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ABSTRACT

Kit Chan, Advisor

Control and estimation theory are branches of mathematics that involve using data and mea-

surements to estimate the value of a parameter of interest, and how changing certain parameters 

effects this estimation. The Kalman filter is a fundamental result in control and estimation theory 

that was introduced by Rudolf E. Kalman in 1960. The Kalman filter i s a  set of equations that 

provides an optimal estimate of the state of a system in a least-squares sense. The filter is often 

sought for its recursive and noise-smoothing properties, and has been found useful across many 

disciplines and in real world systems. This thesis will contribute to the literature of control and 

estimation theory by providing an introduction to the principles of the filter. T his introduction 

includes a brief history of the filter, a  derivation of the filter eq uations, and simple examples of 

applications of the filter.
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CHAPTER 1 INTRODUCTION

1.1 A Brief History

Control theory is a branch of mathematics that involves the study of how changing parameters

effects the behavior of a system. Parameters are often manipulated so that the system may produce

an optimal outcome of interest. Estimation theory is a branch of statistics that involves using

measurements and data to estimate the value of a parameter of interest. The Kalman filter has

roots in both control theory and estimation theory. The Kalman filter is an algorithm that uses

data and measurements, which are often noisy and imprecise, to produce an optimal estimate of

the system’s current state; for details, one may refer to the link from [17]. In 1960 Rudolf Emil

Kalman introduced the world to the Kalman filter, and since then it has been considered one of the

most pivotal results in modern control and estimation theory.

Rudolf Emil Kalman was a Hungarian mathematician born in Budapest, Hungary on May 19,

1930 and died on July 2, 2016. He received his bachelor’s degree in 1953 and his master’s degree in

1954 at the Massachusetts Institute of Technology in Cambridge, Massachusetts, where he studied

electrical engineering. In 1957 he received his doctorate degree from Columbia University in New

York, New York while under the supervision of John R. Ragazzini [13].

In [13], Stepanov states that Kalman was involved in fundamental research in systems analysis

and control theory as a student. At the beginning of his career, Kalman studied many different areas

in addition to mathematics, including electrical engineering, mechanics, and operations research.

Of course, Kalman is most well-known for his contributions to filtering and estimation theory.

Two names that are quintessential in the advancement of estimation theory are that of Carl

Friedrich Gauss (1777-1855), a German mathematician, and Adrien-Marie Legendre (1752-1833),

a French mathematician [13]. Gauss and Legendre were both involved in the development of the

least-squares method, which is widely known as the first method for forming an optimal estimate

from noisy data by minimizing the sum of the squares of the offsets of points on a curve [6].
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A. N. Kolmogorov (1903-1986) and N. Weiner (1894-1964) are also predecessors of Kalman.

Kolmogorov was a Soviet mathematician and one of the founders of modern probability theory.

Weiner was an American mathematician who established the science of cybernetics, which he

defined as the science of control and communications in the animal and machine [3]. Gauss and

Legendre worked on the estimation problem of time-invariant vector, and Kolmogorov and Weiner

worked on the problems of time variant parameter estimation [13].

The Weiner filter solves the estimation problem for continuous stationary random processes.

Wiener solved this problem on the basis of factorization of rational spectral densities, and derived

an estimation algorithm in the form of convolution of observations with the weight function which

satisfied the integral equation of Wiener and Hopf, as stated in [13]. However, Kalman was unsat-

isfied with Wiener’s solution and did not agree with his assumptions, definitions, and methodology.

Kalman also noted the massive computational power required to run the Wiener filter and its sug-

gested algorithms, and sought a more efficient and less restrictive algorithm. Through his efforts,

Kalman realized that linear systems described by a transfer function matrix are equivalent to linear

vector differential equations (which are completely controllable and observable); this conclusion

is described further in [13]. For more historical accounts, one may refer to the 2011 article by [13].

Kalman’s first paper ”A New Approach to Linear Filtering and Prediction Problems” was pub-

lished in 1960; see [7]. In that paper Kalman suggested an algorithm to solve Wiener’s filtering

problem. Kalman was able to remove the stationary requirements of the Weiner filter and pre-

sented a sequential solution to the time-varying linear filtering problem, as explained in [10]. In

[13], Stepanov states that many of Kalman’s proofs were based on the orthogonal projection the-

orem. Kalman’s proofs suggested that his algorithm would also remain optimal for non-Gaussian

sequences, and its effectiveness in solving applied problems was soon to follow. For this reason,

among others, the publication of this paper is often considered the mark of a new age in filter-

ing and estimation theory. After Kalman’s first publication, his algorithm was applied mainly in

aerospace. In fact, researchers at NASA Ames Research Center and Charles Stark Draper Labora-

tory quickly found opportunities to apply Kalman’s algorithm. The algorithm Kalman proposed is
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now known as the Kalman filter.

1.2 The First Application of the Kalman Filter

The first publicly known application of the Kalman filter was developed at NASA Ames Re-

search Center in the 1960s during studies for navigation and control of the Apollo space capsule.

While the Apollo mission was a feat in itself, there were numerous studies and extensive research

that made it possible. Two primary areas of research that were identified in being crucial for

the mission were that of midcourse navigation and guidance for the circumlunar mission, and the

autopilot design for large, flexible body liquid-fuel boosters [10]. Researchers in the Dynam-

ics Analysis Branch at Ames Research Center aimed their focus at the midcourse navigation and

guidance problem. They sought technology for a system that would live solely in the spacecraft

and be capable of making large computations quickly and efficiently. According to the authors of

[10], the researchers had some success using the Wiener filer for guidance and navigation of beam-

rider and homing missiles, and so they considered using the Wiener filter for this problem as well.

However, they encountered difficulties with the nonlinearity of lunar vehicle navigation and the

irregular series of discrete measurements [10]. Incidentally, Dr. Schmidt at Ames Research Center

and Dr. Kalman were acquaintances, and Kalman arranged a visit to discuss topics of mutual in-

terest. During this visit Kalman presented his first paper detailing his improvement on the Wiener

filter. The researchers at Ames Research Center found Kalman’s results very promising and began

examining them in greater detail. After extensive research, it was determined that Kalman’s origi-

nal formulation would have required an on-board crew to make a continuous sequence of empirical

measurements equally spaced in time throughout the mission, which is highly unrealistic. There-

fore, a modification to Kalman’s formulation was made that decomposed the original formulation

into a discrete-time update portion and a discrete-time optical measurement update portion, so that

measurements could be processed at any time interval [10]. This modification to the Kalman fil-

ter would come to be known as the ”extended Kalman filter.” Briefly, the extended Kalman filter

produces similar results to the Kalman filter, but can be applied to continuous systems as well,

which the (discrete) Kalman filter is not capable of. Researchers at Ames Research Center had
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several technical breakthroughs which led to this first major application of the Kalman filter. Some

of these breakthroughs include adapting Kalman’s original formulation to nonlinear problems and

demonstrating that the Kalman filter could be used on-board in the Apollo spacecraft guidance

and control system. A more detailed account of the adaptation of the Kalman filter to the Apollo

mission is given in [10].

The Kalman filter has proven to be a fundamental tool for analyzing and solving various es-

timator problems. In addition to the Apollo mission, the Kalman filter has proven to be useful

in applications across many disciplines including, but certainly not limited to, GPS navigation,

economic predictions, satellite tracking, weather predictions, and monitoring populations. In the

chapters that follow we will derive the formulation of the Kalman filter and apply it in some exam-

ples.
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CHAPTER 2 BASIC PRINCIPLES OF THE KALMAN FILTER

2.1 Introductory Definitions and Results

We begin with some necessary definitions and results.

