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ABSTRACT

Wei Ning, Advisor

Sequential change point analysis aims to detect structural change as quickly as possible when

the process state changes. A good sequential change point detection procedure is expected to

minimize the detection delay time and the risk of raising false alarm. Existing sequential change

point detection methods cannot be applicable for high-dimensional data because they are univariate

in nature and thus present challenges.

In the first part of the dissertation, we develop a monitoring method to detect structural change

in smoothly clipped absolute deviation (SCAD) penalized regression model for high-dimensional

data after the historical sample with the sample size m. The unknown pre-change regression coef-

ficients are replaced by the SCAD penalized estimator. The asymptotic properties of the proposed

test statistics are derived. We conduct a simulation study to evaluate the performance of the pro-

pose method. The proposed method is applied to the gene expression in the mammalian eye data

to detect changes sequentially.

In the second part of the dissertation, we develop a sequential change point detection method

to monitor structural changes in SACD penalized quantile regression (SPQR) model for high-

dimensional data. We derive the asymptotic distributions of the test statistic under the null and

alternative hypotheses. Furthermore, to improve the performance of the SPQR method, we pro-

pose the Post-SCAD penalized quantile regression estimator (P-SPQR) for high-dimensional data.

Simulations are conducted under different scenarios to study the finite sample properties of the

SPQR and P-SPQR methods. A real data application is provided to demonstrate the effectiveness

of the method.

In the third and fourth part of the dissertation, we investigate the change point problem for

Skew-Normal distribution and three parameter Weibull distribution respectively. Besides detect-

ing and obtaining the point estimate of a change location, we propose an estimation procedure

based on the confidence distribution (CD) along with the modified information criterion (MIC) to
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construct the confidence set for the change location. Simulations are conducted to evaluate the per-

formance of the proposed method in terms of powers, coverage probabilities and average lengths

of confidence sets. Real data applications are provided in each part to illustrate the performance of

the proposed methods.
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CHAPTER 1 LITERATURE REVIEW

1.1 Introduction

The change point analysis plays an important role in finance, time series analysis, economy,

quality control, genome research, signal processing, medical research and statistical calibration.

The detection of change points attempts to identify points in time when the probability distribution

of a stochastic process or time series changes. The study of the change-point problem was origi-

nally stated by Page (1954, 1955) who first proposed a procedure to detect only one change in a

parameter. Offline change-point detection and sequential (online) change-point detection are two

common types of change-point detection methods. We generally use log-likelihood or modified

information criterion in the offline change point analysis while online detection method uses gen-

eralized likelihood ratio, cumulative sum method (CUSUM) or Shiryayev-Roberts (SR) procedure.

1.2 Change Point Analysis

A change point detection method has been widely used in various areas such as finance, climate

monitoring, quality control, examination of gene expressions, etc. The change point problem is

generally referred to as identifying the number changes and estimating respective locations. The

change point problem can be formulated in several models including parametric, nonparametric,

regression, time series, and Bayesian, see for example, Chernoff and Zacks (1964); Gupta and

Chen (1996); Sen and Srivastava (1975a); Cosörgö and Horváth (1997); Chen and Gupta (1997).

Let x1, x2, . . . , xn be a sequence of n independent random variables with probability distribu-

tion functions F1, F2, . . . , Fn respectively. The change point problem test the following hypothesis,

H0 : F1 = F2 = · · · = Fn (1.2.1)

versus

H1 : F1 = · · · = Fk1 6= Fk1+1 = · · · = Fk2 6= Fk2+1 = · · · = Fkq 6= Fkq+1 = · · · = Fn, (1.2.2)
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where 1 < k1 < k2 < · · · < kq < n and q is the number unknown change points and k1, k2, . . . , kq

are the corresponding change locations. In the case of multiple change points, Vostrikova (1981)

introduced binary segmentation procedure which allows to identify the number of change points

and estimate the locations simultaneously.

Sequential change-point detection has been extensively studied for univariate data. In sequen-

tial change-point detection method, the observations are coming one by one and an alarm must

be raised as quickly as possible following any change only based on previous information, see for

example, Page (1954); Shiryaev (1963); Lorden (1971). Suppose that x1, . . . , xk are independent

and identically distributed to a pre-change distribution f0 and xk+1, . . . , xn are independent and

identically distributed to a post-change distribution f1 where f0 and f1 are known. Let k be an

unknown change point location and there exists a positive constant c, the stopping time of the Page

CUSUM,Page (1954) procedure is defined as,

Tn = inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

log
f1(xi)

f0(xi)
≥ c

}
. (1.2.3)

The CUSUM method minimizes the detection delay. In the Page CUSUM method, however, Lai

and Xing (2010) studied when pre- and post-change density functions were not known in advance

and assumed they came from the same canonical exponential family. In this case, the log-likelihood

ratio in Page CUSUM method (1.2.3) was replaced by the generalized likelihood ratio (GLR). Mei

(2006) proposed a change point detection procedure for unknown pre-change parameter. Further,

he investigated when both the pre-change distribution fθ0 and post-change distribution fθ1 involved

with unknown parameters. The test statistics for the Mei (2006) procedure is given as follows.

T ∗(a) = inf

{
n ≥ 1 : max

1≤k≤n
inf
θ∈Θ

sup
λ∈Λ

{
1

p(θ)

n∑
i=k

log
gλ(xi)

fθ(xi)

}
≥ a

}
, (1.2.4)

where a is a positive threshold value determine by controlling either the short or the long ARL at
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a given level and p(·) is a positive continuous function on Θ. For all θ and λ,

p(θ) = inf
λ∈Λ

I(λ, θ)

q(λ)
and q(λ) = inf

θ∈Θ

I(λ, θ)

p(θ)
, (1.2.5)

where I(λ, θ) = Eλ log{gλ(x)/fθ(x)}. The Eλ is the expectation associated with the post-change

parameter λ.

1.3 Dissertation Structure

In Chapter 2 we develop a method for sequential change-point detection procedure for high-

dimensional data in penalized regression model. Our proposed test statistics for the sequential

change-point detection procedure based on SCAD penalized regression model with finite monitor-

ing horizon for high-dimensional data. The asymptotic properties of the proposed test statistics are

derived. The asymptotic critical values of the proposed method are obtained through simulations.

Simulations are conducted to study the performance of the proposed method. Stopping time at var-

ious change point locations are obtained. The proposed method is applied to the gene expression

in the mammalian eye data to detect the structural change sequentially.

In Chapter 3, we provide an overview of penalized quantile regression and summarize existing

work related to our study. We propose a sequential change point detection procedure in SCAD

penalized quantile regression for high-dimensional data. To improve the monitoring process, we

provide a modified version of the test statistic based on the post-SCAD penalized quantile regres-

sion estimator. We conduct simulations to illustrates the testing procedure and to evaluate the

performance of the proposed methods.

In Chapter 4, we discuss the confidence distributions for skew normal change-point model

based on modified information criterion (MIC). Simulations are conducted to illustrate the advan-

tages of the proposed method. We compare the existing method in terms of coverage probabilities

and average lengths of the confidence sets, especially when the change occurs at the very begin-

ning or in the very end. The proposed method is applied to two stock market data to illustrate the

detection and the estimation procedures.
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In Chapter 5, we study the change point problem for three-parameter Weibull distribution.

We verify the asymptotic distribution of the MIC statistics and convergence of the change point

estimator through simulations. Simulations are carried out to illustrate the performance of the MIC

and SIC statistics. A rainfall data is used to illustrate the application of the proposed procedure.

The conclusions and some potential future research directions are provided in Chapter 6.
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CHAPTER 2 SEQUENTIAL CHANGE POINT DETECTION PROCEDURE FOR

HIGH-DIMENSIONAL DATA VIA SCAD PENALTY

2.1 Introduction

In the sequential change-point analysis the observations are received sequentially and we need

to make decision whether to continue the process or not after every new observation. The decision

has to be made solely based on previous information in real-time. There has been a rich literature

in the sequential change-point detection analysis for univariate data, see for example, Page (1954);

Shiryaev (1963); Roberts (1966); Lorden (1971). Horváth, Huškova, Kokoszka, and Steinebach

(2004) proposed a sequential monitoring method to detect structural change based on weighted

CUSUMs of residuals, in which the unknown in-control parameter has been replaced by its least-

squares estimate from the training observations. Furthermore, their monitoring process continues

until infinity when the null hypothesis is not rejected. In practice, for most real-world applications,

we cannot continue to monitor the process until infinity if no change exists. Horváth, Kokoszka,

and Steinebach (2007) further investigated the monitoring process for a linear model which stops

even if no change is detected after a certain number of observations. Zhou, Wang, and Tang (2015)

developed a method for sequential detection of structural changes in linear quantile regression

models.

High-dimensional data analysis is a very popular research area in statistics. Generally, the

number of explanatory variables (p) exceeds the number of observations (n) as we refer to high-

dimensional data. In real-world scenario, we often deal with large number of explanatory variables.

For example, genomic and healthcare data set have large number of explanatory variables for each

observation. For large number of predictor variables, there is a chance that these variables can

be correlated with other explanatory variables. Moreover, too many variables could lead to over-

fitting in a regression model. Variable selection procedures such as forward selection, backward

elimination, or stepwise method to select the best subset of predictor variables and to attain parsi-
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mony and good fit. These methods, however, have certain limitations for collinear regressors and

lead to inaccurate results for high-dimensional data.

The penalized regression techniques have been proven to be effective for high-dimensional

data, see for example, Tibshirani (1996); Hastie, Tibshirani, and Friedman (2009). The idea behind

the penalized regression method is to perform linear regression, while shrinking the coefficients

towards zero. The benefit of this approach is that shrinking the coefficient estimates can signifi-

cantly reduce their variances. There are two well-known techniques for shrinking the regression

coefficients towards zero are the ridge regression and the least absolute shrinkage and selection

operator (Lasso), see Tibshirani (1996). The major difference is that the ridge (`2 penalty) re-

gression shrinks all the coefficients to a non-zero value whereas the Lasso (`1 penalty) shrinks

some of the coefficients and sets other to be exactly equal to zero. Thus, Lasso method performs

both variable selection and parameter estimation simultaneously. The Lasso-type estimator pro-

posed by Knight and Fu (2000) where they minimized the residual sum of squares and a penalty

proportions to the models parameter. Other penalized regression techniques, including smoothly

clipped absolute deviation (SCAD) (Fan and Li (2001)), Elastice Net (Zou and Hastie (2005)) and

adaptive Lasso (Zou (2006)) are few. The SCAD penalty performs both variable selection and

estimation simultaneously and thus, it is computationally feasible for high-dimensional data. Fan

and Li (2001) established the asymptotic properties of SCAD penalized likelihood. In addition, the

SCAD penalty function satisfies the oracle property, see, Fan and Li (2001); Fan and Peng (2004).

A handful of literature is available on the Lasso estimation in change point analysis. Kim and

Kim (2008) studied the asymptotic behavior of the least squares estimators in segmented multiple

regression which has one or more change points. Harchaoui and Lévy-Leduc (2010) proposed an

approach for estimation of the location of change-points in one-dimensional piecewise constant

signals observed in white noise. They used a penalized least-squares criterion with a `1 penalty.

Ciuperca (2014) studied the model selection procedure for adaptive Lasso with multiple change-

points and investigated its asymptotic properties. To the best of our knowledge there is no previous

study investigated the use of the SCAD penalty with regression model for sequential change point
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analysis under high-dimensional scenario.

In this chapter, we propose test statistics for sequential change point detection procedure us-

ing SCAD penalized regression model with finite monitoring horizon for high-dimensional data.

Consider the linear model,

Yi = X>i β + Ei, i = 1, 2, . . . , (2.1.1)

where Xi is the ith observation for the vector (X1, . . . , Xp) of the explanatory variables, β =

(β1, . . . , βp) denotes the true unknown coefficients and Yi denotes the response variable Y . We

assume that there exist historical observations of size m such that the matrix m×p of the variables

X = (X1, . . . , Xp) ∈ Rm×p, the response variables Y = (Y1, . . . , Ym) ∈ Rm, and a vector of

independent identically distributed errors E = (E1, . . . , Em). Let β0 = (β01, . . . , β0p) be the true

unknown parameter vector.

2.1.1 LASSO

The least absolute shrinkage and selection operator (Lasso) method was introduced by Tibshi-

rani (1996). This estimation method is defined as the minimization of the least squares penalized

by the norm `1 of the vector β. Lasso can successfully shrink some coefficients to be exactly zero

and give a sparse solution.

β̂Lassom = arg min
β∈RP

{ m∑
i=1

(
Yi −X>i β

)2
+ λm

p∑
j=1

|βj|
}
, (2.1.2)

where λm(0 < λm < ∞) is tuning parameter and can be obtained via cross-validation, see Tib-

shirani (1996). Zhao and Yu (2006) noted if an irrelevant predictor is highly correlated with the

predictors in the true model, Lasso may not be able to distinguish it from the true predictors with

any amount of data and any amount of regularization. Further, Knight and Fu (2000) proved that

the Lasso estimator is only n1/2-consistent under some regularity conditions. Thus, it cannot be

achieved simultaneous consistent variable selection and estimation. Therefore, the oracle property

do not hold for the Lasso, see for example Fan and Li (2001); Zou (2006).
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2.1.2 SCAD Penalized Regression

To improve the performance of the Lasso, Fan and Li (2001) introduced an oracle selection

procedure referred to as the smoothly clipped absolute deviation (SCAD). The SCAD is intended

to penalize small coefficients heavily and large coefficients lightly. The penalized least squares

estimator, denoted by β̂SCADm can be defined as,

β̂SCADm = arg min
β∈RP

{ m∑
i=1

(
Yi −X>i β

)2
+

p∑
j=1

pλm(|βj|)
}
, (2.1.3)

here pλm(·) is the penalty function with tuning parameter λm. The SCAD penalty is symmetric

and continuously differentiable on (−∞, 0) ∪ (0,∞). The first derivative of the SCAD penalty is

given by,

P ′λm(β) = λm{I(β ≤ λm) +
(aλm − β)+

(a− 1)λm
I(β > λm)}. (2.1.4)

Fan and Li (2001) discussed that the SCAD penalty function satisfies three requirements for vari-

able selection coefficient estimation, including asymptotic unbiasedness, sparsity and continuity

of the estimated parameters. The solution to the SCAD penalty can be given as, the using the

β̂SCADj =


sign(β̂j)(|β̂j| − λm)+ if |β̂j| ≤ λm,

{(a− 1)β̂j − sign(β̂j)aλm}/(a− 2) if 2λm < |β̂j| ≤ aλm,

β̂j if |β̂j| > aλm,

where λm(0 < λm < ∞) and a are two unknown parameters. Theoretically, the best pair (λm, a)

can be obtained using two dimensional grids search, for example, cross validation method. Fan

and Li (2001) suggested a = 3.7 is a good choice for various problems. In this research a was

set to 3.7 and λm selected by the cross validation method. The tuning parameter λm controls the

amount of shrinkage. The larger the value of λm, the greater the amount of shrinkage. Fan and Li

(2001) discussed that SCAD penalty function satisfies three requirements for variable selection and

coefficient estimation, including asymptotic unbiasedness, sparsity and continuity of the estimated
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parameters. Without loss of generality, we assume that the first q regression coefficients are nonze-

ros and the remaining (p − q) regression coefficients are 0s. Let A = {β0,j 6= 0 : j = 1, . . . , p}

be the index set of the nonzero coefficients for the true parameter, where β0,j is the jth component

of the parameter vector β0. We denote the SCAD penalized regression estimate by β̂SCADm . Let

A∗ = {β̂SCADm,j 6= 0 : j = 1, . . . , p} be the index set of the SCAD penalized regression estima-

tor calculated using the historical sample size m, where β̂SCADm,j is the jth element of the SCAD

penalized regression estimator β̂SCADm . To obtain the limiting distribution, we make the following

assumptions, also called the regularity conditions, which are needed to derive the asymptotics of

the estimators:

A1. Let Cm = 1
m

∑m
i=1XiX

>
i . There exists a p × p positive definite matrix C and a constant

ρ > 2 such that |Cm − C| = O(m−ρ).

A2. The model errors E1, . . . , Em, Em+1, . . . are independent and identically distributed random

variables. E(Ei) = 0, V ar(Ei) = σ2 <∞ and E|Ei|v <∞ with some v > 2.

A3. If A1 holds, we have, |C−1

m − C
−1| = O(m−ρ) a.s.

A4. There exist constants M1,M2 ∈ R such that

M1 < λmin

(
1

n
X>X

)
< λmax

(
1

n
X>X

)
< M2,

where λmin and λmax are the smallest and largest eigenvlaues of Cm respectively.

Since SCAD penalized estimator satisfy the oracle property we have,

1.
√
nAn

(
n−1X>Xσ2

)1/2(
β̂SCADm − β0

)
−→ N(0, C11), where An is an arbitrary matrix such

that AnA>n −→ C11, and C11 is q × q non-negative symmetric matrix and contains the

elements of the matrix C in the set A.

2. Consistency in variable selection, limm−→∞ P (A∗ = A) = 1.
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2.2 Sequential Change-Point Problem

Let m be the size of the historical sample. We assume that there is no change in the historical

sample. Similar to Chu, Stinchcombe, and White (1996), we use the historical sample to esti-

mate the pre-change coefficients of the SCAD penalized regression model. After we select the

significant explanatory variables, the future incoming observations Y, X1, . . . , Xp are monitored

sequentially following the historical sample size m. Let Tm be the monitoring horizon. The linear

model after historical observations m is,

Yi = X>i β + Ei, i = m+ 1,m+ 2, . . . (2.2.1)

At each time point i, our goal is to test whether we have the same model as the one using the

historical sample size m. Under the null hypothesis, if there is no change in the coefficients,

H0 : βi = β0 for i = m+ 1,m+ 2, . . .

Under the alternative hypothesis, we consider at an unknown time point k the coefficients change

from β0 to β1. There exists k ≥ 1 such that,

H1 :


βi = β0 ; i = m+ 1,m+ 1, . . . ,m+ k,

βi = β1 ; i = m+ k + 1, . . .m+ Tm and β0 6= β1.

According to Horváth et al. (2004),

Γ(m, k) =
1

σ̂m

∣∣∣∣ m+k∑
i=m+1

Êi
∣∣∣∣, (2.2.2)

where Êi = Yi −X>i β̂SCADm for i = m+ 1,m+ 2, . . . and σ̂2
m is the error variance defined as,

σ̂2
m =

1

(m− p∗)

m∑
i=1

(Yi −X>i β̂SCADm )2, (2.2.3)
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where p∗ is the number of non-zero coefficients of the SCAD penalized estimator. For a given

constant γ ∈ [0, 1/2), the g(m, k, γ) is called the normalising function and defined as,

g(m, k, γ) = m1/2

(
1 +

k

m

)(
k

k +m

)γ
, (2.2.4)

where γ is called the control parameter. We propose the test statistic for the monitoring structural

change,

Ω = sup
1≤k≤Tm

Γ(m, k)

g(m, k, γ)
. (2.2.5)

2.2.1 Open-end Procedure

Horváth et al. (2004) studied the monitoring process which may continue to infinity if no alarm

is raised. This is referred to as open-end procedure. In the open-end procedure, the monitoring

horizon Tm = ∞. The stopping time of the proposed test statistic when the monitoring process

stop and reject the null hypothesis is defined as,

Λ(m) =


inf{k ≥ 1; Γ(m, k) ≥ g(m, k, γ)cα(γ)},

∞ for all k = 1, 2, 3, . . . ,

(2.2.6)

where cα(γ) is the critical value which can be obtained through simulations at a given significance

level α ∈ (0, 1). Under the null hypothesis,

lim
m→∞

P (Λ(m) <∞) = α, (2.2.7)

and under the alternative hypothesis,

lim
m→∞

P (Λ(m) <∞) = 1. (2.2.8)
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2.2.2 Closed-end Procedure

In the closed-end procedure, the monitoring process stops after a fixed number of observations

even if no change is observed, see for example, Horváth et al. (2007); Zhou et al. (2015). Let

N > 0. Suppose Tm < ∞ with limm→∞ Tm/m = N . Under closed-end procedure, the stopping

time of the proposed test statistic when the monitoring process stop and reject the null hypothesis

is defined as,

Λ∗(m) =


inf{k ≥ 1; Γ(m, k) ≥ g(m, k, γ)c∗α(γ)},

Tm for all k = 1, . . . , Tm,

(2.2.9)

where c∗α(γ) is the critical value which can be obtained through simulations at a given significance

level α ∈ (0, 1). Under the null hypothesis,

lim
m→∞

P (Λ∗(m) <∞) = α, (2.2.10)

and under the alternative hypothesis,

lim
m→∞

P (Λ∗(m) <∞) = 1. (2.2.11)

The monitoring process stops immediately for large γ value. Thus, the large value of γ is preferred

when the change in the regression coefficients happens shortly after m.

Theorem 2.2.12. Under the assumptions, if the null hypothesis holds, for open-end procedure,

lim
m→∞

P
(
Ω ≤ cα(γ)

)
= P

(
sup

1≤t≤1

‖W (t)‖∞
tγ

≤ cα(γ)

)
,

for closed-end procedure,

lim
m→∞

P
(
Ω ≤ c∗α(γ)

)
= P

(
sup

1≤t≤N/(N+1)

‖W (t)‖∞
tγ

≤ c∗α(γ)

)
,

where {W (t), 0 ≤ t <∞} denotes a p-dimensional Weiner process.
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Using Theorem 2.2.12, under the null hypothesis, we can obtain the asymptotic distribution of

the CUSUM test statistic for the open- and closed-end procedures. The asymptotic critical value

cα(γ) is obtained from,

P

(
sup

1≤t≤1

‖W (t)‖∞
tγ

≥ cα(γ)

)
= α,

and the asymptotic critical value for the closed-end procedure c∗α(γ) can be obtained from,

P

(
sup

1≤t≤N/(N+1)

‖W (t)‖∞
tγ

≥ c∗α(γ)

)
= α,

where α ∈ (0, 1) and the tuning parameter 0 ≤ γ < 1/2. We obtain the asymptotic critical values

through simulation. The Weiner process ‖W (t)‖∞/tγ is approximated by ‖M−1/2
∑tM

i=1 ei‖∞/tγ

where ei ∼ N(0, 1) and M is a grid of 10000. In each iteration, the maximum value of the

process for both open- and closed-end procedures obtained over t ∈ (0, 1) and t ∈ (0, N/(N + 1))

respectively. The asymptotic critical values are given in Tables 2.1-2.2. The results are based on

50000 iterations.

Theorem 2.2.13. Under the assumptions, if the alternative hypothesis holds, we have,

sup
1≤k≤Tm

Γ(m, k)

g(m, k, γ)
−→∞ as m −→∞.

Proof. Theorem 2.2.12

The proof of Theorem 2.2.12 is based on the series of lemmas given in Horváth et al. (2004) and

Horváth et al. (2007). In high-dimensional setting the Lemma 3.1 in Horváth et al. (2007) and

Lemma 5.1 in Horváth et al. (2007) are still valid. We will show that the Lemma 5.2 in Horváth

et al. (2004) is true for the SCAD penalized least square model. After that, we can adopt the

Theorem 2.1 in Horváth et al. (2004) to prove the Theorem 2.2.12.

Lemma 2.2.14. [Lemma 5.2 in Horváth et al. (2004)] If the assumptions of Theorem 2.2.12 are
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satisfied, as m −→∞

sup
1≤k≤N

∣∣∣∣ m+k∑
i=m+1

Êi −
(

m+k∑
i=m+1

Ei −
k

m

m∑
i=1

Ei
)∣∣∣∣

g(m, k, γ)
= Op(m

−ρ).

where g(m, k, γ) is defined in (3.2.11).

Proof. Lemma 2.2.14

So,

β̂SCADm − β0 = C
−1

m

1

m

m∑
i=1

XiEi

we have
m+k∑
i=m+1

Êi =
m+k∑
i=m+1

(
Ei −X>i (β̂SCADm − β0)

)
=

m+k∑
i=m+1

Ei −
( m+k∑
i=m+1

Xi

)>
C
−1

m

1

m

m∑
j=1

XjEj.

By the central limit theorem and A1 we get,

∣∣∣∣ m∑
i=1

XiEi
∣∣∣∣ = Op(m

1/2). (2.2.15)

Since the SCAD estimate β̂SCADm,j satisfies the oracle property by consistency in variable selection,

limm−→∞ P (A∗ = A) = 1. Therefore, limm−→∞ P (A∗ ∩ Ac = ∅) = 1. Let S = A∗ ∩ A. Putting

together (A1), (A3) and (2.2.15), we get (X>S XS)
−1 = 1

m
C−1

S (1 + op(1)), where CS contains the

elements of the matrix C with the index in the set S. Considering the Karush-Kuhn-Tucker (KKT)

optimality conditions, for j ∈ A ∩A∗ we have,

2X>j (Y −Xβ̂SCADm ) = λmsign(β̂SCADm,j ),

2X>j (E −X(β̂SCADm − β0)) = λmsign(β̂SCADm,j ),

X>j (E −X(β̂SCADm − β0)) =
1

2
λmsign(β̂SCADm,j ).
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For any given ε > 0 and , we have,

P

(
X(β̂SCADm − β0) = XS(β̂

SCAD
m − β0)S

)
> 1− ε, (2.2.16)

P

(
X>S (E −XS(β̂

SCAD
m − β0)S) =

1

2
λmsign(β̂SCADm,j )

)
> 1− ε. (2.2.17)

By assumptions,

P

(
(β̂SCADm − β0)S = (X>S XS)

−1
X>S E −

1

2
λm(X>S XS)

−1sign(β̂SCADm,j )

)
> 1− ε. (2.2.18)

For all j ∈ A, we have,

X>j E = Op(m
1/2) and (X>S XS)

−1
X>S E = Op(m

−1/2). (2.2.19)

The asymptotic normality of the estimators implies,

(q/m)1/2(β̂SCADm − β0)S = Op(1). (2.2.20)

Putting together (2.2.19), (2.2.18) and assumptions, we get

(β̂SCADm − β0)S = (X>S XS)
−1
X>S E(1 + op(1)). (2.2.21)

Similarly, for all k ≥ 1, we get

P

( m+k∑
i=m+1

X>i (β̂SCADm − β0) =
m+k∑
i=m+1

X>i,S(β̂
SCAD
m − β0)S

)
> 1− ε, (2.2.22)
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Putting together (2.2.22), (2.2.18) and (2.2.19), we obtain the CUSUM of residuals

m+k∑
i=m+1

Êi =
m+k∑
i=m+1

(
Ei −X>i.S(β̂SCADm − β0)S

)
=

m+k∑
i=m+1

Ei −
m+k∑
i=m+1

X>i,S(β̂
SCAD
m − β0)S

=
m+k∑
i=m+1

Ei −
( m+k∑
i=m+1

X>i,S

)
(X>S XS)

−1
X>S E(1 + op(1)).

(2.2.23)

Now applying the Theorem 2.1 of Horváth et al. (2004) completes the proof.

Proof. Theorem 2.2.13

Let k′ = m+ k∗. Consider,

m+k
′∑

i=m+1

Êi =
m+k

′∑
i=m+1

(
Ei −X>i,S(β̂SCADm − β0)S

)
=

m+k
′∑

i=m+1

Ei −
m+k∗∑
i=m+1

X>i,S(β̂
SCAD
m − β0)S −

m+k
′∑

i=m+k∗+1

X>i,S(β̂
SCAD
m − β0)S.

(2.2.24)

But Theorem 2.2.12 yields that,

∣∣∣∣ m+k
′∑

i=m+1

Êi −
(

m+k
′∑

i=m+1

Xi,S

)>
(β̂SCADm − β0)S

∣∣∣∣
g(m, k′ , γ)

= Op(1).

Let C11 be the first column of C and let C>11(β0 − β̂SCADm )S 6= 0. Using the assumptions we have,

( m+k
′∑

i=m+k∗+1

Xi,S

)>
(β0 − β̂SCADm )S = (k

′ − k∗)C>11(β0 − β̂SCADm )S

+O((m+ k∗)1−ρ) +O((m+ k
′
)1−ρ).
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Thus, we get

lim inf
m−→∞

∣∣∣∣( m+k
′∑

i=m+k∗+1

Xi,S

)>
(β̂SCADm − β0)S

∣∣∣∣
g(m, k′ , γ)

> 0.

This completes the proof.

