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ABSTRACT

In 1966, S. Johansen made use of Choquets’ Theorem, a result in 
Functional Analysis, to obtain the Levy-Khinchine canonical form of 
infinitely divisible characteristic functions. This representation was 
first discovered in the 1930’s and has numerous applications in 
Probability Theory. Johansen’s work was very gratifying in the sense 
that it displayed much interplay between the disciplines of Functional 
Analysis and Probability. The purpose of this thesis is to continue 
exploration of extreme point methods and their applications to 
Probability Theory.

The major part of this dissertation concerns itself with extending 
Johansen's work to include n-dimensional infinitely divisible 
characteristic functions. If one is to follow the ingenious methods of 
Johansen, one has to know solutions of various functional equations in 
this more general setting. These projects occupy the first portion of 
the thesis.

In the final section of this paper, we derive Khinchine's 
representation of unimodal distributions through the use of extreme 
points.
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CHAPTER I

INTRODUCTION AND PRELIMINARY MATERIAL

This paper concerns applications of the Krein-Milman Theorem and its 

corollaries to Probability Theory. Investigations of this nature were 

initiated by S. Johansen, in 1966, where he used these ideas to obtain 

the Levy-Khinchine canonical representation of infinitely divisible 

characteristic functions. We shall further explore these methods to 

extend Johansen’s result to Rn and also obtain an integral 

representation of unimodal distributions.

Concerning the organization of this thesis, it is convenient to 

separate the preliminary material into two categories. The remainder of 

this chapter contains the background material from Probability Theory 

and Functional Analysis which are of interest to this study. On the 

other hand, there appears an appendix to Chapter II which contains 

statements and proofs of technical results, used in Chapters II and III, 

which would otherwise interupt the main discussion. The principal 

results are included in Chapters II, III and IV. Let us begin with some 

basic concepts from Functional Analysis.

DEFINITION Let V be a vector space over K, the real or complex 

field. Let Cc V be a non-empty convex set. A point xQ $ C is 

called an extreme point of C if whenever x,y € C and 0 < X < 1 and

xQ = Xx + (1 - X)y then xQ = x = y.

These are several examples in Rn and more general vector spaces
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where extreme points are either absent or have no significance. Thus 

it is of interest to know when a convex set necessarily has extreme 

points and what role the extreme points play. The following basic 

theorem was discovered by Krein and Milman.

THEOREM (Krein-Milman)

Let V be a locally convex topological vector space, and let 

C c v be a non-empty compact, convex set. Then Ext(C), the set of 

extreme points of C, is non-empty and C is the closed convex hull 

of Ext(C).

In order for the Krein-Milman Theorem to be applicable, we must be 

guaranteed of the compactness of the convex set in question. We now 

mention the result which produces most of the compact, convex sets.

Let E be a normed linear space over K, and denote by E* the 

collection of all continuous linear functionals on E. The weak* 

topology on E* is the topology generated by the following collection 

of basic neighborhods:

{U(f,e,x1,...,xN): f € E*, e > 0, N € N, x1,...,xN € E}

where ^fje^,... ,xN) = {g € E*: | g(x_. ) - f(x^. )| < e

for all j, 1 < j < N}

Thus, a net ff } c E* converges to f 6 E* in the weak* topology, 

denoted f f, if and only if f^fx) f(x) for all x € E. In
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other words, the weak* topology is equivalent to the topology of

pointwise convergence. It is easy to show that E* equipped with the

weak* topology forms a Hausdorff locally convex topology vector space,

and a linear functional X: E* K is weak* continuous if and only if

there exists an xQ € E such that ¿(f) = f(xQ) for all f € E*. For

example, if E = L’( Rn), then E* = L°°(Rn). And for bounded 

w*measurable functions f , f € E* we have f -» f if and only if n’ n J

lhn f V1) h(t)dt = r f(t) h(t)dt
m - « Rn Rn

for all h € L'( Rn). And a linear mapping A: L°°( Rn) -» K is weak* 

continuous if and only if there exists an h £ L'( Rn) such that

¿(f) = j f(t) h(t)dt 
n

for all f 6 Lw( Rn).

The weak* topology has a very important compactness property to which

we now turn our attention.

THEOREM (Banach-Alaoglu)

Let E be a separable normed linear space over K, and let 

B* = if € E*: | j f| | <lj. Then B* is a metrizable, compact, convex

set in the weak* topology of E*. 

Consequently any weak* closed

hence our compact, convex sets are 

= {f € L°°( Rn): ess sup{| f(x)|

subset of B*

in abundance, 

x € Rn} < 1}

is weak* compact and 

In particular, 

is a weak* compact

set. The question remains as to how all of this fits into Probability
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and Statistics. A tool that has been shown to be quite useful in these 

disciplines is that of an integral representation. A result which can 

easily be deduced from the Krein-Milman Theorem is the following version 

of Choquet’s Theorem.

THEOREM (Choquet)

Let C be a metrizable, compact, convex set in a locally convex 

space, E. Then for all xQ € C, there exists a finite, regular 

measure P on the Borel subsets of C with

P(.C\Ext(C)) = 0

and yielding the following integral representation:

= f x dP(x).

Ext(C)

This is to be interpreted as a weak integral in the following sense: 

For all continuous linear functional f on E we have

f(*0) = [ f(x) dP(x).

Ext(C)

And we note that the right hand side is an ordinary Lebesgue 

integral.

We now turn to some of the concepts from Probability Theory that 

can be investigated by appealing to the above notions from Functional 

Analysis. We shall call a function F: R -* R a distribution
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function, (generalized distribution function) if F is right 

continuous, monotone non-decreasing, F(-«)= 0 and F( + “>) = 1 

(F( + ®)= C > 0). Associated to each distribution, F, there exists a 

unique continuous function, cp: R -* C, called the characteristic 

function of F, and given by the Lebesgue-Stieltges Integral

<p(t) = J* e1Xt dF(x).

