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ABSTRACT 

Kit Chan, Advisor 

The main theme of this dissertation is the dynamical behavior of composition operators on the 

Fŕechet space H(P) of holomorphic functions on the upper half-plane P. In this dissertation, we 

prove a new version of the Seidel and Walsh Theorem [21] for the Fŕechet space H(P). Indeed, we 

obtain a necessary and sufficient condition for the sequence of linear fractional transformations σn

such that the sequence of composition operators {Cσn }∞ 
n=1 for the Frechet ´ spaceH(P) is universal. 

For that, we use the Riemann Mapping Theorem to transfer dynamical results on the space H(D) 

of holomorphic functions on D to the space of holomorphic functions H(P). Furthermore, we gen-

eralize our first result by proving equivalent conditions for a sequence of composition operators in 

the space H(D) to be universal. 

Consequently, taking the point of view that hypercyclicity is a special case of universality, we 

obtain a new criterion for a linear fractional transformation σ so that Cσ is hypercyclic on H(P). 

Indeed, we provide necessary and sufficient conditions in terms of the coefficients a, b, c, d of a 

linear fractional transformation σ(z) = az+b so that Cσ is hypercyclic on H(
cz+d

P). Moreover, we use 

n

this result to derive a necessary and sufficient condition in terms of α and θ so that Cϕ is hyper-

cyclic on H(D) where ϕ(z) = e θ z−α is a linear fractional transformation defined on D. 
1−αz 

Motivated by the Denjoy-Wolff Theorem [23, p. 78], we further work on the conformal map σ 

oftheupperhalf-planeP istomakeaconnectionbetweenthehypercyclicityandthelimitofthe

iterations σn . In particular, we give a complete characterization for the limit point of σn in the 

extendedboundary∂∞P = ∂P ∪ {∞}.Similarly,weprovideananalogousresultfortheunitdisk

D. 

      Finally, we obtain a new universal criterion in the space H(Ω) of holomorphic functions on a 

bounded simply connected region Ω that is not the whole complex plane C. We show that a se-

quence of composition operators {Cσn }∞ 
=1 on H(Ω) is universal if and only if there are a boundary 

limit point w ∈ ∂Ω and a subsequence {σnk }k of {σn}n such that σnk → w uniformly on compact 
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subsets of Ω. Our last result extends a result of Grosse-Erdmann, and Manguillot in a particular 

case when the complement C \ Ω of Ω has a nonempty interior. 
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CHAPTER 1 UNIVERSAL COMPOSITION OPERATORS 

1.1 Introduction 

1.1.1 Introduction to Universal Composition Operators 

Let X be a separable metrizable topological vector space, and for each integer n ≥ 1 let 

Tn : X → X be a continuous linear map. The sequence {Tn}n is said to be universal if there 

is a vector x of X such that the set {Tnx : n > 1} is dense in X . Such a vector x is called a 

universal vector of {Tn}n. In the case that Tn is the n-th power T n of a continuous linear map 

T : X → X , then T is said to be hypercyclic, and we call x a hypercyclic vector of T ; that is, the 

orbit orb(T, x) = x : n > 1} is dense in X . In our setting, X is the F´{T n rechet space H(G) of 

holomorphic functions on a region G in the complex plane C, and Tn is a composition operator 

Cφn : H(G) → H(G) defined by Cφn (f) = f ◦ φn, where φn : G → G is a conformal map. 

In the Fŕechet space H(G) a sequence {fn}∞ in H(G) converges to f in H(G) if and only if n=1 

fn → f uniformly on every compact subset of G; see [3]. This dissertation is dedicated to study 

the dynamical behavior of the sequence {Cφn }n>1 in the space of holomorphic functions H(G) 

when G is the upper half plane P or the unit disk D. 

The following discussion is based on the Shapiro’s note [22]. If U and V are open subsets of 

C and φ : U → V is a holomorphic map (not necessarily one to one or onto), then φ induces a 

composition operator Cφ : H(V ) → H(U) defined by Cφf = f ◦ φ where f ∈ H(V ). Now if we 

take the region G to be the unit disk D, then the Riemann Mapping Theorem [3, p. 160] allows us 

to transfer the dynamic behavior about composition operator on H(D) to H(G), where G is any 

simply connected planar region that is not C. In fact, the Riemann Mapping Theorem gives us a 

bijective holomorphic map ψ taking D onto G. Therefore, the corresponding composition operator 

Cψ is an isomorphism of H(G) onto H(D). If σ is a self map of G, then φ = ψ−1 ◦ σ ◦ ψ is 

holomorphically conjugate to σ (see Definition 1.2.4 ) and φ is a holomorphic self map of D. Since 
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σ and φ are conjugate of each other, the operator 

 Cφ = Cψ−1◦σ◦ψ = Cψ ◦ Cσ ◦ (Cψ)−1

is similar to Cσ : H(G) → H(G). In this dissertation, we make use of the isomorphism between 

these Frechet spaces ´ H(G) and H(D). 

1.1.2 Classical Results 

The study of composition operators has a long history, utilizing methods from different topics 

in analysis, such as functional analysis, operator theory, measure theory, and analytic function 

theory. Composition operators have been studied by many authors on various spaces of analytic 

functions. For general references on the theory of composition operators, see the well-known 

books by Cowen and MacCluer [4], Shapiro [23] and Erdmann and Manguillot [9]. 

In 1929 Birkhoff [2] proved that there exists an entire function g(z) such that for any arbitrary 

entire function h(z), there exists a sequence {n }∞ 
k k=0 of positive integers such that 

lim g(z + nk) = h(z) 
k→∞ 

uniformlyoncompactsubsetsofC.Inotherwords,thetranslationoperatorsTn : H(G) → H(G) 

defined by Tn(f) = f(z + n) form a universal sequence of operators. 

Afterthat,manyauthorshaveworkedonthistopic,onthespaceH(G) onaregionG particularly

when G = C or D for self mappings ϕ : G → G which may not be one-to-one or onto on the 

domain G; see [8]. 

      In 1941 Seidel and Walsh [21] proved a result analogous to Birkhoff’s Theorem for the space of 

holomorphic functions on the unit disk D. They showed that for any sequence {bn}n∞ 
=0 ⊂ D with bn 

→ 1, there exists a function g in H(D) such that for any function h in H(D), there exists a 
subsequence {bnk }k∞ 

=0 with � �
bnk − z 

lim g = h(z) 
n→∞ 1 − bnk z 
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Later in 1955 Heins [7] showed for any sequence {b }∞ 
n n=1 in the unit disk D with bn → 1 there

exists a Blaschke product B such that any holomorphic function in D that is bounded by 1 can be 

locally uniformly approximated by functions of the form B ◦ b −z
φ nk 
nk , where φnk (z) = -- . Also,

1−bn z 
k 

in 1976 Luh [1] proved that in the space H(C) of entire functions, for any sequence {bn}∞ 
n=0 in C

k

withlimn→∞ bn = ∞,thereexistsanholomorphicfunctiong inH(C) suchthatforanycompact

setK withpropertythatC\K isconnectedandforeveryfunctionh holomorphiconC thereexists

subsequence{bnk }∞ 
=0 suchthatlimk→∞ g(z + bnk ) = h(z) uniformlyonK.

In 1987 Gethner and Shapiro [6] discovered a sufficient condition for a sequence of continuous 

linear maps on a Fréchet space to be universal. This condition for the Banach space case was first 

discoveredbyCarolKitaiinherthesis[12],butsheneverpublishedit. Thisconditionisnow

knownastheUniversalityCriterion,whichcanbeappliedtospacesofholomorphicfunctions.

Thus Universality Criterion gives a unified proof of universality for composition operators, includ-

ingthetheoremsofBirkhoff,SeidelandWalshandothers.Morerelatedresultsoncompositions

operatorscanbefoundin[8].

1.1.3AnOutlineoftheDissertation

The organization of this dissertation is as follows. In Chapter 1, we offer definitions related 

to linear fractional transformations. Then we introduce well-studied concepts of classification of 

linearfractionaltransformationsthatweneedinthedissertation.

InChapter2,wepresentafewclassicalresultsonuniversality,includingtheuniversalitycriterion

and the Seidel and Walsh Theorem. In addition, we obtain straightforward observations and results 

related to the Seidel and Walsh Theorem. 

In Chapter 3, we continue the work of Seidel and Walsh [21] who proved a universality result 

for Cτn : H(D) → H(D) where τn is a sequence of non-Euclidean translation on the unit disk D. 

Fur-thermore, we make a connection between a sequence of universal composition operators in 

H(D) and a sequence of composition operators in H(P); see Theorem 3.2.6. Then in Corollary 

3.2.7 we obtain a complete characterization of a sequence of conformal maps that produce a 

sequence of 
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universal composition operators {Cσn }n>1 on H(P). We conclude Chapter 3 with a few examples 

of universal composition operators. 

In Chapter 4, we study the relation between a linear fractional transformation σ(z) = az+b
cz+d and its 

coefficient matrix ⎡ ⎤⎢a b⎥
A = ⎣ ⎦ . 

c d 

We first prove basic properties of the matrix and its eigenvalues in Lemma 4.2.1 and Lemma 4.2.2. 

In Proposition 4.2.3 and Theorem 4.2.5 we provide necessary and sufficient conditions for a se-

quence of composition operators Cσ : H(P) → H(P) to be hypercyclic, in terms of the matrix A 

of the conformal map σ. To conclude the chapter, we provide a few examples to illustrate the main 

result in Theorem 4.2.5. 

      In Chapter 5, we first prove Lemma 5.1.6 and Lemma 5.1.10 that give us equivalent conditions 

in terms of eigenvalues, fixed points, and the coefficients of linear fractional map σ. Motivated by 

Denjoy-Wolff Theorem [23, p. 78], we study a limiting behavior of iterations of a linear fractional 

transformation σ defined on the upper half-plane P. Using these conditions, we give a specific 

characterization of its limit point for different classes of linear fractional transformations in Theo-

rem 5.2.6. 

In Chapter 6, we provide a complete characterization of the linear fractional transformation φ(z) = 

eiθ  z−α 
1−  αz so that the composition operator Cφ is hypercyclic on H(D); see Theorem 6.2.1. To be 

n

more precise, we derive necessary and sufficient conditions for a linear fractional self map φ on D 

in terms of α and θ so that Cφ is hypercyclic. At the end of this chapter, we provide a numerical 

example and a series of corollaries. 

      In Chapter 7, we investigate universal composition operators in the setting of the Fréchet space 

H(G) of space of holomorphic functions for any simply connected region G in the complex plane 

C, when its complement C \ G has a nonempty interior. We obtain a new criterion for σn on G so 

that {Cσn }∞ 
=1 is universal in H(G); see Corollary 7.2.3, Theorem 7.2.2 and Theorem 7.2.4. 
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1.2 Linear Fractional Transformations 

The universality of a sequence of composition operators {C ∞
φn }  

n=1 is studied with the properties 

of the symbols φn. The following proposition is well known and demonstrates the connection 

between the hypercyclicity of a composition operator Cφ with its inducing map φ. 

Proposition 1.2.1. (Shapiro [22]) If Cφ is hypercyclic on H(D) then φ is an univalent (that is one 

to one holomorphic function) and has no fixed point in D. 

Proof. By way of contradiction, assume φ has a fixed point r ∈ D, (that is, φ(r) = r). Let f ∈ 

H(D). Any function in the orbit orb(Cφ, f ) is in the form Cn
φf = f ◦φn, where φn = φ ◦ φ ◦ · · · ◦ φ| {z }

n-times 
and n > 0. Hence by induction, we have

Cn+1
 f(r) = f ◦ n
φ  φ +1(r) = f ◦ φn(φ(r)) 

= f(φn(r)) 

= f(r). 

Hence {Cn
φ f : n > 1} is not dense in H(D). Thus, Cφ is not hypercyclic. 

Suppose φ is not univalent, so there exists distinct point r, s ∈ D with φ(r) = φ(s). Then if 

f ∈ H(D), then each function in the orbit orb(Cφ, f ) we have by induction for n > 0, 

Cn+1 f(r) = f(φn+1 n
φ (r)) = f(φ (φ(r))) = f(φn(φ(s))) 

= f(φn+1(s))

Cn+1 = φ f(s) 

Hence, f ◦ φn(r) = f ◦ φn(s) for all n ≥ 0. Therefore, orb(Cφ, f) can not be dense. □ 

It is clear that in this proof we may replace the unit disk D with any open set G since we did 

not use any specific characteristic of the unit disk D. 
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The main goal of this section is to study the set of linear fractional transformations on the 

complex plane C, and more precisely on the upper half plane P and the unit disk D. We state 

basics definitions and some facts of the linear fractional transformations. 

Definition 1.2.2. ([26, p. 20]) A map of the form φ(z) = az+b
cz+d is called a linear fractional trans-

formation. If a, b, c, d ∈ C and if ad − bc = 0 then φ is a Möbius transformation. 

In the case that ad − bc = 1 then φ is in the standard form or a normalized transformation. 

In the case that c = 0, this definition extends to the whole Riemann sphere Ĉ = C ∪ {∞} by 

defining f(− d ) = ∞, f(∞) = a
c c . 

In the case that c = 0 and a = 0 we define f(∞) = ∞. 

The following definition gives us a description of a linear fractional transformation for P; see 

[26, p. 20]. 

Definition 1.2.3. Let a, b, c, d ∈ R be such that ad − bc = 1 we define the map 

az + b 
φ(z) = 

cz + d 

as a form of linear fractional transformation φ : H(P) → H(P). This function φ is called a 

Möbius transformation of P, or a conformal map of P. 

One may ask when two linear fractional transformations are conjugate? The answer is in the 

below definition. 

Definition 1.2.4. ([20]) Two linear fractional transformations f and g are said to be 

• conjugate if there exists a linear fractional transformation h such that the diagram

Ĉ   -------+ 
g Ĉ

hl  l h (1.2.5)

Ĉ -------+ f Ĉ

is commutative; that is; g = h−1 ◦ f ◦ h. 

6

6

6
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• topologically conjugate if there exists a homeomorphism h : Ĉ → Ĉ such that g = h−1 ◦f ◦h

(a mapping h is a homeomorphism if h and h−1 are continuous bijections).

Many of linear fractional transformations are important in our study. The first ones are the 

linear fractional transformations of the disk D, 

 z − α 
φ(z) = e iθ

1 − αz

where α ∈ D and θ ∈ [0, 2π]. If θ = π, then φ(z) = z − α 
1 −αz and these maps are self -inverse, that is 

φ = φ−1 . Also it is important to know that φ maps the open unit disk D to itself and the boundary 

of the unit disk ∂D = {z ∈ C : |z| = 1} to itself. These linear fractional transformations are 

useful because they take the point α to point 0 and 0 to −α. 

The second one is the conformal automorphism which is called a Cayley transform ψ : P → D 

that conformally maps the upper half-plane P to the unit disk D by: 

z − i 
ψ(z) = , where z ∈ P. 

z + i 

its inverse is given by: 

1 + z 
ψ−1(z) = i , where z ∈ D. 

1 − z 

Note that the Cayley transform maps the boundary to the boundary, that is the extended bound-

ary ∂∞P = R ∪ {∞} to ∂D. Consequently, much of the work on H(P) uses the results on H(D), 

utilizing the function ψ; see [15], [14, p. 20]. 

1.3 Classification of Linear Fractional Transformations 

In this section, we give a brief account on the classification of linear fractional transforms on 

P. This brief discussion is from Shapiro [23], and more facts, results, and definitions can be found

in Walkden [25]. 

Definition 1.3.1. (Shapiro [23]) If φ(z) = az+b
cz+d is a linear fractional transformation in the stan-
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dard form, then we define T (φ) = ±(a + d) to be the trace of φ. where the ambiguous sign is 

intended to signal the ”plus-minus” ambiguity in the standard form representation of T. 

It is not hard to see that classification of linear fractional transformations can be done based in 

two view points: 

(a) The number of its fixed points.

To determine the fixed points of a linear fractional transformation, set

az + b 
z = φ(z) = , with ad − bc = 1. 

cz + d 

Thus 

z(cz + d) = az + b. 

This implies 

cz 2 + (d − a)z − b = 0. (1.3.2) 

Hence, if α and β the roots of equation (1.3.2) we get the following 

p
−(d − a) ± (d − a)2 + 4cb 

α, β = 
2c p 

a − d ± (a + d)2 − (a + d)2 + (d − a)2 + 4cb 
= 

2c p 
a − d ± (a + d)2 − (4ad − 4cb) 

= , where ad − bc = 1 
2c 

√ 
a − d ± T 2 − 4 

= . (1.3.3) 
2c 

From this equation we can see the types of fixed points. 