Table 2.1 Asymptotic critical values for the open-end procedure when the dimensions
p = 2 and γ ∈ {0.00, 0.15, 0.25, 0.35, 0.45, 0.49}, calculated on 50000 replications

γ/α 0.010 0.025 0.050 0.100 0.250
0.00 3.019468 2.734264 2.486683 2.234026 1.833559
0.15 3.078669 2.795639 2.554139 2.303043 1.911031
0.25 3.135282 2.864542 2.626865 2.372679 1.990685
0.35 3.247067 2.970504 2.742768 2.498331 2.128268
0.45 3.479984 3.229682 3.008465 2.784761 2.434316
0.49 3.764611 3.508515 3.303435 3.073143 2.720441
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Table 2.2 Asymptotic critical values for the closed-end procedure when N ∈ {2, 4, 6, 9},
p = 2 and γ ∈ {0.00, 0.15, 0.25, 0.35, 0.45, 0.49}, calculated on 50000 replications

γ N/α 0.010 0.025 0.050 0.100 0.250

0.00

2 2.447139 2.211787 2.020908 1.815498 1.487324
4 2.686489 2.430562 2.222431 1.990774 1.629909
6 2.785824 2.514810 2.297350 2.057684 1.688002
9 2.847110 2.572124 2.351546 2.108416 1.730943

0.15

2 2.649895 2.404296 2.201695 1.987356 1.647810
4 2.829618 2.569068 2.355556 2.121323 1.759586
6 2.902434 2.632341 2.411011 2.170361 1.801032
9 2.948248 2.676014 2.446939 2.209239 1.833419

0.25

2 2.816933 2.561952 2.359019 2.134979 1.790156
4 2.954011 2.681545 2.469789 2.236936 1.874830
6 3.004398 2.735205 2.510444 2.276272 1.907793
9 3.045116 2.767461 2.539297 2.300939 1.930600

0.35

2 3.026753 2.766572 2.563014 2.338523 1.994179
4 3.122079 2.854851 2.635548 2.404585 2.049275
6 3.149867 2.883356 2.661403 2.427641 2.070099
9 3.171244 2.904029 2.679934 2.445955 2.085801

0.45

2 3.400988 3.136741 2.935825 2.713851 2.375432
4 3.433242 3.167601 2.965047 2.739027 2.400873
6 3.442337 3.179246 2.974512 2.748497 2.408898
9 3.446603 3.188064 2.981583 2.754953 2.414795

0.49

2 3.732576 3.463671 3.257303 3.037973 2.688347
4 3.744958 3.474354 3.268213 3.050684 2.701117
6 3.747245 3.478562 3.271668 3.054774 2.706148
9 3.749885 3.479867 3.274127 3.057681 2.708363

2.3 Simulation Studies

In this section, we evaluate the performance of the sequential change point detection proce-

dure for both open- and closed-end methods for the SACD penalised regression model. We con-

sider that the number of explanatory variables p = 10. The following two settings are consid-

ered. The first setting is used to evaluate the Type I errors of the proposed method. In the first

case, the true parameter vectors β0 ∈ {−2, 0, 2, 0, 10, 1, 0, 0, 8, − 5} and Xi for all i ∈

{1, . . . , 10}\{3, 4, 5} have standard normal distribution N(0, 1) and X3 ∼ N(2, 1), X4 ∼ N(4, 1)

and X5 ∼ N(5, 1). In the second setting, under the null hypothesis, the true parameter vectors
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β0 ∈ {0, 0, 2, 0, 0, 1, 0, 0, 1, 0} and under the alternative hypothesis, we consider the parame-

ter vector β1 ∈ {0, 0, 0, 3, 0, 0, 1, 0, 0, −1}. We consider the two different distributions of the

explanatory variables X1, X2, . . . , X10. Under H0, Xi for all i ∈ {1, . . . , 10}\{3, 4, 5} have stan-

dard normal distributionN(0, 1) andX3 ∼ N(2, 1), X4 ∼ N(4, 1) andX5 ∼ N(5, 1). The second

distribution the ith explanatory variable is Xi + 0.8 where Xi ∼ N(0, 1) for all i ∈ {1, . . . , 10}.

Moreover, for both settings, the model errors Ei are iid N(0, 1).

Table 2.3 summarizes the Type I error for both open and closed end procedures. The various

control parameter value γ and the different sizes of the historical observations m are considered.

The γ ∈ {0, 0.25, 0.45} and m ∈ {75, 100, 200}. The results are based on 2500 iterations. The

Type I errors based on the closed-end procedure is always larger than the Type I errors obtained

from the open-end procedure. For small γ value, the Type I errors of the open-end procedure is

below the nominal level 0.05. When open-end procedure is considered, smallerN provides slightly

deflated Type I errors. Thus, for small N , we suggest to use the tuning parameter γ close to 0.5.

Type I errors are compared in Figure 2.1.

Table 2.3 Type I errors of both open- and closed-end procedures for SCAD penalized regression
for various values of γ and the nominal significance level α = 0.05

Closed-end Open-end
m N/γ 0 0.25 0.45 0 0.25 0.45

75

2 0.047 0.053 0.044 0.013 0.024 0.036
4 0.038 0.037 0.037 0.020 0.028 0.035
10 0.040 0.042 0.036 0.031 0.033 0.035
20 0.050 0.052 0.046 0.046 0.047 0.045
50 0.041 0.041 0.036 0.040 0.039 0.037

100

2 0.035 0.038 0.036 0.010 0.019 0.030
4 0.034 0.036 0.031 0.017 0.026 0.030
10 0.039 0.038 0.038 0.030 0.034 0.036
20 0.033 0.032 0.025 0.028 0.028 0.025
50 0.034 0.034 0.027 0.032 0.033 0.027

200

2 0.028 0.029 0.031 0.009 0.016 0.028
4 0.028 0.031 0.030 0.015 0.020 0.024
10 0.041 0.039 0.037 0.030 0.034 0.036
20 0.026 0.026 0.024 0.020 0.024 0.023
50 0.030 0.032 0.028 0.029 0.029 0.027
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Figure 2.1 Type I error comparison for open- and closed-end procedures

We conducted the Monte Carlo simulation to investigate the performance of the proposed method.

First we performed the power analysis for different control parameter γ ∈ {0, 0.25, 0.45} while

changing the size of a test α, considering α ∈ {0.025, 0.05, 0.1}. Further, the simulations are

carried out under various change point locations k∗ ∈ {1, 25, 75} with different historical sample

size m ∈ {75, 100, 200}. We evaluate the power of the test based 1000 simulations and the results

are summarized in Table 2.4. The results are sketched in Figure 2.2.

The summary statistics of the stopping time for both open and closed end procedures summa-

rized in Tables 2.5 - 2.6. In all cases, the processes are monitored from m + 1 until time 9m. In

order to see the effect of the historical sample size, we performed the simulations for various m,

such as m ∈ {100, 300, 600}. Further, we also change the true change point location, considering

k∗ ∈ {1, 25, 100} and level α ∈ {0.025, 0.05, 0.1}. Clearly, the selection of γ value influences the

stopping time. As mentioned in Horváth et al. (2004), it is clear that the smaller value of γ takes



21
longer time to detect the structural change whereas larger γ value stops faster.

Table 2.4 Power comparison for closed-end procedure for change-points k∗ ∈ {1, 25, 100},
α ∈ {0.025, 0.05, 0.1} and γ ∈ {0, 0.25, 0.45}

k∗ = 1 k∗ = 25 k∗ = 75
γ α/m 75 100 200 75 100 200 75 100 200

0.00
0.025 0.948 0.977 0.995 0.936 0.956 0.996 0.857 0.943 0.996
0.050 0.993 0.999 0.999 0.999 0.997 1 0.988 0.995 1
0.100 1 1 1 1 1 1 1 1 1

0.25
0.025 0.925 0.962 0.991 0.876 0.933 0.992 0.757 0.876 0.992
0.050 0.969 0.988 0.999 0.973 0.989 0.999 0.952 0.985 0.999
0.100 0.999 1 1 1 1 1 0.999 1 1

0.45
0.025 0.860 0.930 0.985 0.756 0.881 0.970 0.552 0.731 0.970
0.050 0.937 0.965 0.995 0.918 0.960 0.997 0.846 0.931 0.997
0.100 0.991 0.997 0.999 0.992 0.999 1 0.992 0.997 1

Figure 2.2 Power comparison for closed-end procedures with α = 0.05
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Table 2.5 Summary statistics for the detection time for the open-end procedure with k∗ ∈
{1, 25, 100}, γ ∈ {0, 0.25, 0.45} and α = 0.05

m = 100 m = 300 m = 600
γ Summary/k∗ 1 25 100 1 25 100 1 25 100

0.00

min 4 27 72 6 31 102 10 33 109
Q1 12 38 122 21 47 127 30 56 134

Med 18 45 134 29 55 137 39 66 146
Q3 26 57 141 40 67 152 48 79 161

max 123 200 353 145 159 263 192 227 256

0.25

min 2 9 9 2 26 75 3 27 103
Q1 5 34 119 7 36 118 9 39 121

Med 8 40 130 12 42 128 15 45 130
Q3 14 49 147 20 52 141 25 56 144

max 102 197 353 95 149 244 153 187 239

0.45

min 1 1 1 2 3 3 2 13 13
Q1 2 32 119 3 32 115 3 32 115

Med 4 37 131 4 37 124 4 37 124
Q3 7 46 148 8 44 137 8 44 135

max 98 200 359 80 123 243 66 153 237

Table 2.6 Summary statistics for the detection time for the closed-end procedure with k∗ ∈
{1, 25, 100}, γ ∈ {0, 0.25, 0.45} and α = 0.05

m = 100 m = 300 m = 600
γ Summary/k∗ 1 25 100 1 25 100 1 25 100

0.00

min 4 26 65 6 31 102 9 33 109
Q1 11 37 120 20 45 125 28 54 132

Med 16 44 132 27 53 135 37 64 144
Q3 24 55 148 38 65 149 50 76 158

max 122 197 335 144 157 262 192 226 255

0.25

min 2 8 8 2 26 74 3 27 102
Q1 5 33 118 7 36 118 8 38 120

Med 8 39 129 12 41 127 14 45 129
Q3 14 48 145 20 51 140 24 55 142

max 102 194 335 95 149 243 153 163 239

0.45

min 1 1 1 2 3 3 2 4 4
Q1 2 32 119 3 32 115 3 32 115

Med 4 37 131 4 37 124 4 36 124
Q3 7 46 147 8 44 137 8 44 135

max 54 200 359 80 123 243 66 151 236
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We compare the estimated density of the stopping time at various change point locations, his-

torical sample size, control parameter and size of a test. They are given in Figure 2.3. When α

values change from 0.025 to 0.05, the estimated densities are roughly identical. Not surprisingly,

the historical sample m has significant influence in the stopping time determination. When m

changes from 100 to 300, we observe a high variability in the estimated densities. A small varia-

tion can be observed between the estimated densities for a fixed control value γ irrespective of the

historical sample size.

Figure 2.3 Estimated density of the stopping time for k∗ = {5, 25, 100} and γ ∈ {0, 0.25, 0.45}

2.3.1 Large p

To study the performance of the monitoring process in high-dimensional setting, we con-

duct a simulation study. We generate high-dimensional datasets with (p,m), considering
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(100, 75), (200, 100) and (300, 200) are generated. We consider the following two settings. In

the first settings, the non-zero components of the true parameters are β0,1 = −5, β0,2 = 2, β0,3 =

5, β0,4 = 1, β0,5 = −3, β0,61 = −10 and β0,91 = 8. The predictor variables Xi for all i ∈

{1, . . . , p}\{3, 4, 5} have standard normal distribution N(0, 1) and X3 ∼ N(2, 1), X4 ∼ N(4, 1)

and X5 ∼ N(5, 1).

In the second setting, under the null hypothesis, the true parameter vectors β0,1 = −1, β0,2 =

1, β0,3 = −1, β0,4 = 4, β0,5 = −2, β0,58 = −3 and β0,86 = 2 and under the alternative

hypothesis, we consider the parameter vector β1,1 = 3, β1,2 = 2, β1,45 = −2 and β1,93 = 2 and

the two different distributions of the explanatory variables X1, X2, . . . , Xp. Under H0, Xi for all

i ∈ {1, . . . , p}\{3, 4, 5} have the normal distribution N(0, 1) and X3 ∼ N(2, 1), X4 ∼ N(4, 1)

and X5 ∼ N(5, 1). The second distribution the ith explanatory variable is Xi + 0.8 where Xi ∼

N(0, 1) for all i ∈ {1, . . . , p}. Moreover, for both settings, the model errors Ei are iid N(0, 1).

Table 2.7 summarizes the Type I error for both open and closed end procedures. The various

control parameter value γ ∈ {0, 0.25, 0.45} and the different size of the historical observations

m ∈ {75, 100, 200} are considered. The results are based on 2500 iterations. The Type I errors

based on the closed-end procedure is always larger than the Type I errors based on the open-end

procedure. In the open-end operation, it is vital to properly select the value of the control parameter.

The Type I errors comparatively low in the open-end procedure for Small γ value. When open-end

procedure is considered, smaller N provides slightly deflated Type I errors and it improves for

large N . Thus, for small N , we suggest to use the tuning parameter γ close to 0.5. For large pair

of (p,m), we have deflated Type I errors. Type I errors are sketched in Figure 2.4.
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Table 2.7 Type I errors of both open- and closed-end procedures for SCAD penalized regression
for various values of γ and the nominal significance level α = 0.05

Closed-end Open-end
(p,m) N/γ 0 0.25 0.45 0 0.25 0.45

(100,75)

2 0.041 0.046 0.040 0.012 0.022 0.035
4 0.043 0.045 0.038 0.025 0.034 0.034

10 0.037 0.038 0.035 0.028 0.033 0.033
20 0.044 0.043 0.034 0.036 0.039 0.033
50 0.048 0.047 0.046 0.047 0.046 0.046

(200,100)

2 0.037 0.038 0.034 0.008 0.018 0.027
4 0.031 0.032 0.027 0.016 0.022 0.024

10 0.036 0.033 0.027 0.026 0.028 0.026
20 0.035 0.032 0.032 0.027 0.029 0.032
50 0.039 0.042 0.034 0.038 0.041 0.034

(300,200)

2 0.028 0.030 0.030 0.008 0.016 0.024
4 0.024 0.027 0.022 0.012 0.016 0.020

10 0.025 0.026 0.022 0.019 0.022 0.020
20 0.022 0.019 0.026 0.017 0.018 0.025
50 0.032 0.028 0.024 0.030 0.027 0.024

Figure 2.4 Type I error comparison for open- and closed-end procedures for various pairs of (p,m)
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The power comparisons of the closed-end procedure is given in Table 2.8. We monitor the

process until 9m observations. Figure 2.5 compares the power for the closed-end procedure. For

large historical sample size m, the power is approximately equal to 1 regardless of α level. The

five number summary of the detection time for both open- and closed-end procedure are given in

Tables 2.9-2.10. The results are based on 2500 iterations. As we mentioned earlier, the larger γ

value detect the change immediately when the change occurs shortly after the historical sample

size m.

Figure 2.5 Power comparison for closed-end procedures with α = 0.05

Figure 2.6 compares the estimated densities of the stopping time for various pair of (p,m) com-

pare the estimated densities of the stopping time for various pair of (p,m) and the change-point

locations. We observe variation in density plots, but decreases due to the large historical sample

size.
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Table 2.8 Power comparison for closed end procedure k∗ ∈ {1, 25, 75}, α ∈ {0.025, 0.05, 0.1} ,
γ ∈ {0, 0.25, 0.45} and p ∈ {100, 200, 300}.

p = 100
k∗ = 1 k∗ = 25 k∗ = 75

γ α/m 75 100 200 75 100 200 75 100 200

0.00
0.025 0.962 0.980 0.999 0.935 0.970 0.999 0.875 0.938 0.996
0.050 0.990 0.996 1 0.994 0.998 1 0.983 0.996 1
0.100 1 1 1 1 1 1 1 1 1

0.25
0.025 0.941 0.969 0.999 0.886 0.946 0.997 0.779 0.875 0.993
0.050 0.977 0.992 1 0.978 0.992 1 0.967 0.984 0.999
0.100 0.998 0.998 1 0.999 1 1 1 1 1

0.45
0.025 0.874 0.936 0.999 0.768 0.879 0.995 0.599 0.727 0.976
0.050 0.948 0.973 0.999 0.936 0.965 0.999 0.876 0.920 0.997
0.100 0.989 0.996 1 0.995 0.998 1 0.990 0.997 1

p = 200

0.00
0.025 0.943 0.969 1 0.925 0.964 1 0.866 0.932 0.994
0.050 0.990 0.993 1 0.993 0.998 1 0.984 0.990 1
0.100 0.998 1 1 1 1 1 1 1 1

0.25
0.025 0.911 0.954 1 0.876 0.935 0.998 0.780 0.866 0.990
0.050 0.969 0.986 1 0.978 0.991 1 0.963 0.981 0.999
0.100 0.996 0.998 1 1 1 1 1 1 1

0.45
0.025 0.842 0.910 0.998 0.765 0.870 0.993 0.610 0.721 0.977
0.050 0.925 0.958 1 0.928 0.967 0.998 0.864 0.913 0.994
0.100 0.985 0.996 1 0.994 0.998 1 0.989 0.995 1

p = 300

0.00
0.025 0.946 0.976 1 0.921 0.966 0.999 0.887 0.944 0.999
0.050 0.982 0.993 1 0.990 0.998 1 0.994 0.997 1
0.100 1 1 1 1 1 1 1 1 1

0.25
0.025 0.915 0.962 0.999 0.886 0.932 0.999 0.785 0.875 0.992
0.050 0.967 0.988 1 0.976 0.992 0.999 0.964 0.986 1
0.100 0.998 1 1 1 1 1 1 1 1

0.45
0.025 0.859 0.928 0.996 0.793 0.869 0.996 0.624 0.746 0.968
0.050 0.931 0.968 0.999 0.926 0.967 0.999 0.868 0.928 0.994
0.100 0.985 0.994 1 0.994 0.998 1 0.988 0.999 1
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Table 2.9 Summary statistics for the detection time for the open-end procedure at various
change-point locations with γ ∈ {0, 0.25, 0.45} and level α = 0.05

(p,m)→ (100, 75) (200, 100) (300, 200)
γ Summary/k∗ 1 25 75 1 50 100 1 100 200

0.00

min 2 26 44 2 33 33 3 101 151
Q1 7 33 90 8 62 118 14 124 235

Med 11 42 106 14 74 138 24 148 277
Q3 20 58 139 26 99 182 45 201 369

max 526 672 671 819 874 839 1335 1632 1658

0.25

min 2 10 10 2 15 15 2 70 70
Q1 3 30 86 3 58 114 3 115 228

Med 4 35 99 4 65 130 6 131 260
Q3 7 45 127 8 88 167 10 165 340

max 354 522 664 251 761 897 166 1433 1653

0.45

min 1 1 1 2 1 1 2 2 2
Q1 2 29 86 2 56 113 2 112 227

Med 2 33 99 2 63 130 3 127 260
Q3 4 41 130 4 78 169 4 156 343

max 72 525 665 37 685 893 32 1516 1789

Table 2.10 Summary statistics for the detection time for the closed-end procedure at
various change-point locations with γ ∈ {0, 0.25, 0.45} and level α = 0.05

(p,m)→ (100, 75) (200, 100) (300, 200)
γ Summary/k∗ 1 25 75 1 50 100 1 100 200

0.00

min 2 26 42 2 30 30 3 101 135
Q1 6 32 88 7 61 116 12 121 231

Med 10 40 102 12 71 134 22 142 268
Q3 18 54 132 23 94 173 41 187 350

max 525 608 670 874 870 890 1167 1481 1782

0.25

min 2 6 6 2 15 15 2 41 41
Q1 3 29 85 3 57 113 3 114 226

Med 4 34 97 4 64 128 5 129 255
Q3 7 44 124 7 80 162 10 158 326

max 353 521 671 250 874 876 166 1385 1784

0.45

min 1 1 1 1 1 1 2 2 2
Q1 2 29 86 2 56 113 2 112 227

Med 2 33 99 2 63 129 3 126 258
Q3 4 41 128 4 78 167 4 155 341

max 43 525 664 37 685 893 32 1472 1789



29

Figure 2.6 Estimated densities of the stopping time at various change points and various pair of
(p,m)

2.4 Application

In this section, we apply the proposed method to a real data set. We consider the gene expres-

sion in the mammalian eye data. This dataset is originally described in Scheetz, Kim, Swiderski,

Philp, Braun, Knudtson, Dorrance, DiBon, Huang, Casavant, Sheffield, and Stone (2006). The

laboratory rats were examined to learn about gene expression and regulation in the mammalian

eye. Inbred rat strains were crossed and tissue extracted from the eyes of 120 rats from the F2

generation. There are n = 120 observations and p = 18, 976 explanatory variables. The outcome

variable y is Gene expression measurement for Trim32 and the explanatory variables are the gene

expression measurements for remaining genes. The outcome variable y is graphed in Figure 2.7.



30

Figure 2.7 The outcome of the gene expression measurement for Trim32 in the mammalian eye
data

According to the graph, there is no obvious jump in the data in the first 50 observations. Therefore,

we consider the first 50 observations as the historical data. The proposed method is applied for

the control parameter value γ = 0.45 with α = 0.05. The first change point detected after the

historical sample size m = 50 for a given control parameter value 0.45 is 8. That is, there is a

change of gene expression of 58th rat comparing to the first 57 rats. We also consider the change

point detection with log-likelihood method by assuming the normality of the data under the fixed

sample size n = 120 situation. The result confirms the change occurring at 58th observation.

With the binary segmentation method, there is only one change in the data. Comparing to the

change point detection with the fixed sample size, the advantage of the sequential change point

detection method is that only fewer samples are needed to make decision. In this application, our

method only requires 50 observations and our monitoring process stops after 58 samples. The

traditional log-likelihood method, however, needs entire observations (n = 120) to estimate the

change location. The change-point location corresponding to γ = 0.45 is graphed in Figure 2.8.
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Figure 2.8 The first change point detection in the mammalian eye data

2.5 Conclusion

In this chapter, we proposed test statistics to monitor the structural change for high-dimensional

data using SCAD penalized regression model for both open- and closed-end procedures. The

asymptotic critical values for both monitoring process were provided. The Type I error probability

of the open-end procedure is smaller than the closed-end procedure. The Type I error probabil-

ity improves when N increases. However, the Type I error decreases when the historical sample

size m increases. The power of the test is generally high and its only affected by the size of a

test. We compute the stopping time for both open- and closed-end procedures. As similar to the

Horváth et al. (2004) conclusion, if a change occurs immediately after historical sample size, we

recommend a larger γ value close to 0.5 for high-dimensional data. In comparison to an open-

end procedure, the monitoring process based on the closed-end procedure is usually quicker. We

estimated the density of the stopping time for various cases. We apply the proposed detection pro-

cedure to analyze gene expression in the mammalian eye data to locate change point sequentially.
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CHAPTER 3 SEQUENTIAL CHANGE POINT DETECTION FOR HIGH-DIMENSIONAL

DATA USING PENALIZED QUANTILE REGRESSION

3.1 Introduction

In recent years, quantile regression has been widely used in many areas due to its appealing

properties contrast to the traditional ordinary least square (OLS) regression model. The quantile

regression method was introduced by Koenker and Bassett (1978) as an alternative to the least

square regression. This is considered as an extension of least absolute deviation (LAD) regression

or median regression. Unlike the least squares, quantile regression has been designed to model

the changes in the conditional quantiles of the response variable with respect to the changes in the

covariates. The OLS model examines the importance of the predictor X by modeling the condi-

tional expectations of the response variable Y given X . The quantile regression produces much

more information about the conditional response distribution and provides more robust analysis of

data. Unlike the OLS, the quantile regression estimates are not sensitive to outliers. Therefore, the

quantile regression can be used when the distribution of random errors is heavy-tailed, or when

there are outliers in samples.

Change point detection for quantile regression has been extensively studied, see for example

Bai (1996) proposed tests to detect changes in regression parameters as well as changes in variance.

Additionally, it can be used to detect error heterogeneity in the data. Furno (2007) studied a

likelihood ratio test based on quantile regressions. Qu (2008) proposed different test statistics for

structural change occurring in a pre-specified quantile or across quantiles. Lagrange multiplier test

for structural breaks in quantile regressions was proposed by Furno (2012). Wang and He (2007)

proposed a test for detecting differences in certain quantiles of the intensity distributions. Aue,

Cheung, Lee, and Zhong (2014) proposed a new methodology to simultaneously (or separately)

detect break points, conduct variable selection, and estimate parameters in QR models. Zhang,

Wang, and Zhu (2014) developed a new procedure for testing change points due to a covariate
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threshold in regression quantiles. Their proposed test was based on the CUSUM of the subgradient

of the quantile objective function and required fitting the model only under the null hypothesis.

Although, very few studies examines the use of quantile regression in sequential change point

detection. For instance, Zhou et al. (2015) developed a method for sequential detection of structural

changes in linear quantile regression models. They established asymptotic properties of the test

statistics. Ciuperca (2017) proposed the test statistic for sequential change point detection in a

nonlinear quantile model.

In real-world scenarios, we often deal with large number of explanatory variables. For exam-

ple, genomics, finance and healthcare data have large number of explanatory variables for each

observation. In this chapter, we study the sequential change point method for quantile regression

in high-dimensional covariates. Our approach enables us to analyze the conditional distribution of

the response variable at different quantile level with large explanatory variables. To the best of our

knowledge, there are no previous studies investigating the use of non-convex penalized quantile

regression model in sequential change point analysis.

This chapter is organized as follows. In Section 3.2, the detection procedures based on SPQR

and P-SPQR are proposed to detect changes sequentially under high dimensional scenarios. Cor-

responding asymptotic results are established. Simulations with various settings are conducted

in Section 3.3 to investigate the performance of the proposed methods. The proposed P-SPQR

method is applied to a breast cancer gene expression data to illustrate the detection and estimation

process in Section 3.4. Some discussion is provided in Section 3.5.

3.2 Methodology

Let τ ∈ (0, 1) be fixed and known quantile of interest. Suppose we have a random sample

{Yi, xi1, . . . , xip}, i = 1, . . . ,m and a vector of independent identically distributed errors E =

(E1, . . . , Em). Consider the model,

Yi = X>i β + Ei, i = 1, . . . ,m, (3.2.1)
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where Xi = (xi1, . . . , xip)

>, i = 1, . . . ,m and β = (β01, . . . , β0p) is the vector of unknown quan-

tile regression parameters at the τ th quantile level. Let X = (X1, X2, . . . , Xp)
> be the m×p matrix

of covariates, where X>1 , . . . , X>m are the rows of X and X = (X1, . . . , Xp) where X1, . . . , Xp are

the columns of X . The Ei is the error term satisfying P (Ei < 0|Xi) = τ for i = 1, . . . ,m. The

model (3.2.1) can be expressed in a similar manner by specifying the τ th conditional quantile as

Qy(τ |Xi) = X>i β. (3.2.2)

The quantile coefficient βτ can be estimated by,

β̂τ = arg min
β∈RP

m∑
i=1

ρτ (Yi − X>i β), (3.2.3)

where

ρτ (u) = u(τ − I(u < 0)), (3.2.4)

is the quantile loss function introduced by Koenker and Bassett (1978). I(·) is the indicator func-

tion. When τ = 1/2, it corresponds to the median regression. However, too many explanatory

variables in the model may cause the problem of over-fitting. To remedy this issue, one can con-

sider using the penalized quantile regression estimator in (3.2.3) as suggested in Koenker, Ng, and

Portnoy (1994) and Koenker (2004).

3.2.1 SCAD Penalized Qunatile Regression (SPQR)

A number of penalty functions have been proposed in the literature, including Lasso `1 penalty

by Tibshirani (1996), `2 penalty used in ridge regression by Hoerl and Kennard (1970). The Lasso

has some rich properties which include shrinkage of the coefficients towards 0 for sufficiently large

tuning parameter λ. However, the Lasso tends to produce biased estimates for large coefficients.

The studies by Knight and Fu (2000), Fan and Li (2001) and Zou (2006) revealed that the variable

selection in Lasso is consistent under certain conditions, but not in general. Thus, the Lasso does

not possess the oracle property.



35
To overcome this issue, Fan and Li (2001) introduced a non-convex penalty called smoothly

clipped absolute deviation (SCAD) and they suggested that it can be used for robust methods, such

as median regression. The SCAD corresponds to a quadratic spline function with knots at λ and

aλ. As mentioned in Fan and Li (2001), the SCAD penalty function satisfies three requirements

for variable selection, including asymptotic unbiasednes, sparsity and continuity of the estimated

parameters. It can estimate the zero coefficients as exactly zero with the probability approaching

one. Regularized quantile regression with fixed p was studied by Zou and Yuan (2008), Wu and

Liu (2009) and Kai, Li, and Zou (2011). Wu and Liu (2009) investigated the non-convex penalty

for penalized quantile regression, including SCAD penalty for variable selection and showed that

the SPQR satisfies the oracle property. Further, the oracle property of non-convex (SCAD and

MCP) penalized linear quantile regression are established by Wang, Wu, and Li (2012) under

high-dimensional settings. The SPQR model given as,

Q(β, τ) =
m∑
i=1

ρτ
(
Yi − X>i β

)2
+

p∑
j=1

pλm(|βj|). (3.2.5)

The SPQR solves the following minimization problem,

β̂τm = arg min
β∈RP

{ m∑
i=1

ρτ
(
Yi − X>i β

)2
+

p∑
j=1

pλm(|βj|)
}
, (3.2.6)

where pλm(·) is the penalty function with tuning parameter λm(≥ 0). The first derivative of the

SCAD penalty function for some a > 2 and β > 0 is given as follows.

p′λm(β) = λm{I(β ≤ λm) +
(aλm − β)+

(a− 1)λm
I(β > λm)}. (3.2.7)

There are two unknown parameters λm and a. In practice, the best pair (λm, a) can be obtained

by using two dimensional grids search, for example, cross validation method. Fan and Li (2001)

suggested a = 3.7 is a good choice for various problems. In this research a is set to 3.7 to

reduce the computational burden. The tuning parameter λm in the penalty function controls the
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amount of shrinkage. The larger the value of λm, the greater the amount of shrinkage. Like all

other penalized regression procedure, the performance of the penalized quantile regression depends

on the selection of a tuning parameter λm. The tuning parameter selection methods are widely

studied. Classical methods including Mallow’s Cp (Mallows (1973)), Akaike information criterion

(AIC; Akaike (1974)), Bayesian information criterion (BIC; Schwarz (1978)), cross-validation,

and generalized cross-validation (Golub, Heath, and Wahba (1979)) have been used for model

selection. In this research, the tuning parameter λm is selected using cross validation. Let β0 =

(β0,1, β0,2, . . . , β0,p) be the true parameter value and it is assumed to be sparse. Let S0 = {β0,j 6=

0 : j = 1, . . . , p} be the index set of the nonzero coefficients for the true parameter, where β0,j is

the jth component of the parameter vector β0. Without loss of generality, we assume that the first

q regression coefficients are nonzero and the remaining (p − q) regression coefficients are 0. We

denote the SCAD penalized quantile estimate by β̂τm. Let S∗ = {β̂τm,j 6= 0 : j = 1, . . . , p} be the

index set of the SPQR estimator calculated using the historical sample size m, where β̂τm,j is the

jth element of the SPQR estimator β̂τm.