Definition 2.1.1. Consider an experiment with sample space S. A real-valued random variable

X is a function from S to R. If X takes on finitely many or countably many values, then X is a

discrete random variable.

Definition 2.1.2. Suppose X is a random variable on the sample space S. The probability density

function (pdf ), denoted fX , is defined by fX = P(X = k) for all k in the range of X . If k is not in

the range of X , then fX(k) = 0.

Definition 2.1.3. Let Y be a function from a sample space S to R. The function Y is called a

continuous random variable if there exists a function fY (y) such that for any real numbers a < b,

P(a ≤ Y ≤ b) =

∫ b

a

fY (y)dy.

The values of a random variable may be any convenient mathematical entity, such as real or

complex numbers, vectors, etc. Sums, products, and functions of random variables are also random

variables [7].

Definition 2.1.4. [7] A random (or stochastic) process is a sequence of random variables, which

can be finite or infinite.

Definition 2.1.5. Let X and Y be random variables. The expected value of X , denoted E[X], is

the weighted average of possible values of X . If X is a discrete random variable, then

E[X] = µX =
∑
k

kP(X = k) =
∑
k

kfx(k).
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If Y is a continuous random variable, then

E[Y ] = µY =

∫ ∞
−∞

yfY (y)dy.

The expected values of X and Y examine the central tendency of X and Y , respectively, but are

not always possible values of X or Y .

Theorem 2.1.6. Suppose X and Y are random variables and a and b are constants. Then

1. E[X + Y ] = E[X] + E[Y ]

2. E[aX] = aE[X]

3. E[b] = b

In some situations the mean may describe what is being measured, while the standard deviation

may represent noise and other interference.

Definition 2.1.7. Let X be a random variable with expected value E[X] = µ. We define the

variance of X , denoted σ2, as the expected value of its square deviations from µ,

Var(X) = σ2 = E[(X − µ)2].

The standard deviation of X , denoted σ, is

σ =
√

Var(X).

If X is a discrete random variable, then

Var(X) = E[(X − µ)2] =
∑
k

(k − µ)2P(X = k) =
∑
k

(k − µ)2fX(k).
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If Y is a continuous random variable, then

Var(Y ) = E[(Y − µ)2] =

∫ ∞
−∞

(y − µ)2fY (y)dy.

Definition 2.1.8. The distribution of a variable tell us the values the variable can take on and

communicates, by way of its mean µ and standard deviation σ, some sense for how frequently

those values occur.

Some common distributions are the binomial distribution with pdf fx(n, p, k) =
(
n
k

)
kpk(1 −

p)n−k, geometric distribution with pdf fx(p, k) = p(1 − p)k−1, exponential distribution with pdf

fY (y, λ) = λe−λy, and the normal distribution.

Definition 2.1.9. A normal distribution in Y is a statistical distribution with probability density

function

fY (y) =
1

σ
√

2π
e

−(y−µ)2

2σ2

with mean µ and standard deviation σ. A random variable Y distributed normally with mean µ

and variance σ2 is often denoted Y ∼ N(µ, σ2). A normal distribution is often called a Gaussian

distribution.

In [4], Gallager states that it is very common and beneficial to use zero-mean Gaussian random

variables to model noise and other random phenomena because they serve as good approximations

to sums of independent zero-mean random variables, they are easy to manipulate analytically, and

are usually the ”most random” random variable for a given variance.

Normal distributions have the well-known bell-shaped curves. Two examples of a normal

distribution can be seen in figures 2.1 and 2.2.

Definition 2.1.10. [7] A sequence of random variables (finite or infinite)

{X(t)} = . . . , X(−1), X(0), X(1), . . . (2.1.11)
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Figure 2.1 Normal distribution with µ = 0 and σ2 = 1.

Figure 2.2 Normal distribution with µ = 1 and σ2 = 0.5.

is called a discrete random (or stochastic) process. One particular set of observed values

. . . fX(−1), fX(0), fX(1), . . .

of the random process (2.1.11) is called a realization of the process.

Definition 2.1.12. Two random variables X and Y with probability distribution functions fX and

fY respectively are independent random variables if their joint probability fX,Y (x, y) is equal to

the product of their individual probabilities,

fX,Y (x, y) = fX(x)fY (y).

Definition 2.1.13. A random vector is a vector whose entries are random variables. A random

matrix is a matrix whose entries are random variables.

For example, if X1, . . . Xn are random variables, we can define the random vector X to be the
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column matrix

X =



X1

X2

...

Xn


Similarly, for random variables Xij , where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can define the random

matrix

M =



X11 X12 . . . X1n

X21 X22 . . . X2n

...
... . . . ...

Xm1 Xm2 . . . Xmn


Correspondingly, the expected value of M is the mean matrix

E[M] =



E[X11] E[X12] . . . E[X1n]

E[X21] E[X22] . . . E[X2n]

...
... . . . ...

E[Xm1] E[Xm2] . . . E[Xmn]


Definition 2.1.14. [9] A random process {X(t)} is independent (in time) or white if, for any choice

of t1, . . . , tn, the random variables X(t1), . . . , X(tn) are a set of independent random vectors.

Definition 2.1.15. A random process {X(t)} is an uncorrelated random process if

E[X(s)X(t)] = E[X(s)]E[X(t)]

for any s 6= t.

Definition 2.1.16. Let X and Y be random variables with means µX and µY . The covariance of

X and Y is

cov(X, Y ) = E[(X − µx)(Y − µY )] (2.1.17)
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Definition 2.1.18. (Properties of covariance) Let X and Y be random variables with means µX

and µY . Then

1. cov(aX + b, cY + d) = ac cov(X, Y ), for constants a, b, c, d.

2. cov(X1 +X2, Y ) = cov(X1, Y ) + cov(X2, Y )

3. cov(X,X) = Var(X)

4. cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[XY ]− µXµY

5. If X and Y are independent, then cov(X, Y ) = 0.

Property 4 is a convenient way to express and calculate the covariance of two random variables.

As such, it is often taken as the definition for covariance. We will be using this expression shortly,

so we will prove it.

Proof. Show cov(X, Y ) = E[XY ]− µXµY . By definition 2.1.16,

cov(X,X) = E[(X − µX)(Y − µY )]

= E[XY −XµY − µXY + µXµY ]

= E[XY ]− E[XµY ]− E[µXY ] + E[µXµY ]

= E[XY ]− E[X]E[µY ]− E[µX ]E[Y ] + E[µX ]E[µY ]

= E[XY ]− µXµY − µXµY + µXµY

= E[XY ]− µXµY .

Also note that the covariance of a random variable X with itself is its variance That is

cov = E[(X − µX)(X − µX)] = E[(X − µX)2] = Var(X). (2.1.19)
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Definition 2.1.20. Let X be a vector-valued random variable with components X1, . . . , Xn. The

covariance matrix for X is

CX = E[(X− E[X])(X− E[X])T ]. (2.1.21)

Variance measures variation of a single random variable; it measures how far the values are

spread out from their mean. Covariance measures how two random variables vary together. If the

random vector X has components X1, . . . , Xn, then its covariance matrix is

CX = E[(X− E[X])(X− E[X])T ]

=



var(X1) cov(X1, X2) . . . cov(X1, Xn)

cov(X2, X1) var(X2) . . . cov(X2, Xn)

...
... . . . ...

cov(Xn, X1) cov(Xn, X2) . . . var(Xn)



Example 2.1.22. We will compute a covariance matrix for a small data set. Suppose we have

three random variables X1, X2, X3 taking values [14, 11, 20], [137, 123, 106], and [55, 42, 56] re-

spectively. We then have the matrix

M =


14 137 55

11 123 42

20 106 56

 (2.1.23)

The corresponding covariance matrix is

cov(M) =


21 −99

2
57
2

−99
2

241 −29
2

57
2
−29

2
61

 (2.1.24)



12
Definition 2.1.25. X and Y are uncorrelated random variables if their covariance is zero,

cov(X, Y ) = 0.