Type 1. If c = 0, T = ±2, then we get two finite distinct fixed points α = β. 

Type 2. If c = 0, T = ±2, then we get only one finite point α = β = a − d 
2 . c

6 6 6

6
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Type 3. If c = 0, T = ±2 then we get two fixed points and one of them is β = ∞ and the 

other one is a finite fixed point α. To see this, since c = 0 then ad = 1 this implies that a = 
1 
d . Thus 

az b 
φ(z) =  + = a2 z + ba

d d

is a linear transformation. Setting z = a2z + ba, we obtain the following two fixed points: 

ab 
α = , β = ∞. 

1 − a2 

Type 4. If c = 0 and T = ±2, then we get only one fixed point which will be ∞. To see 

this, since c = 0 implies ad = 1, and T = a + d = ±2, we have a = ±1. Hence, 

φ(z) = z ± b. Note that φ(∞) = ∞. 

We conclude that φ has a unique fixed point in Ĉ if and only if |T (φ)| = 2 and φ has two 

fixed points if and only if |T (φ)| = 2. 

The next question is how we classify these transformations? In order to see that we need to 

write the linear fractional transformation in the form as explain in the below theorems. 

Theorem 1.3.4. (Kaur [11]) If a linear fractional transformation 

az + b 
ω = φ(z) = , where ad − bc = 1, 

cz + d 

has two distinct fixed points α and β, then the transformation takes the form 

� � 
ω − α z − α 

= k . 
ω − β z − β 

Proof. The results is obvious in the case that β = ∞. It remains to prove the result for the 

case that α, β ∈ C. Since α, β are the roots of the equation (cz)2 + (d − a)z − b = 0, this 

implies that 

6

6
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cα2 + (d − a)α − b = 0 and cβ2 + (d − a)β − b = 0. 

Thus, 

cα2 − aα =  b − dα and cβ2 − aβ = b − dβ. (1.3.5) 

Consider 

 az+b
ω − α −

 cz+   α 
= d

ω − β az+b − β 
cz+d 

az + b − αcz − αd 
= 

az + b − βcz − dβ 

(a − αc)z + (b − αd) 
= 

(a − βc)z + (b − dβ) 

(a − αc)z + cα2 − aα 
= , 

2
by (1.3.5)

(a − βc)z + cβ  − aβ 

(a − αc)z + α(cα − a) 
= 

(a − βc)z + β(cβ − a) 

(a − αc)(z − α) 
= 

(a − βc)(z − β) 

(z − α) 
= k . 

(z − β) 

where √ 
a − αc T − T 2 − 4 

k = = √ , by (1.3.3).
a − βc T + T 2 − 4 

□ 

Theorem 1.3.6. ([11]) If a linear fractional transformation ω = φ(z) = az+b
cz+d has only one 
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finite fixed point say α ∈ C, then the transformation takes the form 

1 1 
= + k.

ω − α z − α 

Proof. Put ω = z; that is, 

p 
az + b (a − d) ± (a − d)2 + 4bc 

z = , which implies α = , 
cz + d 2c 

where 

 (a − d)2 + 4bc = 0. 

This implies that 
a − d 

α = . 
2c 

Thus 

zαc = a − d. 

Hence 

d = a − 2αc. (1.3.7) 

Again α is a root of equation cz2 + (d − a)z − b = 0 in (1.3.2). This implies 

cα2 + (d − a)α − b = 0. 

Thus 

cα2 − aα = b − dα. (1.3.8) 

Now, 

1 1 
= 

ω − α az+b − α 
cz+d 
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cz + d 

= 
az + b − αcz − αd 

cz + d 
= 

(a − αc)z + (b − αd) 

cz + a − 2αc 
= from (1.3.7). 

(a − αc)z + (b − αd) 

Hence by (1.3.8), 

1 cz + a − αc − αc 
= 

ω − α (a − αc)z + (cα2 − aα) 

(cz − αc) + (a − αc) 
= 

(a − αc)z + α(cα − a) 

c(z − α) + (a − αc) 
= 

(a − αc)(z − α) 

c 1 
= + .

α − αc z − α

Now by taking 
c 

k = , 
a − αc 

we get 
1 1 

= k + . 
ω − α z − α 

□ 

In the case of one fixed point, the transformation is called parabolic. We summarize the clas-

sification of linear fractional transformations by its multiplier k in the following definition: 

Definition 1.3.9. [15, p. 42] In the case of two distinct fixed points of the linear fractional 
√ 

transformation, the multiplier k is given by k = T − 2√ T −4 . We say that: 
T + T 2−4 

(1) A transformation is hyperbolic if k > 0.

(2) A transformation is elliptic if k = eiα, α = 0, |k| = 1.6
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(3) A transformation is loxodramic if k = aeiα where a  = 1, α = 0 and α, β are both real

numbers a > 0. In other words, T is neither elliptic nor parabolic.

(b) Classification by the trace of a matrix representing the linear fractional transformation. Let A

be a 2 × 2 matrix given by ⎡ ⎤⎢a b⎥
A = ⎣ ⎦ . 

c d 

The trace of A is T = a + d. 

Theorem 1.3.10. ([23]) Suppose φ is a linear fractional transformation that is not the identity, 

then φ is loxodramic if and only if its trace T (φ) is not real. If T (φ) is real, then φ is: 

• Hyperbolic if T (φ)  > 2 (where k = a−b | |  , k real, k > 0, k = 0).
a+b

• Parabolic if |T (φ)| = 2 (where k = 1, α = β).

• Elliptic if |T (φ)| < 2 (where k = a−ib , |k| = 1).
a+ib 

Lemma 1.3.11. ([25, p. 61]) A linear fractional transformation φ(z) = az+b
cz+d with a, b, c, d ∈ R 

and ad − bc = 1 is a parabolic if and only if it is conjugate to a translation. 

Proof. Suppose φ is parabolic and has a unique fixed point at ξ. Let h(z) = 1 
z− ξ be a linear 

fractional transformation that maps ξ to ∞. Then h ◦ φ ◦ h−1 is a linear fractional transformation 

with a unique fixed point at ∞ because h ◦ φ ◦ h−1(∞) = h(φ(ξ)) = h(ξ) = ∞. 

We claim that h ◦ φ ◦ h−1 is a translation. Write 

−1 az + b 
h ◦ φ ◦ h (z) = . 

cz + d 

Since ∞ is a fixed point we must have that c = 0 and so we can write 

−1 az b
h ◦ φ ◦ h (z) = + ,

d d 

6 6

6
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and thus has a fixed point at b

d− a because 

a( bb  ) b 
h ◦ φ ◦ h−1( ) = d−a + 

d − a d d � � 
1 ab b(d − a) 

= + 
d d − a d − a 

b 
= . 

d − a 

Since h ◦ φ ◦ h−1 has only one fixed point at ∞ we must have that d = a. Thus, 

 b 
h ◦ φ ◦ h−1 : z → z + . 

d 

Conversely, assume that φ is conjugate to a translation, that is for some map h we have that 

    −1 h ◦ φ ◦ h : z → z + b, 

for some b ∈ R \ {0}. But this has a unique fixed point ∞ and it is therefore a parabolic. □ 

Lemma 1.3.12. ([25, p. 62]) A linear fractional transformation φ(z) = az+b
cz+d is a hyperbolic if and 

only if conjugate to a dilation. 

Proof. If φ is conjugate to a dilation of the form ψ(z) = kz. Thus there is a map h such that 

h ◦ φ ◦ h−1 = ψ then this map clearly has precisely two fixed points 0 and ∞ and so does φ. 

Therefore, φ is hyperbolic. 

If φ(z) fixes 0 and ∞ then we claim it is a dilation. To show that, write φ(z) = az+b . Since ∞  
cz+d

is a 

fixed point we must have c = 0 . Also since 0 is fixed point we have b = 0. Hence, φ(z) = a
d z. 

More generally, suppose φ(z) is hyperbolic with exactly two fixed points ξ1, ξ2. First suppose that 

ξ1 = ∞ and ξ2 ∈ . Let h(z) = z − ξ2. Then the conjugate map h ◦ φ ◦ h−1 has fixed points 0 and R
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∞, 

h ◦ φ ◦ h−1(0) = h ◦ φ(ξ2) = h(ξ2) = 0; 

h ◦ φ ◦ h−1(∞) = h(φ(∞)) = h(∞) = ∞. 

Thus h ◦ φ ◦ h−1 is a dilation by the above. 

Finally, assume that φ has two real fixed points ξ1, ξ2. We may assume that ξ1 < ξ2. Let h be the 

transformation f(z) = z−ξ2
z − ξ 1 

This is a linear fractional map and the conjugate map h ◦ φ ◦ h−1 has 

fixed points 0 and ∞. Hence, it is a dilation by our argument above. □ 

In conclusion, since we aim to study universal composition operator on space H(P), we will 

focus in the rest of this dissertation on linear fractional transformations that have no fixed point 

in P; that in case a linear fractional transformation is hyperbolic or parabolic. We give more facts 

about that in Chapter 5. 
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CHAPTER 2 UNIVERSALITY RESULTS FOR THE UNIT DISK D 

2.1 A Sufficient Condition for Universality 

Suppose X is a separable Fréchet space and T : X → X is a continuous linear operator. Let d 

a translation invariant metric d makes X a separable complete metric space. For x ∈ X , we denote 

the quantity kxk = d(x, 0). In this section we state Gethner and Shapiro’s condition and provide 

their proof. But first we need to mention to the following useful proposition. 

Proposition 2.1.1. (Gethner and Shapiro [6]) If T has a universal vector, then it has a dense Gδ 

set of universal vectors. 

Proof. Fix a countable dense subset {yj } of X . For positive integers N, j, and k, set 

1 [ 
   1 
F = F (j.N, k) = {x ∈ X : kT nx − yj k < for some n > N} = T −nB(yj , )

k k 
n≥N 

By the continuity of T , each F (j, N, k) is open. The set of T -universal vectors is the set 

\ 
F (j, N, k), 

j N k 

which is therefor a Gδ subset of X . If x is a universal vector, then so is every member of the dense 

orbit orb(T, x) = {T nx; n > 1}. □ 

Theorem 2.1.2. (Gethner and Shpiro [6]) Suppose T is a continuous linear operator on a separa-

ble Frec´ het space X . Suppose there exist a dense subset D of X and a right inverse S for T (TS= 

identity on X) such that kT nxk → 0 and kSnxk → 0 for every x ∈ D. Then X has T -universal 

vectors. 

Proof. By Baire’s Theorem [19, p. 42] it is enough to prove that each of the Gδ sets F = F (j.N, k) 

defined in the proof of Proposition 2.1.1 is dense in X . 

To see this, fix F = F (j, N, k), and for ease of notation write � = 1 
k and y = yj . Fix z in X 
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and δ > 0. We must find an x ∈ F lying within δ of z. Since D is dense in X . We can choose 

y0 and z0 in D with kz δ − z k < , and ky − y k < � 0 02 2 . Since the sequence T n and Sn converge 

pointwise to zero on D, we may choose a positive integer n such that simultaneously kT nz0k < � 
2 , 

and kSny0k < δ  . Write x = Sny0 + z02
. Then 

n δ δkx − zk 6 kx − z0k + kz0 − zk = kS y0k + kz0 − zk < + ,
2 2 

and so kx − zk < δ, as desired. Moreover, since TS is the identity map on X , so is T nSn . Thus 

    � �kT nx − yk = kT nSny0 − y + T nz0k 6 ky0 − yk + kT nz0k < + = �,
2 2 

and so x ∈ F , and the proof is complete. □ 

From this sufficient condition, we can get a unified proof of universality for many operators. 

We now move to the next section, where we use this condition to prove theorem of Seidel and 

Walsh. 

2.2 The Seidel and Walsh Theorem 

In fact the proof of Proposition 2.1.1 gives more as we see that in the following remark which 

shows that the sequence {T nj x : j ≥ 0} is dense in X for a dense Gδ subset of x0s where 

{nj : j ≥ 0} any fixed subsequence of positive integers with nj %∞. 

Remark 2.2.1. [6, p. 283] Let (Tk)k be a sequence of continuous linear operators on X and D be 

a dense subset of X such that Tk → 0 pointwise on D. Further assume that each operator Tk has 

a right inverse Sk for each k > 1, and Sk → 0 pointwise on D. Then for a dense Gδ set of vectors 

x ∈ X we get that the set {Tkx : k > 0} is dense in X . 

One application of this final form of Gethner and Shapiro’s condition is the Seidel and Walsh 

Theorem [21]. Recall that if H(D) is the set of holomorphic functions on the unit disc D topolo-

gized by uniform convergence on compact subsets, then H(D) is a separable Frechet ´ space. Now 
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we prove the following theorem. 

Theorem 2.2.2. (Seidel and Walsh [21]) Suppose {αn}n is a sequence of points in the open unit 

D with limn→∞ αn = 1. Let φn be the linear fractional transformation of D defined by: 

αn − z 
φn(z) = where z ∈ D , and n > 1.

1 − αnz 

If C : H(D) → H(D) is given by C ∞ 
n nf = f ◦ φn, then {Cn}n=1 is universal. 

Proof. ( Gather and Shapiro [6]) Note that each φn is its own inverse, by putting C = C−1 
n n the 

condition TS = I in Theorem 2.1.2 is satisfied. We define a functions fm,k : D → D by 

1 − zk 
fm,k(z) = z m , where z ∈ D, m > 0, .

k and k > 0  
1 + z 

Let D = span{fm,k(z) : z ∈ D, m > 0, k > 0}. Then for fixed m, as k →∞ the sequence fm,k 

converges to the function zm uniformly on compact subset of D, so that the linear span D of such 

functions is dense in H(D). Now, since φn converges uniformly on compact subset of D to the 

constant function 1 as αn → 1, and each function fm,k is holomorphic on a neighborhood of 1 and 

vanishes at 1, we get that Cnfm,k → 0 uniformly on compact subsets as n →∞. Thus Cn → 0 on 

D, and so by Remark 2.2.1, {Cn}n is universal. 

□ 

From the Seiled and Walsh Theorem we know that if {bn}∞=1 ⊂ D and bn → 1 ∈ D, then there 

is g ∈ H(D) such that {g ◦ ψn : n > 1} is dense in H(D), where 

bn − z 
ψn(z) = . 

1 − bz 

Now let eiθ ∈ ∂D, and f(z) = g(e−iθ z), and ϕ iθ bn−z
n(z) = e . Then 

1−bz � � 
−iθ iθ b − z

f ◦ ϕn(z) = f e e n 

1 − bz 
= g ◦ ψn(z). 
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Thus {f ◦ ϕn : n > 1} is dense in H(D). 

Form above remark we are ready to prove the following Corollary 4.2.2 which we consider it 

as a general case of Seidel and Walsh Theorem 2.2.2. There is no doubt that this Corollary 2.2.4 is 

well-known but we can not locate a proper reference in the literature. 

Corollary 2.2.3. Let {an}∞n=1 ⊂ D with |a | → 1, and ϕ (z) = an−z 
n n 1−anz then there is a function

f ∈ H(D) such that {f ◦ ϕn : n > 1} is dense in H(D).

Proof. Since D is compact, there is a subsequence of {an}n, still denote by {an}n such that an → 

β ∈ ∂D. Let β = eiθ, thus e−iθ a → e− iθn β = 1. Let 

an − z 
ϕn(z) = ,

1 − anz 

which can be rewritten as 
e−iθ a − e−iθn z

ϕ (z) = eiθ
 

  
n . 

1 − a e−iθ 
n e−iθz 

Let b −iθ
n = e an and so bn → 1. Hence if we let 

bn − z 
ψn(z) = . 

1 − bnz 

Then by the Seidel and Walsh Theorem, there is a function g ∈ H(D) such that {g ◦ψn(z) : n > 1}

is dense in H(D). By our remark above there is a function f ∈ H(D) such that if 

φ iθ
n(z) = e ψn(z) 

then {f ◦ φn(z) : n > 1} is dense in H(D). That is, {f ◦ φn(e−iθz) : n > 1} is dense in H(D).

Now our statement follows from the observation that 

e−iθ a −iθ
−  n − e z an −iθ iθ  z

φn(e z) = e = = ϕn(z),
1 − e−iθ a −iθ

ne z 1 − anz 

which completes the proof. □ 
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We now prove the following lemma. 