3.2.2 Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed test statistic. We re-write

X>i = (Z>i ,W>i ), where Zi = (xi1, . . . , xiq)
> and Wi = (xiq+1, . . . , xip)

>. We take into account the

situation where the covariates are fixed. To prove the asymptotic properties, we impose following

conditions.

C1. The model errors Ei are independent and identically distributed. Let f(·) and F (·) be the

density function and the distribution function of Ei respectively and f(·) uniformly bounded

away from zero.

C2. For all n ∈ N ,

i. max1≤i≤n ‖Xi‖ = Op(n
1/4/
√

log n),

ii. limn−→∞
1
n

∑n
i=1 ‖Xi‖4 <∞ a.s, where ‖ · ‖ is the Euclidean norm.
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C3. For all n ∈ N , there exists a positive definite matrix C such that limn→∞

1
n

∑n
i=1XiX

>
i = C.

C4. There exists a positive constant L <∞ such that max1≤i≤n,1≤j≤p |xij| ≤ L, for all n ∈ N .

C5. There exist positive constants K1 < K2 such that K1 ≤ λmin

(
1
n
X>S0XS0

)
≤

λmax

(
1
n
X>S0XS0

)
≤ K2 where λmin and λmax are the smallest and largest eigenvalues of

1
n
X>S0XS0 respectively. We also assumed that max1≤i≤n ‖Zi‖ = Op(q

1/2).

C6. There exists a constant b > 0 such that

1

ms

∥∥∥∥∥∥
m+k∗m+ms∑
i=m+k∗m+1

Xi,S0

{
F (0)− F (X>i,S1β1,S1 − X>i,S0β0,S0)

}∥∥∥∥∥∥ > b,

where k∗m = O(ms), with the constant s and for open-end procedure s > 1 and for closed-

end procedure 0 ≤ s ≤ 1.

The (C1), (C2) and (C3) are used in literature on high-dimensional quantile regression models see

for example Koenker (2005), Wang et al. (2012) and Zhou et al. (2015). The condition (C5) is

on the true underlying model which is used in Wang et al. (2012). The condition (C6) is used in

Ciuperca (2017).

3.2.3 Oracle Property

Suppose that the conditions are satisfied. If λm −→ 0 and (q/m)1/2λm −→ ∞ as m −→ ∞,

then the SPQR estimator β̂τm satisfy the oracle property,

i. Sparsity property for β̂τm happens in the historical data. Then,

P (S∗ = S0) = 1,

ii. Asymptotic normality: (q/m)1/2(β̂τm − β0)S0 −→ N
(
0, τ(1− τ)C

−1

11 /f(0)2
)

in distribution

as m −→∞ where C11 is top-left q × q matrix of C.
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Suppose that conditions hold, by adopting the Theorem 2.4 in Wang et al. (2012), we can conclude

that the SCAD penalized quantile regression satisfies the oracle requirements for variable selection

such as asymptotic unbiasedness, sparsity and continuity of the penalized estimator.

3.2.4 Sequential Change Point Problem

We study the change point problem with known pre-change coefficients but an unknown post-

change parameters. Suppose there exists a historical sample size m such that β1 = · · · = βm = β0.

This is called as noncontamination assumption and used in Zhou et al. (2015) and Ciuperca (2017).

Now the pre-change parameters are obtained using the historical sample data. Let Tm be the

monitoring horizon. After the historical sample size of m, we are interested in monitoring the

process sequentially. The regression model after the historical observations m is,

Yi = X>i β + Ei, i = m+ 1,m+ 2, . . . (3.2.8)

At each time point i, our goal is to test whether we have the same model as the firstm observations.

Under the null hypothesis, there is no change in the parameters,

H0 : βi = β0 ; for i = m+ 1,m+ 2, . . .

Under the alternative hypothesis, we consider at an unknown time point k the parameters changing

from β0 to β1. There exists k ≥ 1 such that,

H1 :


βi = β0 ; i = m+ 1,m+ 1, . . . ,m+ k,

βi = β1 ; i = m+ k + 1, . . . ,m+ Tm and β0 6= β1,

where β1 = (β1,1, β1,2, . . . , β1,p) and it is unknown. Let S1 = {β1,j 6= 0 : j = 1, . . . , p} be the

index set of the nonzero coefficients under alternative hypothesis. Following Horváth et al. (2004)

and Zhou et al. (2015), our monitoring process can be defined based on the following CUSUM
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type process,

S(m, k) = J
−1/2
m,S∗

m+k∑
i=m+1

Xi,S∗ψτ (Yi − X>i,S∗ β̂
τ
m,S∗), k = 1, . . . , Tm, (3.2.9)

where Jm,S∗ = τ(1 − τ)Dm,S∗ with Dm,S∗ = 1
m

∑m
i=1 Xi,S∗X>i,S∗ and ψτ (u) = τ − I(u < 0). The

proposed CUSUM based test statistic for the monitoring process of the SCAD penalized quantile

regression is given as,

Ω(m, k, γ) =
‖S(m, k)‖∞
g(m, k, γ)

, (3.2.10)

where g(m, k, γ) is called the normalising function and defined as,

g(m, k, γ) = m1/2

(
1 +

k

m

)(
k

k +m

)γ
. (3.2.11)

The γ is called the control parameter. The monitoring process stops immediately for large control

parameter γ ∈ [0, 1/2). Stopping time of the monitoring process based on the open-end procedure

(see, Zhou et al. (2015)) is defined as,

Λ(k) =


inf{k ≥ 1; S(m, k)/g(m, k, γ) ≥ cα(γ)},

∞ for all k = 1, 2, . . . ,

(3.2.12)

where cα(γ) is the critical value. Under the open-end procedure, the monitoring process may

continue to infinity if no change is detected. Suppose Tm < ∞ with limm→∞ Tm/m = N(> 0)

with the possibility N = ∞. Under the open-end procedure, the monitoring boundary Tm = ∞.

The critical value cα(γ) is satisfying, under the null hypothesis,

lim
m→∞

P (Λ(k) <∞) = α, (3.2.13)
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and under the alternative hypothesis,

lim
m→∞

P (Λ(k) <∞) = 1. (3.2.14)

Suppose Tm < ∞, with Tm/m −→ N (N > 0) is defined as closed-end procedure and the

stopping time is,

Λ∗(k) =


inf{k ≥ 1; S(m, k)/g(m, k, γ) ≥ c∗α(γ)},

Tm for all k = 1, . . . , Tm.

(3.2.15)

where c∗α(γ) is the critical value satisfying, under the null hypothesis,

lim
m→∞

P (Λ∗(k) <∞) = α, (3.2.16)

and under the alternative hypothesis,

lim
m→∞

P (Λ∗(k) <∞) = 1. (3.2.17)

Theorem 3.2.18. Under the assumptions (C1) to (C6) and for a given constant value of γ ∈

[0, 1/2), if the null hypothesis holds, we have

1. for the open-end procedure,

lim
m→∞

P

(
sup

1≤k≤Tm

S(m, k)

g(m, k, γ)
≤ c∗α(γ)

)
= P

(
sup

1≤t≤1

‖W (t)‖∞
tγ

≤ c∗α(γ)

)
.

2. for the closed-end procedure,

lim
m→∞

P

(
sup

1≤k≤Tm

S(m, k)

g(m, k, γ)
≤ cα(γ)

)
= P

(
sup

1≤t≤N/(N+1)

‖W (t)‖∞
tγ

≤ cα(γ)

)
.

where {W (t), 0 ≤ t < ∞} denotes a p-dimensional Weiner process, α ∈ (0, 1) and the control

parameter 0 ≤ γ < 1/2.
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We obtain asymptotic critical values by simulation. The Weiner process ‖W (t)‖∞/tγ is approx-

imated by ‖M−1/2
∑tM

i=1 ei‖∞/tγ where ei ∼ N(0, 1) and M is a grid of 10000. In each itera-

tion, the maximum value of the process for both open- and closed-end procedures obtained over

t ∈ (0, 1) and t ∈ (0, N/(N + 1)) respectively.

Theorem 3.2.19. Under the assumptions and for a given constant value of γ ∈ [0, 1/2), if the

alternative hypothesis holds, we have,

sup
1≤k≤Tm

S(m, k)

g(m, k, γ)
−→∞ as m −→∞.

3.2.5 Post - SCAD Penalized Quantile Regression (P-SPQR)

In high-dimensional settings, the quantile regression model with SCAD penalized estimator is

asymptotically unbiased. However, the direct use of this theorem will induce bias. To reduce the

bias in the estimator, Belloni and Chernozhukov (2013) suggested so-called post-lasso estimator.

They showed that the OLS post-lasso performs at least as well as the lasso under mild additional

assumptions. Huang and Xie (2007) showed that under appropriate conditions, the SPQR is consis-

tent for variable selection. As discuss earlier, the SPQR enjoys oracle property thus, the P-SPQR

estimator becomes the oracle estimator as well. In order to improve the monitoring method, a

modified test statistic based on the P-SPQR estimator is proposed. The variable selection proce-

dure plays an important role in high-dimensional data set. In the first step, we select the important

variables by regularizing quantile regression with a SCAD penalty function. Using the significant

predictors, let β̂∗τ,m be the quantile coefficient estimator based on the historical data and can be

obtained by minimizing,

β̂∗τ,m = arg min
β∈RP ′

m∑
i=1

ρτ (Yi − X>i,S∗β), (3.2.20)
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where ρτ (·) define in (3.2.4) and p′ is the cardinality of the set S∗. Following Horváth et al. (2004)

and Zhou et al. (2015) , the subgradient-based CUSUM-type process,

S∗(m, k) = J
−1/2
m,S∗

m+k∑
i=m+1

Xi,S∗ψτ (Yi − X>i,S∗ β̂
∗
τ,m), k = 1, . . . , Tm, (3.2.21)

where Jm,S∗ = τ(1 − τ)Dm,S∗ with Dm,S∗ = 1
m

∑m
i=1 Xi,S∗X>i,S∗ and ψτ (u) = τ − I(u < 0). The

modified CUSUM based test statistic for the monitoring process in P-SPQR model is given as,

Ω∗(m, k, γ) =
‖S∗(m, k)‖∞
g(m, k, γ)

. (3.2.22)

Stopping time for the open-end procedure,

Λmodified(k) =


inf{k ≥ 1; S∗(m, k)/g(m, k, γ) ≥ cα(γ), },

∞ for all k = 1, 2, . . . ,

(3.2.23)

and for the closed-end procedure,

Λ∗modified(k) =


inf{k ≥ 1; S∗(m, k)/g(m, k, γ) ≥ c∗α(γ), },

Tm for all k = 1, . . . , Tm,

(3.2.24)

where cα(γ) and c∗α(γ) are asymptotic the critical values for open- and closed-end procedures

respectively. For a given constant γ ∈ [0, 1/2), the g(m, k, γ) is called the normalising function

defined in (3.2.11). Further, under the null hypothesis,

lim
m→∞

P (Λmodified(k) <∞) = α and lim
m→∞

P (Λ∗modified(k) <∞) = α, (3.2.25)

and under the alternative hypothesis,

lim
m→∞

P (Λmodified(k) <∞) = 1 and lim
m→∞

P (Λ∗modified(k) <∞) = 1. (3.2.26)
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Under H0, for the open- and closed-end procedure the test statistics given in (3.2.23) and (3.2.24)

converges in distribution to sup1≤t≤1
‖W (t)‖∞

tγ
and sup1≤t≤N/(N+1)

‖W (t)‖∞
tγ

respectively. Under H1,

the test statistics Ω∗(m, k, γ) converges in probability to∞ as m −→∞.

3.2.6 Proofs of Theorems

Proof. Theorem 3.2.18:

Under the conditions, the convergence rate of the SCAD penalized quantile estimator is of order

(q/m)−1/2, see for example Wang et al. (2012). To establish the asymptotic properties of the test

statistic defined in (3.2.10), we will consider for um ∈ R|S0|, ‖um‖ ≤ C, the random vector,

R̃m,k(um) =
m+k∑
i=m+1

Ri(um),

where

Ri(um) = Xi,S0

{
ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2um)

)
− ψτ (Yi − X>i,S0 β0,S0)

}
+

{ q∑
j=1

(
pλm(|βj0 + (q/m)−1/2uj|)− pλm(|βj0|)

)}
.

(3.2.27)

For large m, Wu and Liu (2009) showed,

{ q∑
j=1

(
pλm(|βj0 + (q/m)−1/2uj|)− pλm(|βj0|)

)}
= 0.

Thus, the Ri defined in (3.2.27) becomes,

Ri(um) = Xi,S0

{
ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2um)

)
− ψτ (Yi − X>i,S0 β0,S0)

}
. (3.2.28)

In particular, the vector um are deterministic and only the dimension of um is random, see Ciuperca

(2017). Following Ciuperca (2017), for the proposed SPQR method, we consider the following

situation. For fixed size |S0|, there exists u such that ‖u‖ ≤ C. Following Ciuperca (2017), we
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have,

R̃m,k(u) = E
(
R̃m,k(u)

)
+OP (rm,k), (3.2.29)

where rm,k = m−1/4k1/2(log k)1/2. Then,

R̃m,k(u) = −
m+k∑
i=m+1

f(0)Xi,S0X>i,S0(q/m)−1/2u+OP (rm,k). (3.2.30)

But we have,

β̂τm,S∗ = β0,S0 + (q/m)1/2Jm,S0

m∑
i=1

Xi,S0ψτ (Yi − X>i,S0 β0,S0) + op(m
−1/2).

Now considering u = (q/m)1/2(β̂τm,S∗ − β0,S0) in (3.2.30), we get

R̃m,k

(
(q/m)1/2(β̂τm,S∗ − β0,S0)

)
= −

m+k∑
i=m+1

f(0)Xi,S0X>i,S0(β̂
τ
m,S∗ − β0,S0) +OP (rm,k). (3.2.31)

On the other hand,

m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2u)

)
−

m+k∑
j=m+1

Xi,S0ψτ (Yi − X>i,S0β0,S0)

= E
{ m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2u

)
−

m+k∑
j=m+1

Xi,S0ψτ (Yi − X>i,S0β0,S0)

}
+Op(rm,k) , note that Xi,S0 ≡ Zi

=
m+k∑
j=m+1

Xi,S0

{
τ − P

(
yi < X>i,S∗(β0,S∗ + (q/m)−1/2u)

)
−

m+k∑
j=m+1

Xi,S0
(
τ − P (yi < X>i,S0β0,S0)

)}
+Op(rm,k)

=
m+k∑
j=m+1

Xi,S0

{
Fy
(

X>i,S0β0,S0
)
− Fy

(
X>i,S0(β0,S0 + (q/m)−1/2u

)}
+Op(rm,k)

= −
m+k∑
j=m+1

fy
(
ai
)

Xi,S0X>i,S0(q/m)−1/2u+Op(rm,k),
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where ai is between

(
X>i,S0β0,S0

)
and

(
X>i,S0(β0,S0 + (q/m)−1/2u

)
. By Wang et al. (2012),

(q/m)1/2(β̂τm,S∗ − β0,S0) = Op(1). Thus, by substituting u = (q/m)1/2(β̂τm,S∗ − β0,S0) above

and for large k using the conditions, we get,

m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2u)

)
−

m+k∑
j=m+1

Xi,S0ψτ (Yi − X>i,S0β0,S0)

= −
m+k∑
j=m+1

fy(0)Xi,S0X>i,S0(β̂
τ
m,S∗ − β0,S0) +Op(rm,k) +Op(km

−1/2)

= −
m+k∑
j=m+1

fy(0)Xi,S0X>i,S0(β̂
τ
m,S∗ − β0,S0) +Op(rm,k) +Op(km

−1/2).

(3.2.32)

Using (3.2.31) and (3.2.32), we obtain

J
−1/2
m,S∗

m+k∑
j=m+1

Xi,S∗ψτ
(
Yi − X>i,S∗ β̂

τ
m,S∗

)
= J

−1/2
m,S0

m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S0β0,S0

)
− km−1/2J

−1/2
m,S0

m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S0β0,S0

)
+Op(rm,k)

+Op(km
−1/2).

(3.2.33)

By K-M-T approximation (see, Komlós, Major, and Tusnády (1975, 1976)), for all m there exists

two p−dimensional Wiener processes on {W1,m, t ∈ [0,∞)} and {W2,m, t ∈ [0,∞)} such that

m −→∞,

sup
1≤k<∞

k1/v

∥∥∥∥∥J−1/2
m,S0

m+k∑
j=m+1

Xi,S0ψτ
(
Yi − X>i,S0β0,S0

)
−W1,m

(
k

m

)∥∥∥∥∥
∞

= Op(1),

and ∥∥∥∥∥J−1/2
m,S0

m∑
j=1

Xi,S0ψτ
(
Yi − X>i,S0β0,S0

)
−W2,m

(
k

m

)∥∥∥∥∥
∞

= Op(m
1/v).

Next, following the similar steps of Horváth et al. (2004) of Theorem 2.1 and Ciuperca (2017) we

complete the proof of Theorem 3.2.18.
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Proof. Theorem 3.2.19:

Let km = k∗m + ms. For the closed-end procedure, we consider case when s = 1. There exists a

constant C ∈ (0,∞) such that,

∥∥∥J−1/2
m,S0

∑m+k∗m
i=m+1 Xi,S0ψτ (Yi − X>i,S∗ β̂

τ
m,S∗)

∥∥∥
∞

g(m, k∗m, γ)
≤ C, (3.2.34)

with probability converging to 1, as m −→ ∞. Since the function g(m, k, γ), is increasing in

k > 0, we have ∥∥∥J−1/2
m,S0

∑m+k∗m
i=m+1 Xi,S0ψτ (Yi − X>i,S∗ β̂

τ
m,S∗)

∥∥∥
∞

g(m, km, γ)
≤ C, (3.2.35)

with probability converging to 1, as m −→ ∞. Consider the following random process, with

u ∈ R|S∗|, ‖u‖ ≤ C,

m+km∑
i=m+k∗m+1

Ri(u) =
m+km∑

i=m+k∗m+1

Xi,S0

{
ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2um)

)
− ψτ

(
Yi − X>i,S0 β0,S0

)}
.

Since i = m+ k∗m + 1, . . . ,m+ km, the hypothesis H1 is true, we have,

m+km∑
i=m+k∗m+1

Ri(u) =
m+km∑

i=m+k∗m+1

Xi,S0

{
ψτ
(
Yi − X>i,S∗(β0,S∗ + (q/m)−1/2um)

)
− ψτ

(
Yi − X>i,S0 β1,S1

)}
.

Since E
[∑m+km

i=m+k∗m+1 Xi,S0ψτ
(
Yi − X>i,S0 β0,S0

)]
= 0 we have,

E
[ m+km∑
i=m+k∗m+1

Ri(u)

]
=

m+km∑
i=m+k∗m+1

Xi,S0

{
F (0)− F (X>i,S1β1,S1 − X>i,S0(β0,S0 + (q/m)−1/2u))

}
.

Now by the condition (C6), there exists a constant b > 0, we get

1

m

∥∥∥∥∥∥
m+k∗m+m∑
i=m+k∗m+1

Xi,S0

{
F (0)− F (X>i,S1β1,S1 − X>i,S0β0,S0)

}∥∥∥∥∥∥ > b.
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Since f(·) is bounded, and by conditions,

∥∥∥∥∥∥
m+k∗m+m∑
i=m+k∗m+1

Xi,S0

{
F (0)− F (X>i,S1β1,S1 − X>i,S0(β0,S0 + (q/m)−1/2u))

}∥∥∥∥∥∥
=

∥∥∥∥∥∥
m+k∗m+m∑
i=m+k∗m+1

Xi,S0X>i,S0(q/m)−1/2f(bi)

∥∥∥∥∥∥
≤ b(q/m)−1/2

m+k∗m+m∑
i=m+k∗m+1

max
m+k∗m+1≤i≤m+k∗m+m

‖Xi‖

= o(km − k∗m) = o(m),

where bi is between 0 and
(

X>i,S1β1,S1 − X>i,S0(β0,S0 + (q/m)−1/2u)
)
. Then following similar steps

of Ciuperca (2017) complete the proof. Thus, we omit details. We can follow similar arguments to

show that Theorem 3.2.19 still holds for s = 1.

In order to proof the Theorems 3.2.18 & 3.2.19 for the P-SPQR we will follow the same strategy

used in Ciuperca (2017). Thus, details are omitted to conserve space.

3.3 Simulation Study

In this section, we present the simulation study to demonstrate the good performance of our

proposed method. The following two cases are considered in order to calculate the Type I error. In

both cases, the number explanatory variables p = 10. All simulations are conducted using the R

software.

• Case - I

– In the first case, the true parameter vectors β0 ∈ {1, 0,−1, 0,−15, 0, 0, 0, 0, 0} and Xi

for all i ∈ {1, . . . , 10} follows standard normal distribution N(0, 1) and the model

errors Ei ∼ N(0, 1).

• Caese - II
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– The true parameter vectors β0 ∈ {1, 0,−1, 0,−15, 0, 0,−2, 0, 8} and Xi ∼ Unif(0, 2)

for all i ∈ {1, . . . , 10}. The model errors Ei ∼ Cauchy(0, 2).

Next we conduct the power analysis to illustrate the performance of the proposed test statistic.

Under the null hypothesis, the true parameter vectors β0 ∈ {−1, 0, 1, 8, 1, 0, 0, 0,−5, 0} and under

the alternative hypothesis, the parameter vector β1 ∈ {0,−1, 0, 2, 0, 0, 1, 0, 0,−1}. We consider

the two different distributions of the explanatory variables X1, X2, . . . , X10. Under H0, Xi for

all i ∈ {1, . . . , 10}\{3, 4, 5} have standard normal distribution N(0, 1) and X3 ∼ N(2, 1), X4 ∼

N(4, 1) and X5 ∼ N(5, 1). The second distribution for the ith explanatory variable is Xi + 0.8 for

all i ∈ {1, . . . , 10}. In both settings, the model errors Ei ∼ N(0, 1). The second setting is used to

compute the stopping time at different change point locations.

First, we evaluate the effect on the detection procedure of various control parameter values,

considering γ ∈ {0, 0.25, 0.45}. Type I error for the open-and closed-end procedures for Case I

at quantile level τ = 0.5 are summarized in Table 3.1. The Table 3.1 results are summarized in

Figure 3.1. Under open-end procedure, the P-SPQR method provides better Type I errors compare

to the SPQR method. For the closed-end procedure, the SPQR method provides Type I errors close

to nominal level. Under the closed-end procedure, the P-SPQR method provides slightly higher

Type I errors for smaller N . We recommend larger N for small control parameter value γ.

In Case II, we consider the heavy tails of random errors. The results are summarized in Tables

3.2 - 3.3. For the open- and closed-end procedures and at τ ∈ {0.5, 0.7} with the historical sample

size m ∈ {200, 400} the SPQR method gives larger Type I error. Type I errors of the P-SPQR

method close to the nominal level 0.05 for the closed-end procedure. Under open-end procedure

the P-SPQR method produces deflated Type I errors for small control parameter value γ = 0. Thus,

we suggest large N for smaller control parameter. Tables 3.2 - 3.3 are compared in Figure 3.2.
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Table 3.1 Type I errors comparison for the open- and closed-end procedures of the SPQR and
P-SPQR methods for various values of γ, the nominal significance level α = 0.05 and τ = 0.5
for Case I

Closed-end Open-end
Method m N/γ 0 0.25 0.45 0 0.25 0.45

SPQR

75

2 0.044 0.050 0.046 0.008 0.020 0.040
4 0.057 0.063 0.062 0.030 0.038 0.058
6 0.047 0.051 0.060 0.030 0.039 0.056
9 0.052 0.052 0.054 0.037 0.043 0.051

100

2 0.052 0.053 0.050 0.010 0.026 0.040
4 0.044 0.045 0.047 0.021 0.032 0.042
6 0.038 0.038 0.038 0.022 0.027 0.037
9 0.044 0.046 0.054 0.034 0.038 0.052

150

2 0.040 0.038 0.046 0.008 0.021 0.038
4 0.037 0.042 0.044 0.019 0.027 0.040
6 0.043 0.044 0.041 0.028 0.035 0.040
9 0.037 0.039 0.042 0.025 0.035 0.042

P-SPQR

75

2 0.058 0.060 0.052 0.012 0.030 0.043
4 0.073 0.075 0.062 0.033 0.051 0.057
6 0.070 0.065 0.056 0.043 0.054 0.052
9 0.062 0.064 0.058 0.049 0.050 0.056

100

2 0.064 0.065 0.050 0.016 0.034 0.045
4 0.072 0.070 0.059 0.032 0.046 0.056
6 0.067 0.064 0.054 0.040 0.048 0.052
9 0.075 0.074 0.062 0.056 0.060 0.061

150

2 0.058 0.062 0.058 0.015 0.029 0.049
4 0.056 0.056 0.053 0.026 0.040 0.045
6 0.068 0.068 0.048 0.042 0.051 0.045
9 0.058 0.062 0.056 0.044 0.049 0.054
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Table 3.2 Type I errors comparison for the open- and closed-end procedures of the SPQR and
P-SPQR methods for various values of γ, α = 0.05 and τ = 0.5 for Case II

Closed-end Open-end
Method m N/γ 0 0.25 0.45 0 0.25 0.45

SPQR

200

2 0.170 0.165 0.120 0.067 0.096 0.107
4 0.229 0.213 0.163 0.160 0.174 0.154
6 0.203 0.203 0.152 0.156 0.174 0.145
9 0.243 0.226 0.165 0.210 0.203 0.163

400

2 0.362 0.341 0.243 0.221 0.309 0.294
4 0.396 0.377 0.289 0.397 0.432 0.374
6 0.437 0.377 0.318 0.456 0.469 0.396
9 0.442 0.412 0.331 0.505 0.512 0.427

P-SPQR

200

2 0.066 0.066 0.042 0.015 0.023 0.032
4 0.070 0.071 0.074 0.031 0.047 0.069
6 0.059 0.057 0.042 0.033 0.042 0.042
9 0.064 0.056 0.049 0.041 0.049 0.047

400

2 0.061 0.061 0.047 0.010 0.028 0.040
4 0.065 0.063 0.048 0.027 0.040 0.042
6 0.073 0.067 0.060 0.028 0.038 0.052
9 0.077 0.069 0.050 0.042 0.044 0.048

Table 3.3 Type I errors comparison for the open- and closed-end procedures of the SPQR and
P-SPQR methods for various values of γ, α = 0.05 and τ = 0.7 for Case II

Closed-end Open-end
Method m N/γ 0 0.25 0.45 0 0.25 0.45

SPQR

200

2 0.386 0.358 0.295 0.191 0.264 0.269
4 0.486 0.463 0.369 0.365 0.402 0.356
6 0.502 0.482 0.403 0.421 0.442 0.394
9 0.529 0.505 0.416 0.482 0.482 0.405

400

2 0.721 0.705 0.587 0.493 0.590 0.560
4 0.792 0.776 0.690 0.719 0.741 0.679
6 0.824 0.805 0.716 0.763 0.710 0.396
9 0.850 0.832 0.737 0.809 0.813 0.731

P-SPQR

200

2 0.053 0.052 0.051 0.014 0.025 0.038
4 0.058 0.058 0.062 0.026 0.039 0.054
6 0.048 0.048 0.062 0.029 0.040 0.059
9 0.063 0.060 0.071 0.046 0.054 0.071

400

2 0.058 0.062 0.068 0.018 0.032 0.055
4 0.057 0.055 0.060 0.028 0.040 0.058
6 0.042 0.044 0.054 0.027 0.031 0.051
9 0.060 0.059 0.058 0.039 0.047 0.054
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Figure 3.1 Case I: Type I error comparison for open- and closed-end procedures for P-SPQR and
SPQR methods

Figure 3.2 Case II: Type I error comparison for open- and closed-end procedures for P-SPQR and
SPQR methods with τ ∈ {0.5, 0.7}



Table 3.4 The power comparison for the closed-end procedure with τ = 0.5, p ∈ {100, 300}, k∗ ∈ {1, 25, 100}, and γ ∈ {0, 0.25, 0.45} 

k∗ = 1 k∗ = 25 k∗ = 100
m→ 100 300 100 300 100 300

γ α SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR

0.00
0.025 0.122 0.728 0.323 0.987 0.108 0.696 0.309 0.986 0.118 0.576 0.286 0.986
0.050 0.193 0.812 0.439 0.990 0.175 0.780 0.425 0.990 0.209 0.689 0.398 0.988
0.100 0.294 0.883 0.584 0.994 0.277 0.864 0.572 0.994 0.348 0.786 0.544 0.994