R

A characteristic function cp is said to be infinitely divisible

if for each integer N > 1, there is a characteristic function 

Nsuch that cp(t) = (f^(t)) for all t £ R. For example, if cp is 

any characteristic function and a > 0, then exp{a(cp(t) - 1)) is an 

infinitely divisible characteristic function. An important property 

of infinitely divisible characteristic functions is that they have no 

zeros, and consequently, a branch of the logarithm exists so that 

log <p(t) is a continuous, finite valued function on R. This leads us 

to the following theorem of Levy and Khinchine.

THEOREM (Levy-Khinchine Representation)

A characteristic function cp is infinitely divisible if and only

if log co admits the representation

log <p(t) = iyt + r (eixt - 1 - “j) iti! dG(x)

JR 1+x x

where Y £ R, G is a generalized distribution function, and the 
_t2

integrand is defined by continuity at zero to be -y. Moreover this 

representation is unique.
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These discussions raise two related questions. When is a continuous 

function cp: R •* C a characteristic function? When is a continuous 

function f: R -* C such that f(t) = log cp(t) where co is an 

infinitely divisible characteristic function.

Positive Definiteness is involved in the solutions to both problems.

A function h: R •* C is said to be positive definite if for each n € N,

a.€ C, and x, ,...,x €R we have 1’ ’ n ’ 1’ ’ n

n n
£ £ h(x. - x, ) a. a, > 0.

3=1 k=l 3 k j k

THEOREM (Boehner)

A continuous function cp: R -* C is a characteristic function if 

and only if cp is positive definite.

One consequence of the Boehner Theorem is that it provides the 

necessary tools to answer the second question.

THEOREM (Johansen)

A continuous function f: R -» C satisfying f(t) = f(-t) is the 

logarithmn of an infinitely divisible characteristic function cp if and 

only if f satisfies the following condition.

(*) For any n € N, x^,...,xn £ R, and • • • ,an € C with

n n n _
£ cc. = 0, we have £ £ f(x. - x, ) or. a, > 0.
1 3 3=1 k=l 3 k 3 k -

We note that the collection of positive definite functions or those 

functions satisfying condition (*) is convex. With little effort, one 

can establish the Boehner Theorem by first establishing the degenerate
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characteristic functions i.e. cp(t) = expfiot}, « € R, as extreme 

points and then appealing to Choquet’s Theorem. S. Johansen attempted 

the more difficult problem of proving the Levy-Khinchine Theorem using 

these techniques. He investigated the following set:

P1
K = (f: f satisfies condition (*), f(0) < 0, and f(u)du=-l} 

J0

He first defined a suitable topology so that 

convex set. Then he determined the extreme points

(i) f(t) s _l

K became a compact,

of K to be:

(ü) fQ(t) = -3t2
>

c r ißt T .Q. 2(1 - cos 0k z. ' sin ßx-1(in) fp(t) = (e H - 1 - ißt  i) (1------- — )

And by utilizing Choquet’s Theorem, Johansen had derived the very

useful Levy-Khinchine representation.

By reviewing the above probabilistic concepts, it is easy to see 

that their extension to Rn is immediate. The defining equation for a 

characteristic function on Rn is given by:

■P(t) = J n e1<X,t>dF(x)
R

where F is a n-dimensional distribution function, and for vectors 

x = (x^...,xn) and t = (t^,...,tR) belonging to Rn, < x,t > is

n 1/ 2
defined to be < x,t > - £ x .t.. We also set , |x| | = < x,x > ' .

J 3

The notions of infinite divisibility and positive definiteness are
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exactly the same as the one-dimensional case. The purpose of the next 

chapters is to extend Johansen’s result to Rn.

Before so doing, we first present solutions to two functional 

equations. The first is well-known as it deals with the normal 

distribution and a proof can be found in Parthasarathy. The second 

generalizes the cosine function on Rn and appears to be original. We 

also remark that Proposition 2 can be extended to a locally compact 

abelian group.

PROPOSITION 1. Let 0: R ■* R be continuous, non-negative and satisfy

2 0(x) + 2 0(y) = 0(x + y) + 0(x - y) for all x,y € Ru.

Then there exists an n X n non-negative semidefinite matrix P such

that

0(x) = < Px,x > for all x € Rn.

PROPOSITION 2. Let A: Rn -* R be a continuous function satisfying: 

(i) A(0) = 1

(ii) A is bounded

(iii) 2 A(x) A(y) = A(x + y) + A(x - y) 

then there exists a vector ¡3 € Rn such that

A(x) = cos < ¡3,x > for all x € Rn.
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PROOF: We first iterate (iii) for an arbitrary vector xQ 6 Rn.

1 + A(2 xQ) = 2 A2(xq)

1 + A(4 xQ) = 2 A2(2 xq) = 2(2 A2(xQ) - l)2

1 + A(2k+1 xq)=2 A2(2k x0) = 2(2(---2(2 A2(xQ) - l)2 - l)2------ 1)2

k

So we see at once if | A(x^)| > 1, then A would be unbounded.

Appealing to the same argument, if A 1 and using the connectedness 

of Rn, we conclude that A is onto [-1,1]. Assume the latter.

Let y^ € Rn be such that A(y^) - 0. From (iii) we see that

A(2 yQ) = -1 and for any, x € Rn,

A(x + 2 yQ) = -A(x).

Define f: Rn -• R by

f(x) = A(yQ - x) = A(x - yQ).

then 2 A(x) A(y) + 2 f(x) f(y)

= 2 A(x) A(y) + 2 A(yQ - x) A(yQ - y)

= 2 A(x) A(y) + A(2 yQ - x - y) + A(-x + y)

= A(x + y) + A(x - y) - A(x + y) + A(x - y)

= 2 A(x - y).
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nWe now show A is positive definite. Let N € N, x^,...,x^ € R , 

«p... ,0^ 6 C, then

N N
£ £ A(x^ - xR) Q_j aR = £ £ A(x^) A(xfc) a

3=1 k=l

+ £ £ f(x^) f(xk) atj aR = |£ A(x^) a.| 2 + |£ f(x^) 2 > 0.

