satisfies D(x) = a
and D(y) = b is uniquely determined. Our base case is that the image of a Lie word with length 1
is uniquely determined. This is defined as D(x) = a and D(y) = b.

For our induction step, we will assume that the image of all Lie words of length £ > 1 are
uniquely defined. We want to prove that the image of all Lie words of length k£ + 1 is therefore
also uniquely defined.

We know that any Lie word of length greater than or equal to 2 looks like [f, ¢g] such that f
and g are of a length greater than or equal to 1. Therefore, if a Lie word L is of length k£ + 1, it
can also be written in the form L = [f, g]. Since both f and g are of a length greater than or equal
to 1, f and g must both be of a length less than k£ + 1; i.e., f and g must have a word length of at
most k. Therefore, when using Definition [1.2} we get D([f, g]) = [D(f),g] + [f, D(g)], where
D(f) and D(g) are uniquely defined by assumption. Therefore, the image of a Lie word L of
length k£ + 1 is uniquely determined.

Therefore, a derivation which satisfies D(z) = a and D(y) = b is uniquely determined. [J

Definition 1.4. For f € L, define Dy to be the unique derivation such that the following holds:

Dy(x) = 0and Dy(y) = [y, f]

This derivation allows us to deform the free Lie bracket on LL to give the same underlying
vector space a new structure. In On the Poisson bracket on the free Lie algebra in two generators,

the following deformation is the titular Poisson bracket (Schneps, 2006, Page 1).



Definition 1.5. The deformed Lie bracket has the same underlying vector space as the free Lie

algebra. The Lie bracket is the only different aspect, so it is instead denoted with the curly

brackets: {—, —}. Specifically, it is given by

{f,9} = 11,91+ Dys(9) = Dy(f)

Now that we have defined the deformed Lie bracket, we can ask questions about it. For
example, how do we know that the curly bracket has antisymmetry and follows the Jacobi
identity? This proof can be found Schneps’s paper, but we will be demonstrating a more explicit

computation (Schneps, 2006, Page 4).
Lemma 1.3. The deformed Lie bracket has antisymmetry and follows the Jacobi identity.

Proof: Let f, g, and h € L.

First, we’ll show that { f, g} + {g, f} = 0 with the following calculation:

{9y {9, f} = 1,91 + Ds(g) — Dy(f) + g, f1 + Dy(f) — Dys(g) = 0.

Second, we’ll show that {{f, g}, h} + {{g,h}, f} + {{h, [}, g} = 0.

From Definition[I.5] we can calculate the following:

Hfogh by +{{g, h}, f1+{{h [} 9}

= A{lf,9, h} +{Ds(9), b} ={Dg(f), h} +{lg, hl, [} +{Dg(h), f} = {Dn(9), f}
+{[h, f1. 9} + {Dn(f), 9} — {Dy(h), g}
= [lf, 9], h] + Disg)(h) = Di([f, 9]) + [Df(9), hl + Dp,(g)(h) — Da(Dy(9))
—[Dy(f), h] = Dp,(s)(h) + Di(Dy(f)) + [lg: h], f1 + Dig i (f) = Dy ([g, )
+[Dy(h), f1+ Dpyiwy(f) = Dy(Dg(h)) = [Dn(9), ] = Do) (f) + D(Di(g))
+[[: f1, 9] + Dins(9) — Dy([, f1) + [Dn(f), 9] + Dy (9) = Dg(Dn(f))

—[Dys(h), 9] = Dp,ny(g) + Dg(Dy(h)).



From the Jacobi identity, we know that [[f, ¢], k] + [[g, 2], f] + [[}, f], 9] = 0. Using that

and Definition[1.2] we find that {[f, g, h} + {[g. R, f} + {[h. f]. 9}

= Dipg(h) = [Du(f), gl = [f, Du(9)] + [Dy(9), ] + Dp;(g)(h) — Di(D¢(9))
—[Dy(f): k] = Dp,(s)(h) + Du(Dy(f)) + Digsy(f) — [Ds(g), h] — g, Dy (1)]
+[Dy(h), f1 + Do,y (f) = Dy(Dyg(h)) = [Dn(9), f] = Dpy(e)(f) + Ds(Di(g))
+Dpng(9) = [Dy(h), f1 = [h, Dg(£)] + [Du(f), 9] + D, (5)(9) — Dy(Dn(f))
—[D¢(h), 9] = Dp,y(g) + Dy(Dy(h))

= Diyg(h) + Digm(f) + Dinsy(9) + Dp;g)(h) = Dy (9) = Diy(s)(h) + D,y (f)
—Dp,g)(f) + Dp,(1)(9) = Ds(Dy(h)) + Dy(Dr(g)) — Dyg(Dn(f)) + Dyg(Dy(h))
—Dn(Dy(9)) + Di(Dy(f)) = lg, Dy (h)] = [Dy(h), g] = [Dy(f), h] = [h, Dy(f)]

—[f; Du(9)] = [Dn(9), f1-

Due to antisymmetry, {[f, g], b} + {[g, b, f} + {[h, f], 9}

= Disq(h) + Dign(f) + Ding(9) + Dpyg)(h) = Dpyny(9) — Do, (h) + D,y (f)
—Dp,(g)(f) + D) (9) — Dg(Dy(h)) + Ds(Di(g)) — Dg(Dn(f)) + Dg(Dy(h))

—Dw(Dy(9)) + Dr(Dy(f))-

Claim: For f,g € L, Dis. gy = —Dp,(g) + Dp,(s) + Dy o Dy — Dyo Dy

Proof of Claim: First, we know that a sum of derivations is a derivation. Additionally, we
know that Dy, Dp,(g), and Dp,(y) are derivations. Lemma also gives us that
Dy o Dy, — Dgyo Dy is aderivation. Therefore, —Dp () + Dp,(y) + Dy o Dy — Dyo Dyisa
derivation.

Therefore, to show that Dj; ;) is equal to —DDf(g) + Dp,(sy + Do Dy — Dyo Dy, we
need to show what both do to z and y. If the results are equal, then, since derivations are unique

by Lemmal(I.2] the two derivations are equal.



First, we will calculate Dyy g:
Diyg(z) = 0
Disg(y) = ly:[f 9ll-

Second, we will calculate —DDf(g) + Dp,sy + Dy o Dy — Dy o Dy. Note that, for any
a € L, D,(0) = 0 because the derivation is not being applied anywhere. Therefore,
—Dp,(g)(2) + Dp,(5)(x) + D(Dy(x)) — Dy(Dy(x)) = 0.
Evaluating at y we find that —Dp . (4)(y) + Dp,5)(y) + Ds(Dy(y)) — Dy(Dy(y)) =
= [y, D9 + [y, Dy(NI+ [Dr(y), 9l + [y, Ds(9)] = [Dg(), f1 = ly, Dy(f)]
= lly. /1,91 = llv. 91, f]
= —lgly, fl+ 1/ v 4l

= —lg,ly. fI] = [f: 19, y]] = [y, [f, gl] (by the Jacobi identity).

