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ABSTRACT 

Benjamin Ward, Committee Chair 

In this thesis, we study the free Lie algebra on two generators and a deformation of the 

free Lie bracket. Our goal is a hands-on derivation of relations which this deformed Lie bracket 

satisfes. The technical achievement that makes this possible is the identifcation of a basis for 

where the relations occur. Using that basis, we verify and extend the calculations found in 

Schneps (2006). An interesting connection to the Euler polynomials is also discussed. 
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PREFACE 

In this paper, we begin by studying Lie algebras and their derivations. We recall a couple 

results about derivations, including that the set of derivations on a Lie algebra is itself a Lie 

algebra. 

Then, we specialize to discussing the free Lie algebra on two generators x and y and its 

derivations. We further our research by focusing on a deformation of the free Lie bracket. This 

bracket is partially constructed from derivations and has the same underlying vector space as the L 
free Lie algebra on two generators: L = Ld

n. It also has antisymmetry and the Jacobi identity, 

and so is itself a Lie bracket. Working with said Lie bracket raises questions of generators and 

relations, which we then fnd when d = 1 and d = 2, where d is the number of y’s in the Lie word. 

In Schneps (2006), the author shows that the space of relations may be identifed with the 

space of Modular cusp forms. Using this, she calculated these relations for n ≤ 22. One goal of 

this thesis is to give a hands-on derivation of these relations which requires no background in 

Modular forms. The technical achievement which makes this possible is the identifcation of a 

with the help of planar binary trees, which were used to formulate a correspondence. Specifcally, 

we identifed a new set of Triples (n − s − t − 2, s, t), which can be mapped to an xy−Tree that is 

2basis for Ln 

then mapped to a specifc Lie word. This correspondence helped reveal that triples where s = 0 

, which is eventually used to recalculate Schneps’s relations. Said basis was found 

n 

even-indexed Euler polynomials. 

and t is odd map to a basis for L2 

odd combs. 

Once the basis was determined, we formulated how to write any given Lie word as a linear 

combination of odd combs. Note that we are slightly abusing notation to refer to both the graphs 

and their corresponding Lie words as combs. To do this, the main objective was to fnd how to 

rewrite even combs in terms of odd combs, which we then accomplished. The resulting 

coeffcients bear a striking similarity to those appearing in the even-indexed Euler polynomials. 

We conjecture that the coeffcients are always the same and verify the conjecture for the frst 12 

. Because of our graphical intuition, we call the basis elements 
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Once we are able to write any Lie word in our basis, we are then able to carry out the 

calculations to verify Schneps’s relations, which were mentioned above. Furthermore, we are able 

to calculate all relations in L2 
n for n ≤ 26. 
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CHAPTER 1 LIE ALGEBRAS AND L 

1.1 Lie Algebras and Derivations 

We will begin our discussion by defning the main object that we will be working with 

throughout this paper. 

Defnition 1.1. A Lie algebra is a vector space V over Q along with a bilinear map 

V × V → V, 

(x, y) 7→ [x, y] 

such that [x, y] = −[y, x], ∀x, y ∈ V 

and [[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀x, y, z ∈ V 

Within this context, we can now discuss one of the ways we can manipulate the elements 

of a Lie algebra. 

Defnition 1.2. Let L be a Lie algebra. A derivation of a Lie algebra is a linear map D : L → L 

such that 

D([a, b]) = [D(a), b] + [a, D(b)] 

for all a, b ∈ L. 

= + 

Figure 1.1 Derivation of a Lie Algebra 

Lemma 1.1. For any two derivations D1 and D2, D1 ◦ D2 − D2 ◦ D1 is a derivation. 

Proof: Let F = D1 ◦ D2 − D2 ◦ D1 and let a, b ∈ L. From Defnition 1.2, derivation of a 

Lie algebra, we get the following: 
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F ([a, b]) = (D1 ◦ D2 − D2 ◦ D1)([a, b]) 

= D1([D2(a), b] + [a, D2(b)]) − D2([D1(a), b] + [a, D1(b)]) 

= [D1(D2(a)), b] + [D2(a), D1(b)] + [D1(a), D2(b)] + [a, D1(D2(b))] 

−[D2(D1(a)), b] − [D1(a), D2(b)] − [D2(a), D1(b)] − [a, D2(D1(b))] 

= [D1(D2(a)), b] − [D2(D1(a)), b] + [a, D1(D2(b))] − [a, D2(D1(b))] 

= [F (a), b] + [a, F (b)]. 

Therefore, D1 ◦ D2 − D2 ◦ D1 is a derivation. □

Theorem 1.1. The set of derivations on a Lie algebra L is itself a Lie algebra. 

Proof: Firstly, since derivations are closed under scalar multiplication and addition, the 

derivations on a Lie algebra are a vector space. 

Secondly, since D1 ◦ D2 − D2 ◦ D1 is a derivation, the bilinear map is 

Der(L) × Der(L) → Der(L), 

(D1, D2) 7→ [ D1, D2] = D1 ◦ D2 − D2 ◦ D1. 

It’s easy to see that the map is antisymmetric, since 

D1 ◦ D2 − D2 ◦ D1 = −(D2 ◦ D1 − D1 ◦ D2). 

Next, we need to show that the map has the Jacobi identity. Let D1, D2, and D3 be 

derivations. 

We can then calculate the following: [[D1, D2], D3] + [[D2, D3], D1] + [[D3, D1], D2] 

= [D1, D2] ◦ D3 − D3 ◦ [D1, D2] + [D2, D3] ◦ D1 − D1 ◦ [D2, D3] + [D3, D1] ◦ D2 

−D2 ◦ [D3, D1]
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= (D1 ◦ D2 − D2 ◦ D1) ◦ D3 − D3 ◦ (D1 ◦ D2 − D2 ◦ D1) + (D2 ◦ D3 − D3 ◦ D2) ◦ D1 

−D1 ◦ (D2 ◦ D3 − D3 ◦ D2) + (D3 ◦ D1 − D1 ◦ D3) ◦ D2 − D2 ◦ (D3 ◦ D1 − D1 ◦ D3)

= (D1 ◦ D2) ◦ D3 − (D2 ◦ D1) ◦ D3 − D3 ◦ (D1 ◦ D2) + D3 ◦ (D2 ◦ D1) 

+(D2 ◦ D3) ◦ D1 − (D3 ◦ D2) ◦ D1 − D1 ◦ (D2 ◦ D3) + D1 ◦ (D3 ◦ D2) 

+(D3 ◦ D1) ◦ D2 − (D1 ◦ D3) ◦ D2 − D2 ◦ (D3 ◦ D1) + D2 ◦ (D1 ◦ D3) 

= 0. 

The above calculation works because addition is distributive with the composition of 

functions and because the composition of functions is associative. □

Note that the above proof would work for any associative operation, not just the 

composition of functions. 

1.2 The Free Lie Algebra, L 

Defnition 1.3. The free Lie algebra on two generators has the underlying vector space L 
L = Ln

d . Ld
n is a span of Lie words with two generators, x and y. Specifcally, the elements are 

of word length n where y appears d times. Note that d < n, where n ≥ 1 and d ≥ 0. The Lie 

words in Ld
n are then bracketed together with the bracket [−, −] to generate more Lie words. 

Therefore, we can see that [Ld1 , Ld2 ] ⊆ Ld1+d2 .n1 n2 n1+n2 

Examples of elements in L include the following: 

x ∈ L1
0 

y ∈ L1
1 

−[y, x] = [x, y] ∈ [L0
1, L1

1] ⊆ L1
2 

[y, x] = −[x, y] ∈ L1
2 

[x, [y, [[[y, x], x], [x, y]]]] ∈ [L2
5, L1

2] ⊆ L3
7 
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[[x, [[x, y], [[y, [[x, y], y]]]]], [[[x, y], x], [y, x]]] ∈ [L4
7, L2

5] ⊆ L6 
12

[x, [x, [x, y]]] ∈ L 

[[x, y], [x, [x, y]]] = −[[x, [x, y]], [x, y]] ∈ L 

1
4 

2
5. 

Lemma 1.2. Let a, b ∈ L. There exists a unique derivation D : L → L such that D(x) = a and 

D(y) = b. 

Proof: We will induct on word length to prove that a derivation which satisfes D(x) = a 

and D(y) = b is uniquely determined. Our base case is that the image of a Lie word with length 1 

is uniquely determined. This is defned as D(x) = a and D(y) = b. 

For our induction step, we will assume that the image of all Lie words of length k ≥ 1 are 

uniquely defned. We want to prove that the image of all Lie words of length k + 1 is therefore 

also uniquely defned. 