Thus by the n-dimensional Boehner Theorem, there exists a symmetric 

(since A is real) probability measure P on Rn such that

A(t) = J cos < t,x > dP(x) for all t C Rn.

Rn

Let t £ Rn be arbitrary. Then

0 = A(2t)+ 1-2 A2(t)= [ cos < 2t,x > + ldP(x) - 2( f cos < t,x > dP(x)2 

Rn Rn

= 2CJ cos < 2t,x > J- 1 dp(x) _ (J cos c t)X > dp(x)2j

R R

= 2[ f cos2 < t,x > dP(x) - (|* cos < t,x > dP(x))2] 

R° Rn

2 Var(cos < t,X >) where X is a random vector with

induced measure P.
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Hence for all t £ Rn, cos < t,x > is almost surely constant [P].

Let Et = (x £ Rn: cos < t,x > is constant} be such that

P(Et) = 1. Now set E = 0 Et, where Qn denote the countable

t € Qn

dense subset of Rn consisting of all vectors in Rn with rational 

components. Using the continuity of P, we have P(E) - 1. Thus E is 

non-empty and so let xQ £ E. Then -xQ g E and suppose y £ E. Then

cos < t,y > = cos < t,Xg > for all t £ Qn.

and consequently cos < t,y > = cos < t,x^ > for all t £ Rn. Thus 

y - Xq or -Xq. Hence E = {xq,-Xq}. Since P is symmetric 

p{xQ} - 1/2 = P{-xQ} and finally

A(t) = J cos < t,x > dP(x) - i (cos < t,xQ > + cos < t,-xQ >)

Rn

= cos < t,Xg > as asserted.
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CHAPTER II

THE n-DIMENSIONAL LEVY-KHINCHINE REPRESENTATION

In this chapter we present a proof of the Levy-Khinchine for real 

n-dimensional infinitely divisible characteristic functions. The 

approach here is similiar to the one-dimensional case established by 

Johansen, [4 ], in 1966. In his paper, Johansen gave a necessary and 

sufficient condition for a continuous function to be the logarithmn of 

an infinitely divisible characteristic function. His result was easily 

extended to Rn and was written out in detail by Prakasa Rao [8 ]• It 

reads as follows:

PROPOSITION 1. Let cp: Rn ■* C be continuous and hermitian

(cp(t) = cp( -t) for all t € Rn). Then cp is the logarithmn of an 

infinitely divisible characteristic function if and only if cp satisfies 

the following condition (*):

(*) For any choice of N € N, x
N

with £ a. = 0, we must have
1 3

NN
£ £ cp(x - x, ) a oc, > 0.

3=1 k=l 3 k 3 k —

Let Q be the collection of all real continuous functions, cp, on 

Rn, satisfying cp(t) = cp(-1) and condition (*). And set 

Qq = [cp C Q: cp(O) = o). Various properties of functions belonging to 

Q are given in the appendix. However, we state the frequently used

ones below.

p...,x^ 6 R and o^,... ,0^ £ C
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PROPOSITION 2. The following assertions hold:

ll n
(i) if cp € Qq, - ± < e < — and ot € R , then the function 

i|r(u) = cp(u) + e (qj(u + a) + cp(u - a) - 2q)(ai)) also belongs to Qq*

(ii) if cp 6 Qq and n € N, then for all u £ Rn, we have

2
n cp(u) < cp(nu) < 0.

(iii) cp € Q if and only if for all a £ Rn, the function 

f(u) =cp(u) - -i (cp(u + or) + ro(u-a) is positive definite.

We now make a detailed investigation of the following subset of Q.

Let

K = (cp € Q: co(O) < 0 and !* cp(u)du = -2n 
JE

where E = {x = (x.p. • • ,xn) € Rn: -1 < x_. < 1, 1 < j < n - 1,

and 0 5 xn —

Following Johansen, a function f € Q is called degenerate if 

f(u) = f(0), and two functions f^jf2 ? Q are sai^ to satne

type if there exists an a > 0, b £ R such that f2(u) = a fj(u) + b 

for all u e Rn- Ihe sets Q and K are connected in the following 

manner: If f € Q, there exists a function g £ K of the same type 

as f. In the sequel, we shall establish the compactness and extreme 

points of K, and with the aid of Choquet’s Theorem, conclude our main

theorem.
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THEOREM 1 Let f: Rn -* R be continuous and satisfy condition (*). 

Then there exists a real number a £ R, a negative semi-definite 

matrix A, and a symmetric measure y, defined on the Borel subsets of 

Rn with p.{oj = 0 such that

r i + iseii2
f(t) = a + < At,t > + (cos < p,t > - 1) ----------- k— d(j,(0)

V Hell

Moreover this representation is unique, and takes the usual form of the 

Levy-Khinchine Representation by assuming f(0) = 0.

We will only be concerned with the existence of such a 

representation, as the uniqueness is given in Takano £10]. As to be 

expected, the proof requires a number of steps. Our initial task is 

determination of Ext(K), the set of extreme points of K. For the 

remainder of the discussion, we will let be those functions in K 

corresponding to normal distributions, i.e.

51 = (cp € K: 2cp(u) + 2^(0-) = <p(u + ar) + cp(u-a) for all u, a 6 Rn].

for all u, Qf £ Rn}.

PROPOSITION 3. Ext(K) consists of the following functions:

(i) f(u) s -1 .

(ii) f(u) = Cg (cos < 3,u > - 1), 3 € rH^O}, and c^ is the

appropriate constant.

(iii) Ext(5l).
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PROOF: Let f € K. By integrating the inequality f(u) < f(0) over E 

we obtain -1 < f(0) < 0. Suppose f 6 Ext(K) and let X = -f(0).

Then X = 0 or 1, for otherwise, we could express f as

f(u) = (1 - X) (f('U\zxf^) + X(-l).

If f(0) = -1, we must have f(u) = -1 for all u € E. But the 

evenness of f forces f to be constant on a neighborhood of the 

origin, and hence f is necessarily constant. Thus f(u) = -1.