Therefore, for f,g € L, Diy 4 = —Dp,(y) + Dp,(y) + Dy o Dy — Dy o Dy.
Returning to our proof, we still want to show that the equation will equal zero. Using our

claim, we can calculate the following: {[f, g],h} + {[g,h|, f} + {[h, f], 9}

= Disg(h) + Digm(f) + Dinsy(9) + Dy ()(h) = Dy (9) = Diy(5)(h) + D,y (f)
—Dp,)(f) + Dp,(r)(9) = Dy(Dy(h)) + Dy(Di(g)) — Dg(Dn(f)) + Dy(Dy(h))
—Dn(Dy(g)) + Dn(Dy(f))

= —Dp,g)(h) + Dp,s)(h) + D(Dy(h)) — Dy(Dy(h))
+Dp,(g)(h) = Dp,(p)(h) — Dy(Dy(h)) + Dy(Dy(h))

—Dp,n)(f) + Dp,g)(f) + Dg(Dn(f)) = Dn(Dy(f))
+Dp,m)(f) = Dpyie)(f) = Dg(Dn(f)) + Da(Dy(f))
—Dp,1)(9) + Dp,;m(9) + Du(Dy(9)) — Dy(Di(g))
+Dp,1)(9) = Dpymy(9) — Du(Dy(g)) + Dy(Da(g))

= 0



Therefore, {{f, g}, h} + {{g,h}, [} + {{h, [}, 9} = 0.

Therefore, the deformed Lie bracket has antisymmetry and follows the Jacobi identity. [

Note that, when referring to the free Lie bracket, we will use (L, [—, —]). Additionally,
when referring to the not free bracket, we will use (L, {—, —}).
Since (L, {—, —}) is not a free Lie algebra, we might ask what are its generators and

relations. We’re not going to look for all generators; instead, we’ll stick to low values of d.
Particularly, we’ll restrict ourselves to d = 1 and d = 2.
If d = 1, then the vector space L} is one dimensional and spanned by f; = [z, [..., [z, ]]].

Examples of these generators include the following:

3 = [{E, [ZB,yH € L}’)
i = [$, [l‘, [%ym GL}L
fs = [13 [1’, [x> [%y]m G]Lé.

Combined together, these elements form a basis for the subspace over all n.

Therefore, if d = 2, then we can bracket them together as { f;, fj}. However, the relations
between { f;, f;} (where 7 and j vary, but n remains the same) are not immediately apparent, and
it is one of the goals of this paper to find some.

Therefore, our question specifically becomes the following: What are the relations
between different { f;, f;} in L2? In|Schneps (2006), she gives a correspondence of Modular cusp
forms as an answer to this question. However, we want a more down to earth and explicit
formula, which is what this thesis will cover.

In order to obtain such a formula, we will need a basis for ]Li because that is where our

questions live. In order to obtain that basis, we will need to work with Planar Binary Trees.



CHAPTER 2 FROM TREES TO LIE WORDS

In this chapter, we will ultimately create a correspondence from a new set A,,, which we
will call the set of triples, to a collection of planar binary tree graphs, to Lie words in 2. We
begin this chapter by describing the specific graphs, which we label 77, that map to the Lie words
for which we are eventually going to find a basis. Then, we will outline the set of triples. We will

conclude this chapter by specifically defining the aforementioned correspondence.
2.1 Planar Binary Trees

Trees are connected graphs consisting of vertices and edges with no circuits. Binary trees
possess three edges at each internal vertex. Therefore, planar binary trees are binary trees
embedded in the plane with a choice of L (what goes on the left of a vertex), R (what goes on the

right of a vertex), and D (what goes down/below the vertex).

Definition 2.1. An XY -Tree is a planar binary tree with external vertices labeled by x and v,
except for one root which is drawn at the bottom (i.e., below the lowest internal vertex). We will
now define the set of XY -Trees as T, where n is the total number of external vertices and y

appears d times. Note that d < n, where n > 1 and d > 0.

XY -Trees can be used to represent Lie words in ILZ, where each bracket indicates an

internal vertex. An example of this relation can be seen in Figure 2.1]

X &

x Y
x.

X y"\;,.f = [y}, [, [, [z, [z, y]])]] € L2

~

Figure 2.1 A Tree Mapped to its Lie Word

Definition 2.2. The branching point of a tree in T? is the vertex of greatest height (in the context

of the tree visualization) such that both y’s are above it.
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The branching points of two trees (including the tree found in Figure[2.1)) are shown to be

red in Figure [2.2

Figure 2.2 Branching Points

Definition 2.3. (Right) combs in T? are trees where all of the external edges labeled with an x
and one external edge labeled with a y branch off to the left of their internal vertices. In addition,
all internal edges and the topmost external edge labeled with a y are therefore branching off to

the right of their internal vertices.

Right combs look like the tree picture on the left hand side of Figure[2.3] where, excluding
the two topmost external vertices, each external vertex is labeled with an x or y accordingly.
When mapping a right comb to a Lie word, the Lie word will look like the following:

[—, [—,[—,---s [=» —]---]]]- An example of this mapping can be seen in Figure

= [z, [y, [, [z, [z, [z, y]]))]] € L7

Figure 2.3 A Right Comb Mapped to its Lie Word
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2.2 Triples
Now, we will define the set of triples:
A, ={(r,s,t)|[s<t,r+s+t=n—-2,0<r0<s,and 1 < t}.
Using the branching point, we can define a function A,, — 772 in the following way:
(r,5,t) = Tirs )

where r is the number of edges below the branching point, and s and ¢ are the number of
edges on the above branches such that s < ¢. Additionally,r +s+t=n—2,0<7r,0 < s, and
1 <. Another way to think of r, s, and ¢ for the mapping to an XY -Tree is that they represent
the number of x’s on their respective section of the tree.

In 7{, 5 1), the trees will follow the convention that all of the external vertices labeled with
an z branch off to the left. Note that we will refer to this as the x on the left convention. This will
leave the two external y edges to either branch off to the right of their internal edges or follow
Definition right combs. Additionally, all s branches will be found on the left side of the
graph; i.e., the shorter of the two branches ending with y at the top will be on left side of the
branching point.

Visually, the mapping can be seen in Figure

Figure 2.4 Triples to Trees

Every right comb in the image of A, is of the form (r, 0, ¢) for some 7, t.
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2.3 Correspondence

Definition 2.4. For each (r, s, t) in A, there is a corresponding Lie word [r, s, t] € 1.2, The
following map outlines the connection between all three of the discussed representations via the

maps defined above:
A, —=T? =12 (2.3.1)

(r,s,t) = Thsy > [r,s,t]

This mapping follows from the map from A,, — T? discussed in Section Triples and

the map from T? — 1.2 discussed in Section Planar Binary Trees.

Examples of this correspondence can be found in Figures [2.5]and and

X :,_Y
x"\}’
(0,1,4) = y"\‘/ = ([, 9], [, [, [z, [z, )] = [0,1,4] € L2

Figure 2.5 Mapping the Triple (3,4, 5) to its Corresponding Lie Word

(3,4,5) — ol ylll] [, [, y) ] = 13,4, 5] € L,

Figure 2.6 The Correspondence of a Triple in A4 (Left) is Sent to the XY-Tree 13 4 5) (Center),
Which is Then Sent to its Corresponding Lie Word (Right)
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CHAPTER 3 FINDING A BASIS FOR L2

Now that we have constructed Definition 2.4, we will now work our way towards finding a
basis. However, before we can determine our basis, we must first determine some sets which span
L2.

