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ABSTRACT

Kit Chan, Advisor

The main theme of this dissertation is the dynamical behavior of composition operators on the
Frechet space H(IP) of holomorphic functions on the upper half-plane P. In this dissertation, we
prove a new version of the Seidel and Walsh Theorem [21] for the Ffechet space H (IP). Indeed, we
obtain a necessary and sufficient condition for the sequence of linear fractional transformations o,
such that the sequence of composition operators {C,, }>° ; for the Ffechet space H (P) is universal.
For that, we use the Riemann Mapping Theorem to transfer dynamical results on the space H (D)
of holomorphic functions on ID to the space of holomorphic functions H (P). Furthermore, we gen-
eralize our first result by proving equivalent conditions for a sequence of composition operators in
the space H (D) to be universal.

Consequently, taking the point of view that hypercyclicity is a special case of universality, we
obtain a new criterion for a linear fractional transformation o so that C, is hypercyclic on H (P).
Indeed, we provide necessary and sufficient conditions in terms of the coefficients a, b, c,d of a

linear fractional transformation o(z) = %t

= 217 so that G, is hypercyclic on H(I?). Moreover, we use

this result to des a necessary and Suient condition in termsxodndf so thaC’, is lyper-

cyclic o (D) wherep(z) = €’ =% is a linear fractional transformation defindd. on

l—az

Motivated by the DenjeWolff Theorenj23, p. 78], we furtherkvon the conformal nwap
oftheupperhalf-planelP istomakeaconnectionbetweenthehypercyclicityandthelimitofthe
iterationso™. In particulawe ge a complete characterization for the limit poinimthe

extendedboundaryd,,P = 0P U {oo}.Similarly,weprovideananalogousresultfortheunitdisk
D.

Finally, we obtain a new universal criterion in the space H ({2) of holomorphic functions on a
bounded simply connectedgion(2 that is not the whole comyptan& . W shov that a se-
quence of composition operatdfs,, }°° ,"onH (2) is unversal if and only if there are a boundary

limit pointy € OS2 and a subsequender,,, }+, of{ o, },, such that,,, — w uniformly on compact



v
subsets of 2. Our last result extends a result of Grosse-Erdmann, and Manguillot in a particular

case when the complement C \ Q2 of (2 has a nonempty interior.
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CHAPTER 1 UNIVERSAL COMPOSITION OPERATORS
1.1 Introduction
1.1.1 Introduction to Universal Composition Operators

Let X be a separable metrizable topological vector space, and for each integer n > 1 let
T, : X — X be a continuous linear map. The sequence {7}, is said to be universal if there
is a vector = of X such that the set {7,z : n > 1} is dense in X. Such a vector z is called a
universal vector of {T,},. In the case that T}, is the n-th power 7™ of a continuous linear map
T : X — X, then T is said to be hypercyclic, and we call x a hypercyclic vector of T'; that is, the
orbit orb(7T',z) = {T™x : n > 1} is dense in X. In our setting, X is the Ffechet space H(G) of
holomorphic functions on a region G in the complex plane C, and 7}, is a composition operator

Cys, : H(G) — H(G) defined by Cy, (f) = f o ¢, where ¢, : G — G is a conformal map.

In the Fiechet space H(G) a sequence { f,}>2, in H(G) converges to f in H(G) if and only if
fn — [ uniformly on every compact subset of GG; see [3]]. This dissertation is dedicated to study
the dynamical behavior of the sequence {C, },>1 in the space of holomorphic functions H (&)
when G is the upper half plane P or the unit disk D.

The following discussion is based on the Shapiro’s note [22]. If U and V' are open subsets of
Cand ¢ : U — V is a holomorphic map (not necessarily one to one or onto), then ¢ induces a
composition operator Cy, : H(V) — H(U) defined by C, f = f o ¢ where f € H(V). Now if we
take the region G to be the unit disk D, then the Riemann Mapping Theorem [3}, p. 160] allows us
to transfer the dynamic behavior about composition operator on H (D) to H(G), where G is any
simply connected planar region that is not C. In fact, the Riemann Mapping Theorem gives us a
bijective holomorphic map v taking D onto G. Therefore, the corresponding composition operator
Cy is an isomorphism of H(G) onto H(D). If o is a self map of G, then ¢ = ¢p"' oo 0t is

holomorphically conjugate to o (see Definition ) and ¢ is a holomorphic self map of D. Since



o and ¢ are conjugate of each other, the operator
Co = Cyrogop = Cyy 0 Co 0 (Cy) ™!

is similar to C,, : H(G) — H(G). In this dissertation, we make use of the isomorphism between

these Fréchet spaces H(G) and H (D).
1.1.2 Classical Results

The study of composition operators has a long history, utilizing methods from different topics
in analysis, such as functional analysis, operator theory, measure theory, and analytic function
theory. Composition operators have been studied by many authors on various spaces of analytic
functions. For general references on the theory of composition operators, see the well-known
books by Cowen and MacCluer [4], Shapiro [23]] and Erdmann and Manguillot [9].

In 1929 Birkhoff [2] proved that there exists an entire function g(z) such that for any arbitrary
entire function h(z), there exists a sequence {ny}3>, of positive integers such that

lim g(z 4+ ni) = h(2)

k—00

uniformlyoncompactsubsetsofC.Inotherwords thetranslationoperators?,, : H(G) — H(G)
defined b¥/,(f) = f(z + n) form a uwersal sequence of operators.
Afterthatmanyauthorshaveworkedonthistopic,onthespaceH (G) onaregionG particularly
when G = C or D for self mappings ¢ : G — G which may not be one-to-one or onto on the
domain G; see [8].

In 1941 Seidel and Walsh [21] proved a result analogous to Birkhoff’s Theorem for the space of
holomorphic functions on the unit disk ID. They showed that for any sequence {b,,}>°_, C D with b,

— 1, there exists a function g in H (D) such that for any function h in H (D), there exists a
subsequence {b,, }7°>,with

. b, —2
() Jim g TH— =h(2)



Later in 1955 Heins [7] showed for any sequence {b,}>° ; in the unit disk D with b, — 1 there
exists a Blaschke product B such that any holomorphic function in [D that is bounded by 1 can be

locally uniformly approximated by functions of the form B o ¢, , where ¢, (z) = lbf’g_z . Also,
ny 2

in 1976 Luh [1]] proved that in the space H (C) of entire functions, for any sequence {b,,}>°, in C
withlim,, ,, b, = oo,thereexistsanholomorphicfunctiong inH (C) suchthatforanycompact

set/ withpropertythatC \ K isconnectedandforeveryfunctionk holomorphiconC thereexists
subsequence{by, } ., suchthatlimy_,, g(z + by, ) = h(z) uniformlyonk.

In 1987 Gethner and Sheagfi6] discoered a sticient condition for a sequence of continuous
linear majps on adadhet spae to be wmrsal. This condition for the Banach spaceasdsestw
discoveredbyCarolKitaiinherthesis[ 12],butsheneverpublishedit. Thisconditionisnow
knownastheUniversalityCriterion, whichcanbeappliedtospacesofholomorphicfunctions.

Thus Unversality Criterion ges a unified proof ofvemality for composition operators, includ-
ingthetheoremsofBirkhoff,SeidelandWalshandothers. Morerelatedresultsoncompositions

operatorscanbefoundin[8].
1.1.3 AnOutlineoftheDissertation

The oganization of this dissertation is as ¥olloln Chapter 1, fee ddfinitions tated
to linear fractional transformations. Then we introduce well-studied concepts of classification of
linearfractionaltransformationsthatweneedinthedissertation.
InChapter2 , wepresentafewclassicalresultsonuniversality,includingtheuniversalitycriterion
and the Seidel and Walsh Theorem. In addition, we obtain straightforward observations and results
related to the Seidel and Walsh Theorem.

In Chapter 3, we continue the work of Seidel and Walsh [21] who proved a universality result
for C,,: H(D) — H(D) where 7, is a sequence of non-Euclidean translation on the unit disk D.
Fur-thermore, we make a connection between a sequence of universal composition operators in
H (D) and a sequence of composition operators in H (P); see Theore Then in Corollary
we obtain a complete characterization of a sequence of conformal maps that produce a

sequence of
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universal composition operators {C,, },,~1 on H(P). We conclude Chapter 3 with a few examples

of universal composition operators.

az+b

v and its

In Chapter 4, we study the relation between a linear fractional transformation o(z) =

coefficient matrix

A=
c d

We first pree basic properties of the matrix and ityeigesin Lemnd Lemm.
In Propositioand Theorewe provide necessary and didient conditions for a se-
quence of composition operatdrs : H(P) — H(P) to beypercyclic, in terms of thetmixaA
of the conformal map o. To conclude the chapter, we provide a few examples to illustrate the main
result in Theoremm

In Chapter 5, we first prove Lemm and Lemma5.1.10 that give us equivalent conditions
in terms of eigenvalues, fixed points, and the coefficients of linear fractional map o. Motivated by
Denjoy-Wolff Theorem [23, p. 78], we study a limiting behavior of iterations of a linear fractional
transformation o defined on the upper half-plane P. Using these conditions, we give a specific
characterization of its limit point for different classes of linear fractional transformations in Theo-
re
In Chapter 6, we provide a complete characterization of the linear fractional transformation ¢(z) =
ew% so that the composition operator Cy is hypercyclic on H(ID); see Theorem m To be
more precise, we ded necessary and dudient conditions for a linear fractional seld ol
in terms of a and 6 so that Cyis hypercyclic. At the end of this chapter, we provide a numerical
example and a series of corollaries.

In Chapter 7, we investigate universal composition operators in the setting of the Fréchet space
H(G) of space of holomorphic functions for any simply connected region GG in the complex plane

C, when its complement C \ G has a nonempty interior. We obtain a new criterion for o,, on G so

that {C,, }°°;is universal in H (G); see Corollary|7.2.3] Theore and Theore



1.2 Linear Fractional Transformations

The universality of a sequence of composition operators {C, }°° , is studied with the properties
of the symbols ¢,,. The following proposition is well known and demonstrates the connection

between the hypercyclicity of a composition operator Cy with its inducing map ¢.

Proposition 1.2.1. (Shapiro [22]) If Cy is hypercyclic on H(D) then ¢ is an univalent (that is one

to one holomorphic function) and has no fixed point in D.

Proof. By way of contradiction, assume ¢ has a fixed point r € D, (that is, ¢(r) = r). Let f €

H(ID). Any function in the orbit orb(Cy, f) isin the form CF f = fo¢", where ¢" = popo---0¢
—_——

n-times

and n > 0. Hence by induction, we have

Cotf(r)=fod" ™ (r) = fog¢"(¢(r))

Hence {C} f : n > 1} is not dense in H (D). Thus, C; is not hypercyclic.
Suppose ¢ is not univalent, so there exists distinct point , s € D with ¢(r) = ¢(s). Then if

f € H(D), then each function in the orbit orb(Cy, f) we have by induction for n > 0,

Cot i f(r) = f(¢"(r) = f(6"(6(r)) = F(&"(6(s)))
= f(@""(5))

= Crt ()

Hence, f o ¢"(r) = f o ¢"(s) for all n > 0. Therefore, orb(Cy, f) can not be dense. O

It is clear that in this proof we may replace the unit disk D with any open set GG since we did

not use any specific characteristic of the unit disk D.
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The main goal of this section is to study the set of linear fractional transformations on the
complex plane C, and more precisely on the upper half plane P and the unit disk ). We state

basics definitions and some facts of the linear fractional transformations.

Definition 1.2.2. (/26 p. 20]) A map of the form ¢(z) = % is called a linear fractional trans-
formation. If a,b,c,d € C and if ad — bc # 0 then ¢ is a Mobius transformation.

In the case that ad — bc = 1 then ¢ is in the standard form or a normalized transformation.

In the case that ¢ # 0, this definition extends to the whole Riemann sphere C=cCcu {o0} by
defining (<) = oo, f(00) = *,

In the case that ¢ = 0 and a # 0 we define f(o0) = .

The following definition gives us a description of a linear fractional transformation for [P; see

26, p. 201.

Definition 1.2.3. Let a, b, ¢, d € R be such that ad — bc = 1 we define the map

az+b

0(z) = cz+d

as a form of linear fractional transformation ¢ : H(P) — H(P). This function ¢ is called a

Mobius transformation of P, or a conformal map of P.