Now assume f(0) = 0. Let at € Rn and 0 < e < Then

+
= + <*) + f(u - «) - 2f(a))

belongs to and

f (t)d(t) = I* f(t)dt = -2n-1
e - 0 "E ®’e ’E

Fix on e > 0 such that ijr 0, and choose positive numbers
j €

a^(a),a2(o) and functions cpp^ € K such that

(u) = al(o) Cpl(u)

Now

(u) = a2^a^ Cp2(^u)

f = I (*i>e + *a,*>
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= 2 (ai(<*) «Pji“) + a2(a) <P2(U))

and by integrating over E, we conclude that a^cr) + a2(a) = So 

by assuming f to be an extreme point, it follows that f satisfies 

the following identity:

f(u) ~ a^oj + ®(f(u + °0 + f(u - «) - 2 f(a)

Thus for an appropriately defined A(a) we have for all u, a € Rn>

A(a) f(u) = f(u + a) + f(u - a) - 2 f(a) (1)

By interchanging u and a and subtracting we arrive at

A(u) f(a) - 2 f(a*) = A(a) f(u) - 2 f(u) (2)

Let us first determine the function A.

Case 1: A(u) = 2, then f satisfies the functional equation 

2 f(u) + 2 f(a) = f(u + a) + f(u - a) so that f g 31 . But if 

f € Ext(K), it must be the case that f € Ext(3l).

Case 2: A(aQ) / 2. Then f(u) = c(A(u) - 2) (3)

where c = ) - 2* Now c / 0 anc* by substituting (3) into

(1) we get
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c A(af) (A(u) - 2) = c(A(u + a) - 2) + c(A(u - a) - 2)

- 2c(A(a) - 2)

or

A(a) A(u) = A(u + Of) + A(u - Of) (4)

and A(0) = 2.

For any f C Qq we have | f(u + a) + f(u - a) - 2f(a)j < - 2f(u) 

and consequently |A(u)) < 2. Thus the only solution to (4) is given by

A(u) = 2 cos < 3,u > for some 3^0.

In terms of f, we have

f(u) = 2c(cos < 3,u > - 1)

and so c = 2c = (P l - cos < 3,u > du) 2n \ thus

f(u) = Cp (cos < 3jU > - 1)*

It remains to prove that the above functions are in fact extreme 

points. We first show that the function f(u) = -1 is an extreme point 

of K.

Let fp f2 € K and 0 < X < 1 be such that
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-1 = Af-^u) = (1 - A) f2(u). 

by arguing as above = -1

of K.

We next observe that 31 

f € Ext( 31) then f € Ext(K)

It then follows that f^(0) = -1 and so 

and thus f(u) = -1 is an extreme point

is an extremal subset of K and hence if

We finally establish the extremal nature of fg(u) = Cg(cos < ¡3,u> ~ 1) 

where 0 6 Rn\{o}. Let f^, f2 6 K and 0 < A < 1 and suppose that

Thus each

fg = Af± + (1 - A) f2.

Let a € Rn, for i = 1,2 we define f. as 
’ ’ i,a

fi>ff(u) = fi(u) ~ | + «) + fi(u " «))•

Then f^ is positive definite and

+ (1 - M f2/u) = ce,o cos < s’u >•

Thus each f. must be of the form
l,Of

fi ft(u) = cos < 8,u >. (See Appendixpage )

fi satisfies for all u, a € Rn

f.(u) - i (f.(u + a) + f.(u - a)) = Ai(a) cos < 8,u >
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which implies, upon letting u = 0, that

f.(®) = -A^a)

and so

f (u) - (f^(u + or) + f^(u - o') - 2f\(o') cos < 3,u >) = 0 (5)

Or by interchanging u and Qf

f^a) - (fj/u + Qf) + fi(u-of) - 2f±(u) cos < 3,Qf >) = 0 (6)

And substracting yields

f^(u) - f^a) + fk(of) cos < 3,u > - f^(u) cos < 3,a > = 0

or f^(u) (1 - cos < 3>of >) = fj_(°O (1 ~ coS ** P»u >) and hence

f\(u) = (1 - cos < 3»u >)• But since C K, we must have

c^ = -Cp and f^ is an extreme point as asserted. This completes the 

proof of Proposition 3.

An enumeration of functions belonging to Ext( 51 ) is not necessarily 

for this development, however this list of functions is given in the 

appendix.

We still have to prove that K is compact in a suitably chosen 

topology. We first show that K a uniformly bounded and then appeal 

to the compactness of the unit ball in L ( R ).



20

LEMMA 1. The set K is uniformly bounded by a constant multiple of the 

function G(t) = 1 + ] 11) | 2.

PROOF: Let f € K and suppose f(0) = 0. Let a = (o,p... ,an) € Rn 

and define $ € Qg as follows:

^u) = f(u) + -x (f(u + a) + f(u - a) - 2 f(a)).

Since $(u) < |(0) = 0, we obtain

f(a) > f(u) + i (f(u + a) + f(u - a))«

Now integrate this inequality over In, the n-dimensional unit square, 

to conclude

f(a) > [* f(u)du + r f(u + «) + f(u - w)du 
*\n 3 Tn

> f f(u)du + Ì j* f(u)du + Ì f f(u)du
J-a+I a+I_

nn

Letting 2t = u in the latter integrals, we have

f(Qf) > -2n_1 + 2n_1 J f(2t)dt + 2n_1 J f(2t)dt.
-a+I ar+I.n n

2

Since f(2t) > 2 f(t) we have
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f(Of) > -2n-1 + 2n+1 f f(t)dt + 2n+1 f f(t)dt.
J-«+I Ja+I

n n
2 2

Now assume | |a| )< 1, then -1 < a. < 1 for 1 < j < n, where 
3

a = (cifp Then
+ a + I
----- ~—— c {x = (x,,...,x ): -1 < x. < 1 for2 — *• ''1* ’ n' —.I —