0.25
0.025 0.117 0.699 0.301 0.985 0.105 0.654 0.289 0.984 0.151 0.532 0.255 0.979
0.050 0.183 0.788 0.412 0.999 0.171 0.749 0.396 0.988 0.240 0.639 0.366 0.987
0.100 0.389 0.911 0.550 0.994 0.395 0.888 0.536 0.994 0.493 0.826 0.514 0.992

0.45
0.025 0.088 0.591 0.211 0.974 0.082 0.526 0.192 0.969 0.138 0.412 0.163 0.962
0.050 0.136 0.678 0.304 0.982 0.139 0.612 0.278 0.979 0.198 0.489 0.242 0.975
0.100 0.208 0.763 0.415 0.989 0.223 0.714 0.401 0.987 0.285 0.597 0.369 0.987

52
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Figure 3.3 Power comparison for P-SPQR and SPQR methods under the closed-end procedure

We conduct the power simulation for both SPQR and P-SPQR methods. The results are sum-

marised in Table 3.4. Figure 3.3 compares power for both procedures. We observe, in all cases,

the P-SPQR method gives larger power compare to the SPQR method. We compute a five number

summary of the stopping time for the open- and closed-end procedures. The results are summarised

in Tables 3.5 - 3.6.
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Table 3.5 Summary statistics of the detection time for the open-end procedure with τ = 0.5,
α = 0.05 and γ ∈ {0, 0.25, 0.45}

SPQR P-SPQR
m 100 300 100 300

γ k∗ 1 25 50 1 75 100 1 25 50 1 75 100

0.00

min 85 90 66 184 396 381 42 61 74 97 176 176
Q1 226 321 390 653 578 629 138 179 235 206 320 359

Med 337 370 468 854 1057 1132 238 292 363 282 423 465
Q3 447 499 590 954 1135 1096 402 459 525 388 568 626
max 879 877 895 2143 2488 2013 889 898 900 2343 2496 2340

0.25

min 23 11 11 106 64 64 20 17 17 42 65 65
Q1 117 253 166 476 409 357 93 144 191 131 262 314

Med 234 338 390 698 714 607 166 233 317 203 349 402
Q3 348 485 522 927 1129 1137 345 413 503 302 488 577
max 895 886 778 2493 2260 1830 888 899 892 2216 2263 2365

0.45

min 1 1 1 1 1 1 1 1 1 1 1 1
Q1 18 10 7 19 24 22 62 100 156 79 238 290

Med 60 17 15 82 48 39 127 192 274 144 344 402
Q3 227 58 34 283 345 235 282 405 500 251 500 609
max 872 875 798 2046 1345 1389 885 892 886 2235 2362 2367

Table 3.6 Summary statistics of the detection time for the closed-end procedure with τ = 0.5,
α = 0.05 and γ ∈ {0, 0.25, 0.45}

SPQR P-SPQR
m 100 300 100 300

γ k∗ 1 25 50 1 75 100 1 25 50 1 75 100

0.00

min 75 56 61 155 357 355 40 56 70 92 165 172
Q1 201 282 354 612 623 617 123 166 214 184 305 338

Med 297 389 466 825 972 912 205 266 327 250 389 434
Q3 397 540 665 1504 1580 1430 373 451 498 366 518 584
max 806 841 898 2451 2209 2446 873 894 883 2454 2570 2492

0.25

min 23 11 11 102 63 63 14 15 15 41 64 64
Q1 116 195 111 397 397 247 89 137 106 124 247 296

Med 193 286 392 544 806 422 158 223 300 189 335 386
Q3 306 415 502 807 1115 911 309 388 479 281 455 542
max 877 876 886 1784 2147 1996 889 895 899 2495 2471 2248

0.45

min 1 1 1 1 1 1 1 1 1 1 1 1
Q1 21 9 9 24 22 22 58 97 149 78 228 288

Med 55 17 16 88 49 44 119 186 269 141 335 397
Q3 235 48 34 403 320 284 278 389 481 247 486 603
max 870 872 717 2040 2263 2270 875 898 898 2227 2306 2362
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3.3.1 Large p

In high-dimensional settings, we only consider P-SPQR method. We conduct simulation to

study the finite sample properties of the proposed P-SPQR method. A high-dimensional data set

with (p,m), considering (100, 75), (200, 100) and (300, 200) were generated. We consider the

following two settings. In the first setting, the non-zero components of the true parameters are

β0,j = 0 for j = {1, . . . , p}\{1, 3, 5, 41, 77} where p ∈ {100, 200, 300}. β0,1 = 1, β0,3 = 15,

β0,5 = −2, β0,41 = −2, and β0,77 = −8. The explanatory variables Xi ∼ Unif(0, 1) and model

errors Ei ∼ N(0, 1) for i = {1, . . . , p}.

In the second setting, under H0, the regression coefficients are β0,1 = 1, β0,3 = 15, β0,5 =

−2, β0,6 = −13, β0,41 = −2, β0,77 = −8 and β0,j = 0 for all j ∈ {1, . . . , p}\{1, 3, 5, 8, 41, 77}

with p ∈ {100, 200, 300}. Under the alternative hypothesis the regression coefficients are β1,2 =

−1, β1,4 = 2, β1,7 = 1, β1,10 = −10. β1,51 = −8, β1,83 = −5 and β1,j = 0 for all j ∈

{1, . . . , p}\{2, 4, 7, 10, 51, 83} with p ∈ {100, 200, 300}. We consider two different distributions

of the explanatory variables. Under the null hypothesis the explanatory variables Xi ∼ Unif(0, 1).

Under the alternative hypothesis, the ith explanatory variable is transformed to Xi + 5 and model

errors Ei ∼ N(0, 1) for i ∈ {1, . . . , p}.

The first setting is used for the calculations of Type I error. Table 3.7 summarizes the Type I

error for the open- and closed-end procedures. The various control parameter value, considering

γ ∈ {0, 0.25, 0.45} and the different size of the historical observations m ∈ {75, 100, 200} are

considered. The results are based on 1000 iterations. Type I errors based on the closed-end pro-

cedure is always higher than Type I errors computed from the open-end procedure. For small γ

value, Type I errors of the open-end procedure is comparatively low. When open-end procedure is

considered, smaller N provides slightly deflated Type I errors. Thus, for smaller N , we suggest to

use the larger control parameter γ close to 0.5.
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Table 3.7 Type I errors for P-SPQR method under the open- and closed-end procedures for various
values of γ, the nominal significance level α = 0.05 and τ = 0.5

Closed-end Open-end
(p,m) N/γ 0 0.25 0.45 0 0.25 0.45

(100,75)

2 0.064 0.062 0.056 0.018 0.042 0.048
4 0.062 0.060 0.052 0.032 0.040 0.050
6 0.056 0.060 0.050 0.034 0.040 0.050
9 0.046 0.048 0.054 0.032 0.046 0.052

(200,100)

2 0.070 0.076 0.068 0.020 0.048 0.062
4 0.070 0.072 0.056 0.042 0.050 0.052
6 0.060 0.062 0.060 0.038 0.056 0.058
9 0.066 0.066 0.080 0.056 0.060 0.076

(300,200)

2 0.072 0.074 0.060 0.016 0.034 0.052
4 0.082 0.072 0.074 0.036 0.050 0.066
6 0.094 0.094 0.094 0.074 0.084 0.088
9 0.088 0.090 0.072 0.052 0.074 0.070

Figure 3.4 Type I error comparison for open- and closed-end procedures

We carry out the power analysis of the proposed P-SPQR procedure for high-dimensional data.
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The results are summarized in Table 3.8. Figure 3.5 compares power for the P-SPQR method.

Table 3.8 Power comparison for P-SPQR method under the closed-end procedure for different pairs
of (m, p), α ∈ {0.025, 0.05, 0.1}, γ ∈ {0, 0.25, 0.45}, and various change-point locations

(m, p) (75, 100) (100, 200) (200, 300)
γ α/k∗ 1 25 75 1 50 100 1 100 200

0.00
0.025 0.827 0.791 0.670 0.779 0.727 0.639 0.771 0.707 0.644
0.050 0.897 0.876 0.796 0.861 0.817 0.852 0.988 0.815 0.771
0.100 0.954 0.946 0.894 0.932 0.903 0.865 0.921 0.898 0.870

0.25
0.025 0.800 0.737 0.600 0.755 0.684 0.589 0.742 0.663 0.590
0.050 0.891 0.850 0.737 0.846 0.788 0.714 0.835 0.782 0.729
0.100 0.941 0.923 0.852 0.907 0.875 0.825 0.910 0.874 0.842

0.45
0.025 0.676 0.565 0.385 0.640 0.512 0.417 0.631 0.495 0.410
0.050 0.777 0.688 0.531 0.738 0.626 0.529 0.732 0.626 0.543
0.100 0.870 0.808 0.678 0.834 0.758 0.654 0.824 0.749 0.682

Figure 3.5 Power comparison for P-SPQR method under the closed-end procedure

We found the five number summary of the stopping time for the P-SPQR method. The results are

summarized in Tables 3.9-3.10.
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Table 3.9 Detection time for the open-end procedure at various change-point locations and different
pairs of (m, p), γ ∈ {0, 0.25, 0.45} and α = 0.05

(m, p) (75, 100) (100, 200) (200, 300)
γ Summary/k∗ 1 25 75 1 50 100 1 100 200

0.00

min 21 38 47 32 58 58 59 112 103
Q1 94 140 228 118 202 281 232 392 520

Med 141 197 315 194 295 405 368 554 740
Q3 224 295 431 312 429 559 653 877 1040
max 667 674 674 898 896 899 1795 1760 1794

0.25

min 10 24 24 14 16 16 24 53 53
Q1 61 118 206 77 157 250 139 318 438

Med 102 173 301 135 254 383 248 486 670
Q3 181 265 420 248 387 534 496 779 995
max 671 663 675 887 890 895 1708 1789 1798

0.45

min 4 6 6 4 4 4 4 4 4
Q1 42 107 207 49 142 213 71 204 387

Med 85 172 328 103 255 375 172 464 680
Q3 178 290 452 225 424 568 370 779 1013
max 659 675 672 889 899 888 1798 1797 1798

Table 3.10 Detection time for the closed-end procedure at various change-point locations and dif-
ferent pairs of (m, p), γ ∈ {0, 0.25, 0.45} and α = 0.05

(m, p) (75, 100) (100, 200) (200, 300)
γ Summary/k∗ 1 25 75 1 50 100 1 100 200

0.00

min 21 37 46 28 54 56 57 90 90
Q1 82 127 209 106 182 263 208 356 465

Med 122 178 292 168 269 378 319 508 681
Q3 189 264 399 274 390 520 551 803 966
max 666 673 673 896 898 898 1754 1777 1790

0.25

min 10 23 23 14 15 15 24 50 50
Q1 56 106 194 72 148 235 128 290 420

Med 94 157 287 124 239 357 232 456 634
Q3 164 249 398 230 365 505 451 746 950
max 664 674 675 899 898 900 1788 1756 1784

0.45

min 4 6 6 4 3 3 4 4 4
Q1 40 105 196 46 141 212 69 257 375

Med 82 169 320 103 251 379 165 455 665
Q3 170 281 439 220 420 572 365 765 1013
max 650 675 667 896 900 893 1787 1777 1800
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The estimated density of the stopping time are graphed in Figure 3.6. A similar pattern is

evident in all three cases.

Figure 3.6 Estimated density of the stopping time for α = 0.05, γ ∈ {0, 0.25, 0.45} and various
pair of (m, p)

3.4 Application

In this section, we apply our proposed method to a breast cancer gene expression data from

The Cancer Genome Atlas (TCGA) project. The data contains expression measurements of 17, 814

genes from 536 patients. All expression measurements are recorded on the log scale. The response

variable y is the gene expression measurement for BRCA1 and the explanatory variables are gene

expression measurements for remaining genes. The response variable y is graphed below.
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Figure 3.7 The gene expression measurement for BRCA1 of the breast cancer gene expression data

We can observe that there is no changes in the first 50 observations. Therefore, the first

m = 50 observations are considered to be the historical sample size. The significant ex-

planatory variables are chosen using by the post-SCAD penalized quantile regression at dif-

ferent quantile level of interest, considering τ ∈ {0.5, 0.75}. Our proposed P-SPQR method

is applied to monitor the future incoming observations sequentially. When quantile τ = 0.5

our method detects nineteen change points. The corresponding multiple change points are

{80, 86, 97, 124, 155, 161, 197, 203, 240, 254, 275, 332, 341, 368, 405, 441, 486, 509, 523} and this

graphed in Figure 3.8. However, we detect only six change points at qunatile level τ = 0.75,

they are {69, 108, 183, 206, 373, 468} and they are plotted in Figure 3.9.
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Figure 3.8 Change points at quantile level τ = 0.5

Figure 3.9 Change points at quantile level τ = 0.75
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3.5 Conclusion

In this chapter, we propose SPQR procedure for the sequential change point detection for high-

dimensional data. The SPQR performs variable selection and estimation simultaneously. More-

over, to improve the SPQR based monitoring method, we develop the P-SPQR in sequential change

point detection for high-dimensional data. Simulations are conducted to illustrate the performance

of both methods. In Case II, the error distribution has heavy tails, the SPQR procedure gives much

larger Type I errors. The P-SPQR method, however, significantly improves the Type I errors heavy

tails of random errors. Thus,P-SPQR method is most suitable for heavy tails distributions. Further,

the P-SPQR method shows higher power than the SPQR method. As expected, in both methods

the power tends to increase when the historical sample size increases from 100 to 300. We have

only considered the P-SPQR method for high-dimensional data. Our proposed P-SPQR method is

applied to a breast cancer gene expression data to locate multiple change points sequentially.
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CHAPTER 4 CONFIDENCE DISTRIBUTION FOR SKEW NORMAL CHANGE POINT

MODEL BASED ON MODIFIED INFORMATION CRITERION

4.1 Introduction

The concept of a confidence distribution (CD) has its roots in Fisher’s fiducial distribution. A

CD is similar to a point estimator or an interval estimator but it uses a sample-dependent distri-

bution function on the parameter space to estimate the parameter of interest. It also can provide

confidence intervals of all nominal levels for a parameter of interest through confidence curves.

Xie and Singh (2013) gave a detailed review of recent developments in confidence distributions.

The first time of the terminology “confidence distribution” was used in a formal publication was

dated back to Cox (1958). In his paper, Cox suggested that a confidence distribution “can either

be defined directly, or can be introduced in terms of the set of all confidence intervals at different

levels of probability”. The formal modern definition for CD can be found in Schweder and Hjort

(2002) and Singh, Xie, and Strawderman (2005); Singh and Strawderman (2007). The concept

of CD is broad and it has wide range of applications including bootstrap distributions, p-value

functions, normalized likelihood functions, and Bayesian posteriors, among others. For example,

Schweder and Hjort (2002) used the CD to obtain the reduced likelihood function. Singh et al.

(2005) proposed a method for combining information from independent studies through confi-

dence distributions. Singh and Strawderman (2007) provided a formal definition of a CD and an

asymptotic confidence distribution (aCD). Singh and Xie (2012) proposed a function called a CD

posterior which uses the information from observed data with its corresponding prior informa-

tion. Xie and Singh (2013) proposed a CD approach which incorporates the expert opinions while

analyzing clinical data with binary outcomes. Shen, Liu, and Xie (2018) proposed a predictive dis-

tribution function with CDs. Cunen, Hermansen, and Hjort (2018) proposed a parametric method

by using confidence distributions for detecting change points and obtained confidence curves for

change locations.
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The detection of change points is a process which attempts to identify points in time when the

probability distribution of a stochastic process or time series changes. Change-point analysis plays

an important role in financial time series analysis, economy, quality control, genome research, sig-

nal processing, medical research, statistical calibration and so on. The study of the change point

problem was dated back to Page (1954, 1955) who first proposed a procedure to detect only one

change in a parameter and has been extensively studied since then. For instance, Chernoff and

Zacks (1964), Gardner (1969), Hawkins (1977) and Hawkins (1992) studied the testing and esti-

mation of a change in the mean of a normal model. Hsu (1977) and Inclán (1993) studied change

point problem for the variance in a normal model. Readers are referred to Cosörgö and Horváth

(1997), Chen and Gupta (1999) and Chen and Gupta (2012) for more details of parametric and

nonparametric methods on different types of change-point problems. The use of the information

criteria in the view of the model selection as an alternative for change point detection has been ex-

tensive studied such as Hirotsu, Kuriki, and Hayter (1992), Chen and Gupta (1997), Chen, Gupta,

and Pan (2006), Ngunkeng and Ning (2014), Hasan, Ning, and Gupta (2014), Cai, Said, and Ning

(2016) and Said, Ning, and Tian (2019), to name a few.

As mentioned earlier, Cunen et al. (2018) suggested a change-point detection procedure based

on a CD incorporating the likelihood function by profiling over the other parameters and obtained

the confidence curve for the change location, consequently, the confidence sets at any confidence

levels. However, as Chen et al. (2006) pointed out, the estimation of the change location through

the regular likelihood function does not consider the contribution of the change location to the

model complexity as a parameter. Clearly, when the change location k is located in the middle

of the data, all the parameters are effective. However, the parameter space of the model becomes

redundant when the location of change k is near 1 or n. To tackle this issue, Chen et al. (2006)

proposed the modified information criterion (MIC) by considering the complexity of the penalty

term which could relate to the change point locations. This method assigns larger penalty when the

change point is near the beginning or the end of the data. In this chapter, we propose a CD-based

procedure for a skew normal change-point model incorporating modified information criterion
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(MIC). Furthermore, the presence of noise in the data can influence the intrinsic nature of data and

cause changes. Therefore, we also verify the statistical significance of the detected change point

through MIC-based test statistic.

This chapter is organized as follows. In Section 4.2, we go over the ideas of MIC and con-

struction of confidence curves through CDs briefly, and then introduce the procedure based on

CDs associated with MIC for a skew normal change-point model. In Section 4.3, simulations are

conducted to investigate the performance of the proposed method and compare with some other

existing method in terms of coverage probabilities and average lengths of confidence sets. The

proposed method is applied to two stock market data to illustrate the detection and the estimation

procedures in Section 4.4. Some discussion is provided in Section 4.5.

4.2 Methodology

4.2.1 Modified Information Criterion (MIC)

Let x1, . . . , xn be a random sample drawn from the density function f(x; Θ). The Schwarz

information criterion (SIC) proposed by Schwarz (1978) is given as follows.

SIC = −2ln(Θ̂) + dim(Θ̂) log(n), (4.2.1)

where ln(·) is the log-likelihood function of the random sample, Θ̂ is the maximum likelihood

estimate (MLE) of the parameter Θ and dim(Θ̂k) is the dimension of the parameter space. We

denote ΘL,ΘR to be the pre-change and post-change parameters respectively and Θ̂L, Θ̂R to be the

MLEs of the pre-change and post-change parameters. In general, the change point problem can be

treated as the model selection problem by selecting a better model between the null hypothesis of

no change and the alternative hypothesis of at least one change existing. Therefore, the SIC in the

context of having at least one change can be written as

SIC(k) = −2ln(Θ̂L(k), Θ̂R(k), k) +

[
2dim(Θ̂L(k)) + 1

]
log(n), (4.2.2)
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where 1 ≤ k < n as well as (4.2.1) defines the SIC under the null hypothesis of no change which

we denote it as SIC(n). However, as Chen et al. (2006) pointed out, (4.2.2) does not consider

the change location to be a parameter which may cause the redundancy of the parameter space

when the change occurs near the beginning or the end of data. Therefore, the modified information

criterion (MIC) proposed by Chen et al. (2006) is given as follows. Under the null hypothesis of

no change, the MIC is defined as,

MIC(n) = −2ln(Θ̂) + dim(Θ̂) log(n), (4.2.3)

where Θ̂ maximizes ln(Θ). Therefore, under H0, both SIC(n) and MIC(n) are same. Under the

alternative hypothesis, the MIC is defined as,

MIC(k) = −2ln(Θ̂L(k), Θ̂R(k), k) +

[
2dim(Θ̂L(k)) +

(
2k

n
− 1

)2]
log(n), (4.2.4)

where 1 ≤ k < n. The difference between (4.2.2) and (4.2.4) is that (4.2.4) considers the contri-

bution of the change location k to the model as a parameter. If MIC(n) > min1≤k<n MIC(k), then

we select the model with a change point and the estimate of the change point is given by

MIC(k̂) = min
1≤k<n

MIC(k). (4.2.5)

Moreover, for the purpose of verifying the statistical significance of the detected change point, the

associated MIC-based test statistic is defined as,

Sn = MIC(n)− min
1≤k<n

MIC(k) + dim(Θ) log(n), (4.2.6)

where MIC(n) and MIC(k) are defined in (4.2.3) and (4.2.5). Chen et al. (2006) showed, under

Wald conditions and the regularity conditions, as n −→∞,

Sn −→ χ2
d, (4.2.7)
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in distribution under H0, where d is the dimension of Θ.

4.2.2 Profile Log-likelihood and Deviance Function

Suppose observations x1, . . . , xk coming from the population with the density function

f(x,ΘL) and xk+1, . . . , xn coming from the population with the density function f(x,ΘR). The

log-likelihood function is,

l(k,ΘL,ΘR) =
∑
i≤k

log(f(x,ΘL)) +
∑
i≥k+1

log(f(x,ΘR)). (4.2.8)

The profile log-likelihood function can be obtained by maximizing the log-likelihood function

(4.2.8) over ΘL and ΘR for a given k. It can be defined as,

lprof (k) = max
ΘL,ΘR

{l(k,ΘL,ΘR)} = l(k, Θ̂L, Θ̂R), (4.2.9)

where Θ̂L and Θ̂R are MLEs of ΘL and ΘR for a given k respectively. Then the estimated change

location k̂ is given by lprof (k̂) = max
k

(lprof (k)). After k̂ is obtained, the deviance function is given

by

D(k,x) = 2{lprof (k̂)− lprof (k)}, (4.2.10)

where x = (x1, x2, · · · , xn). To construct a confidence curve for k based on the deviance function,

we consider the estimated distribution of D(k,x) at position k as follows.

Ψk(x) = Pk,Θ̂L,Θ̂R{D(k,x) < x}, (4.2.11)

where x ∈ R. In the case of continuous parameters, Wilks theorem states that Ψk(x) is approx-

imately the distribution function of a χ2
1. However, Wilks theorem does not hold for a discrete

parameter k. Therefore, we compute Ψk through the simulations. The confidence curve can be



68
constructed as,

cc(k,xobs) = Ψk(D(k,xobs)) = Pk,Θ̂L,Θ̂R{D(k,x) < D(k,xobs)}. (4.2.12)

The probability that cc(k,xobs) < α, under the true value of k, is often approximated well with

α. Then, the confidence sets for k can be visualized using the plot cc(k,xobs). The cc(k,xobs) is

the acceptance probability for k, or one minus the p-value for testing that value of k by using the

deviance-based test which rejects the null hypothesis for high values of D(k,x). We compute Ψk

and hence cc(k,xobs) by simulations as follows.

cc(k,xobs) =
1

B

B∑
j=1

I{D(k,x∗j) < D(k,xobs)}, (4.2.13)

for large number of B of simulated copies of data set x∗. For each possible value of k, we simulate

data x∗j , j = 1, · · · , B from f(x,ΘL) and f(x,ΘR) to the left and right side of k respectively. See

Cunen et al. (2018) for more details. In our proposed procedure to construct the confidence curves,

it is different from the Cunen et al. (2018) approach here to estimate k. Instead of estimating the

change location k by maximizing the profile-likelihood function over all possible values of k, we

estimates k using (4.2.5) by considering the impact of change locations. The MIC-based statistics

Sn in (4.2.6) can be used to confirm a significant change statistically to avoid the fluctuations

caused by noise.

4.3 Changes in All Three Parameters in a Skew Normal Distribution

The skew normal distribution (SN) was introduced by Azzalini (1985) which allows to reg-

ulate skewness in the data set. The probability distribution function of a skew normal random

variable X is given by

fX(x) =
2

σ
φ

(
x− µ
σ

)
Φ

(
λ
x− µ
σ

)
, x ∈ R (4.3.1)
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and the cumulative distribution function (CDF) of the SN distribution is,

FX(x) = Φ

(
x− µ
σ

)
− 2T

(
x− µ
σ

, λ

)
, x ∈ R (4.3.2)

where T is Owen’s function, φ and Φ are the probability distribution function and cumulative dis-

tribution function of the standard normal distribution. µ ∈ R is the location parameter, σ ∈ R+

is the scale parameter and λ ∈ R is the shape parameter. We denote X ∼ SN(µ, σ, λ). When

λ = 0, the SN(µ, σ, λ) reduces to the normal N(µ, σ). Several basic properties of the skew nor-

mal distribution were studied by Azzalini (1985). Readers are referred to Azzalini and Capitanio

(2014) for more details of skew normal distribution family and recent developments on this di-

rection. The multivariate case of the skew normal distribution was investigated by Azzalini and

Dalla Valle (1996). Although many methods have been proposed for making statistical inference

for the skew normal distribution family, only a few of literature available on the change point de-

tection. Arellano-Valle and Loschi (2013) proposed a Bayesian approach for detecting changes in

parameters in a skew normal model. Ngunkeng and Ning (2014) proposed a skew normal change-

point model based on the Schwarz information criterion (SIC). Their method was improved by

Said et al. (2019) where they considered modified information criterion to detect changes in a skew

normal model. A change-point problem for a skew normal distribution can be stated as follows.

xi ∼

 SN(µL, σL, λL) i = 1, . . . , k,

SN(µR, σR, λR) i = (k + 1), . . . , n,
(4.3.3)

where k ∈ {1, . . . , (n− 1)} is the unknown change point location and needed to be estimated. We

are testing the following hypotheses,

H0 : µ1 = µ2 = · · · = µn = µ,

σ1 = σ2 = · · · = σn = σ,

λ1 = λ2 = · · · = λn = λ,
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versus

H1 : µ1 = · · · = µk︸ ︷︷ ︸
µL

6= µk+1 = · · · = µn︸ ︷︷ ︸
µR

,

σ1 = · · · = σk︸ ︷︷ ︸
σL

6= σk+1 = · · · = σn︸ ︷︷ ︸
σR

,

λ1 = · · · = λk︸ ︷︷ ︸
λL

6= λk+1 = · · · = λn︸ ︷︷ ︸
λR

,

where 1 ≤ k < n is the unknown change point location with (µL, σL, λL) and (µR, σR, λR) being

the parameters of left and right side of the change point location k. We assume there is at most one

change in data since multiple-change detection can always be decomposed to multistages with at

most a single change at each stage using the binary segmentation method proposed by Vostrikova

(1981). The log-likelihood function under the null hypothesis defined as follows.

lH0(µ, σ, λ) = n log

(
2

σ

)
− 1

2

n∑
i=1

log

(
φ

(
xi − µ
σ

)2)
+

n∑
i=1

log

(
Φ

(
λ
xi − µ
σ

))
. (4.3.4)

To obtain the MLEs of µ, σ and λ, we take the first derivative of the log-likelihood function (4.3.4)

with respect to the parameters µ, σ, λ and set the equations equal to zero. Under the alternative

hypothesis,

lH1(k) =

{
k log

(
2

σL

)
− 1

2

k∑
i=1

log

(
φ

(
xi − µL
σL

)2)
+

k∑
i=1

log

(
Φ

(
λL
xi − µL
σL

))}
+

{
(n− k) log

(
2

σR

)
− 1

2

n∑
i=k+1

log

(
φ

(
xi − µR
σR

)2)

+
n∑

i=k+1

log

(
Φ

(
λR
xi − µR
σR

))}
.

(4.3.5)

To obtain the MLEs of µL, µR, σR, σL, λR andλL, we take the first derivative of the log-likelihood

function (4.3.5) with respect to the parameters and set the equations equal to zero. Denote

µ̂L, µ̂R, σ̂R, σ̂L, λ̂R, λ̂L to be the MLEs of the µL, µR, σR, σL, λR and λL respectively. The pro-

filed log-likelihood function can be derived from (4.2.9). The modified information criteria can

be obtained from (4.2.3). The estimate of the change point k̂ is the value which minimizes the
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equation (4.2.5). Further, the deviance function and the confidence curve can be obtained from

(4.2.10) and (4.2.11) respectively.

4.4 Simulation Study

In this section, simulations will be conducted to investigate the performance of the proposed

change-point detection method based on a CD, and compare with the one proposed by Cunen et al.

(2018). To make fair comparisons, we perform two methods under the same settings and study

their coverage probabilities and the average sizes of the confidence sets of the change points. A

confidence set of a change point is defined by {k : cc(k, x) ≤ α}. Correspondingly, the size of a

confidence set is defined by the number of k belonging to the confidence set for a given nominal

level α.

Through all the simulations, we only consider a single change scenario since the multiple-

change case can always be dealt with the binary segmentation method. The data before the

change point k is always generated from SN(0, 1, 1), and the data after the change point is

generated from SN(µ, σ, λ) where µ = {1, 1.5, 2}, σ = {2, 2.5, 3} and λ = {3, 3.5, 4}. We

consider two sample sizes n = 50 and n = 100. For the first sample size, we set up the

changes occurring at k = {10, 20, 25}. For the second sample size n = 100, we set up the

changes occurring at k = {10, 20, 40, 50}. The choices of k are approximately corresponding

to the scenarios that a chance occurs at the very beginning, in the middle, and in the very end

of data. We do not consider the changes occurring in the second half of the data, for exam-

ple, k = {30, 40} and k = {60, 80, 90}, since the performances will be similar due to the sym-

metric property. In our simulations, we consider three different approaches to obtain the estimated

change location k̂ to calculate the deviance function D(k, x) given in (4.2.10). The first approach

is simply based on the modified information criterion (MIC) given in (4.2.5). The second approach

is based on the test statistic Sn which verifies statistically significance of the estimated change

location k̂ to avoid the impact of noise in the data. The third approach log-like method is by

Cunen et al. (2018) which obtained k̂ by maximizing the profile likelihood function lprof (k) given

in (4.2.9) for all possible values of k without considering the impact of the location of the change.
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1000 simulations are conducted for each scenario.