Equivalently, by Property 4 of definition 2.1.18, X and Y are uncorrelated random variables if

E[XY ] = E[X]E[Y ].

Lemma 2.1.26. If the random variables X and Y are independent, then they are uncorrelated.

Proof. If X and Y are independent, then fX,Y = fX(x)fY (y) by definition 2.1.12. By definition

2.1.5,

E[XY ] =

∫ ∫
xyfX,Y (x, y)dydx

=

∫ ∫
xyfX(x)fY (y)dydx

=

∫
xfX(x)

(∫
yfY (y)dy

)
dx

=

(∫
xfX(x)dx

)(∫
yfY (y)dy

)
= E[X]E[Y ]

Thus cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0, so X and Y are uncorrelated.

Definition 2.1.27. Noise is an error that corrupts a true value. Noise can be random or systematic.

Definition 2.1.28. White noise is noise that has equal intensity at different frequencies, and is not

correlated in time.

In other words, knowing the value of the white noise at time t provides no information about

the value of the white noise at time t+ i for any i [9].

Definition 2.1.29. [2] Gaussian noise is defined as noise with a probability distribution function

of a Gaussian (or normal) distribution.
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Definition 2.1.30. Additive noise is noise that is added to the signal, or measurement, itself.

For example, the received signal r includes the original, noise free, signal s as well as the white

Gaussian noise w [2],

r = s+ w.

Therefore, additive white Gaussian noise is random white noise (uncorrelated in time) that follows

a Gaussian distribution and is added directly to the received signal.

Definition 2.1.31. A dynamical system describes how one state of interest develops into another

state over time.

2.2 The Kalman Filter

The Kalman filter addresses the problem of trying to estimate the state x ∈ Rn of a discrete-

time controlled process given a time-varying sequence of noisy measurements [16]. The state x is

a parameter of interest such as the height of a hot air balloon, the trajectory of an asteroid, or the

gas level in the tank of a car. The Kalman filter assumes that 1) the underlying system is linear, 2)

measurements are taken as linear combinations of the desired state, and 3) both system noise and

measurement noise are white and Gaussian, and that these noises are independent [12].

The system model is governed by the equations

xk = Φk−1xk−1 + wk−1 (2.2.1)

zk = Hkxk + vk (2.2.2)

where Φk are the state transition matrices that describe the state evolution at successive time steps.

State transition matrices are matrices whose product with a state at an initial time gives the state

at a later time. The system noise wk is a zero-mean Gaussian white noise with covariance Qk,

following the normal distribution N(0, Qk). The vectors wk are normally distributed random vari-

ables consisting of white noise corruptions to the states. The system covariance Qk describes the

relations between all state variables, and conveys a sense for how they vary compared to each other.
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For example, height is proportional to weight, so the matrix Qk would contain information about

how strongly they are correlated in one of its entries. The vectors zk = [z1k, z2k, ..., zlk] are empir-

ical measurements. Since the Kalman filter applies to linear systems, the measurements are taken

as linear combinations of the state variables. The matrices Hk describe how the measurements are

related to the states, and converts those states into measurements by adjusting the dimension. The

vectors vk are zero-mean Gaussian white noises with covariances Rk, following the normal distri-

bution N(0, Rk). These vectors consist of white noise corruptions to the measurements. Notice

from equation (2.2.1) that the Kalman filter is recursive.

Definition 2.2.3. [5] A recursive filter is a filter which re-uses one or more of its outputs as an

input.

At each step the Kalman filter makes use of all available measurement data, plus prior knowl-

edge about the system and measurement devices, to produce an estimate. The filter operates so

that there is no need to store all past measurements, thus greatly reducing the computational power

required. The recursivity of the Kalman filter is very advantageous since it often requires matrix

computations which can become very expensive to execute.

Since the state and measurement noises are assumed to be independent, by lemma 2.1.26 we

have

E[wkv
T
j ] = E[vkw

T
j ] = 0

for all j and k. We assume that wk and vk have zero mean and covariances Qk and Rk respectively.

Therefore by definition 2.1.20,

Qk = E[(wk − E[wk])(wk − E[wk])
T ]

= E[(wk − µwk)(wk − µwk)T ]

= E[(wk − 0)(wk − 0)T ]

= E[wkw
T
k ]

(2.2.4)
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and

Rk = E[(vk − E[vk])(vk − E[vk])
T ]

= E[(vk − µvk)(vk − µvk)T ]

= E[(vk − 0)(vk − 0)T ]

= E[vkv
T
k ].

(2.2.5)

State estimate errors are found by calculating the difference between the true value and esti-

mated value of the state. We define the a priori and a posteriori state estimate errors as

ek(−) = x̂k(−)− xk ⇐⇒ x̂k(−) = ek(−) + xk (2.2.6)

ek(+) = x̂k(+)− xk ⇐⇒ x̂k(+) = ek(+) + xk (2.2.7)

respectively.

The Kalman Filter is a predict-correct algorithm consisting of five equations: two prediction

equations and three update equations.

Predict Equations:

First step: x̂k(−) = Φk−1x̂k−1(+)

Second step: Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1

Update Equations:

First step: Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1

Second step: x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]

Third step: Pk(+) = [I −KkHk]Pk(−)

Throughout the text, (−) indicates that a computation is a prediction and is occurring in the state
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space. Likewise, (+) indicates that a computation is an update, or correction, and is occuring

in the measurement space. Here x̂k(−) is the a priori (predicted) state estimate, x̂k(+) is the a

posteriori updated state estimate, Pk(−) is the a priori predicted state estimate error covariance,

and Pk(+) is the a posteriori updated state estimate error covariance. The system noise Qk and

measurement noise Rk are to be calculated before running the filter using equations (2.2.4) and

(2.2.5) [2]. The covariance matrices relate the measurement inputs to the state predictions. Figure

2.3 helps to visualize the algorithm. To initialize the filter we require

Time Update (predict)
1. Project state ahead

2. Project error covariance ahead

Measurement Update (correct)
1. Compute Kalman gain

2. Update estimate with measurement
3. Update error covariance

Initial estimates
x̂0 and P0(−)

Figure 2.3 Kalman Filter flow diagram.

E[x0] = x̂0 (2.2.8)

and

E[e0(−)e0(−)T ] = P0. (2.2.9)

A note to the reader: the derivations that follow are nontrivial, so great detail is included for

the sake of completeness and precision.
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2.3 Formulation of State Estimate Update x̂k(+)

Our goal in deriving x̂k(+) is to update our estimate x̂k(−) using our measurement zk. Nat-

urally, we expect x̂k(+) to be an improvement of x̂k(−). The a priori state estimate and the

measurement at each iteration both contribute to the computation of the a posteriori state estimate

x̂k(+). Therefore, we start by expressing the state update x̂k(+) in a linear and recursive form as

in [5]

x̂k(+) = K ′kx̂k(−) +Kkzk (2.3.1)

where K ′ and K are two distinct weighting matrices, both of which are yet to be defined.