Lemma 2.2.4. Let {αn}∞ ∞ 
n=1 ⊂ D and {θn}n=1 ⊂ [−π, π]. Let ϕ : D → D be defined by 

αn − z 
ϕn(z) = ,

1 − αnz 

and φn(z) : D → D be defined by 

iθn 
α

 n − z 
φn(z) = e . 

1 − αnz 

Then the sequence {C }∞ is universal if and only if the sequence {C }∞ϕn n=1 φn n=1 is universal. 

Proof. Assume that {C ∞ 
ϕn }n=1 is universal. Since every subsequence {αnk }k is contained in the 

compact set D. It must have a convergent subsequence. If every subsequence converges to a point 

α inside D, then for any function f in H(D), {f ◦ ϕn}n>1 can only converge to the function of the � � 
form f α−z , which takes α to f(0). Thus {f ◦ }−  ϕn  : n > 1  

1 αz
can not be dense in H(D). Hence

we must have a subsequence {nk}k such that |αnk | → 1. By the compactness of [−π, π], there is a 

further subsequence of {nk}K , still denote by {nk}k such that θnk → θ for some θ ∈ [−π, π]. 

Let 
−

eiθ
z  α

fk(z) =   nk . 
1 − αnk z 

Since 

|αnk | → 1, the sequence Cfk : H(D) → H(D) 

is universal. Since 
iθn

θ  
nk → θ, and φ e k 

nk (z) = iθ { }  e fk(z) we see that Cφn k
k 

is universal, and hence 

{Cφn }n is universal. 

Conversely, if {Cϕn }n is universal, then by the compactness of [−π, π], we have a subsequence 

{θnk }k of {θn}n that converges to a value θ ∈ [−π, π]. By repeating the above argument, we prove 

that {Cϕn }n is universal. □ 

We now move to Chapter 3, where we state Theorem 3.2.6 that gives equivalent conditions that 
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connect universality of {Cφn }n on space H(D) with universality of {Cσn }n on space H(P). Later 

in Chapter 6, we use the above Lemma and Theorem 3.2.6 to study the limit point of the iterations 

of a linear fractional transformation ϕ defined on the unit disk D. In particular, We obtain the 

formula for the limit point in terms of α and θ. 
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CHAPTER 3 UNIVERSALITY RESULTS FOR THE UPPER HALF PLANE P 

3.1 Introduction

6

Birkhoff [2] proved the universality of the family {Cτa }a∈C of composition operators 

Cτa : H(C) → H(C), defined by Cτa (f) = f ◦ τa, 

where τa(z) = z + a, with a ∈ C and a = 0, is indeed a linear fractional transformation or 

more precisely a translation. After that, Seidel and Walsh [21] established an analogue of the 

Birkhoff theorem for the unit disk D. As a continuation of that work, in this chapter we prove a 

parallel version of the Seidel and Walsh Theorem for the upper half plane P. Indeed, we derive a 

new necessary and sufficient condition for a linear fractional transformation σ (z) = anz+bn 
n cnz+dn 

with

an, bn, cn, dn ∈ R and andn − bncn = 1 such that the sequence of composition operators {Cσn }n is 

universal on H(P). 

If φ(z) = eiθ z−α 

11
 

− with α ∈ D 
1 αz

and θ ∈ [0, π] is a linear fractional transformation that takes 

D onto itself and ψ(z) = z−i   is a conformal map that takes P onto D, then σ = ψ−1 ◦ φ ◦ ψ 
z+i

is 

holomorphically conjugate to φ and it is a holomorphic self map of P. We summarize in the below 

diagram. 

P 1  

 ψ D 1  −1

 ϕ D 1  ψ P (3.1.1) 
σ=ψ−1◦ϕ◦ψ 

Since σ and φ are conjugate to each other, then the corresponding operator 

 Cσ = C −1
ψ−1◦φ◦ψ = Cψ ◦ Cφ ◦ (Cψ)

is defined on H(P) and is similar to Cφ which is defined on H(D); see [22, p. 23]. Using this fact 

we establish our new results in the next section. 



23 

3.2 A Necessary and Sufficient Condition for Universality on H(P) 

In order to prove our main result we first need to prove the following lemma in which we 

construct a formula for eiθ and α in terms of a, b, c, d the coefficients of the conformal self map on 

the upper half-plane P. 

Lemma 3.2.1. Let a, b, c, d ∈ R with ad−bc = 1. Let φ(z) = e iθ z−α |α| < 1 θ ∈ [0, 2π]
1−αz with and ,

and ψ(z) = z−i 
z + i . If 

ψ−1 az + b ◦ φ ◦ ψ(z) = , 
cz + d 

then 
−iθ (c  b) + i(a + d) (b + c) + i(a − d) 

e = and α = . 
(b − c) + i(a + d) (b − c) − i(a + d) 

Proof. Note that 
1 + z 

ψ−1(z) = i . 
1 − z 

Set 

−1 az + b 
ψ ◦ φ ◦ ψ(z) = , where a, b, c, d ∈ R. 

cz + d 

Thus, 

−1
−1 aψ (z) + b 

ψ ◦ φ(z) = 
cψ−1(z) + d 

ai(1+z
1− ) + b 

= z 

ci(1+z−  ) + d
1 z

ai + aiz + b − bz 
= . 

ci + ciz + d − dz 

Hence 

� � 
ai + aiz + b − bz 

φ(z) = ψ 
ci + ciz + d − dz 
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ai+aiz+b−bz − i

= � ci+ciz+d−dz � .
ai+aiz+b−bz 
ci+ciz+d−  + idz

Thus 

(ai + aiz + b − bz) − i(ci + ciz + d − dz)
φ(z) = 

(ai + aiz + b − bz) + i(ci + ciz + d − dz) 

(ai − b + c + id)z + (ai + b + c − id) 
= 

(ai − b − c − id)z + (ai + b − c + id) 

[(c − b) + i(a + d)]z + [(b + c) + i(a − d)] 
= . 

[−(b + c) + i(a − d)]z + [(b − c) + i(a + d)] 

Hence we get 
(b+c)+i(a−d)

(c − d) + i(a + d) z + 
 (c−b)+i(a+d)

φ(z) = . 
(b − c) + i(a + d) −(b+c)+i(a−d)

(3.2.2)
− z + 1

(b c)+i(a+d) 

Since � ��  2 �(c− b) + i(a + d) �  � (c− b)2 + (a + b)2 �  −    � = = 1,
(b c) + i(a+ d) (b − c)2 + (a + d)2 

we let 

iθ (c − b) + i(a + d) 
e = ,

(b − c) + i(a + d) 

for some θ ∈ [0, 2π]. 

Let 

(b + c) + i(a − d)
α = − . 

(c − b) + i(a + d) 

Hence 

(b + c) − i(a − d)
α = − 

(c − b) − i(a + d) 
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−(b + c) + i(a − d) 

= 
(c − b) − i(a + d) 

−(b + c) + i(a − d) 
= − . 

(b − c) + i(a + d) 

Hence we can rewrite equation (3.2.2) as 

 z − α 
φ(z) = eiθ . 

1 − αz 

It remains to show |α| < 1. 

(b + c)2 + (a − d)2 
2 |α| = 

(c − b)2 + (a + d)2 

a2 + b2 + c2 + d2 + 2(bc − ad) 
= 

a2 + b2 + c2 + d2 + 2(ad − bc) 

a2 + b2 + c2 + d2 − 2 
= < 1. (3.2.3) 

a2 + b2 + c2 + d2 + 2 

□ 

We can now state and prove our main result. The following proposition provides us with a 

necessary and sufficient condition for a composition operator acting on Frechet ´ space H(P) of 

holomorphic functions for the upper half-plane to have a universal vector. By using the formula of 

eiθ and α in Lemma 3.2.1 we obtain our condition, which is analogous to the condition of Seidel 

and Walsh Theorem 2.2.2 for the universality of composition operator on the unit disk. 

Proposition 3.2.4. Let an, bn, cn, dn ∈ R with andn − bncn = 1. 

Let 
anz + bn

σn(z) = , 
cnz + dn

and 

Cσn : H(P) → H(P) be defined by 
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Cσn f = f ◦ σn. 

The sequence {Cσn }n is universal if and only if 

lim sup (|an| + |bn| + |cn| + |dn|) = ∞. 
n→∞ 

Proof. In view of Lemma 3.2.1, let α iθn z−αn
n ∈ D and φn(z) = e 

1−αz , where 

iθn 
(cn − bn) + i(an + dn) 

e = 
(bn − cn) + i(an + dn) 

and 
(bn + cn) + i(an − dn)

αn = . 
(bn − cn) − i(an + dn) 

Hence 

Cσn = Cψ ◦ Cφn ◦ C−1 
ψ . 

For any f ∈ H(P), 

C−1 ◦ C−1 
ψ ◦ Cσn (f) = Cφn ψ (f) = Cφn (f ◦ ψ−1).

By the continuity of the bijection C−1 
ψ , it takes a dense set to a dense set. Thus a vector f is a 

universal for Cσn if and only if f ◦ ψ−1is a universal vector for Cφn . We now proceed to establish 

the lim sup condition in the theorem. We first observe that lim sup |αn| = 1 if and only if there is 

a subsequence {αnk }k such that |αnk | → 1. Since D is compact, there is a further subsequence, 

still denoted by {αnk }k, such that αnk → α in ∂D. The sequence {θnk }k is in the compact interval 

[0, 2π]. By picking a subsequence of {θnk }k if necessary, we can assume θnk → θ ∈ [0, 2π]. Hence 

by the theorem of Seidel and Walsh, we have that {Cσn }n is universal if and only if lim sup |αn| = 
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1. By the inequality (3.2.3) we see that lim sup |αn| = 1 if and only if

lim sup (|an| + |bn| + |cn| + |dn|) = ∞. 
n→∞ 

This completes our proof. □ 

The above proposition can be generalized a step further by making a connection between a uni-

versal sequence of composition operators in the unit disk and a universal sequence of composition 

operators in the upper half-plane. In fact, we can establish more related results in the following 

Theorem, keeping in mind the following diagram: 

α −z  ψ(z)= z−i φ(z)= n ψ−1(z)=i 1+z

P   −−−−−z+→i  D −−−−−1−−α−n→z  D −−−−−−−1−→z  P (3.2.5)
αn∈D 

Theorem 3.2.6. For n ≥ 1, let α ∈ D, and φn(z) = αn−z 
1−αnz be linear fractional transformations on

D. Suppose

−1 anz + b
n(z) = n
σ ψ ◦ φn ◦ ψ(z) = , 

cnz + dn

where an, bn, cn, dn ∈ R with andn − bncn = 1, are linear fractional transformations on P. The 

following six statements are equivalent: 

(1) |αn| → 1.

(2) The sequence of composition operators Cφn : H(D) → H(D) is universal.

(3) There are a point eiθ  ∈ ∂D and a subsequence {φ iθ
nk }k such that φnk → e uniformly on 

compact subsets of D.

(4) lim sup |an| + |bn| + |cn| + |dn| = ∞.

(5) There are a point ζ ∈ ∂∞P = R ∪ {∞} and a subsequence {σnk }k of {σn}n such that

σnk (z) → ζ uniformly on compact subsets of P.

(6) The sequence of composition operators Cσn : H(P) → H(P), where n > 1 is universal.
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Proof. The equivalence of statements (1) and (2) is from Corollary 2.2.3. From Proposition 3.2.4, 

statements (1), (2), (4) and (6) are equivalent. It remains to show statement (1) is equivalent to 

statement (3) and statement (3) is equivalent to statement (5). 

To show (1) implies (3): Suppose |αn| → 1. Then there is a subsequence {αnk }k such that 

 |α iθ
nk | → e . 

Note that 

αn − z 
φnk (z) = k 

1 − αnk z 

α
= nk αnk − z 
αnk 1 − αnk z 

1 |α 2 
n

= k | − αnk z 
αnk

1 − αnk z 

1 |αnk |2 − 1 + 1 − αnk z = 
αnk

1 − αnk z 

1 |α |2 
nk − 1 1 

= + .
αnk 1 − αnk z αnk

Thus, 

� � � �� � �
iθ 1 |α 2 

nk | − 1 �� 1�φnk (z) − e �  �� = � + − eiθ ��αnk 1 − αnk z αnk� �  � �� 1 �1 − |α |2 � 1 �
6 � � n� � k + �� − eiθ ��→ 0 (if |z| 6 R),

αnk 1 − R αnk

uniformly on RD. 

To show (3) implies (1): Suppose φn(z) → eiθ uniformly on compact subsets of D. Then 

|φn(z)| → 1, 
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and hence 

(1 − |φn(z)|2) = (1 − |φn(z)|)(1 + |φn(z)|) 

6 2(1 − |φn(z)|) → 0, 

uniformly on compact subsets of D. Now 

(αn − z)(αn − z)
1 − |φn(z)|2 = 1 − 

(1 − αnz)(1 − αnz) 

1 − αnz − αnz + |αn|2|z|2 − |αn|2 + αnz + αnz − |z|2 
= 

(1 − αnz)(1 − αnz) 

1 − |αn|2 + |αn|2|z|2 − |z|2 
= 

|1 − αnz|2 

(1 − |αn|2)(1 − |z|2) 
= 

|1 − αnz|2 

(1 − |αn|2)(1 − R2)
> if z ∈ RD 

(1 + R)2 

1 − R 
= (1 − |αn|2). 
1 + R 

Hence |αn|2 → 1, which establishes (1). 

To show statement (3) implies statement (5) we first make a claim of an easy fact. 

Claim. For all iθ iθ

θ in R with e = 1, i1+e
1−eiθ ∈ R. 

Proof of Claim. It suffices to show Re 1+e
iθ = 0

1−e iθ . To see that:

1 + eiθ  1 + eiθ  1 + e−iθ
2 Re = + 

1 − eiθ  1 − eiθ  1 − e− iθ

1 − e −iθ + eiθ  − 1 + 1 − e iθ + e−iθ − 1
= 

|1 − eiθ|2 

= 0. 

6
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This completes the proof of the claim. □ 

Now suppose lim φ iθ −1 
n(z) = e uniformly on compact subsets of D. Note that ψ and ψ are 

continuous, they take compact sets to compact sets. Recall σ −1 
n(z) = lim ψ ◦φn ◦ψ(z). Therefore, 

    −1 lim σn(z) = limψ ◦ φn(ψ(z)) 

=ψ−1(lim φn(ψ(z))) ⎧⎪⎪⎪⎪ if ⎨∞ eiθ = 1  
= ∈ R ∪ {∞}, by our claim. ⎪⎪⎪⎪i1+eiθ if ⎩ eiθ − iθ = 1 

1 e

To show statement (5) implies statement (3): Suppose there is a point ρ ∈ R ∪ {∞} such that 

σn(z) → ρ uniformly on compact subsets of D. Since φn(z) = ψ ◦ σn ◦ ψ−1(z) and ψ and ψ−1 

takes compact sets to compact sets, we have 

lim φn(z) = lim ψ ◦ σ −1
n ◦ ψ (z) 

= ψ(lim σ (ψ−1n (z))) ⎧⎪⎪⎨⎪1 if lim σn(z) = ∞ 
= ∈ ∂D, ⎪⎪⎪⎩x−i 

 if lim σn(z) = x ∈ 
x+i

R 

which concludes our proof. □ 

The equivalence of Statements (2), (3), (5), (6) is generalized in Theorem 7.2.4 to a simply 

connected region G whose complements has a nonempty interior. We now take some steps similar 

to Lemma 3.2.1 in the converse direction to construct coefficients an, bn, cn, dn of the conformal 

maps σn that produce a sequence of universal composition operators Cσn on the upper half-plane. 

As an easy consequence of Theorem 3.2.6, we have the following corollary. 

6
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Corollary 3.2.7. Let {µn}n and {ρn}n be two sequences of positive numbers. 

(1) If µn → 0, then there exists a function F (z) in H(P) such that {F (µn)}n is dense in H(P).

(2) If ρn →∞, then there exists a function G(z) in H(P) such that {G(ρn)}n is dense in H(P).

√ 
Proof. Both statements follow easily from the observation that if    a nz 

σn(z) = anz = 1 √ 
then 

 
an √

a 1 
n √ = 1 and so σn an 

is normalized. Now both statements follow easily from Statement (5) of 

Theorem 3.2.6. □ 

3.3 Examples 

In the end of this chapter we provide a few examples of conformal maps that produce universal 

composition operators on the upper half plane P and satisfy our necessary and sufficient conditions 

of universality in Theorem 3.2.6. 