Table 4.1 lists simulation results of coverage probabilities for n = 50 and various confidence

levels 0.50, 0.90, 0.95 and 0.99. From the results, we observe that the MIC and Sn provide compa-

rable coverage probabilities to the log-like method by Cunen et al. (2018), and in general, the MIC

performs slightly better than the log-like method. As the increases of the differences among param-

eters, three methods perform similarly and the coverage probabilities get closer to the confidence

levels we set up. Table 4.2 provides the average of sizes of confidence sets. MIC and Sn methods

have similar average sizes. However, both of them provide smaller average sizes of confidence

sets than the ones by log-like method by Cunen et al. (2018), especially when the change oc-

curs at the beginning (equivalently, in the end) of the data. For example, for SN(1, 2, 3) case

with k = 10 and α = 0.99, the average size of confidence sets by MIC method is 24.86 and

is 24.68 by Sn method, comparing to 30.06 by log-like method. For k = 25, the average sizes

of confidences are 15.38 for both MIC and Sn but 19.81 for log-like method. We also observe

that, as the increases of differences among parameters, all three methods obtain similar average

sizes of confidence sets. Figures 4.1 & 4.2 sketch the graphs of coverage probability and average

size of confidence sets comparisons between Sn and the log-like, the likelihood method used in

Cunen et al. (2018). Since MIC and Sn perform very similarly, therefore, we only graph the curves

for Sn and log-like methods.
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Table 4.1 The comparisons of coverage probabilities, n = 50

k = 10 k = 20 k = 25
α MIC loglik Sn MIC loglik Sn MIC loglik Sn

SN(1, 2, 3)

0.50 0.40 0.37 0.35 0.40 0.37 0.32 0.41 0.39 0.35
0.90 0.73 0.72 0.70 0.68 0.65 0.63 0.69 0.66 0.62
0.95 0.79 0.78 0.77 0.76 0.71 0.69 0.74 0.73 0.70
0.99 0.91 0.89 0.89 0.89 0.86 0.83 0.86 0.86 0.82

SN(1.5, 2.5, 3.5)

0.50 0.43 0.41 0.40 0.44 0.43 0.40 0.46 0.44 0.38
0.90 0.76 0.74 0.73 0.78 0.75 0.71 0.80 0.80 0.74
0.95 0.83 0.81 0.79 0.87 0.85 0.81 0.88 0.87 0.83
0.99 0.94 0.93 0.91 0.96 0.94 0.92 0.96 0.95 0.93

SN(2, 3, 4)

0.50 0.49 0.47 0.46 0.49 0.45 0.49 0.50 0.49 0.45
0.90 0.82 0.81 0.78 0.90 0.80 0.82 0.90 0.89 0.81
0.95 0.89 0.88 0.85 0.93 0.85 0.88 0.95 0.94 0.89
0.99 0.96 0.96 0.95 0.99 0.93 0.96 0.99 0.99 0.96
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Figure 4.1 The coverage probability comparison when all parameters change at various change
point positions, k ∈ {10, 20, 25} and the sample size n = 50



75

Table 4.2 The comparisons of average sizes of confidence sets, n = 50

k = 10 k = 20 k = 25
α MIC loglik Sn MIC loglik Sn MIC loglik Sn

SN(1, 2, 3)

0.50 7.15 7.81 7.04 5.75 6.62 5.72 5.84 6.68 5.86
0.90 13.78 17.04 13.48 9.71 11.82 9.65 9.32 11.54 9.34
0.95 17.10 21.23 16.81 11.56 14.28 11.51 10.93 13.84 10.97
0.99 24.86 30.06 24.68 16.33 20.38 16.25 15.38 19.81 15.38

SN(1.5, 2.5, 3.5)

0.50 4.91 5.61 4.87 4.79 5.13 4.77 5.02 5.17 5.04
0.90 8.64 10.10 8.56 6.98 7.79 6.95 7.02 7.69 7.04
0.95 10.59 12.53 10.47 7.99 9.16 7.96 7.98 8.89 7.99
0.99 15.79 18.93 15.60 10.80 12.84 10.77 10.46 12.04 10.48

SN(2, 3, 4)

0.50 4.29 5.88 4.29 4.58 5.12 4.56 5.03 5.19 5.01
0.90 6.97 8.58 6.96 6.22 7.21 6.21 6.61 7.17 6.61
0.95 8.28 10.46 8.26 6.97 8.16 6.95 7.30 8.06 7.30
0.99 12.14 15.56 12.12 8.93 10.79 8.92 9.11 10.44 9.11
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Figure 4.2 The confidence set comparison when change in all three parameters at various
change point positions, k ∈ {10, 20, 25} and the sample size n = 50

Tables 4.3 & 4.4 list the simulation results for the coverage probabilities and average sizes of

confidence sets for n = 100 by three approaches with various confidence levels and change points.

Same pattern is observed as the one observed from Tables 4.1 & 4.2. Figures 4.3 & 4.4 sketch the

graphs for coverage probabilities and average sizes respectively.
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Table 4.3 The comparisons of coverage probability, n = 100

k = 10 k = 20 k = 40 k = 50
α MIC loglik Sn MIC loglik Sn MIC loglik Sn MIC loglik Sn

SN(1, 2, 3)

0.50 0.42 0.39 0.43 0.43 0.40 0.42 0.45 0.42 0.44 0.45 0.43 0.44
0.90 0.68 0.66 0.68 0.69 0.68 0.69 0.70 0.67 0.69 0.70 0.68 0.70
0.95 0.73 0.72 0.73 0.75 0.74 0.75 0.78 0.75 0.77 0.79 0.76 0.78
0.99 0.83 0.82 0.85 0.86 0.84 0.86 0.87 0.86 0.86 0.89 0.85 0.88

SN(1.5, 2.5, 3.5)

0.50 0.45 0.44 0.45 0.46 0.44 0.46 0.48 0.47 0.48 0.49 0.47 0.48
0.90 0.72 0.70 0.72 0.73 0.71 0.72 0.82 0.78 0.82 0.88 0.85 0.88
0.95 0.77 0.76 0.75 0.77 0.76 0.77 0.88 0.85 0.88 0.91 0.88 0.91
0.99 0.86 0.85 0.85 0.89 0.82 0.89 0.95 0.94 0.95 0.97 0.96 0.97

SN(2, 3, 4)

0.50 0.49 0.47 0.48 0.49 0.47 0.48 0.49 0.46 0.48 0.52 0.50 0.50
0.90 0.82 0.80 0.82 0.83 0.85 0.83 0.85 0.83 0.85 0.88 0.86 0.87
0.95 0.88 0.86 0.88 0.88 0.86 0.86 0.93 0.85 0.81 0.93 0.92 0.92
0.99 0.96 0.95 0.96 0.96 0.96 0.96 0.97 0.94 0.96 0.98 0.96 0.97
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Figure 4.3 The coverage probability comparison when all parameters change at various change
point positions, k ∈ {10, 20, 40, 50} and the sample size n = 100
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Table 4.4 The comparisons of average sizes of confidence sets, n = 100

k = 10 k = 20 k = 40 k = 50
α MIC loglik Sn MIC loglik Sn MIC loglik Sn MIC loglik Sn

SN(1, 2, 3)

0.50 7.02 8.86 6.94 5.95 6.91 5.90 5.61 6.55 5.58 5.90 6.89 5.90
0.90 14.82 20.88 14.71 9.69 12.22 9.64 8.48 10.56 8.45 8.74 10.74 8.74
0.95 19.31 27.63 19.16 11.43 14.71 11.37 9.70 12.36 9.68 9.96 12.43 9.96
0.99 31.71 45.11 31.34 15.98 21.92 15.88 12.71 16.75 12.64 12.99 16.78 12.99

SN(1.5, 2.5, 3.5)

0.50 4.85 5.17 4.75 4.70 4.87 4.69 4.77 4.92 4.75 5.38 7.29 5.20
0.90 8.35 9.28 8.21 6.61 7.02 6.60 6.43 6.75 6.40 6.82 7.24 6.82
0.95 10.40 11.60 10.22 7.50 8.08 7.48 7.13 7.64 7.10 7.50 8.02 7.50
0.99 15.98 18.48 15.73 9.94 10.84 9.92 8.89 9.58 8.87 9.24 10.01 9.24

SN(2, 3, 4)

0.50 4.14 4.38 4.11 4.31 4.41 4.30 4.72 4.67 4.71 5.21 5.46 5.16
0.90 6.57 7.12 6.53 5.71 5.97 5.70 5.88 5.95 5.88 6.38 6.45 6.38
0.95 7.88 8.62 7.85 9.07 6.70 6.37 6.39 6.54 6.38 6.90 7.03 6.90
0.99 11.47 12.68 11.42 8.02 8.42 8.00 7.63 7.93 7.62 8.20 8.47 8.20
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Figure 4.4 The confidence sets comparison when all three parameters changes at various
change point locations, k ∈ {10, 20, 40, 50} and the sample size n = 100

4.5 Application

In this section we consider the stock returns for Brazilian and Chilean markets to apply the

proposed method. The stock returns for both countries were recorded weekly from October 31,

1995 to October 31, 2000. These data sets were used in Arellano-Valle and Loschi (2013) and
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Ngunkeng and Ning (2014). Instead of using the data directly, we use the stock return ratio as

recommended in Ngunkeng and Ning (2014). In both analyses, we also assume changes occurring

in all three parameters simultaneously. The binary segmentation method proposed by Vostrikova

(1981) is used to detect possible multiple changes in the data. The stock return ratio is obtained by

the following transformation,

Rt =
Pt+1 − Pt

Pt
, t = 1, 2, · · · , n− 1.

The independence of the transformed data can be verified by the Portmanteau test. See Hsu (1979)

and Ngunkeng and Ning (2014) for details.

4.5.1 Brazilian Market Return Ratio Data

The Brazilian market return ratio data is graphed in Figure 4.5.

Figure 4.5 The weekly stock return data for Brazil

We apply the proposed approach along with the binary segmentation procedure to detect
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multiple change points and construct corresponding confidence sets. MIC(n) = MIC(262) =

−781.8335 > min1≤k<n MIC(k) = MIC(87) = −824.4513 provides the estimation of the change

location to be k̂ = 87. To confirm that it is a statistical significant change instead of being

caused by noises, we calculate the test statistic Sn = 59.3228 associated with the critical value

being χ2
0.95,3 = 7.815 and the p-value being 8.202× 10−13. Therefore, we confirm that the change

occurring at 87th location which corresponds to the change 88th location in the raw data is sta-

tistically significant. The maximum likelihood estimates (MLEs) of the parameters before the

change point are (µ̂L, σ̂L, λ̂L) = (−0.0079, 0.0328, 0.8732), and the MLEs of the parameters are

(µ̂R, σ̂R, λ̂R) = (−0.0006, 0.0611, 0.0022) after the change. Furthermore, the 95% confidence set

for the change point is {71, 78, . . . , 90}.

We then divide the data sets into two subsequences that are below k (≤ 87) and above k (> 87)

and repeat the above detection process to detect changes in these two subsequences. Such an

iterative process stops till no further change points being found. We detect all possible change

points being {19, 88, 144, 170, 240}. The confidence curves for all change point estimates are

shown in Figures 4.6 - 4.8. 95% confidence sets are marked by red dashed lines. Comparing to

the ones obtained by Ngunkeng and Ning (2014), We detect an additional change at 170th. These

change points are shown in Figure 4.9. Moreover, as suggested by one of the reviewers, we apply

the normal model by Cunen et al. (2018) to the data set to detect changes and obtain the change

point set {19, 88, 144, 192, 240}. It has the change point 192 different from our method and the

one by Ngunkeng and Ning (2014). However, the violation of normality of the data was verified by

Ngunkeng and Ning (2014). Therefore, the model based on the skew normal distribution is more

appropriate than the one based on the normal distribution by Cunen et al. (2018). Consequently,

the results obtained based on the skew normal model are more convincible.
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Figure 4.6 Left: Confidence curve for change point at k̂ = 87, Right: Confidence curve for the fist
subset below (k ≤ 87), the k̂ = 18

Figure 4.7 Left: Confidence curve for the second subset (k ≥ 88) after change point at k̂ = 143,
Right: Confidence curve for the subset (k ≥ 144), the k̂ = 169
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Figure 4.8 Confidence curve for the subset (k ≥ 170), the k̂ = 239

Figure 4.9 The weekly stock return data for Brazil with change point estimates

4.5.2 Chilean Market Return Ratio Data

The Chilean market return data and return ratio data are graphed in Figure 4.10.
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Figure 4.10 The weekly stock return data for Chile

The MIC(n) = MIC(262) = −1015.536 > min1≤k<n MIC(k) = MIC(87) = −1051.643.

The estimated change location is k̂ = 112. The test statistic Sn = 52.8011 with the critical

value χ2
0.95,3 = 7.815 and the p-value 2.0214 × 10−11 confirms that it is a statistically significant

change. The corresponding change point in the data is 113. The MLEs of the parameters are

(µ̂L, σ̂L, λ̂L) = (−0.0253, 0.0323, 2.5638) and (µ̂R, σ̂R, λ̂R) = (−0.0004, 0.0402, 0.0018) before

and after the change respectively. With the binary segmentation method, we found all four change

points in the Chilen stock data. They are {61, 113, 170, 181}. Figures 4.11 and 4.12 show the

confidence curves for all change point estimates and 95% confidence sets. These change points

are graphed in Chilean Market data in Figure 4.13. The findings from our proposed approach are

matched with the ones obtained by Ngunkeng and Ning (2014). Same as the Brazilian data, we also

apply the normal model by Cunen et al. (2018) to detect changes. We obtain the change point set

{7, 113, 170, 259} which has only the change 170 matching our result and the one by Ngunkeng

and Ning (2014). The difference is also due to the violation of normality of the data.
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Figure 4.11 Left: Confidence curve for change point at k̂ = 112, Right: Confidence curve for the
fist subset below (k ≤ 112), the change point estimate k̂ = 60

Figure 4.12 Left: Confidence curve for second subset (k ≥ 113), the change point estimate k̂ =
169, Right: Confidence curve for the subsequence after the change point (k ≥ 170), the change
point estimate k̂ = 180
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Figure 4.13 The weekly stock return data for Chile with change point estimates

4.6 Conclusion

In this chapter, we propose a CD-based procedure incorporating the modified information cri-

terion for a skew normal change-point model. Different from other existing methods, the proposed

method can provide confidence sets for the change point for a given nominal level instead of giving

the point estimate only. Moreover, the proposed method considers the impact of the location of

the change in terms of the model complexity. Consequently, it provides better coverage probabil-

ity and comparatively smaller average sizes of confidence sets. Simulations are conducted under

different scenarios which indicate the advantages of the proposed method. Two stock market data

are given to illustrate the detecting procedure by the proposed method.
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CHAPTER 5 CHANGE POINT DETECTION IN THREE PARAMETER WEIBULL

DISTRIBUTION BASED ON THE MODIFIED INFORMATION CRITERION

5.1 Introduction

In the statistical analysis, the change point analysis plays an important role in identifying points

in time when the probability distribution of stochastic processes or time series changes. When a

change point exists, it is not advisable to perform a statistical analysis without taking into account

of the existence of that change point because it could lead to misleading results. The change point

analysis attempts to identify the number of change point(s) and the corresponding location(s).

Change-point analysis has been extensively explored since Page (1954, 1955). Sen and Srivastava

(1975a,b) derived the exact and asymptotic distribution of their test statistic for testing a single

change in the mean of a sequence of normal random variables. Worsley (1979) studied the power

of likelihood ratio and cumulative sum tests for a change in a binomial probability model. Srivas-

tava and Worsley (1986) studied the multiple changes in the multivariate normal mean and approx-

imated the null distribution of the likelihood ratio test statistic based on an improved Bonferroni

inequality. Chen and Gupta (1995) studied the likelihood procedure for testing the change point hy-

pothesis under multivariate Gaussian model. Asymptotic results of the test based on the likelihood

ratio test can be found in Cosörgö and Horváth (1997). Gurevich and Vexler (2005) investigated

the change-point problem in logistic regression. Wu (2008) provided a simultaneous change-point

analysis and variable selection in a regression problem. Ning and Gupta (2009) studied the change-

point problem for the generalized lambda distribution. Ramanayake and Gupta (2010) considered

the problem of detecting a change-point in an exponential distribution with repeated values. Chen

and Gupta (2012) discussed change-point problems for various parametric models with different

approaches. Arellano-Valle and Loschi (2013) presented a Bayesian approach to study the change-

point problem of the skew normal distribution. Ngunkeng and Ning (2014) studied the different

change-point scenarios for the skew normal distribution from the viewpoint of the model selection.
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Recently, Alghamdi, Ning, and Gupta (2018) proposed the change-point detection procedure for

the Rayleigh Lomax distribution using Schwartz and modified information criterion.

Among all the distributions, the Weibull distribution is one of the most widely used lifetime

distributions in reliability engineering. Due to its versatility, it can take on the characteristics of

other types of distributions based on the value of the shape parameter. The three parameter Weibull

distribution is defined as follows.

fX(x) =


α

β

(
x− θ
β

)α−1

exp

(
−
(
x− θ
β

)α)
;x ≥ θ,

0 ;x < θ,

(5.1.1)

and the cumulative distribution function is,

FX(x) = 1− exp

(
−
(
x− θ
β

)α)
, (5.1.2)

where θ is the location parameter, β > 0 is the scale parameter, and α > 0 is the shape parameter.

In short hand, we denoteW (θ, α, β). When θ = 0, it reduces to two parameter Weibull distribution.

Jandhyala and Evaggelopoulos (1999) proposed a change-point methodology for identifying

changes in the scale and shape parameters of a two-parameter Weibull distribution. The asymptotic

results of the likelihood ratio test (LRT) statistic for detecting unknown changes in the parameters

were derived as well as maximum likelihood estimate (MLE) of the unknown change point were

obtained. They applied such a Weibull change-point model to model daily minimal temperatures

measured in Uppsala. Jurus̆ková (2007) investigated the asymptotic behavior of a log-likelihood

ratio statistic for testing a change in a three-parameter Weibull distribution. In this chapter, we

propose a detection procedure based on the modified information criterion (MIC) to detect simul-

taneous changes in parameters of a three-parameter Weibull distribution. Moreover, instead of

only providing point estimates of change locations, we propose a method based on the confidence

distribution (CD) to construct the confidence sets for change locations at a given significance level.

This chapter is organized as follows. In Section 5.2, the detecting procedure based on the MIC
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is proposed. The asymptotic results of the test statistic associated with the detecting procedure

is shown to be a standard χ2 distribution. The procedure of constructing the confidence set of a

change through the confidence distribution is provided in Section 5.3. Simulations to investigate

the performance of the proposed procedures and compare with other existing methods in terms of

powers, coverage probabilities and lengths of confidence sets are given in Section 5.4. A real data

example is given in Section 5.5 to indicate an application of the proposed method. Some discussion

is provided in Section 5.6.

5.2 Methodology

5.2.1 Modified Information Criterion

In general, change point detection can be treated in the sense of model selection. That is,

testing the null hypothesis of no change versus the alternative hypothesis of at least one change is

equivalent to choose the better model between the model under the null hypothesis and the model

under the alternative hypothesis. Therefore, various model selection criteria can be adapted to

the change-point detection procedure. The Schwarz information criterion (SIC) (Schwarz (1978))

is one of the most popular criteria for model selection. Zhang and Siegmund (2007) noted that

the conventional SIC could detect change points more effectively when changes take place in the

middle of the data. However, as Chen et al. (2006) pointed out, the conventional SIC method did

not consider the complexity of the model which may cause the redundancy of the parameter space,

especially a change occurring near the beginning or the end of data. To overcome this issue, Chen

et al. (2006) proposed the modified information criterion by adjusting the penalty term in SIC so

that it reflects the contributions of change-point locations to model complexity. This approach

assigns lager penalty when the change point is close to 1 or n.

Let x1, . . . , xn be a random sample drawn from the density function f(x; Θ). The Schwarz

information criterion (SIC) proposed by Schwarz (1978) is given as follows.

SIC = −2ln(Θ̂) + dim(Θ̂) log(n), (5.2.1)
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where ln(·) is the log-likelihood function of the random sample, Θ̂ is the maximum likelihood

estimate (MLE) of the parameter Θ and dim(Θ̂k) is the dimension of the parameter space. We

denote ΘL and ΘR to be the pre-change and post-change parameters respectively and Θ̂L and

Θ̂R to be the MLEs of the pre-change and post-change parameters. In general, the change point

problem can be treated as the model selection problem by selecting a better model between the null

hypothesis of no change and the alternative hypothesis of at least one change existing. Therefore,

the SIC in the context of having at least one change can be written as

SIC(k) = −2ln(Θ̂L(k), Θ̂R(k), k) +

{
2dim(Θ̂L(k)) + 1

}
log(n), (5.2.2)

where 1 ≤ k < n as well as (5.2.1) defines the SIC under the null hypothesis of no change which

we denote it as SIC(n). However, as Chen et al. (2006) pointed out (5.2.3) does not consider the

change location to be a parameter which may cause the redundancy of the parameter space when

the change occurs near the beginning or the end of data. Therefore, the modified information

criterion (MIC) proposed by Chen et al. (2006) is given as follows. Under the null hypothesis of

no change, the MIC is defined as,

MIC(n) = −2ln(Θ̂) + dim(Θ̂) log(n), (5.2.3)

where Θ̂ maximizes ln(Θ). Therefore, under H0, both SIC(n) and MIC(n) are same. Under the

alternative hypothesis, the MIC is defined as,

MIC(k) = −2ln(Θ̂L(k), Θ̂R(k), k) +

{
2dim(Θ̂L(k)) +

(
2k

n
− 1

)2}
log(n), (5.2.4)

where 1 ≤ k < n. The difference between (5.2.2) and (5.2.4) is that (5.2.4) considers the contri-

bution of the change location k to the model as a parameter. If MIC(n) > min1≤k<n MIC(k), then
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we select the model with a change point and the estimate of the change point is given by

MIC(k̂) = min
1≤k<n

MIC(k). (5.2.5)

Moreover, for the purpose of verifying the statistical significance of the detected change point, the

associated MIC-based test statistic is defined as,

Sn = MIC(n)− min
1≤k<n

MIC(k) + dim(Θ) log(n), (5.2.6)

where MIC(n) and MIC(k) are defined in (5.2.3) and (5.2.4). Chen et al. (2006) showed, under

Wald conditions and the regularity conditions, as n −→∞,

Sn −→ χ2
d, (5.2.7)

in distribution under H0, where d is the dimension of Θ. For the purpose of comparison later, we

also provide the test statistic associated with the conventional SIC procedure as follows.

Tn = SIC(n)− min
1≤k<n

SIC(k) + dim(Θ) log n. (5.2.8)

Chen and Gupta (1997) and Cosörgö and Horváth (1997) pointed out the asymptotic distribution

of the related statistic for the SIC is found to have type I extreme value distribution.

5.2.2 MIC-based Detection Procedure for Three-Parameter Weibull Distribution

LetX1, X2, . . . , Xn be a sequence of independent random variables belong to a three-parameter

Weibull distribution. The change point problem for a three-parameter Weibull distribution is de-

fined as follows.

Xi ∼


W (θL, αL, βL) i = 1, . . . , k,

W (θR, αR, βR) i = (k + 1), . . . , n,

(5.2.9)
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where the pdf and cdf of three-parameter Weibull distribution are given in (5.1.1) and (5.1.2). We

are testing the following hypotheses.

H0 : θ1 = θ2 = · · · = θn = θ,

α1 = α2 = · · · = αn = α,

β1 = β2 = · · · = βn = β,

versus
H1 : θ1 = · · · = θk︸ ︷︷ ︸

θL

6= θk+1 = · · · = θn︸ ︷︷ ︸
θR

,

α1 = · · · = αk︸ ︷︷ ︸
αL

6= αk+1 = · · · = αn︸ ︷︷ ︸
αR

,

β1 = · · · = βk︸ ︷︷ ︸
βL

6= βk+1 = · · · = βn︸ ︷︷ ︸
βR

,

where (α, θ, β), (αL, θL, βL) and (αR, θR, βR) are unknown parameters and need to be esti-

mated. k is the unknown change location and needs to be estimated as well. Under the null

hypothesis, the log-likelihood function is given as,

ln(θ, α, β) = n log(α)− n log(β) + (α− 1)
n∑
i=1

log

(
xi − θ
β

)
−

n∑
i=1

(
xi − θ
β

)α
. (5.2.10)

The maximum likelihood estimators (MLEs) of θ, α and β can be obtained by setting these partial

derivatives equal to zero.

∂ln(θ, α, β)

∂α
=
n

α
+

n∑
i=1

log

(
xi − θ
β

)
−

n∑
i=1

(
xi − θ
β

)α
log

(
xi − θ
β

)
,

∂ln(θ, α, β)

∂β
=
−nα
β

+
α

β

n∑
i=1

(
xi − θ
β

)α+1

,

∂ln(θ, α, β)

∂θ
= (θ − 1)

n∑
i=1

(
1

xi − θ

)
+
α

β

n∑
i=1

(
xi − θ
β

)α−1

.
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The MIC(n) is defined as,

MIC(n) = −2ln(θ̂, α̂, β̂) + 3 log(n), (5.2.11)

where θ̂, α̂ and β̂ are the MLEs of θ, α and β respectively. Similarly, under the alternative hypoth-

esis, the log-likelihood function is,

lH1 = l(k, θL, αL, βL, θR, αR, βR) =
k∑
i=1

log(f(xi, θL, αL, βL) +
n∑

i=k+1

log(f(xi, θR, αR, βR)

=

{
k log(αL)− k log(βL) + (αL − 1)

k∑
i=1

log

(
xi − θL
βL

)

−
k∑
i=1

(
xi − θL
βL

)αL}
+

{
(n− k) log(αR)− (n− k) log(βR)

+ (αR − 1)
n∑

i=k+1

log

(
xi − θR
βR

)
−

n∑
i=k+1

(
xi − θR
βR

)αR}
.

The MLEs of the pre-change parameters θL, αL and βL can be obtained by solving the following

equations.

∂lH1

∂αL
=

k

αL
+

k∑
i=1

log

(
xi − θL
βL

)
−

k∑
i=1

(
xi − θL
βL

)αL
log

(
xi − θL
βL

)
,

∂lH1

∂βL
=
−kαL
βL

+
αL
βL

k∑
i=1

(
xi − θL
βL

)αL+1

,

∂lH1

∂θL
= (θL − 1)

k∑
i=1

(
1

xi − θL

)
+
αL
βL

k∑
i=1

(
xi − θL
βL

)αL−1

.
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and the MLEs of the post-change parameters θR, αR and βR are the solutions of the following

equations.

∂lH1

∂αR
=

(n− k)

αR
+

n∑
i=k+1

log

(
xi − θR
βR

)
−

n∑
i=k+1

(
xi − θR
βR

)αR
log

(
xi − θR
βR

)
,

∂lH1

∂βR
=
−(n− k)αR

βR
+
αR
βR

n∑
i=k+1

(
xi − θR
βR

)αR+1

,

∂lH1

∂θR
= (θR − 1)

n∑
i=k+1

(
1

xi − θR

)
+
αR
βR

n∑
i=k+1

(
xi − θR
βR

)αR−1

.

Now MIC(k) is given by,

MIC(k) = −2l(k, θ̂L, α̂L, β̂L, θ̂R, α̂R, β̂R) +

{
6 +

(
2k

n
− 1

)2}
log n, (5.2.12)

where (θ̂L, α̂L, β̂L) and (θ̂R, α̂R, β̂R) are MLEs of the parameters before and after the change re-

spectively. If there is a change, the change point k is estimated by

MIC(k̂) = min
1≤k<n

MIC(k).

Furthermore, Sn can be obtained from (5.2.6). Under the Wald conditions and the regularity con-

ditions provided by Chen et al. (2006), we have the following theorems.

Theorem 5.2.13. As n→∞,

Sn −→ χ2
3 ,

in distribution under the null hypothesis.

Theorem 5.2.14. As n → ∞, the change point satisfies 0 < k/n < 1. Then the change point

estimator k̂ satisfies

k̂ − k = Op(1) .

The proofs of both Theorems are similar to ones in Chen et al. (2006).
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5.3 Confidence Curve for Three Parameter Weibull Distribution

In this section, we provide steps to construct a confidence curve for the change point in a three-

parameter Weibull distribution based on MIC. Most existing literature on change point problem

focused on providing the point estimate of the change location. Recently, Cunen et al. (2018) pro-

posed the confidence curve along with the confidence sets for the change point estimate through

the confidence distribution (CD). The concept of a CD has its roots in Fisher’s fiducial distribution.

A CD is similar to a point estimator or an interval estimator but it uses a sample-dependent distri-

bution function on the parameter space to estimate the parameter of interest. It also can provide

confidence intervals of all nominal levels for a parameter of interest through confidence curves.

More details and recent developments are referred to Xie and Singh (2013).