Using the measurement from equation (2.2.2) and the estimation error relations from equations

(2.2.6) and (2.2.7), we are able to express ek(+) as

x̂k(+) = K ′kx̂k(−) +Kkzk

xk + ek(+) = K ′k[xk + ek(−)] +Kk[Hkxk + vk]

ek(+) = K ′kxk +K ′kek(−) +KkHkxk +Kkvk − xk

ek(+) = [K ′k +KkHk − 1]xk +K ′kek(−) +Kkvk. (2.3.2)

Definition 2.3.3. The bias of an estimator θ̂, denoted B(θ̂), is the difference between the estima-

tor’s expected value and the true value of the parameter being estimated,

B(θ̂) = E[θ̂]− θ.

An estimator θ̂ is unbiased for θ if B(θ̂) = 0, that is if E[θ̂] = θ.

By design, vk is a zero-mean Gaussian white noise, therefore E[vk] = µvk = 0. Ideally, we

want

E[ek(+)] = E[x̂k(+)− xk] = E[x̂k(+)]− E[xk] = xk − xk = 0
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and

E[ek(−)] = E[x̂k(−)− xk] = E[x̂k(−)]− E[xk] = xk − xk = 0.

Intuitively, this is to say that we want the a priori and a posteriori state estimate errors as small as

possible. Therefore, we require x̂k(+) and x̂k(−) to be unbiased estimators. Now using equation

(2.3.2) we can determine K ′. We start by taking expected values on both sides

E[ek(+)] = E
[
[K ′k +KkHk − 1]xk +K ′kek(−) +Kkvk

]
0 = E[[K ′k +KkHk − 1]xk] + E[K ′kek(−)] + E[Kkvk]

0 = E[K ′k +KkHk − 1]E[xk] + E[K ′k]E[ek(−)] + E[Kk]E[vk]

0 = [K ′k +KkHk − 1]E[xk] + E[K ′k] · 0 + E[Kk] · 0

0 = [K ′k +KkHk − 1]E[xk].

Therefore we require

0 = K ′k +KkHk − 1

K ′k = 1−KkHk.

Now equation (2.3.1) becomes

x̂k(+) = K ′kx̂k(−) +Kkzk

= [1−KkHk]x̂k(−) +Kkzk

= x̂k(−)−KkHkx̂k(−) +Kkzk

= x̂k(−) +Kk[zk −Hkx̂k(−)] (2.3.4)

which is our desired formulation.
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2.4 Formulation of Error Covariance Update Pk(+)

As explained above, we denote the a priori state estimate error covariance as Pk(−), and the a

posteriori state estimate error covariance as Pk(+). These covariances correspond to the a priori

and a posteriori state estimate errors ek(−) and ek(+), respectively. By the preceding arguments

and definition 2.1.20, we have

Pk(−) = E
[(
ek(−)− E[ek(−)]

)(
ek(−)− E[ek(−)]

)T]
= E

[(
x̂k(−)− xk − E[x̂k(−)− xk]

)(
x̂k(−)− xk − E[x̂k(−)− xk]

)T]
= E

[(
x̂k(−)− xk − (xk − xk)

)(
x̂k(−)− xk − (xk − xk)

)T]
= E

[(
x̂k(−)− xk

)(
x̂k(−)− xk

)T]
= E[ek(−)ek(−)T ] (2.4.1)

and

Pk(+) = E
[(
ek(+)− E[ek(+)]

)(
ek(+)− E[ek(+)]

)T]
= E

[(
x̂k(+)− xk − E[x̂k(+)− xk]

)(
x̂k(+)− xk − E[x̂k(+)− xk]

)T]
= E

[(
x̂k(+)− xk − (xk − xk)

)(
x̂k(+)− xk − (xk − xk)

)T]
= E

[(
x̂k(+)− xk

)(
x̂k(+)− xk

)T]
= E[ek(+)ek(+)T ] (2.4.2)
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which we take as definitions for Pk(−) and Pk(+). To formulate Pk(+) we need an updated

expression for ek(+). Using equations (2.2.2), (2.2.6), (2.2.7), and (2.3.4), we have

ek(+) = x̂k(+)− xk

= x̂k(−) +Kk[zk −Hkx̂k(−)]− xk

= x̂k(−) +Kkzk −KkHkx̂k(−)− xk

= x̂k(−) +Kk(Hkxk + vk)−KkHkx̂k(−)− xk

= x̂k(−)− xk +KkHkxk +Kkvk −KkHkx̂k(−)

= x̂k(−)− xk +KkHk(xk − x̂k(−)) +Kkvk

= ek(−) +KkHkek(−) +Kkvk

= (I −KkHk)ek(−) +Kkvk. (2.4.3)

To simplify the expression for Pk(+) we will need to know the value of E[ek(−)vTk ]. Recall that

E[vk] = 0. Since the state estimate errors ek(−) and measurement noise vk are uncorrelated [5],

by definition (2.1.15) we have

E[ek(−)vTk ] = E[ek(−)]E[vTk ] = E[vTk ]E[ek(−)] = E[vkek(−)T ] = 0. (2.4.4)
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Substituting (2.4.3) into (2.4.2) and using (2.4.4), we have

Pk(+) = E[ek(+)ek(+)T ]

= E

[(
(I −KkHk)ek(−) +Kkvk

)(
(I −KkHk)ek(−) +Kkvk

)T]
, by 2.4.3

= E

[(
(I −KkHk)ek(−) +Kkvk

)((
(I −KkHk)ek(−)

)T
+ (Kkvk)

T
)]

= E

[(
(I −KkHk)ek(−) +Kkvk

)(
ek(−)T (I −KkHk)

T + vTkK
T
k

)]
= E

[
(I −KkHk)ek(−)

(
ek(−)T (I −KkHk)

T + vTkK
T
k

)
+Kkvk

(
ek(−)T (I −KkHk)

T + vTkK
T
k

)]
= E

[
(I −KkHk)ek(−)ek(−)T (I −KkHk)

T + (I −KkHk)ek(−)vTkK
T
k

+Kkvkek(−)T (I −KkHk)
T +Kkvkv

T
kK

T
k

]
= E

[
(I −KkHk)ek(−)ek(−)T (I −KkHk)

T

]
+ E

[
(I −KkHk)ek(−)vTkK

T
k

]
+ E

[
Kkvkek(−)T (I −KkHk)

T

]
+ E

[
Kkvkv

T
kK

T
k

]
= E

[
(I −KkHk)

]
E

[
ek(−)ek(−)T

]
E

[
(I −KkHk)

T

]
+ E

[
(I −KkHk)

]
E

[
ek(−)vTk

]
E

[
KT
k

]
+ E

[
Kk

]
E

[
vkek(−)T

]
E

[
(I −KkHk)

T

]
+ E

[
Kk

]
E

[
vkv

T
k

]
E

[
KT
k

]
= (I −KkHk)Pk(−)(I −KkHk)

T + (I −KkHk) · 0 ·KT
k

+KT
k · 0 · (I −KkHk)

T +KkRkK
T
k , by equ. 2.4.1, equ. 2.4.4, def. 2.2.4

= (I −KkHk)Pk(−)(I −KkHk)
T +KkRkK

T
k .

Thus we obtain

Pk(+) = (I −KkHk)Pk(−)(I −KkHk)
T +KkRkK

T
k . (2.4.5)
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This formula for Pk(+) is known as the ”Joseph form” of the covariance update equation; it was

derived by P.D. Joseph in 1968. More information on the Joseph form equation can be found in

[1]. We will update this expression for Pk(+) once we formulate the Kalman gain matrix.

2.5 Formulation of the Kalman gain Kk

The Kalman filter operates by providing a least-squares best estimate of the desired state, which

is accomplished by minimizing the variance of the estimation error.