Example 3.3.1. Let σ(z) = n − 1 that is an = n, bn = −1, cn = 1, dn = 0, with an dn − ncn = 1z  b . 

These conformal maps produce a universal sequence of composition operators on the upper half 

plane. Here the coefficients satisfying our condition lim sup(|an| + |bn| + |cn| + |dn|) = ∞. 

Example 3.3.2. Let σ(z) = n2z where an = n, bn = 0, cn = 0, dn = 1 
n , and andn −bncn = 1. This 

is a sequence of dilations that produce a universal sequence of composition operators on the upper 

half plane. Note that the coefficients satisfy our condition lim sup(|an| + |bn| + |cn| + |dn|) = ∞. 

Example 3.3.3. Take σn(z) = z + n with andn − bncn = 1, where an = 1, bn = n, cn = 0, dn = 1 

so that lim sup(|an|+ |bn|+ |cn|+ |dn|) = ∞. Hence this is a sequence of translations that produce 

a universal sequence of composition operators on the upper half plane. 
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CHAPTER 4 AN EQUIVALENT CONDITION FOR A COMPOSITION OPERATOR ON 

H(P) TO BE HYPERCYCLIC 

4.1 Introduction 

It is very useful to take a step back to return to study linear fractional transformations using 

their coefficient matrices. It is known that similarity induces an equivalence relation on the set of 

all n × n square matrices. This similarity divides the set of all n × n square matrices into disjoint 

equivalence classes. From the fact that all matrices in an equivalence class are similar, and matrices 

in different classes are not similar, we utilize similar matrices to share many intrinsic properties of 

the same class of matrices, for more details, see [10, p. 57],[5, p. 249], [17, p. 26]. In this chapter, 

our main result is Theorem 4.2.5. For that we investigate the properties of a linear fractional 

transformation that induces a hypercyclic composition operator on H(P). Recall that there is 

a connection between the function theoretic properties of linear fractional transformation φ and 

behavior of Cφ on H(P) as we mentioned in Section 1.1.1. In this section, we introduce some basic 

concepts from linear algebra that help us study the properties of linear fractional transformations 

on P. 

To begin, we can identify the transformation 

az + b 
φ(z) = (4.1.1) 

cz + d 

with its coefficient matrix ⎡ ⎤⎢a b⎥⎣ ⎦ . (4.1.2) 
c d 

This identification between a linear fractional transformation on P and its coefficient matrix is 

useful because of the simple facts given in the following Lemma. ⎡ ⎤ ⎡ ⎤⎢a b⎥ ⎢a b⎥Lemma 4.1.3. (1) if r = 0 then ⎣ ⎦ and r ⎣ ⎦ are the same linear fractional transforma-
c d c d 

6
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tion. 

0 0 
(2) Let σ(z) = az+b and ρ(z) = a z+b cz+d 0 0 be two linear fractional transformations, and let 

c z+d⎡ ⎤ ⎡ ⎤
 ⎢a b⎥ ⎢a0 b
0⎥

A = ⎣ ⎦ and B = ⎣ ⎦ 
 0 0  c d c d

be the coefficient matrices. Then 

αz + β 
σ ◦ ρ(z) = ,

γz + δ 

whose coefficient matrix is given by 

⎡ ⎤⎢α β⎥⎣ ⎦ = AB. 
γ δ 

Proof. Statement (1) follows directly from the observation: 

az + b raz + rb 
= . 

cz + d rcz + rd 

Statement (2) follows directly the observation: 

� �
0 0 

a a z+b
 + b

aρ(z) + b 0 0c z+d 
σ ◦ ρ(z) = = � �

cρ(z) + d  
0 0

c a z+b
0 0 + d
c z+d 

(aa
0 + bc0  )z + (ab 0 + bd0  ) 

= . 
(ca 0 + dc0 )z + (cb0 + dd0 ) 

We now compute AB to cheek the result. 
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⎡ ⎤⎡ ⎤
  ⎢a b⎥⎢a0 b

0⎥
AB = ⎣ ⎦ ⎣

c d c
0 0

⎦
d  ⎡ ⎤⎢aa 0 + bc0  0   0 ab + bd ⎥

= ⎣
0

⎦
ca  
+ dc0 cb

0 + dd0 ⎡ ⎤⎢α β⎥
= ⎣ ⎦ .

γ δ 

□ 

We now refer to some definitions from linear algebra; the interested reader may see [10]. Since 

we are motivated to study the set of linear fractional transformations on P. We restrict our state-

ments to only 2 × 2 square matrices. 

Definition 4.1.4. We define the set of matrices 

⎡ ⎤� � ⎢a b⎥SL(2, R) = A = ⎣ ⎦ : a, b, c, d ∈ R, det A = 1 
c d 

to be the special linear group of R2 . ⎡ ⎤⎢a 0⎥Definition 4.1.5. ([10]) We call a matrix of the form A = ⎣ ⎦ a diagonal matrix. 
0 d ⎡ ⎤⎢a b⎥Definition 4.1.6. Let A = ⎣ ⎦. If there is λ ∈ C and a nonzero vector x ∈ C2 with x  = 0

c d 
satisfying the equation 

Ax = λx, (4.1.7) 

then λ is called an eigenvalue of A and x is called an eigenvector of A associated with λ. 

6
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Now the question is: how many eigenvalues does a 2 × 2 square complex matrix A have? 

According to Equation 4.1.7 λ is an eigenvalue if and only if det(A − λI) = 0. Thus A has at most 

two complex eigenvalues. 

Definition 4.1.8. We define a characteristic polynomial of matrix A as 

PA(x) = det(A − xI) (4.1.9) 

and we called the equation PA(x) = 0 a characteristic equation of A. 

Definition 4.1.10. Let A is a 2 × 2 square matrix. The multiplicity of an eigenvalue λ of A is its 

multiplicity as a zero of the characteristic polynomial PA(x). 

Note that the eigenvalues of A are the same as the zeroes of the characteristic polynomial of A, 

counting multiplicities. For more concepts from linear algebra to illustrate the similarity relation 

in matrices; see [10, p. 164], 

Definition 4.1.11 (Jordan block). An m × m upper triangular matrix B(λ, m) is called a Jordan 

block provided all m diagonal entries are the same eigenvalue λ and all super-diagonal entries 

are 1; that is, 

⎡ ⎤
λ 1 0 . . . 0 ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢⎢0 λ 1 . . . 0 ⎥⎥ ⎢λ 1⎥

B(λ, m) = ⎢ ⎥ . Thus, B(λ, 1) = [λ], B(λ, 2) = ⎣ ⎦ . ⎢ . . . . . . ⎥⎢ . . . . . . ⎥ 0 λ⎣ ⎦ 
0 0 0 . . . λ 

Definition 4.1.12 (Jordan Form). Given an n × n matrix A, a Jordan form J for A is a block 

diagonal matrix J = diag(B(λ1,m1), B(Λ2,m2), . . . , B(λk,mk)), where λ1, . . . , λk are eigen-

values of A and m1 + · · · + mk = n. In other words, it is a direct sum of Jordan blocks 

J = B(λ1,m1) ⊕ B(λ2,m2) ⊕ · · · ⊕ B(λk,mk), where m1 + m2 + + mk = n. 

The relation A = PJP −1 , where P is an invertible matrix, is called a Jordan decomposition 
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of A. The invertible matrix P is called the matrix of generalized eigenvectors of A. In this case 

we say that the matrix A and matrix J are similar. Every complex matrix is similar to one Jordan 

matrix as we state that without proof in the following theorem. 

Theorem 4.1.13. ([10, p. 167]) Every n × n complex matrix A has a Jordan decomposition A = 

PJP −1 . If A is real and has only real eigenvalues, then P can be chosen to be real. 

We conclude this section with Theorem 4.1.14 which gives a matrix of a linear transformation 

which rotates all vectors through an angle of θ. 

Theorem 4.1.14. ([13]) Let R : R2 2
θ → R  be a linear transformation given by rotating vectors

through an angle of θ. Then the matrix R(θ) of Rθ is given by 

⎡ ⎤⎢cos(θ) − sin(θ)⎥
R(θ) = ⎣ ⎦ . 

sin(θ) cos(θ) 

4.2 Equivalent Conditions for Hypercyclicity on H(P) 

Before we prove our main result of this chapter, Theorem 4.2.5 which characterizes all confor-

mal maps σ on P that produce a hypercyclic composition operator Cσ : H(P) → H(P). We give 

some basic properties of the coefficient matrix A of a linear fractional transformation σ and its 

eigenvalues in Lemma 4.2.1, and Lemma 4.2.2. Moreover, in Proposition 4.2.3 we utilize our re-

sult in Proposition 2.1.1 to provide a necessary and sufficient condition in terms of the eigenvalues 

of A so that the composition operator Cσ is hypercyclic on H(P). Consequently with the notation 

in Proposition 4.2.3 we state Corollary 4.2.4, which restates the necessary and sufficient condition 

in a different way. 

Lemma 4.2.1. Let a, b, c, d ∈ R and ⎡ ⎤⎢a b⎥
A = ⎣ ⎦

c d 

with ad − bc = 1. Then we have the following 



37 
(1) If A has one real eigenvalue λ with multiplicity 2, then λ = ±1.

(2) If A has two distinct real eigenvalues λ1 < λ2, then λ1 < 1 < λ2.

(3) If A has two complex eigenvalues λ and λ ∈/ R. then |λ| = 1.

Proof. The characteristic equation of matrix A is 

⎡ ⎤⎢a − λ b ⎥  0 = det ⎣ ⎦ = λ2 − (a + d)λ + (ad − bc) 
c d − λ 

 2 = λ − (a + d)λ + 1. 

Suppose the two roots of the characteristic equation are λ1 and λ2. Then the characteristic equation 

becomes: 

 λ2 − (a + d)λ + 1 = (λ − λ1)(λ − λ2) 

= λ2 − (λ1 + λ2)λ + λ1λ2. 

Thus λ1λ2 = 1, from which statements (1), (2) and (3) follow immediately. □ 

Lemma 4.2.2. Let ⎡ ⎤⎢a b⎥
A = ⎣ ⎦

c d 

with a, b, c, d ∈ R, and det A = ad − bc = 1. Suppose A has a real eigenvalue λ with multiplicity 

2. Then the following statements are equivalent.

(1) A is diagonalizable.

(2) A = ±I .

(3) A has two linearly independent eigenvectors.
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(4) b = c = 0.

Proof. Clearly statements (1) and (3) are equivalent. Suppose statement (1) holds true, and if λ1, 

λ2 are two eigenvalues, then λ1λ2 = det A = 1. Since λ1 = λ2 ∈ R by our hypothesis, thus either 

λ1 = λ2 = 1 or λ1 = λ2 = −1. 

Now we show statement (1) implies statement (2). Thus, statement (1) implies that there is an 

invertible matrix P such that, P −1AP = ±I . 

Hence, A = P (±I)P −1 = ±PP −1 = ±I . Therefore statement (2) holds. Clearly statement (2) 

implies statement (4). It remains to show statement (4) implies statement (1). 

If b = c = 0 then ⎡ ⎤⎢a 0⎥
A = ⎣ ⎦ , 

0 d 

and so A is diogonalizable. □ 

Proposition 4.2.3. Let σ(z) = az+b
cz+d be a linear fractional transformation with a, b, c, d ∈ R and 

ad − bc = 1. Let ⎡ ⎤⎢a b⎥
A = ⎣ ⎦

c d 

be the coefficient matrix of σ. Then Cσ : H(P) → H(P) is hypercyclic if and only if A is not ±I 

and A has real eigenvalues. 

Proof. The characteristic equation of matrix A is 

⎡ ⎤⎢a − λ b ⎥
0 = det⎣ ⎦ = (a − λ)(d − λ) − bc 

c d − λ 

= λ2 − (a + d)λ + (ad − bc) 

= λ2 − (a + d)λ + 1. 

Let the two eigenvalues of A be λ1 and λ2. Then the characteristic equation becomes 
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     2    (λ− λ1)(λ− λ2) = λ − (λ1 + λ2)λ + λ1λ2 = λ2 − (a + b)λ + 1 = 0, 

and so λ1λ2 = det A = ad − bc = 1. We now proceed our discussion with different possibilities 

of λ1 and λ2 and use the sup-norm notation for a ⎡ ⎤ 2 × 2  matrix:

⎢w x⎥For a matrix B = ⎣ ⎦ , we let kBk∞ = sup(|w|, |x|, |y|, |z|). 
y z 

Case(A): λ1, λ1 ∈/ R. Since det A = 1, we have an invertible matrix P so that P −1AP is the 

rotation R(θ) of some angle θ: 

⎡ ⎤
−1 ⎢cos θ − sin θ⎥

P AP = R(θ) = ⎣ ⎦ 
sin θ cos θ 

Raising both sides of the equation to the nth power, we get 

⎡ ⎤
P −1An ⎢cos(nθ) − sin(nθ)⎥

P = R(nθ) = ⎣ ⎦ . 
sin(nθ) cos(nθ) 

Since An = PR(nθ)P −1 , we have kAnk∞ < ∞. So that Cσ : H(P) → H(P) is not hypercyclic, 

by Theorem 3.2.6. 

Case(B): λ1, λ2 ∈ R. Since λ1λ2 = 1, we have the following subcases for real eigenvalues λ1, λ2. 

Case(i): λ1 = λ2, without loss of generality, assume λ2 < 1 < λ2. Hence A is diagonalizable and 

so there exists an invertible matrix P such that ⎡ ⎤⎢λ1 0−1 ⎥
P AP = ⎣ ⎦ .

0 λ2 

Thus ⎡ ⎤⎢λn 0 ⎥
P −1AnP = ⎣ 1

 ⎦ , 
0 λn2 

6



40 
and so 

kP −1AnP k∞ →∞. 

Hence kAnk∞ →∞, and thus Cσ : H(P) → H(P) is hypercyclic, by Theorem 3.2.6. 

Case (ii): λ1 = λ2 = ±1. With out loss of generality we need only discuss the case λ1 = λ2 = 1. 

The other case of λ1 = λ2 = −1 follows from the exact same argument. Suppose A has two 

linearly independent vectors then A is diagonalizable and so there exists an invertible matrix P 

such that ⎡ ⎤ ⎢1 0⎥ 
P −1AP = ⎣ ⎦ = I, 

0 1 

and hence A = PIP −1 = I . Thus σ(z) = z and Cσ : H(P) → H(P) is not hypercyclic. 

Suppose A does not have two linearly independent vectors for the eigenvalue λ = 1 with multi-

plicity 2. Thus A is similar to a Jordon block; see [24, Lecture. 28, p. 4] 

⎡ ⎤⎢λ 1⎥⎣ ⎦ . 
0 λ 

In other words, there exists an invertible P such that 

⎡ ⎤
−1 ⎢1 1⎥

P AP = ⎣ ⎦ . 
0 1 

Hence, ⎡ ⎤
−1 n ⎢1 n⎥

P A P = ⎣ ⎦ , 
0 1 

and so 

kP −1AnP k∞ →∞. 
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Thus ⎡ ⎤

1 n
An

⎢ ⎥
= P ⎣ ⎦P −1 and so kAnk∞ →∞. 

0 1 

Consequently, Cσ : H(P) → H(P) is hypercyclic, by Theorem 3.2.6. □ 

The above proposition can be rephrased as the following corollary. 

Corollary 4.2.4. With the notation in Proposition 4.2.3, Cσ : H(P) → H(P) is hypercyclic if and 

only if exactly one the following statements holds true: 

1) A has two distinct real eigenvalues.

2) A has an eigenvalue λ = 1 with multiplicity 2 or an eigenvalue λ = −1 with multiplicity 2, and

the corresponding eigenspace ker(A − λI) has dimension 1.

We now continue our work in Proposition 4.2.3 to state a characterization of σ(z) = az+b on P
cz+d

in terms of the coefficient a, b, c, d, for the composition operator to be hypercyclic. 

Theorem 4.2.5. Let σ(z) = az+b
cz+d be a linear fractional transformation with a, b, c, d ∈ R and 

ad − bc = 1. Then Cσ : H(P) → H(P) is hypercyclic if and only if one of the following two 

conditions hold; 

1) |a + d| > 2.

2) |a + d| = 2 and at least one of b and c is nonzero.