Cunen et al. (2018) used traditional log-likelihood function to obtain the point estimate of

the change location, then constructed the confidence curves and confidence sets at given nominal

levels through CD. However, as we mentioned in Section 5.2, this method does not consider the

complexity of the model. Therefore, it is not effective due to the possible redundancy of the

parameter space, especially when the change point is near 1 or n. Thus, we modify their approach

by estimating the change location k̂ using (5.2.5). The confidence curve for a three-parameter

Weibull distribution can be obtained as follows.

Step 1: The profile log-likelihood function can be obtained by maximizing the log-likelihood func-

tion (5.2.12) over the parameters for each candidate value of k where 1 ≤ k < n− 1.

lprof (k) = max

(
l(k, θL, αL, βL, θR, αR, βR)

)
= l(k, θ̂L, α̂L, β̂L, θ̂R, α̂R, β̂R) .

Step 2: The deviance is given by,

D(k,x) = 2{lprof (k̂)− lprof (k)} , (5.3.1)
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where x = (x1, x2, · · · , xn) and x1, x2, · · · , xk is a sample coming from the dis-

tribution W (θL, αL, βL) and xk+1, · · · , xn coming from W (θR, αR, βR). lprof (k̂) =

max1≤k<n(lprof (k)) and k̂ is obtained by using (5.2.5) which is different from Cunen et al.

(2018).

Step 3: To construct a confidence curve for k based on the deviance function, we consider the

estimated distribution of D(k,x) at position k as follows.

Ψk(x) = Pk,Θ̂L,Θ̂R{D(k,x) < x}, (5.3.2)

where x ∈ R. In the case of continuous parameters, Wilks theorem states that Ψk(x) is

approximately the distribution function of a χ2
1. However, Wilks theorem does not hold for

a discrete parameter k. Therefore, we compute Ψk through the simulations. The confidence

curve can be constructed as,

cc(k,xobs) = Ψk(D(k,xobs)) = Pk,Θ̂L,Θ̂R{D(k,x) < D(k,xobs)}. (5.3.3)

The probability that cc(k,xobs) < α, under the true value of k, is often approximated

well with α. Then, the confidence sets for k can be visualized using the plot cc(k,xobs).

The cc(k,xobs) is the acceptance probability for k, or one minus the p-value for testing

that value of k by using the deviance-based test which rejects the null hypothesis for high

values of D(k,x). We compute Ψk and hence cc(k,xobs) by simulations as follows.

cc(k,xobs) =
1

B

B∑
j=1

I{D(k,x∗j) < D(k,xobs)} , (5.3.4)

for large number of B of simulated copies of data set x∗. For each possible value of k,

we simulate data x∗j , j = 1, · · · , B from f(x,ΘL) and f(x,ΘR) to the left and right side

of k respectively. See Cunen et al. (2018) for more details. In our proposed procedure

to construct the confidence curves, it is different from the Cunen et al. (2018) approach
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here to estimate k. Instead of estimating the change location k by maximizing the profile-

likelihood function over all possible values of k, we estimates k using (5.2.5) by consider-

ing the impact of the locations of changes. The MIC-based statistics Sn in (5.2.6) can be

used to confirm a significant change statistically to avoid the fluctuations caused by noise.

5.4 Simulation Study

In this section, we conduct simulations at various values of the change point location k with

different sample sizes n = 50, 100, 150. The pre-change distribution is always set to be W (1, 1, 2)

and the post-change distribution after change point k is W (1.25, 1.25, 2.25), W (1.5, 1.5, 2.5), and

W (1.75, 1.75, 2.75). Since Sn defined in (5.2.6) and Tn defined in (5.2.8) have different null rejec-

tion rates, therefore, we cannot simply compare the power of Sn and Tn directly. Thus, we consider

T ∗n which denotes the power of Tn after the null rejection rate of Tn is equal to the corresponding

Sn by adjusting its critical values (increase or decrease).

First, we verify the null asymptotic distribution of Sn which is stated in Theorem 5.2.13 numer-

ically. For different sample sizes n ∈ {100, 200, 400} we obtain the χ2
3 quantile-quantile (Q-Q)

plot for Sn values in Figures 5.1 - 5.3. From the plots, we observe that the null asymptotic distri-

bution of Sn can be approximated to χ2
3 when sample size increases. This confirms the result given

in Theorem 5.2.13.

Second, we investigate the convergence of the change point estimator k̂ in terms of the em-

pirical probability distribution of |k̂ − k| ≤ δ at various sample sizes and different values of the

parameters where k is the true value of change location and δ is set to be the difference between

the estimated and the true value of k. The results are summarized in Tables 5.1-5.4. Simulations

results indicate that the change point estimates achieve the better convergence rate as the sample

size increases.
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Figure 5.1 The Chi-square Q-Q plot of Sn as n = 100

Figure 5.2 The Chi-square Q-Q plot of Sn as n = 200
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Figure 5.3 The Chi-square Q-Q plot of Sn as n = 400

Table 5.1 Probability distribution of |k̂− k| ≤ δ and the sample size is n = 50 at various
change point locations k

n = 50

k P (|k̂ − k| ≤ 1) P (|k̂ − k| ≤ 2) P (|k̂ − k| ≤ 3)

W(1.25, 1.25, 2.25)
10 0.192 0.281 0.354
15 0.186 0.252 0.324
25 0.191 0.278 0.331

W(1.5, 1.5, 2.5)
10 0.390 0.539 0.621
15 0.422 0.542 0.617
25 0.430 0.540 0.621

W(1.75, 1.75, 2.75)
10 0.593 0.703 0.768
15 0.599 0.722 0.789
25 0.623 0.727 0.788

The power comparisons between Sn and T ∗n with different values of parameters, samples

sizes and change locations are reported in Tables 5.4-5.6. The true change point k considering

{10, 15, 25}, {20, 40, 505}, {25, 50, 75} for sample size 50, 100, 150 respectively. When sample

size n = 50, the change location is beyond the midpoint of the data, for example, k ∈ {40, 35} are

symmetric with k ∈ {10, 15}. In our simulation, we only consider the true change-point locations

below or equal to the midpoint of the data set. From the tables, it can be clearly seen, in both pro-
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Table 5.2 Probability distribution of |k̂−k| ≤ δ and the sample size is n = 100 at various
change point locations k

n = 100

k P (|k̂ − k| ≤ 1) P (|k̂ − k| ≤ 2) P (|k̂ − k| ≤ 3)

W(1.25, 1.25, 2.25)
20 0.234 0.351 0.418
40 0.244 0.344 0.425
50 0.234 0.330 0.402

W(1.5, 1.5, 2.5)
20 0.506 0.634 0.714
40 0.508 0.641 0.722
50 0.494 0.629 0.705

W(1.75, 1.75, 2.75)
20 0.666 0.773 0.834
40 0.650 0.753 0.804
50 0.647 0.753 0.796

Table 5.3 Probability distribution of |k̂−k| ≤ δ and the sample size is n = 150 at various
change point locations k

n = 150

k P (|k̂ − k| ≤ 1) P (|k̂ − k| ≤ 2) P (|k̂ − k| ≤ 3)

W(1.25, 1.25, 2.25)
25 0.277 0.385 0.468
50 0.286 0.401 0.477
75 0.300 0.398 0.469

W(1.5, 1.5, 2.5)
25 0.548 0.680 0.767
50 0.507 0.640 0.701
75 0.507 0.627 0.697

W(1.75, 1.75, 2.75)
25 0.689 0.796 0.846
50 0.633 0.733 0.783
75 0.621 0.708 0.752

cedures, the power increases as the difference between the parameters increase. Further, the power

tends to increase when sample size increases. Unlike T ∗n , the Sn method considers the change point

location. As a results, the power based on the Sn method is higher than the T ∗n method when the

change location is further away from the middle of the data. The results of these two methods are

graphed in Figure 5.4.
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Table 5.4 Power comparison for sample size n = 50 at different change point locations
k ∈ {10, 15, 25}

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗n

10 0.452 0.531 0.691
15 0.499 0.686 0.801
25 0.462 0.748 0.907

Sn

10 0.490 0.568 0.716
15 0.542 0.724 0.821
25 0.523 0.786 0.927

Table 5.5 Power comparison for sample size n = 100 at different change point locations
k ∈ {20, 40, 50}

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗n

20 0.657 0.736 0.964
40 0.752 0.927 0.998
50 0.714 0.932 0.999

Sn

20 0.710 0.768 0.970
40 0.806 0.939 0.998
50 0.767 0.953 0.999

Table 5.6 Power comparison for sample size n = 150 as at different change point loca-
tions k ∈ {25, 50, 75}

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗n

25 0.765 0.796 0.992
50 0.895 0.970 1.000
75 0.878 0.990 1.000

Sn

25 0.811 0.829 0.994
50 0.916 0.979 1.000
75 0.902 0.991 1.000
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Figure 5.4 The power comparison of two methods with various change point locations and different
sample size n ∈ {50, 100, 150}

We also conduct simulations to compare the proposed method for the confidence curve based

on MIC in Section 5.3 and the method proposed by Cunen et al. (2018) in terms of coverage

probabilities and average confidence sets of change points at various scenarios. A confidence

set of a change point can be defined as {k : cc(k, x) ≤ α}. The size of a confidence set is

determined by the number of k belonging to the confidence set with a given nominal level. For

sample size n = 50, we generate the data set with true change point locations k ∈ {10, 15, 25}

and k ∈ {20, 40, 50} are the true change point locations for sample size n = 100. The results are

summarized in Tables 5.7 - 5.10. The MIC based method provides better coverage probabilities

when the change point is located in the beginning or the ending of the data set. Not surprisingly,
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both methods provide approximately same coverage probabilities when the change occurs in the

middle of the data set. Further, the change point location k is close to 1 or n, MIC based approach

provides thinner confidence sets compare to the traditional log-likelihood based approach used by

Cunen et al. (2018). Similarly, if the change occurs in the center, the average size of the confidence

sets are roughly equal for both methods. Thus, the comparisons confirms our method outperforms

Cunen et al. (2018) method in terms better coverage probability and thinner confidence sets.

Table 5.7 The coverage probability comparison for all parameters change at various
change point locations, k ∈ {10, 15, 25} and the sample size n = 50

k = 10 k = 15 k = 25
α MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25)

0.50 0.61 0.61 0.68 0.67 0.66 0.67
0.90 0.80 0.78 0.82 0.80 0.81 0.80
0.95 0.83 0.81 0.86 0.84 0.85 0.84
0.99 0.89 0.87 0.90 0.88 0.91 0.90

W(1.5, 1.5, 2.5)

0.50 0.69 0.68 0.73 0.72 0.72 0.72
0.90 0.83 0.82 0.85 0.84 0.88 0.88
0.95 0.88 0.87 0.89 0.88 0.91 0.91
0.99 0.92 0.91 0.94 0.93 0.96 0.95

W(1.75, 1.75, 2.75)

0.50 0.70 0.70 0.72 0.72 0.75 0.76
0.90 0.82 0.82 0.86 0.86 0.88 0.89
0.95 0.87 0.87 0.90 0.90 0.91 0.92
0.99 0.92 0.92 0.96 0.95 0.96 0.96
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Table 5.8 The confidence sets comparison for all parameters change at various change
point locations, k ∈ {10, 15, 25} and the sample size n = 50

k = 10 k = 15 k = 25
α MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25)

0.50 17.39 17.66 18.13 18.48 18.41 18.96
0.90 25.26 25.28 25.57 25.75 25.86 26.22
0.95 28.25 28.18 28.36 28.40 28.67 28.93
0.99 33.51 33.26 33.84 33.64 34.22 34.11

W(1.5, 1.5, 2.5)

0.50 13.37 13.96 13.35 13.94 13.69 14.02
0.90 18.51 19.03 18.36 19.01 18.72 18.99
0.95 20.82 21.33 20.57 21.22 21.03 21.25
0.99 26.12 26.48 25.79 26.36 26.21 26.30

W(1.75, 1.75, 2.75)

0.50 10.53 10.75 10.26 10.47 10.48 10.66
0.90 14.18 14.42 13.41 13.63 13.83 14.00
0.95 15.92 16.19 14.92 15.15 15.38 15.54
0.99 20.35 20.61 18.87 19.08 19.21 19.30

Table 5.9 The coverage probability comparison for all parameters change at various
change point locations, k ∈ {20, 40, 50} and the sample size n = 100

k = 20 k = 40 k = 50
α MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25)

0.50 0.73 0.72 0.76 0.75 0.75 0.76
0.90 0.88 0.87 0.89 0.88 0.90 0.90
0.95 0.91 0.90 0.93 0.92 0.93 0.90
0.99 0.96 0.94 0.97 0.96 0.96 0.96

W(1.5, 1.5, 2.5)

0.50 0.75 0.73 0.76 0.74 0.78 0.78
0.90 0.90 0.89 0.91 0.90 0.91 0.91
0.95 0.94 0.93 0.95 0.95 0.95 0.94
0.99 0.97 0.96 0.98 0.98 0.98 0.98

W(1.75, 1.75, 2.75)

0.50 0.79 0.78 0.80 0.80 0.78 0.78
0.90 0.91 0.91 0.90 0.90 0.90 0.90
0.95 0.94 0.94 0.93 0.93 0.95 0.95
0.99 0.97 0.97 0.97 0.97 0.98 0.98



106

Table 5.10 The confidence sets comparison for all parameters change at various change
point locations, k ∈ {20, 40, 50} and the sample size n = 100

k = 20 k = 40 k = 50
α MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25)

0.50 27.64 30.09 26.84 29.05 27.08 28.61
0.90 38.45 40.78 36.57 38.85 37.34 38.92
0.95 43.09 45.24 41.01 43.22 41.71 43.27
0.99 54.08 55.74 50.91 52.79 51.89 53.26

W(1.5, 1.5, 2.5)

0.50 18.66 19.33 17.61 18.03 18.08 18.19
0.90 24.34 25.10 22.24 22.68 23.03 23.10
0.95 26.95 27.73 24.42 24.85 25.20 25.25
0.99 33.27 34.06 29.71 30.15 30.71 30.693

W(1.75, 1.75, 2.75)

0.50 12.56 12.66 13.38 13.47 14.27 14.26
0.90 15.84 15.97 16.03 16.15 16.98 16.98
0.95 17.43 17.57 17.28 17.40 18.26 18.26
0.99 21.32 21.48 20.50 20.63 21.34 21.33
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5.5 Application

In this section, we used annual maximum rainfall data at one rain gauge in Fort Collins, Col-

orado from 1900 through 1999. The data is available under extRemes package in R software, see

Gilleland and Katz (2016). The data consists 100 observations and it is graphed in Figure 5.5. The

Figure 5.6 shows the autocorrelation function (ACF) for the data.

Figure 5.5 The annual maximum rainfall data at one rain gauge in Fort Collins, Colorado

Figure 5.6 The auto-correlation plot for annual maximum rainfall data at one rain gauge in Fort
Collins, Colorado

To ensure the independence in the time series data, we use the Portmanteau test statistic to

check independence and normality of the transform data set. The Portmanteau test statistic is
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given as,

Qk = n
k∑
i=1

r2
i ,

where ri are the autocorrelation coefficient at lag i, and k is the lag up to which the autocorrlation

coefficient function of the data. Under the null hypothesis Qk ∼ χ2
k. Using the Portmanteau test,

Q20 = 100
20∑
i=1

r2
i = 16.025735 < χ2

0.95(20) = 31.41043.

Thus, we fail to reject the null hypothesis which leads to the independence of the data. Since

MIC(n) = MIC(100) = 1156.3874 > min2≤k≤n−2MIC(k) = MIC(2) = 1143.4111, the

estimated change location is k̂ = 2. The corresponding test statistic Sn = 27.6097 with the critical

value χ2
0.05,3 = 7.815 and the p-value 4.3858 × 10−6. It confirms the change in the data. With the

conventional SIC, we have min2≤k≤n−2 SIC(k) = SIC(2). Therefore, two methods provide the

same conclusion. For potential multiple changes in the data, the binary segmentation method by

Vostrikova (1981) is applied. Such a method decomposes the detecting procedure into several steps

with assuming at most one change at each step. This process is repeated until no more change point

is detected. With the binary segmentation method, the multiple change locations in the data are

{2, 6, 17, 39, 94}. The confidence sets for the change point estimates k̂ ∈ {2, 6, 17, 39, 94} are {2},

{5, 6, 7, 8}, {17, 18, 39, 40}, {34, 35, 37, 38, 39, 47, 50}, {3, 4, 44, 47, 71, 72, 73, 74, 75, 94, 95} re-

spectively. Figures 5.7 - 5.9 show the confidence curves for the estimated change locations and

the 95% confidence set is marked by the horizontal red dashed line. Figure 5.10 indicates all the

estimated changes in the data.
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Figure 5.7 Left: Confidence curve for change point at k̂ = 2, Right: Confidence curve for the
second subset above (2 < k ≤ 100), the k̂ = 94

Figure 5.8 Left: Confidence curve for the third subset below (2 < k ≤ 94), the k̂ = 6, Right:
Confidence curve for the fourth subset (7 ≤ k ≤ 94), the k̂ = 17
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Figure 5.9 Left: Confidence curve for the fifth subset (17 < k ≤ 94), the k̂ = 39

Figure 5.10 The annual maximum rainfall data at one rain gauge in Fort Collins, Colorado with
change point locations

5.6 Conclusion

In this chapter, we propose a change point detection method for a three parameter Weibull

distribution simultaneous based on the modified information criterion. The simultaneous changes

in the parameters are considered. The asymptotic properties for the associated test statistic has

been established. Moreover, we propose a modified approach to construct a confidence curve

and to find a corresponding confidence sets for a change locations at a given significance level

through confidence distributions. Simulations are conducted to compare the proposed methods
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with the procedure based on the conventional SIC and the method provided in Cunen et al. (2018) in

terms of powers, coverage probabilities and average lengths of confidence sets at various scenarios.

Simulations indicate that our method is competitive to other existing methods and even better when

the change happen at the beginning or in the end of the data. Along with binary segmentation

method, the methods are applied to detect multiple change points and construct corresponding

confidence sets for the annual maximum rainfall data.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we proposed sequential change-point detection procedure in linear regres-

sion and linear quantile regression models for high-dimensional data. Sequential change-point

problem in linear regression under high-dimensional settings is studied in Chapter 2. We pro-

posed test statistics for the sequential change-point detection procedure based on SCAD penalized

regression model with finite monitoring horizon for high-dimensional data. The pre-change coef-

ficients are replaced by the SCAD penalized estimator. In addition, we examined the advantages

of both open- and closed-end procedures. The monitoring process for the open-end procedure may

continue to infinity if no alarm is raised. Under the closed-end procedure the monitoring process

stops after a certain number of observations being collected even if no change is detected. The

asymptotic properties of the proposed test statistics were derived. The asymptotic critical values

for both methods obtained through simulation. Based on the simulation study the open-end proce-

dure produced slightly deated Type I error for smaller N. The larger control parameter value would

be preferred when the change occurs shortly after the historical sample size.

In Chapter 3 we studied the monitoring process using penalized quantile regression for high-

dimensional data sequentially. In this study, the SCAD penalized quantile regression (SPQR)

was considered. For a specific quantile level α , we developed the CUSUM test statistic for the

sequential monitoring process for both open- and closed-end procedures. In order to improve

the monitoring method, a modified test statistic based on the post - SCAD penalized quantile

regression (P-SPQR) estimator was proposed. The asymptotic distribution of the test statistic under

the null and alternative hy-pothesis were derived. A simulation study was conducted to examine

the performance of the proposed method.

In Chapter 4 and Chapter 5 we developed a change point detection procedure based on the con-

fidence distribution combining with the modified information criterion to construct the confidence
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set for the change location for Skew Normal and Weibull distribution respectively. Simulations

results indicate the advantages of the proposed method comparing to the existing method in terms

of coverage probabilities and average lengths of the confidence sets, especially when the change

occurs at the very beginning or in the very end. Our proposed method applied to real datasets to

illustrate the advantages.

6.2 Future Work

Recently, Li, Xu, Zhong, and Li (2019) proposed a method to detect change points in the

mean of high-dimensional time series data. We would like to extend their method to monitor the

structural change sequentially. In this research, we will establish the asymptotic properties of the

test statistic and conduct simulation studies to evaluate the performance through the comparison

with other existing methods.

We are interested to study the sequential change-point detection based on penalized high-

dimensional empirical likelihood method. In such a scenario, the sample size is a random vari-

able and the null hypothesis of sequential structural stability will be rejected as soon as a change

is detected. Therefore, the objective is to detect such a change with a minimum number of false

alarms. A nonparametric testing procedure based on penalized high-dimensional empirical likeli-

hood method will be proposed and related asymptotic results will be studied.

Principal component analysis (PCA) is a fundamental dimension reduction tool in statistics.

We will study the rich properties of PCA and to select the significant explanatory variables which

influence the response variable Y . Corresponding asymptotic properties and simulations will be

conducted. Comparisons to other existing methods will be studied to illustrate advantages.
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Komlós, J., P. Major, and G. Tusnády (1976). An approximation of partial sums of independent

rv’s, and the sample df. ii. z. Wahrsch. Verw. Gebiete 34, 33–58.

Li, J., M. Xu, P.-S. Zhong, and L. Li (2019). Change point detection in the mean of high-

dimensional time series data under dependence. https://arxiv.org/pdf/1903.07006.pdf accessed

08/25/2019.



119
Lorden, G. (1971). Procedures for reacting to a change in distribution. Annals of Mathematical

Statistics, 1897—-1908.

Mallows, C. L. (1973). Some comments on cP . Technometrics 15 (4), 661–675.

Mei, Y. (2006). Sequential change-point detection when unknown parameters are present in the

pre-change distribution. The Annals of Statistics 34(1), 92–122.

Ngunkeng, G. and W. Ning (2014). Information approach for the change-point detection in the

skew normal distribution and its applications. Journal Sequential Analysis 33(4), 475–490.

Ning, W. and A. K. Gupta (2009). Change point analysis for generalized lambda distributions.

Communications in Statistics-Simulation and Computation 38, 1789–1802.

Page, E. S. (1954). Continue inspection schemes. Biometrika 41, 100–135.

Page, E. S. (1955). A test for a chance in a parameter occurring at an unknown point.

Biometrika 42, 523–527.

Qu, Z. (2008). Testing for structural change in regression quantiles. Journal of Economet-

rics 146(1), 170–184.

Ramanayake, A. and A. K. Gupta (2010). Testing for a change point in a sequence of exponential

random variables with repeated values. Journal of Statistical Computation and Simulation 80,

191–199.

Roberts, S. W. (1966). A comparison of some control chart procedures. Technometrics 8, 411–430.

Said, K. K., W. Ning, and Y. B. Tian (2019). Modified information criterion for testing changes in

skew normal model. Brazilian Journal of Probability and Statistics 33, 280–300.

Scheetz, T. E., A.-Y. Kim, E. R. Swiderski, A. R. Philp, T. A. Braun, K. L. Knudtson, A. M.

Dorrance, G. F. DiBon, J. Huang, T. L. Casavant, V. C. Sheffield, and E. M. Stone (2006). Reg-



120
ulation of gene expression in the mammalian eye and its relevance to eye disease. Proceedings

of the National Academy of Sciences 103, 14429–14434.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464.

Schweder, T. and N. Hjort (2002). Confidence and likelihood. Scandinavian Journal of Statis-

tics 29(2), 309––332.

Sen, A. K. and M. S. Srivastava (1975a). On tests for detecting change in mean. Annals of

Statistics 3, 98—-108.

Sen, A. K. and M. S. Srivastava (1975b). Some one-sided tests on change in level. Technomet-

rics 17, 61––64.

Shen, J., R. Y. Liu, and M. Xie (2018). Prediction with confidence-a general framework for pre-

dictive inference. Journal of Statistical Planning and Inference 195, 126–140.

Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory Probab.

Appl. 8(1), 22—-46.

Singh, K. and M. Xie (2012). Cd posterior-combining prior and data through confidence distri-

butions. in contemporary developments in bayesian analysis and statistical decision theory:. A

Festchrift in Honor of Williams E. Strawderman, (D.Fourdrinier et al. eds.). IMS Collection 8,

200–214. IMS, Beachwood, OH.

Singh, K., M. Xie, and W. E. Strawderman (2005). Combining information from independent

sources through confidence distributions. The Annals of Statistics 33(1), 159—-183.

Singh, K., X. M. and W. E. Strawderman (2007). Confidence distribution (cd): distribution esti-

mator of a parameter. Lecture Notes-Monograph Series Vol. 54, Complex Datasets and Inverse

Problems: Tomography, Networks and Beyond, 132––150.

Srivastava, M. S. and K. J. Worsley (1986). Likelihood ratio tests for a change in the multivariate

mean. journal of the American Statistical Association 81, 199–204.



121
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society Series B 58(1), 267––288.

Vostrikova, L. J. (1981). Detecting “disorder” in multidimensional random processes. Soviet

Mathematics: Doklady 24, 55–59.

Wang, H. and X. He (2007). Detecting differential expressions in genechip microarray studies: a

quantile approach. Journal of the American Statistical Association 102, 104–112.

Wang, L., Y. Wu, and R. Li (2012). Quantile regression for analyzing heterogeneity in ultra-high

dimension. Journal of the American Statistical Association 107(497), 214–222.

Worsley, K. (1979). On the likelihood ratio test for a shift in location of normal populations.

Journal of the American Statistical Association 74, 365–367.

Wu, Y. (2008). Simultaneous change point analysis and variable selection in a regression problem.

Journal of Multivariate Analysis 99, 2154–2171.

Wu, Y. and Y. Liu (2009). Variable selection in quantile regression. Statistics Sinica 19, 801–817.

Xie, M. and K. Singh (2013). Confidence distribution, the frequentist distribution estimator of a

parameter: A review. International Statistical Review 81(1), 2—-39.

Zhang, L., H. J. Wang, and Z. Zhu (2014). Testing for change points due to a covariate threshold

in quantile regression. Statistica Sinica 24, 1859–1877.

Zhang, N. and D. Siegmund (2007). A modified bayes information criterion with applications to

the analysis of comparative genomic hybridization data. Biometrics 63, 22–32.

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. Journal of Machine Learning

Research 7, 2541–2563.

Zhou, M., H. J. Wang, and Y. Tang (2015). Sequential change point detection in linear quantile

regression models. Statistics and Probability Letters 100, 98–103.



122
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical

Association 101(476), 1418–1428.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society 67(2), 301–320.

Zou, H. and M. Yuan (2008). Composite quantile regression and the oracle model selection theory.

Annals of Statistics 36(3), 1108–1126.