We know that any Lie word of length greater than or equal to 2 looks like [f, g] such that f 

and g are of a length greater than or equal to 1. Therefore, if a Lie word L is of length k + 1, it 

can also be written in the form L = [f, g]. Since both f and g are of a length greater than or equal 

to 1, f and g must both be of a length less than k + 1; i.e., f and g must have a word length of at 

most k. Therefore, when using Defnition 1.2, we get D([f, g]) = [D(f), g] + [f, D(g)], where 

D(f) and D(g) are uniquely defned by assumption. Therefore, the image of a Lie word L of 

length k + 1 is uniquely determined. 

Therefore, a derivation which satisfes D(x) = a and D(y) = b is uniquely determined. □

Defnition 1.4. For f ∈ L, defne Df to be the unique derivation such that the following holds: 

Df (x) = 0 and Df (y) = [y, f ] 

This derivation allows us to deform the free Lie bracket on L to give the same underlying 

vector space a new structure. In On the Poisson bracket on the free Lie algebra in two generators, 

the following deformation is the titular Poisson bracket (Schneps, 2006, Page 1). 
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Defnition 1.5. The deformed Lie bracket has the same underlying vector space as the free Lie 

algebra. The Lie bracket is the only different aspect, so it is instead denoted with the curly 

brackets: {−, −}. Specifcally, it is given by 

{f, g} = [f, g] + Df (g) − Dg(f). 

Now that we have defned the deformed Lie bracket, we can ask questions about it. For 

example, how do we know that the curly bracket has antisymmetry and follows the Jacobi 

identity? This proof can be found Schneps’s paper, but we will be demonstrating a more explicit 

computation (Schneps, 2006, Page 4). 

Lemma 1.3. The deformed Lie bracket has antisymmetry and follows the Jacobi identity. 

Proof: Let f, g, and h ∈ L. 

First, we’ll show that {f, g} + {g, f} = 0 with the following calculation: 

{f, g} + {g, f} = [f, g] + Df (g) − Dg(f) + [g, f ] + Dg(f) − Df (g) = 0. 

Second, we’ll show that {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0. 

From Defnition 1.5, we can calculate the following: 

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} 

= {[f, g], h} + {Df (g), h} − {Dg(f), h} + {[g, h], f} + {Dg(h), f} − {Dh(g), f} 

+{[h, f ], g} + {Dh(f), g} − {Df (h), g} 

= [[f, g], h] + D[f,g](h) − Dh([f, g]) + [Df (g), h] + DDf (g)(h) − Dh(Df (g)) 

−[Dg(f), h] − DDg (f)(h) + Dh(Dg(f)) + [[g, h], f ] + D[g,h](f) − Df ([g, h]) 

+[Dg(h), f ] + DDg (h)(f) − Df (Dg(h)) − [Dh(g), f ] − DDh(g)(f) + Df (Dh(g)) 

+[[h, f ], g] + D[h,f ](g) − Dg([h, f ]) + [Dh(f), g] + DDh(f)(g) − Dg(Dh(f)) 

−[Df (h), g] − DDf (h)(g) + Dg(Df (h)). 
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From the Jacobi identity, we know that [[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0. Using that 

and Defnition 1.2, we fnd that {[f, g], h} + {[g, h], f} + {[h, f ], g} 

= D[f,g](h) − [Dh(f), g] − [f, Dh(g)] + [Df (g), h] + DDf (g)(h) − Dh(Df (g)) 

−[Dg(f), h] − DDg (f)(h) + Dh(Dg(f)) + D[g,h](f) − [Df (g), h] − [g, Df (h)] 

+[Dg(h), f ] + DDg (h)(f) − Df (Dg(h)) − [Dh(g), f ] − DDh(g)(f) + Df (Dh(g)) 

+D[h,f ](g) − [Dg(h), f ] − [h, Dg(f)] + [Dh(f), g] + DDh(f )(g) − Dg(Dh(f))

−[Df (h), g] − DDf (h)(g) + Dg(Df (h)) 

= D[f,g](h) + D[g,h](f) + D[h,f ](g) + DDf (g)(h) − DDf (h)(g) − DDg (f )(h) + DDg(h)(f) 

−DDh(g)(f) + DDh(f)(g) − Df (Dg(h)) + Df (Dh(g)) − Dg(Dh(f)) + Dg(Df (h))

−Dh(Df (g)) + Dh(Dg(f)) − [g, Df (h)] − [Df (h), g] − [Dg(f), h] − [h, Dg(f)]

−[f, Dh(g)] − [Dh(g), f ]. 

Due to antisymmetry, {[f, g], h} + {[g, h], f} + {[h, f ], g} 

= D[f,g](h) + D[g,h](f) + D[h,f ](g) + DDf (g)(h) − DDf (h)(g) − DDg (f )(h) + DDg(h)(f) 

−DDh(g)(f) + DDh(f)(g) − Df (Dg(h)) + Df (Dh(g)) − Dg(Dh(f)) + Dg(Df (h))

−Dh(Df (g)) + Dh(Dg(f)).

Claim: For f, g ∈ L, D[f,g] = −DDf (g) + DDg (f ) + Df ◦ Dg − Dg ◦ Df 

Proof of Claim: First, we know that a sum of derivations is a derivation. Additionally, we 

know that D[f,g], DDf (g), and DDg (f) are derivations. Lemma 1.1 also gives us that 

Df ◦ Dg − Dg ◦ Df is a derivation. Therefore, −DDf (g) + DDg (f ) + Df ◦ Dg − Dg ◦ Df is a 

derivation. 

Therefore, to show that D[f,g] is equal to −DDf (g) + DDg (f ) + Df ◦ Dg − Dg ◦ Df , we 

need to show what both do to x and y. If the results are equal, then, since derivations are unique 

by Lemma 1.2, the two derivations are equal. 
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First, we will calculate D[f,g]: 

D[f,g](x) = 0 

D[f,g](y) = [y, [f, g]]. 

Second, we will calculate −DDf (g) + DDg(f) + Df ◦ Dg − Dg ◦ Df . Note that, for any 

a ∈ L, Da(0) = 0 because the derivation is not being applied anywhere. Therefore, 

−DDf (g)(x) + DDg (f)(x) + Df (Dg(x)) − Dg(Df (x)) = 0.

Evaluating at y we fnd that −DDf (g)(y) + DDg (f)(y) + Df (Dg(y)) − Dg(Df (y)) = 

− [y, Df (g)] + [y, Dg(f)] + [Df (y), g] + [y, Df (g)] − [Dg(y), f ] − [y, Dg(f)]

= [[y, f ], g] − [[y, g], f ] 

= −[g, [y, f ]] + [f, [y, g]] 

= −[g, [y, f ]] − [f, [g, y]] = [y, [f, g]] (by the Jacobi identity). 

Therefore, for f, g ∈ L, D[f,g] = −DDf (g) + DDg (f) + Df ◦ Dg − Dg ◦ Df . 

Returning to our proof, we still want to show that the equation will equal zero. Using our 

claim, we can calculate the following: {[f, g], h} + {[g, h], f} + {[h, f ], g} 

= D[f,g](h) + D[g,h](f) + D[h,f ](g) + DDf (g)(h) − DDf (h)(g) − DDg (f )(h) + DDg(h)(f) 

−DDh(g)(f) + DDh(f)(g) − Df (Dg(h)) + Df (Dh(g)) − Dg(Dh(f)) + Dg(Df (h))

−Dh(Df (g)) + Dh(Dg(f))

= −DDf (g)(h) + DDg (f)(h) + Df (Dg(h)) − Dg(Df (h)) 

+DDf (g)(h) − DDg (f)(h) − Df (Dg(h)) + Dg(Df (h))

−DDg (h)(f) + DDh(g)(f) + Dg(Dh(f)) − Dh(Dg(f))

+DDg (h)(f) − DDh(g)(f) − Dg(Dh(f)) + Dh(Dg(f))

−DDh(f )(g) + DDf (h)(g) + Dh(Df (g)) − Df (Dh(g))

+DDh(f)(g) − DDf (h)(g) − Dh(Df (g)) + Df (Dh(g))

= 0 
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Therefore, {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0. 

Therefore, the deformed Lie bracket has antisymmetry and follows the Jacobi identity. □

Note that, when referring to the free Lie bracket, we will use (L, [−, −]). Additionally, 

when referring to the not free bracket, we will use (L, {−, −}). 

Since (L, {−, −}) is not a free Lie algebra, we might ask what are its generators and 

relations. We’re not going to look for all generators; instead, we’ll stick to low values of d. 

Particularly, we’ll restrict ourselves to d = 1 and d = 2. 

If d = 1, then the vector space L1 
i is one dimensional and spanned by fi = [x, [..., [x, y]]]. 