One may ask when two linear fractional transformations are conjugate? The answer is in the

below definition.
Definition 1.2.4. ([20]) Two linear fractional transformations f and g are said to be

* conjugate if there exists a linear fractional transformation h such that the diagram

cC 2. ¢C
hl lh (1.2.5)
¢ 15 ¢

is commutative; that is; g = h™' o f o h.
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* topologically conjugate if there exists a homeomorphism h, : C — C such that g=h"lofoh

(a mapping h is a homeomorphism if h and h™' are continuous bijections).

Many of linear fractional transformations are important in our study. The first ones are the

linear fractional transformations of the disk D,

where o € D and 6 € [0, 27]. If 0 = 7, then ¢(z) = == and these maps are self -inverse, that is
¢ = ¢~ 1. Also it is important to know that ¢ maps the open unit disk D to itself and the boundary
of the unit disk 0D = {z € C : |z| = 1} to itself. These linear fractional transformations are
useful because they take the point « to point 0 and 0 to —av.

The second one is the conformal automorphism which is called a Cayley transform ¢y : P — D

that conformally maps the upper half-plane P to the unit disk D by:

Z—1
= , here z € P.
4Q Z+1 v :
its inverse is given by:
1
P (z) = il i Z, where z € D.

Note that the Cayley transform maps the boundary to the boundary, that is the extended bound-
ary 0P = R U {co} to OD. Consequently, much of the work on H (IP) uses the results on H (D),
utilizing the function v; see [13], [14, p. 20].

1.3 Classification of Linear Fractional Transformations

In this section, we give a brief account on the classification of linear fractional transforms on
IP. This brief discussion is from Shapiro [23]], and more facts, results, and definitions can be found

in Walkden [25]].

Definition 1.3.1. (Shapiro [23]) If ¢(2) = % is a linear fractional transformation in the stan-
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dard form, then we define T'(¢) = +(a + d) to be the trace of ¢. where the ambiguous sign is

intended to signal the "plus-minus” ambiguity in the standard form representation of T.

It is not hard to see that classification of linear fractional transformations can be done based in

two view points:

(a) The number of its fixed points.

To determine the fixed points of a linear fractional transformation, set

b
z=0¢(z) = Zzz—td’ with ad — be = 1.
Thus
z(cz+d) =az+0b.
This implies

c?+(d—a)z—b=0. (1.3.2)
Hence, if a and 3 the roots of equation (I1.3.2) we get the following

—(d —a) £+/(d—a)?+4cb
2c
a—d+E+/(a+d)?—(a+d)?+(d—a)?+4dch
2c

a,f =

- a—d+/(a+d)’ — (dad — Ach) where ad —bc=1

2c
a—dE+T?2 -4

50 (1.3.3)

From this equation we can see the types of fixed points.

Type 1. If ¢ # 0,7 # +2, then we get two finite distinct fixed points o # [.

a—d
2c °

Type 2. If ¢ # 0, T = 42, then we get only one finite point « = 3 =
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Type 3. If ¢ = 0, T # +2 then we get two fixed points and one of them is 5 = oo and the
other one is a finite fixed point o. To see this, since c = Othen ad =1 this implies that a =
1
rE Thus
az b

_8% 0 _ 9
gzﬁ(z)—d—i-d a“z +ba

is a linear transformation. Setting z = a?z + ba, we obtain the following two fixed points:

ab
i g RN

Type 4. If c = 0 and 7" = £2, then we get only one fixed point which will be co. To see
this, since ¢ = 0 implies ad = 1,and T' = a + d = £2, we have a = £1. Hence,

¢(z) = z £ b. Note that ¢(c0) = 0.

We conclude that ¢ has a unique fixed point in C if and only if |T'(¢)| = 2 and ¢ has two
fixed points if and only if |T'(¢)| # 2.

The next question is how we classify these transformations? In order to see that we need to

write the linear fractional transformation in the form as explain in the below theorems.

Theorem 1.3.4. (Kaur [11]) If a linear fractional transformation

az+b
cz+d’

w=d(z) =

where ad — bc =1,

has two distinct fixed points o and 3, then the transformation takes the form

Ww— Z—
w_ﬁ_k(z_ﬁ).

Proof. The results is obvious in the case that 5 = co. It remains to prove the result for the

case that o, 3 € C. Since «, 3 are the roots of the equation (cz)? + (d — a)z — b = 0, this

implies that



Thus,

Consider

where

Theorem 1.3.6. ([11]) If a linear fractional transformation w = ¢(z) =

ca® +(d—a)a—b=0 and ¢8>+ (d—a)B —b=0.

ca’ —ao=b—da and ¢f? —af =b—dp.

W —

k=

az+b
cz+d a
az+b
cz+d 6

az+b—acz — ad

az+b— ez —dp

(a — ac)z + (b— ad)
(a — Bc)z+ (b—dpB)
((I — CJ./C)Z + ca?® — ax
(a — Bc)z +cB% —af’ by ([1.3.5
(a - OZC)Z + a(ca — a)
(a — Be)z + B(eB — a)
(a —ac)(z — )
(a — Be)(z — B)
(2 =)
e

_a—ac_T—\/T2—4

= ’b
a—Be Tiy2_4

1.3.3).

az+b
cz+d

10

(1.3.5)

]

has only one
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finite fixed point say o € C, then the transformation takes the form

Proof. Putw = z; that is,

b —d) =+ —d)? +4b
z = ﬂ, which implies « = (e ) (a )+ C,
cz+d 2c
where
(a —d)* + 4bc = 0.
This implies that
a—d
o= .
2c

Thus

zac=a —d.
Hence

d=a—2ac. (1.3.7)

Again « is a root of equation c2? + (d — a)z — b = 0 in (T.3.2). This implies

ca? + (d —a)a — b = 0.

Thus

ca? —aa = b — da. (1.3.8)

Now,
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cz+d
az+b—acz—ad

cz+d
(a —ac)z+ (b— ad)

cz + a — 2ac

= fi 1.3.7).
(a—ac)z+ (b—ad) rom )
Hence by (1.3.8),
1 B cz+a—ac—ac
w—a  (a—ac)z+ (ca? — aa)
~ (ecz—ac)+ (a—ac)
(o —ac)z+ alca —a)
_clz—a)+ (a—ac)
- (a—ac)(z—a)
c 1
= +
a—ac  zZ—«
Now by taking
k= ——
a—ac
we get
1 1
=k+
w—a z—a

]

In the case of one fixed point, the transformation is called parabolic. We summarize the clas-

sification of linear fractional transformations by its multiplier % in the following definition:

Definition 1.3.9. /15| p. 42] In the case of two distinct fixed points of the linear fractional

transformation, the multiplier k is given by k = ;;/—7 V:ﬁ:i. We say that:

(1) A transformation is hyperbolic if k > 0.

(2) A transformation is elliptic if k = ¢'*,a # 0, |k| = 1.
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(3) A transformation is loxodramic if k = ae'® where a # 1, # 0 and «, 3 are both real

numbers a > 0. In other words, T is neither elliptic nor parabolic.

(b) Classification by the trace of a matrix representing the linear fractional transformation. Let A

be a 2 X 2 matrix given by

The trace of Ais T = a + d.

Theorem 1.3.10. (/23]) Suppose ¢ is a linear fractional transformation that is not the identity,

then ¢ is loxodramic if and only if its trace T'(¢) is not real. If T'(p) is real, then ¢ is:

* Hyperbolic if |T(¢)| > 2 (where k= Z—;Z, k real,k > 0,k # 0).

* Parabolic if |T(¢)| =2 (where k=1a=/).

e Elliptic if |T(¢)| <2 (where k= Z;;Z, k| =1).

Lemma 1.3.11. (/25 p. 61]) A linear fractional transformation ¢(z) = gjis with a,b,c,d € R

and ad — bc = 1 is a parabolic if and only if it is conjugate to a translation.

Proof. Suppose ¢ is parabolic and has a unique fixed point at . Let h(z) = i be a linear
fractional transformation that maps £ to co. Then h o ¢ o h™! is a linear fractional transformation
with a unique fixed point at co because h o ¢ o h™'(0c0) = h(p(€)) = h(§) = .

We claim that h o ¢ o h~! is a translation. Write

az+b
cz+d

hodoh '(z) =

Since oo is a fixed point we must have that ¢ = 0 and so we can write

b
hod ohil(z):afj—i—c—l,
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and thus has a fixed point at dTba because

b a(z=) b
h h—l _ d—a v
cdoh (1)) 4 d
_ 1] ab b(d — a)
 dld—a d—a
b
- d—a

Since h o ¢ o h™! has only one fixed point at oo we must have that d = a. Thus,

ho¢oh_1:z—>z+§.

Conversely, assume that ¢ is conjugate to a translation, that is for some map h we have that
hopoh™ : 2z — 2+,

for some b € R\ {0}. But this has a unique fixed point co and it is therefore a parabolic. U

Lemma 1.3.12. (/25 p. 62]) A linear fractional transformation ¢(z) = % is a hyperbolic if and

only if conjugate to a dilation.

Proof. If ¢ is conjugate to a dilation of the form ¢(z) = kz. Thus there is a map h such that
ho¢oh ! = 1 then this map clearly has precisely two fixed points 0 and oo and so does ¢.

Therefore, ¢ is hyperbolic.

az+b

—d Since oo 1s a

If ¢(z) fixes 0 and oo then we claim it is a dilation. To show that, write ¢(z) =
fixed point we must have ¢ = 0 . Also since 0 is fixed point we have b = 0. Hence, ¢(2) = §z2.
More generally, suppose ¢(z) is hyperbolic with exactly two fixed points &, &,. First suppose that

& =ooand & € R. Let h(z) = 2z — &. Then the conjugate map h o ¢ o h~! has fixed points 0 and
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hogoh ™ (0) = hoo(&)=h(&)=0;

hogoh™(o0) = h(¢(o0)) = h(ss) = .

Thus h o ¢ o h~! is a dilation by the above.
Finally, assume that ¢ has two real fixed points &, ;. We may assume that & < &. Let h be the
transformation f(z) = % This is a linear fractional map and the conjugate map h o ¢ o h~! has

fixed points 0 and co. Hence, it is a dilation by our argument above. 0
In conclusion, since we aim to study universal composition operator on space H(IP), we will
focus in the rest of this dissertation on linear fractional transformations that have no fixed point

in [P; that in case a linear fractional transformation is hyperbolic or parabolic. We give more facts

about that in Chapter 5.
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CHAPTER 2 UNIVERSALITY RESULTS FOR THE UNIT DISK D
2.1 A Sufficient Condition for Universality

Suppose X is a separable Fréchet space and 7' : X — X is a continuous linear operator. Let d
a translation invariant metric d makes X a separable complete metric space. For x € X, we denote
the quantity ||z|| = d(z,0). In this section we state Gethner and Shapiro’s condition and provide

their proof. But first we need to mention to the following useful proposition.

Proposition 2.1.1. (Gethner and Shapiro [6l]) If T has a universal vector, then it has a dense G

set of universal vectors.

Proof. Fix a countable dense subset {y;} of X. For positive integers N, j, and k, set

1 1
F=F(jN.k)={z € X :|T"x — y;|| < - forsome n > N} = U 77B(y;, )
n>N

By the continuity of T, each F'(j, N, k) is open. The set of T-universal vectors is the set

() FG, N, k),
JNk
which is therefor a G5 subset of X. If = is a universal vector, then so is every member of the dense

orbit orb(T, x) = {T"z;n > 1}. O

Theorem 2.1.2. (Gethner and Shpiro [6]]) Suppose T' is a continuous linear operator on a separa-
ble Fréchet space X. Suppose there exist a dense subset D of X and a right inverse S forT' (T'S=
identity on X ) such that | T"x| — 0 and ||S"x| — 0 for every x € D. Then X has T-universal

vectors.

Proof. By Baire’s Theorem [19, p. 42] it is enough to prove that each of the G sets F' = F(j.N, k)
defined in the proof of Proposition [2.1.1]is dense in X.