Proof. Let A be the coefficient matrix 

⎡ ⎤⎢a b⎥
A = ⎣ ⎦ . 

c d 
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The characteristic equation of A is given by 

0 = det(A − λI) = (a − λ)(d − λ) − bc 

= λ2 − (a + d)λ + (ad − bc) 

=  λ2 − (a + d)λ + 1. (4.2.6) 

Thus A has two distinct real eigenvalues if and only if the determinant (a + d)2 − 4 > 0; that is 

|a + d| > 2, in which case Cσ : H(P) → H(P) is hypercyclic, by Proposition 4.2.3 . Furthermore 

A has an eigenvalue λ with multiplicity 2 if and only if (a + b)2 − 4 = 0; that is, |a + d| = 2. 

In this case, by (4.2.6) we also have 

λ2 = product of two eigenvalues (4.2.7) 

= det A = 1. 

Thus λ = 1, −1. Thus for either case of λ, the coefficient matrix A has two linearly independent 

eigenvectors if and only if there exists an invertible matrix P such that 

P −1AP = ±I; 

that is 

A  = ±PIP −1 = ±I. 

Thus A has an eigenvalue λ = 1 with multiplicity 2 or λ = −1 with multiplicity 2 and A = ±I if 

and only if |a + b| = 2 and at least one of b and c is nonzero, by the Lemma 4.2.2. □ 

Theorem 3.2.6 provides a necessary and sufficient condition for a sequence Cσn : H(P) → 

H(P) to be universal. Theorem 4.2.5 provides a necessary and sufficient condition for an operator 

Cσ : H(P) → H(P) to be hypercyclic. These two results together complete the picture for the 

6
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dynamics for composition operators on H(P). 

4.3 Examples 

To conclude this chapter, we illustrate our results in Section 4.2 with the following examples. 

Example 4.3.1. Take ⎡ ⎤⎢2 0⎥
A = ⎣ ⎦ (clearly ad − bc = 1). 

1 1
2 

az + b 2z 1 
= = z if and only if 2z = z 2 + z, 

cz + d z + 1 2 
2 

3
if and only if z(2z − ) = 0,

2 
3

if and only if z = 0 or z = . 
2 

Thus ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢2 0⎥⎢3 ⎥ ⎢32 ⎥ ⎢3 
2⎥⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ = 2⎣ ⎦ , 

1 1
2 1 2 1

and 

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢2 0⎥⎢0⎥ ⎢0⎥ 1 ⎢0⎥⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ = ⎣ ⎦ . 
1 1 21 1 1
2 2 

Note that from Theorem 4.2.5 or Corollary 4.2.4 we conclude that Cσ is hypercyclic, where σ is 

the conformal map represented by matrix A. 

Example 4.3.2. Take ⎡ ⎤⎢2 1⎥
A = ⎣ ⎦ (clearly ad − bc = 1). 

0 1
2 

az + b 2z + 1 −2
= 1 = 4z + 2 = z if and only if z = 

cz + d 3
2 
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Thus, ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢a b⎥⎢−2 

3 ⎥ ⎢2 1⎥⎢−2 
3 ⎥ ⎢−1 

3 ⎥ −2 
1 ⎢ ⎥⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ 3

= ⎣ ⎦ , 
2 c d 1 0 1 1 1 1

2 2 

and ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢a b⎥⎢1⎥ ⎢2 1⎥⎢1⎥ ⎢2⎥ ⎢1⎥⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ = 2⎣ ⎦ . 
c d 0 0 1 0 0 0

2 

From Theorem 4.2.5 or Corollary 4.2.4 we conclude that Cσ is hypercyclic, where σ is the confor-

mal map represented by matrix A. 

Example 4.3.3. Take 

⎡ ⎤⎢ 3 2 ⎥
A = ⎣ ⎦ (clearly ad − bc = −3 − (−4) = 1). 

−2 −1

az + b 3z + 2 
= =  z if and only if 3z + 2 = −2z 2 − z, 

cz + d −2z − 1

if and only if (z + 1)2 = 0, 

if and only if z = −1. 

⎡ ⎤⎢3 − λ 2 ⎥
0 = det⎣ ⎦ = λ2 − 2λ + 1 = (λ − 1)2 if and only if λ = 1. 

−2 −1 − λ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢x⎥ ⎢3 − 1 2 ⎥⎢x⎥ ⎢ 2 2 ⎥⎢x⎥
0 = (A − λI)⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ if and only if x + y = 0. 

y −2 −1 − 1 y −2 −2 y ⎡ ⎤⎢−1⎥Therefore the eigenspace is the span of ⎣ ⎦ , so that Cσ : H(P) → H(P) is hypercyclic, by 
1 

Corollary 4.2.4. 
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Example 4.3.4. Take ⎡ ⎤⎢1 1⎥

A = ⎣ ⎦ (clearly ad − bc = 1),
0 1 

and so 
az + b 

= z + 1. 
cz + d 

Thus there is no z such that 
az + b 

= z. 
cz + d 

Clearly (A − λI) = 0 if and only if (1 − λ)2 = 0 and so λ = 1 is an eigenvalue with multiplicity 2. 

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢x⎥ ⎢0 1⎥⎢x⎥
0 = (A − λI) ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ = 0

y 0 0 y 

if and only if y = 0. ⎡ ⎤⎢1⎥Thus eigenspace is the span of ⎣ ⎦, so that Cσ : H(P) → H(P) is hypercyclic, by Corollary 4.2.4. 
0 

Example 4.3.5. Take ⎡ ⎤⎢0 −1⎥
A = ⎣ ⎦ (clearly ad − bc = 1).

1 1 

√ 
az + b −1 −1 ± i 3

= = z if and only if z 2 + z + 1 = 0 if and only if z = . 
cz + d z + 1 2 

⎡ ⎤
√ ⎢−λ −1 ⎥ 1 ± i 3 

0 = det⎣ ⎦ = λ2 − λ + 1 if and only if λ = . 
21 1 − λ 

The matrix A has no real eigenvalue. Therefor according to Theorem 4.2.5, the operator Cσ : 

H(P) → H(P) is not hypercyclic. 
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Example 4.3.6. Take ⎡ ⎤⎢1 0⎥

A = ⎣ ⎦ (clearly ad − bc = 1),
0 1 

and 
az + b z + 0 

σ(z) = = = z. 
cz + d 0z + 1 

Thus σ(z) = z for all z ∈ C. The matrix A has eigenvalue λ = 1 with multiplicity 2. Now A has 

two linearly independent eigenvectors 

⎡ ⎤ ⎡ ⎤⎢0⎥ ⎢1⎥⎣ ⎦ and ⎣ ⎦ . 
1 0 

Thus, Cσ : H(P) → H(P) is not hypercyclic, by Corollary 4.2.4. 
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CHAPTER 5 FIXED POINTS OF A CONFORMAL MAP ON UPPER HALF PLANE 

5.1 Introduction 

In this chapter, we continue to study the linear dynamics of linear fractional transformations 

σ : P → P on the upper half-plane P, with a focus on the fixed points of σ. To begin, we state 

Proposition 5.1.1 without proof. 

Proposition 5.1.1. ([26, p. 57]) Let σ(z) = az+b with a, b, c, d ∈ R be a linear fractional transfor-
cz+d 

mation on P and suppose that σ is not the identity. Then σ has either: 

(i) two distinct fixed points in R and none in P;

(ii) one fixed point in R ∪ {∞} and none in P;

(iii) no fixed points in R and one in P.

Definition 5.1.2. ([26]) Let σ be a linear fractional transformation of P. We say that 

(i) σ is hyperbolic if it has two distinct fixed points in R and none in P,

(ii) σ is parabolic if it has one fixed point in R ∪ {∞} and none in P,

(iii) σ is elliptic if it has one fixed point in P and none in R.

Now, we prove an auxiliary result which is used in the proof of Lemma 5.1.6 and Lemma

5.1.10. The next few results give us equivalent conditions that make a connection between eigen-

values, fixed points, and the coefficients of the linear fractional map σ. 

az+bLemma 5.1.3. Let σ(z) = 
cz+d be a linear fractional transformation with a, b, c, d ∈ R and 

ad − bc = 1. Let z◦ ∈ C and ⎤⎡ ⎢⎣ 
a b⎥⎦A = 
c d 



48 ⎡ ⎤⎢zficient matrix 
◦⎥be the coef σ, then σ(z◦) = z◦ if and only if ⎣ ⎦ is an eigenvector of A correspond-
1 

ing to a nonzero eigenvalue. 

Remark 5.1.4. Since the product of two eigenvalues = det A = ad − bc = 0, A has no zero 

eigenvalue. 

Proof of Lemma. Suppose ⎡ ⎤ ⎡ ⎤⎢z z⎣ ◦⎥ ⎢ ◦⎥
A  ⎦ = λ⎣ ⎦

1 1 

for some λ = 0. That is, ⎧ ⎪⎨⎪az ◦ + b = λz◦ ⎪⎪⎩cz ◦ + d = λ.

Hence 
az◦ + b λz◦ 

= = z◦, 
cz◦ + d λ 

or equivalently, 

σ(z◦) = z◦. 

Conversely Suppose σ(z◦) = z◦ 

Case(i): If σ(z ) = z  
◦  with z b

◦ ◦ = 0. Hence σ(0) = 0, which implies = 0. That is b = 0 
d

and 

d = 0 ( because ad − bc = 1 ). Hence 

⎡ ⎤⎢a 0 ⎥
A = ⎣ ⎦ . 

c d 

Thus ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢z◦⎥ ⎢a 0⎥⎢0⎥ ⎢0⎥ ⎢z ⎥
A⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ = ⎣ ⎦ ◦

 = d⎣ ⎦ , 
1 c d 1 d 1 

6

6

6
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Hence ⎡ ⎤ ⎡ ⎤⎢z◦⎥ ⎢0⎥⎣ ⎦ = ⎣ ⎦ 

1 1 

is an eigenvector corresponding the eigenvalue d = 0. 

Case(ii): σ(z◦) = z◦ with z◦ = 0. That is, 

az◦ + b 
= z◦ = 0. 

cz◦ + d 

Thus, we let 
az◦ + b 

λ = and µ = cz◦ + d  = 0. 
z◦ 

Hence we have ⎧⎪⎨⎪az ◦ + b = λz◦ 
(5.1.5) ⎪⎪⎩cz ◦ + d = µ = 0. 

Thus, 
az◦ + b λz

 ◦ 
z◦ = = . 

cz◦ + d µ 

Therefore 

λ = µ = 0. 

So (5.1.5) becomes ⎧ ⎪⎨⎪az ◦ + b = λz◦ ⎪⎪⎩cz ◦ + d = λ.

That is ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢a b⎥⎢z ⎥ ⎢z⎣ ⎦⎣ ◦⎦ ⎣ ◦⎥  = λ  ⎦ , 
c d 1 1 

with λ = 0. which completes the proof. □ 

The following two lemmas give us equivalent conditions that make a connection between eigen-

6

6

6

6

6

6

6
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values, fixed points, and the coefficients of the linear fractional map σ. 

Lemma 5.1.6. Let σ(z) = az+b be a linear fractional transformation with a, b, c, d ∈
cz+d  R and 

ad − bc = 1, and let A be coefficient matrix given by 

⎡ ⎤⎢a b⎥
A = ⎣ ⎦ . 

c d 

The following statements are equivalent: 

(1) A has distinct real eigenvalues.

(2) σ has two distinct fixed points in R.

(3) |a + d| > 2.

(4) σ is hyperbolic with its fixed point in R.

Proof. We first show statements (1) and (3) are equivalent. Expanding the characteristic equation 

det(A − λI) = 0, we get 

λ2 − (a + b)λ  + (ad − bc) = λ2 − (a + d)λ + 1 = 0. 

Thus A has two distinct real eigenvalues if and only if the determinant (a + d)2 − 4 > 0; that is 

|a + d| > 2. 

Secondly we show statements (2) and (3) are equivalent. We observe that σ(z) = z if and only 

if az+b = z or equivalently cz2 + (d − a)z − b = 0
cz+d . which is a quadratic equation having the 

following solutions: 

p
(a − d) ± (d − a)2 + 4cb 

z1,2 = 
2c 

√ 
(a − d) ± d2 − 2ad + a2 + 4cb 

= 
2c 



51 p
(a − d) ± (a + d)2 − 4 

= ,
2c 

so that the equation has two distinct real solutions if and only if (a + d)2 > 4. Finally, it is trivial 

that statement (4) equivalent to statements (1), (2) and (3) by Definition 5.1.2. □ 

Remark 5.1.7. Using the quadratic formula, we remark that the two distinct eigenvalues of A in 

Lemma 5.1.6 are p
(a + d) ± (a + d)2 − 4 

. (5.1.8)
2 

Using the quadratic formula, we see that the two distinct fixed points of σ in Lemma 5.1.6 are 

p
(a − d) ± (a + d)2 − 4 

. (5.1.9)
2c 

Lemma 5.1.10. Let σ and A be given as in Lemma 5.1.6. The following statements are equivalent: 

(1) A has one real eigenvalue with multiplicity 2.

(2) σ has at most one fixed point in R.

(3) |a + d| = 2.

(4) σ is parabolic or without any fixed point.

Proof. Our proof follows from the same argument as in proof of the Lemma 5.1.6 with slight 

modification. Clearly A has one real eigenvalue with multiplicity 2 if and only if |a + d| = 2. Also 

A has precisely one real fixed point if and only if |a + d| = 2 and c = 0. In addition, from the 

equation (5.1.9) we see that σ has a fixed point at ∞ if and only if a = d = ±1 and c = 0. □ 

5.2 Iterations of a Linear Fractional on P 

The n-th iterate σn = σ ◦ σ ◦ . . . σ of a map σ from some set X to itself is the composition 

of σ with itself n number of times. If σ and φ are two maps satisfying, σ = ψ−1 ◦ φ ◦ ψ then 

σn = ψ−1 ◦ φn ◦ ψ where σ, ψ, and φ defined as we mentioned in Section 1.1.1. Hence, the 

6
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dynamics of the map φ follows dynamics of σ and vice versa. Among this line, let us recall the 

following statement in [23]. 

Theorem 5.2.1. (Denjoy-Wolff [23, p. 78]) If φ : D → D is an holomorphic map with no fixed 

point in D. Then there exists a point z◦ ∈ ∂D such that φn → z◦ uniformly on compact subsets of 

D. 

In the following propositions, we study a limiting behavior of iteration of representatives a 

linear fractional transformation σ defined on the upper half-plane P in the different conjugacy 

classes (see 4.1). Further, we give a specific characterization of its limit points for each class. 

Proposition 5.2.2. For σ and A in Lemma 5.1.6, let α, β ∈ R be two distinct eigenvalues of A with 

0 < β < α. Let zα, zβ ∈ R such that ⎡ ⎤ ⎡ ⎤⎢z ⎥ ⎢z ⎥⎣ α
 ⎦ , ⎣ β

 ⎦
1 1 

are eigenvectors of A corresponding to the eigenvalues α and β respectively according to Lemma 

5.1.3 and Lemma 4.2.2. Then for any z ∈ C with z  = zβ , we have |σ ◦ σ ◦{z· · · ◦ σ   } (z) = σn (z) →
n-times 

zα uniformly on compact subsets of C.

Proof. For any z = zβ , let cα and cβ ∈ C such that 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢z⎥ ⎢z ⎥ ⎢z ⎥⎣ ⎦ α β
= cα ⎣ ⎦+ cβ ⎣ ⎦ . 

1 1 1 

Since ⎡ ⎤ ⎡ ⎤⎢z⎣ α⎥ ⎢z ⎥ ⎦ , ⎣ β
 ⎦

1 1 

are linearly independent, cα = 0. Observe that 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
n ⎢z⎥ n ⎢zα⎥ ⎢zβ⎥

A ⎣ ⎦ = cαA ⎣ ⎦+ cβ A
n ⎣ ⎦ 

1 1 1 

6

6

6



53 ⎡ ⎤ ⎡ ⎤⎢zαn ⎥ zβ
= α c ⎣ ⎦+ βn ⎢ ⎥

α cβ ⎣ ⎦ . 
1 1 

Thus ⎡ ⎤ ⎡ ⎤ ⎡ ⎤� �
1 n ⎢z⎥ ⎢z n

α⎥ β ⎢z  ⎥
A

n ⎣ β
 ⎦ = cα ⎣ ⎦+ cβ ⎣ ⎦ ,

α α1 1 1 

from which it follows that ⎡ ⎤ ⎡ ⎤
1 n ⎢z⎥ ⎢z  ⎥

lim A ⎣ α
 ⎦ = cα ⎣ ⎦ , because 0 < β < α. 

n→∞ αn 1 1 

Thus if we let ⎡ ⎤⎢an bnn ⎥
A = ⎣ ⎦ , 

cn dn

then by Lemma 4.1.3, 

n anz + b anz+bn c z
σ (z) = n

= αn α α→ = zα.
c z + d cnz+bn
n n  αn cα

□ 

⎡Note ⎤ that in the above proposition we excluded ⎡the⎤possibility⎡ ⎤that one of the eigenvectors

⎢1⎥ ⎢z ⎥ ⎢zis ⎣ ⎦ in which case we cannot normalize this as ⎣ α⎦ and ⎣ β⎥ ⎦ . Now using our results in
0 1 1 

Corollary 4.2.4, Lemma 5.1.3 and Lemma 4.2.2, we have the following result. 