Examples of these generators include the following: 

f3 = [x, [x, y]] ∈ L3
1 

f4 = [x, [x, [x, y]]] ∈ L4
1 

f5 = [x, [x, [x, [x, y]]]] ∈ L5
1 . 

Combined together, these elements form a basis for the subspace over all n. 

Therefore, if d = 2, then we can bracket them together as {fi, fj }. However, the relations 

between {fi, fj } (where i and j vary, but n remains the same) are not immediately apparent, and 

it is one of the goals of this paper to fnd some. 

Therefore, our question specifcally becomes the following: What are the relations 

between different {fi, fj } in L2 ? In Schneps (2006), she gives a correspondence of Modular cusp n 

forms as an answer to this question. However, we want a more down to earth and explicit 

formula, which is what this thesis will cover. 

In order to obtain such a formula, we will need a basis for L2 
n because that is where our 

questions live. In order to obtain that basis, we will need to work with Planar Binary Trees. 
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CHAPTER 2 FROM TREES TO LIE WORDS 

In this chapter, we will ultimately create a correspondence from a new set An, which we 

will call the set of triples, to a collection of planar binary tree graphs, to Lie words in L2 
n. We 

begin this chapter by describing the specifc graphs, which we label T 2 
n , that map to the Lie words 

for which we are eventually going to fnd a basis. Then, we will outline the set of triples. We will 

conclude this chapter by specifcally defning the aforementioned correspondence. 

2.1 Planar Binary Trees 

Trees are connected graphs consisting of vertices and edges with no circuits. Binary trees 

possess three edges at each internal vertex. Therefore, planar binary trees are binary trees 

embedded in the plane with a choice of L (what goes on the left of a vertex), R (what goes on the 

right of a vertex), and D (what goes down/below the vertex). 

Defnition 2.1. An XY -Tree is a planar binary tree with external vertices labeled by x and y, 

except for one root which is drawn at the bottom (i.e., below the lowest internal vertex). We will 

now defne the set of XY -Trees as T d
n , where n is the total number of external vertices and y 

appears d times. Note that d < n, where n ≥ 1 and d ≥ 0. 

XY -Trees can be used to represent Lie words in Ld
n, where each bracket indicates an 

internal vertex. An example of this relation can be seen in Figure 2.1. 

7→ [[x, y], [x, [x, [x, [x, y]]]]] ∈ L 

Figure 2.1 A Tree Mapped to its Lie Word 

2
7 

Defnition 2.2. The branching point of a tree in T 2 
n is the vertex of greatest height (in the context 

of the tree visualization) such that both y’s are above it. 
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The branching points of two trees (including the tree found in Figure 2.1) are shown to be 

red in Figure 2.2. 

Figure 2.2 Branching Points 

Defnition 2.3. (Right) combs in T 2 
n are trees where all of the external edges labeled with an x 

and one external edge labeled with a y branch off to the left of their internal vertices. In addition, 

all internal edges and the topmost external edge labeled with a y are therefore branching off to 

the right of their internal vertices. 

Right combs look like the tree picture on the left hand side of Figure 2.3, where, excluding 

the two topmost external vertices, each external vertex is labeled with an x or y accordingly. 

When mapping a right comb to a Lie word, the Lie word will look like the following: 

[−, [−, [−, ..., [−, −]...]]]. An example of this mapping can be seen in Figure 2.3. 

7→ [x, [y, [x, [x, [x, [x, y]]]]]] ∈ L2
7 

Figure 2.3 A Right Comb Mapped to its Lie Word 
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2.2 Triples 

Now, we will defne the set of triples: 

An = {(r, s, t)|s ≤ t, r + s + t = n − 2, 0 ≤ r, 0 ≤ s, and 1 ≤ t}. 

Using the branching point, we can defne a function An → Tn 
2 in the following way: 

(r, s, t) 7→ T(r,s,t), 

where r is the number of edges below the branching point, and s and t are the number of 

edges on the above branches such that s ≤ t. Additionally, r + s + t = n − 2, 0 ≤ r, 0 ≤ s, and 

1 ≤ t. Another way to think of r, s, and t for the mapping to an XY -Tree is that they represent 

the number of x’s on their respective section of the tree. 

In T(r,s,t), the trees will follow the convention that all of the external vertices labeled with 

an x branch off to the left. Note that we will refer to this as the x on the left convention. This will 

leave the two external y edges to either branch off to the right of their internal edges or follow 

Defnition 2.3, right combs. Additionally, all s branches will be found on the left side of the 

graph; i.e., the shorter of the two branches ending with y at the top will be on left side of the 

branching point. 

Visually, the mapping can be seen in Figure 2.4. 

(r, s, t) 7→ 

Figure 2.4 Triples to Trees 

Every right comb in the image of An is of the form (r, 0, t) for some r, t. 
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2.3 Correspondence 

Defnition 2.4. For each (r, s, t) in An, there is a corresponding Lie word [r, s, t] ∈ L2 
n. The 

following map outlines the connection between all three of the discussed representations via the 

maps defned above: 

An → Tn 
2 → Ln

2 (2.3.1) 

(r, s, t) 7→ T(r,s,t) 7→ [r, s, t] 

This mapping follows from the map from An → Tn 
2 discussed in Section 2.2 Triples and 

the map from Tn 
2 → L2 

n discussed in Section 2.1 Planar Binary Trees. 

Examples of this correspondence can be found in Figures 2.5 and and 2.6. 

(0, 1, 4) 7→ 7→ [[x, y], [x, [x, [x, [x, y]]]]] = [0, 1, 4] ∈ L7
2 

Figure 2.5 Mapping the Triple (3, 4, 5) to its Corresponding Lie Word 

(3, 4, 5) 7→ 7→ [x, ..., [x, y]]]], [x, ..., [x, y]...] = [3, 4, 5] ∈ L14
2 

Figure 2.6 The Correspondence of a Triple in A14 (Left) is Sent to the XY -Tree T(3,4,5) (Center), 
Which is Then Sent to its Corresponding Lie Word (Right) 
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CHAPTER 3 FINDING A BASIS FOR L2 

n

Now that we have constructed Defnition 2.4, we will now work our way towards fnding a 

basis. However, before we can determine our basis, we must frst determine some sets which span 

L2 
n. 

3.1 Spanning Theorems 

Theorem 3.1. The image of the composite in Equation 2.3.1 is a spanning set for L2 
n. 

Proof: It is enough to show that each Lie word is in the span of the image. Therefore, we 

can take any Lie word and apply the x on the left convention to get a Lie word of the form 

±[[−, [x, y]], [−, [x, y]]], which is in the image of the composite. Therefore, since any Lie word 

that is the same after the application of the convention is equal except possibly by sign, the above 

composite spans L2 
n. □

Recalling Defnition 2.3, we will now distinguish between the following two types of 

combs. 

Defnition 3.1. Even combs occur if the t of a (r, s, t) triple is an even integer. 

Therefore, even right combs map to [a, 0, 2i] such that a + 2i = n − 2, 0 ≤ a, and 1 ≤ i. 

Defnition 3.2. Odd combs occur if the t of an (r, s, t) triple is an odd integer. 

Therefore, odd right combs map to [a, 0, 2i + 1] such that a + 2i + 1 = n − 2, 0 ≤ a, and 

0 ≤ i. 

When n is even, there are n− 
2
2 odd combs. Additionally, when n is odd, there are n− 

2
1 odd 

combs. 

Lemma 3.1. [r, s, s] = 0. 

Proof: Anti-symmetry. □

Lemma 3.2. [r, s, t] − [r + 1, s − 1, t] + [r, s − 1, t + 1] = 0. 
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First, let’s build some intuition for this proof by looking at a general (r, s, t) triple, as 

shown in Figure 2.4. Notice that the s and t branches of T(r,s,t), when taken alone, look like trees 

in Ti 
1 . It’s obvious that trees in Ti 

1 map to Lie words in Li 
1 . As mentioned in Section 1.2 The Free 

Lie Algebra, L, if d = 1, then the vector space is one dimensional and spanned by 

fi = [x, [..., [x, y]]] ∈ L1 
i . Therefore, the s and t branches could be relabeled as fs+1 and ft+1, 

respectively. This relabeling and the complete mapping as defned in Section 2.3 Correspondence 

can be seen in Figure 3.1. 

(r, s, t) 7→ 7→ [x, ..., [[x, ...[x, y]], [x, ..., [x, y]]]] 

Figure 3.1 Tree Associated to a General (r, s, t) 

When applying the Jacobi identity to T(r,s,t), we can think of it as choosing an edge and 

rotating the three edges above the two vertices of that edge. In this case, our desired results come 

from when we pick the lowest edge above the branching point which lies on the s branch. In 

Figure 3.1, this edge is colored pink. 