Definition 2.5.1. [9] Least-squares estimation is a classical technique used to minimize the sum

of squares of the differences between the actual measurement data and the proposed estimate.

The Kalman gain matrix Kk is chosen to minimize a weighted scalar sum of the diagonal

elements of the error covariance matrix Pk(+), which provides the least-squares aspect to the filter

[5].

Definition 2.5.2. The trace of an n× n matrix A is the scalar sum of its diagonal entries

trace(A) =
n∑
i=1

ai,i.

Therefore, Kk is chosen to minimize trace[Pk(+)]. This derivation will require the following

lemma.

Lemma 2.5.3. [5] LetA andB be two matrices withB symmetric. Then ∂
∂A

trace[ABAT ] = 2AB.

Proof. For scalars xp and xq, we note that

∂xp
∂xq

=


1, p = q

0, p 6= q

(2.5.4)

A typical term in ABAT is
∑
j

aijbjk(A
T )ki =

∑
j

aijbjkaik. Therefore, the (m,n) entry in

∂

∂A
trace(ABAT )
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is of the form

∂

∂amn

∑
i

∑
j

aijbjkaki =
∂

∂amn

∑
ijk

aijbjkaik

=
∑
ijk

∂

∂amn
(aijbjkaik)

=
∑
ijk

∂aij
∂amn

(bjkaik) +
∑
ijk

(aij)bjk
∂aik
∂amn

by the product rule

=
∑
ijk

δimδjn(bjkaik) +
∑
ijk

(aijbjk)δimδkn by (2.5.4)

=
∑
k

bnkamk +
∑
j

amjbjn since m and n are fixed

=
∑
k

amkbnk +
∑
j

amjbjn

=
∑
k

amk(B
T )kn +

∑
j

amjbjn

= (ABT )mn + (AB)mn

= (AB)mn + (AB)mn since B = BT

= 2(AB)mn.

Note here that B must be symmetric in order to achieve our result. If not, then we are simply left

with an expression of the form ∂
∂A

trace[ABAT ] = (ABT )mn + (AB)mn which does not aid in our

formulation of Kk.

To find Kk that provides a minimum, we need to solve

∂

∂Kk

trace[Pk(+)] = 0 (2.5.5)
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for Kk. After substituting equation (2.4.5), we must solve

0 =
∂

∂Kk

trace[Pk(+)]

0 =
∂

∂Kk

trace[(I −KkHk)Pk(−)(I −KkHk)
T +KkRkK

T
k ]

0 =
∂

∂Kk

[
trace[(I −KkHk)Pk(−)(I −KkHk)

T ] + trace[KkRkK
T
k ]
]

0 =
∂

∂Kk

[
trace[(I −KkHk)Pk(−)(I −KkHk)

T ]
]

+
∂

∂Kk

[
trace[KkRkK

T
k ]
]
. (2.5.6)

First we will compute ∂
∂Kk

[
trace[(I −KkHk)Pk(−)(I −KkHk)

T ]
]
. To avoid over complica-

tions with subscripts in the following computations, we will consider a fixed time step k and simply

write Ai,j to denote the i, j entry in the matrix Ak. That is, we take Ai,j = Aki,j . We proceed with

a change of variables; let

J = I −KH = I −KkHk = Jk.

A typical entry in J is of the form

Ji,j = (I −KH)i,j

= δi,j − (KH)i,j

= δi,j −
∑
l

Ki,lHl,j

where

δi,j =


1, i = j

0 i 6= j
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is the Kronecker delta function. A typical entry in ∂J

∂K
is of the form

∂Ji,j
∂Km,n

=
∂

∂Km,n

(
∂i,j −

∑
l

Ki,lHl,j

)
= 0− ∂

∂Km,n

(∑
l

Ki,lHl,j

)
= −

∑
l

∂

∂Km,n

(Ki,lHl,j)

= −Hn,j,where i = m and l = n.

Let S be some matrix dependent on J . Using the chain rule for derivatives we have

∂S

∂Km,n

=
∑
i,j

∂S

∂Ji,j

∂Ji,j
∂Km,n

=
∑
i,j

∂S

∂Ji,j
(−Hn,j),where i = m and l = n

= −
∑
j

∂S

∂Jm,j
Hn,j

= −
∑
j

∂S

∂Jm,j
(HT )j,n.

Therefore
∂S

∂K
=
∂S

∂J

∂J

∂K
= −∂S

∂J
HT . (2.5.7)

Now let

S = trace[(I −KkHk)Pk(−)(I −KkHk)
T ]

= trace[JkPk(−)JTk ]

= trace[JPJT ].

Note that both Pk(−) and Rk are symmetric by definition 2.1.20 and equation 2.2.5, respectively.
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Using equation (2.5.7) we compute

∂S

∂K
=
∂S

∂J

∂J

∂K

=
(
− ∂S

∂J

)
HT

=
(
− ∂

∂J
trace[JP (−)JT ]

)
HT

=
(
− 2JP (−)

)
HT by lemma 2.5.3

= −2(I −KH)P (−)HT . (2.5.8)

Thus ∂
∂Kk

[
trace[(I −KkHk)Pk(−)(I −KkHk)

T ]
]

= ∂
∂Kk

S = −2(I −KkHk)Pk(−)HT
k .

To compute ∂
∂Kk

[
trace[KkRkK

T
k ]
]

we simply apply lemma 2.5.3

∂

∂Kk

[
trace[KkRkK

T
k ]
]

= 2KkRk. (2.5.9)

Finally by substituting (2.5.8) and (2.5.9) into (2.5.6), we obtain

0 =
∂

∂Kk

[
trace[(I −KkHk)Pk(−)(I −KkHk)

T ]
]

+
∂

∂Kk

[
trace[KkRkK

T
k ]
]

0 = −2(I −KkHk)Pk(−)HT
k + 2KkRk.

Solving this for Kk, we have

0 = −2(I −KkHk)Pk(−)HT
k + 2KkRk

0 = −2IPk(−)HT
k + 2KkHkPk(−)HT

k + 2KkRk

2IPk(−)HT
k = Kk(2HkPk(−)HT

k + 2Rk)

2IPk(−)HT
k

2HkPk(−)HT
k + 2Rk

= Kk

Pk(−)HT
k

HkPk(−)HT
k +Rk

= Kk

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1 (2.5.10)
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as desired.

We use this value ofKk to optimize and rewrite our updated estimation error covariance Pk(+).

Expanding equation (2.4.5) gives

Pk(+) = (I −KkHk)Pk(−)(I −KkHk)
T +KkRkK

T
k

= (Pk(−)−KkHkPk(−))(I − (KkHk)
T ) +KkRkK

T
k

= Pk(−)− Pk(−)(KkHk)
T −KkHkPk(−) +KkHkPk(−)(KkHk)

T +KkRkK
T
k

= Pk(−)−KkHkPk(−)− Pk(−)HT
k K

T
k +KkHkPk(−)HT

k K
T
k +KkRkK

T
k

= Pk(−)−KkHkPk(−)− Pk(−)HT
k K

T
k +Kk(HkPk(−)HT

k +Rk)K
T
k .

Substituting in equation (2.5.10) yields our desired formulation

Pk(+) = Pk(−)−KkHkPk(−)− Pk(−)HT
k

(
Pk(−)HT

k

HkPk(−)HT
k +Rk

)T
+

(
Pk(−)HT

k

HkPk(−)HT
k +Rk

)
(HkPk(−)HT

k +Rk)

(
Pk(−)HT

k

HkPk(−)HT
k +Rk

)T
= Pk(−)−KkHkPk(−)− Pk(−)HT

k (Pk(−)HT
k )T

(HkPk(−)HT
k +Rk)T

+
Pk(−)HT

k (Pk(−)HT
k )T

(HkPk(−)HT
k +Rk)T

= (1−KkHk)Pk(−).