123

APPENDIX A SELECTED R PROGRAMS

Chapter 2

For Small p : Type I error - Lasso - SCAD - Open-end

# r e t u r n t h e g f u n c t i o n :

G s t a r = f u n c t i o n (m, Tm, gamma){

N=m*Tm

k =1:N

Gvalue= s q r t (m) * (1+ k /m) * ( k / (m+k ) ) ˆ ( gamma )

re turn ( Gvalue )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma){

y t r a i n =y [ 1 :m]

x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]

x t e s t =X[− (1 :m) , ]

l a s s o . s ca d = cv . n cv r e g ( x t r a i n , y t r a i n , p e n a l t y = ”SCAD” )

b e s t l a m = l a s s o . s cad $ lambda . min

c o e f = c o e f ( l a s s o . scad , s = ” lambda . min ” )

p s t a r = l e n g t h ( c o e f [ which ( c o e f ! = 0 ) ] )

l a s s o . p r e d = p r e d i c t ( l a s s o . scad , X = x t e s t ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

l a s s o . p red1 = p r e d i c t ( l a s s o . scad , X = x t r a i n ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

s c o r e 1 = cumsum ( y t e s t − l a s s o . p r ed )
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Gvalue = G s t a r (m, Tm, gamma )

s igma1= s q r t ( (m−1) / (m−p s t a r ) ) * sd ( y t r a i n − l a s s o . p red1 )

v a l u e = abs ( s c o r e 1 ) / s igma1 / Gvalue

r e s u l t = l i s t ( s t a t = v a l u e )

re turn ( r e s u l t )

}

p = 10

sim= f u n c t i o n ( nsim = 2500 , m, Tm, gamma , a lpha , cva l1 , k0 ){

max . Gamma1= c p t 1 =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 0 = c (−2 , 0 , 2 , 0 , 10 , 1 , 0 , 0 , 8 , −5)

X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

y= v e c t o r ( mode=” numer ic ” , l e n g t h =n )

X[ , 3 ] = rnorm ( n , 2 , 1 )

X[ , 4 ] = rnorm ( n , 4 , 1 )

X[ , 5 ] = rnorm ( n , 5 , 1 )

e i N=rnorm ( n , 0 , 1 ) # t h e model e r r o r

y= X%*%b e t a 0 + e i N

G s t a t 1 = s t a t ( y , X,m, Tm, gamma )

Gamma1= G s t a t 1 $ s t a t

temp . c p t 1 = apply ( matrix ( cva l1 , nco l = 1) , 1 ,

f u n c t i o n ( x ) which (Gamma1>x ) [ 1 ] )

c p t 1 = rbind ( cp t1 , temp . c p t 1 )

max . Gamma1 = c ( max . Gamma1 , max (Gamma1 ) )
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# i f ( i%%500==0) p r i n t ( i )

}

## t y p e I e r r o r ( r e j e c t when c p t i s n o t NA)

TypeI1 = 1−apply ( cp t1 , 2 , f u n c t i o n ( x ) sum ( i s . na ( x ) ) / nsim )

o u t = l i s t ( TypeI1=TypeI1 , c p t 1 = cpt1 , max . Gamma1=max . Gamma1)

re turn ( o u t )

}

# Example

d = 0

f o r (Tm i n c ( 2 , 4 , 10 , 20 , 5 0 ) ){

# c v a l 1=c v a l u e c l o s e d ( gamma , N , a lpha )

c v a l 1 = 2 .486683

f o r (m i n ms ){

sim1=sim ( nsim , m, Tm, gamma , a lpha , cva l1 , k0 )

c a t ( ” Type I : ” , c ( sim1 $ TypeI1 ) , ”\n ” )

}}

Detection Time: Open-end Procedure

G s t a r = f u n c t i o n (m, Tm, gamma){

N=m*Tm

k =1:N

Gvalue= s q r t (m) * (1+ k /m) * ( k / (m+k ) ) ˆ ( gamma )

re turn ( Gvalue )

}

### C a l c u l a t e t h e t e s t s t a t i s t i c s

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma){

y t r a i n =y [ 1 :m]
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x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]

x t e s t =X[− (1 :m) , ]

l a s s o . s ca d = cv . n cv r e g ( x t r a i n , y t r a i n , p e n a l t y = ”SCAD” )

b e s t l a m = l a s s o . s cad $ lambda . min

c o e f = c o e f ( l a s s o . scad , s = ” lambda . min ” )

p s t a r = l e n g t h ( c o e f [ which ( c o e f ! = 0 ) ] )

l a s s o . p r e d = p r e d i c t ( l a s s o . scad , X = x t e s t ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

l a s s o . p red1 = p r e d i c t ( l a s s o . scad , X = x t r a i n ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

s c o r e 1 = cumsum ( y t e s t − l a s s o . p r ed )

Gvalue = G s t a r (m, Tm, gamma )

s igma1= s q r t ( (m−1) / (m−p s t a r ) ) * sd ( y t r a i n − l a s s o . p red1 )

v a l u e = abs ( s c o r e 1 ) / s igma1 / Gvalue

r e s u l t = l i s t ( s t a t = v a l u e )

re turn ( r e s u l t )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

sim= f u n c t i o n ( nsim =2500 ,m, Tm, gamma , cva lue , k0 ){

max . d s t a t = max . l o c = c p t =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 1 =c ( 0 , 0 , 2 , 0 , 0 , 1 , 0 , 0 , 1 , 0 )

b e t a 2 =c ( 0 , 0 , 0 , 3 , 0 , 0 , 1 , 0 , 0 , −1 )
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X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

X2 = matrix ( rnorm ( n * p ) + 0 . 8 , nco l = p )

y = v e c t o r ( mode = ” numer ic ” , l e n g t h = n )

X[ , 3 ] = rnorm ( n , 2 , 1 )

X[ , 4 ] = rnorm ( n , 4 , 1 )

X[ , 5 ] = rnorm ( n , 5 , 1 )

e i N = rnorm ( n , 0 , 1 ) # t h e model e r r o r s

y [ 1 : (m + k0 ) ] = X [ 1 : (m + k0 ) , ] %*% b e t a 1 + e i N [ 1 : (m+k0 ) ]

y [ (m + k0 + 1 ) : n ] = X2 [ (m + k0 + 1 ) : n , ] %*% b e t a 2 +

e i N[ (m + k0 + 1 ) : n ]

G s t a t = s t a t ( y , X,m, Tm, gamma )

d s t a t = G s t a t $ s t a t

temp . c p t = apply ( matrix ( c v a l u e , nco l = 1) , 1 ,

f u n c t i o n ( x ) which ( d s t a t >x ) [ 1 ] )

c p t = rbind ( cp t , temp . c p t )

max . d s t a t = c ( max . d s t a t , max ( d s t a t ) )

max . l o c = c ( max . l oc , which . max ( d s t a t ) )

# i f ( i%%500==0) p r i n t ( i )

}

o u t = l i s t ( max . d s t a t =max . d s t a t , max . l o c = max . l oc , c p t = c p t )

re turn ( o u t )

}

# Example

v a l u e = sim ( nsim =2500 , 100 , 9 , 0 , 2 . 7 3 4 2 6 4 , 1 )

a l l k = na . omit ( v a l u e $ c p t )

c e i l i n g ( summary ( a l l k [ , 1 ] ) )

Density Estimation - Detection Time: Closed-end
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G s t a r = f u n c t i o n (m, Tm, gamma ) {

N = m * Tm

k = 1 :N

Gvalue = s q r t (m) * (1 + k /m) * ( k / (m + k ) ) ˆ ( gamma )

re turn ( Gvalue )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma ) {

y t r a i n = y [ 1 :m]

x t r a i n = X [ ( 1 :m) , ]

y t e s t = y [− (1 :m) ]

x t e s t = X[− (1 :m) , ]

l a s s o . s ca d = cv . n cv r e g ( x t r a i n , y t r a i n , p e n a l t y = ”SCAD” )

b e s t l a m = l a s s o . s cad $ lambda . min

c o e f = c o e f ( l a s s o . scad , s = ” lambda . min ” )

p s t a r = l e n g t h ( c o e f [ which ( c o e f ! = 0 ) ] )

l a s s o . p r e d = p r e d i c t ( l a s s o . scad , X = x t e s t ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

l a s s o . p red1 = p r e d i c t ( l a s s o . scad , X = x t r a i n ,

t y p e = ” r e s p o n s e ” , lambda = b e s t l a m )

s c o r e 1 = cumsum ( y t e s t − l a s s o . p r ed )

Gvalue = G s t a r (m, Tm, gamma )

s igma1 = s q r t ( (m − 1) / (m − p s t a r ) ) * sd ( y t r a i n − l a s s o . p red1 )

v a l u e = abs ( s c o r e 1 ) / s igma1 / Gvalue

r e s u l t = l i s t ( s t a t = v a l u e )

re turn ( r e s u l t )

}
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### S i m u l a t i o n

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

sim = f u n c t i o n ( nsim = 2500 , m, Tm, gamma , cva lue , k0 ) {

max . d s t a t = max . l o c = c p t = NULL

f o r ( i i n 1 : nsim ) {

N = m * Tm

n = m + N

i d x = 1 : n

b e t a 1 = c ( 0 , 0 , 2 , 0 , 0 , 1 , 0 , 0 , 1 , 0 )

b e t a 2 = c ( 0 , 0 , 0 , 3 , 0 , 0 , 1 , 0 , 0 , −1)

X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

X2 = matrix ( rnorm ( n * p ) + 0 . 8 , nco l = p )

y = v e c t o r ( mode = ” numer ic ” , l e n g t h = n )

X[ , 3 ] = rnorm ( n , 2 , 1 )

X[ , 4 ] = rnorm ( n , 4 , 1 )

X[ , 5 ] = rnorm ( n , 5 , 1 )

e i N = rnorm ( n , 0 , 1 ) # t h e model e r r o r s

y [ 1 : (m + k0 ) ] = X [ 1 : (m + k0 ) , ] %*% b e t a 1 + e i N [ 1 : (m + k0 ) ]

y [ (m + k0 + 1 ) : n ] = X2 [ (m + k0 + 1 ) : n , ] %*% b e t a 2 +

e i N[ (m + k0 + 1 ) : n ]

G s t a t = s t a t ( y , X, m, Tm, gamma )

d s t a t = G s t a t $ s t a t

temp . c p t = apply ( matrix ( cva lue , nco l = 1 ) , 1 ,

f u n c t i o n ( x ) which ( d s t a t > x ) [ 1 ] )

c p t = rbind ( cp t , temp . c p t )

max . d s t a t = c ( max . d s t a t , max ( d s t a t ) )

max . l o c = c ( max . l oc , which . max ( d s t a t ) )
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# i f ( i%%500==0) p r i n t ( i )

}

o u t = l i s t ( max . d s t a t = max . d s t a t , max . l o c = max . l oc , c p t = c p t )

re turn ( o u t )

}

# P l o t 1 m = 100 a lpha = 0 .025

## gamma = 0

v a l u e 1 = sim ( nsim = 2500 , 100 , 9 , 0 , 2 . 5 7 2 1 2 4 , 5 )

a l l k 1 = na . omit ( v a l u e 1 $ c p t )

c e i l i n g ( summary ( a l l k 1 [ , 1 ] ) )

## gamma = 0 . 2 5

v a l u e 2 = sim ( nsim = 2500 , 100 , 9 , 0 . 2 5 , 2 . 7 6 7 4 6 1 , 5 )

a l l k 2 = na . omit ( v a l u e 2 $ c p t )

c e i l i n g ( summary ( a l l k 2 [ , 1 ] ) )

## gamma = 0 . 4 5

v a l u e 3 = sim ( nsim = 2500 , 100 , 9 , 0 . 4 5 , 3 . 1 8 8 0 6 4 , 5 )

a l l k 3 = na . omit ( v a l u e 3 $ c p t )

c e i l i n g ( summary ( a l l k 3 [ , 1 ] ) )

mydata = data . frame ( k = c ( x1 , x2 , x3 ) , gamma = c ( rep ( 0 , 2 5 0 0 ) ,

rep ( 0 . 2 5 , 2 5 0 0 ) , rep ( 0 . 4 5 , 2 5 0 0 ) ) )

mydata $gamma = as . f a c t o r ( mydata $gamma )

p1 = g g p l o t ( mydata ) + geom d e n s i t y ( a e s ( x = k , c o l o r = gamma ) ,

show . l egend = FALSE) + s t a t d e n s i t y ( a e s ( x = k , c o l o u r = gamma ) ,

geom = ” l i n e ” , p o s i t i o n = ” i d e n t i t y ” , s i z e = 0 . 8 ) +

x l a b ( ” S t o p p i n g t ime ” ) + y l a b ( ” D e n s i t y ” ) +

geom h l i n e ( y i n t e r c e p t = 0 , c o l o u r = ” w h i t e ” ,

s i z e = 1) + l a b s ( c o l o r = e x p r e s s i o n (gamma ˜ ” ” ) ,
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t i t l e = e x p r e s s i o n ( a l p h a ˜ ”= 0 .025 ” ) ) +

theme ( l egend . p o s i t i o n = ” bot tom ” )

# graph 2 m = 100 a lpha = 0 . 0 5

## gamma = 0

v a l u e 1 1 = sim ( nsim = 2500 , 100 , 9 , 0 , 2 . 3 5 1 5 4 6 , 5 )

a l l k 1 1 = na . omit ( v a l u e 1 1 $ c p t )

c e i l i n g ( summary ( a l l k 1 1 [ , 1 ] ) )

v a l u e 2 1 = sim ( nsim = 2500 , 100 , 9 , 0 . 2 5 , 2 . 5 3 9 2 9 7 , 5 )

a l l k 2 1 = na . omit ( v a l u e 2 1 $ c p t )

c e i l i n g ( summary ( a l l k 2 1 [ , 1 ] ) )

## gamma = 0 . 4 5

v a l u e 3 1 = sim ( nsim = 2500 , 100 , 9 , 0 . 4 5 , 2 . 9 8 1 5 8 3 , 5 )

a l l k 3 1 = na . omit ( v a l u e 3 $ c p t )

c e i l i n g ( summary ( a l l k 3 1 [ , 1 ] ) )

mydata1 = data . frame ( k = c ( x11 , x21 , x31 ) , gamma = c ( rep ( 0 , 2 5 0 0 ) ,

rep ( 0 . 2 5 , 2 5 0 0 ) , rep ( 0 . 4 5 , 2 5 0 0 ) ) )

names ( mydata1 )

mydata1 $gamma = as . f a c t o r ( mydata1 $gamma )

p2 = g g p l o t ( mydata1 ) + geom d e n s i t y ( a e s ( x = k , c o l o r = gamma ) ,

show . l egend = FALSE) + s t a t d e n s i t y ( a e s ( x = k , c o l o u r = gamma ) ,

geom = ” l i n e ” , p o s i t i o n = ” i d e n t i t y ” , s i z e = 0 . 8 ) +

x l a b ( ” S t o p p i n g t ime ” ) + y l a b ( ” D e n s i t y ” ) +

geom h l i n e ( y i n t e r c e p t = 0 , c o l o u r = ” w h i t e ” ,

s i z e = 1) + l a b s ( c o l o r = e x p r e s s i o n (gamma ˜ ” ” ) ,

t i t l e = e x p r e s s i o n ( a l p h a ˜ ”= 0 . 0 5 ” ) ) +

theme ( l egend . p o s i t i o n = ” bot tom ” )

g g a r r a n g e ( p1 , p2 , nco l = 2 , nrow = 1 ,
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common . l egend = TRUE, l egend = ” bot tom ” )

Chapter 3

Small p: Type I error - SPQR - PSPQR - Open-end - tau = 0.5

rm ( l i s t = l s ( ) )

l i b r a r y ( n cv re g )

l i b r a r y ( g lmne t )

l i b r a r y ( q u a n t r e g )

l i b r a r y ( rqPen )

# r e t u r n t h e g f u n c t i o n :

G = f u n c t i o n (m, Tm, gamma ) {

N = m * Tm

k = 1 :N

Gvalue = s q r t (m) * (1 + k /m) * ( k / (m + k ) ) ˆ gamma

return ( Gvalue )

}

s q r o o t <− f u n c t i o n (A) {

e = e i g e n (A)

v = e $ v e c t o r s

v a l = e $ v a l u e s

sq = v %*% diag ( s q r t ( v a l ) ) %*% s o l v e ( v )

re turn ( t ( sq ) )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma , t a u ){

y t r a i n =y [ 1 :m]

x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]
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x t e s t =X[− (1 :m) , ]

f i t l a s s o = rq . f i t . s cad ( x t r a i n , y t r a i n , t a u = 0 . 5 , a l p h a = 3 . 7 ,

lambda= seq ( 1 , 1 0 0 , l e n g t h . o u t =10) ,

s t a r t =” rq ” , beta =0 .9995 , eps = 1e−06)

c o e f 1 = f i t l a s s o $ c o e f f i c i e n t s

c o e f 1 [ abs ( c o e f 1 )<0.000001]=0

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 1 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

# Pos t QL

x t r a i n = x t r a i n [ , c ( c o e f 1 ! = 0 ) ]

x t e s t = x t e s t [ , c ( c o e f 1 ! = 0 ) ]

f i t 1 = rq ( y t r a i n ˜ x t r a i n − 1 , t a u )

c o e f 1 = f i t 1 $ c o e f

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 2 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

r e s u l t = l i s t ( s t a t 1 = s ta tmax1 , s t a t 2 = s t a t m a x 2 )

re turn ( r e s u l t )
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}

p = 10

sim= f u n c t i o n ( nsim=nsim , m, Tm, gamma , a lpha , t au , cva l1 , k0 ){

max . Gamma1= c p t 1 =max . Gamma2= c p t 2 =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 0 = c ( 1 , 0 , −1, 0 , −15, rep ( 0 , 5 ) )

X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

y= v e c t o r ( mode=” numer ic ” , l e n g t h =n )

#X[ ,3]= rnorm ( n , 2 , 1 )

#X[ ,4]= rnorm ( n , 4 , 1 )

#X[ ,5]= rnorm ( n , 5 , 1 )

e i N=rnorm ( n , 0 , 1 ) # t h e model e r r o r s

y= X%*%b e t a 0 + e i N

G s t a t 1 = s t a t ( y , X,m, Tm, gamma , t a u )

Gamma1= G s t a t 1 $ s t a t 1

Gamma2= G s t a t 1 $ s t a t 2

temp . c p t 1 = apply ( matrix ( cva l1 , nco l = 1) , 1 ,

f u n c t i o n ( x ) which (Gamma1>x ) [ 1 ] ) # SPQR

temp . c p t 2 = apply ( matrix ( cva l1 , nco l = 1) , 1 ,

f u n c t i o n ( x ) which (Gamma2>x ) [ 1 ] ) # PSPQR

c p t 1 = rbind ( cp t1 , temp . c p t 1 )

c p t 2 = rbind ( cp t2 , temp . c p t 2 )

max . Gamma1 = c ( max . Gamma1 , max (Gamma1 ) )

max . Gamma2 = c ( max . Gamma2 , max (Gamma2 ) )
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i f ( i%%500==0) p r i n t ( i )

}

## t y p e I e r r o r ( r e j e c t when c p t i s n o t NA)

TypeI1 = 1−apply ( cp t1 , 2 , f u n c t i o n ( x ) sum ( i s . na ( x ) ) / nsim ) # SPQR

TypeI2 = 1−apply ( cp t2 , 2 , f u n c t i o n ( x ) sum ( i s . na ( x ) ) / nsim ) # PSPQR

o u t = l i s t ( TypeI1=TypeI1 , c p t 1 = cpt1 , max . Gamma1=max . Gamma1 ,

TypeI2=TypeI2 , c p t 2 = cpt2 , max . Gamma2=max . Gamma2)

re turn ( o u t )

}

# Example

a l p h a = 0 . 0 5 ; gamma=0; k0 =0; t a u = 0 . 5

Ns = c ( 2 , 4 , 6 , 9 )

ms = c ( 7 5 )

nsim = 2500

## Type I e r r o r

d = 0

f o r (Tm i n c ( 2 , 4 , 6 , 9 ) ){

# c v a l 1=c v a l u e c l o s e d ( gamma , N , a lpha )

c v a l 1 = 2 .486683

f o r (m i n ms ){

sim1=sim ( nsim , m, Tm, gamma , a lpha , t au , cva l1 , k0 )

c a t ( ” Type I SPQR : ” , c ( sim1 $ TypeI1 ) , ”\n ” )

c a t ( ” Type I PSPQR : ” , c ( sim1 $ TypeI2 ) , ”\n ” )

}}

Type I error - SPQR - PSPQR - Closed-end - tau = 0.5

c v a l u e c l o s e d = f u n c t i o n (gamma , Tm, a l p h a ) {

rep = 50000
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num = 10000

i n d = f l o o r (Tm / (Tm + 1) * num )

t = ( 1 : i n d ) / num

s t a t = NULL

f o r ( i i n 1 : rep ) {

s e t . s e ed ( s e e d s [ i ] )

e1 = rnorm ( num , 0 , 1 )

e2 = rnorm ( num , 0 , 1 )

W1 = 1 / s q r t ( num ) * cumsum ( e1 ) [ 1 : i n d ]

W2 = 1 / s q r t ( num ) * cumsum ( e2 ) [ 1 : i n d ]

absW = pmax ( abs (W1) , abs (W2) )

s t a t = c ( s t a t , max ( absW / t ˆgamma ) )

}

c r i t i c a l = q u a n t i l e ( s t a t , 1 − a l p h a )

re turn ( c r i t i c a l )

}

# r e t u r n t h e g f u n c t i o n :

G = f u n c t i o n (m, Tm, gamma ) {

N = m * Tm

k = 1 :N

Gvalue = s q r t (m) * (1 + k /m) * ( k / (m + k ) ) ˆ gamma

return ( Gvalue )

}

s q r o o t <− f u n c t i o n (A) {

e = e i g e n (A)
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v = e $ v e c t o r s

v a l = e $ v a l u e s

sq = v %*% diag ( s q r t ( v a l ) ) %*% s o l v e ( v )

re turn ( t ( sq ) )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma , t a u ){

y t r a i n =y [ 1 :m]

x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]

x t e s t =X[− (1 :m) , ]

f i t l a s s o = rq . f i t . s cad ( x t r a i n , y t r a i n , t a u = 0 . 5 , a l p h a = 3 . 7 ,

lambda= seq ( 1 , 1 0 0 , l e n g t h . o u t =10) ,

s t a r t =” rq ” , beta =0 .9995 , eps =1e−06)

c o e f 1 = f i t l a s s o $ c o e f f i c i e n t s

c o e f 1 [ abs ( c o e f 1 )<0.000001]=0

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 1 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

# Pos t QL

x t r a i n = x t r a i n [ , c ( c o e f 1 ! = 0 ) ]

x t e s t = x t e s t [ , c ( c o e f 1 ! = 0 ) ]

f i t 1 = rq ( y t r a i n ˜ x t r a i n − 1 , t a u )
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c o e f 1 = f i t 1 $ c o e f

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 2 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

r e s u l t = l i s t ( s t a t 1 = s ta tmax1 , s t a t 2 = s t a t m a x 2 )

re turn ( r e s u l t )

}

p = 10

sim= f u n c t i o n ( nsim=nsim , m, Tm, gamma , a lpha , t au , cva l1 , k0 ){

max . Gamma1= c p t 1 =max . Gamma2= c p t 2 =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 0 = c ( 1 , 0 , −1, 0 , −15, rep ( 0 , 5 ) )

X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

y= v e c t o r ( mode=” numer ic ” , l e n g t h =n )

#X[ ,3]= rnorm ( n , 2 , 1 )

#X[ ,4]= rnorm ( n , 4 , 1 )

#X[ ,5]= rnorm ( n , 5 , 1 )

e i N=rnorm ( n , 0 , 1 ) # t h e model e r r o r s

y= X%*%b e t a 0 + e i N

G s t a t 1 = s t a t ( y , X,m, Tm, gamma , t a u )
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Gamma1= G s t a t 1 $ s t a t 1

Gamma2= G s t a t 1 $ s t a t 2

temp . c p t 1 = apply ( matrix ( cva l1 , nco l = 1) , 1 ,

f u n c t i o n ( x ) which (Gamma1>x ) [ 1 ] ) # SPQR

temp . c p t 2 = apply ( matrix ( cva l1 , nco l = 1) , 1 ,

f u n c t i o n ( x ) which (Gamma2>x ) [ 1 ] ) # PSPQR

c p t 1 = rbind ( cp t1 , temp . c p t 1 )

c p t 2 = rbind ( cp t2 , temp . c p t 2 )

max . Gamma1 = c ( max . Gamma1 , max (Gamma1 ) )

max . Gamma2 = c ( max . Gamma2 , max (Gamma2 ) )

i f ( i%%500==0) p r i n t ( i )

}

## t y p e I e r r o r ( r e j e c t when c p t i s n o t NA)

TypeI1 = 1−apply ( cp t1 , 2 , f u n c t i o n ( x ) sum ( i s . na ( x ) ) / nsim ) # SPQR

TypeI2 = 1−apply ( cp t2 , 2 , f u n c t i o n ( x ) sum ( i s . na ( x ) ) / nsim ) # PSPQR

o u t = l i s t ( TypeI1=TypeI1 , c p t 1 = cpt1 , max . Gamma1=max . Gamma1 ,

TypeI2=TypeI2 , c p t 2 = cpt2 , max . Gamma2=max . Gamma2)

re turn ( o u t )

}

# Example

a l p h a = 0 . 0 5 ; gamma=0; k0 =0; t a u = 0 . 5

ms = c ( 7 5 , 1 0 0 , 1 5 0 )

nsim =2500

## Type I e r r o r

f o r (Tm i n c ( 2 ) ) {
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c v a l 1 = c v a l u e c l o s e d (gamma , Tm, a l p h a )

f o r (m i n ms ){

sim1=sim ( nsim , m, Tm, gamma , a lpha , t au , cva l1 , k0 )

c a t ( ” Type I SPQR : ” , c ( sim1 $ TypeI1 ) , ”\n ” )

c a t ( ” Type I PSPQR : ” , c ( sim1 $ TypeI2 ) , ”\n ” )

}}

Power - Closed-end - SPQR - PSPQR - tau - 0.5

G = f u n c t i o n (m, Tm, gamma ) {

N = m * Tm

k = 1 :N

Gvalue = s q r t (m) * (1 + k /m) * ( k / (m + k ) ) ˆ gamma

return ( Gvalue )

}

s q r o o t <− f u n c t i o n (A) {

e = e i g e n (A)

v = e $ v e c t o r s

v a l = e $ v a l u e s

sq = v %*% diag ( s q r t ( v a l ) ) %*% s o l v e ( v )

re turn ( t ( sq ) )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma , t a u ){

y t r a i n =y [ 1 :m]

x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]

x t e s t =X[− (1 :m) , ]

f i t l a s s o = rq . f i t . s cad ( x t r a i n , y t r a i n , t a u = 0 . 5 , a l p h a = 3 . 7 ,
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lambda= seq ( 1 , 100 , l e n g t h . o u t = 1 0 ) ,

s t a r t =” rq ” , beta =0 .9995 , eps = 1e−06)

c o e f 1 = f i t l a s s o $ c o e f f i c i e n t s

c o e f 1 [ abs ( c o e f 1 )<0.00001]=0

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 1 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

# Pos t QL

x t r a i n = x t r a i n [ , c ( c o e f 1 ! = 0 ) ]

x t e s t = x t e s t [ , c ( c o e f 1 ! = 0 ) ]

f i t 1 = rq ( y t r a i n ˜ x t r a i n − 1 , t a u )

c o e f 1 = f i t 1 $ c o e f

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 2 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

r e s u l t = l i s t ( s t a t 1 = s ta tmax1 , s t a t 2 = s t a t m a x 2 )

re turn ( r e s u l t )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s
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sim= f u n c t i o n ( nsim ,m, Tm, gamma , t au , cva lue , k0 ){

max . d s t a t 1 = max . l o c 1 = c p t 1 =max . d s t a t 2 = max . l o c 2 = c p t 2 =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 1 =c ( −1 ,0 ,1 ,8 ,1 ,0 ,0 ,0 , −5 ,0 )

b e t a 2 =c (0 , −1 ,0 ,2 ,0 ,0 ,1 ,0 ,0 , −1)

X = matrix ( r u n i f ( n * p , 0 , 1 ) , nco l = p )

X2 = matrix ( r u n i f ( n * p , 0 , 1 ) + 0 . 8 , nco l = p )

y = v e c t o r ( mode = ” numer ic ” , l e n g t h = n )

X[ , 3 ] = rnorm ( n , 2 , 1 )

X[ , 4 ] = rnorm ( n , 4 , 1 )

X[ , 5 ] = rnorm ( n , 5 , 1 )

e i N = rnorm ( n , 0 , 1 ) # t h e model e r r o r s

# e i N = rcauchy ( n , 0 , 1 )

y [ 1 : (m + k0 ) ] = X [ 1 : (m + k0 ) , ] %*% b e t a 1 + e i N [ 1 : (m+k0 ) ]

y [ (m + k0 + 1 ) : n ] = X2 [ (m + k0 + 1 ) : n , ] %*% b e t a 2 +

e i N[ (m + k0 + 1 ) : n ]

G s t a t = s t a t ( y , X,m, Tm, gamma , t a u )

d s t a t 1 = G s t a t $ s t a t 1

d s t a t 2 = G s t a t $ s t a t 2

temp . c p t 1 = apply ( matrix ( c v a l u e , nco l =1 ) , 1 ,

f u n c t i o n ( x ) i f e l s e ( max ( d s t a t 1 )>x , 1 , 0 ) ) # SPQR

temp . c p t 2 = apply ( matrix ( c v a l u e , nco l =1 ) , 1 ,

f u n c t i o n ( x ) i f e l s e ( max ( d s t a t 2 )>x , 1 , 0 ) ) # PSPQR

c p t 1 = rbind ( cp t1 , temp . c p t 1 )
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c p t 2 = rbind ( cp t2 , temp . c p t 2 )

# i f ( i%%200==0) p r i n t ( i )

}

# o u t = l i s t ( max . d s t a t =max . d s t a t , max . l o c = max . loc , c p t=c p t )

o u t = l i s t ( c p t 1 = cpt1 , c p t 2 = c p t 2 )

re turn ( o u t )

}

# Example

v a l u e = sim ( nsim =2500 , 100 , 9 , 0 , 0 . 5 , 2 . 5 7 2 1 2 4 , 1 )

a l l k 1 = na . omit ( v a l u e $ c p t 1 )

mean ( a l l k 1 ) # SPQR

a l l k 2 = na . omit ( v a l u e $ c p t 2 )

mean ( a l l k 2 ) # PSPQR

Dtection Time: Open-end - Tau = 0.5

G = f u n c t i o n (m, Tm, gamma ) {

N = m * Tm

k = 1 :N

Gvalue = s q r t (m) * (1 + k /m) * ( k / (m + k ) ) ˆ gamma

return ( Gvalue )

}

s q r o o t <− f u n c t i o n (A) {

e = e i g e n (A)

v = e $ v e c t o r s

v a l = e $ v a l u e s

sq = v %*% diag ( s q r t ( v a l ) ) %*% s o l v e ( v )

re turn ( t ( sq ) )

}
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p = 10 #Number o f p r e d i c t o r v a r i a b l e s

s t a t = f u n c t i o n ( y , X, m, Tm, gamma , t a u ){

y t r a i n =y [ 1 :m]

x t r a i n =X [ ( 1 :m) , ]

y t e s t =y [− (1 :m) ]

x t e s t =X[− (1 :m) , ]

f i t l a s s o = rq . f i t . s cad ( x t r a i n , y t r a i n , t a u = 0 . 5 , a l p h a = 3 . 7 ,

lambda = seq ( 1 , 100 , l e n g t h . o u t = 1 0 ) ,

s t a r t = ” rq ” , beta = 0 . 9 9 9 5 , eps = 1e−06)

c o e f 1 = f i t l a s s o $ c o e f f i c i e n t s

c o e f 1 [ abs ( c o e f 1 )<0.00001]=0

c o e f 1

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

p s t a r = l e n g t h ( c o e f 1 [ which ( c o e f 1 ! = 0 ) ] )

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )

J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 1 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