3.1 Spanning Theorems

Theorem 3.1. The image of the composite in Equation is a spanning set for IL2.

Proof: It is enough to show that each Lie word is in the span of the image. Therefore, we
can take any Lie word and apply the = on the left convention to get a Lie word of the form
+[[—, [z,9]], [, [z, y]]], which is in the image of the composite. Therefore, since any Lie word
that is the same after the application of the convention is equal except possibly by sign, the above

: 2
composite spans L:. [

Recalling Definition we will now distinguish between the following two types of

combs.
Definition 3.1. Even combs occur if the t of a (r, s, 1) triple is an even integer.

Therefore, even right combs map to [a, 0, 2¢] such thata + 2i =n — 2,0 < a,and 1 <.
Definition 3.2. Odd combs occur if the t of an (r, s,t) triple is an odd integer.

Therefore, odd right combs map to [a,0,2i + 1] suchthata +2i + 1 =n — 2,0 < a, and

When n is even, there are ”T_Q odd combs. Additionally, when 7 is odd, there are ”T_l odd

combs.
Lemma 3.1. [r, s, s] = 0.
Proof: Anti-symmetry. [J

Lemma 3.2. [r,s,t] —[r+1,s —1,t]+[r,s —1,t +1] =0.
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First, let’s build some intuition for this proof by looking at a general (7, s, t) triple, as
shown in Figure Notice that the s and ¢ branches of 7|, , 1), when taken alone, look like trees
in T}'. It’s obvious that trees in 7}! map to Lie words in L}. As mentioned in Section|1.2| The Free
Lie Algebra, L, if d = 1, then the vector space is one dimensional and spanned by
fi = |z, [..., [,y]]] € L}. Therefore, the s and ¢ branches could be relabeled as f,.; and f,1,
respectively. This relabeling and the complete mapping as defined in Section [2.3| Correspondence

can be seen in Figure

Figure 3.1 Tree Associated to a General (r, s, )

When applying the Jacobi identity to 7}, , ), we can think of it as choosing an edge and
rotating the three edges above the two vertices of that edge. In this case, our desired results come
from when we pick the lowest edge above the branching point which lies on the s branch. In
Figure this edge is colored pink.

Now, we will perform the first rotation, which will result in the number of x’s below the
branching point remaining the same, but the values of the s and ¢ branches changing such that the
Lie word is [, ..., [[fe+1, ], fs]]. This can be seen visually in Figure[3.2]

Next, we will perform the second rotation, which will result in the number of x’s below
the branching point increasing by one and the value of the s branch decreasing by one. The ¢

branch will not change. The resulting Lie word is [z, ..., [z, [fs, fi+1]]]- This can be seen visually

in Figure[3.3]



(r,s—1,t+1)—

(r+1,s—1,t) —

Figure 3.3 The Second Rotation

= {xv ) Hft+17x]7 fS]]

=[xy [ [fss frel]]

15
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In the final step of building our intuition, if we ignore the r-times that x appears on the left
of each the three terms that we found, then we will get an equation which looks like the Jacobi
identity.

Now, keeping this intuition in mind, we will more rigorously prove Lemma[3.2]

Proof: First, we will start with a generic (r, s,t) € A,. Therefore,
(rys,t) = [r,s,t] = [z, .. [z, ...[x,9]], [z, ..., [z, y]]]

= [z, [fst1, fre1]]

= [x,...,[[z, fs], fr+1]] such that there are 7 x’s on the left.

Next, we find that
(rhs—1,t+1) o [rs—Lt+1 = [z, [fo 2 frr]]
= —lo, . (2, frd], £o]]
= [z, [[fors, 2, £o]l.

Then, we find that
—(r+1,s=1,)— —[r+1,s=1,t] = —[z,....[z,[fs fraa]l]

= [z, [[fss feaa], z]]-

Therefore, by combining the above calculations,
(rys,t) —(r+1,s—=1,t)+ (r,s —1,t+1)

= ['T7 A [[x>f5]7ft+1“ + [ZU, A Hf&ft-i-l}vz]] + [33, s Hft-l-lax]?fsn

Finally, since each of the three terms that we found have r-times that x appears on the left,

we can ignore those x’s. Therefore, we get the following, which looks like the Jacobi identity:

[z, £, frial + [[fs, fenl, 2] + [[fern, 2], fo] =0

ie,[r,s,t]—[r+1,s—1,t]+[r,s—1t+1 = 0.0
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By abuse of terminology, we refer to both the applicable trees in 7> and their image in L2

as right odd or even combs.
Proposition 3.1. Right combs span 1.2.

Proof In order to prove that right combs span L2, we need to show that any Lie word
[, s,t] € L2 can be written as a linear combination of right combs. To do this, we will use
Lemmal3.2} [r,s,¢] — [r+1,s = 1,t] +[r,s — 1,t + 1] = 0.

First, we can move two of the terms to the other side of the equation. This gives us
[r,s,t] = [r+1,5s — 1,t] — [r,s — 1, + 1]. Therefore, any Lie word [r, s, t] € L2 such that s = 1
has now been written as a linear combination of right combs.

Second, we assume that s # 1. Therefore, we can continue to apply Lemma[3.2]to the
results until we get an equation entirely consisting of right combs (i.e., until s = 0). In the case of

s = 2, the process would look like this:

r4+1,2-1,t] = r+22-24]—[r+1,2—2t+2]
and [r,2 —1,t+1] = [r+1,2—-2t+1]—[r,2—-2,t+2]
=[r2,t = [r+20t—[r+1,0,t+2]—([r+1,0,t+1] = [r,0,t +2]).

Assuming that s # 0 after the first two applications of Lemma[3.2] we then continue until

we get the following set of equations:
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r, s, t]

N

[r+1,s-1,1] -[r,s-1,t+1]

TN

[r+2,5-2.1] 2[r+1,8-2,t+1]  +[r.s-2,1+2]

TN T

[r+3.5-3.t] 3[r+2,8-3,t41] +3[r+1,s-3,t+2]  -[r,s-3.1+3]

A/\/\/\

[r+4,s-4.1] A4[r+3,5-4,t+1] +6[r+2,5-4,t+2] -4[r+1,s-4,t+3] +[r,s-4.1+4]

And so on until we get: [r, s, t]

_ (3)[T+S,O,t] - G)[Hs—1,o,t+1]+...+(—1)8<z)[r,0,t+s].

Therefore,

s

I, s, 1] :Z(—nk(;) [r+s—k,0,t+ k. 3.1.1)

k=0

Therefore, any Lie word [r, s, ¢] € L2 can be written as a linear combination of right

combs. In other words, right combs span. [J

3.2 Basis Theorem

To simplify the notation further, when dealing with both even and odd combs, the

following symbols may be used interchangeably: [r,0,t] = R;. More generally, in L2, this means

that [n —2 —¢,0,t] = R;.

For example, the following list includes all of the odd combs in IL2,:
9,0,1] = Ry
[7,0,3] = Rs

[57 07 5] = RS



[37 07 7] = R?

[1,0,9] = R.