1 < j < n} = E U (-E). Hence

f(o-) > -2n_1 + 2n+1 f f(t)dt + 2n+1 f f(t)dt
/. JE u (_iE U (f-E) -E)

= -2n_1 + 2n+3 (-2n-1) = -Mp

Thus for all f £ K with f(0) = 0 and for all a, | |cr| | < 1, we 

have f(of) > -Mp Now let a € Rn \ {o} be arbitrary. Then letting 

[ ] denote the. largest integer less than or equal to, we have

(1 + [| M ,]> ,, 2 «
0> f(q>) = f(---------- • ..—) > (1 + Cl MU f(------

1 + Cl | a) | 3 1 + [| M U

> - M(1 + , |a, | ).

n
So if f € K with f(0) = 0 and at € R we have

|f(«)| < H(1 + ||»IP)-

For arbitrary f £ K we have f(0) > -1. So by repeating the
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above argument we get |f(ar) - f(0)j <M(1 + ||a|,2) and the desired 

conclusion is an immediate consequence of this last inequality.

Using the usual limiting techniques, a continuous even function 

cp € Q is and only if cp satisfy the condition (**).

(**) if h € Cc( Rn) is any continuous function with compact support 

and J* h(u)du = 0 then J J ®(u - v) h(u) h(v)du dv > 0.
n Rn RnR

We now define Q to be the set of all measurable functions, cp, 

essentially bounded on every bounded neighborhood of the origin and 

satisfying cp(t) = cp(-t) a.e. and condition (**). We want to identify 

Q with Q and in order to so do we must show that each equivalence 

class of Q contains one and only one function from Q.

PROPOSITION 4. For any cp € Q, there:.exists a function cp, 6 Q such 

that cp = cp^ almost everywhere with respect to Lebesgue measure on Rn.

PROOF: See Appendix.

Utilizing this fact, we can identify K with the corresponding set 

of equivalence classes

K = {cp € Q: J cp(u)du = -2n_1

and ®(u) < 0 a.e.} .

We also know that the functions in K are bounded by
n

G(t) = M(1 + ||t|| )• Thus the mapping, T, defined on K by
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T(cp) = cp/G is an injective mapping into = {f E L (Rn): j | f| |< l}. 

By appealing to the weak* compactness of B^, T(K) will compact

and K will be compact in the topology induced by T if and only if 

T(K) or equivalently T(K) is weak* closed.

PROPOSITION 5. T(K) is a weak* closed subset of Bœ

£ 0 for i = 1.2.... and suDDOse

must show fG € K. Since f. < 0 a.e., it follows that fG < 0 a.e.
3 ~ 

f
-i w* f G

Now “* ~ô~ entails for all h E L'(R).

In particular, with h = GxP we have

rv -i ui* fto
PROOF: Let f4 E Q for j = 1,2,... and suppose -jf- -» f = — • We

lim f -J-h=f h, 
j - » „n G J R G

f.
lim j -rp- h = lim f f. = -2 

3
n-1

3 “ Rn j - “ E

fG

therefore I fG = -2n \V

Also for any g € C (R ) we have

lim [ f-(t) g(t)dt = [ f(t) G(t) g(t)dt. And so let g EC (Rn)
d-- JRn 3

with g(u)du = 0. Let h = g * g’ where g'(x) = g(-x), then
Rn

h EC (Rn) and 
cx z
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0 < fj(x - y) g(x) g(y )dy

f .(x) h(x)dx -» f(x) G(x) h(x)dx
3 V

(fG) (x - y) g(x) g(y)dx dy

thus fG £ K and hence the desired conclusion.

We now turn to the proof of Theorem 1.

Let f £ K. By Choquet’s Theorem there exists a non-negative

regular Borel measure P on T(K) such that P is concentrated on

the extreme points of T(K) and f/G = [ * dP(|) = | dp(i|r).
JT(K) dExt(T(K))

Letting B = Ext(T(K)), this integral is to be interpreted in the 

following sense: For every weak* continuous linear functional X we

have

X(f/G) = I* X(|) dP(Hr) 
JB

And consequently for each h € L’(Rn)

J n h(t) dt = (j- k h(t) i(t)dt) dp(|).

Before utilizing the Fubini Theorem, we first verify that the
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function L^: Rn X B -* R defined by ^(t,!) = h(t) ty(t) is 

integrable for dt X dP.

The measurability of is given in the appendix and since

h € L’(Rn) and P is a finite measure and | L^(t,ijr)| < ] h(t)j we 

conclude that L^ is summable for the product measure and hence the 

Fubini Theorem applies.

Let h € L’(Rn) and express ijr € B as ijt = cp/G where 

cp 6 Ext(K). Then

Jnh(t)OI dt = VJnh(t)lWdt)dI>(cp)

Rn B Rn

= J 1(7) (L cp(t) dp((B))dt*
Rn B

And this in turn implies

f(t) = (* ®(t) dP(cp) a.e.
D

We now verify the right hand side of (8) is continuous in t. 

Suppose t -• tQ, then for every cp € Ext(K), cp(tm) cP(to)‘

Let n £ {0,1,2,...} and define Un: B -» Rn by

Un(cp/G) = cp(tn)

U(<p/G) = cp(tQ)

(8)
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Now Ext(K) are uniformly bounded in a neighborhood of t^ and

hence

|u(«p/G))<M for m= 0,1,2,...

and U U„ as m -» ». So by the Dominated Convergence Theorem, m 0

I* cp(t ) dP(cp) = lim f U (cp/G) dP(cp) 
m - ® J B m -» ® J B

= J UQ(cp/G) dp(cp) = J dP(cp).
B B

Since the left hand side of (8) is surely continuous in t, we have

f(t) = cp(t) dP(co) everywhere.
JB

We now analyze cp(t) dP(®).
JB

We will use the following notation.