Proposition 5.2.3. Let σ(z) = az+b
cz+d be a linear fractional transformation with a, b, c, d ∈ R and 

ad − bc = 1. Suppose A is the coefficient matrix of σ and A is not ±I , and A has a real eigenvalue 

with multiplicity 2. If σ has a fixed point z◦ ∈ R, then σn(z) → z◦ for all z ∈ C. 
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Proof. By Corollary 4.2.4, there exists an invertible 2 × 2 matrix P such that 

⎡ ⎤
−1 ⎢λ 1⎥

P AP = ⎣ ⎦ ,
0 λ 

⎡ ⎤⎢z ⎥where λ is the eigenvalue with λ = −  or 
◦

1 λ = +1. By Lemma 5.1.3, ⎣ ⎦ is an eigenvector 
1 

corresponding to λ. Since ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢λ 1 ⎥⎢1⎥ ⎢1⎥⎣ ⎦ ⎣ ⎦ = λ ⎣ ⎦ , 
0 λ 0 0 

we now claim that we may assume P has the property that 

⎡ ⎤ ⎡ ⎤⎢1⎥ ⎢z⎣ ◦⎥
P ⎦ = ⎣ ⎦ . 

0 1 

To see that let ⎡ ⎤ ⎡ ⎤⎢1⎥ ⎢x ⎥
P ⎣ ⎦ ⎣ ◦

=  ⎦ . 
0 y◦ 

Hence we can write ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢1⎥ ⎢λ 1⎥⎢1−1 ⎥
P AP ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ ; 

0 0 λ 0 

⎡ ⎤ ⎡ ⎤⎢x◦⎥ ⎢1− ⎥
P 1A ⎣ ⎦ = λ⎣ ⎦ ;

y◦ 0 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢x⎣ ◦⎥ ⎢1⎥ ⎢x ⎥
A  ⎦ = λP ⎣ ⎦ = ⎣ ◦

  ⎦ .
y◦ 0 y◦ 



55 ⎡ ⎤⎢x⎣ ◦⎥hus  ⎦ is an eigenvector of A. 
y◦ 

ince by Lemma 4.2.2, dim ker(A − λI) = 1, we have 

⎡ ⎤ ⎡ ⎤⎢x⎣ ◦⎥ ⎢z ⎦ = t ⎣ ◦⎥ ⎦ for some nonzero t ∈ R.
y◦ 1 

y dividing P by t if necessarily we can assume 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢1⎥ ⎢x◦⎥ ⎢z◦ ⎥
P ⎣ ⎦ = ⎣ ⎦ = ⎣ ⎦ . 

0 y◦ 1 

et z ∈ C with z = z◦, then ⎡ ⎤ ⎡ ⎤⎢z◦ ⎥ ⎢z⎣ ⎦ ∈/ span ⎣ ◦⎥ ⎦ .
1 1 

hus by the invertibility of P , 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
z z◦ ⎢1−1 ⎢ ⎥ −1 ⎢ ⎥ ⎥ 

P ⎣ ⎦ ∈/ span P ⎣ ⎦ = span ⎣ ⎦ . 
1 1 0 

ence ⎡ ⎤ ⎡ ⎤⎢z− ⎥ ⎢x⎥
P 1 ⎣ ⎦ = ⎣ ⎦ ,

1 y 

or some x, y ∈ R with y = 0. 

ote that for n ≥ 1, ⎡ ⎤n ⎡ ⎤⎢λ 1⎥ ⎢λn nλn−1⎥
P −1AnP = ⎣ ⎦ = ⎣ ⎦ , 

0 λ 0 λn

T

S

B

L

T

H

f

N

6

6
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nd so ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢x⎥ ⎢λn nλn−1 x

P −1 ⎥⎢ ⎥
AnP ⎣ ⎦ = ⎣ ⎦ ⎣ ⎦ ;

y 0 λn y ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢z⎥ ⎢λnx + nλn−1y⎥ ⎢x⎥ ⎢1
P −1   ⎥

An ⎣ ⎦ = ⎣ ⎦ = λn ⎣ ⎦+ nλn−1y ⎣ ⎦ ; 
1 λny y 0 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
z x 1

n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
A ⎣ ⎦ = λnP ⎣ ⎦+ nλn−1yP ⎣ ⎦

1 y 0 

a

⎡ ⎤ ⎡ ⎤
z z◦

= λn ⎢ ⎥  ⎢ ⎥⎣ ⎦+ nλn−1y ⎣ ⎦ . 
1 1 

Hence by Lemma 4.1.3, we have, as n →∞, 

n
n λ z + nλn−1yz◦
σ (z) = 

λn + nλn−1y 

λz + nyz◦ 
= → z◦ ( because y  = 0).

λ + ny 

□ 

Note that Example 4.3.3 illustrates Proposition 5.2.3. As a continuation of our discussion with 

Proposition 5.2.3, we now proceed to discuss the case when A has no real fixed point. 

Proposition 5.2.4. Let σ(z) = az+b
cz+d be a linear fractional transformation with a, b, c, d ∈ R and 

ad − bc = 1. Suppose A is the coefficient matrix of σand A is not ±I , and A has a real eigenvalue 

with multiplicity 2. If A has no real fixed point, then for all z ∈ C we have σn(z) →∞. 

Proof. By the proof of Lemma 5.1.10. a = d = ±1 and c = 0. Thus b = 0 and so 

az + b 
σ(z) = = z + b,

d 

6

6
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and hence 

σn(z) = z + nb →∞. 

□ 

In order to prove our new result in Theorem 5.2.6, we first need to prove the following lemma 

which gives us a complete description of eigenvalues and eigenvectors of a linear fractional map σ 

on the P in terms of its coefficients. ⎡ ⎤⎢a b⎥Lemma 5.2.5. Let A = ⎣ ⎦, where a, b, c, d ∈ R and ad − bc = 1 and c = 0. Suppose A has 
c d 

2 distinct eigenvalues 

p p
(a + d) + (a + d)2 − 4 (a + d) − (a + d)2 − 4 

λ1 = and λ2 = . 
2 2 

If p p
(a − d) + ( a+ d)2 − 4 (a − d) − (a + d)2 − 4 

x1 = and x2 =
2c 2c 

are two distinct fixed points of σ (see Remark 5.1.7). Then 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢x1⎥ ⎢x1⎥ ⎢x2⎥ ⎢x2⎥
A⎣ ⎦ = λ1 ⎣ ⎦ and A⎣ ⎦ = λ2 ⎣ ⎦ . 

1 1 1 1 

Proof. Suppose c = 0. Then, 

⎡ ⎤ ⎡ √ ⎤⎡ ⎤
(a+d)+ (a+d)2−4 ⎢x1 ⎥ ⎢a −  b ⎥⎢x1⎥

(A − 2
λ I) ⎣ ⎦ = ⎣ √1 ⎦⎣ ⎦ 

   (a+d)+ (a+d)2−4 
1 c d−

2 1⎡� √ � ⎤
(a−d)− (a+d)2−4 ⎢  x1 + b⎥

= ⎣ 2
√ ⎦

(a+d)+ (a+d)2−4 

6

   cx1 + d− 2 

6
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⎡� √ �� √ � ⎤
(a−d)− (a+d)2−4 (a−d)+ (a+d)2−4 ⎢  + b⎥

= ⎣ √ 4c √ ⎦
(a−d)+ (a+d)2−4 (a+d)+ (a+d)2−4 

+ d −
2 2 ⎡ ⎤

(a−d)2−(a+d)2+4 ⎢ + b
4c ⎥

= ⎣ ⎦
0 ⎡ ⎤⎢−4ad+4 + b⎥

= ⎣ 4c ⎦
0 ⎡ ⎤⎢−4bc + b⎥

= ⎣ 4c ⎦ (use ad − bc = 1)
0 ⎡ ⎤⎢0⎥

= ⎣ ⎦ . 
0 

Similarly, 

⎡ ⎤ ⎡ √ ⎤ ⎡ ⎤
  (a+d)− (a+d)2−4 ⎢x2 ⎥ ⎢a−  b ⎥⎢x22 ⎥

(A − λ2I) ⎣ ⎦ = ⎣ √ ⎦ ⎣ ⎦
   (a+d)− (a+d)2+4 
1 c d−

2 1⎡� √ � ⎤
(a−d)+ (a+d)2−4 ⎢  x2 + b⎥

= ⎣ 2
√ ⎦

   (a+d)− (a+d)2+4 
cx2 + d− 2 ⎡ √ √ ⎤ 
((a−d)+ (a+d)2−4)((a−d)− (a+d)2−4) ⎢  + b ⎥

= ⎣ √ 4c √ ⎦
(a−d)− (a+d)2−4  (a+d)− (a+d)2+4 

+ d−
2 2 

 

⎡ ⎤
2 2  ⎢ (a−d) −(a+d) +4 + b⎥

= ⎣ 4c ⎦
0 



59 ⎡ ⎤ ⎢−4ad+4 
 +  b

4c ⎥ 
= ⎣ ⎦ 

0 ⎡ ⎤ ⎢− 4 bc + b 
 ⎣ 4c ⎥

= ⎦ (use ad − bc = 1) 
0 ⎡ ⎤ ⎢0⎥ 

= ⎣ ⎦ . 
0 

This completes the proof. □ 

Now, we are ready to prove Theorem 5.2.6 which provides a complete characterization of the 

limit point z◦ for the iteration σn on P . 

Theorem 5.2.6. Let a, b, c, d ∈ R with ad − bc = 1 and σ(z) = az+b
cz+d . If the coefficient matrix A 

has two distinct real eigenvalues, then σn(z) → z◦ uniformly on compact subsets, where 

⎧ √ ⎪⎪⎪⎪ (a−d)+ (a+d)2−4 
if ⎪  c  = 0.⎨⎪ 2c

z = b a ◦ ⎪⎪⎪d− if c = 0 and 0 < < 1
a d ⎪⎪⎪⎩ ∞ if c = 0 and 0 < d < 1. 

a 

Proof. The eigenvalues λ1 and λ2 in Lemma 5.2.5 satisfy 

p p
(a + d) − (a + d)2 − 4 (a + d) + (a + d)2 − 4 

λ2 = < = λ1. 
2 2 

Proposition 5.2.2 implies that if c = 0, then by Lemma 5.2.5 

p
(a − d) + (a + d)2 − 4 

σn(z) → x1 = . 
2c 

6

6
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If c = 0, then 

az + b 
σ(z) = and d = 0 

d 

(because ad − bc = ad = 1) and so ⎡ ⎤ ⎢a b⎥
A = ⎣ ⎦ 

0 d 

has 2 distinct eigenvalues a and d. Since ad = 1, either a and d are both positive or both negative. 

we must have either case (A): where 0 < a < 1, or case (B): where 0 < d < 1
d a

. In either case, let 

n−1 n−2   dn − an
bn = b(a + a d + an −3d2 + · · · + adn−2 + dn−1) = b ,

d − a 

and so ⎡ ⎤ ⎢ a
n bn⎥

An = ⎣ ⎦ 
0 dn

and 

n n � � � � � �
z + bdna −a n n

a b a 
σn(z) = d−a = z + 1 − 

dn d d − a d� �n� � 
a b b 

= z − + .
d d − a d − a

Case (A): c = 0 and 0 < a
d < 1. Then 

b 
σn(z) → for all z ∈ P. 

d − a 

Note 
b b b 

σ( ) = but ∈/ P. 
d − a d − a d − a 

6
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Case (B): c = 0 and 0 < d < 1

a
. Then 

σn(z) →∞ for all z ∈ P. 

□ 

Theorem 5.2.6 studies three cases in which Cσ is hypercyclic. We now proceed to study the 

remaining two cases in the following theorem. 

Theorem 5.2.7. Let a, b, c, d ∈ R with ad − bc = 1 and σ(z) = az+b 
cz+d . If the coefficient matrix A 

has a real eigenvalue λ with multiplicity 2, then σn(z) → z◦ uniformly on compact subsets, where 

⎧⎪⎪⎨ a −d  
 if c  = 0 

z◦ = 2c

⎩⎪⎪∞  if c = 0. 

Proof. Suppose A has a real eigenvalue λ with multiplicity 2. Then by Lemma 5.1.10 

(a +   d)2 = 4 and λ2 = det A = ad − bc = 1, 

and so, p
(a + d) ± (a + d)2 − 4 a + d 

λ = = = ±1. (5.2.8) 
2 2 

Case(i): Assume c = 0. Then σ has a real fixed point z◦. Indeed 

⎡ ⎤ ⎡ ⎤⎢z ⎥ ⎢z ⎥
A ⎣ ◦⎦ = λ⎣ ◦

   ⎦
1 1 

if and only if 

σ(z◦) = z◦. 

6

6



62 
That is, 

az◦ + b 
= z . 

cz◦ + ◦
d 

Hence, p
(a − d) ± (a + d)2 − 4 a − d  z◦ = = because (a + d)2 = 4. 

2c 2c 

Thus by Theorem 4.2.5, 

Cσ : H(P) → H(P) 

is hypercyclic. By Proposition 5.2.3, 

−
σn

a  d 
(z)→ z◦ = . 

2c 

Case(ii): Assume that c = 0. In order for Cσ : H(P) → H(P) to be hypercylic, we must have 

b = 0. (by Theorem 4.2.5). 

By equation (5.2.8) we see that 

a + d = ±2. (5.2.9) 

Since ad − bc = 1, we must have 

ad = 1. (5.2.10) 

Thus by (5.2.9) and (5.2.10), we get a = d = ±1. Hence, 

az + b az + b 
σ(z) = = = z ± b. 

cz + d d 

Since if b were 0 then σ(z) = z and Cσ is not hypercyclic. Thus σ(z) = z ± b and so σ has no real 

fixed point. Indeed for all z ∈ C, we have σn(z) = z ± nb →∞. This is Proposition 5.2.4. □ 

The above two theorems tell us how the iterates σn(z) of σ(z) on P converges uniformly on 

compact subsets of P, in all different cases when Cσ : H(P) → H(P) is hypercyclic. These results 

illustrate Theorem 3.2.6, statement (5) and (6) in the special case of hypercyclicity. 

6
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CHAPTER 6 AN EQUIVALENT CONDITION FOR A COMPOSITION OPERATOR ON 

H(D) TO BE HYPERCYCLIC 

6.1 Introduction 

Seidel and Walsh obtained a sufficient condition for a sequence {φn}∞ 
n=1 of linear fractional 

self maps on the unit disk D such that the sequence {Cφn }∞ 
n=1 is universal on H(D); see Theorem

2.2.2. In our Proposition 3.2.4 we obtain a necessary and sufficient condition for a sequence of 

linear fractional transformations {σn}∞ on the upper half plane P such that {Cσn }∞ 
n=1 n=1 is universal 

on H(P). Then in Theorem 4.2.5 we obtain a complete characterization of the linear fractional 

transformation σ so that the composition operator Cσ is hypercyclic on H(P). In this chapter we 

use our criterion in Theorem 4.2.5 of hypercyclicity for composition operator Cσ on the space 

H(P) to derive a criterion for hypercyclicity on the space H(D). Indeed, we provide a complete 

characterization of the linear fractional transformation φ so that the composition operator Cφ is 

hypercyclic on H(D). Certainly, not every conformal map φ : D → D induces a hypercyclic 

operator Cφ : H(P) → H(P). For instance if φα(z) = α − z 
1 −αz where α ∈ D, then φ2(z) = z and 

hence Cφα can not be hypercyclic. 

6.2 Equivalent Conditions for Hypercyclicity on H(D) 

In this section we state our main result, Theorem 6.2.1, for this chapter and we prove it by 

utilizing Theorem 4.2.5. Moreover, as a continuation of Theorem 3.2.6 and Theorem 6.2.1, we 

provide Corollary 6.2.6 which gives a precise formula for the point β ∈ ∂D that ϕn(z) → β. 

