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ABSTRACT 

Hanfeng Chen, Advisor 

In this research, we investigate the sequential lasso method for feature selection in sparse high-

dimensional linear models. It was recently proposed by Luo and Chen (2014). In this project, we 

propose a new method by introducing the energy distance correlation by Székely et al. (2007) to 

replace the ordinary correlation in Luo and Chen’s algorithm. We continue to adopt the extended 

Bayesian Information Criteria as the stopping criteria in the computing algorithm. The advantage 

of energy distance correlation is that it is able to detect linear and non-linear association between 

two variables, while the ordinary correlation can detect only linear part of association between two 

variables. As a result, it appears that the new method is shown to be more powerful than Luo and 

Chen’s method for feature selections. This is demonstrated by simulation studies and illustrated 

by two real-life examples. It is shown that the proposed new algorithm is also selection consistent. 

For the frst part of our research we examine through simulations the model size selection 

by Adaptive Lasso and SCAD after a sure screening method proposed by Li et al. (2012) using 

distance correlation is applied to the data frst. We observe that the average model size selected 

was quite high. 

In the second part we describe the new sequential variable selection method which we call en-

ergy distance correlation with extended Bayesian Information Criteria (Edc+EBIC). At each stage 

of the sequential procedure we maximize the energy distance correlation between the response and 

each of the predictor variables. This maximization is done such that if a variable is selected in the 

previous stage, it’s contribution to the response is removed so that it won’t have a chance of being 

selected again. The active set of selected variables is updated once a variable is selected and the 

EBIC of the set is calculated. The process stops if the EBIC for the current active set is greater than 

the EBIC of the previous active set. We compare the performance of Edc+EBIC with sequential 

Lasso, Adaptive Lasso, SCAD and SIS+SCAD. We observed that our proposed method on average 

has a positive discovery rate close to 100%, a low false discovery rate and an average model size 

as expected in our simulation set-up. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

High dimensional data is a data set with more features ( p or predictors) than the sample size 

n. It usually comes from genetic research, e-commerce, warehouse data in business, biomedical

imaging, functional magnetic resonance imaging and longitudinal data, among many others. 

In genomics, high dimensional data has become common due to improvements in single cell 

technology which has led to increased recognition that cellular heterogeneity is a universal feature 

of any cell population. In principle, one wants to know, for each single cell, the molecular code 

of the cell (the genome), the functionality of the cell (the proteome and metabolome) and the 

connection between the two - the transcriptome, Su et al. (2017). Data to answer these questions 

is high dimensional because a large number of parameters across thousands of single cells at a 

given time point are measured. The goal is to infer short DNA-words of approximate length 8 - 16 

base pairs, e.g., ”ACCGTTAC”, where a certain protein or transcription factor binds to the DNA. 

The response Yi, measures for example the binding intensity of the protein of interest in the ith 

region of the whole DNA sequence and Xi contains abundance scores of p candidate motifs (or 

DNA words) in the ith region of the DNA. The task is to infer which candidate words are relevant 

for explaining the response Y . Statistically, we want to fnd the features whose corresponding 

regression coeffcients are substantial in absolute value or signifcantly different from zero. 

High dimensional statistics refers to statistical inference when the number of unknown param-

eters p is of much larger order than sample size n, that is: p � n. This encompasses supervised 

regression and classifcation models where the number of covariates is of much larger order than n, 

unsupervised settings such as clustering or graphical modeling with more variables than observa-

tions or multiple testing where the number of considered testing hypotheses is larger than sample 

size. The methodological concepts for high-dimensional statistics share some common aspects 

with nonparametric statistics and machine learning, Bühlmann and Van De Geer (2011). 
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The largest development of the science of statistics occurred in the twentieth century Johnstone 

and Titterington (2009). During this period, most of the motivating practical problems consisted 

of large sample size (n) and small predictors (p). For a continuous response variable yi : i = 

1, ..., n and predictor variables X1, X2, ..., Xp, a model to describe the linear relationship between 

the response variable and the predictor variables is the multiple linear regression equation. The 

regression equation is of the form 

yi =β0 + β1xi1 + β2xi2 + ... + βpxip + �i∑p (1.1.1) 
= βjxij + εi

j=0

In a matrix notation it can be written as Y = Xβ + �. The predictors are considered fxed while 

β0, β1, ..., βp are the unknown parameters that are usually estimated by the least-square method. 

By this  ( )∑ ∑ 2n p

β̂ = argminβ yi − βjxij
i j=0

meaning ˆ β is the minimizer of the sum of squares function on the right hand side. In the vector-

matrix notation, we can write this in terms of the l2 norm as 

β̂ = argmin kY 2−Xβk2 

In this problem ˆ β satisfes 

  XT ˆXβ = XTY 

and 

ˆ   β = (XTX)−1XTY 

The estimate ˆ β is unique provided XT X can be inverted. For XT X to be invertible it requires 

that n ≥ p, otherwise XT X will be singular and the estimate of β will not be unique. 
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One of the two approaches to the singularity problem and in general in dealing with the 

large-p-small-n problem is the method of regularization or penalized least squares. An early reg-

ularization method, ridge regression by Hoerl and Kennard (1970) estimates the parameter by 

ˆ βRidge = (X
T X + λ2I)

−1XT Y and the positive scalar λ2 is called the ridge parameter or regular-

ization constant. The following are equivalent formulations of the ridge regression problem. 

1. β̂Ridge = argminβ{ky − Xβ 2 k + λ2 kβ 2k }2 2 for some λ2

2. β̂Ridge = minimizes ky − Xβ 2k2 subject to kβ 2k ≤2  c2(λ2), for some c2(λ2), depending on 

λ2.

3. β̂ = minimizes β 2 subject to y  Xβ 2
Ridge k k k − k ≤2 2  b2(λ2), for some b2(λ2), depending on λ2. 

The ridge regression estimation method overcomes the challenge of invertibility but is unable to

shrink coefficients to exactly zero and as a result can not perform variable selection. But looking

at the problem of large-p-small-n broadly is to consider that it is intuitively plausible that among

the larger number of predictors only a small proportion are likely to be influential in predicting the

response variable, this is known as sparsity. To make use of this sparsity assumption in the estima-∑
tion of β̂, Tibshirani (1996) used a penalty function based on L1 norm which is ‖β‖ = p | |1 j=1 βj

leading to the following equivalent formulations.

1. β̂Lasso =  argminβ{ky  Xβ 2− k + λ1 kβk }2 1 , for some λ1.

2. ˆ βLasso = minimizes ky − Xβ 2k2 subject to kβk ≤1  c1(λ1), for some c1(λ1), depending on 

λ1.

3. ˆ β 2
Lasso = minimizes kβk k − k ≤1 subject to y  Xβ 2  b1(λ1), for some b1(λ1), depending on 

λ1.

The L1 norm penalty allows coeffcients to shrink towards exactly zero. Thus the LASSO usually 

results into sparse models, that are easier to interpret. Other penalty functions have been consid-

ered, such as SCAD (Fan and Li, 2001), which smoothly clips a L1 penalty (for small |βj |) and a 
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constant penalty (for large | βj |’s), adaptive Lasso(Zou, 2006): pλ(| βj |) = λwj | βj |, where wj

are given weights and Minimax concave penalty by Zhang et al. (2010). Cross-validation (CV) is 

commonly used in these methods for the choice of the regulating parameter. 

With the invertibility problem taken care of, coupled with the assumption of sparsity the main 

goals in the analysis of high dimensional data is to identify the features which have coeffcient 

estimates not equal to zero and are also highly correlated to the response variable, we would refer 

to these features as the relevant features. To state the main goal more succinctly is the so-called 

oracle property in feature selection. The oracle property as stated by, Luo and Chen (2014) refers 

to two asymptotic natures: (i) selection consistency, that is, the sparse relevant features can be 

exactly selected with probability converging to 1, and (ii) the effects of relevant features can be 

consistently estimated the same as they would be, were they obtained by knowing the relevant 

features in advance. 

The second approach in analyzing the large-p-small-n problem is sequential variable selection. 

Various methods have been developed under the sequential approach. The nature of these proposed 

methods has been to reduce the dimension of the data to d < p. There are two forms of these, one 

is to select from the many features a subset of which we are sure contains the relevant features 

(predictors), this is referred to as the sure screening property. This is usually followed by a regu-

larization method such as SCAD to identify and estimate the relevant predictors from the reduced 

feature space. The other form is to sequentially select the relevant features through a repetitive 

process which terminates when a stopping criteria is met. 

A recent addition to sequential feature selection is Sequential Lasso Cum EBIC for feature 

selection with ultra high dimensional feature space (SLasso), (Luo and Chen, 2014) which solves 

a sequence of partially penalized least squares problems and uses the Extended Bayesian Infor-

mation Criteria, (Chen and Chen, 2008) as a stopping criteria. Solving the partially penalized 

least squares problem reduces to selecting the feature(s) which maximizes the Pearson correlation 

coeffcient between the features and the response variable at each step. It is well known that the 

Pearson correlation coeffcient is for measuring the strength of linear associations. Thus maximiz-
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ing the Pearson correlation coeffcient may not work well for data structures where the relationship 

between at least one feature and the response variable is not linear. 

Developing a sequential feature selection method which is able to identify and maximize both 

linear and non-linear relationships that might exist between the features and the response, sets the 

tone for this research work. 

1.2 Background of Problem 

In de Siqueira Santos et al. (2014) the Figure 1.1 is adapted which shows the correlation and 

dependence in biological data. 

Figure 1.1 (A) Independent data, (B) linear association, (C) exponential association - non-
linear monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine 
association-non-linear non-monotonic, (F) circumference-non-functional association, (G) cross-
non-functional association, (H) square-non-functional association and (I) local correlation- only 
part of the data is correlated, which is represented by crosses. 

With these many possible associations that could exist between any two variables, a method 
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which only maximizes the linear association between two variables will not be appropriate to 

detect other relations that may exist between a continuous dependent variable and each of the 

many features in a high dimensional data. 

Aside the well known Pearson’s product-moment correlation or simply Pearson’s correlation 

(Pearson, 1920) various parametric and non-parametric measures of correlation coeffcients have 

been developed. Some of them are Spearman’s rank correlation coeffcient (Spearman, 1904), 

Kendall τ rank correlation coeffcient (Kendall, 1938), Distance correlaiton (Székely et al., 2007), 

Hoeffding’s D measure (Hoeffding, 1948), Heller, Heller and Gorfne measure (Heller et al., 2013) 

and Maximal information coeffcient (Reshef et al., 2011). 

1.3 Problem Statement 

Let y1, ..., yn where n is the number of observations, X1, ..., Xp are p features, β0, β1, ..., βp are 

p + 1 coeffcients of the features and �i, i = 1, ..., n iid errors of the response variable. Then a 

Sparse high-dimensional regression (SHR) model will be 

pX
yi = βo + βj xij + �i, i = 1, ..., n. (1.3.1) 

j=1 

Maximizing the Pearson correlation between the response variable and the features at each step 

in the feature selection process by Luo and Chen (2014) does not take into account other forms of 

association and therefore not likely to select relevant variables which may be non-linearly related 

to the response. 

1.4 Objective of the Research 

The objective of this dissertation is to develop an algorithm to sequentially select the relevant 

variables in a sparse high dimensional linear model by maximizing the energy distance correla-

tion which is able to detect correlations other than the linear correlation. The extended Bayesian 

Information Criteria will be used as stopping criteria in the feature selection process. 
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1.5 Signifcance of the Study 

This study is important because it will develop a new algorithm which is able to select all 

relevant variables in a high dimensional data which may be either linearly or non-linearly related 

to the response variable. 