Now, we will perform the frst rotation, which will result in the number of x’s below the 

branching point remaining the same, but the values of the s and t branches changing such that the 

Lie word is [x, ..., [[ft+1, x], fs]]. This can be seen visually in Figure 3.2. 

Next, we will perform the second rotation, which will result in the number of x’s below 

the branching point increasing by one and the value of the s branch decreasing by one. The t 

branch will not change. The resulting Lie word is [x, ..., [x, [fs, ft+1]]]. This can be seen visually 

in Figure 3.3. 
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(r, s − 1, t + 1) 7→ 7→ [x, ..., [[ft+1, x], fs]] 

Figure 3.2 The First Rotation 

(r + 1, s − 1, t) 7→ 7→ [x, ..., [x, [fs, ft+1]]] 

Figure 3.3 The Second Rotation 
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In the fnal step of building our intuition, if we ignore the r-times that x appears on the left 

of each the three terms that we found, then we will get an equation which looks like the Jacobi 

identity. 

Now, keeping this intuition in mind, we will more rigorously prove Lemma 3.2. 

Proof: First, we will start with a generic (r, s, t) ∈ An. Therefore, 

(r, s, t) 7→ [r, s, t] = [x, ..., [[x, ...[x, y]], [x, ..., [x, y]]]] 

= [x, ..., [fs+1, ft+1]] 

= [x, ..., [[x, fs], ft+1]] such that there are r x’s on the left. 

Next, we fnd that 

(r, s − 1, t + 1) 7→ [r, s − 1, t + 1] = [x, ..., [fs, [x, ft+1]] 

= −[x, ..., [[x, ft+1], fs]] 

= [x, ..., [[ft+1, x], fs]]. 

Then, we fnd that 

−(r + 1, s − 1, t) 7→ −[r + 1, s − 1, t] = −[x, ..., [x, [fs, ft+1]]] 

= [x, ..., [[fs, ft+1], x]]. 

Therefore, by combining the above calculations, 

(r, s, t) − (r + 1, s − 1, t) + (r, s − 1, t + 1) 

7→ [x, ..., [[x, fs], ft+1]] + [x, ..., [[fs, ft+1], x]] + [x, ..., [[ft+1, x], fs]] 

Finally, since each of the three terms that we found have r-times that x appears on the left, 

we can ignore those x’s. Therefore, we get the following, which looks like the Jacobi identity: 

[[x, fs], ft+1] + [[fs, ft+1], x] + [[ft+1, x], fs] = 0 

i.e., [r, s, t] − [r + 1, s − 1, t] + [r, s − 1, t + 1] = 0. □
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By abuse of terminology, we refer to both the applicable trees in Tn 
2 and their image in L2 

n 

as right odd or even combs. 

Proposition 3.1. Right combs span L2 
n. 

Proof In order to prove that right combs span L2 
n, we need to show that any Lie word 

[r, s, t] ∈ L2 
n can be written as a linear combination of right combs. To do this, we will use 

Lemma 3.2: [r, s, t] − [r + 1, s − 1, t] + [r, s − 1, t + 1] = 0. 

First, we can move two of the terms to the other side of the equation. This gives us 

[r, s, t] = [r + 1, s − 1, t] − [r, s − 1, t + 1]. Therefore, any Lie word [r, s, t] ∈ L2 
n such that s = 1 

has now been written as a linear combination of right combs. 

Second, we assume that s ̸= 1. Therefore, we can continue to apply Lemma 3.2 to the 

results until we get an equation entirely consisting of right combs (i.e., until s = 0). In the case of 

s = 2, the process would look like this: 

[r + 1, 2 − 1, t] = [r + 2, 2 − 2, t] − [r + 1, 2 − 2, t + 2] 

and [r, 2 − 1, t + 1] = [r + 1, 2 − 2, t + 1] − [r, 2 − 2, t + 2] 

⇒ [r, 2, t] = [r + 2, 0, t] − [r + 1, 0, t + 2] − ([r + 1, 0, t + 1] − [r, 0, t + 2]). 

Assuming that s ̸= 0 after the frst two applications of Lemma 3.2, we then continue until 

we get the following set of equations: 
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And so on until we get: [r, s, t] � � � � � � 
s s s 

= [r + s, 0, t] − [r + s − 1, 0, t + 1] + ... + (−1)s [r, 0, t + s]. 
0 1 s 

Therefore, 
s � �X s 

[r, s, t] = (−1)k [r + s − k, 0, t + k]. (3.1.1)
k 

k=0 

Therefore, any Lie word [r, s, t] ∈ L2 
n can be written as a linear combination of right 

combs. In other words, right combs span. □ 

3.2 Basis Theorem 

To simplify the notation further, when dealing with both even and odd combs, the 

following symbols may be used interchangeably: [r, 0, t] = Rt. More generally, in L2 
n, this means 

that [n − 2 − t, 0, t] = Rt. 

For example, the following list includes all of the odd combs in L2 :12 

[9, 0, 1] = R1 

[7, 0, 3] = R3 

[5, 0, 5] = R5 
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[3, 0, 7] = R7 

[1, 0, 9] = R9. 

Theorem 3.2. Odd combs form a basis for L2 
n. 

Proof First, we will show that odd combs are in a span of L2 
n. 

According to Lemma 3.1, we know that [r, s, s] = 0. Therefore, if we combine Lemma 

3.1 and the proof of Proposition 3.1, namely Equation 3.1.1, we get the following: � � � � � � 
0 = 

s 
0 

[r + s, 0, s] − 
s 
1 

[r + s − 1, 0, s + 1] + ... + (−1)s s 
s 

[r, 0, 2s] 

= 
s � �X s 
(−1)k [r + s − k, 0, s + k]

k 
k=0 

. 
Therefore, each even comb is in the span of the combs below it. In other words, we can 

iterate to write any Lie word as a linear combination of just odd combs. 

Second, we know the formula for the dimension from Schneps (2006): 

1 X (n
a )!dim(Ld

n) = µ(a) , 
(n−dn 

a )!(
d
a )!a|(d,n−d) 

where µ denotes the Möbius function. 

Therefore, when d = 2 and n is even, the dimension equation simplifes to: 

1 n! )!
dim(Ln 

2 ) = (µ(1) + µ(2)
(

( 
n− 

n 
2
2n (n − 2)!(2) 

2 )! 
n − 1 n 1 

= − · 
2 2 n 

n 1 1 n 
= − − = − 1 

2 2 2 2 
n − 2 

= . 
2 

Additionally, when d = 2 and n is odd, the dimension equation simplifes in the following 

way: 
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1 n(n − 1)
dim(L2 

n) = · µ(1) · 
n 2 
n − 1 

= . 
2 

Therefore, since odd combs both span and have the correct number of vectors (as 

determined by the formula for the dimension found in Schneps’s paper), the odd combs are 

linearly independent. 

Therefore, odd combs form a basis. □ 
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CHAPTER 4 REWRITING EVEN COMBS IN TERMS OF ODD 

Since we now know that odd combs span L2 
n, we will determine how to write even combs 

as linear combinations of odd combs. After doing so, we will specifcally calculate R2i for 

1 ≤ i ≤ 12. These calculations bear a striking resemblance to the frst twelve even-indexed Euler 

polynomials, so we conclude this chapter with the introduction of a conjecture relating the two 

and possible pathways to proving it. 

4.1 Calculating Even Combs 

We will now inductively rewrite even combs in terms of odd combs using � �P s s 
[r, s, s] = 0 = k=0(−1)k [r + s − k, 0, s + k] and show that coeffcients are in fact integers. 

k 
Recall that, in L2 

n, [n − 2 − t, 0, t] = Rt. Note that Rt depends on n, but we will prove identities 

which hold for all n. 

For our base case, we will let s = 1. This gives us that [r1, 1, 1] = R1 − R2. Therefore, 

R2 = R1. 

For our induction step, we will assume that R2k = a1R1 + a3R3 + ... + a2k−1R2k−1 for 

k ∈ N and some a1, a3, ..., a2k−1 ∈ Z. Now, we want to show that 

R2(k+1) = R2k+2 = b1R1 + ... + b2k+1R2k+1 for some b1, , ..., b2k+1 ∈ Z. 