S = {(Xp...,xn) € Rn: x1>0, x. 6 R 2 < j < n]

U{(xr. ..,xn) € Rn: XjL = O, x2 > 0, x.. E R, 3 < j < n}

U[(xr...,xn) E Rn: = 0 1 < j < n - 1, xr > 0}

: f(t) = C3(cos < P,t > - 1), 3 E Rn\{0}Bx = (f/G E B
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= {f/G € B: f(t) = Cg(cos < 0,t > - 1), P € s}

B2 = {f/G £ B: f £ Ext( 31)}.

Then B2 is a measurable subset of B and when identifying 

x £ Rn with -x, one concludes that B^ is homeomorphic with S, and 

thus

f cp(t) dP(cp) = | <p(t) dP(cp) + I* cp(t) dP(cp) + [ <p(t) dp(cp)
B B1 B2 {-¿J

G

= J Cg(cos < p,t > - 1) dP(cp) - P(- i} + J <p(t) dP(cp).

Now the function g(t) = J

B2
cp(t) dP(cp) belongs to 31 and consequently

may be expressed as g(t) = < At,t > where A is a negative 

semi-definite matrix. Combining all this, we now rewrite (8) as

f(t) = -P{- + < At,t > + J Cp(cos < p,t > - 1) dP(p).

Finally if f £ Q, then there exists unique numbers a^ > 0, 

b € R such that a^f + b £ K, and consequently there exists a real 

number a, a negative semi-definite matrix A, and a symmetric finite 

measure P on Rn with P(0} = 0 such that

i- i* Hell2
f(t) = a + < At,t > + i (cos < P,t > - 1) —------- s----- dP(P), and

Hell

this completes the proof of our main theorem.
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APPENDIX TO CHAPTER II

Chapters II and III are concerned with the Levy-Khinchine 

representation of the logarithmn of n-dimensional infinitely divisible 

characteristic functions. In this section, we present the technical 

properties of such functions. Here we shall let

Q = {cp: Rn “• C: cp = f + ig, cp(t) = cp(-t), and cp satisfies condition 

(*)} where as before

(*) For any choice N € N, 6 Rn, and o^,€ C

N NN __
with E a. = 0, we have E E cp(x. - x, ) a. a. > 0.

1 3 j=l k=l 3 * 3 R

We shall let Qq = {<p € K: cp(O) - 0} and retain K = {cp € Q: cp real

valued, cp(O) < 0, and f cp(t)dt = -2n ^}.
JE

LEMMA 0. Let-* cp: Rn •* C be any complex function with w(0) = 0 and 

cp(u) = cp(-u). Let S c Rn be a finite subset and h be any complex

function defined on S. The following three conditions are equivalent:

(1) E E cp(u - v) h(u) h(v) > 0 for all (S,h) with 
u € S v 6 s

E h(u) = 0 
u € S

(2) E E exp{\(cp(u - v))} h(u) h^v) > 0 for all (S,h) 
u e S v £ S

and for all A > 0.

(3) E E (cp(u - v) - cp(u) - cp(-v)) h(u) h(v) > 0 for all
u £ S v £ 8

(S,h).
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PROOF: This lemma is given in Prakasa Rao [ 8 ]. See also Johansen [4].

LEMMA 1. Let cp £ Q, xQ £ Rn, a > 0, b £ R. Then the function 

$: Rn -» C defined by $(t) = a cp(t) + i < xQ,t > + b also belongs to

Q-

PROOF: We must show $ satisfies condition ($). Let N £ N,
NXp •••,xR £ Rn and Bp...,^ be complex numbers with £ a. = 0.
1 J

Then £ £ $(x.. - xR) ak = a £ £ cp(x^. - xfc) c^.

+ i S £ (< xQ,x_. > - < xQ,xk >) Qfg Qfk + b £ £ ^ = a £ £ <p(x.. -x^or.. a

since £ a. = 0. Thus cp £ Q entails $ £ Q.
«1

LEMMA 2. Let cp £ Q, gp...,gM € Rn, Yp• • • >Ym € C, then

$(u) = £:£'cp(u - gj + gfc) Yj Y^ is an element of Q.

PROOF: Let N£N and Xp...,xN £ Rn, «p...,0?^ £ C be such that 

N
£ a. = 0. We set
1 3

Ui>k = xk " gi 1 - k - N> 1 - 1 - M

3i,k = vi **k 1 < k < N, 1 < i < M

Then £ (3. , = 0 and
i,k 1,K

£ £ <r(x, - x.) a, ot. k & k X7 k X £ £ £ £ cp(x - g - x + g ) a a y y. 
ijkX * 1 X 3 1 3 k X
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= s ,E, '’(l'i)k-'ii,j)ei,kFj,i^0 
i,k 3,A ’ ’ '}>

COROLLARY: If <p E Q,

function

- | < e < | , 6 $ R, and a E Rn. Then the

—i0 i0ij»(u) = q>(u) + e (e cp(u + a) + e cp(u - a))

belongs to Q.

i0PROOF: In the above lemma let g^ = 0, g2 = a vx = 1, \2 = X e

— ¿Q
where X ( R. Then we get <r(u) = cp(u) + X e cp(u - a) + X e

cp(u + a) + X2 cp(u) E Q and so E Q- And the result follows
1+X2

from - | | for all X E R.
2 “ 1+X2 “ 2

Henceforth, we shall express cp = f + ig.

LEMMA 3. If cp E Qq, then f(u) < 0 for all u E R°.

PROOF: In condition (*), let x^ =0, x2 = u, ®x =1, - -1 and

we get that -cp(u) - co(u) < 0 and thus f(u) < 0.