To see this, fix F' = F(j, N, k), and for ease of notation write ¢ = % andy = y;. Fix zin X



17
and 6 > 0. We must find an € F' lying within ¢ of 2. Since D is dense in X. We can choose

yo and zg in D with ||z — 20]| < £, and ||y — yo|| < &. Since the sequence 7™ and S™ converge
pointwise to zero on D, we may choose a positive integer n such that simultaneously |77z || < 5,

and ||S™yo|| < $. Write 2 = S™yo + 20. Then

0

N )
lz = 2ll < flz = zoll + llz0 = 2l = [15™voll + llz0 = 2] < 5 + 5,

and so ||z — z|| < 0, as desired. Moreover, since 7'S' is the identity map on X, so is 7"S™. Thus

€

n n Qn n n €
1Tz =yl = 1T"5"y0 —y + T"20]| < llyo =yl + [T"20]l < 5 + 3

= 6’
and so x € F', and the proof is complete. [

From this sufficient condition, we can get a unified proof of universality for many operators.
We now move to the next section, where we use this condition to prove theorem of Seidel and

Walsh.
2.2 The Seidel and Walsh Theorem

In fact the proof of Proposition 2.1.1] gives more as we see that in the following remark which
shows that the sequence {T™x : j > 0} is dense in X for a dense G subset of z’s where

{n; : 7 > 0} any fixed subsequence of positive integers with n; * cc.

Remark 2.2.1. [6, p. 283] Let (T},). be a sequence of continuous linear operators on X and D be
a dense subset of X such that T}, — 0 pointwise on D. Further assume that each operator T}, has
a right inverse Sy, for each k > 1, and Sy, — 0 pointwise on D. Then for a dense G5 set of vectors

x € X we get that the set {Tyx : k > 0} is dense in X.

One application of this final form of Gethner and Shapiro’s condition is the Seidel and Walsh
Theorem [21]. Recall that if H(ID) is the set of holomorphic functions on the unit disc D topolo-

gized by uniform convergence on compact subsets, then H (D) is a separable Fréchet space. Now
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we prove the following theorem.

Theorem 2.2.2. (Seidel and Walsh [21)]) Suppose {,, },, is a sequence of points in the open unit

D with lim,, o, v, = 1. Let ¢, be the linear fractional transformation of D defined by:

Pn(z) = — wherez €D ,and n > 1.

IfC, : HD) — H(D) is given by C,, f = f o ¢, then {C,,}72, is universal.
Proof. ( Gather and Shapiro [6]) Note that each ¢,, is its own inverse, by putting C,, = C! the
condition 7'S = [ in Theorem is satisfied. We define a functions f,, ; : D — D by

k
ml—z

fm,k(z) =z ma

where z €D, m > 0, and k£ > 0.

Let D = span{ f,, x(z) : z € D, m > 0, k > 0}. Then for fixed m, as k — oo the sequence f,, x
converges to the function z™ uniformly on compact subset of ID, so that the linear span D of such
functions is dense in H (D). Now, since ¢, converges uniformly on compact subset of D to the
constant function 1 as «,, — 1, and each function f,, ; is holomorphic on a neighborhood of 1 and
vanishes at 1, we get that C,, f,,, , — 0 uniformly on compact subsets as n — co. Thus C;, — 0 on
D, and so by Remark 2.2.1] {C.,}, is universal.

O]

From the Seiled and Walsh Theorem we know that if {b,,}*>°, C D and b,, — 1 € D, then there
is g € H(D) such that {g o v, : n > 1} is dense in H (D), where
b, —

¥nl2) = 1—bz

Now let ¢ € O, and f(z) = g(e™"z), and @, (2) = e”2==. Then

fopnlz) = f(”i_—_bz)

= gon(z).
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Thus {f o p, : n > 1} is dense in H(D).

Form above remark we are ready to prove the following Corollary [4.2.2] which we consider it
as a general case of Seidel and Walsh Theorem [2.2.2] There is no doubt that this Corollary 2.2.4]is

well-known but we can not locate a proper reference in the literature.

Corollary 2.2.3. Let {a,}>2, C D with |a,| — 1, and p,(z) = #2== then there is a function

1—anz

f € H(D) such that {f o ¢, : n > 1} is dense in H(D).

Proof. Since D is compact, there is a subsequence of {a,, },, still denote by {a,}, such that a,, —

B € 0D. Let B = €, thus e a,, — e 3 = 1. Let

Ap — 2
(pn(z) = p—
1—a,z
which can be rewritten as
g _ =0,
. n
@n(z) ="

1 —a,e ez

Let b, = e “a, and so b,, — 1. Hence if we let

b, — z

wn(z) = 1 _Ez-

Then by the Seidel and Walsh Theorem, there is a function g € H (D) such that {gov,,(z) : n > 1}

is dense in H (D). By our remark above there is a function f € H (D) such that if
On(2) = by (2)

then {f o ¢, (2) : n > 1} is dense in H(D). That is, {f o ¢,,(e72) : n > 1} is dense in H(D).

Now our statement follows from the observation that

, e 0q, —e 0y a, — 2
gbn(e_w,Z) — 629 n n

1 —eWq,e=0y 1—ayz

= gpn(z),

which completes the proof. 0
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We now prove the following lemma.

Lemma 2.2.4. Let {a,}5°, CD and {6,};°, C [, 7|. Let ¢ : D — D be defined by

ap — 2
and ¢,(z) : D — D be defined by
énl2) = 1—a,z

Then the sequence {C,, }22, is universal if and only if the sequence {Cy, }° , is universal.

Proof. Assume that {C,, }>°, is universal. Since every subsequence {c,, } is contained in the
compact set D. It must have a convergent subsequence. If every subsequence converges to a point

« inside D, then for any function f in H (D), {f o ¢, }»>1 can only converge to the function of the

form f(:2=%), which takes o to f(0). Thus {f o ¢, : n > 1} can not be dense in H (D). Hence

we must have a subsequence {ny } such that |a,, | — 1. By the compactness of [—, 7], there is a

further subsequence of {ny} k, still denote by {ny }, such that 6,,, — 6 for some 6 € [—n, 7.

Let
g R Qny
fr(z)=e e
Since
|an, | — 1, the sequence Cy, : H(D) — H(D)
is universal. Since 6,,, — 6, and ¢, (2) = e:# fr(2) we see that {Cy, } is universal, and hence

{C4, }» is universal.
Conversely, if {C,,, },, is universal, then by the compactness of [—7, 7|, we have a subsequence
{0y, }r of {0, },, that converges to a value 6 € [—m, 7]. By repeating the above argument, we prove

that {C,,, }, is universal. O

We now move to Chapter 3, where we state Theorem [3.2.6]that gives equivalent conditions that
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connect universality of {Cy, },, on space H (D) with universality of {C,, },, on space H (IP). Later

in Chapter 6, we use the above Lemma and Theorem [3.2.6]to study the limit point of the iterations
of a linear fractional transformation ¢ defined on the unit disk D. In particular, We obtain the

formula for the limit point in terms of a and 6.
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CHAPTER 3 UNIVERSALITY RESULTS FOR THE UPPER HALF PLANE P
3.1 Introduction

Birkhoff [2] proved the universality of the family {C., },cc of composition operators
C,, - H(C) - H(C), defined by C.,(f) = f oy,

where 7,(z) = 2z 4+ a, with @ € C and a # 0, is indeed a linear fractional transformation or
more precisely a translation. After that, Seidel and Walsh [21] established an analogue of the
Birkhoff theorem for the unit disk ID. As a continuation of that work, in this chapter we prove a
parallel version of the Seidel and Walsh Theorem for the upper half plane PP. Indeed, we derive a
new necessary and sufficient condition for a linear fractional transformation o,,(z) = % with
Apy by, Cny dy, € R and a,d,, — b,c,, = 1 such that the sequence of composition operators {C,, },, is
universal on H(P).

If §(z) = e’ Z=% with o € D and 6 € [0,7] is a linear fractional transformation that takes
D onto itself and ¥ (z) = i—jrz is a conformal map that takes P onto D, then 0 = )= o ¢ 0 9 is
holomorphically conjugate to ¢ and it is a holomorphic self map of P. We summarize in the below
diagram.

,D—*D-Y . p G.1.1)

o=y~ 1 oot

Since o and ¢ are conjugate to each other, then the corresponding operator

Co = Cytogop = Cyp o Cy o (Cy) ™

is defined on H (P) and is similar to C, which is defined on H(ID); see [22| p. 23]. Using this fact

we establish our new results in the next section.
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3.2 A Necessary and Sufficient Condition for Universality on H (P)

In order to prove our main result we first need to prove the following lemma in which we
construct a formula for e? and « in terms of a, b, ¢, d the coefficients of the conformal self map on

the upper half-plane P.

Lemma 3.2.1. Leta,b, ¢, d € Rwithad—bc = 1. Let ¢(z) = € Z=% with |a| < 1and § € [0, 27,
and (z) = i—:; If

1 _az+b
1/} oqsow(Z)_CZ—l—d,
then
ewi(c—b)—l—i(a—kd) and ai(b—l—c)—l—i(a—d)
(b—c)+i(a+d) C(b—c)—i(a+d)’
Proof. Note that
1
i) =i
Set
b
vl ogor(z) = Zid’ where a,b,c,d € R.
Thus,
. _a M (2)+ b
Yodlz) = 1 (z)+d
B ai(1£2) + b
() +d
aitaiz+b—0bz
 Ci4ciz+d—dz
Hence

o) = w(

at + aiz +b— bz
cl+ciz+d—dz
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(ai+aiz+b—bz) —
citciz+d—dz
aitaiz+b—bz -
(ci—i—ciz—l—d—dz) +1

Thus

(ai 4 aiz +b—bz) —i(ci + ciz + d — dz)
(ai + aiz + b —bz) + i(ci + ciz + d — dz)
(
(

ai—b+c+id)z+ (ai+ b+ c —id)
ai—b—c—id)z+ (ai +b—c+id)

[(c=b)+i(a+d)]z+[(b+c)+i(a—d)]
[—(b+c)+i(a—d)]z+[(b—c)+i(a+d)]

Hence we get

, (b+c)+i(a—d)
() = (c—d)+ila+d) #+ (o ri(ard) (3.2.2)
_ - —(bro)+ila—d) : s
(b—c)+i(a+d) Teoriara 2 1

Since
(c=b)+ila+d)’ (c—b)’+(a+b) _,
(b—c)+i(a+d) (b—c)2+ (a+ d)? ’

we let

for some 0 € [0, 27].

Let
0 - b+ +i(a—d)
(c—b) +i(a+d)
Hence
__ _(btg-ifa—d
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—(b+c¢) +i(a—d)
(¢c—b) —i(a+d)

—(b+c)+i(a—d)
(b—c)+ila+d)

Hence we can rewrite equation (3.2.2)) as

It remains to show |a| < 1.

(b+¢)® + (a—d)?
(c—=0)2+ (a+ d)?

a? 4+ b+ + d* + 2(be — ad)
a? 4+ b+ c? 4+ d? + 2(ad — be)

A2+ +E+d>-2
= < 1. 3.2.3
a2+ 0+ +d*+2 (323)

]

We can now state and prove our main result. The following proposition provides us with a
necessary and sufficient condition for a composition operator acting on Fréchet space H(IP) of
holomorphic functions for the upper half-plane to have a universal vector. By using the formula of
¢ and o in Lemma we obtain our condition, which is analogous to the condition of Seidel

and Walsh Theorem [2.2.2]for the universality of composition operator on the unit disk.

Proposition 3.2.4. Let a,,b,, c,,d, € R with a,d,, — b,c, = 1.

Let
anz + by,
cnz+d,’

UH(Z) =

and

C,, : HP) — H(P) be defined by
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Ca"nf = fOO'n,

The sequence {C., },, is universal if and only if

limsup (|an| + [by| + |cn| + |dn]) = oo.

n—o0

Proof. In view of Lemma let o, € D and ¢, (2) = €7 2=2 where

l1—az’

O (cn — by) +i(an + dp)

T (e —cn) +i(an +dy)

and
(bp + ¢n) + i(an, — dp)
(by, — ) —i(a, +dy)

ay =

Hence

Co, = Cy 0Oy, OC’;.

For any f € H(P),

Gy 0 Couf) = Co, 0 CF1(f) = Cou(f 0u™)

By the continuity of the bijection C;,!, it takes a dense set to a dense set. Thus a vector f is a
universal for C,,, if and only if f o ¢)'is a universal vector for C};, . We now proceed to establish
the lim sup condition in the theorem. We first observe that lim sup |c,| = 1 if and only if there is
a subsequence {,, }) such that |a,,, | — 1. Since D is compact, there is a further subsequence,
still denoted by {,,, }«, such that o,,, — « in 9D. The sequence {6, } is in the compact interval
[0, 27]. By picking a subsequence of {6, } if necessary, we can assume ¢, — 6 € [0, 27|. Hence

by the theorem of Seidel and Walsh, we have that {C,,, }, is universal if and only if lim sup |o,| =
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1. By the inequality (3.2.3)) we see that lim sup |«,| = 1 if and only if

lim sup (|an| + [bn| + [cn| + |dy]) = o0.

n—oo
This completes our proof. 0

The above proposition can be generalized a step further by making a connection between a uni-
versal sequence of composition operators in the unit disk and a universal sequence of composition
operators in the upper half-plane. In fact, we can establish more related results in the following

Theorem, keeping in mind the following diagram:

i T R G o AP i
P +i D 1-onz D 1 P (325)
an€D
Theorem 3.2.6. Forn > 1, let a € D, and ¢,,(2) = {°= be linear fractional transformations on
D. Suppose
=y _ GnEt by
on(2) =7 0 dpot(z) = Cnz +dy,’

where a,, b,, c,, d, € R with a,d, — b,c, = 1, are linear fractional transformations on P. The

following six statements are equivalent:
(1) |a,| — 1.