First, let s = k + 1. Then, 

[r, k + 1, k + 1] = 0 
k+1 � �X k + 1 

= (−1)n [r + (k + 1) − n, 0, (k + 1) + n] 
n 

n=0 

= Rk+1 − (k + 1)Rk+2 + ... + (−1)k−1(1 
k(k + 1))R2k

2 
+(−1)k(k + 1)R2k+1 + (−1)k+1R2k+2 

By assumption, for all m ≤ k, R2m = m1R1 + m3R3 + ... + m2m−1R2m−1 such that 

m1,m3, ..., m2m−1 ∈ Z. Therefore, for every even comb R2m such that m ≤ k, we can substitute 

in the linear combination of odd combs that add up to be R2m. 
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In our frst case, if k + 1 = (2l + 1) + 1 for some l ∈ N, then k + 1 is even. Therefore, 

1 
0 = [R2l+2] − (2l + 2)R2l+3 + ... + ( (2l + 1)(2l + 2))[R4l+2] − (2l + 2)R4l+3 + R4l+4,

2 

where each even comb in brackets would be replaced with the linear combination of odd combs 

as previously described. 

Therefore, 

R4l+4 = −[R2l+2] + (2l + 2)R2l+3 − ... − ((2l + 1)(l + 1))[R4l+2] + (2l + 2)R4l+3. 

In other words, if a number k can be written as k = 2l + 1, then R2k+2 can be written as a linear 

combination of odd combs. 

In our second case, if k + 1 = 2l + 1 for some l ∈ N, then k + 1 is odd. Therefore, 

0 = R2l+1 − (2l + 1)[R2l+2] + ... − (l(2l + 1))[R4l] + (2l + 1)R4l+1 − R4l+2, 

where each even comb in brackets would be replaced with the linear combination of odd combs 

as previously described. 

Therefore, 

R4l+2 = R2l+1 − (2l + 1)[R2l+2] + ... − (l(2l + 1))[R4l] + (2l + 1)R4l+1. 

In other words, if a number k can be written as k = 2l, then R2k+2 can be written as a linear 

combination of odd combs. 

The following consists of the calculations for the frst twelve even combs written as a 

linear combination of odd combs: 
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[r1, 1, 1] = 

⇒ 

[r1 + 1, 0, 1] − [r1, 0, 2] 

R2 = R1 

[r2, 2, 2] = 

= 

R2 − 2R3 + R4 

R1 − 2R3 + R4 

⇒ R4 = −R1 + 2R3 

[r3, 3, 3] = 

= 

⇒ 

R3 − 3R4 + 3R5 − R6 

R3 − 3(−R1 + 2R3) + 3R5 − R6 

R6 = 3R1 − 5R3 + 3R5 

[r4, 4, 4] = 

= 

⇒ 

R4 − 4R5 + 6R6 − 4R7 + R8 

(−R1 + 2R3) − 4R5 + 6(3R1 − 5R3 + 3R5) − 4R7 + R8 

R8 = −17R1 + 28R3 − 14R5 + 4R7 

[r5, 5, 5] = 

= 

R5 − 5R6 + 10R7 − 10R8 + 5R9 − R10 

R5 − 5(3R1 − 5R3 + 3R5) + 10R7 − 10(−17R1 + 28R3 − 14R5 + 4R7) 

+5R9 − R10 

⇒ R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9 

[r6, 6, 6] = 

⇒ 

R6 − 6R7 + 15R8 − 20R9 + 15R10 − 6R11 + R12 

R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

[r7, 7, 7] = 

= 

R7 − 7R8 + 21R9 − 35R10 + 35R11 − 21R12 + 7R13 − R14 

38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 

+7R13 − R14 

⇒ R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 
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[r8, 8, 8] = R8 − 8R9 + 28R10 − 56R11 + 70R12 − 56R13 + 28R14 − 8R15 + R16 

= 929569R1 − 1529080R3 + 754572R5 − 177320R7 + 24310R9 − 2184R11 

+140R13 − 8R15 + R16 

⇒ R16 = −929569R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 

+2184R11 − 140R13 + 8R15 

[r9, 9, 9] = R9 − 9R10 + 36R11 − 84R12 + 126R13 − 126R14 + 84R15 − 36R16 

+9R17 − R18 

= 28820619R1 − 47408019R3 + 23394924R5 − 5497596R7 + 753610R9 

−67626R11 + 4284R13 − 204R15 + 9R17 − R18 

⇒ R18 = 28820619R1 − 47408019R3 + 23394924R5 − 5497596R7 + 753610R9 

−67626R11 + 4284R13 − 204R15 + 9R17 

[r10, 10, 10] = R10 − 10R11 + 45R12 − 120R13 + 210R14 − 252R15 + 210R16 − 120R17 

+45R18 − 10R19 + R20 

= 1109652905R1 − 1825305870R3 + 900752361R5 − 211668360R7 

+29015090R9 − 2603380R11 + 164730R13 − 7752R15 + 285R17 

−10R19 + R20 

⇒ R20 = −1109652905R1 + 1825305870R3 − 900752361R5 + 211668360R7 

−29015090R9 + 2603380R11 − 164730R13 + 7752R15 − 285R17 + 10R19 
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[r11, 11, 11] = R11 − 11R12 + 55R13 − 165R14 + 330R15 − 462R16 + 462R17 − 330R18 

+165R19 − 55R20 + 11R21 − R22 

= 51943281731R1 − 85443273685R3 + 42164565597R5 

−9908275971R7 + 1358205310R9 − 121863378R11 + 7710010R13 

−362406R15 + 13167R17 − 385R19 + 11R21 − R22 

⇒ R22 = 51943281731R1 − 85443273685R3 + 42164565597R5 

−9908275971R7 + 1358205310R9 − 121863378R11 + 7710010R13 

−362406R15 + 13167R17 − 385R19 + 11R21 

[r12, 12, 12] = R12 − 12R13 + 66R14 − 220R15 + 495R16 − 792R17 + 924R18 − 792R19 

+495R20 − 220R21 + 66R22 − 12R23 + R24 

= 2905151042481R1 − 4778781919252R3 + 2358234353706R5 

−554162862132R7 + 75963449111R9 − 6815721192R11 + 431208876R13 

−20266312R15 + 735471R17 − 21252R19 + 506R21 − 12R23 + R24 

⇒ R24 = −2905151042481R1 + 4778781919252R3 − 2358234353706R5 

+554162862132R7 − 75963449111R9 + 6815721192R11 − 431208876R13 

+20266312R15 − 735471R17 + 21252R19 − 506R21 + 12R23 

4.2 Euler Polynomials 

One interesting note is how our calculations thus far relate to the Euler polynomials. Euler 

polynomials have been studied for hundreds of years. We recall a few details here, and for further 

explanation refer to Abramowitz and Stegun (1964) and the references therein. 

The Euler polynomials are a similar set of polynomials to the Bernoulli polynomials based 

on a generating function. This is notable in that Schneps’s paper notes a connection between these 

relations and arithmetic properties of the Bernoulli numbers (Schneps, 2006, Page 2). 
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The generating function for the Bernoulli polynomials is 

∞ 
text X tn 

= Bn(x) , 
et − 1 n! 

n=0 

P � � 
where Bn(x) = n n

k 
k and, for n ≥ 0, Bk are Bernoulli numbers. The Bernoulli k=0 Bn−kx 

numbers Bn can be calculated with the help of the Bernoulli polynomials; specifcally, that 

relation is Bn = Bn(0). 

Meanwhile, the generating function for Euler polynomials is the following: 

∞
2ext X tn 

= En(x) , 
et + 1 n! 

n=0 

P m � 
m �Ek (x − 1where Em(x) = 
k 2 )

m−k and Ek are the Euler numbers. The Euler numbers arek=0 2k 

1 2 P∞calculated by = = En tn . Additionally, the Euler numbers are related to a−tcosh(t) et+e n=0 n! 

special value of the Euler polynomials: En = 2nEn(
1
2 ). 

An explicit formula for the Euler polynomials is given by 

m n � �X X1 n 
Em(x) = 

2n (−1)k (x + k)m . (4.2.1)
k 

n=0 k=0 

This formula can then be used to derive the frst few Euler polynomials: 

E0(x) = 1 
1 

E1(x) = x − 
2 

E2(x) = x 2 − x 

2E3(x) = x 3 − 
3 
x +

1 
2 4 

E4(x) = x 4 − 2x 3 + x 
5 5 1 

E5(x) = x 5 − x 4 + x 2 − 
2 2 2 

E6(x) = x 6 − 3x 5 + 5x 3 − 3x. 
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Notice that we have already seen something which looks surprisingly similar to E2, E4, 

and E6 in the previous section of this chapter. Specifcally, if we defne polynomials P P 
Ê 

2n = aiR
i where R2n = i odd aiRi, then it’s natural to conjecture: 

Conjecture 4.1. (−1)nE2n = Ê 
2n 

This conjecture can be seen in the following two equations: 

[r1, 1, 1] = R1 − R2 ⇒ Ê 
2 = −R2 + R1 

−E2(x) = −x 2 + x 

ˆ = R4 − 2R3 + R1[r2, 2, 2] = R1 − 2R3 + R4 ⇒ E4 

E4(x) = x 4 − 2x 3 + x 

Furthermore, note that this conjecture has been proven in Section 4.1 Calculating Even 

Combs for the cases such that n ≤ 12. The conjecture is mainly helpful in that it creates a fast 

way to perform some of the desired calculations for the following section. 