Theorem 3.2. Odd combs form a basis for 1.2

Proof First, we will show that odd combs are in a span of Li.
According to Lemma 3.1} we know that [r, s, s] = 0. Therefore, if we combine Lemma

[3.T]and the proof of Proposition 3.1 namely Equation [3.1.1] we get the following:

0 = (;)[T+S,O,S]—(i)[r—i—s—1,0,s+1]+...+(—1)S<z)[r,0,23]
= i(—l)k<2)[r+s—k,0,s+k]

k=0

Therefore, each even comb is in the span of the combs below it. In other words, we can
iterate to write any Lie word as a linear combination of just odd combs.

Second, we know the formula for the dimension from Schneps (2006):

dmL) =L Y ) 2

n—d)|(d)|’
na\(d,nfd) ( a >'(a)'

where 1 denotes the Mobius function.

Therefore, when d = 2 and n is even, the dimension equation simplifies to:

dim@2) = L)) )
" n (n —2)1(2) (253)!
B n—1 n 1
T2 9 g
_rn_ 1 1 n»n .
2 2 2 2
B n—2
=
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Additionally, when d = 2 and n is odd, the dimension equation simplifies in the following

way:
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aim(L?) = o). 2020
o on— 1
- 2

Therefore, since odd combs both span and have the correct number of vectors (as

determined by the formula for the dimension found in Schneps’s paper), the odd combs are

linearly independent.

Therefore, odd combs form a basis. [
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CHAPTER 4 REWRITING EVEN COMBS IN TERMS OF ODD

Since we now know that odd combs span Li, we will determine how to write even combs
as linear combinations of odd combs. After doing so, we will specifically calculate Rs; for
1 <7 < 12. These calculations bear a striking resemblance to the first twelve even-indexed Euler
polynomials, so we conclude this chapter with the introduction of a conjecture relating the two

and possible pathways to proving it.
4.1 Calculating Even Combs

We will now inductively rewrite even combs in terms of odd combs using
rys,8] =0=>7_,(—=1)* (Z) [r+s—k,0, s+ k] and show that coefficients are in fact integers.
Recall that, in L2, [n — 2 — t,0,¢] = R;. Note that R; depends on n, but we will prove identities
which hold for all n.

For our base case, we will let s = 1. This gives us that [r1, 1,1] = R; — Rs. Therefore,
Ry = R;.

For our induction step, we will assume that Rop = a1 Ry + a3R3 + ... + agp_1 Rox_1 for
k € N and some ay, as, ..., as,_1 € Z. Now, we want to show that
Ro(kg1) = Ropqo = b1 Ry + ... + bopq1 Rog 11 for some by, , ..., o1y € Z.

First, let s = k& + 1. Then,

mk+1,k+1 = 0
k+1

_ Z(—l)”(kl_l)[r+(k+1)—n,O,(/-c+1)+n]

= Rinr— (k4 DResa+ o+ (-1 Gk + 1) Ry

+(=1)"(k + 1) Rojs1 + (—1)"" Rogo

By assumption, for all m < k, Ry, = m1 Ry + m3R3 + ... + Moy, 1 Rop_1 such that
mi, ms, ..., mam_1 € Z. Therefore, for every even comb R, such that m < k, we can substitute

in the linear combination of odd combs that add up to be Ry,,.
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In our first case, if k + 1 = (20 + 1) + 1 for some [ € N, then k + 1 is even. Therefore,

1
0= [Roiya] — (20 4+ 2)Royy3 + ... + (5(21 + 1)(20 4 2))[Rary2] — (21 + 2)Rayy13 + Rapva,

where each even comb in brackets would be replaced with the linear combination of odd combs
as previously described.

Therefore,

Ryyqa = —[Ropya] + (21 +2)Royy3 — ... — (2L + 1)(1 + 1)) [Rur2] + (21 + 2) Ryp 3.

In other words, if a number £ can be written as k = 2/ + 1, then Ry, o can be written as a linear
combination of odd combs.

In our second case, if £ + 1 = 2] + 1 for some [ € N, then k + 1 is odd. Therefore,

0= Roy1— (20 + 1)[Ropya] + ... — (I(2L + 1))[Ry] + (2l + 1) Ry 1 — Rusro,

where each even comb in brackets would be replaced with the linear combination of odd combs
as previously described.

Therefore,

Ryto = Rop1 — (20 + 1)[Ropsa] + ... — (120 + 1) [Ray] + (21 + 1) Ragy1.-

In other words, if a number £ can be written as k = 2[, then Ry > can be written as a linear
combination of odd combs.
The following consists of the calculations for the first twelve even combs written as a

linear combination of odd combs:



[7“1,1,1]

[T2727 2]

[7"3,3,3]

[T’4, 47 4]

[T5757 5]

[r67676]

[T'?v 77 7]
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11 +1,0,1] — [ry,0,2]

R2:R1

Ry — 2R3+ Ry
Ry — 2R3+ Ry

Ry=—-R +2R;

Ry — 3Ry + 3R5 — Ry
Ry — 3(—Ry + 2R3) + 3Rs — Rg

R¢ =3R; — 5R3 4+ 3R;

Ry —4Rs + 6R — ARy + Ry
(—Ry + 2R;) — 4R5 + 6(3R, — 5R3 + 3R5) — 4Ry + Ry

Ry = —17TR; +28R3 — 14R5 + 4R;

Rs — 5Rg + 10R; — 10Rs + 5Ry — Ryg
Rs — 5(3R;, — 5R3 + 3Rs) + 10R; — 10(—17Ry + 28R; — 14R5 + 4R;)

R10 == 155R1 - 255R3 + 126R5 - 3OR7 + 5R9

Rg —6R; + 15Rs — 20Rg + 15 R19 — 6Ry1 + R

Rip = —2073R; + 3410R3 — 16835 + 39627 — 55Rg 4+ 61311

R; — TR +21Rg — 35R1g + 35R11 — 21R12 + TR13 — R4
38227R; — 62881R3 + 31031 Ry — 7293 R7; + 1001 Rg — 91 Ry
+T7R13 — Ry

Ryy = 38227R; — 628813 + 31031 R5 — 7293R; + 1001 Rg — 91 R + 7R3




[r87878]

[T97979]

[7’10, 10, 10]
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Ry — 8Ry + 28R19 — 56 Ry + T0R19 — 56 Ry + 28Ry — 8Ris + Rug

929569R, — 1529080R3 + 754572 Rs — 177320R7 4+ 24310Rg — 2184 Ry,
+140R13 — 8R15 + Ris

Rig = —929569 R, + 15290803 — 754572R5 + 1773207 — 24310R,

+2184Ry; — 140R3 + 8Ry5

Rg —9R1o + 36R11 — 84R12 + 126 R13 — 126 Ry4 + 84R15 — 36 Ry
+9R7 — Rig

28820619R; — 474080193 + 23394924 R5 — 5497596 R7 + 753610
—67626 R, + 4284 Ry3 — 204R5 + 9R17 — Rig

Rig = 288206191, — 47408019 R5 4 23394924 R5 — 5497596 R 4 753610 Ry

—67626 R + 4284 R13 — 204R15 + 9Ry;

Rip — 10Ry; + 4512 — 120Ry3 + 210R14 — 252Ry5 + 210R;6 — 120Ry7
+45R15 — 10R19 + Ry

1109652905 R, — 18253058703 4+ 900752361 R5 — 2116683607
+29015090Rg — 2603380R11 4 164730R,3 — 7752R15 + 2857
—10R19 + Rao