2.6 Formulation of State Estimate and Covariance Projections x̂(−) and Pk(−)

By the nature of our system model, the state estimate projection is given by

x̂k(−) = Φk−1x̂k−1(+). (2.6.1)

To complete the recursion it is necessary to find an equation which projects the a priori error

covariance matrix Pk(−) into the next time interval. First we find an expression for the a priori
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state estimate error. Using equations (2.2.1), (2.2.6), and (2.6.1) we have

x̂k(−) = Φk−1x̂k−1(+)

x̂k(−)− xk = Φk−1x̂k−1(+)− xk

x̂k(−)− xk = Φk−1x̂k−1(+)− (Φk−1xk−1 + wk−1) by (2.2.1)

x̂k(−)− xk = Φk−1(x̂k−1(+)− xk−1)− wk−1

ek(−) = Φk−1ek−1(+)− wk−1 by (2.2.6) and (2.2.7).

Substituting this into (2.4.1) and using (2.4.4), we have

Pk(−) = E[ek(−)ek(−)T ]

= E[(Φk−1ek−1(+)− wk−1)(Φk−1ek−1(+)− wk−1)T ]

= E[(Φk−1ek−1(+)− wk−1)((Φk−1ek−1(+))T − wTk−1)]

= E[(Φk−1ek−1(+))(Φk−1ek−1(+))T

− (Φk−1ek−1(+))wTk−1 − wk−1(Φk−1ek−1(+))T + wk−1w
T
k−1]

= E[(Φk−1ek−1(+))(Φk−1ek−1(+))T ]− E[(Φk−1ek−1(+))wTk−1]

− E[wk−1(Φk−1ek−1(+))T ] + E[wk−1w
T
k−1]

= E[Φk−1ek−1ek−1(+)TΦT
k−1]− E[Φk−1ek−1(+)wTk−1]−

E[wk−1ek−1(+)TΦT
k−1] + E[wk−1w

T
k−1]

= Φk−1E[ek−1ek−1(+)T ]ΦT
k−1 − Φk−1E[ek−1(+)wTk−1]−

E[wk−1ek−1(+)T ]ΦT
k−1 + E[wk−1w

T
k−1]

= Φk−1Pk−1(+)ΦT
k−1 − Φk−1 · 0− 0 · ΦT

k−1 +Qk−1

= Φk−1Pk−1(+)ΦT
k−1 +Qk−1

as desired.
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CHAPTER 3 EXAMPLES AND SIMULATIONS

Example 3.0.1. This example is taken from [15]. Suppose we have a tank filled with some amount

of water and we want to estimate the height of the water inside the tank. In this case the ”state”

we are interested in is the water level inside the tank. We are not able to see the inside of the

tank, but a floating sensor inside provides a measurement reading of the height of the water every

second. For this basic static model we assume that the true level of the water is constant, L = c,

because we do not expect the water level to change. Since the water level is completely unknown,

our initial state estimate is arbitrary: x̂0 = 0. For the same reason, our initial estimate for the

state error covariance is fairly high: P0 = 1000. If we were absolutely certain that our initial state

estimate x̂0 = 0 is correct, then we would choose P0 = 0. In this case the state transition matrix is

Φk = 1 for all k, and the measurement transition matrix is Hk = 1 for all k. Suppose we are fairly

confident in the accuracy of our system model, so we choose the process noise to be rather small,

say Qk = 0.0001 for all k. Assume the measurement noise is normally distributed with zero mean

and standard deviation
√

0.1. Therefore the measurement noise covariance is Rk = (
√

0.1)2 = 0.1

for all k. Finally, the measurement readings from the sensor are

zk = {0.9, 0.8, 1.1, 1, 0.95, 1.05, 1.2, 0.9, 0.85, 1.15}.

We will compute the predict and update equations for the first time step of the Kalman filter

directly. Note that x̂0 = 0 and P0 = 1000. For our prediction equations we compute our first state

estimate x̂1(−), then we compute our first state error covariance estimate P1(−).

x̂1(−) = Φ0x̂0 = 1 · 0 = 0

P1(−) = Φ0P0Φ
T
0 +Q0 = 1 · 1000 · 1 + 0.0001 = 1000.0001

Now we update, or correct, these two values with the update equations. For this, we compute the
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Kalman Gain Kk, use that value and x̂1(−) to update our state estimate, then use Kk and x̂1(+) to

update our error covariance estimate.

K1 = P1(−)HT
1 [H1P1(−)HT

1 +R1]
−1 = 1000.0001 · 1(1 · 1000.0001 · 1 + 0.1)−1 = 0.9999

x̂1(+) = x̂1(−) +K1[z1 −H1x̂1(−)] = 0 + 0.9999(0.9− 1 · 0) = 0.8999

P1(+) = [I −K1H1]P1(−) = (1− 0.9999 · 1)(1000.0001) = 0.1

We proceed with the computations for our second time step. For our prediction equations we have

x̂2(−) = Φ1x̂1(+) = 1 · 0.8999 = 0.8999

P2(−) = Φ1P1(+)ΦT
1 +Q1 = 1 · 0.1 · 1 + 0.0001 = 0.1001,

and for our update equations we have

K2 = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1 = 0.1001 · 1(1 · 0.1001 · 1 + 0.1)−1 = 0.5002

x̂2(+) = x̂2(−) +K2[z2 −H2x̂2(−)] = 0.8999 + 0.5002(0.8− 1 · 0.8999) = 0.8499

P2(+) = [I −K2H2]P2(−) = (1− 0.5002 · 1)(0.1001) = 0.05.

We proceed in a similar manner to compute the remaining time steps. These computations are

summarized in table 3.1. To help visualize this process we can examine the graph in figure 3.1.

The state estimations seem to be approaching L = 1, and taking this as the true value of the

water level is a reasonable conclusion. Compared to the true value, the measurements ranging from

0.8 to 1.2 are noisy. In this case, the state estimations are within 0.05 of the true value after just

four iterations.

To illustrate the smoothing properties of the Kalman filter, we can form another estimate with
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Predict Update
t x̂k(−) Pk(−) zk Kk x̂k(+) Pk(+)
0 - - - - 0 1000.0001
1 0 1000.0001 0.9 0.9999 0.8999 0.1
2 0.8999 0.1001 0.8 0.5002 0.8499 0.05
3 0.8499 0.0501 1.1 0.3339 0.9334 0.0334
4 0.9334 0.0335 1 0.2509 0.9501 0.0251
5 0.9501 0.0252 0.95 0.2012 0.9501 0.0201
6 0.9501 0.0202 1.05 0.1682 0.9669 0.0168
7 0.9669 0.0169 1.2 0.1447 1.0006 0.0145
8 1.0006 0.0146 0.9 0.1272 0.9878 0.0127
9 0.9878 0.0128 0.85 0.1136 0.9722 0.0114
10 0.9722 0.0115 1.15 0.1028 0.9905 0.0103

Table 3.1 Computations for measurements zk.
x̂0 = 0, Qk = 0.0001, and Rk = (

√
0.1)2 = 0.1

Figure 3.1 Static water level: measurements zk
x̂0 = 0, Qk = 0.0001, and Rk = (

√
0.1)2 = 0.1
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a new set of noisier measurements. Consider new sensor readings

z̃k = {0.9772, 1.7265, 0.3919, 1.1781, 1.0465, 0.6284, 1.9333, 0.4858, 1.0296, 0.8379}.