Even though we have not yet been able to prove the conjecture for all values of n, we did 

attempt a few methods. For example, we attempted to fnd a different formula for the Euler 

polynomials that more closely matched the formulas used to fnd Ê 
2n: 

2a 
2a � � −1 � �X X2a 2 2a2a+k −E4a = (−1)k x E2a+2k

k 2k 
k=0 k=0 X2a � � a−1 � �X2a 2a2a+k −= (−1)k x E2(a+k) (4.2.2)

k 2k 
k=0 k=0 

2a+1−1 
2a+1 � � 2 −1 � �X X2a + 1 2a + 1 2a+1+k−E4a+2 = (−1)k x + E2a+1+2k+1

k 2k + 1 
k=0 k=0 
2a+1 � � a−1 � �X X2a + 1 2a + 1 2a+1+k = (−1)k x + E2(a+k+1) (4.2.3)

k 2k + 1 
k=0 k=0 

Equations 4.2.2 and 4.2.3 were formulated after generalizing the pattern found in the 
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following calculations (which are almost exactly the same calculations used to fnd Ê 
2n): 

1 � �X 
(−1)k+1 1 1+kE2 = x 

k 
k=0 
2 � � � �X 

2+k −E4 = (−1)k 2 
x 

2 
E2

k 0 
k=0 
3 � � � �X 
(−1)k+1 3 3+k − 

3 
E6 = x E4

k 1 
k=0 
4 � � � � � �X 4 4 44+k −E8 = (−1)k x E4 − E6

k 0 2 
k=0 
5 � � � � � �X 5 5 55+k −E10 = (−1)k+1 x E6 − E8

k 1 3 
k=0 
6 � � � � � � � �X 6 6 6 66+k −E12 = (−1)k x E6 − E8 − E10

k 0 2 4 
k=0 

In an effort to prove Equations 4.2.2 and 4.2.3, we initially attempted to show that the 

functions equaled Equation 4.2.1, but we were unable to do so. Additionally, we tried to use the 

property of Euler polynomials that says the derivative of En is equal to nEn−1. Specifcally, since 

we’re only working with the even-indexed Euler polynomials, we used the formula 

E ′′ n(x) = n(n − 1)En−2. Because we’re only working with even-indexed Euler polynomials, this 

formula might be a good way to prove the conjecture. 
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CHAPTER 5 REVISITING (L, {−, −}) 

We now return to our main goal: to calculate relations for the deformed Lie bracket. In 

Schneps (2006), the author fnds that the dimension of the space of relations in degree n is 

dim Sn(SL2(Z)), the dimension of the space of modular cusp forms. For integers k ≥ 0, 

 [k 
6 ] if k ̸≡ 1 mod 6, 

dim S2k(SL2(Z)) = [k 
6 ] − 1 if k ≡ 1 mod 6 

see, for example, (Lang, 1995, Page 12). 

Using modular cusp forms, Schneps was able to calculate several relations for n ≤ 22. 

Now that we have a more hands-on understanding of L2 
n, we can verify her calculations using 

right combs. Then, we can give relations for larger values of n. 

5.1 Schneps’s Equations 

In Schneps’s paper, she fnds the following relations in terms of her calculations: For 

n = 12, 16, 18, 20, 22, we have dim Sn(SL2(Z)) = 1. Therefore, up to scalar multiple, there is 

exactly one relation for each of these values of n (Schneps, 2006, Page 13). They are given by 

n = 12 : {f3, f9} − 3{f5, f7} = 0 (5.1.1) 

n = 16 : −2{f3, f13} + 7{f5, f11} − 11{f7, f9} = 0 (5.1.2) 

n = 18 : 8{f3, f15} − 25{f5, f13} + 26{f7, f11} = 0 (5.1.3) 

n = 20 : 3{f3, f17} − 10{f5, f15} + 14{f7, f13} − 13{f9, f11} = 0 (5.1.4) 

n = 22 : 32{f3, f19} − 105{f5, f17} + 136{f7, f15} − 85{f9, f13} = 0. (5.1.5) 

Note that, for n = 14, the dim Sn(SL2(Z)) = 0, so there are no relations. Therefore, it is 

our goal to both check to see if these formulas can be recreated following our calculations and to 

see if we can calculate more formulas. 

As defned in Defnition 1.5, the deformed Lie bracket is given by 
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{f, g} = [f, g] + Df (g) − Dg(f). Now, let f and g be the right combs (i.e., generators with one 

y) fn and gm such that n and m are odd, meaning that we now need to determine to what Dfn (gm) 

and Dgm (fn) are equal. 

Proposition 5.1. Df2i+1 (f2j+1) = [2j, 0, 2i] 

Proof: Recall from Defnition 1.2 that, for derivation D, D([a, b]) = [D(a), b] + [a, D(b)]. 

Additionally, recall from Defnition 1.4 that, for f ∈ L, Df (x) = 0 and Df (y) = [y, f ]. 

For the sake of clarity in the calculations, let f2i+1 = fn and f2j+1 = g2j+1 = gm. 

Now, we will calculate Dfn (gm) 

= Dfn ([x, g2j ]) 

= [Dfn (x), g2j ] + [x, Dfn (g2j )] 

= [x, Dfn (g2j )] 

= [x, Dfn ([x, g2j−1])] 

= [x, [Dfn (x), g2j−1]] + [x, [x, Dfn (g2j−1)]] 

= [x, [x, Dfn (g2j−1)]] 

Repeat this process until we have 2j − 1 x’s to the left of the derivation 

= [x, [..., [x, Dfn ([x, y])]]] 

= [x, [..., [x, [Dfn (x), y]]]] + [x, [..., [x, [x, Dfn (y)]]]] 

= [x, [..., [x, [x, Dfn (y)]]]] (Note that we have 2j x’s to the left of Dfn (y)) 

= [x, [..., [x, [x, [y, fn]]]]] 

= [x, [..., [x, [x, [y, [x, [..., [x, y]]]]]]]] (Note that fn has 2i x’s) 

= [2j, 0, 2i]. □ 

Therefore, {f2i+1, f2j+1} = [f2i+1, f2j+1] + Df2i+1 (f2j+1) − Df2j+1 (f2i+1), where, for 

2i + 1 ≤ 2j + 1, [f2i+1, f2j+1] = [0, 2i, 2j], Df2i+1 (f2j+1) = [2j, 0, 2i] and, 
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(f2i+1) = [2i, 0, 2j]; i.e., for n ≤ m,Df2j+1 

{fn, fm} = [0, n − 1,m − 1] + [m − 1, 0, n − 1] − [n − 1, 0,m − 1] ∈ L2 .n+m 

5.2 Calculating Schneps’s Equations 

With all of that established, we can now calculate the equations given by Schneps. 

First, we will calculate Equation 5.1.1: {f3, f9} − 3{f5, f7}. 

Using Proposition 5.1, we know that 

{f3, f9} − 3{f5, f7} = [0, 2, 8] + [8, 0, 2] − [2, 0, 8] − 3([0, 4, 6] + [6, 0, 4] − [4, 0, 6]). 

Using Equation 3.1.1 and our calculations found in Section 4.1 Calculating Even Combs, 

we will fnd that 

[0, 2, 8] = R8 − 2R9 + R10 = 138R1 − 227R3 + 112R5 − 26R7 + 3R9 

[2, 0, 8] = R8 = −17R1 + 28R3 − 14R5 + 4R7 

[8, 0, 2] = R2 = R1 

and 

[0, 4, 6] = 56R1 − 92R3 + 45R5 − 10R7 + R9 

[4, 0, 6] = R6 = 3R1 − 5R3 + 3R5 

[6, 0, 4] = R4 = −R1 + 2R3. 

Therefore, 

{f3, f9} = [0, 2, 8] − [2, 0, 8] + [8, 0, 2] = 156R1 − 255R3 + 126R5 − 30R7 + 3R9 

{f5, f7} = [0, 4, 6] + [6, 0, 4] − [4, 0, 6] = 52R1 − 85R3 + 42R5 − 10R7 + R9. 

Therefore, {f3, f9} − 3{f5, f7} = 0. 
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We will now repeat this process with the remaining four equations. 