1.6 Outline of the Dissertation 

The remaining parts of the dissertation are organized as follows. Chapter 2 provides a literature 

review on the two broad approaches to analyzing high dimensional data. Literature on energy 

distance correlation and extended Bayesian Information criteria will also be reviewed. In chapter 

3, we present the proposed algorithm for feature selection which maximizes the energy distance 

correlation where the extended Bayesian Information Criteria is used as the stopping criteria. In 

chapter 4, we present simulation results to compare the performance of our proposed method with 

results from other methods in the literature review. We also present two real-life data examples. 

Finally, we will discuss the results obtained from the simulation study and real data example, 

followed by our conclusion, and provide areas for future work in Chapter 5. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

The aim of this chapter is to present a literature review on analyzing high dimensional data. We 

review literature on the two approaches of analyzing high dimensional data, which are regularized 

regression approach and sequential approach. We would also review literature on Extended Bayes 

Information criteria and energy distance correlation. 

2.2 High Dimensional Data 

Let n be the sample size and p the number of predictors or features. A data set with p > n 

is called high dimensional data. In many studies there are a large number of variables to measure 

on each experimental unit compared to the number of experimental units. For example in genetics 

studies there are many genes but just a relatively few patients to take the measurements on. Also 

there could be many samples of a person’s speech but with a relatively few speakers sampled. In 

the next two sections we state the curses and blessings of dimensionality as discussed by Donoho 

et al. (2000). 

2.2.1 Curse of Dimensionality 

The phrase, ”curse of dimensionality” was apparently coined by Richard Bellman, in connec-

tion with the diffculty of optimization by exhaustive enumeration on product spaces. Bellman 

reminded us that, if we consider a cartesian grid of spacing 1/10 on the unit cube in 10 dimensions, 

we have 1010 points; if the cube in 20 dimensions was considered, we would have of course 1020

points. His interpretation: if our goal is to optimize a function over a continuous product domain 

of a few dozen variables by exhaustively searching a discrete search space defned by a crude dis-

cretization, we could easily be faced with the problem of making tens of trillions of evaluations of 

the function. Bellman argued that this curse precluded, under almost any computational scheme 

then foreseeable, the use of exhaustive enumeration strategies, and argued in favor of his method 

of dynamic programming. 
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We can identify classically several areas in which curse of dimensionality appears. 

1. Optimization, If we must approximately optimize a function of d variables and we know only

that it is Lipschitz, say, then we need order (1/�)d evaluations on a grid in order to obtain an

approximate minimizer within error �.

2. Function approximation. If we must approximate a function of d variables and we know

only that it is Lipschitz, say, then we need order (1/�)d evaluations on a grid in order to

obtain an approximation scheme with uniform approximation error �.

3. Numerical integration. If we must integrate a function of d variables and we know only that

it is Lipschitz, say, then we need order (1/�)d evaluations on a grid in order to obtain an

integration scheme with error �.

2.2.2 Blessings of Dimensionality 

Despite the challenges of high dimensionality, there are some silver linings which are stated 

below: 

1. Concentration of measure. The “concentration of measure phenomenon” is a terminology

introduced by V. Milman for a pervasive fact about probabilities on product spaces in high

dimensions. Suppose we have a Lipschitz function f on the d-dimensional sphere. Place a

uniform measure P on the sphere, and let X be a random variable distributed P . Then

P {|f(x) − E(f(x))| > t} ≤ C1exp(−C2t
2). 

where Ci are constants independent of f and of dimension. In short, a Lipschitz function is 

nearly constant. But even more importantly: the tails behave at worst like a scalar Gaussian 

random variable with absolutely controlled mean and variance. This phenomenon is by no 

means restricted to the simple sphere case just mentioned. It is also true, in parallel form, 
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for X taken from the multivariate Gaussian law with density 

p(x) = (2 − π)−d/2 exp(−kxk2/2). 

Variants of this phenomenon are known for many high-dimensional situations; e.g. dis-

crete hypercubes Zd 
2 and hamming distance. The roots are quite old: they go back to the 

isoperimetric problem of classical times. Milman credits the probabilist Paul Le’vy with the 

frst modern general recognition of the phenomenon. A typical example is the following. 

Suppose I take the maximum of d i.i.d. Gaussian random variables X1, ..., Xd. As the max-

imum is a Lipschitz functional, we know from the concentration of measure principle that 

the distribution of the maximum behaves no worse than a standard normal distribution in the 

tails. By other arguments, we can see that the expected value of max(X1, ..., Xd) is less than p p
2log(d). Hence the chance that this maximun exceeds 2log(d) + t decays very rapidly 

in t. 

2. Dimension asymptotics. A second phenomenon, well-exploited in analysis, is the existence

of results obtained by letting the number of dimension go to infnity. This is often a kind

of refnement of the concentration of measure phenomenon, because often when there is a

dimension-free bound like the concentration of measure phenomenon, there is a limit distri-

bution for the underlying quantity, for example a normal distribution. Return to the example

of the maximum Md of d i.i.d. Gaussian random variables. As remarked above, we know

that the distribution of the maximum behaves no worse than a standard normal distribution

in the tails. In fact, long ago Fisher and Tippett derived the limiting distribution, now called

the extreme-value distribution. That is, they showed that

p
P rob{Md − 2log(d) > t} → G(t) 

where G(t) = e−e−t . 
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3. Many times we have high-dimensional data because the underlying objects are really continuous-

space or continuous-time phenomena: there is an underlying curve or image that we are

sampling. Typical examples cited earlier include measurements of spectra, gaits, and im-

ages. Since the measured curves are continuous, there is a underlying compactness to the

space of observed data which will be refected by an approximate fnite-dimensionality and

an increasing simplicity of analysis for large d. A classical example of this is as follows.

Suppose we have d equispaced samples on an underlying curve B(t) on the interval [0, 1]

which is a Brownian bridge. We have d dimensional data Xi,d = B(i/d), and discuss two

computations where the large d behavior is easy to spot. First, suppose we are interested in

the maximum maxiXi,d. Then quite obviously, this tends, for large d to the random vari-

able maxt[0,1]B(t), which has an exact distribution worked out by Kolmogorov and Smirnov.

Second, suppose are interested in obtaining the principal components of the random vector.

This involves taking the covariance matrix

Ci,j = Cov(Xi, Xj ), 1 ≤ i, j ≤ d 

and performing an eigenanalysis. On the other hand, the covariance kernel 

Γ(s, t) = Cov(B(s), B(t)), s, t ∈ [0, 1] 

has the known form min(s, t) − ts and known eigenfunctions sin(πkt), fork = 1, 2, .... In 

this case, the frst m eigenvalues of C tend in an appropriate sense to the frst m eigenvalues 

of Γ and the eigenvectors of C are simply sampled sinusoids. 

2.3 Regularized and Sequential Approach for High Dimensional Data Analysis 

In the past only a few carefully chosen variables were measured for each observation, nowa-

days any variable that might plausibly have an effect on the response tends to be recorded, example 

in biological sciences, one may want to classify diseases and predict clinical outcomes using mi-



12 
croarray gene expression or proteomics data, in which tens of thousands of expression levels are 

potential covariates but there are typically only tens or hundreds of subjects. 

2.3.1 Regularized Approach 

The regularized approach in the analysis of large-p-small-n problems consists of methods 

which are designed to penalize a regression equation. This approach selects the features and esti-

mates the coeffcients simultaneously by minimizing a penalized sum of squares of the form 

 ( )∑n ∑ 2p ∑p
yi − βo − βjxij + pλ(|βj|), (2.3.1) 

i=1 j=1 j=1

where λ is a regulating parameter and pλ is a penalty function such that the number of ftted nonzero 

coeffcients can be regulated by λ; that is, only a certain number of β0 j s are estimated nonzero 

when λ is set at a certain value. Various penalty functions have been proposed and studied. The 

penalty function pλ(|βj |) = λ|βj | called Least Absolute Selection Shrinkage Operator (LASSO) 

(Tibshirani, 1996).This penalty function has an additional advantage of variable selection since it’s 

able to shrink some of the coeffcient estimates to exactly zero. 

2.3.2 A Brief History About Lasso 

The Least Absolute Selection Shrinkage Operator (LASSO) was developed by Tibshirani (1996). 

The motivation for the lasso came from an interesting proposal of Breiman (1993). Breiman’s non-

negative garotte minimizes 

N ( )∑ ∑ 2 ∑
yi − α− ˆc o

jβjxij subject to cj ≥ 0, cj ≤ t (2.3.2) 
i=1 j

The garotte starts with the Ordinary Least Squares (OLS) estimates and shrinks them by non-

negative factors whose sum is constrained. In extensive simulation studies, Breiman (1993) showed 

that the garotte has consistently lower prediction error than subset selection and is competitive with 

ridge regression (a regularized regression method with penalty function p (|β 2 
λ j |) = λβj ) except 

when the true model has many small non-zero coeffcients. A drawback of the garotte is that its 
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solution  depends on both the sign and the magnitude of the OLS estimates. In overft or highly 

correlated  settings where the OLS estimates behave poorly, the garotte may suffer as a result. In 

contrast,  the lasso avoids the explicit use of the OLS estimates. The Lasso minimizes the residual 

sum  of squares subject to the sum of the absolute value of the coeffcients being less than a 

constant. Because of the nature of this constraint it tends to produre some coeffcients that are 

exactly 0 and hence gives interpretable models. Simulation studies suggest that the lasso enjoys 

some of the favourable properties of both subset selection and ridge regression. 

2.3.3  Description of LASSO Algorithm 

Suppose  that we have data (X i, yi), i=1,2,. . .,N, where X i = (xi1, ..., xip)
T are the predictor 

variables  and yi are the responses. As in the usual regression set-up, we assume either that the 

observations  are independent or that the yi’s are conditionally independent given the xij ’s. We∑ ∑
assume that the xij are standardized so that ˆ ˆ ˆ

i xij/N = 0, i x
2
ij/N = 1. Letting β = (β1, ..., βp),

the lasso estimate ˆ(α̂, β) is defined by

{ }∑N ∑
ˆ(α̂, β) = argmin (yi − α− β 2

jxij) (2.3.3) 
i=1 j∑

subject to |βj| ≤ t
j

Here t ≥ 0 is a tuning parameter. Now, for all t, the solution for α is α̂ = ȳ. We can assume 

without loss of generality that ȳ = 0 and hence ommit α. Computation of the solution to equation 

2.3.3 is a quadratic programming problem with linear inequality constraints. P ∑
The criterion N − 2 ˆ ˆ

i=1(yi j βj xij ) equals the quadratic function (β − βo)T XTX(β − βo) (plus

a constant). The elliptical contours of this function are shown by the full curves in fgure 2.1; they 

are centered at the OLS estimates; the constraint region is the rotated square. The lasso solution 

is the frst place that the contours touch the square, and this will sometimes occur at a corner, 

corresponding to a zero coeffcient. 
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Figure 2.1 Estimation picture for the lasso (left) and ridge regression (right) for two parameters β1 
and β2 (from Hastie et al. (2009)) 

2.3.4 Other Penalty Functions 

SCAD, which smoothly clips a L1 penalty (for small |βj |) and a constant penalty (for large 

|βj |’s), adaptive Lasso: pλ(|βj |) = λwj |βj |, where wj are given weights. Cross-validation (CV) is 

commonly used in these methods for the choice of the regulating parameter. 

2.4 Sequential Methods 

Sequential feature selection algorithms are a family of greedy search algorithms (algorithms 

which always make the choice that seems to be the best at that moment) that are used to reduce 

an initial p-dimensional feature space to a k-dimensional feature subspace where k < p. The 

motivation behind feature selection algorithms is to automatically select a subset of features that is 

most relevant to the problem. 