(2) The sequence of composition operators Cy, = H(D) — H (D) is universal.

0

(3) There are a point ¢ € 0D and a subsequence {¢,, }r such that ¢,, — € uniformly on

compact subsets of D.
(4) limsup |a,| + |bn| + |cn| + |dn] = 0.

(5) There are a point ( € 0 ,P = R U {oo} and a subsequence {c,, } of {on}n such that

On, (2) = C uniformly on compact subsets of P.

(6) The sequence of composition operators C,, : H(P) — H(P), where n > 1 is universal.
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Proof. The equivalence of statements (1) and (2) is from Corollary From Proposition[3.2.4

statements (1), (2), (4) and (6) are equivalent. It remains to show statement (1) is equivalent to
statement (3) and statement (3) is equivalent to statement (5).

To show (1) implies (3): Suppose |a,| — 1. Then there is a subsequence {a,, }; such that

|y, | — €”.
Note that
Oy, — 2
Z) = ———
T o2
Oy, 1 — a2
I O T
oy, 1—105,2
L o P14 1y,
O, 1— @,z
_ tlomfol, 1
oy, 1 —10,, 2 Ol
Thus,
< 1 21 1 ;
¢nk<z>_ez9 — |ank| _610
O, 1 =05 2 O,
1 1_|Oénk‘2 16 :
—e” =0 (f |2|<R
S =Rt a (f |2l < R)

uniformly on RD.

To show (3) implies (1): Suppose ¢,,(z) — ¢ uniformly on compact subsets of ID. Then

|0n(2)] = 1,
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and hence

(1= 16n(2)[*) = (1 = [6a(2)[) (1 + |n(2)])

<2(1—|¢n(2)]) = 0,

uniformly on compact subsets of ). Now

(o — 2) (@ — %)
(1 —anz)(1 — onZ)

L—|on(2)]* =1-

1 — nZ — @z + |on)?|2]? = |an|? + anZ + nz — |22
(-1 =3

I R

1 —anzf?

(1 —Jom?)(1 — |2*)
1 —azf?

(1 — |an[*) (1 - B?)

> 0L Rp if z€ RD
1—-R
= (1-— 2.

Hence |a,|?> — 1, which establishes (1).

To show statement (3) implies statement (5) we first make a claim of an easy fact.

Claim. For all 0 in R with ¢ # 1, i<, € R.

1—e?

Proof of Claim. 1t suffices to show Re 1+6%z = 0. To see that:

1—e*

1_619 1_619 1 _671,9

1_e—i9+ei9_1+1_€i6+6—i9_1
‘1_ei9|2
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This completes the proof of the claim. O

Now suppose lim ¢,,(z) = ¢? uniformly on compact subsets of D. Note that 1) and ¢)~! are

continuous, they take compact sets to compact sets. Recall o,,(z) = lim ¢~ 0 ¢, 09)(z). Therefore,

lim o, (z) =lim1 " o ¢, (1(z))

=y (lim ¢, (¥(2)))

00 if =1
= € RU {0}, by our claim.
Z-l-‘re"e if 61’9 7& 1

1—eit?

To show statement (5) implies statement (3): Suppose there is a point p € R U {oo} such that
0,(z) — p uniformly on compact subsets of I. Since ¢,(z) = ¢ o 0, 0 9»"!(z) and ¢ and !

takes compact sets to compact sets, we have

lim ¢, (=) = lim 1 0 0, 0 ()

= ¥(lim o, (v~ (2)))

1 if limo,(z) = 00
= € 0D,
L if limoy(z) =z € R
which concludes our proof. O

The equivalence of Statements (2), (3), (5), (6) is generalized in Theorem to a simply
connected region G whose complements has a nonempty interior. We now take some steps similar
to Lemma [3.2.1] in the converse direction to construct coefficients a,,, b,,, ¢,, d,, of the conformal
maps o, that produce a sequence of universal composition operators C,,, on the upper half-plane.

As an easy consequence of Theorem [3.2.6] we have the following corollary.
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Corollary 3.2.7. Let {1}, and {pn}n be two sequences of positive numbers.

(1) If pn, — 0, then there exists a function F'(z) in H(IP) such that {F () }» is dense in H(P).

(2) If pn, — o0, then there exists a function G(z) in H(P) such that {G(py,) }n is dense in H(P).

anz

Proof. Both statements follow easily from the observation that if 0,,(2) = a,z = Y5 then
Van

A /an\/% = 1 and so o, is normalized. Now both statements follow easily from Statement (5) of

Theorem u

3.3 Examples

In the end of this chapter we provide a few examples of conformal maps that produce universal
composition operators on the upper half plane [P and satisfy our necessary and sufficient conditions

of universality in Theorem [3.2.6]

Example 3.3.1. Let 0(z) = n— L that is a,, = n,b, = —1,¢, = 1,d,, = 0, with a,d,, — byc, = 1.
These conformal maps produce a universal sequence of composition operators on the upper half

plane. Here the coefficients satisfying our condition im sup(|a,| + |b,| + |cn| + |da]) = oc.

Example 3.3.2. Let 0(z) = n®z where a, = n,b, = 0,¢, = 0,d, = %, and a,d, —b,c,, = 1. This
is a sequence of dilations that produce a universal sequence of composition operators on the upper

half plane. Note that the coefficients satisfy our condition im sup(|a,| + |b,| + |ca| + |dn]) = oc.

Example 3.3.3. Take 0,,(2) = z + n with a,d,, — b,c,, = 1, wherea,, =1, b, =n, ¢, =0,d, =1
so that im sup(|a, |+ |b,| +|cn| +|dn|) = co. Hence this is a sequence of translations that produce

a universal sequence of composition operators on the upper half plane.
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CHAPTER 4 AN EQUIVALENT CONDITION FOR A COMPOSITION OPERATOR ON
H(P) TO BE HYPERCYCLIC

4.1 Introduction

It is very useful to take a step back to return to study linear fractional transformations using
their coefficient matrices. It is known that similarity induces an equivalence relation on the set of
all n x n square matrices. This similarity divides the set of all n x n square matrices into disjoint
equivalence classes. From the fact that all matrices in an equivalence class are similar, and matrices
in different classes are not similar, we utilize similar matrices to share many intrinsic properties of
the same class of matrices, for more details, see [10, p. 57],[5, p. 249], [1'Z, p. 26]. In this chapter,
our main result is Theorem {.2.5] For that we investigate the properties of a linear fractional
transformation that induces a hypercyclic composition operator on H (IP). Recall that there is
a connection between the function theoretic properties of linear fractional transformation ¢ and
behavior of C, on H (P) as we mentioned in Section In this section, we introduce some basic
concepts from linear algebra that help us study the properties of linear fractional transformations
on P.

To begin, we can identify the transformation

az+b

= 4.1.1
o(z) = @1
with its coefficient matrix
a b
(4.1.2)
c d

This identification between a linear fractional transformation on P and its coefficient matrix is

useful because of the simple facts given in the following Lemma.

a b a b
Lemma 4.1.3. (1) ifr # 0 then andr are the same linear fractional transforma-

c d c d



tion.

(2) Leto(z) = ‘C‘j’”’ and p(z) = Z/Z—er be two linear fractional transformations, and let

+d 2+d

a b a b
A= and B =
c d ¢ d
be the coefficient matrices. Then
() az+
cop(z)=
P vz +04’

whose coefficient matrix is given by

!
B = AB.

v oo
Proof. Statement (1) follows directly from the observation:

az+b_mz+rb
cz+d  rez+rd

Statement (2) follows directly the observation:

azib ) 4,
P B Cp(Z) + d B C(a’z-ﬁ-b') + d

c z+d

(aa’ +bc)z 4+ (ab + bd')
(ca’ +dc )z + (b +dd')

We now compute AB to cheek the result.

33
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AB =

aa +bc  ab + bd
ca +dc b +dd

a B

v 0

O

We now refer to some definitions from linear algebra; the interested reader may see [[10]. Since
we are motivated to study the set of linear fractional transformations on IP. We restrict our state-

ments to only 2 X 2 square matrices.

Definition 4.1.4. We define the set of matrices
SL(Z,R):{A: ca,bc,d eR, detAzl}

to be the special linear group of R,

a 0
Definition 4.1.5. (/10]) We call a matrix of the form A = a diagonal matrix.
0 d

a b
Definition 4.1.6. Let A = . If there is X\ € C and a nonzero vector x € C* with x # 0

c d

satisfying the equation

Axr = Az, 4.1.7)

then X is called an eigenvalue of A and x is called an eigenvector of A associated with \.
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Now the question is: how many eigenvalues does a 2 x 2 square complex matrix A have?
According to Equation A is an eigenvalue if and only if det(A — AI) = 0. Thus A has at most

two complex eigenvalues.

Definition 4.1.8. We define a characteristic polynomial of matrix A as
Py(x) = det(A — «I) 4.1.9)

and we called the equation P(x) = 0 a characteristic equation of A.

Definition 4.1.10. Let A is a 2 x 2 square matrix. The multiplicity of an eigenvalue \ of A is its

multiplicity as a zero of the characteristic polynomial Pa(z).

Note that the eigenvalues of A are the same as the zeroes of the characteristic polynomial of A,
counting multiplicities. For more concepts from linear algebra to illustrate the similarity relation

in matrices; see [10, p. 164],

Definition 4.1.11 (Jordan block). An m X m upper triangular matrix B(\, m) is called a Jordan
block provided all m diagonal entries are the same eigenvalue \ and all super-diagonal entries

are 1; that is,

A1 0 ... 0

O X 1 ... 0 Al

B(\m)= | |- Thus, BOL1) = [\, B(A,2) = A
. ‘. ‘. . O
00 0 A

Definition 4.1.12 (Jordan Form). Given an n x n matrix A, a Jordan form J for A is a block
diagonal matrix J = diag(B(A1,my), B(Ag, ma), ..., B(Ag,my)), where Ay, ..., A\ are eigen-
values of A and my + --- + my, = n. In other words, it is a direct sum of Jordan blocks

J = B(A1,m1) @ B(Ag,mz) @ -+ - B B(\g, my), where mqy + ma + + my, = n.

The relation A = PJP~!, where P is an invertible matrix, is called a Jordan decomposition
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of A. The invertible matrix P is called the matrix of generalized eigenvectors of A. In this case
we say that the matrix A and matrix J are similar. Every complex matrix is similar to one Jordan

matrix as we state that without proof in the following theorem.

Theorem 4.1.13. (/lI0, p. 167]) Every n X n complex matrix A has a Jordan decomposition A =

PJP~Y. If Ais real and has only real eigenvalues, then P can be chosen to be real.

We conclude this section with Theorem [4.1.14 which gives a matrix of a linear transformation

which rotates all vectors through an angle of 6.

Theorem 4.1.14. ([13]) Let Ry : R? — R? be a linear transformation given by rotating vectors
through an angle of 6. Then the matrix R(0) of Ry is given by
cos(#) —sin(0)

R(6) =
sin(f)  cos(0)

4.2 Equivalent Conditions for Hypercyclicity on H (PP)

Before we prove our main result of this chapter, Theorem #.2.5|which characterizes all confor-
mal maps o on P that produce a hypercyclic composition operator C,, : H(P) — H(P). We give
some basic properties of the coefficient matrix A of a linear fractional transformation ¢ and its
eigenvalues in Lemma[4.2.1] and Lemma [#.2.2] Moreover, in Proposition 4.2.3] we utilize our re-
sult in Proposition to provide a necessary and sufficient condition in terms of the eigenvalues
of A so that the composition operator C,, is hypercyclic on H (). Consequently with the notation
in Proposition [4.2.3| we state Corollary 4.2.4] which restates the necessary and sufficient condition

in a different way.