For Equation 5.1.2, we can fnd {f3, f13}, {f5, f11}, and {f7, f9} through the respective 

equations below: 

[0, 2, 12] = 36154R1 − 59471R3 + 29348R5 − 6897R7 + 946R9 − 85R11 + 5R13 

[2, 0, 12] = R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

[12, 0, 2] = R2 = R1 

[0, 4, 10] = 25944R1 − 42676R3 + 21059R5 − 4947R7 + 676R9 − 59R11 + 3R13 

[4, 0, 10] = R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9 

[10, 0, 4] = R4 = −R1 + 2R3 

[0, 6, 8] = 9440R1 − 15528R3 + 7662R5 − 1799R7 + 245R9 − 21R11 + R13 

[6, 0, 8] = R8 = −17R1 + 28R3 − 14R5 + 4R7 

[8, 0, 6] = R6 = 3R1 − 5R3 + 3R5. 

Therefore, 

{f3, f13} = 38228R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 5R13 

{f5, f11} = 25788R1 − 42419R3 + 20933R5 − 4917R7 + 671R9 − 59R11 + 3R13 

{f7, f9} = 9460R1 − 15561R3 + 7679R5 − 1803R7 + 245R9 − 21R11 + R13. 

Therefore, −2{f3, f13} + 7{f5, f11} − 11{f7, f9} = 0. 

For Equation 5.1.3, we can fnd that {f3, f15}, {f5, f13}, and {f7, f11} come from the 

following calculations: 
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[0, 2, 14] = −891342R1 + 1466199R3 − 723541R5 + 170027R7 − 23309R9 + 2093R11 

−133R13 + 6R15 

[2, 0, 14] = R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 

[14, 0, 2] = R2 = R1 

[0, 4, 12] = −702280R1 + 1155204R3 − 570069R5 + 133958R7 − 18359R9 + 1644R11 

−102R13 + 4R15 

[4, 0, 12] = R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

[12, 0, 4] = R4 = −R1 + 2R3 

[0, 6, 10] = −387104R1 + 636760R3 − 314226R5 + 73835R7 − 10115R9 + 903R11 

−55R13 + 2R15 

[6, 0, 10] = R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9 

[10, 0, 6] = R6 = 3R1 − 5R3 + 3R5. 

Therefore, 

{f3, f15} = −929568R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 + 2184R11 

−140R13 + 6R15 

{f5, f13} = −700208R1 + 1151796R3 − 568386R5 + 133562R7 − 18304R9 + 1638R11 

−102R13 + 4R15 

{f7, f11} = −387256R1 + 637010R3 − 314349R5 + 73865R7 − 10120R9 + 903R11 

−55R13 + 2R15. 

Therefore, 8{f3, f15} − 25{f5, f13} + 26{f7, f11} = 0. 
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For Equation 5.1.4, we get the following: 

[0, 2, 16] = 27891050R1 − 45878939R3 + 22640352R5 − 5320276R7 + 729300R9 

−65442R11 + 4144R13 − 196R15 + 7R17 

[2, 0, 16] = R16 = −929569R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 

+2184R11 − 140R13 + 8R15 

[16, 0, 2] = R2 = R1 

[0, 4, 14] = 23281432R1 − 38296420R3 + 18898523R5 − 4440969R7 + 608751R9 

−54613R11 + 3451R13 − 160R15 + 5R17 

[4, 0, 14] = R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 

[14, 0, 4] = R4 = −R1 + 2R3 

[0, 6, 12] = 15448416R1 − 25411624R3 + 12540126R5 − 2946795R7 + 403920R9 

−36225R11 + 2283R13 − 104R15 + 3R17 

[6, 0, 12] = R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

[12, 0, 6] = R6 = 3R1 − 5R3 + 3R5 

[0, 8, 10] = 5410688R1 − 8900224R3 + 4392080R5 − 1032088R7 + 141465R9 − 12684R11 

+798R13 − 36R15 + R17 

[8, 0, 10] = R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9 

[10, 0, 8] = R8 = −17R1 + 28R3 − 14R5 + 4R7. 
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Therefore, 

{f3, f17} = 28820620R1 − 47408019R3 + 23394924R5 − 5497596R7 + 753610R9 

−67626R11 + 4284R13 − 204R15 + 7R17 

{f5, f15} = 23243204R1 − 38233537R3 + 18867492R5 − 4433676R7 + 607750R9 

−54522R11 + 3444R13 − 160R15 + 5R17 

{f7, f13} = 15450492R1 − 25415039R3 + 12541812R5 − 2947191R7 + 403975R9 

−36231R11 + 2283R13 − 104R15 + 3R17 

{f9, f11} = 5410516R1 − 8899941R3 + 4391940R5 − 1032054R7 + 141460R9 − 12684R11 

+798R13 − 36R15 + R17. 

Therefore, 3{f3, f17} − 10{f5, f15} + 14{f7, f13} − 13{f9, f11} = 0 

Finally, for Equation 5.1.5, we can calculate the following: 

[0, 2, 18] = −1080832286R1 + 1777897851R3 − 877357437R5 + 206170764R7 

−28261480R9 + 2535754R11 − 160446R13 + 7548R15 − 276R17 + 8R19 

[2, 0, 18] = R18 = 28820619R1 − 47408019R3 + 23394924R5 − 5497596R7 + 753610R9 

−67626R11 + 4284R13 − 204R15 + 9R17 

[18, 0, 2] = R2 = R1 

[0, 4, 16] = −937658760R1 + 1542386836R3 − 761137389R5 + 178860104R7 

−24517740R9 + 2199808R11 − 139166R13 + 6536R15 − 235R17 + 6R19 

[4, 0, 16] = R16 = −929569R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 

+2184R11 − 140R13 + 8R15 

[16, 0, 4] = R4 = −R1 + 2R3 
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[0, 6, 14] = −691248928R1 + 1137058904R3 − 561116050R5 + 131856927R7 

−18074589R9 + 1621659R11 − 102563R13 + 4806R15 − 170R17 + 4R19 

[6, 0, 14] = R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 

[14, 0, 6] = R6 = 3R1 − 5R3 + 3R5 

[0, 8, 12] = −366677120R1 + 603159680R3 − 297647344R5 + 69944264R7 − 9587737R9 

+860190R11 − 54390R13 + 2544R15 − 89R17 + 2R19 

[8, 0, 12] = R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

[12, 0, 8] = R8 = −17R1 + 28R3 − 14R5 + 4R7. 

Therefore, 

{f3, f19} = −1109652904R1 + 1825305870R3 − 900752361R5 + 211668360R7 

−29015090R9 + 2603380R11 − 164730R13 + 7752R15 − 285R17 + 8R19 

{f5, f17} = −936729192R1 + 1540857758R3 − 760382817R5 + 178682784R7 

−24493430R9 + 2197624R11 − 139026R13 + 6528R15 − 235R17 + 6R19 

{f7, f15} = −691287152R1 + 1137121780R3 − 561147078R5 + 131864220R7 

−18075590R9 + 1621750R11 − 102570R13 + 4806R15 − 170R17 + 4R19 

{f9, f13} = −366675064R1 + 603156298R3 − 297645675R5 + 69943872R7 

−9587682R9 + 860184R11 − 54390R13 + 2544R15 − 89R17 + 2R19. 

Therefore, 32{f3, f19} − 105{f5, f17} + 136{f7, f15} − 85{f9, f13} = 0. 