A so-called oracle property is of major concern for any feature selection method. The oracle 

property refers to two asymptotic natures: (i) selection consistency, that is, the sparse relevant 

features can be exactly selected with probability converging to 1, and (ii) the effects of relevant 

features can be consistently estimated the same as they would be, were they obtained by knowing 

the relevant features in advance. For fxed p,it was shown that Lasso is consistent in estimating 

the regression coeffcients but, in general, it does not have the oracle property. See Luo and Chen 

(2014). 

In classical linear regression where n > p, various variable selection methods have been devel-
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oped. There is the stepwise regression which is either forward, backward or both. Also there is a 

best subset selection which is designed to select one model among 2p possible candidate models. 

To determine when the algorithm terminates, various stopping criteria such as Akaike information 

criteria or AIC (Akaike, 1998) or Bayes information criteria or BIC (Schwarz, 1978) have been 

develop. For example in a stepwise forward selection method the algorithm terminates if the AIC 

of the current model is greater than the AIC of the previous model. 

For dimension reduction in high dimensional data analysis is the concept of sure screening 

which is the property that all the important (relevant) variables survive after variable screening 

with probability tending to one. In their work Fan and Lv (2008) proposed a Sure Independence 

Screening (SIS) to reduce dimensionality from high to a relatively large scale d that is below the 

sample size and use methods such as the Dantzig selector, SCAD, LASSO or Adaptive LASSO for 

variable selection and estimation. To perform the SIS, all the variables in the data are centered and 

standardized. A componentwise regression, that is, ω = XT y, is performed to obtain a p-vector 

ω = (w1, w2, ..., wp)
T . For any γ ∈ (0, 1), the vector ω is sorted in decreasing order and defne 

a submodel Mγ = {1 ≤ i ≤ p : |ωi| is among the frst [γn] largest of all}, where [γn] denotes 

the integer part of γn. This shrinks the full model {1, ..., p} down to a submodel Mγ with size 

d = [γn] < n. 

For large-p-small-n problems, the stopping criterion: AIC or BIC tend to select a model with 

many spurious covariates. This was observed by Broman and Speed (2002) and Storey et al. 

(2004) in their work on quantitative trait loci mapping (genome-wide inference of the relationship 

between genotype at various genomic locations and phenotype for a set of quantitative traits in 

terms of the number, genomic positions, effects, and interaction of QTL) using the BIC. In response 

to this challenge, Chen and Chen (2008) proposed and extended Bayesian information criterion 

family that is particularly suitable for model selection for large model spaces. It includes the 

original BIC as a special case and retains its simplicity. Under some mild conditions, these new 

criteria are shown to be consistent. The result is particularly useful even when the covariates are 

heavily collinear. The extended Bayesian information criteria do not require a data adaptive tuning 
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parameter procedure in order to be consistent, and hence are easy to use in applications. 

A recent addition to the set of sequential approach is the Sequential LASSO Cum EBIC 

(SLasso) by Luo and Chen (2014). This method solves a sequence of partially penalized least 

squares problems. The features selected in an earlier step are not penalized in the subsequent 

steps. The EBIC is used as the stopping rule. For each s∗k, the EBIC of the model with features 

in s∗k is computed. The procedure continues, if the EBIC keeps decreasing. If the EBIC attains a 

minimum at step k∗, the procedure stops and the set s∗k∗ is taken as the fnal selected set. 

The partially penalized squares problem at each step is simply fnding the feature j which max-

imizes |xj
τ y|, the absolute value of an unstandardized Pearson correlation coeffcient. According to 

de Siqueira Santos et al. (2014), one major task in molecular biology is to understand the depen-

dency among genes to model gene regulatory networks. Pearson’s correlation is the most common 

method used to measure dependence between gene expression signals, but it works well only when 

data are linearly associated. For other types of association, such as non-linear or non-functional 

relationships, methods based on the concepts of rank correlation and information theory-based 

measures are more adequate than the Pearson’s correlation. It is therefore important to consider 

other measures of association which could measure other types of associations other than linear 

association. 

2.4.1 Conceptual Description of SLasso 

Luo and Chen (2014) proposed a sequential Lasso (SLasso) algorithm for high dimensioal 

data for sparse features. SLasso solves a sequence of partially penalized least squares problems. 

The features selected in an earlier step are not penalized in the subsequent steps. Let the vectors 
√ 

y = (y1, y2, ..., yn)τ , xj = (x1j, ..., xnj)
τ , be standized such that they have length n and are 

orthogonal to the vector with all elements 1. Thus the intercept βo can be omitted. At the initial 

step, SLasso minimizes the following penalized sum of squares: 

p pX 2 X
l1 = y − βj xj + λ1 |βj |, 

j=1 j=1 
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where k.k is the L2-norm, and λ1 is the largest value of the penalty parameter such that at least one 

of the β0 j s will be estimated nonzero. The features with nonzero estimated coeffcients are selected 

and the set of their indices is denoted by s∗1. For k ≥ 1, let s∗k be the index set of the features 

selected until step k. At the step k+1, SLasso minimizes the following partially penalized sum of 

squares: 
∥ 
∥∥
 ∑ 
∥2∥ p ∑
 
∥ p

lk+1 = ∥
y − βjxj
∥ + λk+1 |βj|,
∥ 
∥
j=1 j∈/s∗k

where no penalty is imposed on the βj
0 

 s for j ∈ s∗k and λk+1 is the largest of the penalty

parameter such that at least one of the βj ’s, j ∈/ s∗k, will be estimated nonzero. The selected set is

then updated to s∗k+1. 

The EBIC is used as the stopping rule for each s∗k, the EBIC of the model with features in 

s∗k is computed. The procedure continues, if the EBIC keeps decreasing. If the EBIC attains a 

minimum at step k∗, the procedure stops and the set s∗k∗ is taken as the fnal selected set. 

2.4.2 SLasso Algorithm 

• Initial Step: Standardize y, x τ τ τ τ
j , j = 1, ..., p such that y 1 = 0, xj 1 = 0 and y y = n, xj xj = 

n. Compute xτ 
j y for j ∈ S.

Let 

τ τ sT EMP = {j : |xj y| = max |xj0 y|}
j0∈S 

Let s∗1 = sT EMP , be the active set. 

Compute I − H(s∗1) and EBIC(s∗1). Where H(s) = X(s)[Xτ (s)X(s)]−1Xτ (s). 

• General Step: For k ≥ 1, compute x̃τ c
j ỹ  for j ∈ s∗ k, where ỹ = [I − H(s∗k)]y, x̃j =

[I − H(s∗k)]xj . Let

    sT EMP = {j : |x̃τ
j ỹ| = max |x̃τ

j0 ỹ|} j0∈Sc
∗k

Let s∗k+1 = s∗k ∪ sT EMP . Compute EBIC(s∗k+1). If EBIC(s∗k+1) > EBIC(s∗k), stop; 

otherwise, compute I − H(s∗k+1) and continue. 
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• When the process stops, the parameters in the selected model are estimated by their least-

square estimates.

The EBIC for s∗k, k = 1, 2, ..., in the above algorithm is given by 

(
2
) ( ) ( )

‖[I −H(s∗k)]y‖2 ln(n) p
EBIC(s∗k) = nln + |s∗k|ln(n) + 2 1− ln

n rln(p) |s∗k|

where r a positive number slightly bigger than 2, say r = 2.1 by Luo and Chen (2014) 

2.5 Extended Bayesian Information Criteria (EBIC) 

In a high-dimensional setting, the traditional Bayes information criterion (BIC) is inappropriate 

for feature selection. It tends to select too many features that are not necessarily causal. Chen 

and Chen (2008) have recently proposed a family of extended Bayes information criteria (EBIC). 

In EBIC, models are classifed according to the number of features they contain, and the prior 

probability assigned to a model is inversely proportional to the size of the model class to which 

the model belongs. Let {(yi, xi) : i = 1, ..., n} be independent observations. Suppose that the 

conditional density function of y P 
i given xi is f(yi|xi, θ), where θ ∈ Θ ⊂ R , P being a positive 

integer. The likelihood function of θ is given by 

Yn
Ln(θ) = f(x; θ) = f(yi|xi, θ). 

i=1 

Let s be a subset of {1, ..., P }. Denote by θ(s) the parameter θ with those components outside s 

being set to 0 or some prespecifed values. The BIC proposed by Schwarz (1978) selects the model 

that minimizes 

ˆBIC(s) = −2logLn{θ(s)} + ν(s)log(n) 

where θ̂(s) is the maximun likelihood estimator of θ(s) and ν(s) is the number of components in 

s. The extended BIC family is defned as

BICγ (s) = − ˆ2logLn{θ(s)} + ν(s)logn + 2γlogτ(Sj ).0 ≤ γ ≤ 1. 
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where θ̂(s) is the maximum likelihood estimator of θ(s) given model s. 

2.6 Derivation of EBIC 

Chen and Chen (2008) derived the extended Bayes information criteria which has special cases 

as AIC and BIC.The extended Bayes information criteria is shown to be selection consistent. We 

follow the derivation as derived in Chen and Chen (2008). 

Let {(yi, xi) : i = 1, 2, ..., n} be independent observations. Suppose that the conditional 

density function of yi given xi is f(yi|xi, β), where β ∈ Θ ⊂ Rpn , pn being a positive integer. The 

likelihood function of β is given by 

∏n
Ln(β) = f(x; β) = f(yi|xi, β).

i=1

Denote Y = (y1, y2, ..., yn). Let s be a subset of {1, 2, ..., pn}. Denote by β(s) the parameter β 

with those components outside s being set to 0. Let S be the model space under consideration, i.e, 

S = {s : s ⊆ {1, 2, ..., pn}}, let p(s) be the prior probability of model s. Assume that, given s, the 

prior density of β(s) is π(β(s)). The posterior probability of s is obtained as 

m(Y |s)p(s)
p(s|Y ) = ∑ ,

∈ m(Y |s S s)p(s)

where m(Y |s) is the likelihood of model s, given by 

∫
m(Y |s) = f(Y ; β(s))π(β(s))dβ(s)

The BIC selects the model that minimizes 

ˆBIC(s) = −2logLn{β(s)} + |s|log(n) 

where β̂(s) is the maximum likelihood estimator of β(s) and |s| is the number of components in s. p
When β̂(s) is (n) consistent, −2ln(m(Y |s)) has a Laplace approximation given by the BIC(s) 
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up to an additive constant. In the derivation of BIC, this constant p(s) is taken as a constant over all 

s. With this constant prior, BIC favors models with larger numbers of features in small-n-large-p

problems. 

Assume that S is partitioned into ∪p
j=1Sj , such that models within each Sj , have equal dimen-

sion . Let τ(Sj ) be the size of Sj . Assign the prior distribution P (Sj ) proportional to τ η(Sj ) for 

some η between 0 and 1. For each s ∈ Sj , assign equal probability, p(s|Sj ) = 1/τ(Sj ), this is 

equivalent to P (s) for s ∈ SJ proportional to τ−γ (Sj ) where γ = 1 − η. This extended BIC family 

is given by 

EBICγ (s) = −2logLn{β̂(s)} + |s|log(n) + 2γln(τ(S|s|)), 0 ≤ γ ≤ 1. 

For details about the selection consistency of EBIC, the reader is encouraged to refer to SHAN 

(2012). The selection consistency of EBIC, was shown for a multiple linear regression model 

through simulations where different values of γ have been specifed. 