# Pos t QR

x t r a i n = x t r a i n [ , c ( c o e f 1 ! = 0 ) ]

x t e s t = x t e s t [ , c ( c o e f 1 ! = 0 ) ]

f i t 1 = rq ( y t r a i n ˜ x t r a i n − 1 , t a u )

c o e f 1 = f i t 1 $ c o e f

p s i = t a u − ( y t e s t − x t e s t %*% c o e f 1 < 0)

s c o r e 1 = apply ( ( x t e s t * as . v e c t o r ( p s i ) ) , 2 , cumsum )
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J v a l u e = t ( x t r a i n ) %*% x t r a i n /m * t a u * (1 − t a u )

J s r o o t = s q r o o t ( J v a l u e )

Gvalue = G(m, Tm, gamma )

s t a t v a l u e 1 = t ( s o l v e ( J s r o o t ) %*% t ( s c o r e 1 ) ) / Gvalue

s t a t m a x 2 = pmax ( abs ( s t a t v a l u e 1 [ , 1 ] ) , abs ( s t a t v a l u e 1 [ , 2 ] ) )

r e s u l t = l i s t ( s t a t 1 = s ta tmax1 , s t a t 2 = s t a t m a x 2 )

re turn ( r e s u l t )

}

p = 10 #Number o f p r e d i c t o r v a r i a b l e s

sim= f u n c t i o n ( nsim ,m, Tm, gamma , t au , cva lue , k0 ){

max . d s t a t = max . l o c = c p t =max . d s t a t 1 = max . l o c 1 = c p t 1 =NULL

f o r ( i i n 1 : nsim ){

N=m*Tm

n=m+N

i d x =1: n

b e t a 1 =c ( −1 ,0 ,1 ,8 ,1 ,0 ,0 ,0 , −5 ,0 )

b e t a 2 =c (0 , −1 ,0 ,2 ,0 ,0 ,1 ,0 ,0 , −1)

X = matrix ( rnorm ( n * p , 0 , 1 ) , nco l = p )

X2 = matrix ( rnorm ( n * p , 0 , 1 ) + 0 . 8 , nco l = p )

y = v e c t o r ( mode = ” numer ic ” , l e n g t h = n )

X[ , 3 ] = rnorm ( n , 2 , 1 )

X[ , 4 ] = rnorm ( n , 4 , 1 )

X[ , 5 ] = rnorm ( n , 5 , 1 )

e i N = rnorm ( n , 0 , 1 ) # t h e model e r r o r s

y [ 1 : (m + k0 ) ] = X [ 1 : (m + k0 ) , ] %*% b e t a 1 + e i N [ 1 : (m+k0 ) ]

y [ (m + k0 + 1 ) : n ] = X2 [ (m + k0 + 1 ) : n , ] %*% b e t a 2

+ e i N[ (m + k0 + 1 ) : n ]
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G s t a t 1 = s t a t ( y , X,m, Tm, gamma , t a u )

G s t a t 2 = s t a t ( y , X,m, Tm, gamma , t a u )

d s t a t 1 = G s t a t 1 $ s t a t 1

d s t a t 2 = G s t a t 2 $ s t a t 2

temp . c p t = apply ( matrix ( c v a l u e , nco l = 1) , 1 ,

f u n c t i o n ( x ) which ( d s t a t 1 >x ) [ 1 ] ) # SPQR

temp . c p t 1 = apply ( matrix ( c v a l u e , nco l =1 ) , 1 ,

f u n c t i o n ( x ) which ( d s t a t 2 >x ) [ 1 ] ) # PSPQR

c p t = rbind ( cp t , temp . c p t )

c p t 1 = rbind ( cp t1 , temp . c p t 1 )

#max . d s t a t = c ( max . d s t a t , max ( d s t a t ) )

#max . l o c = c ( max . loc , which . max ( d s t a t ) )

# i f ( i%%500==0) p r i n t ( i )

}

# o u t = l i s t ( max . d s t a t =max . d s t a t , max . l o c = max . loc , c p t=c p t )

o u t = l i s t ( c p t = cp t , c p t 1 = c p t 1 )

re turn ( o u t )

}

# Example

v a l u e = sim ( nsim =1000 , 100 , 9 , 0 , 0 . 5 , 2 . 4 8 6 6 8 3 , 1 )

a l l k = na . omit ( v a l u e $ c p t ) # SPQR

c e i l i n g ( summary ( a l l k [ , 1 ] ) )

Chapter 4

rm ( l i s t = l s ( ) )

l i b r a r y ( bbmle )

l i b r a r y ( sn )

EPS = s q r t ( . Machine$ double . eps )
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l l i k . skew <− f u n c t i o n ( x i , omega , a lpha , x ){

sum ( dsn ( x , x i , omega , a lpha , dp=NULL, l o g =TRUE ) )

}

t h e t a h a t . skew <− f u n c t i o n ( x ){

t o p t i m<−f u n c t i o n ( t h e t a )− l l i k . skew ( t h e t a [ 1 ] , t h e t a [ 2 ] , t h e t a [ 3 ] , x )

x i . g u e s s = 0

omega . g u e s s = 1

a l p h a . g u e s s = 0

r e s = nlminb ( c ( x i . guess , omega . guess , a l p h a . g u e s s ) ,

t op t im , lower=EPS )

c ( r e s $ o b j e c t i v e )

# c ( r e s )

}

cc prob1 = l i s t ( )

N = 1000 # Number o f i n t e r a t i o n s

M = 1

t a u = l i s t ( )

a l l . c o v e r = l i s t ( )

avg func = f u n c t i o n ( n l , x i l , omegal , a l p h a l , nr , x i r , omegar ,

a l p h a r , t r u e . t a u ){

f o r ( l i n 1 :M){

f o r ( k i n 1 :N){

y = c ( r s n ( nl , x i l , omegal , a l p h a l ) , r s n ( nr , x i r , omegar , a l p h a r ) )

n = l e n g t h ( y )

# Compute t h e log− l i k e l i h o o d

l o g l i k e p r o f = matrix (NA, nrow = ( n−1) ,1 )

f o r ( i i n 3 : ( n − 3 ) ) {
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l o g l i k e p r o f [ i , 1 ] = ( t h e t a h a t . skew ( y [ 1 : i ] ) + t h e t a h a t . skew ( y [ ( i + 1 ) : n ] ) )

}

# log− l i k e l i h o o d based approach

# which . min ( l o g l i k e p r o f [−c ( 1 : 2 , ( n−3) : ( n−1 ) ) , 1 ] ) + 1

t a u [ [ k ] ] = which . min ( l o g l i k e p r o f ) + 1

#Compute Dev iance

dev iance obs = matrix (NA, nrow = ( n−1) , nco l = 1)

f o r ( i i n 1 : ( n − 1 ) ) {

dev iance obs [ , 1 ] = −2* ( rep ( l o g l i k e p r o f [ t a u [ [ k ] ] , 1 ] ,

( n − 1 ) ) − l o g l i k e p r o f )

}

cc prob1 [ [ k ] ] = pchisq ( dev iance obs [−c ( 1 : 2 , ( n−3 ) : ( n−1 ) ) , 1 ] , 2 )

}

t a u = matrix ( u n l i s t ( t a u ) , nrow = N, nco l = 1)

# t a b l e ( as . v e c t o r ( t a u ) )

cc prob = matrix ( u n l i s t ( cc prob1 ) , nco l = 1 , byrow = TRUE)

cc prob = matrix ( cc prob , nco l = N)

c o v e r a g e = matrix (NA, nrow = 4 , nco l = nco l ( cc prob ) )

f o r ( i i n 1 : nco l ( cc prob ) ) {

my func <− f u n c t i o n ( x ){

i f e l s e ( t r u e . t a u %i n% x , 1 , 0 )

}

c o v e r a g e [ 1 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 5 ) )

c o v e r a g e [ 2 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 0 ) )

c o v e r a g e [ 3 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 5 ) )

c o v e r a g e [ 4 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 9 ) )

}
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c o v e r a g e s i z e = rowMeans ( c o v e r a g e )

a l l . c o v e r = matrix ( data= c ( 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 9 , c o v e r a g e s i z e ) ,

nrow = 4 , nco l = 2 , dimnames = l i s t ( c ( ) ,

c ( ” Alpha ” , ” Coverage ” ) ) )

}

re turn ( a l l . c o v e r )

}

# Example

m y l i s t = avg func ( 1 0 , 0 , 1 , 1 , 40 , 0 , 1 , 2 , 10)

apply ( s i m p l i f y 2 a r r a y ( m y l i s t ) , c ( 1 , 2 ) , mean )

For Sn

cc prob1 = l i s t ( )

N = 1000 # Number o f i n t e r a t i o n s

M = 1

t a u = l i s t ( )

a l l . c o v e r = l i s t ( )

avg func = f u n c t i o n ( n l , x i l , omegal , a l p h a l , nr , x i r , omegar ,

a l p h a r , t r u e . t a u ) {

f o r ( l i n 1 :M) {

f o r ( k i n 1 :N) {

y = c ( r s n ( nl , x i l , omegal , a l p h a l ) , r s n ( nr , x i r ,

omegar , a l p h a r ) )

n = l e n g t h ( y )

# Compute t h e log− l i k e l i h o o d

l o g l i k e p r o f = matrix (NA, nrow = ( n − 1 ) , 1 )

f o r ( i i n 3 : ( n − 3 ) ) {

l o g l i k e p r o f [ i , 1 ] = ( t h e t a h a t . skew ( y [ 1 : i ] ) +
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t h e t a h a t . skew ( y [ ( i + 1 ) : n ] ) )

}

# MIC based approach

mic = matrix (NA, nrow = ( n − 1 ) , 1 )

f o r ( i i n 1 : ( n − 1 ) ) {

mic [ i , 1 ] = 2 * l o g l i k e p r o f [ i , 1 ] + (2 * 3 +

( ( 2 * i / n ) − 1 ) ˆ 2 ) * l o g ( n )

}

t a u [ [ k ] ] = which . min ( mic ) + 1

# Compute Dev iance

dev iance obs = matrix (NA, nrow = ( n − 1 ) , nco l = 1)

# f o r ( i i n 1 : ( n − 1 ) ) {

mic n = 2 * t h e t a h a t . skew ( y ) + 3 * l o g ( n )

# mic n

S n = mic n − min ( mic[−c ( 1 : 2 , ( n − 2 ) : ( n − 1 ) ) , 1 ] ) +

3 * l o g ( n )

# S n

c h i c r i c = qchisq ( 0 . 9 5 , df = 3)

i f ( S n < c h i c r i c ) {

next

}

dev iance obs [ , 1 ] = −2 * ( rep ( l o g l i k e p r o f [ t a u [ [ k ] ] ,

1 ] , ( n − 1 ) ) − l o g l i k e p r o f )

# } }

cc prob1 [ [ k ] ] = pchisq ( dev iance obs [−c ( 1 : 2 , ( n −

3 ) : ( n − 1 ) ) , 1 ] , 2 )

}



151

t a u = matrix ( u n l i s t ( t a u ) , nrow = N, nco l = 1)

# t a b l e ( as . v e c t o r ( t a u ) )

cc prob = matrix ( u n l i s t ( cc prob1 ) , nco l = 1 , byrow = TRUE)

cc prob = matrix ( cc prob , nco l = N)

# Per formance f o r a lpha v a l u e s 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 5

p e r f o r m a n c e = matrix (NA, nrow = 4 , nco l = nco l ( cc prob ) )

f o r ( i i n 1 : nco l ( cc prob ) ) {

p e r f o r m a n c e [ 1 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 5 ) )

p e r f o r m a n c e [ 2 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 ) )

p e r f o r m a n c e [ 3 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 5 ) )

p e r f o r m a n c e [ 4 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 9 ) )

}

p e r f o r m a n c e s i z e = rowMeans ( p e r f o r m a n c e )

c o v e r a g e = matrix (NA, nrow = 4 , nco l = nco l ( cc prob ) )

f o r ( i i n 1 : nco l ( cc prob ) ) {

my func <− f u n c t i o n ( x ) {

i f e l s e ( t r u e . t a u %i n% x , 1 , 0 )

}

c o v e r a g e [ 1 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 5 ) )

c o v e r a g e [ 2 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 ) )

c o v e r a g e [ 3 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 5 ) )

c o v e r a g e [ 4 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 9 ) )

}

c o v e r a g e s i z e = rowMeans ( c o v e r a g e )

a l l . c o v e r = matrix ( data = c ( 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 9 , c o v e r a g e s i z e ,

p e r f o r m a n c e s i z e ) , nrow = 4 , nco l = 3 ,

dimnames= l i s t ( c ( ) , c ( ” Alpha ” , ” Coverage ” , ” S i z e ” ) ) )
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}

re turn ( a l l . c o v e r )

}

Chapter 5

l i b r a r y ( bbmle )

l i b r a r y ( FA d i s t )

weib3 s t a r t <− f u n c t i o n ( x ) {

mu <− mean ( l o g ( x ) )

s igma2 <− var ( l o g ( x ) )

l o g s h a p e <− l o g ( 1 . 2 / s q r t ( s igma2 ) )

l o g s c a l e <− mu + ( 0 . 5 7 2 / l o g s h a p e )

l o g t h r e s <− l o g ( 0 . 5 * min ( x ) )

l i s t ( l o g s h a p e = l ogshape , l o g s c = l o g s c a l e , l o g t h r e s = l o g t h r e s )

}

dweib3 <− f u n c t i o n ( x , shape , s c a l e , t h r e s , l o g = TRUE) {

d w e i b u l l 3 ( x , shape , s c a l e , t h r e s , l o g = l o g )

}

# s i n k ( ’ s i n k−examp . t x t ’ )

eps <− 0 . 0 1

# MIC = 0 t a u . h a t = 0

myfunc = f u n c t i o n ( n l , s h a p e l , s c a l e l , t h r e s l , nr , shape r , s c a l e r ,

t h r e s r , t r u e . t a u ) {

n = n l + nr

# Genera te t h e da t a f o r l e f t s i d e o f t h e change p o i n t k

d a t l <− data . frame ( x = r w e i b u l l 3 ( nl , s h a p e l , s c a l e l , t h r e s l ) )

tmin <− l o g (1 e−08 * min ( d a t l $x ) )

m l e f t <− mle2 ( x ˜ dweib3 ( exp ( l o g s h a p e ) , exp ( l o g s c ) , exp ( l o g t h r e s ) ) ,
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data = d a t l , lower = c ( shape = 0 , s c a l e = 0 , t h r e s = −I n f ) ,

upper = c ( l o g s h a p e = I n f , l o g s c = I n f , l o g t h r e s = tmin −

eps ) , s t a r t = weib3 s t a r t ( d a t l $x ) , method = ”L−BFGS−B” )

# Genera te t h e da t a f o r r i g h t s i d e o f t h e change p o i n t k

d a t r <− data . frame ( x = r w e i b u l l 3 ( nr , shape r , s c a l e r , t h r e s r ) )

tmin <− l o g (1 e−08 * min ( d a t r $x ) )

m r i g h t <− mle2 ( x ˜ dweib3 ( exp ( l o g s h a p e ) , exp ( l o g s c ) , exp ( l o g t h r e s ) ) ,

data = d a t r , lower = c ( shape = 0 , s c a l e = 0 , t h r e s = −I n f ) ,

upper = c ( l o g s h a p e = I n f , l o g s c = I n f , l o g t h r e s = tmin −

eps ) , s t a r t = weib3 s t a r t ( d a t r $x ) , method = ”L−BFGS−B” )

d a t <− data . frame ( x = c ( d a t l $x , d a t r $x ) )

tmin <− l o g (1 e−08 * min ( d a t $x ) )

ma l l <− mle2 ( x ˜ dweib3 ( exp ( l o g s h a p e ) , exp ( l o g s c ) , exp ( l o g t h r e s ) ) ,

data = da t , lower = c ( shape = 0 , s c a l e = 0 , t h r e s = −I n f ) ,

upper = c ( l o g s h a p e = I n f , l o g s c = I n f , l o g t h r e s = tmin −

eps ) , s t a r t = weib3 s t a r t ( d a t $x ) , method = ”L−BFGS−B” )

f o r ( i i n 2 : ( n − 2 ) ) {

d a t l = d a t $x [ 1 : i ]

d a t r = d a t $x [ ( i + 1 ) : n ]

MIC n = 2 * ( mall@min ) + 3 * l o g ( n )

SIC = 2 * ( mleft@min + mright@min ) + 6 * l o g ( n )

SIC k = 2 * ( mleft@min + mright@min ) + 7 * l o g ( n )

MIC k = 2 * ( mleft@min ) + 2 * ( mright@min ) + (6 + ( ( 2 *

i ) / n − 1 ) ˆ 2 ) * l o g ( n )

# S n = (2 * ( mall@min ) + 3* l o g ( n ) ) − (2 * ( mlef t@min +

# mright@min ) + (2 *3 + (2 * ( t r u e . t a u ) / n−1)ˆ2 ) * l o g ( n ) ) +

# 3* l o g ( n )
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}

S nF = MIC n − min (MIC k ) + 3 * l o g ( n )

T nF = MIC n − min ( SIC k ) + 3 * l o g ( n )

# t a u . h a t = which (MIC == min (MIC ) ) p r i n t ( l i s t ( min (MIC ) , MIC ) )

# p r i n t ( which . min (MIC ) ) c r i c = q c h i s q ( . 9 5 , d f =3) p r i n t ( S nF )

# p r i n t ( S nF )

p1 = i f e l s e (MIC n > min ( SIC ) , 1 , 0 )

p2 = i f e l s e ( T nF > 8 . 2 0 2 8 6 4 , 1 , 0 )

p3 = i f e l s e ( S nF > qchisq ( 0 . 9 5 , 3 ) , 1 , 0 )

# p3 = i f e l s e ( min ( S nF ) > 1 0 . 2 , 1 , 0 ) k = i f e l s e (MIC n >

# min ( MIC ) , 1 , 0 ) ; k = i f e l s e ( S nF > 13 .566464 , 1 , 0 ) ;

# 9 .946725

k = c ( p1 , p2 , p3 )

k

}

d = 1

k = p1 = p2 = p3 = 0

count = 0

mypower = f u n c t i o n ( n l , s h a p e l , s c a l e l , t h r e s l , nr , shape r , s c a l e r ,

t h r e s r , t r u e . t a u ) {

f o r ( j i n 1 : 1 0 0 0 ) {

count = count + myfunc ( nl , s h a p e l , s c a l e l , t h r e s l , nr ,

shape r , s c a l e r , t h r e s r , t r u e . t a u )

d = d + 1

}

re turn ( l i s t ( Power = count / 1 0 0 0 ) )

}
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# Example

mypower ( 2 5 , 1 , 1 , 2 , 125 , 1 . 7 5 , 1 . 7 5 , 2 . 7 5 , 25)

# Coverage P r o b a b i l i t y

l i b r a r y ( FA d i s t )

l i b r a r y ( bbmle )

rm ( l i s t = l s ( ) )

EPS = s q r t ( . Machine$ double . eps ) # ” e p s i l o n ” f o r v e r y s m a l l numbers

l l i k . w e i b u l l <− f u n c t i o n ( shape , s c a l e , t h r e s , x )

{

#sum ( d w e i b u l l ( x − t h r e s , shape , s c a l e , l o g=T ) )

sum ( d w e i b u l l 3 ( x , shape , s c a l e , t h r e s , l o g =TRUE ) )

}

t h e t a h a t . w e i b u l l <− f u n c t i o n ( x )

{

i f ( any ( x <= 0 ) ) s top ( ” x v a l u e s must be p o s i t i v e ” )

t o p t i m <− f u n c t i o n ( t h e t a ) − l l i k . w e i b u l l ( t h e t a [ 1 ] ,

t h e t a [ 2 ] , t h e t a [ 3 ] , x )

mu = mean ( l o g ( x ) )

s igma2 = var ( l o g ( x ) )

shape . g u e s s = 1 . 2 / s q r t ( s igma2 )

s c a l e . g u e s s = exp (mu + ( 0 . 5 7 2 / shape . g u e s s ) )

# t h r e s . g u e s s = 1

t h r e s . g u e s s = 0 . 5 * min ( x )

r e s = nlminb ( c ( shape . guess , s c a l e . guess , t h r e s . g u e s s ) , t op t im ,

lower=EPS )

c ( r e s $ o b j e c t i v e )

}
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cc prob1 = l i s t ( )

N = 1000 # Number o f i n t e r a t i o n s

M = 1

t a u = l i s t ( )

a l l . c o v e r = l i s t ( )

p = 6

avg func = f u n c t i o n ( n l , s h a p e l , s c a l e l , t h r e s l , nr , shape r ,

s c a l e r , t h r e s r , t r u e . t a u ){

f o r ( l i n 1 :M){

f o r ( k i n 1 :N){

y = c ( r w e i b u l l 3 ( nl , s h a p e l , s c a l e l , t h r e s l ) ,

r w e i b u l l 3 ( nr , shape r , s c a l e r , t h r e s r ) )

# s e t . s eed ( 2 0 )

n = l e n g t h ( y )

# Compute t h e log− l i k e l i h o o d

l o g l i k e p r o f = matrix (NA, nrow = ( n−1) ,1 )

f o r ( i i n 3 : ( n − 3 ) ) {

l o g l i k e p r o f [ i , 1 ] = ( t h e t a h a t . w e i b u l l ( y [ 1 : i ] ) +

t h e t a h a t . w e i b u l l ( y [ ( i + 1 ) : n ] ) )

}

# which . min ( l o g l i k e p r o f [−c ( 1 : 2 , ( n−3) : ( n−1 ) ) , 1 ] ) + 2

# t a u [ [ k ] ] = which . min ( l o g l i k e p r o f [ , 1 ] )

t a u [ [ k ] ] = which . min ( l o g l i k e p r o f [−c ( 1 : 2 , ( n−3 ) : ( n−1 ) ) , 1 ] ) + 1

#MIC based approach

# mic = m a t r i x (NA , nrow = ( n−1) ,1 )

# f o r ( i i n 1 : ( n − 1 ) ) {
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# mic [ i , 1 ] = 2* l o g l i k e p r o f [ i , 1 ] + (2 *p + (2 * i / n−1) ˆ2 ) * l o g ( n )

#}

# which . min ( mic[−c ( 1 : 2 , ( n−3) : ( n−1) ) ,1] )+2

# t a u [ [ k ] ] = which . min ( mic [ , 1 ] )

# t a u [ [ k ] ] = which . min ( mic[−c ( 1 : 2 , ( n−3) : ( n−1 ) ) , 1 ] ) + 1

#Compute Dev iance

dev iance obs = matrix (NA, nrow = ( n−1) , nco l = 1)

f o r ( i i n 1 : ( n − 1 ) ) {

dev iance obs [ , 1 ] = −2* ( rep ( l o g l i k e p r o f [ t a u [ [ k ] ] , 1 ] ,

( n − 1 ) ) − l o g l i k e p r o f )

}

cc prob1 [ [ k ] ] = pchisq ( dev iance obs [−c ( 1 : 2 , ( n−3 ) : ( n−1 ) ) , 1 ] , 2 )

}

t a u = matrix ( u n l i s t ( t a u ) , nrow = N, nco l = 1)

t a b l e ( as . v e c t o r ( t a u ) )

cc prob = matrix ( u n l i s t ( cc prob1 ) , nco l = 1 , byrow = TRUE)

cc prob = matrix ( cc prob , nco l = N)

#### Per formance f o r a lpha v a l u e s 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 5

# per fo rmance s i z e = rowMeans ( per fo rmance )

c o v e r a g e = matrix (NA, nrow = 4 , nco l = nco l ( cc prob ) )

f o r ( i i n 1 : nco l ( cc prob ) ) {

my func <− f u n c t i o n ( x ){

i f e l s e ( t r u e . t a u %i n% x , 1 , 0 )

}

c o v e r a g e [ 1 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 5 ) )

c o v e r a g e [ 2 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 0 ) )

c o v e r a g e [ 3 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 5 ) )
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c o v e r a g e [ 4 , i ] = my func ( which ( cc prob [ , i ] <= 0 . 9 9 ) )

}

c o v e r a g e s i z e = rowMeans ( c o v e r a g e )

a l l . c o v e r = matrix ( data= c ( 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 9 , c o v e r a g e s i z e ) ,

nrow = 4 , nco l = 2 , dimnames= l i s t ( c ( ) , c ( ” Alpha ” , ” Coverage ” ) ) )

}

re turn ( a l l . c o v e r )

}

# Example

m y l i s t = avg func ( 1 0 , 1 , 1 , 2 , 40 , 1 . 2 5 , 1 . 2 5 , 2 . 2 5 , 10)

apply ( s i m p l i f y 2 a r r a y ( m y l i s t ) , c ( 1 , 2 ) , mean )

# Average S i z e

l i b r a r y ( FA d i s t )

l i b r a r y ( bbmle )

rm ( l i s t = l s ( ) )

EPS = s q r t ( . Machine$ double . eps ) # ’ e p s i l o n ’ f o r v e r y s m a l l numbers

l l i k . w e i b u l l <− f u n c t i o n ( shape , s c a l e , t h r e s , x ) {

# sum ( d w e i b u l l ( x − t h r e s , shape , s c a l e , l o g=T ) )

sum ( d w e i b u l l 3 ( x , shape , s c a l e , t h r e s , l o g = TRUE ) )

}

t h e t a h a t . w e i b u l l <− f u n c t i o n ( x ) {

i f ( any ( x <= 0 ) )

s top ( ” x v a l u e s must be p o s i t i v e ” )

t o p t i m <− f u n c t i o n ( t h e t a ) − l l i k . w e i b u l l ( t h e t a [ 1 ] , t h e t a [ 2 ] ,

t h e t a [ 3 ] , x )

mu = mean ( l o g ( x ) )

s igma2 = var ( l o g ( x ) )
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shape . g u e s s = 1 . 2 / s q r t ( s igma2 )

s c a l e . g u e s s = exp (mu + ( 0 . 5 7 2 / shape . g u e s s ) )

# t h r e s . g u e s s = 1

t h r e s . g u e s s = 0 . 5 * min ( x )

r e s = nlminb ( c ( shape . guess , s c a l e . guess , t h r e s . g u e s s ) , t op t im ,

lower = EPS )

c ( r e s $ o b j e c t i v e )

}

cc prob1 = l i s t ( )

N = 1000 # Number o f i n t e r a t i o n s

M = 1

t a u = l i s t ( )

a l l . c o v e r = l i s t ( )

p = 6

avg func = f u n c t i o n ( n l , s h a p e l , s c a l e l , t h r e s l , nr ,

shape r , s c a l e r , t h r e s r , t r u e . t a u ) {

s e e d s 2 = sample ( 1 : 1 e +06 , N, r e p l a c e = FALSE)

f o r ( l i n 1 :M) {

f o r ( k i n 1 :N) {

s e t . s e ed ( s e e d s 2 [ k ] )

y = c ( r w e i b u l l 3 ( nl , s h a p e l , s c a l e l , t h r e s l ) ,

r w e i b u l l 3 ( nr , shape r , s c a l e r , t h r e s r ) )

n = l e n g t h ( y )

# Compute t h e log− l i k e l i h o o d

l o g l i k e p r o f = matrix (NA, nrow = ( n − 1 ) , 1 )

f o r ( i i n 3 : ( n − 3 ) ) {

l o g l i k e p r o f [ i , 1 ] = ( t h e t a h a t . w e i b u l l ( y [ 1 : i ] ) +
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t h e t a h a t . w e i b u l l ( y [ ( i + 1 ) : n ] ) )

}

# Compute Dev iance

dev iance obs = matrix (NA, nrow = ( n − 1 ) , nco l = 1)

f o r ( i i n 1 : ( n − 1 ) ) {

dev iance obs [ , 1 ] = −2 * ( rep ( l o g l i k e p r o f [ t a u [ [ k ] ] ,

1 ] , ( n − 1 ) ) − l o g l i k e p r o f )

}

cc prob1 [ [ k ] ] = pchisq ( dev iance obs [−c ( 1 : 2 , ( n −

3 ) : ( n − 1 ) ) , 1 ] , 2 )

}

t a u = matrix ( u n l i s t ( t a u ) , nrow = N, nco l = 1)

t a b l e ( as . v e c t o r ( t a u ) )

cc prob = matrix ( u n l i s t ( cc prob1 ) , nco l = 1 , byrow = TRUE)

cc prob = matrix ( cc prob , nco l = N)

#### Per formance f o r a lpha v a l u e s 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 5

p e r f o r m a n c e = matrix (NA, nrow = 4 , nco l = nco l ( cc prob ) )

f o r ( i i n 1 : nco l ( cc prob ) ) {

p e r f o r m a n c e [ 1 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 5 ) )

p e r f o r m a n c e [ 2 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 ) )

p e r f o r m a n c e [ 3 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 5 ) )

p e r f o r m a n c e [ 4 , i ] = l e n g t h ( which ( cc prob [ , i ] <= 0 . 9 9 ) )

}

p e r f o r m a n c e s i z e = rowMeans ( p e r f o r m a n c e )

a l l . c o v e r = matrix ( data = c ( 0 . 5 , 0 . 9 , 0 . 9 5 , 0 . 9 9 ,

p e r f o r m a n c e s i z e ) , nrow = 4 , nco l = 2 ,

dimnames = l i s t ( c ( ) , c ( ” Alpha ” , ” S i z e ” ) ) )
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}

re turn ( a l l . c o v e r )

}

# Example

m y l i s t = avg func ( 1 0 , 1 , 1 , 2 , 40 , 1 . 2 5 , 1 . 2 5 , 2 . 2 5 , 10)

apply ( s i m p l i f y 2 a r r a y ( m y l i s t ) , c ( 1 , 2 ) , mean )
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