5.3 Finding New Relations 

Using the dimension equation, we can fnd that the dim S26(SL2(Z)) = 1. Therefore, as 

with Schneps’s equations, up to scalar multiple, there is exactly one relation for n = 26: 

1032{f3, f23} − 3395{f5, f21} + 4466{f7, f19} − 3135{f9, f17} + 1292{f11, f15} = 0. (5.3.1) 
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Now, we can show that this calculation works with the equations found below: 

[0, 2, 22] = −2853207760750R1 + 4693338645567R3 − 2316069788109R5 

+544254586161R7 − 74605243801R9 + 6693857814R11 − 423498866R13 

+19903906R15 − 722304R17 + 20867R19 − 495R21 + 10R23 

[2, 0, 22] = R22 = 51943281731R1 − 85443273685R3 + 42164565597R5 − 9908275971R7 

+1358205310R9 − 121863378R11 + 7710010R13 − 362406R15 + 13167R17 

−385R19 + 11R21 

[22, 0, 2] = R2 = R1 

[0, 4, 20] = −2594601005000R1 + 4267947583012R3 − 2106147712485R5 

+494924874666R7 − 67843232341R9 + 6087144304R11 − 385113546R13 

+18099628R15 − 656754R17 + 18952R19 − 444R21 + 8R23 

[4, 0, 20] = R20 = −1109652905R1 + 1825305870R3 − 900752361R5 + 211668360R7 

−29015090R9 + 2603380R11 − 164730R13 + 7752R15 − 285R17 + 10R19 

[20, 0, 4] = R4 = −R1 + 2R3 

[0, 6, 18] = −2142617789472R1 + 3524464994008R3 − 1739253760242R5 

+408708250371R7 − 56024842201R9 + 5026753596R11 − 318025392R13 

+14946298R15 − 542232R17 + 15621R19 − 361R21 + 6R23 

[6, 0, 18] = R18 = 28820619R1 − 47408019R3 + 23394924R5 − 5497596R7 

753610R9 − 67626R11 + 4284R13 − 204R15 + 9R17 

[18, 0, 6] = R6 = 3R1 − 5R3 + 3R5 
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[0, 8, 16] = −1527608809600R1 + 2512815771520R3 − 1240024878960R5 

+291394164776R7 − 39943679961R9 + 3583891864R11 − 226739884R13 

+10655880R15 − 386501R17 + 11116R19 − 254R21 + 4R23 

[8, 0, 16] = R16 = −929569R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 

+2184R11 − 140R13 + 8R15 

[16, 0, 8] = R8 = −17R1 + 28R3 − 14R5 + 4R7 

[0, 10, 14] = −794719937024R1 + 1307261897856R3 − 645107888320R5 

+151594275984R7 − 20780213910R9 + 1864475711R11 − 117958379R13 

+5543472R15 − 201036R17 + 5775R19 − 131R21 + 2R23 

[10, 0, 14] = R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 

[14, 0, 10] = R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9. 

Therefore, 

{f3, f23} = −2905151042480R1 + 4778781919252R3 − 2358234353706R5 

+554162862132R7 − 75963449111R9 + 6815721192R11 − 431208876R13 

+20266312R15 − 735471R17 + 21252R19 − 506R21 + 10R23 

{f5, f21} = −2593491352096R1 + 4266122277144R3 − 2105246960124R5 

+494713206306R7 − 67814217251R9 + 6084540924R11 − 384948816R13 

+18091876R15 − 656469R17 + 18942R19 − 444R21 + 8R23 

{f7, f19} = −2142646610088R1 + 3524512402022R3 − 1739277155163R5 

+408713747967R7 − 56025595811R9 + 5026821222R11 − 318029676R13 

+14946502R15 − 542241R17 + 15621R19 − 361R21 + 6R23 
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{f9, f17} = −1527607880048R1 + 2512814242468R3 − 1240024124402R5 

+291393987460R7 − 39943655651R9 + 3583889680R11 − 226739744R13 

+10655872R15 − 386501R17 + 11116R19 − 254R21 + 4R23 

{f11, f15} = −794719975096R1 + 1307261960482R3 − 645107919225R5 

+151594283247R7 − 20780214906R9 + 1864475802R11 − 117958386R13 

+5543472R15 − 201036R17 + 5775R19 − 131R21 + 2R23. 

Thus, we have verifed Equation 5.3.1. 

Now, there exist no other values of n such that dim Sn(SL2(Z)) = 1. However, we can 

look at one n where the dimension equals 2. In the case of n = 24, dim S24(SL2(Z)) = 2. We 

now show that every relation is a linear combination of the two equations listed below: 

−470{f3, f21} + 1519{f5, f19} − 1862{f7, f17} + 969{f9, f15} + 0{f11, f13} = 0 (5.3.2) 

−194{f3, f21} + 605{f5, f19} − 627{f7, f17} + 0{f9, f15} + 646{f11, f13} = 0. (5.3.3) 

The calculations to prove the above functions are shown below: 

[0, 2, 20] = 50833628826R1 − 83617967815R3 + 41263813236R5 − 9696607611R7 

+1329190220R9 − 119259998R11 + 7545280R13 − 354654R15 

+12882R17 − 375R19 + 9R21 

[2, 0, 20] = R20 = −1109652905R1 + 1825305870R3 − 900752361R5 + 211668360R7 

−29015090R9 + 2603380R11 − 164730R13 + 7752R15 − 285R17 + 10R19 

[20, 0, 2] = R2 = R1 
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[0, 4, 18] 

[4, 0, 18] 

[18, 0, 4] 

= 

= 

= 

45314184920R1 − 74538846484R3 + 36783446355R5 − 8643763407R7 

+1184868380R9 − 106310724R11 + 6725914R13 − 316098R15 

+11466R17 − 329R19 + 7R21 

R18 = 28820619R1 − 47408019R3 + 23394924R5 − 5497596R7 

+753610R9 − 67626R11 + 4284R13 − 204R15 + 9R17 

R4 = −R1 + 2R3 

[0, 6, 16] 

[6, 0, 16] 

[16, 0, 6] 

= 

= 

= 

35729867872R1 − 58773276840R3 + 29003449470R5 

−6815537191R7 + 934258800R9 − 83824884R11 + 5303180R13 − 249178R15 

+9021R17 − 255R19 + 5R21 

R16 = −929569R1 + 1529080R3 − 754572R5 + 177320R7 − 24310R9 

+2184R11 − 140R13 + 8R15 

R6 = 3R1 − 5R3 + 3R5 

[0, 8, 14] 

[8, 0, 14] 

[14, 0, 8] 

= 

= 

= 

22864454016R1 − 37610519296R3 + 18560047184R5 − 4361435944R7 

+597855811R9 − 53641497R11 + 3393537R13 − 159414R15 

+5761R17 − 161R19 + 3R21 

R14 = 38227R1 − 62881R3 + 31031R5 − 7293R7 + 1001R9 − 91R11 + 7R13 

R8 = −17R1 + 28R3 − 14R5 + 4R7 

[0, 10, 12] 

[10, 0, 12] 

[12, 0, 10] 

= 

= 

= 

7867739648R1 − 12941912960R3 + 6386577984R5 − 1500785520R7 

+205724250R9 − 18458187R11 + 1167705R13 − 54846R15 

+1980R17 − 55R19 + R21 

R12 = −2073R1 + 3410R3 − 1683R5 + 396R7 − 55R9 + 6R11 

R10 = 155R1 − 255R3 + 126R5 − 30R7 + 5R9. 
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Therefore, 

{f3, f21} = 51943281732R1 − 85443273685R3 + 42164565597R5 − 9908275971R7 

+1358205310R9 − 121863378R11 + 7710010R13 − 362406R15 + 13167R17 

−385R19 + 9R21 

{f5, f19} = 45285364300R1 − 74491438463R3 + 36760051431R5 − 8638265811R7 

+1184114770R9 − 106243098R11 + 6721630R13 − 315894R15 + 11457R17 

−329R19 + 7R21 

{f7, f17} = 35730797444R1 − 58774805925R3 + 29004204045R5 − 6815714511R7 

+934283110R9 − 83827068R11 + 5303320R13 − 249186R15 + 9021R17 

−255R19 + 5R21 

{f9, f15} = 22864415772R1 − 37610456387R3 + 18560016139R5 − 4361428647R7 

+597854810R9 − 53641406R11 + 3393530R13 − 159414R15 + 5761R17 

−161R19 + 3R21 

{f11, f13} = 7867741876R1 − 12941916625R3 + 6386579793R5 − 1500785946R7 

+205724310R9 − 18458193R11 + 1167705R13 − 54846R15 + 1980R17 

−55R19 + R21. 

Thus, we have verifed Equations 5.3.2 and 5.3.3. 

Equations 5.3.1, 5.3.2, and 5.3.3 are not the only relations that can be found using the 

methods described in this thesis. First, choose an even n and fnd the dim Sn(SL2(Z)) to predict 

the number of equations you will fnd whose linear combinations will equal every relation for that 

n. Then, fnd all odd number pairs (such that both numbers are greater than 1) which add together 

to equal n. Using those pairs, the next step is to calculate {f3, fn−3}, {f5, fn−5}, ..., and 

{f2k+1, fn−(2k+1)} using Proposition 5.1, Equation 3.1.1, and the calculations and processes from 

Section 4.1 Calculating Even Combs. Note that proving Conjecture 4.1 will make it easier to fnd 
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more of the even combs that we rewrite as linear combinations of odd combs; these rewritten 

combs are needed for calculating relations for n > 26. Once we calculate {f2i+1, f2j+1} for all 

2i + 1, 2j + 1 such that 2i + 2j + 2 = n, we can then input them into a matrix and fnd the null 

space of said matrix. The null space gives the desired relations. With all of these formulas and 

processes, continuing the calculations and fnding more relations is straight forward but gets 

increasingly tedious. 
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