LEMMA 4. If cp E Qq, and N > 2, then

(i) N2 f(u) < f(Nu) < 0

(ii) jg(Nu) - N g(u)j < -N(N - 1) f(u)

Proof (i) It remains to show for all n > 2, all u E Rn> 

n2 f(u) < f(nu). Let a E R1*« Then ©^(u) = cpx(u) - (cp(u + a)
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+ cp(u - or) - cp(of) - cp(-a)) € Qo which implies that Re cp^(u) < 0. Thus 

2 f(u) - f(u + a) - f(u - or) + 2 f(of) < 0 or

(1) f(u) - f(u - a) + 2 f(a) < f(u + a) - f(u)

Let N > n > 2, u = ja and sum from j = 1 to n - 1. Then

n-1 n-1
£ f(jar) - f((j - l)a) + 2(n - 1) f(flf) < £ f(j + 1» - f(ja),

3=1 3=1

and so f((n - l)a) + 2(n - 1) f(af) < f(na) - f(a). We now sum n = 1 

to N. Thus

N N
E f((n - l)a) + 2(n - 1) f(a) < £ f(na) - f(a) 

n-1 n=l

N N
or f(ar) E (2 n - 1) < £ f(nflf) - f((n - l)a)

n=l ~ n=l

which implies that N2 f(a) < f(Na).

(ii) Here we use the fact that if a £ Rn, the function

©2(u) = cp(u) - (cp(u + a) - cp(u - a) - cp(of) + cp(-a)) belongs to Qq. 

Consequently

(2) Re cp2(u) = f(u) + | (g(u + a) - g(u - a) - 2 g(ar)) < 0.

or g(u + a) - g(a) < g(a) - g(ar - u) - 2 f(u). Again suppose n > 2, 
n-1

a = ju, and sum from j = 1 to n - 1. £ g((j + l)u) - g(3‘u)
d=i

n-1
< £ g(ju) - g((□ - l)u) - 2 f(u) which implies that
” 3'=1
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g(nu) - g(u) < g((n - l)u) - 2(n - 1) f(u). Now summing n = 1 to N, 

we have that

(3) g(Nu) - N g(u) < -N(N - 1) f(u).

By repeating the above argument applied to the inequality

(4) 2 f(u) - (ig(u + a) - g(u - a) - 2 g(a)) < 0

we see that N(N - 1) f(u) < -N g(u) + g(Nu) and so

|g(Nu) - N g(u)| < -N(N - 1) f(u).

COROLLARY. If cp E Qq and f(u) so on a neighborhood of the origin, 

then f(u) s o.

LEMMA 5. For all © E Qq, we have the inequality

I<p(u - v) - <p(u) - ©(-v)| 2 < 4 f(u) f(v) holding for all u, v E Rn«

PROOF: In condition (3) of Lemma 0, let S = £u,v) and a and 3 be

2 2arbitrary complex numbers. Then (-<p(u) - ©(-u))jia] + (-cp(v)-cp(-v))| 0,

+ (cp(u - v) - cp(u) - cp(-v)) aP + (cp(v - u) - cp(v) - cp(-u)) 0a > 0.

This implies the matrix

z \
-2 f(u) cp(u - v) - cp(u) - cp(-v)

^cp(v - u) - cp(v) - cp(—u) -2 f(v) j

is hermitian and positive definite. Hence the determinant is > 0 and
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the result follows.

LEMMA 6. Suppose cp € Qq, and for all u £ Rn and r £ R, 

f(ru) = r2 f(u). Then g(ru) = rg(u).

PROOF: Let n^, n2 £ N and u £ Rn. From Lemma 5, we see that

(f(nx + n2)u) - fyn-ju) - f(n2u))2 + (g((nx + n2)u) - gCn^u) - g(n2u))2 

2 2
< 4 f(nju) f(n2u) = 4 nx n2 f(u) and thus g((nx + n2)u) + g(n1u)_g(n2u).

So g(2u) = 2 g(u) and the result follows by induction, and the usual 

method of considering the rationals then the reals.

THEOREM 1. Normal Characterization.

Suppose cp £ Qq and f(u + v) + f(u - v) = 2 f(u) + 2 f(v) for

all u, v £ Rn. Then g(u + v) = g(u) + g(v) for all u,vv £ Rn.

PROOF: Since cp £ Qq, the function |(u) = qp(u) - -i (cp(u + a) - cp(u - a) 

- 2 f(cr)) £ Qq. But Re |(u) s 0 and thus by Lemma 5, Im $ is

linear. Let q = hn $. Then q(u) = g(u) - - (g(u + a) + g(u - a)).

Appealing to Lemma 6, we have

(1) n q(u) = q(nui) = g(nu) - i (g(nu + a) + g(nu - or))

= n g(u) - i (g(nu + a) + g(nu - a))

and consequently n g(u + a) + n g(u - a) = g(nu + a) + g(nu - a). Now 

the homogeneity of g yields g(u + cr) + g(u - cr) = g(u + + g(u - ^) 

for all n £ N. Thus by letting n approach infinity, we have for all
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a € Rn, 2 g(u) = g(u + «) + g(u _ cr). interchanging u and a and 

using the oddness of g we have that g(u +of) - g(u) + g(a) which 

completes the proof.

We shall let Cc(Rn) = {h: Rn -• C: h is a continuous complex 

function with compact support}.

LEMMA 7. Suppose cp is a continuous complex function on Rn and

cp(t) = <p(-t) for all t € R . Then cp € Q ** cp satisfies condition (**) 

where

(**) for all h € C (Rn) with [* h(u)du = 0 we have
* n R

J* J* cp(u - v) h(u) h(v)du dv > 0.

Rn Rn

PROOF: Hie sufficiency of the condition follows from the usual limiting 

techniques.

Let cp € Q and h € Cc(Rn) with J h(u)du = 0. Then for all

Rn

finite choices Xp...^ € Rn we have £ £ (cp(x^. - xR) - cp(x..) - cp(-xk)

- cp(O)) h(xj) h(x^) > 0. We now integrate this inequality over the 

N-fold product of the support of h, with respect to dx^,...,dx^.

thus

NN N
(1) £ £ J ...J (cp(Xj - xR) - cpiXj) - <p(*xg) - cp(O)) h(x^) h(xfc)

3=1 k=l K. K™

dx.p. •. ,dxN > 0
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(2) = N m(Kji)N"’1' J -2 Re cp(x) | h(x)| 2 dx

+ N(N - 1) j j (cp(x - y) - <p(x) - <p(-y) - cp(O))
Kh Kh

h(x) h(y) dx dy > 0.