Lemma 4.2.1. Let a,b,c,d € R and
a b

c d

with ad — bc = 1. Then we have the following
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(1) If A has one real eigenvalue \ with multiplicity 2, then \ = +1.

(2) If A has two distinct real eigenvalues \; < \a, then \; < 1 < As.
(3) If A has two complex eigenvalues ) and \ ¢ R. then |\| = 1.

Proof. The characteristic equation of matrix A is

0 = det = M —(a+d)X\+ (ad — be)

= M —(a+dI+1.

Suppose the two roots of the characteristic equation are A\; and \,. Then the characteristic equation

becomes:
M—(a+dA+1 = A= )= Ay)
= A= (A + A+ A
Thus Ay Ay = 1, from which statements (1), (2) and (3) follow immediately. O

Lemma 4.2.2. Let

A:
c d

with a,b,c,d € R, and det A = ad — bc = 1. Suppose A has a real eigenvalue \ with multiplicity

2. Then the following statements are equivalent.
(1) Ais diagonalizable.
(2) A= +I.

(3) A has two linearly independent eigenvectors.
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(4) b=c=0.

Proof. Clearly statements (1) and (3) are equivalent. Suppose statement (1) holds true, and if Ay,
A9 are two eigenvalues, then A\; \s = det A = 1. Since \; = Ay € R by our hypothesis, thus either
A=A =1lor) =X\ =—1.

Now we show statement (1) implies statement (2). Thus, statement (1) implies that there is an
invertible matrix P such that, P"'AP = +].

Hence, A = P(+I)P~! = £PP~! = +1. Therefore statement (2) holds. Clearly statement (2)
implies statement (4). It remains to show statement (4) implies statement (1).

If b = ¢ = 0 then

and so A is diogonalizable. ]

Proposition 4.2.3. Let o(z) = %j:g be a linear fractional transformation with a,b,c,d € R and

ad — bc = 1. Let

be the coefficient matrix of 0. Then C,, : H(P) — H(P) is hypercyclic if and only if A is not 1

and A has real eigenvalues.

Proof. The characteristic equation of matrix A is

= M —(a+d)\+ (ad — be)

= M —(a+dA+1.

Let the two eigenvalues of A be A\; and )\s. Then the characteristic equation becomes
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A=A)A=X) =X =M+ XA+ A =N —(a+ DA+ 1=0,

and so \; Ay = det A = ad — be = 1. We now proceed our discussion with different possibilities
of A\; and A\, and use the sup-norm notation for a 2 x 2 matrix:

. w T
For a matrix B = , we let || Bl|oo = sup(|wl, |z|, |y], |2])-

y =z
Case(A): A\, A1 ¢ R. Since det A = 1, we have an invertible matrix P so that P~' AP is the

rotation R(6) of some angle 0:

cos —sinf
P'AP = R(9) =
sinf)  cosf

Raising both sides of the equation to the nth power, we get

PAP — R(nf) — cos(nf) —sin(nd)
sin(nf)  cos(nh)

Since A" = PR(nf)P~', we have ||A"||o < co. So that C, : H(P) — H(P) is not hypercyclic,
by Theorem

Case(B): Ai, Ay € R. Since A1 \y = 1, we have the following subcases for real eigenvalues \;, As.
Case(i): A\; # Ay, without loss of generality, assume As < 1 < Ay. Hence A is diagonalizable and

so there exists an invertible matrix P such that

A
piap— |7
0 A
Thus
A0
pianp = |7 :

0 A
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and so

|P~PA™P| — 0.

Hence ||A"||oc — 00, and thus C,, : H(P) — H(P) is hypercyclic, by Theorem [3.2.6]

Case (i1): A\; = Ay = 1. With out loss of generality we need only discuss the case A\; = Ay = 1.
The other case of A\; = Ay = —1 follows from the exact same argument. Suppose A has two
linearly independent vectors then A is diagonalizable and so there exists an invertible matrix P

such that

Lo ol
PAP = =1,

01

and hence A = PIP~!' = [. Thus 0(z) = z and C,, : H(P) — H(P) is not hypercyclic.
Suppose A does not have two linearly independent vectors for the eigenvalue A\ = 1 with multi-

plicity 2. Thus A is similar to a Jordon block; see [24, Lecture. 28, p. 4]

In other words, there exists an invertible P such that

11
PAP =
01
Hence,
1 n
P'A"P = :
0 1
and so

|P~PA™P| — 0.
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Thus
1 n
A" =P P~ tandso ||A"||s — 00.
0 1
Consequently, C,, : H(P) — H(P) is hypercyclic, by Theorem 3.2.6] O

The above proposition can be rephrased as the following corollary.

Corollary 4.2.4. With the notation in Proposition Cy : H(P) — H(P) is hypercyclic if and

only if exactly one the following statements holds true:
1) A has two distinct real eigenvalues.

2) A has an eigenvalue \ = 1 with multiplicity 2 or an eigenvalue A = —1 with multiplicity 2, and

the corresponding eigenspace ker(A — \I) has dimension 1.

We now continue our work in Proposition to state a characterization of o(z) = %is onP

in terms of the coefficient a, b, ¢, d, for the composition operator to be hypercyclic.

Theorem 4.2.5. Let 0(z) = % be a linear fractional transformation with a, b, ¢, d € R and

ad — bc = 1. Then C, : H(P) — H(P) is hypercyclic if and only if one of the following two

conditions hold;
1) |la+d] > 2.
2) |a+ d| = 2 and at least one of b and c is nonzero.

Proof. Let A be the coefficient matrix
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The characteristic equation of A is given by

O=det(A—X) = (a—A)(d—X) —bc

= A —(a+d)A+ (ad — be)

= N —(a+dA+1. (4.2.6)
Thus A has two distinct real eigenvalues if and only if the determinant (a + d)? — 4 > 0; that is
la 4+ d| > 2, in which case C, : H(P) — H(P) is hypercyclic, by Proposition . Furthermore
A has an eigenvalue A with multiplicity 2 if and only if (a + b)* — 4 = 0; that is, |a + d| = 2.
In this case, by (4.2.6)) we also have

A? = product of two eigenvalues 4.2.7)
= detA=1

Thus A = 1, —1. Thus for either case of \, the coefficient matrix A has two linearly independent

eigenvectors if and only if there exists an invertible matrix P such that
P'AP = +1;
that is
A==+PIP ' =4I,

Thus A has an eigenvalue A = 1 with multiplicity 2 or A = —1 with multiplicity 2 and A # +1 if
and only if |a + b| = 2 and at least one of b and ¢ is nonzero, by the Lemma[4.2.2] O

Theorem provides a necessary and sufficient condition for a sequence C,, : H(P) —
H(P) to be universal. Theorem provides a necessary and sufficient condition for an operator

C, : H(P) — H(P) to be hypercyclic. These two results together complete the picture for the
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dynamics for composition operators on H (P).
4.3 Examples

To conclude this chapter, we illustrate our results in Section 4.2 with the following examples.
Example 4.3.1. Take

0
A= (clearly ad — bc =1).

[

b 2 |
ijr_d:zf%:z ifand only if 22 = 2* + 22,
3
if and only if 2(2,2_5):0’
3
ifand only if z =0 or z=:.
Thus
3 3
S I 1 I L R
13|t 2 1
and
Y I U Y

Note that from Theorem or Corollary we conclude that C,, is hypercyclic, where o is

the conformal map represented by matrix A.

Example 4.3.2. Take

2 1
A= (clearly ad —bc =1).
03
az+b 2z2+1 -2

=4z+2=z ifandonlyifz:?

cz+d %
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Thus,
=2 =2 =1 =2
¢ d| |1 0 1|1 o2
a bl |1 2 1| |1 2 1
= = :2
¢ df |0 0 2| (0 0 0

From Theorem or Corollaryd.2.4 we conclude that C, is hypercyclic, where o is the confor-

mal map represented by matrix A.

Example 4.3.3. Take

2
A= (clearly ad —bc=—3 — (—4) =1).
-2 -1

az+b7 3z+2
cz+d —22—1

z ifandonlyif 3z+2= —22*— 2z,
ifand only if (z+1)* =0,

ifand only if z = —1.

3—A 2
0 = det =M -2\ +1=(\—1)* ifandonly if X\ =1.
-2 —1-=A
T 3—1 2 T 2 2 T
0=(A—-A\) = = ifand only if x+y=0.

Y -2 —1-1| |y -2 =2| |y

-1
Therefore the eigenspace is the span of , so that C, : H(P) — H(P) is hypercyclic, by

1

Corollary
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Example 4.3.4. Take

1 1
A= (clearly ad —bc = 1),
01
and so
az+b
=z+ 1.
cz+d
Thus there is no z such that
az+b
=z
cz+d

Clearly (A —\I) = 0 ifand only if (1 — \)? = 0 and so \ = 1 is an eigenvalue with multiplicity 2.

if and only if y = 0.

1
Thus eigenspace is the span of | |, sothat C, : H(P) — H(P) is hypercyclic, by Corollary4.2.4

0
Example 4.3.5. Take
0 —1
A= (clearly ad —bc =1).
1 1
b -1 —141v3
Z—td: PO =z ifand only if 2>+ 2 +1=0 ifand only if z:TZ\/_.
A~ 1403
0 = det =X —X+1 ifand only if )\ = Z\/_.

11—\ 2

The matrix A has no real eigenvalue. Therefor according to Theorem the operator C, :
H(P) — H(P) is not hypercyclic.



46
Example 4.3.6. Take

A= (clearly ad —bc = 1),

and
az+b z4+0

g :Z
cz+d 0z+1

o(z) =

Thus 0(z) = z for all z € C. The matrix A has eigenvalue A\ = 1 with multiplicity 2. Now A has

two linearly independent eigenvectors

and

Thus, C, : H(P) — H(PP) is not hypercyclic, by Corollary 4.2.4)
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CHAPTER 5 FIXED POINTS OF A CONFORMAL MAP ON UPPER HALF PLANE
5.1 Introduction

In this chapter, we continue to study the linear dynamics of linear fractional transformations
o : P — P on the upper half-plane P, with a focus on the fixed points of . To begin, we state

Proposition [5.1.1 without proof.

Proposition 5.1.1. (/26, p. 57]) Let 0(z) = % with a,b, c,d € R be a linear fractional transfor-

mation on P and suppose that o is not the identity. Then o has either:
(i) two distinct fixed points in R and none in IP;
(ii) one fixed point in R U {oo} and none in P;
(iii) no fixed points in R and one in P.
Definition 5.1.2. ([26]) Let o be a linear fractional transformation of P. We say that
(i) o is hyperbolic if it has two distinct fixed points in R and none in P,
(ii) o is parabolic if it has one fixed point in R U {oo} and none in P,
(iii) o is elliptic if it has one fixed point in P and none in R.

Now, we prove an auxiliary result which is used in the proof of Lemma and Lemma
[5.1.10] The next few results give us equivalent conditions that make a connection between eigen-

values, fixed points, and the coefficients of the linear fractional map o.

Lemma 5.1.3. Let 0(z) = % be a linear fractional transformation with a,b,c,d € R and

ad —bc=1. Let z, € C and



48

Zo
be the coefficient matrix o, then o(z,) = z. if and only if is an eigenvector of A correspond-
1

ing to a nonzero eigenvalue.

Remark 5.1.4. Since the product of two eigenvalues = det A = ad — be # 0, A has no zero

eigenvalue.

Proof of Lemma. Suppose

Zo Zo
A =\
1 1
for some A # 0. That is,
az, +b = Az
czo+d =\
Hence
azo +b Az
= — = 207
CcZo +d A
or equivalently,
0(zo) = 2.

Conversely Suppose o(z,) = 2,
Case(i): If 0(z,) = 2, with z, = 0. Hence ¢(0) = 0, which implies 2 = 0. Thatis b = 0 and

d # 0 ( because ad — bc = 1). Hence

a 0
A —
c d
Thus
Zo a 0f |0 0 Zo
A e = e d ,
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Hence

is an eigenvector corresponding the eigenvalue d # 0.

Case(ii): 0(2,) = 2, with z, # 0. That is,

azo +b
=2, £ 0.
Cczo + d 7
Thus, we let
o +b
A= + and p=cz,+d#0.
Zo
Hence we have
azo +b = Az,
(5.1.5)
czo +d=p #0.
Thus,
_azt+b Az
czo+d  pu
Therefore
A=pu#0.
So (5.1.5)) becomes
azo +b = Az,
czo+d =\
That is
a bl |z Zo
Y ,
c d 1 1
with A # 0. which completes the proof. [

The following two lemmas give us equivalent conditions that make a connection between eigen-
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values, fixed points, and the coefficients of the linear fractional map o.