2.7 Energy Distance 

Székely et al. (2007) proposed the energy distance between probability distributions. Suppose 

that X ∈ Rp and Y ∈ Rq are two random vectors with EkXk < ∞, and EkXk < ∞ . Let F and 

G be the cumulative distributions (CDF) of X and Y , respectively. The energy distance between 

F and G, denoted by D2(F, G), is defned as the square root of 

D2(F, G) := 2EkX − Y k − EkX − X 0k − EkY − Y 0k, (2.7.1) 

where k.k denotes the Euclidean norm of its argument, E denotes expected value, and (X 0, Y 0) is 

an independent copy of (X, Y ). Note that the right-hand-side term of equation (2.7.1) is always 

non-negative. 

For further details and a brief history of the energy distance , see the article Rizzo and Székely 

(2016). 
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In Szekely´ et al. (2007), it is proved that the energy distance D2(F, G) = 0 if and only if F 

= G, so it characterizes equality of distributions. According to Wikipedia, the energy distance for 

statistical applications was frst introduced in 1985 by Professor Gabor J. Szekely, who proved that 

for real-valued random variables D2(F, G) is exactly twice Harald Cramers distance. 

2.7.1 Energy Distance Covariance 

The energy distance covariance between random vectors X and Y with fnite frst moments is 

the nonnegative number ν(X, Y ) defned as follows (Szek´ ely et al., 2007): 

ν2(X, Y ) =  kf 2
X,Y (t, s) − fX (t)fY (s)k . 

Similarly, distance variance is defned as the square root of 

ν2(X) = ν2(X, X) = kfX,X (t,  s) − fX (t)f
2

X (s)k . 

∑ ∑
For samples x1, x2, ..., xn and y1, y2, ..., ym from X and Y , respectively. Let A = 1 n m ‖xi−nm i=1 j=1∑ ∑

y 1 n n 1 Pm Pm 
j‖, B = 2 k − k k − k

n i=1 j=1 xi  xj , C = 
m2 i=1 j=1 yi  yj  where A, B and C are averages 

of pairwise distance. 

The formula for the sample distance covariance statistic is the square root of 

 Xn 
1

Vn 
2 ˆ ˆ 
 (X, Y ) = Aij B

n2 ij

i,j=1 

where ˆ and ˆ A B are the double-centered distance matrices of the X sample and the Y sample, 

respectively, and the subscript ij denotes the entry in the i − th row and j − th column. The 

double-centered distance matrices are computed as in classical multidimensional scaling. Given a 

random sample (x, y) = {(xi, yj ) : i = 1, ..., n} from the joint distribution of random vectors X 

in Rp and Y in Rq, compute the Euclidean distance matrix (aij ) = kxi − xj k for the X sample and 
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(bij ) = kyi − yj k for the Y sample. The ij − th entry of ˆ A is 

ˆ Aij = aij − ā i. − ā .j + ā .., i, j = 1, ..., n, 

1
P

where ā n ∑
= a , ā = 1 n ∑

a , ā = 1 n
i. j=1 ij .jn n j=1 ij .. 2 j=1 aij,n

Similarly, the ˆ ij-th entry of B is 

ˆ ¯ ¯ ¯Bij = bij − bi. − b.j + b.., i, j = 1, ..., n, 

The sample distance variance is 

∑n
ˆV 2 1

n (X) = V 2
n (X,X) = A2

ij.n2
i,j=1

The distance covariance statistic is always non-negative, and V 2
n (X) = 0 only if all of the 

sample observations are identical. Furthermore, if E|X|p < ∞ and E|Y | < ∞,, then almost 

surely, 

lim V 2
n (X, Y ) = V 2(X, Y ). 

n→∞ 

2.7.2 Energy Distance Correlation 

The distance correlation between random vectors X and Y with fnite frst moments is the 

nonnegative number R(X, Y ) defned by 

√ ν2(X,Y ) 2 2
2 2

, ν (X)ν (Y ) > 0
R(X, Y ) = ν (X)ν (Y )0, ν2(X)ν2(Y ) = 0

The sample distance correlation is defned by 

√ ν2n(X,Y )

2 2
, ν2(X)ν2n n(Y ) > 0

Rn(X, Y ) = νn(X)νn(Y )0, ν2n(X)ν2n(Y ) = 0.
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It should be noted that Rn(X, Y ) is the Distance Correlation with the empirical distributions of the 

observations. 

Some basic properties of Distance Correlation are as follows: 

(i) 0 ≤ Rn(X, Y ) ≤ 1,

(ii) If E(|X|p + |Y |q) < ∞, then R(X, Y ) = 0 if and only if X and Y are independent.

(iii) If Rn(X, Y ) = 1, then there exist a vector a, a nonzero real number b and an orthogonal

matrix C such that Y = a + bXC.

For further details on the energy distance correlation, see the article, (Rizzo and Székely, 

2016). 
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CHAPTER 3 METHODOLOGY 

3.1 Introduction 

In this chapter we perform some simulations and propose a method for sequential feature selec-

tion. We frst check the performance of distance correlation in measuring linear relationships in 

comparison with the Pearson Correlation measure. 

Secondly, we discuss various nonlinear relationships and compare through simulations the vari-

ous methods for measuring nonlinear relationships and also present a result by Gorfne et al. (2012) 

on a power study for three correlation measures. 

Thirdly, we examine how Adaptive Lasso and SCAD performed after the features are screened 

by a sure screening method using distance correlation by Li et al. (2012). 

In the fourth place, we would propose a sequential variable selection method which we title 

”Energy distance correlation with EBIC” (Edc+EBIC) and attempt to give a theoretical prove. We 

also establish through some simulations the selection consistency of Edc+EBIC. 

3.2 Correlation Comparisons 

In this section we studied the performance of distance correlation in measuring linear and non-

linear relationships between two variables. 

3.2.1 Linear Relationships 

In this subsection we compare the performance of the Pearson correlation coeffcient and the 

distance correlation in measuring the linear relationship between two variables which are linearly 

associated. We run a simulation with a random (standardized) normal data of size n = 100 which 

is generated 100 times for population correlations of −0.8, −0.6, −0.4, 0.0, 0.4, 0.6 and 0.8. We 

compare the performance of these two methods using their mean, standard deviations and quantiles 

at 2.5% and 97.5% 

In Table 3.1 we present the results of this simulation. From the comparison we would observe 

that the negative population values were estimated as positive by the distance correlation, this is 
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because the distance correlation is defned between 0 and 1. The Pearson correlation was able 

to measure perfectly the linear association as expected. The distance correlation estimates were 

also good with small standard deviations. The [2.5%, 97.5%] quantiles showed that many of the 

estimates were close to the population values. Thus the distance correlation is appropriate for 

measuring the strength of linear associations. 

Table 3.1 Comparison of Pearson correlation coeffcient and Distance correlation in measuring 
linear association using their mean, standard deviations and quantiles at 2.5% and 97.5% 

ρ 
Pearson 

Mean(SD) 
Distance Correlation 

Mean(SD) 
Distance Correlation 

[2.5%, 97.5%] quantile 
-0.8
-0.6
-0.4
0.0
0.4
0.6
0.8

-0.800(0.000)
-0.600(0.000)
-0.400(0.000)
0.000(0.000)
0.400(0.000)
0.600(0.000)
0.800(0.000)

0.762(0.014) 
0.567(0.025) 
0.386(0.023) 
0.152(0.023) 
0.386(0.025) 
0.563(0.025) 
0.765(0.018) 

[0.740, 0.789] 
[0.523, 0.611] 
[0.335, 0.431] 
[0.118, 0.198] 
[0.344, 0.439] 
[0.515, 0.611] 
[0.735, 0.802] 

3.2.2 Non-linear Relationships 

Aside the linear relationship that could exist between two random variables X and Y , there 

are several non-linear relationships that could exist. In Figure 3.3 we present shapes of seven 

nonlinear relationships namely diamond, trapezoid, wave, quadratic, cluster, circle and cross (X). 

These shapes have two noise levels and are adapted from Clark (2013). 

In detecting these non-linear associations, Reshef et al. (2011) proposed a measure which they 

referred to as a novel measure of dependence - the maximal information coeffcient (MIC) aimed 

to capture a wide range of associations between pairs of variables and a statistical test for inde-

pendence based on MIC. However in a simple power comparison by Gorfne et al. (2012), they 

showed that the conclusions by Reshef et al. (2011) about the performance of MIC were wrong. 

Also in a comment by Simon and Tibshirani (2014) about the MIC by Reshef et al. (2011), they 

compared the power of Pearson correlation, Distance correlation and MIC. We present the graph 
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Less Noisy Noisier 

Figure 3.3 Non-linear relationships based on noise levels. Adapted from Clark (2013). 

of their power comparison in Figure 3.4. In this power study they consider a linear, quadratic, cu-

bic, sine: period 1/8, sine: period 1/2, x1/4 , circle and step function. The power was estimated via 

500 simulations. MIC has lower power than distance correlation in every case except the somewhat 

pathological high-frequency sine wave.They concluded that the MIC has serious power defciences 

and when used for large-scale exploratory analysis, it will produce too many false positives, and 

thus the distance correlation measure of Székely et al. (2009) is a more powerful technique that is 

simple, easy to compute and should be considered for general use. 
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Figure 3.4 Power study of cor, dcor and MIC based on noise level. Adapted from Gorfne et al. 
(2012) 
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3.3 Sure Screening Using Energy Distance Correlation 

In  this section we examine the performance of a sure independence screening method intro-

duced  by Li et al. (2012) called DC-SIS. This is similar to the Sure Independence screening (SIS) 

introduced  by Fan and Lv (2008). 

In  SIS, they perform a componentwise regression between each predictor and the response and 

select the frst n − 1 or [n/log(n)] predictors with the largest estimates. Performing a componen-

twise  regression is equivalent to fnding the Pearson correlation between the response and each 

predictor  when the two variables are standardized. Hence in DC-SIS, they replaced the Pearson 

correlation  with the distance correlation. 

We  examine the performance of DC-SIS through a simulation study. Our interest is to observe 

on  average, the model size selected by SCAD or Adaptive Lasso if we screened the data frst 

using  DC-SIS. We present two simulation set-ups. For each simulation we generated two hundred 

datasets and for each data we run SCAD, Adaptive Lasso (ALasso), DC-SIS + SCAD, DC-SIS + 

ALasso and found the average model size and the standard deviation. 

3.3.1 Simulation I: "Independent" Features 

We  adapt the simulation setup from Fan and Lv (2008). Data is simulated from the linear 

model  1.1.1 with i.i.d. standard Gaussian predictors and Gaussian noise with standard deviation σ 

= 1.5. We considered two such models with (n, p) = (200, 1000) and (800, 3000), respectively. 

The  sizes s of the true models, i.e., the numbers of nonzero coeffcients, were chosen to be 8 and 

14, respectively, and the nonzero components of the p-vectors β were randomly chosen as follows. 
√ √ 

We set a = 4logn/ n and 5logn/ n, respectively, and picked nonzero coeffcients of the form 

(−1)u(a + |z|) for each model, where u was drawn from a Bernoulli distribution with parameter 

0.4 and z was drawn from the standard Gaussian distribution. In particular, the L2− norms kβk 

of the two simulated models are 6.795 and 8.908, respectively. For each model we simulated 100 

data sets. SCAD and Adaptive LASSO were employed to estimate the sparse p−vectors β,. For 

the screening using the energy distance correlation we chose d = [n/logn] features and applied 
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SCAD or Adaptive Lasso. 

In Tables 3.2 and 3.3, we report the average selected model size and their standard devia-

tions. We observe that applying the sure screening by distance correlation before either SCAD or 

Adaptive Lasso in all cases did not lead to signifcant difference in the average model size when 

SCAD and ALasso were applied directly to the data.This suggests that either applying distance 

correlation before SCAD or Adaptive Lasso did not yield the intended result and thus needs some 

improvement. 