Theorem 6.2.1. Let α ∈ D and θ ∈ [−π, π], let 

iθ z − α 
ϕ(z) = e . 

1 − αz 

The operator 

Cϕ : H(D) → H(D) 
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is hypercyclic if and only if one of the following two conditions hold :-

p
(i) | cos θ |  > 1 − |α|2 , 

2
or 

p 
(ii)  cos θ | | = 1 − |α|2 

2 , and 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢cos θ � � 
sin θ ⎥⎢Im α ⎥ � θ � ⎢1 ⎥⎣ 2 2 ⎦ ⎣ ⎦ = − sin Re α ⎣ ⎦ . 

cos θ 2− sin θ 1 1 
2 2 

Proof. We first recall the following mappings 

P 1  ψ D 1  ϕ D 1   

 ψ−1

P (6.2.2) 
=ψ −1 σ ◦ϕ◦ψ 

where ψ(z) = z−i −
 , ψ

1(z) = i1+z 
−  , ϕ(z) = eiθ z−α 

11
 

−  , with α ∈ D, θ ∈ [−π, π] σ )
z+i 1 z 1

and (z = az+b
αz cz+d 

with a, b, c, d ∈ R and ad − bc = 1. We need to compute ψ−1 ◦ ϕ ◦ ψ(z). By Lemma 4.1.3, we 

have 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
i i eiθ −αeiθ 1 −i 

ψ−1 ⎢ ⎥⎢ ⎥⎢ ⎥◦ ϕ ◦ ψ(z) = ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 
−1 1 −α 1 1 i ⎡ ⎤ ⎡ ⎤ ⎢ i i ⎥⎢eiθ (1 − α) −ieiθ(1 + α)⎥ 

= ⎣ ⎦ ⎣ ⎦ 
−1 1 1 − α i(1 + α) ⎡ ⎤ ⎢ieiθ(1 − α) + i(1 − α) eiθ(1 + α) − (1 + α) ⎥

= ⎣ ⎦ 
−eiθ(1 − α) + (1 − α) ieiθ(1 + α) + i(1 + α)⎡ ⎤ 

θ θ θ θ 
θ ⎢iei   α) + ie− i i 

2 (1− 2 (1 − α) e 2 (1 + α) − e −i 2 (1 + α)  = i ⎥
e 2 ⎣  

iθ θ θ θ
⎦

−e     −  
2 (1− α) + e−i i i

2 (1 − α) ie 2 (1 + α) + ie 2 (1 + α) 
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⎡ ⎤� � � � 
θ ⎢ 2i Re ei  θ 

2 (1 − α) 2i Im ei  θ 
2 (1 + α)

i 
2 

⎥
= e ⎣ � θ � � 

 Im 
θ � ⎦

−2i ei 2 (1 − α) 2i Re ei  2 (1 + α)⎡ ⎤� � � � ⎢ Re ei  θ 
2 (1 − α) Im 

θ 
ei 2 (1 + α) ⎥

= 2ieiθ ⎣ � � �  .  � ⎦
-Im e  i θ    Re  i θ 

2 (1− α) e 2 (1 + α)

Hence we have, by Lemma 4.1.3, 

� 
Re   θ � � θ � 

i
2 −−1 e (1  α) z + Im e i  (1 + α)

ψ ◦ ϕ ◦ ψ(z) = � θ � � 2

 θ � . 
-Im e i 2 (1 − α) z + Re e i 2 (1 + α)

To normalize the above linear fractional transformation, let u = cos θ 
 and v = sin θ 

2 2 , and hence 

i θ 
e 2 = u + iv and let 

      α = x+ iy (therefore |α|2 = x 2 + y 2 < 1), 

and we compute 

� θ � � θ � � 
Re    Re      Im   

θ � �  θ � 
ei 2 (1− α) ei i i

2 (1 + α) + e 2 (1 + α) Im e 2 (1 − α)

� � �� � � �� 
= Re (u + iv) (1 − x) − iy Re (u + iv) (1 + x) + iy 

� � �� � � �� 
+ Im (u + iv) (1 + x) + iy Im (u + iv) (1 − x) − iy

� �� � � �� � 
= u(1 − x) + vy u(1 + x) − vy + uy + v(1 + x) − uy + v(1 − x)

� � � � 
= u 2 − (ux − vy)2 + v 2 − (uy + vx)2 

2 2 2 2 2 2 = u 2 − u x 2 + 2uxvy − v y + v 2 − u y 2 − 2uxvy − v x 
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2  = u + v 2 − u 2(x2  + y 2  ) − v 2(x2 + y 2) 

  2    2  = 1− (u + v )(x 2 + y 2) 

= 1   − (x 2 + y 2) = 1 − |α|2. 

Thus 

−1 az + b 
ψ ◦ ϕ ◦ ψ(z) = , 

cz + d 

where 

⎧ ⎪  � � � �⎪⎪⎪a = √ 1 Re ei θ 1
2 (1 − α) = √ u(1 − x) + vy⎪⎪⎪ 1−|α|2 1−|α|2 ⎪⎪⎪⎪ � � � �⎪⎨⎪  θ

 b = √ 1 i √ 1
2 

1−|α|2 
Im e (1 + α) = uy + v(1 + x)

1−|α|2 

(6.2.3)⎪⎪ �⎪  � � �⎪⎪c = √ −1 Im ei θ⎪ 2 
2 

(1 − α) = √ 1 − −
2 
uy  v(1  x)⎪⎪⎪ 1−|α| 1−|α|⎪⎪⎪ � � � �⎩⎪d = √ 1 θ

2 
Re ei 2 (1 + α) = √ 1 u(1 + x) − vy

1−|α| 1−|α|2 
. 

Hence we have a, b, c, d ∈ R and the above computations show ad−bc = 1. Via similarity between 

Cϕ : H(D) → H(D) 

and 

Cψ−1◦ϕ◦ψ : H(P) → H(P), 

we use theorem 4.2.5, to conclude that Cϕ is hypercyclic if and only if either 

(1) |a + d| > 2 or

(2) |a + d| = 2, and at least one of b and c is nonzero.
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Now, 

1 � �
|a + d| = p �u(1 − x) + vy + u(1 + x) − vy �

1 − |α|2 � �
| | �2 cos θ �2u

= p = p 2 .
1 − |α|2 1 − |α|2 

Thus statement (1) of above is equivalent to 

� ��2 cos θ �p 2 > 2;
1 − |α|2 

That is, � �� � p � θ� cos �� > 1 − |α|2 .
2 

Furthermore, statement (2) above is equivalent to 

� ��� θ � p� cos �
 � = 1 − |α|2. 
2

and at least one of b and c is nonzero. 

The second half of above condition is equivalent to 

uy + v(1 + x) = 0 or uy − v(1 − x) = 0;

that is, ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢u v ⎥⎢y⎥ ⎢1⎥⎣ ⎦⎣ ⎦ = (−vx)⎣ ⎦ . 
u −v 1 1 

□ 

Note that by Theorem 6.2.1, we have conditions on θ and α for 

Cϕ : H(D) → H(D) 

6 6

6
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to be hypercyclic, where 

 z − α 
ϕ(z) = eiθ . 

1 − αz 

By Lemma 2.2.4 and Theorem 3.2.6, there are a point z◦ ∈ ∂D and a subsequence {nk}k such that 

ϕnk (z) → z◦. 

Note that ψ−1 ◦ ϕn ◦ ψ = σn , as in the diagram given by 6.2.2. 

Remark 6.2.4. Since Cϕ is hypercyclic if and only if Cσ is hypercyclic the following statements 

are equivalent: 

(i) σn(z) → z◦.

(ii) ψ−1 ◦ ϕn ◦ ψ(z) → z◦.

(iii) ϕn ◦ ψ(z) → ψ(z◦).

In the following proposition, we obtain the formula for z◦ in terms of α and θ. For that we 

continue to use the notation in the proof of Theorem 6.2.1. That is, α = x + iy and u = cos θ 
2 and 

v = sin θ 
2 , and 

−1 az + b 
ψ ◦ ϕ ◦ ψ(z) = = σ(z), 

cz + d 

where ⎧ ⎪ � � ⎪⎪⎪a = √ 1 
2 
u(1 − x) + vy⎪⎪⎪ 1−|α|⎪⎪⎪⎪ � �⎪⎨⎪ b = √ 1 uy + v(1 + x)

1−|α|2 

(6.2.5)⎪⎪ � � ⎪⎪⎪c = √ 1 −
2 
uy  (1 ⎪ v − x)⎪⎪⎪ 1−|α|⎪⎪⎪⎪ �  � ⎩d = √ 1

2 
u(1 + x) − vy 

1−|α|

satisfy ad − bc = 1. 
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As a continuation work of our results of the Theorem 6.2.1 and Theorem 5.2.6 we have the 

following proposition. 

Proposition 6.2.6. Let ϕ = eiθ  z−α α = x + iy ∈  θ ∈ [−π, π] u = cos θ
1−αz , where D and . Let 

2 and 

v = sin θ 
2 . Then Cϕ is hypercyclic if and only if one of the following five statements holds true: 

(i) u2 + |α|2 > 1, and uy = v(1 − x). In this case,

p 
vy −n   ux + u2 + |α|2 − 1 − i(uy + vx − v)

ϕ (z) → p (6.2.7) 
vy − ux + u2 + |α|2 − 1 + i(uy + vx − v) 

uniformly on compact subsets of D. 

(ii) u2 + |α|2  1, and uy = v(1  > − x) and 0 < u(1−x)+vy
u x)−vy < 1
(1+

. In this case, 

n uy + v(1 + x) − i2(ux − vy)
ϕ (z) → (6.2.8) 

uy + v(1 + x) + i2(ux − vy) 

uniformly on compact subsets of D. 

(iii) u2  + |α|2 > 1, and uy = x)  v(1 − x) and 0 < u(1+ −vy < 1
u(1−x)+vy . In this case, 

ϕn(z) → 1 uniformly on compact subsets of D. (6.2.9) 

(iv) u2 + |α|2 = 1, and uy  = v(1 − x), In this case,

(vy − ux) − i(uy + vx − v)
ϕn(z) → (6.2.10)

(vy − ux) + i(uy + vx − v) 

uniformly on compact subsets of D. 

(v) u2 + |α|2 = 1, and uy = v(1 − x) and uy + v(1 + x) = 0. In this case,

ϕn(z) → 1 uniformly on compact subsets of D. (6.2.11) 

6

6

6
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Proof. To prove our proposition we use our results in Proposition 5.2.6 and Remark 5.2.7 to find 

z◦ ∈ ∂∞P = R ∪ {∞} such that σn(z) → z◦. Then use Remark 6.2.4 to find ψ(z◦). Before we 

provide a proof, we first observe that by equations (6.2.5) 

(a + d)2 4u2 
− 4 = − 4

1 − |α|2 

4(u2 + |α|2 − 1) 
= . 

1 − |α|2 

Thus (a + d)2 − 4 > 0 if and only if u2 + |α|2 > 1 

Case (i): u2 + |α|2 > 1 and uy = v(1 − x). Thus by equation (6.2.5) (a + d)2 − 4 > 0 and c = 0 

and by Theorem 5.2.6, for all z ∈ P, 

p
(a − d) + (a + d)2 − 4 

σn(z) → . 
2c 

Let p p 
(a − d) + (a + d)2 − 4 (vy − ux) + u2 + |α|2 − 1 

z◦ = = . 
2c uy − v(1 − x) 

Hence by Remark 6.2.4 (ii), we have 

p 
vy − ux + u2 + |α|2 − 1 − i(uy + vx − v)

ϕn(z) → ψ(z◦) = p 
vy − ux + u2 + |α|2 − 1 + i(uy + vx − v) 

uniformly on compact subsets of D. 

Case u(1−x)+vy (ii): u2 + |α|2 > 1 and uy = v(1 − x) and 0 < < 1
u(1+x)−vy . 

In this case (a + d)2 − 4 > 0 and by equations (6.2.5) 

1 � � 
c = p uy − v(1 − x) = 0, (6.2.12)

1 − |α|2 

and also 
a u(1 − x) + vy 
= ; (6.2.13)

d u(1 + x) − vy 

6 6
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that is, a < d. Since in this case ad − bc = ad = 1 we must have 0 < a < 1 < d. 

By our discussion in Case(A) in the proof of Proposition 5.2.6, we have 

n b uy + v(1 + x)
σ (z) → = 

d − a 2(ux − vy) 

uniformly on compact subsets of D. Hence by Remark 6.2.4 (ii), 

b uy + v(1 + x) −n  i2(ux − vy)
ϕ (z) → ψ( ) = . 

d − a uy + v(1 + x) + i2(ux − vy) 

Case (iii): u2 + |α2| > 1 and uy = v(1 − x) and 0 < u(1+x)−vy 
u(1− < 1

x)+vy . 

In this case, (a + d)2 − 4 > 0 and by (6.2.12) and (6.2.13), c = 0 and d = u(1+x)−vy 
a u(1−x)+vy satisfying

0 < d < 1
a

. By our discussion in case (B) in the proof of Theorem 5.2.6, we have 

σn(z) →∞ for all z ∈ P. 

Hence by Remark 6.2.4 (ii), 

ϕn(z) → ψ(∞) = 1. 

Case (iv): u2 + |α|2 = 1 and uy − v(1 − x) = 0. 

Thus (a + d)2 − 4 = 0, and by equations (6.2.5) 

1 
c = p (uy − v(1 − x)) = 0. 

1 − |α|2 

Hence by Theorem 5.2.7 and equations (6.2.5) we get: 

a − d vy − ux 
σn(z) → = . 

2c uy + vx − v 

Let 
vy − ux 

6

6

z◦ = . 
uy + vx − v 
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Thus for all z ∈ D, by Remark 6.2.4 (ii) 

n (vy − ux) − i(uy + vx − v)
ϕ (z) → ψ(z◦) = . 

(vy − ux) + i(uy + vx − v) 

Case (v): u2 + |α|2 = 1 and uy − v(1 − x) = 0, Thus (a + d)2 − 4 = 0, and by equation (6.2.5) 

we get: 
1 

c = p (uy − v(1 − x)) = 0, 
1 − |α|2 

and 
1 

b = p (uy + v(1 + x)) = 0. 
1 − |α|2 

Hence by Theorem 5.2.7 

σn(z) →∞. 

Thus for all z ∈ D, by Remark 6.2.4 (ii) 

ϕn(z) → ψ(∞) = 1. 

This completes the proof. □ 

To conclude this section we remark that the expression in (6.2.7) of Corollary 6.2.6 works for 

the cases (iv) and (v) as well. That is, (6.2.7) reduces to (6.2.10) and (6.2.11) in various cases (iv) 

and (v). 

6.3 Examples 

In this section, we provide a numerical example in which we apply Theorem 6.2.1. In addition, 

we obtain a series of corollaries which we consider them as general examples in various cases of 

Theorem 6.2.1. 

6

Example 6.3.1. Let θ     ∈ (0, π) such that, u = cos θ = 2 and v = sin θ = 1√ √ . Let α = x + iy = 
2 5 2 5 

1 + i2  ∈ D (because |α|2 = 1 )5 5 5
.
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Hence, √ 

1 1 5 p = q = . 
1 − |α|2 

1 − 1 2 
5 

By equations in (6.2.5), 

√ � � 
5 2 1 1 2 

a = √ (1 − ) + √ = 1;
2 5 5 5 5 
√ � � 
5 2 2 1 1 

b = √ + √ (1 + ) = 1;
2 5 5 5 5 
√ � � 
5 2 2 1 1 

c = √ − √ (1 − ) = 0;
2 5 5 5 5 
√ � � 
5 2 1 1 2 

d = √ (1 + ) − √ = 1. 
2 5 5 5 5 

Thus ad − bc = 1 if 
az + b 

σ(z) = = z + 1, 
cz + d 

then 

Cσ : H(P) → H(P) 

is hypercyclic by Proposition 4.2.3. Furthermore, if θ ∈ (0, π) such that tan θ = 1 and α = 1+ 2i
2 2 5 5 ,

and if 

 z − α 
ϕ(z) = eiθ ,

1 − αz 

then 

Cϕ : H(D) → H(D) 

is hypercyclic, by statement (ii) of Theorem 6.2.1. 