Lemma 5.1.6. Let o(z) = gj’j:g be a linear fractional transformation with a,b,c,d € R and

ad — bc = 1, and let A be coefficient matrix given by

The following statements are equivalent:

(1) A has distinct real eigenvalues.

(2) o has two distinct fixed points in R.

(3) la+d| > 2.

(4) o is hyperbolic with its fixed point in R.

Proof. We first show statements (1) and (3) are equivalent. Expanding the characteristic equation
det(A — M) =0, we get

N —(a+bA+ (ad —bc) = \* — (a+d)A+1=0.

Thus A has two distinct real eigenvalues if and only if the determinant (a + d)? — 4 > 0; that is
la +d| > 2.
Secondly we show statements (2) and (3) are equivalent. We observe that o(z) = z if and only

if gjjrrs = z or equivalently cz? + (d — a)z — b = 0. which is a quadratic equation having the

following solutions:

(a —d) £ +/(d—a)?+4cb
2c

(a —d) £ vd? — 2ad + a2 + 4cb
2c

212 =
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(a—d)£+/(a+d)?—4
2¢ ’

so that the equation has two distinct real solutions if and only if (a + d)? > 4. Finally, it is trivial

that statement (4) equivalent to statements (1), (2) and (3) by Definition[5.1.2] O

Remark 5.1.7. Using the quadratic formula, we remark that the two distinct eigenvalues of A in

Lemmal5.1.6lare
(a+d)£+/(a+d)?—4
5 )

(5.1.8)

Using the quadratic formula, we see that the two distinct fixed points of o in Lemma are

(a—d)E+/(a+d)?—4

o (5.1.9)

Lemma 5.1.10. Let 0 and A be given as in Lemma The following statements are equivalent:
(1) A has one real eigenvalue with multiplicity 2.

(2) o has at most one fixed point in R.

(3) la+d|l =2

(4) o is parabolic or without any fixed point.

Proof. Our proof follows from the same argument as in proof of the Lemma [5.1.6] with slight
modification. Clearly A has one real eigenvalue with multiplicity 2 if and only if |a + d| = 2. Also
A has precisely one real fixed point if and only if |a + d| = 2 and ¢ # 0. In addition, from the

equation (5.1.9) we see that o has a fixed point at oo if and only if « = d = +1 and ¢ = 0. O

5.2 Iterations of a Linear Fractional on P

The n-th iterate ¢” = o0 oo o...0 of a map o from some set X to itself is the composition
of o with itself » number of times. If o and ¢ are two maps satisfying, o = ¢~! o ¢ o ¢ then

o™ = 171 o ¢" o ¢ where o, 1, and ¢ defined as we mentioned in Section Hence, the
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dynamics of the map ¢ follows dynamics of ¢ and vice versa. Among this line, let us recall the

following statement in [23].

Theorem 5.2.1. (Denjoy-Wolff [23, p. 78]) If ¢ : D — D is an holomorphic map with no fixed
point in . Then there exists a point z, € 0D such that ¢" — z, uniformly on compact subsets of

D.

In the following propositions, we study a limiting behavior of iteration of representatives a
linear fractional transformation o defined on the upper half-plane P in the different conjugacy

classes (see[d.1)). Further, we give a specific characterization of its limit points for each class.

Proposition 5.2.2. For o and A in Lemma let o, B € R be two distinct eigenvalues of A with

0 < B < a. Let 2y, 23 € R such that

are eigenvectors of A corresponding to the eigenvalues o and [ respectively according to Lemma

5.1.3|and Lemma4.2.2| Then for any = € C with z # z3, we have gocgo---00 (2) = 0™(z) —
~— ——

n-times

2o uniformly on compact subsets of C.

Proof. For any z # 23, let ¢, and ¢z € C such that

z Za Zg
= Cq +cp
1 1 1
Since
Za Z8
1 1

are linearly independent, ¢, # 0. Observe that

z Ze 23
A" = c, A" + cgA"
1 1 1
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Thus

from which it follows that

‘ 1 z Za
lim — A" = Cq , because 0 < 3 < a.
Thus if we let
a, by,
A" = ,
Cn dTL
then by Lemma.1.3]
ng oy nZ+ by “"’;—jbn CaZa
g <Z> - d T cpztbn — = %a
cp2 + dy —neon Co

]

Note that in the above proposition we excluded the possibility that one of the eigenvectors

R o Za 2 : :
is in which case we cannot normalize this as and . Now using our results in

0 1 1
Corollary 4.2.4] Lemma and Lemma[.2.2] we have the following result.
az+b

Proposition 5.2.3. Let 0(z) = % —; be a linear fractional transformation with a,b,c,d € R and

ad — bc = 1. Suppose A is the coefficient matrix of o and A is not £1, and A has a real eigenvalue

with multiplicity 2. If o has a fixed point z, € R, then 0" (2) — 2, for all z € C.



Proof. By Corollary 4.2.4] there exists an invertible 2 x 2 matrix P such that

PlAP =

Zo
where ) is the eigenvalue with A = —1 or A = +1. By Lemma [5.1.3]
1
corresponding to A. Since
A1) |1 1
=\ ,
0 Al |0 0

1 Zo
P —
0 1
To see that let o o
1 To
P —
0 Yo
Hence we can write
1 1
PlAP = ;
0 0 Al |0
To 1
P 'A = A ;
Yo 0
Lo 1 Lo
A = AP =
yo 0 yO
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is an eigenvector



Lo
Thus is an eigenvector of A.

Yo
Since by Lemma[4.2.2} dim ker(A — AI) = 1, we have

To 25
=t for some nonzero t € R.
Yo 1
By dividing P by ¢ if necessarily we can assume
1 To 2
P pu— pum
0 Yo 1
Let z € C with z # z,, then
Zo Zo
¢ span
1 1
Thus by the invertibility of P,
K | % 1
P~ ¢ span P~ = span
1 1 0
Hence
P z _ x
1 y
for some x, y € R with y # 0.
Note that forn > 1,
Al A" p Al
PlA"P = =

55
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and so
. x AT opAvH o
PA"P = ;
y 0 A" y
) z Atz 4+ nA"ly x 1
1 Ay Y 0
z x
A" = A\'P +nA\"ly P
1 Y 0
z 2o
= \" + A"y
1 1

Hence by Lemma4.1.3| we have, as n — oo,

ANz + A"ty z,

A °
= % — 2, (‘because y #0).

O

Note that Example illustrates Proposition As a continuation of our discussion with

Proposition[5.2.3] we now proceed to discuss the case when A has no real fixed point.

Proposition 5.2.4. Let o(z) = % be a linear fractional transformation with a,b,c,d € R and
ad — bc = 1. Suppose A is the coefficient matrix of cand A is not 1, and A has a real eigenvalue

with multiplicity 2. If A has no real fixed point, then for all z € C we have 0" (z) — 0.

Proof. By the proof of Lemma a=d==1and c= 0. Thus b # 0 and so

b
o(z) = az; — 240,
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and hence

0"(z) = z +nb — oc.
0

In order to prove our new result in Theorem [5.2.6] we first need to prove the following lemma
which gives us a complete description of eigenvalues and eigenvectors of a linear fractional map o

on the P in terms of its coefficients.

a b
Lemma 5.2.5. Let A = , where a,b,c,d € R and ad — bc = 1 and ¢ # 0. Suppose A has

c d

2 distinct eigenvalues

2 _ Y _ 2_ 4
Alz(a+d)+ (a+d) and /\2:(a+d) (a+d) |

2 2

If
o — (a—d)++/(a+d)?—4 and 1y — (a—d)—+/(a+d)?—4

2c 2c

are two distinct fixed points of o (see Remark[5.1.7). Then

Proof. Suppose ¢ # 0. Then,

. (a+d)++/ (a+d)2—4 b
) _ Vv
(A—M\I) - 2

T

d— (a+d)+ 2(a+d)2—4

((ad) 2(a+d)24>xl e
o b d— (a+d)++/(a+d)2—4

2
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[ ((a—d)—/(atd)?—2) ((a—d)++/(a+d)*—4) b
_ 4c
| (a—d)++/(atd)2-4 (a+d)++/(a+d)2—4
2 +d - 2
-(a—d)2—4(g+d)2+4 b
0
B —43?%—4 b
0
S
= (use ad — bc = 1)
0
0
0
Similarly,
[ (atrd)—\/(ard)a )
2 - 3 T2
(A=Ad) - (atd)—/(atd)? 14
1 c d— 5 1
[ ((a—d)+ 2(a+d)2—4) 1

s 4 =

2

((a—d)++/ (a+d)%2—4)

((a—d)—+/ (a+d)?—4) b

o 4
| a-a)- 2(a+d)2—4 d— (atd)— 2(a+d)2+4
—(afd)2f(a+d)2+4 +b

4c

0
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—4ad+4
4c + b

e
= (use ad — bc = 1)
0

This completes the proof. 0

Now, we are ready to prove Theorem [5.2.6) which provides a complete characterization of the

limit point z, for the iteration ¢ on P .

Theorem 5.2.6. Let a,b,c,d € R with ad — bc = 1 and 0(z) = z’zzjrrs If the coefficient matrix A

has two distinct real eigenvalues, then o™ (z) — z, uniformly on compact subsets, where
(

(a—d)++/(a+d)2—4

P if ¢#0.

Ro = d%a if c=0and 0 <3 <1

oo if ¢c=0 and 0<§<1.

\

Proof. The eigenvalues \; and \, in Lemma [5.2.5] satisfy

d) — d)? —14 d d)? —14
)\2:(a+ ) 2(a+ ) <(a—|— )+ 2(a—l— ) L

Proposition [5.2.2)implies that if ¢ # 0, then by Lemma[5.2.5]

(a—d)++/(a+d)?—4
2c '

o"(z) = x1 =
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If ¢ = 0, then

(because ad — bc = ad = 1) and so

has 2 distinct eigenvalues a and d. Since ad = 1, either a and d are both positive or both negative.

we must have either case (A): where 0 < ¢ < 1, or case (B): where 0 < ¢ < 1. In either case, let

dr — a™
by =ba" ' +a"2d+a" B+ Fad" A =0 . Z ,
and so
a™ b,
A" =
0 d°
and

=3
S OUCFRISCS

Case (A): c=0and 0 < § < 1. Then

o"(z) = forallz € P.

—a

Note
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Case (B): c=0and 0 < ¢ < 1. Then

0"(z) = oo forall z € P.

O

Theorem studies three cases in which C, is hypercyclic. We now proceed to study the

remaining two cases in the following theorem.
Theorem 5.2.7. Let a,b,c,d € R with ad — bc = 1 and o(z) = %is. If the coefficient matrix A

has a real eigenvalue \ with multiplicity 2, then 0" (2) — z, uniformly on compact subsets, where

s i £ 0
Zo =

oo if ¢=0.