Table 3.2 Comparing Model size selected with or without screening for n = 200, s = 8, p = 1000 

Methods MSize(SD) 
SCAD 12.87(7.292) 

DC-SIS + SCAD 10.7(3.1575) 
ALasso 25.24(9.0365) 

DC-SIS + ALasso 11.74(4.419) 

Table 3.3 Comparing Model size selected with or without screening for n = 800, s = 14, p = 3000 

Methods 
SCAD 

DC-SIS + SCAD
ALasso

DC-SIS + ALasso

MSize (SD) 
16.62(2.78807) 
16.69(3.5525) 
14.78(0.7860) 
14.78(3.8522) 

3.3.2 Simulation II: "Dependent" Features 

In  this second simulation, we used similar models to those in simulation I except that the pre-

dictors  are now correlated with each other. Three models are considered, (n, p, s) = (200, 1000, 5), 

(200, 1000, 8), and (800, 3000, 14), respectively, where s denotes the size of the true model, i.e., the 
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number of nonzero coeffcients. The three p− vectors β were generated in the same way as in sim-

√ √ √ 
ulation I. We set (σ, a) = (1, 2logn/ n), (1.5, 4logn/ n), (2, 4logn/ n), respectively. We in-

troduced a power decay correlation structure, i.e., pi,j = 0.5|i−j|, for i, j = 1, ..., p. so = {1, ..., po} 

between the predictors. Then we took Zs+1, ..., Zp ∼ N(0, Ip−s) and defned the remaining pre-

dictors as Xi = Zi + rXi−s, i = s + 1, ..., 2s and Xi = Zi + (1 − r)X1, i = 2s + 1, ..., p with 

r = 1 − 4logn/p, 1 − 5logn/p and 1 − 5logn/p respectively. For each model we simulated 100 

data sets. SCAD and Adaptive LASSO were employed to estimate the sparse p−vectors β,. For 

the screening using the energy distance correlation we chose d = [n/logn]. 

In Tables 3.4 to 3.6, we report the selected model size and the standard deviation. We observe 

that applying the Distance correlation sure independence screening followed by either SCAD or 

Adaptive Lasso didn’t yield any signifcant difference in the average model size just as in simula-

tion I. 

Table 3.4 Comparing Model size selected with or without screening for n = 200, p = 1000, s = 5 

Methods 
SCAD 

DC-SIS + SCAD
ALasso

DC-SIS + ALasso

MSize (SD) 
12.215(12.2560) 
7.335(2.6109) 

44.485(13.8041) 
8.21(2.5844) 

Table 3.5 Comparing Model size selected with or without screening for n = 200, p = 1000, s = 8 

Methods 
SCAD 

DC-SIS + SCAD
ALasso

DC-SIS + ALasso

MSize (SD) 
14.625(10.3324) 
10.905(2.3158) 
19.95(3.2789) 
12.36(3.9875) 
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Table 3.6 Comparing Model size selected with or without screening for n = 800, p = 3000, s = 14 

Methods 
SCAD 

DC-SIS + SCAD
ALasso

DC-SIS + ALasso

MSize (SD) 
19.185(5.0146) 
17.675(4.6038) 
38.125(5.6372) 
31.845(13.1011) 

3.4 Proposed Method: Energy Distance Correlation with EBIC 

In this section we propose a sequential model selection method. Let yi, i = 1, ..., n be a 

continuous response variable and xj , j = 1, ..., p be an n × p data matrix. Let S be the index set of 

all predictors. Let s0 = {j : βj =6 0, j = 1, ..., p}. For s ⊂ S, let s− = sc ∩ s0. If s ⊂ s0 then s− 

is the complement of s in s0. Let p0 = |s0| be the number of elements in the set s0. 

At the initial stage we standardize all the variables. Next we fnd the distance correlation 

between the response variable and each of the predictor variables - {R(xj , y) j = 1, ..., p.} . We 

then select the predictor (feature) which has the highest distance correlation with the response and 

store it in the active set s∗1. 

Let L(s) be the linear space spanned by the columns of X(s) and H(s) its corresponding pro-

jection matrix, i.e, H(s) = X(s)[Xτ (s)X(s)]−1Xτ (s). Next we compute I − H(s∗1), EBIC(s∗1), 

ỹ = [I − H(s∗k)]y and x̃j = [I − H(s∗k)]xj . The variable ỹ  is the unexplained part of y by 

X(s∗1). This gives X(s∗1) close to a zero chance of been selected in the subsequent steps. 

For the general step where k > 1 we calculate {R(x̃j , ỹ) j = 1, ..., p.} and update the active 

set to s∗k+1 which is the union of all the previous selected variables and the current one. We then 

compute EBIC(s∗k+1) and compare it with EBIC(s∗k). The procedure stops if EBIC(s∗k+1) > 

EBIC(s∗k). The selected variables which we call the relevant variables will be X(s∗k). We can 

then ft a linear regression model between the response y and the relevant variables. We wish to note 

that care must be taken in ftting this model because some of the predictors might be non-linearly 

related to y and thus some of the predictors may have to enter into the model in their quadratic or 

cubic form etc. Alternatively is to perform a box-cox transformation on the data before ftting the 

model. 
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3.4.1 Energy Distance Correlation with EBIC (Edc+EBIC) Algorithm 

We  adapt the algorithm for SLasso by Luo and Chen (2014). We replace the maximization of  

{|xj
τ y| j = 1, ..., p} with maximization of {R(xj , y) j = 1, ..., p.} 

• Initial Step: Standardize y, x , j = 1, ..., p such that yτ 1 = 0, xτ τ τ
j j 1 = 0 and y y = n, xj xj = 

n. Compute R(xj , y) for j ∈ S.

Let 

sT EMP = {j : R(xj , y) = max R(xj0 , y)}
j0∈S 

Let s∗1 = sT EMP , be the active set. 

Compute I − H(s∗1) and EBIC(s∗1). Where H(s) = X(s)[Xτ (s)X(s)]−1Xτ (s). 

• General Step: For k ≥ 1, compute R(x̃ c
j , ỹ) for j ∈ s∗k, where ỹ = [I − H(s∗k)]y, x̃j = 

[I − H(s∗k)]xj . Let

sT EMP = {j : R(x̃j , ỹ) = max R(x̃j , ỹ)}
j0∈Sc 

∗k

Let s∗k+1 = s∗k ∪ sT EMP . Compute EBIC(s∗k+1). If EBIC(s∗k+1) > EBIC(s∗k), stop; 

otherwise, compute I − H(s∗k+1) and continue. 

• When the process stops, the parameters in the selected model are estimated by their least-

square estimates.

The EBIC for s∗k, k = 1, 2, ..., in the above algorithm is given by 

(
2
) ( ) ( )

‖[I −H(s
EBIC nln ∗k)]y‖ ln(n) p

(s 2
∗k) = + |s∗k|ln(n) + 2 1− ln

n rln(p) |s∗k|

where r a positive number slightly bigger than 2, say r = 2.1 Luo and Chen (2014) 



33 

3.5 Selection Consistency 

We attempt to establish the large sample property for the Edc+EBIC. We will show that un-

der regular conditions, the Edc+EBIC is selection consistent. The proof essentially follows the 

approach in Li et al. (2012). We proceed with the regularity conditions. 

C1: Both x and y satisfy the subexponential tail probability uniformly in p. That is there exist a 

positive constant a0 such that for all 0 < a ≤ 2a0, suppmax1≤k≤pE{exp(akXkk21 )} < ∞ and

E{exp(akyk2q )} < ∞

C2: The minimum distance correlation of predictors on which y functionally depends satisfes 

minj∈s0 R(x̃j , ỹ) ≥ 2cn−κ , for some constants 0 < c < 1 and 0 ≤ κ < 1/2. 

C3: Let S be the index set of all predictors. Let s0 = {j : βj = 0, j = 1, ..., p} and p0 = |s0| 

(p0 is the number of elements in the set s0). For s ⊂ S let s− = sc ∩ s0. If s ⊂ s0 then s− is the 

complement of s in s0. For s ⊂ s0, maxj∈s cR j ∈ − R j 0 
(x̃ , ỹ)  < qmaxj s (x̃ , ỹ) for some 0 < q < 1. 

Where ỹ = [I − H(s∗k)]y, x̃j = [I − H(s∗k)]xj . For k = 0, s∗0 is taken as the empty set ∅. 

Theorem 3.5.1. Suppose that conditions C1 - C3 hold. The Edc+EBIC is selection consistent in 

the sense that 

P (s∗k∗ = s0n) → 1, as n →∞, 

where s∗k∗ is the set of features selected at the k∗th step of Edc+EBIC such that |s∗k∗| = p0n, s0n

is the set of relevant features and p0n = |s0n|. 

Proof. Suppose that X ∈ Rp and Y ∈ Rq with cumulative distribution function (CDF) F and G, 

respectively where EkXk < ∞, and EkXk < ∞ . The population distance correlation R(X, Y ) 

is the square root of the standardized coeffcient: 

√ ν2(X,Y )

2
, ν2

2
(X)ν2(Y ) > 0

R(X, Y ) = ν (X)ν (Y )0, ν2(X)ν2(Y ) = 0 

where 0 ≤ R(X, Y ) ≤ 1. In the numerator is the distance covariance defned by Szek´ ely et al. 

6
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(2007), as 

dcov2(x, y) = S1 + S2 − 2S3, 

where Sj , j = 1, 2, and 3, are defned as: 

S1 =EkX − X 0kkY − Y 0k 

S2 =EkX − X 0kEkY − Y 0k (3.5.2) 

S3 =EkX − X 0kkY − Y 00 k 

00 00where (X, Y ), (X 0, Y 0), and (X , Y ) are independently and identically distributed. 

For a random sample {(xi, yi), i = ekely et al. (2007) estimated1, ..., n} from (x, y), Sz´ 

S1, S2, S3 as: 

X1 n 

Ŝ1 = |xk − xl|p|yk − yl|q2n 
k,l=1 X X1 n 

1 n 

Ŝ2 = |xk − xl|p |yk − yl|q2 2n n 
k,l=1 k,l=1 X X1 n n 

Ŝ3 = |xk − xl|p|yk − yl|q3n 
k=1 l,m=1 

ˆwith sample, the distance covariance dcovd 2 
= S1 + Ŝ  

2 − 2Ŝ  
3. 

The remaining part of the proof is to show that the energy distance correlation is uniformly 

consistent and has the sure screening property. The numerator and denominator of the energy dis-

tance correlation are similar so to show the uniform consistency of the energy distance correlation 

it suffces to show that both the numerator and the denominator are uniformly consistent. 

ˆThe uniform consistency of the numerator, dcovd 2 
= S1 + Ŝ  

2 −2Ŝ  
3 of the energy distance corre-

lation between the random vectors (x, y) is shown by Li et al. (2012). However in the general step 

of the sequential algorithm for Edc+EBIC, the energy distance correlation is calculated between 

the residuals ỹ = [I − H(s∗k)]y, and x̃j = [I − H(s∗k)]xj at each step of the algorithm. Thus to 

show the uniform consistency of Edc+EBIC it is equivalent to follow the proof by Li et al. (2012). 
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Also in Li et al. (2012) they showed that the energy distance correlation has the sure screening 

property.  They showed that the energy distance is able to select a subset of the features which 

contains  the relevant features. Their argument applies here because we used the energy distance 

correlation  as well, thus the Edc+EBIC has the sure screening property. 

Therefore  the Edc+EBIC is selection consistent since it is uniformly consistent and has the sure 

screening property. The proof is complete. 