Table 3.2 and figure 3.2 summarize the computations with measurements z̃k. The noisiness of the

measurements becomes clear by examining the graph; these measurements range from 0.3919 to

1.9333. In this case, the state estimations are within 0.05 of the true value after eight iterations.

Predict Update
t x̂k(−) Pk(−) zk Kk x̂k(+) Pk(+)
0 - - - - 0 1000.0001
1 0 1000.0001 0.9772 0.9999 0.9771 0.1
2 0.9771 0.1001 1.7265 0.5002 1.3520 0.05
3 1.3520 0.0501 0.3919 0.3339 1.0314 0.0334
4 1.0314 0.0335 1.1781 0.2509 1.0682 0.0251
5 1.0682 0.0252 1.0465 0.2012 1.0639 0.0201
6 1.0639 0.0202 0.6284 0.1682 0.9906 0.0168
7 0.9906 0.0169 1.9333 0.1447 1.1270 0.0145
8 1.1270 0.0146 0.4858 0.1272 1.0455 0.0127
9 1.0455 0.0128 1.0296 0.1136 1.0437 0.0114

10 1.0437 0.0115 0.8379 0.1028 1.0225 0.0103

Table 3.2 Computations for measurements z̃k.
x̂0 = 0, Qk = 0.0001, and Rk = (

√
0.1)2 = 0.1

For the next example we will need the following lemma.

Lemma 3.0.2. [15] Given continuous time state transition matrix A and continuous time state

process matrix Q, the discrete time process noise matrix can be calculated as

Q(δt) =

∫ δt

0

eAτQeA
T τdτ

Example 3.0.3. This example is taken from [15]. Suppose instead that the tank in example 3.0.1 is

being filled with water at a constant rate. If the level of the tank at time t is L(t) = c, then the rate

at which the level is changing is d
dt
L(t) = r, for some r > 0. Let the current water level estimate

be x̂L = L and the current water fill rate estimate be x̂r = dx̂L
dt

. Now the overall state has two
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Figure 3.2 Static water level: measurements z̃k
x̂0 = 0, Qk = 0.0001, and Rk = (

√
0.1)2 = 0.1

components

x̂ =

x̂L
x̂r


In this case, the continuous time state transition matrix is

φ =

0 1

0 0


and the continuous time process noise matrix is

Q =

0 0

0 qf


where qf is the state process noise covariance. By lemma 3.0.2, the discrete time state transition

matrix is

Φ(δt) =

1 δt

0 1





34
and the discrete time process noise matrix is

Q(δt) =

 qf δt33

qf δt
2

2

qf δt
2

2
qfδt


Now we can express the filter update equations as the usual linear Kalman filter equations,

x̂(+)(t+ δt) = Φ(δT )x̂(t)

P (+)(t+ δt) = Φ(δT )P (+)ΦT (δT ) +Q(δt).

The floating sensor returns a noisy measurement z which represents the height of the float. In

this case, the height of the float is proportional to the level of the water. That is,

L =
z

kl

where kl is some a priori known constant scale factor. This relation tell us

z = Lkl.

Using this form we can model the measurement estimates in general as a linear function of the

system state x̂,

ẑ = Hx̂,

where H is the measurement matrix. The order of H will change depending on the dimension of

our system. Assume that x̂L is the first entry in the vector x̂. If x̂ is one-dimensional, then

H = kl.
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If x̂ is two-dimensional, then

H =

[
kl 0

]
.

If x̂ is three-dimensional, then

H =

[
kl 0 0

]
.

We can define H in a similar matter for states of higher dimension. The corresponding H will be

used to calculate the Kalman gain Kk when implementing the actual Kalman filter equations.

Example 3.0.4. This example is adapted from [5]. Suppose we have a constant scalar x. We want

to estimate the value of x given discrete measurements corrupted by an uncorrelated Gaussian noise

with zero mean and covariance r. In this case, Φk = 1 and Hk = I = 1. The scalar equations

describing this system are

xk+1 = xk

zk = xk + vk

where vk is normally distributed with zero mean and covariance r. For this problem there is

no system noise, hence Qk = 0. We are interested in the effect the measurements have on the

estimations of x. To investigate this we will deduce the equations of the Kalman filter and examine

x̂k(+). First we deduce the Kalman gain Kk

Kk =
Pk(−)HT

k

HkPk(−)HT
k +Rk

=
Pk(−) · 1

1 · Pk(−) · 1 + r

=
Pk(−)

Pk(−) + r
(3.0.5)
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and the a priori state estimate error covariance Pk+1(−)

Pk+1(−) = ΦkPk(+)ΦT
k +Qk

= 1 · Pk(+) · 1 + 0

= Pk(+). (3.0.6)

We find the a posteriori state estimate error covariance using equations (3.0.5) and (3.0.6),

Pk+1(+) = [I −Kk+1Hk+1]Pk+1(−)

=

[
1−

(
Pk(−)

Pk(−) + r

)
· 1

]
Pk+1(−)

=

[
Pk(+) + r − Pk(+)

Pk(+) + r

]
Pk(+)

=
rPk(+)

Pk(+) + r

=
Pk(+)

1 + Pk(+)
r

(3.0.7)

Equation (3.0.7) defines Pk+1(+) in terms of it’s previous time step Pk(+), and therefore is a

recurrence relation to which we can find a closed form solution [12].

Definition 3.0.8. [11] A recurrence relation is an equation that defines a sequence based on a rule

that gives the next term as a function of the previous term(s).

Let P0(+) = P0. Then

P1(+) =
P0(+)

1 + P0(+)
r

=
P0

1 + P0

r

P2(+) =
P1(+)

1 + P1(+)
r

=

P0

1+
P0
r

1 +

P0

1+
P0
r

r

=
rP0

r + 2P0

=
P0

1 + 2P0

r

P3(+) =
P2(+)

1 + P2(+)
r

=

P0

1+
2P0
r

1 + P0

1+
2P0
r

=
rP0

r + 3P0

=
P0

1 + 3P0

r
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Continuing in a similar manner, we see

Pk(+) =
P0

r + kP0

r

(3.0.9)

Now using equations (3.0.6) and (3.0.9), we can modify the Kalman gain from equation (3.0.5).

Kk =
Pk(−)

Pk(−) + r

=
Pk−1(+)

Pk−1(+) + r

=

P0

r+(k−1)P0
r

P0

r+(k−1)P0
r

+ r

=
P0

P0 + r[1 + (k − 1)P0

r
]

=
P0

r + kP0

(3.0.10)

Finally we can use equation (3.0.10) to express our a posteriori state estimate,

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]

= x̂k(−) +
P0

r + kP0

[zk −Hkx̂k(−)].

Naturally, we would like to have as many measurements as possible to produce an optimal state

estimate. However, as k →∞ we see that P0

r+kP0
[zk −Hkx̂k(−)]→ 0. In this case, new measure-

ments provide less and less information to the filter for making state estimates.

To illustrate this result we will estimate the value of a constant. First we choose a random scalar

to estimate, x = 0.7396307. Note that we define this scalar as x and not x̂ because it represents

the true value we are trying to estimate. Assume that there is white noise of 0.1 corrupting the

measurements, therefore the measurement noise is normally distributed about zero with a standard

deviation of 0.1. With this standard deviation, from equation 2.1.19 we know that the ”true value”

of our measurement noise covariance is R = (0.1)2 = 0.01. Also assume that there is small
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process noise of Q = 0.00001. To initialize the filter we take our initial state estimate to be x0 = 0

and our initial state estimate error covariance to be P0 = 1. It is of note that the initial value of P0

is not critical, as the Kalman filter will eventually converge with almost any non-zero choice [16].