Proof. Suppose A has a real eigenvalue A with multiplicity 2. Then by Lemma/|5.1.10
(a+d)?=4 and \? =det A =ad—bc =1,

and so,
(a+d)£+(a+d)?—-4 a+d

)\: =
2 2

+1. (5.2.8)

Case(7): Assume ¢ # 0. Then o has a real fixed point z,. Indeed

if and only if

0(zo) = 2.
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That is,
az, +b
= Z.
Cczo + d
Hence,
—d)+ d)?—4 —d
Zo = (a=d) (a+d) _ because (a + d)* = 4.
2c 2c
Thus by Theorem 4.2.5]

C,: H(P) — H(P)
is hypercyclic. By Proposition[5.2.3]

a—d

n % o —
o"(z) — z 5

Case(ii): Assume that ¢ = 0. In order for C, : H(P) — H(P) to be hypercylic, we must have
b # 0. (by Theorem [4.2.5).
By equation (5.2.8) we see that

a+d==+2. 5.2.9)

Since ad — bc = 1, we must have

ad = 1. (5.2.10)

Thus by (5.2.9) and (5.2.10), we get a = d = +1. Hence,

az+b_az+b

= =z+0b.
cz+d d §

o(z) =

Since if b were 0 then o(z) = z and C,, is not hypercyclic. Thus o(z) = z & b and so ¢ has no real

fixed point. Indeed for all z € C, we have 0" (z) = z £ nb — oc. This is Proposition O

The above two theorems tell us how the iterates 0" (z) of o(z) on IP converges uniformly on
compact subsets of P, in all different cases when C,, : H(PP) — H(IP) is hypercyclic. These results

illustrate Theorem statement (5) and (6) in the special case of hypercyclicity.
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CHAPTER 6 AN EQUIVALENT CONDITION FOR A COMPOSITION OPERATOR ON
H (D) TO BE HYPERCYCLIC

6.1 Introduction

Seidel and Walsh obtained a sufficient condition for a sequence {¢,}°°; of linear fractional
self maps on the unit disk D such that the sequence {C}, }7°, is universal on H (D); see Theorem
In our Proposition |3.2.4) we obtain a necessary and sufficient condition for a sequence of
linear fractional transformations {o,, }°° ; on the upper half plane IP such that {C,, }° ; is universal
on H(P). Then in Theorem we obtain a complete characterization of the linear fractional
transformation o so that the composition operator C,, is hypercyclic on H(PP). In this chapter we
use our criterion in Theorem §.2.5] of hypercyclicity for composition operator C,, on the space
H(P) to derive a criterion for hypercyclicity on the space H (D). Indeed, we provide a complete
characterization of the linear fractional transformation ¢ so that the composition operator Cl, is
hypercyclic on H (D). Certainly, not every conformal map ¢ : D — D induces a hypercyclic
operator Cys : H(IP) — H(PP). For instance if ¢,(2) = == where o € I, then ¢*(z) = z and

hence Cy,, can not be hypercyclic.
6.2 Equivalent Conditions for Hypercyclicity on H (D)

In this section we state our main result, Theorem [6.2.1] for this chapter and we prove it by
utilizing Theorem Moreover, as a continuation of Theorem and Theorem [6.2.1], we
provide Corollary which gives a precise formula for the point 8 € JD that p™(z) — £.

Theorem 6.2.1. Let oo € D and 0 € [—m, 7], let

The operator

C,: H(D) — H(D)
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is hypercyclic if and only if one of the following two conditions hold :-

(i) |cos | > \/1—al?, or
(ii) |cos | = \/1—|af?, and

coss  sins Im o 4 1
2 2 #(—sin (5) Rea)
coS g — sin g 1 1
Proof. We first recall the following mappings
-1
P—YsD—*3Dp-YL P (6.2.2)

o=y Lopor

where ¥(z) = z—;j, H2) = i1, p(z) = 22 witha € D, 0 € [—m, 7] and o(2) = %

with a,b,c,d € R and ad — bc = 1. We need to compute 1)~ o p 0 1(2). By Lemma[4.1.3] we

have

Y opoy(z) =

i i €91 —a) —ie?(1+a)

-1 1 1—a@ i(l+@)

ie?(1—a)+i(l—a) e%(1+a)—(1+a)

—e%(1—a)+ (1—a) (1l +a)+i(l+a)

o lies(1—a)+ieE(1—a) €E(1+a)—e3(1+a)
= €2

—e%(l —a)+ e_ig(l —a) e

N

(1+a)+ie 5 (1 +a)
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o | 2iRe (e3(1—a)) 2iIm (e2(1+a))
= e'2
—2iIm (¢2(1 —a)) 2iRe (¢2(1 4 a))
. | Re (¢3(1—a)) Im (e3(1 +a))
= 2i¢e
-Im (eig(l —a)) Re (eig(l +a))
Hence we have, by Lemmad.1.3]
P lopor(z) = Re (¢2(1 —a))z +Im (¢ (1 + a)) _

)

[SI5S
N

-Im (e’2(1 — a))z + Re (¢'2(1 + a))

To normalize the above linear fractional transformation, let © = cos g and v = sin g, and hence
0 .
e’z = u + v and let

o =z +iy (therefore |af> =2 +y* < 1),

and we compute

Re (e’g(l —a)) Re (ei%(l +a)) +Im (eig(l +a)) Im (eig(l —a))

= Re [(u+iv)((1 - ) —iy)] Re [(u+iv)((1 + )+ iy)]

+ I [(u+iv)((1+2) +iy)] Im [(u+iv)((1 - 2) — iy)]

= (u(l—2) +oy) (u(l +2) —vy) + (wy+v(1+2)) (= uy + (1 - 7))
= (u2 = (uz — vy)?) + (v* = (uy + v2)?)

= u? —u?2? 4 2uavy — v*y? + 0? — WPy — 2uavy — v3a?
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Thus
opony =L
where
§
a= \/1;—(1'2 Re (¢2(1—a)) = 11‘042 (u(l — ) +vy)

b= \/1i‘_a|21m (623(14—06)) = \/1i|—a|2(uy+v(1+x))
(6.2.3)
1

c= ﬁ Im (ei%(l —a)) = \/m(uy—v(l — 1))
(4= 2= Re (€3 (1+0a)) = L

Hence we have a, b, ¢, d € R and the above computations show ad—bc = 1. Via similarity between

C,: HD) — H(D)
and
Cropey + H(P) = H(P),
we use theorem [4.2.5 to conclude that C,, is hypercyclic if and only if either
() la+d|>2 or

(2) |a+ d| = 2, and at least one of b and ¢ is nonzero.



Now,

1
la+d| = Wu(l—x)ququu(l—l—x)—vy
|2u| B 2cos ¢

2

VI=la2  /1-[a?

Thus statement (1) of above is equivalent to

2COS§
> 2

Vi—laP?
That is,

0
cos 5 > V1—|af?

Furthermore, statement (2) above is equivalent to

and at least one of b and c is nonzero.

The second half of above condition is equivalent to
uy +v(l4+2)#0 or uy —v(l —x) #0;

that is,

Note that by Theorem [6.2.1} we have conditions on ¢ and « for

C,: H(D) — H(D)
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to be hypercyclic, where

o) =

By Lemma and Theorem [3.2.6] there are a point z, € 0D and a subsequence {ny,} such that
O™ (2) = 2.

Note that 1)~ o ¢" 0 1) = o™, as in the diagram given by

Remark 6.2.4. Since C,, is hypercyclic if and only if C, is hypercyclic the following statements

are equivalent:

(i) o"(2) — .

(ii) =" o " 0 1h(2) = 2.
(iii) " o p(z) = ¥(20).

In the following proposition, we obtain the formula for 2, in terms of « and 6. For that we
continue to use the notation in the proof of Theoremm Thatis, « = x + ¢y and u = cos g and

v = sin g, and

b
vl opay(s) = o = o(2),
where )
a=——~—(u(l—z)+uvy)
b= —= — (uy + v(1 + 2))
Vi (6.2.5)
c= \/li‘—ap(uy—v(l — 1))
\d = ﬁ(u(l + z) — vy)

satisfy ad — bec = 1.
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As a continuation work of our results of the Theorem 16.2.1] and Theorem [5.2.6 we have the

following proposition.

0 z—«

Proposition 6.2.6. Let p = ¢ Z=% where « = v+ iy € Dand 0 € [—7,7]. Let u = cosg and

1—az’

v = sin g. Then C., is hypercyclic if and only if one of the following five statements holds true:

(i) u* + |a|? > 1, and uy # v(1 — x). In this case,

o(2) = vy —ux + Ju? + a2 — 1 —i(uy + ve — v)

vy —ux + Ju? + |a]? = 1 +i(uy + ve — v)
uniformly on compact subsets of D.

(ii) v’ + |a)? > 1, and uy = v(1 — z) and 0 < ”(kavz < 1. In this case,

u(l4+z)—v

uy +v(l + x) — i2(ux — vy)
uy +v(1 + x) + 2(uz — vy)

©"(2) —

uniformly on compact subsets of D.

wd2) =0y 1 I this case,

(iii) u? + |O'/|2 > 1, and uy = U(l - J]) and 0 < u(l—z)+vy

©"(2) = 1 uniformly on compact subsets of D.

(iv) u? + |a|*> = 1, and uy # v(1 — x), In this case,

(vy —ux) — i(uy + vr — v)
(vy — uz) + i(uy + vr — v)

@"(2) —

uniformly on compact subsets of 1.

(v) v+ |al* =1, and uy = v(1 — z) and uy + v(1 + x) # 0. In this case,

©"(2) = 1 uniformly on compact subsets of D.

(6.2.7)

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)
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Proof. To prove our proposition we use our results in Proposition [5.2.6]and Remark to find

Zo € 0P = R U {oo} such that 0" (z) — z,. Then use Remark to find ¢(z,). Before we

provide a proof, we first observe that by equations (6.2.5))

4u?
QP-4 =
et I~ [af
AW A e - 1)
- 1—|of

Thus (a + d)? — 4 > 0 if and only if u? + |a|* > 1
Case (i): u? + |a|> > 1 and uy # v(1 — x). Thus by equation (6.2.3) (a + d)*> —4 > 0 and ¢ # 0
and by Theorem[5.2.6] for all z € P,

Let

C(la—d)+(a+d)?—4  (vy—wux)+Jul+]a? -1
= 2¢ B uy —v(l —x) '

Hence by Remark (1), we have

" vy —uxr + Ju? + |a]? = 1 —i(uy + ve — v)
p"(2) = P(z) =

vy —ux + Ju? + a2 = 1 +i(uy + ve — v)

uniformly on compact subsets of .
Case (i1): u* + |a* > 1and uy = v(1 — z) and 0 < % < 1.

In this case (a + d)* — 4 > 0 and by equations (6.2.3)

1

= —(uy — (1l — :L")) =0, (6.2.12)
V1—laf
and also
a u(l—2x)+vy
- 6.2.13
d u(l+z)—ovy ( )



that is, ¢ < d. Since in this case ad — bc = ad = 1 we musthave 0 < a < 1 < d.

By our discussion in Case(A) in the proof of Proposition |5.2.6, we have

b uy+v(l+o)
d—a  2(uz —vy)

o"(z) =
uniformly on compact subsets of D). Hence by Remark (i),

" b\ uyt+o(lt o) —i2(ur — vy)
2 (2)_)@D(d_a)_uy—kv(l—i—.ﬁ)ﬁ‘ﬂ(ﬂﬂi_vy)‘

u(l+x)—v
Case (i71): u*> + |o?| > land uy = v(1 — ) and 0 < —ug1tz;+vg < 1.

In this case, (a + d)* — 4 > 0 and by (6:2.12) and (6-2.13), c = O and ¢ = u(l+a)—vy

u(l—z)+vy

0 < 4 < 1. By our discussion in case (B) in the proof of Theorem|5.2.6, we have

0"(z) = oo forall z € P.

Hence by Remark (i1),
" (2) = P(oo) = 1.

Case (iv): u? + |a|? = 1and uy — v(1 — ) # 0.

Thus (a 4+ d)? — 4 = 0, and by equations (6.2.3)

1
c=——(uy —v(l —x)) #0.
/—1—|a|2(y ( )

Hence by Theorem and equations (6.2.3) we get:

a—d VY — uT
o"(2) — — .
2c uy +vr —v
Let
VY — ux
Zo =

_uy—kvx—v'

71

satisfying
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Thus for all z € D, by Remark (41)

(vy —ux) — i(uy + v —v)
(vy — ux) + i(uy + ve —v)’

0" () = P(z0) =

Case (v): v? + |a]* = 1 and uy — v(1 — x) = 0, Thus (a + d)* — 4 = 0, and by equation (6.2.3)

we get:
1
c= —uy —v(l —x)) =0,
and
1
b= ——=(uy +v(l+2)) #0.
V1—|a]?
Hence by Theorem [5.2.7]

o"(z) — oo.

Thus for all z € D, by Remark (17)

©"(2) = (o0) = 1.

This completes the proof. ]

To conclude this section we remark that the expression in (6.2.7) of Corollary [6.2.6] works for

the cases (iv) and (v) as well. That is, reduces to (6.2.10) and (6.2.11)) in various cases (iv)

and (v).
6.3 Examples
In this section, we provide a numerical example in which we apply Theorem[6.2.1] In addition,

we obtain a series of corollaries which we consider them as general examples in various cases of

Theorem [6.2. 1]

Example 6.3.1. Ler 6 € (0, ) such that, v = cosg = \/lg and v = sing = \/ig Letoo = v 1y =

$ +i2 € D (because | = ).