3.5.1 Simulation Study on Selection Consistency of Edc+EBIC 

We  conducted simulation studies to demonstrate how the selection consistency of Edc+EBIC 

works.  For each simulation setup we record the following: 

1. Model size (MSize), which is the total number of relevant variables selected.

|s∗k∗ ∩so|2. Positive Discovery Rate (PDR); PDRn = |so| 

|s∗k∗ ∩so|3. False Discovery Rate (FDR); FDRn =
c 

|s∗k∗ | 

nWe consider the diverging pattern (n, p, po) = (n, [5e 0.3 
], [4n0.16]) for n = 100, 200, 300 and, 500.

The coeffcients are generated as independent random variables distributed as (−1)u(4n−0.15 +|z|), 

where u ∼ P Bernoulli(0.4) and z is a normal random variable with mean 0 and satisfes P (|z| ≥ 

0.1) = 0.25. The variance of the error term in the linear model is determined by 

βτ Σβ 
h = = 0.8 

βτ Σβ + σ2 

where Σ is the variance-covariance matrix of relevant features. Two settings of the covariance 

structure for the design matrix X are considered. 

1. All the p features are generated as i.i.d. standard normal random variables.

In Table 3.7 we show the selection consistency of Edc+EBIC for independent features. Con-

sidering the diverging pattern, where as the sample size increases the number of features

also increases, we observed that Edc+EBIC selected on average model sizes very close to

https://�1)u(4n�0.15
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the expected number of relevant features and with small standard deviations. The positive 

discovery rate was 100% meaning that Edc+EBIC always selected all the relevant variables. 

Edc+EBIC is also seen to have reducing false discovery rate as the sample size increases and 

does at smaller standard deviations. 

Table 3.7 Selection consistency of Edc+EBIC for independent features. 

n pon p MSize PDR FDR 
100 
200 
300 
500 

8 
9 
10 
11 

276 
682 
1277 
3181 

8.420(0.712) 
9.270(0.591) 
10.185(0.460) 
11.130(0.352) 

1.000(0.000) 
1.000(0.000) 
1.000(0.000) 
1.000(0.000) 

0.045(0.071) 
0.026(0.054) 
0.016(0.040) 
0.011(0.029) 

2. The features have a power decay correlation structure, i.e., pi,j = 0.5|i−j|, for i, j = 1, ..., p.

so = {1, ..., po}. Where so is the number of relevant variables and po are the relevant vari-

ables.

In Table 3.8 we show the selection consistency of Edc+EBIC for power decay correlated

features. We considered the diverging pattern. We observed that Edc+EBIC selected on av-

erage model sizes very close to the expected number of relevant features and with standard

deviations a little higher than those in Table 3.7. It did not achieve a perfect positive discov-

ery rate for all the samples. Edc+EBIC is also seen to have reducing false discovery rate as

the sample size increases and does so at smaller standard deviations.

Table 3.8 Selection consistency of Edc+EBIC for power decay correlated features. 

n pon p MSize PDR FDR 
100 8 276 8.490(0.763) 1.000(0.000) 0.051(0.076) 
200 9 682 9.19(0.798) 0.991(0.0652) 0.026(0.050) 
300 10 1277 10.16(0.553) 0.996(0.032) 0.018(0.040) 
500 11 3181 11.125(0.374) 1.000(0.000) 0.010(0.030) 
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CHAPTER 4 SIMULATION STUDIES AND DATA ANALYSIS 

4.1 Introduction 

In this section we present the results of our simulations on comparing our proposed method 

with other variable selection methods. We also present two real-life data examples. We considered 

two setups in our simulation study as used in Luo and Chen (2014). In setup 1, four settings of the 

covariance structure for the design matrix X namely GA1, GA2, GA3 and GA5 were considered. 

In setup 2, three settings of the covariance structure for the design matrix X namely GB1, GB2 and 

GB3 were considered. 

In each setup and in the two real-life data examples we compared the performance of Adap-

tive Lasso (ALasso), SCAD, SIS+SCAD, SLasso and the Energy Distance correlation with EBIC 

|s∗k∗ ∩so|(Edc+EBIC) based on the model size (MSize), positive discovery rate (PDR), PDR = |so| 
|s∗k∗ ∩s |0and false discovery rate, FDR = 

c 
averaged over 200 and 500 simulations respectively. |s∗k∗ | 

The R packages glmnet, ncvreg and SIS were used for the computation of ALasso, SCAD, and 

SIS+SCAD respectively. 

4.2 Simulation Results for Setup 1 

nWe consider the diverging pattern (n, p, po) = (n, [5e 0.3 
]], [4n0.16) for n = 100. The coeff-

cients are generated as independent random variables distributed as (−1)u(4n−0.15 + |z|), where 

u ∼ P Bernoulli(0.4) and z is a normal random variable with mean 0 and satisfes P (|z| ≥ 0.1) =

0.25. The variance of the error term in the linear model is determined by 

βτ Σβ 
h = = 0.8 

βτ Σβ + σ2 

where Σ is the variance-covariance matrix of relevant features. Four settings of the covariance 

structure for the design matrix X are considered. They are named GA1,GA2,GA3 and GA5.The 

https://�1)u(4n�0.15
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response variable is simulated from the sparse high-dimensional regression (SHR) model 

yi = β0 + Σ
p
j=1βj xij + ∈i, i = 1, ..., n 

According to our simulation setup the number of relevant random variables s0 is 8, thus we 

expect a well performing method to select the 8 relevant random variables. The number of obser-

vations n = 100 and the total number of predictors is 276 where 8 are the relevant predictors. 

GA1. All the p features are generated as i.i.d. standard normal random variables. 

In Table 4.1 the best performing models for GA1 are SIS + SCAD, SLasso and EdcEBIC. 

All three methods selected a little over the 8 relevant predictors on average. The SLasso had the 

highest positive discovery rate but with a slightly high false discovery rate compared to EdcEBIC. 

ALasso and SCAD had perfect positive discovery rate but recorded very high model size and very 

high false discovery rate. 

Table 4.1 We compare the methods using PDR, FDR, and model size (MSize) averaged over 200 
simulation replications. The relevant predictors are 8 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GA1 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

34.105(13.95) 
25.735(5.020) 
8.100(1.790) 
8.565(0.848) 
8.365(1.375) 

1.000(0.000) 
1.000(0.000) 
0.866(0.239) 
1.000(0.000) 
0.978(0.125) 

0.721(0.120) 
0.676(0.065) 
0.157(0.167) 
0.058(0.081) 
0.056(0.085) 

GA2. The features have a power decay correlation structure, i.e., pi,j = 0.5|i−j|, for i, j = 1, ..., p. 

so = {1, ..., po}. Where so is the number of relevant variables and po are the relevant variables. 

In Table 4.2 under GA2, the best performing modesls are SIS + SCAD, SLasso and EdcEBIC. 

The SIS+SCAD performed better in terms of the MSize and PDR compared to SLasso and EdcE-

BIC. The EdcEBIC performed better in terms of a lower FDR. We reckon that it was diffcult for 
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SIS+SCAD, SLasso and EdcEBIC to select on average the 8 relevant variables and achieve a high 

PDR when there is a power decay correlation structure among the variables. 

Table 4.2 We compare the methods using PDR, FDR, and model size (MSize) averaged over 200 
simulation replications. The relevant predictors are 8 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GA2 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

34.455(11.095) 
25.650(6.720) 
7.335(1.740) 
6.055(1.725) 
6.075(1.713) 

1.000(0.000) 
0.876(0.141) 
0.813(0.182) 
0.688(0.185) 
0.717(0.195) 

0.754(0.108) 
0.709(0.075) 
0.103(0.107) 
0.080(0.104) 
0.050(0.082) 

GA3. The features X1, ..., Xp are determined as follows. Let Z1, ..., Zp and W1, ..., Wpo be i.i.d 

standard normal random variables. Then 

Zj + Wj
xj = √ , forj ∈ s0; 

2 

Zj + Σk∈so Zk 
xj = √ for j ∈/ s0. 

1 + p0 

In Table 4.3 under GA3, there was a very steep competition between SIS + SCAD, SLasso and 

EdcEBIC. SLasso however selected a little more variables on average compared to SIS+SCAD and 

EdcEBIC. The SLasso had a perfect PDR while EdcEBIC had the smallest FDR and also with a 

smaller standard deviation. 

GA5. The set so is taken as {1, 2, ..., po}. The features in so has the power decay correlation 

pij = 0.5
|i−j|. For j ∈/ so, xj is generated as: 

Σk∈so Xk 
xj =∈j + , 

po 
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Table 4.3 We compare the methods using PDR, FDR, and model size (MSize) averaged over 200 
simulation replications. The relevant predictors are 8 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GA3 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

14.710(3.847) 
26.27(5.244) 
8.165(1.160) 
8.625(1.005) 
8.265(1.373) 

1.000(0.000) 
1.000(0.000) 
0.951(0.113) 
1.000(0.000) 
0.976(0.132) 

0.423(0.131) 
0.680(0.070) 
0.062(0.078) 
0.062(0.089) 
0.048(0.074) 

where ∈0 j s are i.i.d, with distribution N(0, 0.08). The variance 0.08 is chosen such that the second 

term, which is correlated with relevant features, dominates the variance of xj . 

In Table 4.4 under GA5,, the three best methods, SIS+SCAD, SLasso and EdcEBIC, did not 

perform well in the model size and positive discovery rate.However the SLasso performed better 

in terms of MSize and PDR. The EdcEBIC performed better by recording the smallest FDR. 

Table 4.4 We compare the methods using PDR, FDR, and model size (MSize) averaged over 200 
simulation replications. The relevant predictors are 8 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GA5 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

23.845(7.005) 
24.070(6.147) 
7.605(2.020) 
7.650(2.182) 
7.180(2.453) 

0.964(0.057) 
0.997(0.020) 
0.832(0.245) 
0.856(0.217) 
0.842(0.270) 

0.652(0.092) 
0.642(0.102) 
0.127(0.141) 
0.089(0.113) 
0.050(0.081) 

4.2.1 Simulation Results for Sample Size 200 for Setup 1 with 8 Relevant Predictors 

In  Table 4.5, we report the simulation results under the conditions for GA1, GA2, GA3 and 

GA5  except that we increased the sample size to 200. We observe that under all the setups, EdcE-

BIC  improved in the average model size, PDR and FDR. This also shows the selection 

consistency of EdcEBIC under fx number of predictors with increased sample size. 
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Table 4.5 We compare the methods using PDR, FDR, and model size (MSize) averaged over 200 
simulation replications. The relevant predictors are 8 and the sample size is 200.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GA1 ALasso 27.670(12.996) 1.000(0.000) 0.638(0.180) 

SCAD 17.035(7.746) 1.000(0.000) 0.454(0.168) 
SIS + SCAD 9.215(1.507) 1.000(0.000) 0.112(0.123) 

SLasso 8.710(0.0.944) 1.000(0.000) 0.072(0.088) 
EdcEBIC 8.42(0.712) 1.000(0.000) 0.045(0.071) 

GA2 ALasso 27.92(9.686) 1.000(0.000) 0.675(0.124) 
SCAD 15.11(6.241) 1.000(0.000) 0.397(0.171) 

SIS + SCAD 9.16(1.509) 1.000(0.000) 0.108(0.171) 
SLasso 8.72(0.947) 1.000(0.000) 0.073(0.089) 

EdcEBIC 8.49(0.763) 1.000(0.000) 0.051(0.076) 
GA3 ALasso 27.115(12.867) 1.000(0.000) 0.632(0.177) 

SCAD 16.245(7.770) 1.000(0.000) 0.434(0.162) 
SIS + SCAD 9.22(1.617) 1.000(0.000) 0.110(0.128) 

SLasso 8.70(0.857) 1.000(0.000) 0.072(0.084) 
EdcEBIC 8.47(0.694) 1.000(0.000) 0.050(0.071) 

GA5 ALasso 38.95(8.308) 0.939(0.075) 0.797(0.054) 
SCAD 19.075(7.427) 1.000(0.000) 0.520(0.159) 

SIS + SCAD 9.975(1.858) 1.000(0.000) 0.174(0.132) 
SLasso 8.765(1.125) 0.989(0.061) 0.087(0.094) 

EdcEBIC 8.44(0.768) 0.998(0.025) 0.048(0.073) 

4.3 Simulation Results under Setup II 

In  this section we considered three different covariance structures named GB1, GB2 and GB3 

for  the features (predictors). We also increase the signal to noise ratio by increasing the value of 

the  expected predictors. 