Ryy = —1109652905 Ry + 18253058703 — 900752361 R5 4+ 21166836077

—29015090Rg 4 26033801; — 164730R 3 + 7T752R5 — 28517 + 10Ry9
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[r11,11,11] = Ry; — 11Ry9 + 55Ry3 — 165 R4 + 330R 5 — 462 Ry + 462R17 — 330 R

+165R19 — 5590 + 11 Ry — Rao

= 51943281731 R, — 854432736853 + 42164565597 5
—9908275971 R7 + 1358205310 Ry — 121863378 Ry + 77100103
—362406 15 + 13167R17 — 385R19 + 11 R9; — Roo

= Ry = 51943281731 R; — 854432736853 + 42164565597 R

—9908275971 R7 + 1358205310y — 121863378 Ry + 771001023

—362406 ;5 + 13167R;7 — 38519 + 11 Ry

[r12,12,12] = Ryy — 12Ry3 4+ 66R14 — 220R15 + 495R16 — 7T92R17 + 924 Ry — 792 Ry
+495R90 — 220R9; + 66 Raa — 12Ra3 + Roy
= 2905151042481 R; — 4778781919252 R5 + 2358234353706 R5
—554162862132R; + 75963449111 Ry — 6815721192 Ry; + 43120887623
—20266312Ry5 + 735471 R17 — 21252 R19 4+ 506 Ro1 — 12Ro3 + Roy

= Ry = —2905151042481 R, + 4778781919252 R5 — 2358234353706 R

+554162862132R7 — 75963449111 Ry + 6815721192 R, — 431208876 ;3

+20266312Ry5 — 735471 Ry7 + 21252 R19 — 506 Ro; + 12R93

4.2 Euler Polynomials

One interesting note is how our calculations thus far relate to the Euler polynomials. Euler
polynomials have been studied for hundreds of years. We recall a few details here, and for further
explanation refer to Abramowitz and Stegun| (1964) and the references therein.

The Euler polynomials are a similar set of polynomials to the Bernoulli polynomials based
on a generating function. This is notable in that Schneps’s paper notes a connection between these

relations and arithmetic properties of the Bernoulli numbers (Schneps, |2006, Page 2).
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The generating function for the Bernoulli polynomials is

where B, (z) = > ") _, (Z) B,,_1x"* and, for n > 0, By, are Bernoulli numbers. The Bernoulli
numbers B5,, can be calculated with the help of the Bernoulli polynomials; specifically, that
relation is B,, = B,,(0).

Meanwhile, the generating function for Euler polynomials is the following:

where E,,(z) = >0, (7) 2 (z — 1)™~* and E}, are the Euler numbers. The Euler numbers are

calculated by Ki(t) = &f? =3, %t”. Additionally, the Euler numbers are related to a

special value of the Euler polynomials: E,, = 2"E, ().

An explicit formula for the Euler polynomials is given by

En(z) = Zozin;(—mk(?;) (x + k)™ 4.2.1)

This formula can then be used to derive the first few Euler polynomials:

Eo(x) =1
1
Ei(z) = x— 3
Ey(r) = 2% —2
3 1
E — 3_ 2,2 -
3(x) 2’ =5 —1—4
Eyr) = 2*—22°+2
5 5 1
Es(z) = 2°— 51‘4 + §x2 —5

Es(z) = 2% —32° +52° — 3.
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Notice that we have already seen something which looks surprisingly similar to Es, Fy,
and Ej in the previous section of this chapter. Specifically, if we define polynomials

Fs, =" a;R" where Ry, = Y, 4, @i R;, then it’s natural to conjecture:
Conjecture 4.1. (—1)"E,, = Es,

This conjecture can be seen in the following two equations:

r,1,1]=R,—Ry,= E, =-R’+R'
—Ey(z) =-1*+x
[ry,2,2] = Ry —2Rs + Ry = E, =R'—2R*+ R

Eyz) =a2*-22%42

Furthermore, note that this conjecture has been proven in Section Calculating Even
Combs for the cases such that n < 12. The conjecture is mainly helpful in that it creates a fast
way to perform some of the desired calculations for the following section.

Even though we have not yet been able to prove the conjecture for all values of n, we did
attempt a few methods. For example, we attempted to find a different formula for the Euler

polynomials that more closely matched the formulas used to find Eby:

2a_
2a 2 2a
Ey = k ( I ) 2otk _ (2 k) Eoqton

2a 2a

2a+1 2a+21 1_
2a + " 2a +1

—FEjoqr = k( ) 2okt Z (Zk: n 1) Eoqti42k+1
- 2a + 1 20+ 1
= Z (_1)k ( )x2a+1+k‘ + Z ( >E2(a+k+1) (4.2.3)
prd k prd 2k +1

Equations [4.2.2] and [4.2.3| were formulated after generalizing the pattern found in the
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following calculations (which are almost exactly the same calculations used to find Egn):

e - Qe (- (o (e

In an effort to prove Equations [4.2.2]and [4.2.3] we initially attempted to show that the

functions equaled Equation but we were unable to do so. Additionally, we tried to use the
property of Euler polynomials that says the derivative of E, is equal to nF),, ;. Specifically, since
we’re only working with the even-indexed Euler polynomials, we used the formula

E"(z) = n(n — 1)E,_5. Because we’re only working with even-indexed Euler polynomials, this

formula might be a good way to prove the conjecture.
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CHAPTER 5 REVISITING (L, {—, —})

We now return to our main goal: to calculate relations for the deformed Lie bracket. In
Schneps| (2006)), the author finds that the dimension of the space of relations in degree n is

dim S, (SL2(Z)), the dimension of the space of modular cusp forms. For integers k& > 0,

%] if k#1 mod 6,

[

[N

|]—1 ifk=1 mod6

see, for example, (Lang, 1995, Page 12).
Using modular cusp forms, Schneps was able to calculate several relations for n < 22.
Now that we have a more hands-on understanding of 12, we can verify her calculations using

right combs. Then, we can give relations for larger values of n.
5.1 Schneps’s Equations

In Schneps’s paper, she finds the following relations in terms of her calculations: For
n = 12,16, 18,20, 22, we have dim S,,(SL2(Z)) = 1. Therefore, up to scalar multiple, there is

exactly one relation for each of these values of n (Schneps, 2006, Page 13). They are given by

n=12 : {fs,fo} = 3{fs, fr} =0 (5.1.1)
n=16 : —2{fs, fis} + 7{fs, fu} — 11{fr, fo} =0 (5.1.2)
n=18 : 8{fs fis} — 25{fs, f1a} + 26{fr, fu} =0 (5.1.3)
n=20 : 3{fs, fir} = 10{[s, fis} + 14{f7, frs} —13{fo, f1} = 0 (5.1.4)

n=22 : 32{fs, fio} — 105{f5, fir} + 136{f7, fis} — 85{/fo, f13} = 0. (5.1.5)

Note that, for n = 14, the dim S,,(SL2(Z)) = 0, so there are no relations. Therefore, it is
our goal to both check to see if these formulas can be recreated following our calculations and to

see if we can calculate more formulas.