As a corollary of the Theorem 6.2.1 we have the following six results: 
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Corollary 6.3.2. For any α ∈ D \ {0}, there exists θ ∈ (−π, π) such that if 

  iθ z − α 
ϕ(z) = e ,

1 − αz 

then 

Cϕ : H(D) → H(D) 

is hypercyclic. 

� � p
Proof. Choose θ in ( π, π) such that � cos θ − � > 1 − |α|2 

2 . Our result follows from the Theorem 

6.2.1. □ 

Corollary 6.3.3. For any α ∈ D \ {0}, if ϕ(z) = z−α 
1−αz then

Cϕ : H(D) → H(D) 

is hypercyclic. 

Proof. Choose θ = 0, and so � �� θ � p�� cos �� = 1 > 1 − |α|2 . 
2 

Our result follows from Theorem 6.2.1. □ 

Corollary 6.3.4. For any α ∈ D \ {0}, there exists θ ∈ (−π, π) such that if 

iθ z − α 
ϕ(z) = e ,

1 − αz 

then 

Cϕ : H(D) → H(D) 

is not hypercyclic. 
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Proof. Choose θ ∈ (−π, π) such that 

� ��  � p� θ �� cos � < 1 − |α|2 . 
2 

Our result follows from Theorem 6.2.1. □ 

Corollary 6.3.5. For any θ ∈ (−π, π), there exists α ∈ D \ {0}, such that if 

−
ϕ(z) = eiθ z  α

,
1 − αz 

then 

Cϕ : H(D) → H(D) 

is not hypercyclic. 

p
Proof. Choose α ∈ D \ {0} such that | cos θ | − | |2

2  < 1 α . Then we get our result from Theorem 

6.2.1. □ 

Corollary 6.3.6. For any θ ∈ (−π, π), there exists α ∈ D \ {0}, such that if 

 iθ z − α 
ϕ(z) = e ,

1 − αz 

then 

Cϕ : H(D) → H(D) 

is hypercyclic. 

p
Proof. Choose α ∈ D\{0} such that | cos θ | > 1 − |α|2

2 . Apply our result in Theorem 6.2.1. □ 

Corollary 6.3.7. For any α ∈ D \ {0}, if 

α − z 
ϕ(z) = ,

1 − αz 
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then 

Cϕ : H(D) → H(D) 

is not hypercyclic. 

Proof. Choose θ = π and so cos θ = 0
2 . Apply Theorem 6.2.1. □ 

It is easy to see that the conformal map ϕ(z) = α − z 
− α ∈  

1 αz
in Corollary 6.3.7, where D does 

not induce a hypercyclic composition operator Cϕ : H(D) → H(D) without using Theorem 6.2.1. 

This is because ϕ2(z) = ϕ ◦ ϕ(z) = z. 
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CHAPTER 7 CONCLUSION 

7.1 Introduction 

In this chapter, we investigate universal composition operators in the setting of the Fréchet 

space H(Ω) of holomorphic functions on a simply connected region Ω in the complex plane. We 

obtain a necessary and sufficient condition for a sequence of composition operators Cσn : H(Ω) → 

H(Ω) with conformal maps σn : Ω → Ω to be universal. Specifically, we prove that the sequence 

Cσn : H(Ω) → H(Ω) is universal if and only if there is a point w in ∂Ω and a subsequence 

{σnk }k of {σn}n such that σnk → w uniformly on compact subset of Ω. Our result extends a result 

of Grosse-Erdmann and Manguillot [9, p. 116] who proved in 2011 equivalent conditions for a 

composition operator Cφ to be hypercyclic on the simply connected region Ω. Since hypercyclicity 

is a special case of universality our result extends theirs in the case that int(C\G) 6= ∅; see Theorem 

7.2.4. 

Before we prove our result in this chapter we first introduce some definitions and then state 

Theorem 7.2.1 from the literature [22, 9]. 

Definition 7.1.1. Suppose T : X → X and S : Y → Y are mappings of metric space X , and 

V : X → Y is a continuous map from X onto Y for which V ◦ T = S ◦ V . In this case we call S 

a factor of T , and T an extension of S. If V (X) is just dense in Y we say T is quasiconjugate to S. 

Definition 7.1.2. A continuous map T : X → X on a complete, separable metric space X is 

transitive if and only if for every pair U , V of nonempty open subsets of X there is a non-negative 

integer n such that T −n(U) ∩ V 6= ∅. 

Definition 7.1.3. (a) A point x ∈ X is periodic for T if there is a positive integer n such that 

T nx = x and we called the least such positive integer n the period of x. 

(b) We say a mapping T of a metric space X is chaotic if it is transitive and has a dense set of

periodic points.
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Definition 7.1.4. A continuous operator T on the metric space X is called mixing if for any pair 

U , V of nonempty open subsets of X , there exists some N > 0 such that 

T n(U) ∩ V = ∅ for all n > N.

Definition 7.1.5. Let G be a region in C and φn : G → G be holomorphic maps for n > 1. Then 

the sequence {φn}n is called a run-away sequence if for any compact subset K ⊂ G, there is some 

integer N such that φN (K) ∩ K = ∅. 

Let Aut(Ω) be the set of all automorphisms on Ω; that is, the set of all bijective holomorphic 

maps f : Ω → Ω. These maps are also called conformal maps. Now we move to the next section 

where we prove Corollary 7.2.3. 

7.2 Equivalent Conditions for Hypercyclicity on H(Ω) 

We begin this section by stating a result of Grosse-Erdmann and Manguillot. 

Theorem 7.2.1. ([9, p. 116]) Let Ω be a simply connected domain and ϕ ∈ Aut(Ω). Then the 

following conditions are equivalent: 

(i) Cϕ is hypercyclic;

(ii) Cϕ is mixing;

(iii) Cϕ is chaotic;

(iv) (ϕn)n is a ran-away sequence;

(v) ϕ has no fixed point in Ω;

(vi) Cϕ is quasiconjgate to a Birkhoff operator.

Theorem 7.2.2. Let Ω, G be two bounded simply connected regions. Let ψ : G → Ω be a 

conformal map and ϕn : Ω → Ω and σn : G → G be two sequences of conformal maps satisfying 

σn = ψ−1 ◦ ϕn ◦ ψ. 
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Suppose there exists a point ρ ∈ ∂Ω such that ϕn → ρ uniformly on compact subsets of Ω. Then 

there exist a subsequence {σnk }k and w ∈ ∂G such that σnk → w uniformly on compact subset of 

G. 

Proof. Since G is bounded, the sequence σn : G → G is a normal family, by Montel’s Theorem; 

see Conway [3, p. 153]. Thus there is a subsequence, still denoted by {σn}n, and a holomorphic 

function f : G → G such that σn → f uniformly on compact subsets of G; see Conway [3, p. 152] 

and Conway [3, Definition 1.14. p. 146]. For any point z◦ in G, the sequence 

 σn(z ) = ψ−1◦ ◦ ϕn ◦ ψ(z◦)

is in G. Thus {σn(z◦)}n has a convergent subsequence {σnk (z◦)}k in the compact set G. Hence 

there exists w◦ ∈ G such that 

σnk (z◦) → w◦. 

Claim. w◦ ∈ ∂G. 

Proof of Claim. By way of contradiction, suppose w◦ ∈ G. Since ψ(z◦) ∈ Ω and {ϕn}n converges 

uniformly on compact subsets of Ω, we have 

ϕnk (ψ(z◦)) = ψ ◦ σnk (z◦) → ψ(w◦) ∈ Ω, 

which contradicts the hypothesis that {ϕn}n converges uniformly on compact subsets to a point 

ρ ∈ ∂Ω. This completes the proof of the claim. 

Since σn → f uniformly on compact subsets of G, we have D 

σn(z) → f(z), for all z in G. 

By our claim f(z) ∈ ∂G. Hence the range of the holomorphic function f is not an open set. 

By The Open Mapping Theorem (see Conway [3, p. 99]), f is a constant function. By the claim 
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f(z) ≡ w◦ for some point w◦ ∈ ∂G. That is σ(z) → w◦ uniformly on compact subsets of G. □ 

Now we prove a universality result in the Corollary below, in the line of our focus in this 

dissertation. 

Corollary 7.2.3. Let G be a bounded simply connected region and σn : G → G be a sequence of 

conformal maps. The sequence Cσn : H(G) → H(G) is universal if and only if there are a point 

w in ∂G and a subsequence {σnk }k of {σn} such that σnk → w uniformly on compact subsets of 

G. 

Proof. Suppose Cσn : H(G) → H(G) is universal. By taking Ω = D in Theorem 7.2.2, we see 

that the sequence of composition operators induce by 

ϕn = ψ ◦ σ −1
n ◦ ψ : D → D 

is universal. Thus by Theorem 3.2.6, there is ρ ∈ ∂D such that ϕn(z) → ρ uniformly on compact 

subsets of D. Hence by Theorem 7.2.2, there are a subsequence {σnk }k of {σn}n and a point 

w◦ ∈ ∂G such that σnk (w) → w◦ uniformly on compact subsets of G. 

Conversely, suppose there are a point w◦ ∈ ∂G and a subsequece {σnk }k of {σn}n such that 

σnk (w) → w◦ uniformly on compact subsets of G. Thus by Theorem 7.2.2, there are a subsequence 

{ϕnk }k of {ϕn}n and a point ρ ∈ ∂D such that ϕnk (z) → ρ uniformly on compact subsets of D. 

Thus by Theorem 3.2.6, Cϕn : H(D) → H(D) is universal. Hence Cσn = Cψ ◦ Cϕ −1 
n ◦ Cψ is 

universal on H(G). □ 

The result of the above Corollary indeed holds true for some simply connected regions which 

are not bounded. To be precise, we provide the following Theorem to generalize the result in 

Corollary 7.2.3. 

Theorem 7.2.4. Let G be a simply connected region with either G = C or int(C \ G) = ∅. Let 

σn : G → G be a sequence of conformal maps. The sequence Cσn : H(G) → H(G) is universal if 

6
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and only if there are a point ρ in the extended boundary ∂∞G and a subsequence {σnk }k of {σn}n

such that σnk → ρ uniformly on compact subsets of G. 

Proof. The result for the case when G is bounded follows from Corollary 7.2.3. For unbounded 

G, we separate our argument into two cases of G according to the hypothesis of the theorem. Case 

(i): G = C. In this case, we use the results of Montes-Rodriguez [16, Theorem. 2.2 and 3.1]: A 

sequence of conformal maps σn : C → C is universal if and only if {σn}n is a run-away sequence; 

that is, for any compact subset K of C, there is a positive integer n such that K ∩ σn(K) = ∅. 

To finish the proof for the case that G = C, we claim that for some subsequence {σnk }k, 

σnk → ∞ uniformly on compact subsets of C if and only if {σn}n is run-away. To see that, one 

simply observe that if K is a compact subset, then there is a positive R such that K ⊂ RD. Hence 

if r > R and if {σn}n is run-away then there is a positive integer N such that σN (K) ⊂ σN (rD), 

which has a nonempty intersection with rD, and so σN (z) > r for all z in K. Thus there is a 

subsequence {σnk }k so that σnk →∞ uniformly on compact subsets of C. 

Conversely, suppose there is a some subsequence {σnk }k such that σnk → ∞ uniformly on 

compact subsets of C. Then for any compact subset K, there is a number R > 0 such that 

K ⊂ RD, and there is a σnk such that σnk (z) > R + 1 for all z ∈ K. Hence, K ∩ σnk (K) = ∅. 

Case (ii): G is an unbounded simply connected region with int(C \ G) 6= ∅. Let α ∈ C such that 

the open ball B(α, r) ⊂ int(C \ G). Hence, the function ψ(z) = 
z− 
1 
α takes G one to one, onto a 

bounded simply connected region Ω, with ψ(∞) = 0 and Ω ⊂ R−1D. Let ϕn : Ω → Ω be given 

by 

◦ ψ−1ϕn = ψ ◦ σn . 

So the sequence Cϕn : H(Ω) → H(Ω) is universal if and only if the sequence Cσn : H(G) → 

H(G) is universal. Note ψ takes the extended boundary ∂∞G = G ∪ {∞} one to one, onto ∂Ω, 

and ψ is continuous at every point in ∂∞G. Suppose there is a point w ∈ ∂Ω and a subsequence 

{ϕnk }k such that ϕnk (z) → w uniformly on compact subsets of Ω. Then by the continuity of ψ−1 
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at w, we have 

 σnk (z) = ψ−1 ◦ ϕ −1
nk ◦ ψ(z) → ψ (w) 

uniformly on compact subsets of G. Our theorem now follows directly from Corollary 7.2.3. □ 

We remark that in the case that G = C, conformal maps σ : C → C are well known to be in 

the form σ(z) = az + b, where a, b ∈ C with a = 0, but we do not need this specific form in the 

above proof. 

At first glance, one may think that the above theorem should hold true for all simply connected 

regions G. However, due to the complexity of boundary points that G may have, we have not 

been able to determine whether that is correct. One evidence for us to focus on the case int(C \ 

Ω) = ∅ may come from the relatively simpler structure of its boundary points; see Rudin [18, 

Remark. 14.20 (c)]. 

To conclude our discussion above we raise the following question. 

Question 7.2.5. Does the conclusion of Theorem 7.2.4 continue to hold true for any simply con-

nected region G? 

We conclude the whole dissertation with the following observation. To illustrate Theorem 

7.2.1, we now provide an example in the case that the simply connected region is the open unit 

disk D. 

Example 7.2.6. Let α ∈ D and φ is a linear fractional transformation on D defined by 

α − z 
φα(z) = . 

1 − αz 

Then 

α − α−z 

φ2 1−αz 
α(z) = φα ◦ φα(z) = 

1 − α−z 
1−αz 

6



(1
2 ) − z 
1 − (1

2 )z 
=z; 

1 1 − z =z − z 2;
2 2 

 2 − 2z + 
1 
=0;

2 

 2 − 4z + 1 =0. 

1 
z
2

z
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α − |α|2z − α + z 

= = z. 
1 − αz − |α|2 + αz 

1Now take α = . To see where φα has a fixed point, set φα(z) = φ (z) = z. So that 1 
22 

Hence, √ 
4 ± 16 − 4 √

z = = 2 ± 3. 
2 

√ 
Therefore φ 1 has a fixed point 2− 3 in D and φ2

1 (z) = z. Thus, C2
φ 1 = identity and hence C2n

φ 1
=

2 2 2 2

identity for n > 1, and C2n+1 
φ = Cφ 1 . Thus Cφ 1

11
is not hypercyclic and φ has a fixed point in .

2
D

2 22 
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nal of Mathematical Sciences, 193(5):769–774, 2013.

[21] W. Seidel, J. Walsh, et al. On approximation by euclidean and non-euclidean translations of

an analytic function. Bulletin of the American Mathematical Society, 47(12, Part 1):916–920,

1941.

[22] J. H. Shapiro. Notes on the dynamics of linear operators. Unpublished Lecture

Notes,(available at www. math. msu. edu/ shapiro), 2001.

[23] J. H. Shapiro. Composition operators: and classical function theory. Springer Science &

Business Media, 2012.

[24] G. Strang. 18.06 sc linear algebra, fall 2011. Massachusetts Institute of Technology: MIT

OpenCourseWare.¡ http://ocw. mit. edu¿(last check: 01.13), 2011.

[25] C. Walkden. Math32052 hyperbolic geometry lecture notes, 2010.

[26] C. Walkden. Hyperbolic geometry. Manchester, Manchester University, 2012.

http://ocw


86 


	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	CHAPTER 1 
	1.1 Introduction
	1.1.1 Introduction to Universal Composition Operators
	1.1.2 Classical Results
	1.1.3 An Outline of the Dissertation

	1.2 Linear Fractional Transformations
	1.3 Classification of Linear Fractional Transformations

	CHAPTER 2 
	2.1 A Sufficient Condition for Universality
	2.2 The Seidel and Walsh Theorem

	CHAPTER 3 
	3.1 Introduction
	3.2 A Necessary and Sufficient Condition for Universality on H(P)
	3.3 Examples

	CHAPTER 4 
	4.1 Introduction
	4.2 Equivalent Conditions for Hypercyclicity on H(P)
	4.3 Examples

	CHAPTER 5 
	5.1 Introduction
	5.2 Iterations of a Linear Fractional on P

	CHAPTER 6 
	6.1 Introduction
	6.2 Equivalent Conditions for Hypercyclicity on H(D)
	6.3 Examples

	CHAPTER 7 
	7.1 Introduction
	7.2 Equivalent Conditions for Hypercyclicity on H()

	BIBLIOGRAPHY