Hence,
1 1 W5
— 2 T 9
1—|af 1-1
By equations in (6.2.5)),
2 1 12
a = ﬁ —1l-2)+—==) =1
2 5 5 55
Vi 22 1 1
5( 2 2 1 1
co (22 1, L)y
2 55 5 5
2 1 12
d = ﬁ _(1+_)——— =1.
2 5 ) V55
Thus ad — bc = 1 if
az+b
p— p— 1
(2) cz+d SR

then

C, : HP) — H(P)

is hypercyclic by Proposition Furthermore, if 6 € (0, ) such that tan g =z

and if

then

¢, : H(D) — H(D)

is hypercyclic, by statement (ii) of Theorem|6.2.1]

As a corollary of the Theorem [6.2.1| we have the following six results:

73
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Corollary 6.3.2. For any o € D\ {0}, there exists 0 € (—n,m) such that if

then

C,: HD)— H(D)
is hypercyclic.

Proof. Choose § in (—,7) such that cos > /1 — |a|?. Our result follows from the Theorem

6.2. 1} O]

Corollary 6.3.3. Forany o € D\ {0}, if p(2) = Z== then

C,: HD) — H(D)

is hypercyclic.

Proof. Choose 6 = 0, and so

0
cos 5 = 1>4/1—|af%
Our result follows from Theorem O

Corollary 6.3.4. For any o € D \ {0}, there exists 0 € (—m, ) such that if

then

C, : H(D) — H(D)

is not hypercyclic.
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Proof. Choose 6 € (—m, ) such that

- <V1-—la]2
cos o o]

Our result follows from Theorem O

Corollary 6.3.5. For any 0 € (—m, ), there exists o € D \ {0}, such that if

then

C,: HD) - H(D)
is not hypercyclic.

Proof. Choose o € D\ {0} such that | cos ¢| < /1 — |a|2. Then we get our result from Theorem
6.2.1] O

Corollary 6.3.6. For any 0 € (—m,7), there exists « € D\ {0}, such that if

then

C,: HD)— H(D)
is hypercyclic.
Proof. Choose a € D\ {0} such that | cos 4| > /1 — |a[2. Apply our result in Theorem O

Corollary 6.3.7. For any o € D\ {0}, if
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then

C,: HD)— H(D)
is not hypercyclic.

Proof. Choose f = 7 and so cos g = 0. Apply Theoremm O

It is easy to see that the conformal map ¢(z) = {*= in Corollary [6.3.7, where a € D does

1—az

not induce a hypercyclic composition operator C, : H (D) — H (D) without using Theorem

This is because p?(z) = p o p(z) = 2.
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CHAPTER 7 CONCLUSION
7.1 Introduction

In this chapter, we investigate universal composition operators in the setting of the Fréchet
space H (£2) of holomorphic functions on a simply connected region €2 in the complex plane. We
obtain a necessary and sufficient condition for a sequence of composition operators C,, : H(Q2) —
H(Q2) with conformal maps o, : {2 — (2 to be universal. Specifically, we prove that the sequence
C,, : H(Q) — H(Q) is universal if and only if there is a point w in 02 and a subsequence
{0, }r of {0}, }», such that 0,,, — w uniformly on compact subset of 2. Our result extends a result
of Grosse-Erdmann and Manguillot [9, p. 116] who proved in 2011 equivalent conditions for a
composition operator Cy to be hypercyclic on the simply connected region 2. Since hypercyclicity
is a special case of universality our result extends theirs in the case that int(C\G) # 0; see Theorem

Before we prove our result in this chapter we first introduce some definitions and then state

Theorem from the literature [22, 9].

Definition 7.1.1. Suppose T' : X — X and S : Y — Y are mappings of metric space X, and
V : X — Y is a continuous map from X onto'Y for which V oT = S o V. In this case we call S

a factor of T, and T an extension of S. If V(X)) is just dense in Y we say T is quasiconjugate to S.

Definition 7.1.2. A continuous map T' : X — X on a complete, separable metric space X is

transitive if and only if for every pair U, V' of nonempty open subsets of X there is a non-negative

integer n such that T~"(U) NV # .

Definition 7.1.3. (a) A point x € X is periodic for T if there is a positive integer n such that

T"x = x and we called the least such positive integer n the period of x.

(b) We say a mapping T of a metric space X is chaotic if it is transitive and has a dense set of

periodic points.
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Definition 7.1.4. A continuous operator 'I" on the metric space X is called mixing if for any pair

U, V' of nonempty open subsets of X, there exists some N > 0 such that

T (U)NV =0 foralln > N.

Definition 7.1.5. Let G be a region in C and ¢,, - G — G be holomorphic maps for n > 1. Then

the sequence {¢,, },, is called a run-away sequence if for any compact subset K C G, there is some

integer N such that o™ (K) N K = .

Let Aut(2) be the set of all automorphisms on §2; that is, the set of all bijective holomorphic
maps f : {2 — €. These maps are also called conformal maps. Now we move to the next section

where we prove Corollary
7.2 Equivalent Conditions for Hypercyclicity on H(2)
We begin this section by stating a result of Grosse-Erdmann and Manguillot.

Theorem 7.2.1. ([9 p. 116]) Let 2 be a simply connected domain and ¢ € Aut(S)). Then the

following conditions are equivalent:
(i) C, is hypercyclic;
(ii) C,, is mixing;
(iii) C,, is chaotic;
(iv) (¢™)n is a ran-away sequence;
(v) @ has no fixed point in €);

(vi) C, is quasiconjgate to a Birkhoff operator.

Theorem 7.2.2. Let ), G be two bounded simply connected regions. Let ) : G — € be a

conformal map and ¢, : Q) — Q and 0, : G — G be two sequences of conformal maps satisfying

on =97 0, 0.
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Suppose there exists a point p € 0S) such that p,, — p uniformly on compact subsets of (). Then

there exist a subsequence {c,, } and w € OG such that o,,, — w uniformly on compact subset of

G.

Proof. Since G is bounded, the sequence o, : G — G is a normal family, by Montel’s Theorem:;
see Conway [3] p. 153]. Thus there is a subsequence, still denoted by {0, },, and a holomorphic
function f : G — G such that g,, — f uniformly on compact subsets of G; see Conway [3, p. 152]

and Conway (3}, Definition 1.14. p. 146]. For any point 2, in G, the sequence

on(20) = 97" 0y 0 (%)

is in G. Thus {0, (2,)}, has a convergent subsequence {c,, ()} in the compact set G. Hence
there exists w, € G such that

Oy, (26) = Wo.
Claim. w, € 9G.

Proof of Claim. By way of contradiction, suppose w, € G. Since ¥)(z,) € Q and {¢,, },, converges

uniformly on compact subsets of €2, we have

Py (V(20)) = 1) 0 0y, (26) = Y (wo) € €,

which contradicts the hypothesis that {(,, },, converges uniformly on compact subsets to a point

p € 02 This completes the proof of the claim. 0

Since o,, — f uniformly on compact subsets of (G, we have

on(2) = f(z), forall zin G.

By our claim f(z) € 0G. Hence the range of the holomorphic function f is not an open set.

By The Open Mapping Theorem (see Conway [3} p. 99]), f is a constant function. By the claim
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f(2) = w, for some point w, € JG. Thatis o(z) — w, uniformly on compact subsets of G. [

Now we prove a universality result in the Corollary below, in the line of our focus in this

dissertation.

Corollary 7.2.3. Let G be a bounded simply connected region and o,, : G — G be a sequence of
conformal maps. The sequence C,, : H(G) — H(QG) is universal if and only if there are a point

w in OG and a subsequence {0, } of {0} such that o, — w uniformly on compact subsets of

G.

Proof. Suppose C,, : H(G) — H(G) is universal. By taking = D in Theorem [7.2.2] we see

that the sequence of composition operators induce by

@n:¢00n0¢_13D—>D

is universal. Thus by Theorem there is p € 9D such that ¢, (2) — p uniformly on compact
subsets of D. Hence by Theorem there are a subsequence {o,, }, of {0,}, and a point
w, € OG such that 0, (w) — w, uniformly on compact subsets of G.

Conversely, suppose there are a point w, € JG and a subsequece {o,, }i of {0, }, such that
Op, (W) — w, uniformly on compact subsets of G. Thus by Theorem there are a subsequence
{@n, }r of {pn}n and a point p € OD such that ¢, () — p uniformly on compact subsets of ID.
Thus by Theorem [3.2.6, C,, : H(D) — H(D) is universal. Hence C,, = Cy o C,,, o Cy-1 is
universal on H(G). O

The result of the above Corollary indeed holds true for some simply connected regions which

are not bounded. To be precise, we provide the following Theorem to generalize the result in

Corollary

Theorem 7.2.4. Let G be a simply connected region with either G = C or int(C \ G) # 0. Let

on : G — G be a sequence of conformal maps. The sequence C,, : H(G) — H(QG) is universal if
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and only if there are a point p in the extended boundary 0, G and a subsequence {o,, }r. of {on}n

such that o, — p uniformly on compact subsets of G.

Proof. The result for the case when G is bounded follows from Corollary For unbounded
(G, we separate our argument into two cases of G according to the hypothesis of the theorem. Case
(1): G = C. In this case, we use the results of Montes-Rodriguez [[16, Theorem. 2.2 and 3.1]: A
sequence of conformal maps o, : C — C is universal if and only if {c,, },, is a run-away sequence;
that is, for any compact subset K of C, there is a positive integer n such that K N o, (K) = 0.

To finish the proof for the case that G = C, we claim that for some subsequence {O‘nk}k,

0n, — 00 uniformly on compact subsets of C if and only if {0, },, is run-away. To see that, one

k
simply observe that if K is a compact subset, then there is a positive R such that ' C RD. Hence
if r > R and if {0, }, is run-away then there is a positive integer N such that o (K) C on(rD),
which has a nonempty intersection with 7D, and so on(z) > r for all z in K. Thus there is a
subsequence {0, }x so that o,,, — oo uniformly on compact subsets of C.

Conversely, suppose there is a some subsequence {o,, }; such that o,,, — oo uniformly on
compact subsets of C. Then for any compact subset K, there is a number R > 0 such that

K C RD, and there is a 0,,, such that o,,, (2) > R+ 1 forall 2 € K. Hence, K N o, (K) = 0.

Case (i7): G is an unbounded simply connected region with int(C \ G) # ). Let o € C such that

the open ball B(a, ) C int(C \ G). Hence, the function 1)(z) = — takes G one to one, onto a
bounded simply connected region 2, with ¢»(c0) = 0 and 2 C R™'D. Let ¢, : Q — € be given
by

@n:¢oan0¢_1'

So the sequence C,,, : H(2) — H(S2) is universal if and only if the sequence C,, : H(G) —
H(G) is universal. Note 1) takes the extended boundary 0.,G = G U {oo} one to one, onto 02,
and @ is continuous at every point in 0,,G. Suppose there is a point w € 02 and a subsequence

{©n, }x such that p,,, (2) — w uniformly on compact subsets of 2. Then by the continuity of ¢~
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at w, we have

O (2) =71 0, 0 1(2) = ¥ (w)
uniformly on compact subsets of G. Our theorem now follows directly from Corollary [l

We remark that in the case that G = C, conformal maps o : C — C are well known to be in
the form o(z) = az + b, where a,b € C with a # 0, but we do not need this specific form in the

above proof.

At first glance, one may think that the above theorem should hold true for all simply connected
regions (G. However, due to the complexity of boundary points that G may have, we have not
been able to determine whether that is correct. One evidence for us to focus on the case int(C \
) = () may come from the relatively simpler structure of its boundary points; see Rudin [18],
Remark. 14.20 (¢)].

To conclude our discussion above we raise the following question.

Question 7.2.5. Does the conclusion of Theorem continue to hold true for any simply con-

nected region G'?

We conclude the whole dissertation with the following observation. To illustrate Theorem
7.2.1} we now provide an example in the case that the simply connected region is the open unit

disk D.

Example 7.2.6. Let o € D and ¢ is a linear fractional transformation on D defined by

Gal2) = la—_azz
Then
62() = 6o 0 dulz) ==

1—az
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Ca—|aPr—a+z

Cl-az—|a2+azr

Now take oo = 3. To see where ¢, has a fixed point, set ¢, (z) = ¢1 (2) = 2. So that

-0z 7
1 1
5—222’—522,
L2 2 +1 0
—2" =22+ ==
2 2 ’
22— 4z+1=0

Hence,

4+ 16 -4

Therefore ¢, has a fixed point 2 — V3inD and 3 (z) = z. Thus, C3 = identity and hence C3" =
2 2 2

identity for n > 1, and C’z’l‘“ = Cy,. Thus Cy, is not hypercyclic and ¢ 1 has a fixed point in D.
b 2 2
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