As defined in Definition the deformed Lie bracket is given by
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{f.9} =1f. 9]+ Ds(g) — Dy(f). Now, let f and g be the right combs (i.e., generators with one
y) f» and g,, such that n and m are odd, meaning that we now need to determine to what D, ()

and D, (f,) are equal.
Proposition 5.1. Dy, (foj+1) = (27,0, 2i]

Proof: Recall from Definition [I.2]that, for derivation D, D([a,b]) = [D(a),b] + [a, D(b)].
Additionally, recall from Definition [1.4]that, for f € L, Dy(x) = 0 and D;(y) = [y, f].
For the sake of clarity in the calculations, let fo;11 = f,, and fo;41 = g2j41 = G-

Now, we will calculate Dy, (g,,)

= [Dy. (), 925] + [z, Dy, (925)]
= [z, Dy, (92)]
= [z, Dy, ([z, 9251])]
= [2,[Dy, (), g251]l + 2, [z, Dy, (g2j-1)]]
= [z, [z, Dy, (g25-1)]]
Repeat this process until we have 27 — 1 x’s to the left of the derivation
= [z [ [z, Dp, ([, y])]]
= [z [ 2, Dy, (@), yll] + [, [, [2, [z, Dy, ()]
= [z,[..., [z, [z, Dy, (y)]]]] (Note that we have 2j «’s to the left of Dy, (y))
= [z [ [z [z [y, fullll]
= |z, [ [z, [z, [y, [z, [, [z, y]]]]]] (Note that f,, has 2i 2’s)

= [24,0,2i]. 0

Therefore, { foi 1, fojr1} = [foir1, fojra] + Dpyiy (foj1) — szm(fzwl)’ where, for
2i+1<25+1, [f2i+17 f2j+1] = [07 21, Qj]’ Df2'i+1 (f2j+1) = [2j7 0, 2i] and,
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Dy, ., (fair1) = [24,0,25]; ie., for n < m,

{fosfmt=0,n—1,m—1+[m—1,00n—1] —[n—1,0,m — 1] € L?

n+m-

5.2 Calculating Schneps’s Equations

With all of that established, we can now calculate the equations given by Schneps.

First, we will calculate Equation {fs, fo} = 3{fs, =}
Using Proposition we know that

{f37f9} - 3{f57f7} = [072’8] + [870’ 2] - [27078} - 3([074’ 6] + [670’4] - [470’6])'

Using Equation and our calculations found in Section 4. 1| Calculating Even Combs,

we will find that

[0,2,8] = Rs—2Rg+ Rip=138R; —227R3 + 112R5; — 26 R7 + 3Ry
[2,0,8] = Rs=—17TR;+28R3 — 14Rs + 4Ry
8,0,2] = Ry=R;
and
[0,4,6] = 56R; —92R3+ 45R5 — 10R7 + Ry
[4,0,6] = Rg=3R; —b5R3+3R;
[6,0,4 = Ry=—R;+2Rs.
Therefore,

{fs. fo} = [0,2,8] —[2,0,8] + [8,0,2] = 156 R, — 255R5 + 126R5 — 30R; + 3Ry

{fs, fz} = 10,4,6]+1[6,0,4] — [4,0,6] = 52R; — 85R3 + 42R5 — 10R; + Ry.

Therefore, {fg, fg} — 3{f5, f7} =0.
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We will now repeat this process with the remaining four equations.

For Equation 5.1.2} we can find { f3, fi3}, {f5, f11}, and {f7, fo} through the respective

equations below:

0,2,12] =
2,0,12] =

[12,0,2] =

0,4,10] =
[4,0,10] =

[10,0,4] =

0,6,8] =
6,0,8] =

8,0,6] =

Therefore,

{fs, f1s} =
{fs, fu} =
{f7. o} =

Therefore, —

36154 R; — 59471 R3 + 29348 R5 — 6897 Ry 4+ 946 Rg — 8511 + 513
Ri9 = —2073R; + 3410R3 — 16835 + 396 Ry — 55 Ry + 6”1y

Ry = Ry

25944 Ry — 42676 Rs + 21059 R5 — 4947R7 + 676 Ry — 59Ry1 + 313
Rip = 155R; — 255R3 + 126 R5 — 30R7 + 51y

Ry=—Ry + 2R3

9440R, — 15528 Rg + 7662R5 — 1799R; 4 245Rg — 21Ry; + Ra3
Rg - —17R1 + 28R3 - 14R5 + 4R7

Rﬁ - 3R1 - 5R3 + 3R5

38228 Ry — 62881 R3 + 31031 R5 — 7293 R7 + 1001Rg — 9111 + 5Ry3
25788 Ry — 42419R3 + 20933 R5s — 4917TR7 + 671Rg — 59R11 + 3Ry3

9460R; — 155613 + 76795 — 1803 R7 + 245Ry — 21 Ry + Rys.

2{f3, fiz} + T{f5, fu} — 11{f7, fo} = 0.

For Equation [5.1.3] we can find that { f3, f15}, {f5, f13}, and { f7, f11} come from the

following calculations:



0,2, 14]

2,0, 14]

[14,0,2]

[0,4,12]

[4,0,12]

12,0, 4]
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—891342R; + 1466199Rs — 723541 R5 + 170027 R; — 23309Ry + 2093 Ry,
—133Ry3 +6Ry5
Ry = 38227TR; — 62881 R3 + 31031 R5 — 7293R7 4+ 1001Rg — 91 Ry1 + 7R3

Ry = IRy

—702280R; + 1155204 R5 — 5700695 + 133958 Ry — 18359 Ry + 1644 R,
—102R13 + 4R15
Ri9 = —2073R; + 3410R3 — 1683 R5 + 396 R7 — 55 R + 6 R11

Ry = —R; + 2R3

0,6, 10] —387104R; + 6367603 — 314226 R5 + 738357 — 10115Rg 4 903 Ry
—05R13 4+ 2R3
6,0, 10] Ryp = 155Ry — 255 R3 + 126 R5 — 30R7 + 5Ry
[10, 0, 6] R¢ = 3R, — bR3 + 3Rs.
Therefore,

{fs, f15} —929568R; + 1529080R3 — 754572 R5 + 177320R; — 24310Ry + 2184 Ry,
—140R;3 + 6Ry5

{f5, f13} —700208R; + 1151796 R3 — 568386 5 + 133562 R7; — 18304 Ry 4+ 1638 R11
—102R3 + 4R35

{f7, f11} —387256 R, + 637010R3 — 314349R;5 + 73865 R7 — 10120 Rg 4 903 R14

—55R 13 + 2Ry5.