GB1.  The setting is taken from Luo and Chen (2014). All the features have constant pair-wise 

correction pij = 0.5. (n, p, p0) = (100, 200, 15). σ = 1.5. The coeffcients of the relevant 

features are specifed as |βj | = 2.5 for 1 ≤ j ≤ 5, 1.5 for 6 ≤ j ≤ 10, 0.5 for 11 ≤ j ≤ 15. 

The signs of the coeffcients are determined as (−1)ui where the ui’s are i.i.d. Bernoulli random 

variables  with probability of success p = 0.5. 

        In Table 4.6 we present the result for the setting where all the features are pair-wise correlated. 

We observe that SCAD, SLasso and EdcEBIC performed better. SLasso had the highest PDR 
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while EdcEBIC had the least FDR. Thus when all the features are pair-wise correlated, EdcEBIC 

still performs well. 

Table 4.6 We compare the methods using PDR, FDR, and model size (MSize) averaged over 500 
simulation replications. The relevant predictors are 15 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GB1 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

23.32(3.018) 
14.08(1.644) 
10.656(1.688) 
14.916(2.194) 
14.094(2.035) 

0.766(0.062) 
0.853(0.065) 
0.694(0.112) 
0.893(0.081) 
0.869(0.088) 

0.501(0.066) 
0.085(0.068) 
0.025(0.067) 
0.092(0.089) 
0.067(0.076) 

GB2. The setting is taken from Luo and Chen (2014). It is the same as in GB1 that (n, p, p0) = 

(100, 200, 15) and σ = 1.5. But the covariance structure of the features is specifed such that the 

partially orthogonality condition Huang et al. (2008) is satisfed. Specifcally, while s0 is taken as 

{1, ...5, 11, ..., 15, 21, ..., 25} the correlations are specifed as ρij = 0.5|i−j| for 1 ≤ i ≤ 215 and 

1 ≤ j ≤ 215. The coeffcients are specifed as |β| = 2.5 for 1 ≤ j ≤ 5, 1.5 for 10 ≤ j ≤ 15, 0.5 

for 21 ≤ j ≤ 25. The signs of the coeffcients are determined in the same way as in GB1. 

In Table 4.7 we present the result for the setting where all the features have a power decay 

correlation structure. ALasso and SCAD are seen to have some challege is selecting the right 

number of expected relevant features. They also recorded poor PDR and FDR values. SLasso 

aside producing a better FDR compared to EdcEBIC didn’t do well with model size and PDR. The 

average model size selected by EdcEBIC was closest to the expected number of relevant features 

(15). EdcEBIC had the highest PDR but didn’t produce a good FDR. 

GB3. The setting is taken from Luo and Chen (2014). (n, p, p0) = (100, 1000, 10) and 

σ = 1. The relevant features are generated as i.i.d. standard normal variables with coeffcients 
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Table 4.7 We compare the methods using PDR, FDR, and model size (MSize) averaged over 500 
simulation replications. The relevant predictors are 15 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GB2 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

40.474(11.7331) 
20.966(7.6121) 
10.314(1.0797) 
13.65(2.038) 
14.006(1.657) 

0.447(0.0858) 
0.517(0.0614) 
0.403(0.0427) 
0.499(0.052) 
0.67(0.014) 

0.710(0.0605) 
0.315(0.1896) 
0.042(0.0712) 
0.077(0.081) 
0.273(0.0785) 

(3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75). The irrelevant features are generated as 

√ ∑
xj = 0.25Zj + 0.75 Xk, j ∈/ s0,

k∈s0

where Z 0 j s are i.i.d. standard normal and independent from the relevant features. 

In Table 4.8 under this setting we observe that EdcEBIC performed better than the other meth-

ods. The average model size selected by EdcEBIC was very close to the expected number of 

relevant features (10). EdcEBIC also recorded the high PDR and the least FDR. 

Table 4.8 We compare the methods using PDR, FDR, and model size (MSize) averaged over 500 
simulation replications. The relevant predictors are 10 and the sample size is 100.The standard 
deviations are in parenthesis. 

Setting Methods MSize PDR FDR 
GB3 ALasso 

SCAD 
SIS + SCAD 

SLasso 
EdcEBIC 

22.464(2.4414) 
11.000(0.000) 
9.964(0.6897) 
10.182(0.475) 
10.158(0.440) 

1.000(0.000) 
1.000(0.000) 
0.992(0.0764) 
0.667(0.006) 
1.000(0.000) 

0.5495(0.0498) 
0.091(0.000) 
0.107(0.050) 
0.015(0.039) 
0.0139(0.038) 

4.4 Real Data Examples 

In this section we apply our method to two real-life datasets and compare our results with other 

researches which used these data for a similar purpose of variable selection. 
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Example 1: The description of the data as stated in Luo and Chen (2014) is as follows: the data, 

which were reported in Scheetz et al. (2006) , consist of the expression levels of over 31,042 dif-

ferent probes from 120 F2 male rats generated from an intercross experiment. A cross of SR/JrHsd 

male rats and SHRSP female rats was performed to generate F1 and the F1 rats were intercrossed 

to generate the F2 rats. The probes that were not expressed in the eye or that lacked suffcient vari-

ation were excluded. A probe was considered expressed if its maximum expression value observed 

among the 120 F2 rats was greater than the 25th percentile of the entire set of RMA (robust mul-

tichip averaging) expression values. A probe was considered “suffciently variable” if it exhibited 

at least two-fold variation in expression level among the 120 F2 rats. A total of 18,976 probes that 

met these criteria were retained. Among the 18,976 probes, there is one, 1389163 at, from gene 

TRIM32. This gene was found to cause Bardet-Biedl syndrome (Bardet-Biedl syndrome (BBS) is 

a genetic condition that impacts multiple body systems. 

The Bardet-Biedl syndrome is classically defned by six features. Patients with BBS can expe-

rience problems with obesity, specifcally with fat deposition along the abdomen. They often also 

suffer from intellectual impairments. Commonly, the kidneys, eyes and function of the genitalia 

will be compromised. People with BBS may also be born with an extra digit on the hands. The 

severity of BBS varies greatly even among individuals within the same family). 

Of interest is to fnd the probes among the remaining 18,975 probes that are most related to 

TRIM32. The response variable is the expression level of probe 1389163 at. The features are the 

expression levels of the remaining 18,975 probes. Of the 18,975 probes, the top 3000 probes with 

the largest variances were considered. The expression levels are standardized to have mean 0 and 

standard deviation 1. 

In our analysis of the data, for each of the 100 replications we selected a random sample of size 

100 from the 120 rats and apply the Edc+EBIC to it. From these 100 replications we selected the 

distinct probes that our method yielded. 

In Table 4.9, we present the two probes selected by our method Edc+EBIC. In other to compare 

our result with other researches which used this data we adapt the result presented in Luo and Chen 
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(2014). We observe that SLASSO + EBIC selected two probes just as our method, Edc + EBIC. 

However these probes were different. 

Table 4.9 Rat Data: The Gene Probes Selected by All Considered Methods. 

Methods ProbesID 
ALasso+CV 1387060 at, 1388538 at, 1380070 at, 1370052 at, 1382452 at, 1379079 at, 

1397489 at, 1374131 at, 1383110 at, 1389584 at, 1392692 at, 1379971 at 
1385687 at, 1369353 at, 1374106 at, 1383673 at, 1379495 at, 1383749 at 

1382835 at, 1395415 at, 1383996 at. 
SCAD+CV 1394689 at, 1370434 a at, 1375724 at, 1378765 at, 1375139 at, 1388538 at 

1370052 at, 1382452 at, 1377781 at, 1383841 at, 1380311 at, 1379460 at, 
1385921 at, 1384886 at, 1384136 at, 1387111 at, 1390789 at, 1376693 at, 

1389584 at, 1389231 at, 1390788 a at, 1367741 at, 1374106 at, 1387455 a at, 
1383749 at, 1379803 at, 1383996 at, 1382633 at 

SIS+SCAD 1377546 at, 1396809 at, 1381430 at, 1393543 at, 1372481 at 
SLasso+EBIC 1383110 at, 1392692 at 

Edc+EBIC 1367728 at, 1367705 at 

Example 2: Cardiomyopathy microarray data 

In a study by Redfern et al. (2000) they generated the cardiomyopathy data. This data is a 

microarray data from a transgenic mouse of dilated cardiomyopathy. The mice overexpress a 

G protein-coupled receptor, designated Ro1, that is a mutated form of the human kappa opioid 

receptor, and that signals through the Gi pathway. When the receptor is overexpressed in the hearts 

of adult mice, the mice develop a lethal dilated cardiomyopathy that has many hallmarks of the 

human disease such as chamber dilation, left ventricular conduction delay, systolic dysfunction, 

and fbrosis. The sample size for the study was thirty (30). The thirty mice were divided into 

four groups. The control group was comprised of eight mice that were treated exactly the same 

as the eight-weeks experimental group except that they did not have the Ro1 transgene. A group 

of six transgenic mice expressed Ro1 for two weeks, which is approximately the amount of time 

required to reach maximal expression of Ro1 (Redfern et al., 1999). These mice did not show 

symptoms of disease. A group of nine transgenic mice expressed Ro1 for eight weeks and exhibited 
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cardiomyopathy symptoms. The recovery group of seven transgenic mice expressed Ro1 for eight 

weeks before expression was turned off for four weeks. To determine which gene expression 

changes were due to the expression of the Ro1 transgene, we want to fnd genes that correlate 

(positively or negatively) with the Ro1 expression profle as displayed. 

For the cardiomyopathy study, available data consists of the n × p matrix of gene expression 

values X = [xij ] where xij is the expression level of the jth gene (j = 1, ..., p = 6, 319) for the ith 

mouse (i = 1, ..., n = 30). Each mouse also provides an outcome (Ro1) measure yi. 

In our analysis of the data, we considered 100 replications by selecting a random sample of size 

25 from the 30 specimens and apply the Edc+EBIC to it. We standardized the data set. From these 

100 replications we selected the distinct genes that our method yielded. The Edc+EBIC selected 

genes Msa.10012.0, Msa.10044 and Msa.10108.0. 

In Figure 4.1 - Figure 4.3, we show a scatterplot of the response variable Ro1 and each of the 

selected genes. We overlayed the scatterplots with a lowess curve to describe their relationships 

respectively. 

Next we compare our result with results reported in some researches which used this data. 