Finally we simulate 50 distinct measurements zk that have error normally distributed about zero

with a standard deviation of 0.1; zk =

{0.766277668,

0.652940024,

0.705239055,

0.606370548,

0.582532983,

0.712268683,

0.734940256,

0.636799795,

0.811586045,

0.751239373,

0.814560689,

0.651269652,

0.738293019,

0.559460063,

0.792685733,

0.765142941,

0.850036573,

0.864499827,

0.779925983,

0.60483951,

0.777369077,

0.614125042,

0.695943666,

0.695252835,

0.754692421,

0.825795361,

1.001966428,

0.606781973,

0.581047569,

0.547677686,

0.702827878,

0.724566483,

0.741503529,

0.558329503,

0.665315396,

0.772658366,

0.905208076,

0.743481128,

0.750578152,

0.871661913,

0.569886491,

0.880809683,

0.617636413,

0.741241213,

0.794927598,

0.794996244,

0.866572238,

0.610750397,

0.823447661,

0.551203349}

The results of the filter are shown in figure 3.3. The corresponding error covariances are

graphed in figure 3.4. By the 50th iteration the covariances settle on the value of 0.0003.

One might be interested in the effect a higher covariance might have. Let us increase R from

R = 0.01 to R = 1. The results are shown in figure 3.5, and the covariances in figure 3.6. The

filter is slower to believe the measurements, and the covariances settle on a value of 0.0198, higher

in comparison to when R = 0.01.

Now let us decrease R to R = 0.0001. These results are shown in figure 3.7. The filter is very

quick to believe the measurements and ”trusts” them more through each iteration.

Instead of varying the error covariances R, let us now change our initial state estimate x0. The

previous examples have shown the results when the initial state estimate is lower than the true

value. Let us now use an initial state estimate higher than the true value, x0 = 1. As shown in
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Figure 3.3 Estimations of a constant
x0 = 0 and R = (0.1)2 = 0.01

Figure 3.4 Covariances
x0 = 0 and R = (0.1)2 = 0.01

figure 3.8. In this case changing the initial state estimate has very little effect on the filter. Even

further, the computations are nearly identical to our first simulation when x0 = 0 and R = 0.01.

Example 3.0.11. Let us try to estimate the point (1, 1) on the curve f(x) = x2, ergo take the

true value of the state to be z = (1, 1). Suppose our initial state estimate is the point z0 =

(x0, y0) = (0, 0), and our initial state estimate error covariance is P0 = 1. Assume a small process
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Figure 3.5 Estimations of a constant
x0 = 0 and R = 12 = 1

Figure 3.6 Covariances
x0 = 0 and R = 12 = 1

noise of Qk = 0.0001 for all k. In this case the state transition matrix is Φk = 1 for all k, and

the measurement transition matrix is Hk = 1 for all k. Assume that the measurement noise is

normally distributed about zero with a standard deviation (white noise) of 0.1, so the measurement

noise covariance is R = (0.1)2 = 0.01. Now we simulate 10 measurements of points on the curve
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Figure 3.7 Estimations of a constant
x0 = 0 and R = (0.01)2 = 0.0001

Figure 3.8 Estimations of a constant
x0 = 1 and R = (0.1)2 = 0.01

f(x) = x2 on the interval [0, 1].

zk ={(0.1055,−0.0672), (0.1315, 0.2028), (0.2261, 0.1184), (0.4077, 0.2106), (0.5952, 0.2953),

(0.6605, 0.3704), (0.7388, 0.6451), (0.9024, 0.4510), (0.9420, 0.9841), (1.0298, 1.0729)}
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Under these circumstances the Kalman filter produces the results in figure 3.9. Based off of these

Figure 3.9 Estimations on f(x) = x2 over [0, 1]
R = (0.1)2 = 0.01 and Q = 0.0001

results, one might take the point (0.8, 0.7) to be the optimal state estimate. Intuitively we know

this is not accurate, so some adjustment must be made to better reflect our system. Generally, if the

system model does not accurately model reality, then we can expect the Kalman filter to produce

poor results. To combat this we can increase the process noise covariance which allows the filter

to weigh the measurements more heavily throughout its iterations. If we increase Q to Q = 0.1,

we obtain the results in figure 3.10. The optimal estimation produced here is much closer to the

true value of (1, 1), hence this system model should be preferred over the former.

Let us now try to estimate the point z = (5, 25) on the curve f(x) = x2. In a similar manner as

above, we take z0 = (x0, y0) = (0, 0), P0 = 1, Qk = 0.0001, Φk = 1, Hk = 1, and R = (0.1)2 =

0.01. Then we simulate 10 measurements of points on f(x) = x2 on the interval [0, 5],

zk ={(0.4568, 0.3037), (0.9837, 0.9723), (1.5236, 2.2388), (1.7743, 3.9692), (2.3969, 6.3135),

(2.8639, 8.8571), (3.5383, 12.1410), (3.9153, 16.0495), (4.3885, 20.1760), (5.0255, 24.9299)}.

The results under these circumstances is shown in figure 3.11. Based off of this one might take the

optimal state estimate to be (3.75, 16). Again, this is unrealistic. Increasing Q to Q = 0.1 so that
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Figure 3.10 Estimations on f(x) = x2 over [0, 1]
R = (0.1)2 = 0.01 and Q = 0.1

Figure 3.11 Estimations on f(x) = x2 over [0, 5]
R = (0.1)2 = 0.01 and Q = 0.0001

the filter places more trust the in measurements produces the results in figure 3.12. Clearly this

model produces a more accurate optimal state estimate.

In the previous examples we saw how changing certain values effects the calculation of the

optimal state estimate x̂k. The Kalman gain determines how heavily the measurements and a

priori state estimates contribute to this calculation. If the measurement noise is small, then the

measurements are trusted more than the a priori state estimates. If the a priori state estimate

error covariance is small, then the a priori state estimates are trusted more than the measurements.
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Figure 3.12 Estimations on f(x) = x2 over [0, 5]
R = (0.1)2 = 0.01 and Q = 0.1

We can demonstrate this analytically by considering two extreme cases: when Rk = 0 and when

Pk(−) = 0. To produce the a posteriori state estimate x̂k(+), the a priori state estimate x̂(−) is

updated with the Kalman gain Kk. Therefore in each case we will examine the effect Kk has on

x̂k(+). In the former case, we have

lim
Rk→0

Kk = lim
Rk→0

Pk(−)HT
k

HkPk(−)HT
k +Rk

=
Pk(−)HT

k

HkPk(−)HT
k + 0

=
1

Hk

.

Using this value of Kk to correct x̂k(−) gives the a posteriori state estimate

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]

= x̂k(−) +
1

Hk

[zk −Hkx̂k(−)]

= x̂k(−) +
zk
Hk

− x̂k(−)

=
zk
Hk

.
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In this case we see that the calculation of x̂k(+) comes mainly from measurement. In the latter

case, we have

lim
Pk(−)→0

Kk = lim
Pk(−)→0

Pk(−)HT
k

HkPk(−)HT
k +Rk

=
0 ·HT

k

Hk · 0 ·HT
k +Rk

= 0.

Using this value of Kk gives

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]

= x̂k(−) + 0 · [zk −Hkx̂k(−)]

= x̂k(−).

In this case the calculation of x̂k(+) comes from the a priori state estimate. Of course it would be

naive to expect all real life systems to fall so nicely into one of these extreme cases. Fortunately this

weighting principle is embedded in the filter by design; the Kalman gain weighs the measurements

and a priori state estimate errors appropriately to produce an optimal state estimate.
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