Therefore, 8{f3, f15} — 25{f5, f13} + 26{f7, fu} = 0



For Equation[5.1.4] we get the following:

0,2, 16]

2,0, 16]

(16,0, 2]

(0,4, 14]

[4,0,14]

14,0, 4]

[0,6,12]

[6,0,12]

12,0, 6]

[0,8,10]

8,0, 10]

(10,0, 8]

27891050R, — 45878939 R5 + 22640352R5 — 5320276 R7 + 7293009
—65442 Ry + 4144 R13 — 196 Ry5 4+ 7Ry7

Ris = —929569R; + 1529080R3 — 754572 R5 + 177320R; — 24310 Ry
+2184Ry; — 140Ry3 + 8Ry5

R2:R1

23281432 R, — 38296420R3 + 18898523 R5 — 4440969 R + 608751 Ry
—b54613Rq1 + 3451 Ry3 — 160Ry5 + 5Rq7
Ry = 38227TR; — 62881 R3 + 31031 R5 — 7293R; 4+ 1001Rg — 91 Ry1 + 7TRy3

Ry = —Ry + 2R3

15448416 Ry — 25411624 Rs + 12540126 R — 2946795 R7 + 403920 Ry
—36225R11 + 2283 R13 — 104R15 4+ 3Ry
Rio = —2073R; + 3410R3 — 1683R5 + 396 R7 — 55Rg + 6”11

R¢ =3R; — 5R3+ 3R;

34

541068811 — 8900224 R3 + 43920805 — 1032088 R7 + 1414659 — 12684 Ry,

+798R13 — 36 Ry5 + Ry
RlO = 155R1 - 255R3 + 126R5 - 30R7 + 5R9

Rg == —17R1 + 28R3 - 14R5 + 4R7
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Therefore,

{fs, fi7} 28820620R; — 47408019 R3 + 23394924 R5 — 5497596 R7 + 753610 Ry
—67626Ry; + 4284 R13 — 204Ry5 + TRy7

{f5, f15} 23243204 R, — 38233537R3 + 18867492 R5 — 4433676 R; + 607750 Ry
—54522Rq1 + 3444 R13 — 160R15 + 5Ry7

{f7, f13} 15450492 R, — 25415039 R3 + 12541812R5 — 2947191 R7 4 403975 R,
—36231Rq1 + 2283 R13 — 104Ry5 + 3Ry7

{fo, f11} 5410516 Ry — 8899941 R3 + 4391940R; — 1032054 R7 + 141460 R9 — 12684 R,

+798R13 — 36 R15 + Ruy.

Therefore, 3{ fs, fir} — 10{f5, fis} + 14{f7, fis} — 13{fo, fi1} =0

Finally, for Equation [5.1.5] we can calculate the following:

0,2, 18]

[2,0,18]

[18,0,2]

[0,4,16]

4,0, 16]

(16,0, 4]

—1080832286 %) + 17778978513 — 877357437 Rs + 206170764 R,
—28261480Rg + 253575411 — 160446 R13 + 7548 Ry5 — 276 R17 + 8Ryg

Ris = 28820619R, — 47408019 R3 + 23394924 R5 — 5497596 7 + 753610 Ry
—67626 R + 428413 — 204R5 + 9 Ry

Ry = Ry

—937658760R; + 15423868365 — 7611373895 + 178860104,
—24517740Rg + 2199808 R1; — 139166 R15 + 6536 R15 — 235R17 + 619
Ris = —929569R; + 1529080R3 — 754572 R5 + 177320R; — 24310 Ry
+2184Ry; — 140R;3 + 8Ry5

Ry = —R; + 2R3
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[0,6,14] = —691248928R; + 1137058904 R3 — 5611160505 + 131856927 R;

—18074589Rg + 1621659R1; — 102563 Ry5 + 4806 R15 — 170R 7 + 4Rq9
[6,0,14] = R4 = 38227R; — 62881 R3 + 31031 R5 — 7293R; + 1001 Ry — 91Ry; + TR13

[14,0,6] = Rg=3R, —5Rs+ 3Rs

[0,8,12] = —366677120R; 4+ 6031596805 — 297647344 R5 4+ 69944264 R; — 9587737 Ry
+8601901; — 54390 R 3 + 2544 R15 — 89Ry7 + 2Ry
[8,0,12] = Ryp = —2073R; + 3410R3 — 1683R5 + 396 R7 — 55Rg + 63

[12,0,8] = Rs= —17R, + 28R; — 14Rs + 4R;.

Therefore,

{fs, fis} = —1109652904R; + 1825305870 R3 — 900752361 R5 + 211668360 R;
—29015090 Ry + 2603380R11 — 164730R 3 4+ 7752R15 — 285R17 + 8Ry9

{fs, fir} = —936729192R; + 1540857758 R3 — 760382817 R5 + 178682784 R
—24493430Rg + 2197624 R, — 139026 R13 4 6528 R15 — 235R17 + 6Ry9

{f7, fi5} = —691287152R; + 1137121780R3 — 561147078 R5 + 131864220 R,
—18075590Ry + 1621750R1; — 102570 R13 + 4806 R15 — 170R17 + 4 Ry9

{fo, f13} = —366675064R; + 603156298 R3 — 2976456755 + 69943872 R;

—9587682Rg 4 860184 R1 — 543903 + 2544 R15 — 89R17 + 2Ry9.

Therefore, 32{ f3, fio} — 105{f5, fir} + 136{f7, fis} — 85{ fo, fis} = 0.

5.3 Finding New Relations

Using the dimension equation, we can find that the dim So6(S L2(Z)) = 1. Therefore, as

with Schneps’s equations, up to scalar multiple, there is exactly one relation for n = 26:

1032{ f3, faz} — 3395{ fs, for } + 4466 f7, fio} — 3135{fo, fir} + 1292{ f11, f15} = 0. (5.3.1)



Now, we can show that this calculation works with the equations found below:

0,2, 22]

[2,0,22]

(22,0, 2]

[0, 4, 20]

[4,0, 20]

20, 0, 4]

0,6, 18]

(6,0, 18]

18,0, 6]

—2853207760750R; + 4693338645567 Rs — 2316069788109 R;
+544254586161 Ry — 74605243801 Ry + 669385781411 — 42349886613

+19903906 R15 — 722304 R7 + 20867 R19 — 495 R + 10Ro3
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Rgg = 51943281731 Ry — 854432736853 + 42164565597 R5 — 9908275971 R7

+1358205310Rg — 121863378 R1; + 77100103 — 362406215 + 1316717
—385R19 + 11 Ry

Ry = Ry

—25946010050002; + 4267947583012 R5 — 2106147712485 5
+494924874666 7 — 67843232341 Rg 4 608714430421, — 3851135463
+18099628 R15 — 65675417 + 18952 R19 — 444 Ry + 8 Ras

Ryy = —1109652905 1 + 18253058703 — 900752361 R5 + 21166836027
—29015090Rg + 2603380111 — 164730R 3 + 7752R15 — 285 R17 + 10R9

R4 - —R1 -+ 2R3

—2142617789472 R, + 3524464994008 R — 1739253760242 R;
+408708250371 R7 — 56024842201 Ry + 5026753596 11 — 3180253923
+14946298 R15 — 542232 R17 + 15621 R19 — 361 Ry + 6 Ra3

Rig = 28820619R; — 47408019R5 + 23394924 R5 — 5497596 R;
753610Ry — 6762611 + 4284 R3 — 204Ry5 + 97

R¢ =3R; — 5R3 + 3R;



[0,8,16]

8,0, 16]

(16,0, 8]

(0,10, 14]

(10,0, 14]

14,0, 10]

38
—15276088096002; + 2512815771520 R5 — 1240024878960 R5

+291394164776 R7 — 39943679961 Ry + 3583891864 R11 — 226739884 k43
+10655880R 15 — 386501 R17 4+ 11116 R19 — 254 Ro1 + 4Ra3

Ris = —929569 R, + 15290803 — 754572R5 4+ 1773207 — 24310R,
+2184R; — 140Ry3 + 8Ry5

Ry = —17TR; +28Rs — 14R5 + 4R~

—794719937024 R, + 1307261897856 R3 — 6451078883205
+151594275984 R7 — 20780213910 Rg + 1864475711 R1; — 1179583793
+5543472R 5 — 201036 17 + 5775 R1g — 131 Ra1 + 2R3

Ryy = 38227R; — 62881 R3 + 31031 R5 — 7293 R + 1001 Rg — 91 Ry + TRy3

Rip = 155R; — 255R3 + 126 R5 — 30R7 + 5Ry.