These data were used by Hall and Miller (2009) and their method selected genes Msa.2877.0 and 

Msa.1166.0. Also Li et al. (2012) used it in feature screening via distance correlation learning 

and selected Msa.2134.0 and Msa.2877.0. Eventhough the genes selected by Edc+EBIC were 

different from those selected by these researches, the three methods agreed that the relationship 

between the response variable and the selected genes is nonlinear. If Pearson correlation were 

used in the feature selection process it may have missed these variables. No information was seen 

in the medical literature to associate the selected features with the Ro1 expression level. 
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Figure 4.1 The scatterplot of Ro1 (Y) versus gene expression level Msa.10012.0 selected by 
Edc+EBIC, along with a ftting curve (in red). It is clear that the relationship between the variables 
is nonlinear. 
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Figure 4.2 The scatterplot of Ro1 (Y) versus gene expression level Msa.10108.0 selected by 
Edc+EBIC, along with a ftting curve (in red). It is clear that the relationship between the variables 
is nonlinear. 
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Figure 4.3 The scatterplot of Ro1 (Y) versus gene expression level Msa.10044.0 selected by 
Edc+EBIC, along with a ftting curve (in red). It is clear that the relationship between the variables 
is nonlinear. 
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CHAPTER 5 CONCLUSION AND DISCUSSION 

In this chapter we summarize and discuss the results from the dissertation research, 

5.1 Summarization of Dissertation Research 

We  have proposed a new method on sequential Lasso for feature selection in sparse high-

dimensional  linear models by introducing the energy distance correlation to replace the ordinary 

correlation  in Luo and Chen (2014). The new sequential variable selection method which we call 

energy  distance correlation with extended Bayesian Information Criteria (Edc+EBIC) is described 

in  Chapter 3. At each stage of the sequential procedure we maximize the energy distance correla-

tion  between the response and each of the predictor variables. This maximization is done such that 

if  a variable is selected in the previous stage, it’s contribution to the response is removed so that it 

won’t  have a chance of being selected again. The active set of selected variables is updated once a 

variable is selected and the EBIC of the set is calculated. The process stops if the EBIC for the 

current  active set is greater than the EBIC of the previous active set. 

For  the frst part of our research we attempted to examine through simulations the model size 

selection by Adaptive Lasso and SCAD after a sure screening method proposed by Li et al. (2012) 

using distance correlation is applied to the data frst. We observed that the average model size 

selected was quite high. 

For  the second part of our research we studied the properties of the new algorithm. It was 

shown that the new method is selection consistent. Two real-life data sets were analyzed by the 

new method to illustrate its use in applications. We compared through simulations the performance 

of Edc+EBIC with sequential Lasso, Adaptive Lasso, SCAD and SIS+SCAD. The simulation stud-

ies and the real data examples gave much insight into the performance of Edc+EBIC for sequential 

variable selection in high dimensional data analysis. Based on our fndings we conclude the fol-

lowing. 

1. The Edc+EBIC is equally a competitive method for variable selection in high dimensional
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data. This is supported by the high PDR, low FDR and the average model sizes we observed 

in the simulations. 

2. The Edc+EBIC performed equally well in the two health real datasets we considered. Our

proposed method selecting very few features allows for model parsimony and easy of inter-

pretation.

3. The selection consistency and sure screening property as evident in our simulations show that

Edc+EBIC satisfes the oracle property. The oracle property means that the sparse relevant

features can be exactly selected with probability converging to 1 and the effects of relevant

features can be consistently estimated the same as they would be, were they obtained by

knowing the relevant features in advance.

5.2 Discussion 

As evident in the literature review several works have been done using the energy distance 

correlation as a means for variable selection. However as at the time of this research, to the best 

of our knowledge no research was done using energy distance correlation for sequential variable 

selection and used the extended Bayesian Information Criteria as the stopping criteria. We did 

followed the ideas of sequential Lasso and replaced their maximization of Pearson correlation by 

the energy distance correlation. 

In the frst place we established that the energy distance correlation was equally good for mea-

suring the strength of linear associations just as the Pearson correlation. Thus it’s advantageous to 

replace the Pearson correlation with distance correlation since the energy distance correlation was 

capable of measuring both linear and non-linear relationships. 

Secondly we found out through a simulation exercise that when we applied the Distance Corre-

lation - Sure Independence Screening (DC-SIS) proposed by Li et al. (2012) for variable screening 

followed by a regularization method such as SCAD and Adaptive Lasso the average model size 

selected was quite higher than expected and with high standard deviations. 

Thirdly we proposed the Energy distance correlation with extended Bayesian Information Cri-
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teria (Edc+EBIC) and examined through two simulation set-ups it’s selection consistency. By the 

selection consistency of Edc+EBIC we expect that as the sample size increases our method selects 

the relevant variables in the data. We considered a diverging pattern i.e., as the sample size in-

creases the number of predictors (features) also increases. From the results in Table 3.7 and Table 

3.8 we observed that, as the sample size (n) increases, Edc+EBIC selected on average the expected 

number of predictors and did so with decreasing standard deviations meaning that through the 

simulation runs more and more of the selected predictors were close to the expected number of 

relevant predictors. We also observed the positive discovery rate which was 100% indicating that 

on average for each simulation run, out of the selected features all of the relevant features are se-

lected. Additionally, of more importance is the small false discovery rates recorded as the sample 

size increases. 

In the fourth place, we attempted to give a theoretical proof for the selection consistency and 

sure screening property of our method. We realized that the prove by Li et al. (2012) to show the 

selection consistency and sure screening of the energy distance is suffcient. This is because in our 

method we maximized the energy distance correlation betweeen ỹ = [I −H(s∗k)]y and x̃j = [I − 

H(s∗k)]xj at each step of our procedure, while in their use of the energy distance correlation they 

maximized the distance correlation between (x, y) directly. For the second part of the prove for 

the selection consistency of EBIC, Luo and Chen (2014) gave a theoretical prove on the selection 

consistency of extended Bayesian Information Criteria as a stopping criteria in linear regression 

models. 

In the ffth place, we compared our method with Adaptive Lasso, SCAD, SIS+SCAD and 

SLasso. We observed that in almost all simulations we considered, Edc+EBIC recorded the small-

est false discovery rate. The SLasso and Edc+EBIC recorded on average model sizes which were 

close to the expected number of features. The positive discovery rate for Edc+EBIC is close to 

100% in almost all the simulations. 

In the sixth place, we considered two real-life data set problems. We examined gene expres-

sion data on an intercross experiment in rats. The gene TRIM32 is found to cause Bardet-Biedl 
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syndrome  and the task was to select among 18,976 probes which are most correlated with it. Our 

method selected two probes just as SLasso but these probes were different. In the second example 

we  considered the Cardiomyopathy microarray data where the task was to determine which genes 

were  infuential for overexpression of a G protein-coupled receptor, designated Ro1 out of 6319 

genes.  Our method selected three genes and we made a scatterplot of each selected feature and the 

response Ro1, which we observed showed a nonlinear relationship for all three, these three 

features may not have been selected if we had maximized the Pearson correlation. 

5.3 Future Research Plan 

In the near future, we will continue the research and work on the following topics. 

1. The Edc+EBIC in this research was for a high dimensional data with a single response.

The energy distance correlation is able to fnd the distance correlation between two vectors

of unequal dimension. We plan to extend our Edc+EBIC to cover multiple response data.

Technically the frst part of applying our method to multiple responses data has been solved

by Li et al. (2012) since their screening method with distance correlation is able to screen

multiple response data. We just have to think through on how to sequentially select the

features.

2. We observed in this research that many methods have been developed for analyzing high

dimensional data. We intend to explore the large ocean of real datasets to see which methods

are appropriate for data from a particular feld.

3. We would also consider extending our Edc+EBIC to generalize linear models, survival data,

time series data and longitudinal data.
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APPENDIX A    SELECTED R PROGRAMS  

# D i s t a n c e C o r r e l a t i o n w i t h EBIC f o r GA1 . 

‘ ‘ ‘{ r } 

l i b r a r y ( e ne rg y )

# D i s t a n c e C o r r e l a t i o n w i t h EBIC f o r GA1 . 

s e t . s e ed ( 0 2 1 5 8 ) 

n = 200 ; p = 276 ; rho = 0 . 5 ; r e a l p = 8 

u <− rbinom ( 8 , 1 , 0 . 4 )

z <− rnorm ( 8 , mean = 0 , sd = ( 0 . 1 / 1 . 1 5 ) ) 

b e t a <− ( ( − 1 ) ˆ u ) * ( 4 * ( n ˆ ( − 0 . 1 5 ) ) + abs ( z ) )

x = matr ix ( rnorm ( p*n ) , nrow=n , n c o l =p )

b = b e t a 

s igm <− ( ( t ( b )%*%cov ( x [ , 1 : 8 ] )%*%b ) − 0 . 8 * ( t ( b )%*%cov ( x [ , 1 : 8 ] )%*%b ) ) / 0 . 8

b <− as . matrix ( b ) 

x <− as . matrix ( x ) 

### S t e p 1 

x <− s c a l e ( x , s c a l e = TRUE) 

s e l e c t e d <− matrix (NA, nrow = 200 , nco l = 1 ) 
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s e l e c t e d D <− matrix ( 0 , nrow = 200 , nco l = 25) 

f o r ( j i n 1 : 2 0 0 ) { 

EEBIC <− c ( I n f , 10000) 

k = 2 ; s = 0 ; s e l e c t e d C = NULL 

x1 <− x 

y <− x [ , 1 : 8 ]%*%b + rnorm ( n , 0 , s q r t ( sigm ) )

y <− s c a l e ( y ) 

i d x <− seq ( nco l ( x ) ) 

whi le ( EEBIC [ k ] < EEBIC [ k − 1 ] ) {

o u t <− matrix (NA, nrow = nrow ( x ) , nco l = 1 )

f o r ( i i n 1 : nrow ( x ) ) { 

o u t [ i , 1 ] = DCOR( x [ , i ] , y ) $ dCor

} 

s temp <− which . max ( o u t ) 

s e l e c t e d C <− c ( s e l e c t e d C , i d x [ s temp ] ) 

i d x <− i d x [ − c ( s temp ) ] 

sk <− as . v e c t o r ( s temp ) 

a <− as . matrix ( x [ , sk ] ) 

H <− a%*%s o l v e ( t ( a )%*%a )%*%t ( a )

p <− nco l ( x ) 
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ynew <− ( diag ( n ) − H)%*%y

xnew <− ( diag ( n ) − H)%*%x [ , − c ( sk ) ]

s <− s+ l e n g t h ( sk ) 

EEBIC [ k +1] <− n* l o g ( sum ( ( ynew ) ˆ 2 ) / n ) + ( s ) * l o g ( n ) +

2* (1 − l o g ( n ) / ( 2 . 1 * l o g ( p ) ) ) * l o g ( choose ( p , s ) )

y <− ynew 

x <− xnew 

k = k + 1 

} 

x <− x1 

# s d s <− p r i n t ( s −1) 

s d s <− s −1 

s e l e c t e d [ j , 1 ] <− s d s 

s e l e c t e d D [ j , 1 : l e n g t h ( s e l e c t e d C ) − 1 ] <− s e l e c t e d C [ 1 : l e n g t h ( s e l e c t e d C ) − 1 ] 

} 

mean ( s e l e c t e d ) 

sd ( s e l e c t e d ) 

so <− seq ( 8 ) ; so 

p d r o u t <− matrix (NA, nrow = 200 , nco l = 1 ) 

f o r ( i i n 1 : 2 0 0 ) { 

p d r o u t [ i , 1 ] = l e n g t h ( i n t e r s e c t ( s e l e c t e d D [ i , ] , so ) ) / l e n g t h ( so ) 

} 

mean ( p d r o u t ) 
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sd ( p d r o u t ) 

s c <− seq ( 2 7 6 ) [ − so ] 

f d r o u t <− matrix (NA, nrow = 200 , nco l = 1 ) 

f o r ( i i n 1 : 2 0 0 ) { 

f d r o u t [ i , 1 ] = l e n g t h ( i n t e r s e c t ( s e l e c t e d D [ i , ] , s c ) ) / sum ( s e l e c t e d D [ i , ] ! = 0 ) 

} 

mean ( f d r o u t ) 

sd ( f d r o u t ) 

‘ ‘ ‘ 
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