Therefore,

{f37 f23}

{fs, far}

{f7, fio}

—2905151042480 R, + 4778781919252 R3 — 2358234353706 R
+554162862132R7 — 75963449111 Rg 4 6815721192R1; — 431208876 R13
+20266312R; 5 — 735471 R 7 + 21252 R19 — 506 Rg1 + 10 R
—2593491352096 R + 4266122277144 R3 — 2105246960124 R;
+494713206306 R7 — 67814217251 Ry + 6084540924 R, — 3849488163
+18091876R15 — 65646917 + 18942 R19 — 444 R91 + 8Ra3
—2142646610088 R + 3524512402022 R3 — 1739277155163 R;
+408713747967 R7 — 56025595811 Rg + 5026821222 R — 3180296763

+14946502R 15 — 542241 R17 + 15621 R19 — 361 R9; + 6Ra3
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{fo, fir} = —1527607880048R; + 2512814242468 R3 — 1240024124402 R5

+291393987460R7 — 39943655651 Ry + 358388968011 — 2267397443
+10655872R 5 — 386501217 + 11116 R19 — 254 R9; + 4 Ra3

{fi1, fis} = —T794719975096 R, + 1307261960482 R3 — 6451079192255
+151594283247R; — 20780214906 Ry + 18644758021, — 117958386 R3

+5543472R15 — 201036 Ry7 + 5775 R19 — 131 Rg; + 2Rs.
Thus, we have verified Equation [5.3.1]
Now, there exist no other values of n such that dim S,,(SL2(Z)) = 1. However, we can
look at one n where the dimension equals 2. In the case of n = 24, dim So4(SL2(Z)) = 2. We

now show that every relation is a linear combination of the two equations listed below:

—470{ f5, for} + 1519{ f5, fio} — 1862{ f7, fir} +969{ fo, fi5} + O{f11, fis} =0 (5.3.2)

—194{f3, fgl} + 605{f5, flg} — 627{f7, f17} + O{fg, f15} + 646{f11, flg} =0. (533)

The calculations to prove the above functions are shown below:

[0,2,20] = 508336288261, — 836179678153 + 41263813236 R; — 9696607611 R,
+1329190220Rg — 119259998 R + 7545280 R13 — 354654 %15
+12882R17 — 375 R19 + 9Ra

[2,0,20] = Ry = —1109652905R; + 1825305870 R3 — 900752361 R5 + 211668360 R;
—29015090Rg + 260338011 — 164730R13 + 7752R15 — 285 R17 + 10R 9

[20, O, 2] - R2 - R1



(0,4, 18]

(4,0, 18]

(18,0, 4]

0,6, 16]

(6,0, 16]

(16,0, 6]

0,8, 14]

8,0, 14]

14,0, 8]

[0,10,12]

10,0, 12]

[12,0,10]

40
45314184920 R, — 74538846484 R + 36783446355 R5 — 8643763407 R

+1184868380R9 — 106310724 R1 + 6725914 Rq5 — 316098 Ry 5
+11466R17 — 329R19 + TRy

Rig = 28820619R, — 47408019R3 + 23394924 R5 — 5497596 R;
+753610Rg — 67626 Rqy + 4284 Ry3 — 204R;5 + 917

Ry=—Ri+2R;

35729867872R, — 58773276840 R5 + 29003449470 R

—6815537191 R7 + 9342588009 — 83824884 ;1 + 530318013 — 249178 ;5
+9021Ry7 — 255 R 9 + 5Ro1

Ris = —929569R; + 1529080R3 — 754572 R5 + 177320R; — 24310 Ry
+2184Ry; — 140R;3 + 8Ry5

R@ = 3R1 - 5R3 + 3R5

22864454016 Ry — 37610519296 R3 + 18560047184 R5 — 4361435944 R,
+597855811 Ry — 53641497 Ry + 3393537 Ry3 — 159414 R, 5

+5761R17 — 161 R19 + 3Ro1

Ry = 3822TR; — 62881 R3 + 31031 R5 — 7293R; 4+ 1001Rg — 91 Ry; + 7TRy3

Rg = —17TR; + 28R3 — 14R5 + 4R

7867739648 R — 129419129603 + 6386577984 R5 — 1500785520 R~
+205724250Ry — 1845818711 + 11677053 — 54846 ;5
+1980R17 — 55R19 + Roy

Ris = —2073R; + 3410R3 — 1683R5 + 396 Ry — 55Rg + 6”11

Rip = 155, — 255R3 + 126 R5 — 3017 + 5.
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Therefore,

{fs, fa1} = 51943281732R; — 85443273685 R3 + 42164565597 R5 — 9908275971 R,
+1358205310Rg — 121863378 R11 + 7710010 R13 — 362406 Ry5 + 13167 Ry7
—385R19 + 9y

{fs5, fio} = 45285364300R; — 74491438463 R; + 36760051431 R5; — 8638265811 R,
+1184114770Rg — 106243098 Ry + 67216303 — 3158945 + 11457 Ry
—329Ry9 + TRo

{fz, fir} = 35730797444 R, — 58774805925 R3 + 29004204045 R5 — 6815714511 Ry,
+934283110Ry — 83827068 R11 + 53033203 — 249186 R15 + 9021 1R;7
—255R19 + 5Roy

{fo, f15} = 22864415772R; — 37610456387 R3 + 185600161395 — 4361428647 R;
+597854810 Ry — 53641406 R11 + 33935303 — 159414 R5 + 576117
—161R19 + 3R

{fi1, fis} = 7867741876 R, — 129419166255 + 6386579793 R5 — 1500785946 R;
+205724310Ry — 184581931 + 11677053 — 54846 Ry5 + 198017

—55 19 + Ray.

Thus, we have verified Equations [5.3.2]and [5.3.3]

Equations[5.3.1],[5.3.2} and[5.3.3] are not the only relations that can be found using the

methods described in this thesis. First, choose an even n and find the dim S,,(SL2(Z)) to predict
the number of equations you will find whose linear combinations will equal every relation for that
n. Then, find all odd number pairs (such that both numbers are greater than 1) which add together
to equal n. Using those pairs, the next step is to calculate { f3, f._3}, {f5, fu_s}, ..., and

{for+1, fn,(gkﬂ)} using Proposition Equation , and the calculations and processes from
Section Calculating Even Combs. Note that proving Conjecture 4.1 will make it easier to find
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more of the even combs that we rewrite as linear combinations of odd combs; these rewritten
combs are needed for calculating relations for n > 26. Once we calculate { fo; 11, f2j+1} for all
2i + 1,25 + 1 such that 2i + 25 + 2 = n, we can then input them into a matrix and find the null
space of said matrix. The null space gives the desired relations. With all of these formulas and
processes, continuing the calculations and finding more relations is straight forward but gets

increasingly tedious.
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