Here ra denotes n-dimensional Lebesgue measure. In (2), divide by 
N—2N(N - 1) m(Kh) and let N approach ®, to obtain

(3) I f (cp(x - y) - ep(x) - cp(-y) - cp(O)) h(x) h(y) dx dy > 0 
Kh \

J
• R" R"

But recalling that i h(u)du = h(u)du =0, (3) reduces to
\ r"

cp(x - y) h(x) h(y) dx dy > 0 as asserted.

We now define Q to be the collection of all measurable functions, 

cp, essentially bounded on every bounded neighborhood of the origin for 

which cp satisfies condition (**) and cp(t) = cp(-t) a.e. We now 

mention the theorem relating Q and Q.

THEORM 2. If ^ £ Q there is a continuous function cp £ Q such that 

cpp = cp almost everywhere with respect to n-dimensional Lebesgue measure

PROOF: Let k £ Gc(Rn) and a £ Rn. Define h(u) = k(u) - k(u + &). 

Then h £ C (Rn) and h(u)du = 0. Thus 
r"
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0 < J J* <?x(u - v) h(u) h(v) du dv

= J J iPx(u - v) (k(u) - k(u + &)) (k(vj - k(v + e?)) du dv

= J* J (2 «Pj/u - v) - ^(u - v + a) - cpx(u - v - a)) k(u) k(v)du dv

Consequently the function ^(u) = ©x(u) - (©x(u + a) + ep^(u - a)) is

positive, definite. In view of the Fubini Theorem,-the function

THu) = J ^a(u)da is also positive definite. By the Cartan-Godement 

Theorem, see Edwards [2], there is a continuous positive definite 

function with T) = T)x a.e. But

T)(u) = ©x(u) - | J ©1(t)dt - |J* cp1(t)dt
Tn,I +u T11I —u

and the integrals are continuous functions of u. Thus ©x equals 

almost everywhere a continuous function and the result now follows.

From the proof of the above theorem, we see that <P is a logarithmn

of an infinitely divisible characteristic function if and only if for 
n 1

all a E R » the function * (u) = <p(u) - -ar (<p(u + a) + <p(u - a)) is 

positive definite.

LEMMA 8. Suppose f^ and f2 are real continuous positive definite 

functions on Rn and for some 8 £ Rn and 0 < X < 1 we have 

cos < 0,u > = X fj(u) = (1 - X) f2(u) £°r a3’1 u rI1, ^hen there 

exists constants cx and c2 such that fi(u) = ci cos<0,u> for 

i = 1,2,.
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PROOF: Let F, Fp and F2 be the corresponding generalized distributions 

of cos < p,u >, fj(u) and f2(u). By the n-dimensional Uniqueness 

Theorem, F is a symmetric two point distribution and F=A F1+(1-A)F2. 

Thus each F^ must be a symmetric two point generalized distribution 

with the same jump points as F, hence the result.

This concludes over study of the general properties of logarithmns 

of infinitely divisible characteristic functions. We now mention the 

technical results used in Chapter II. We shall adhere to the notation 

in that chapter by letting

Q = (f: Rn -» R: f(u) = f(-u) and f satisfies condition (*Q}

K = {f e Q: f(0) <0, f f(u)du = -2""1}
,JE

31 = {f £ K: f(u + a) + f(u - a) = 2 f(u) + 2 f(a) for all 

u, a € Rn}.

2
G(t) = M(1 + Ht|| ) is the function which uniformly bounds K.

Then by setting K* = {f/G: f € K} we know that K* is a compact 

metric space. So K* together with the collection of its Borel subsets 

forms a measurable space.

LEMMA 9. Define X: Rn X K* - R by X(x,f/G) = f(x)/G(x). Then X is 

a measurable mapping.

PROOF: For each x € Rn, let C(x) be a cube with center x and a 

fixed side length. We first define L: Rn X K* — R by
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L(x,f/G) = f du» We now show L is continuous. Let x £ Rn,
JC(x)

f • * f
f £ K. Let x . -»x in Rn and tt •

J G . b

Let M be a bounded measurable subset of Rn for which C(x) cz m

and for all j sufficiently large, C(x.)cm. Since f./G is uniformly 
3 3

bounded for all e > 0 there exists a 6 > 0 such that if A cz m is 
p If-sM

measurable and m(A) < 6 then J ”g(u3— du < e for j = 1,2,....
A

Since C(x.) - C(x), for alii j large m(C(x) \ C(x.)) < 6 and 
3 3

m(C(x.) \ C(x)) < 6. and ——------- dt < e . Hence
3 'C(x)

f., r fT(t) lJC(x.)-fedt •L^dt| -I
C(x)-C(x ) 

u

4 £

JC(xj)-C(x) G
-i

C(x)
S <3e.

f. 

G

Hence L is continuous. Now let j £ N, and C.(x) be the cube with 
«J

center x and side length 1/j. Then L^(x,f/G) = J dt
3 %(X)

is continuous and lim L.(x,f/G) = X(x,f/G) and the measurablity of 
j - ” 3

X now follows.

LEMMA 10. Let h £ L’(Rn), x £ Rn. Then hx(t) =
1 ♦ lltll2
1+ t-x

-2 h(t - x)

also belongs to L’(Rn).

PROOF: For any x £ Rn, there exists a T such that
1 ♦ lltll2
1 + 11 t-x| I 2

< T.



39

and if h E L’(Rn) then hx(t) = h(t - x) E L’(R*‘) and the lemma 

follows from Holder's Inequality

LEMMA 11. Suppose f., f E K, j = 1,2,.
V

f.
and -1 . Then for

f .(t)
all x E Rn and all h E L’(Rn), we have lim f h(t-x) J dt 

3 •* “ Rn k

PROOF: Let x E Rn, h E L’(Rn), by lemma 10,

J" „ h*(t) T&T dt = J n hx(t)5^Jdt- But

R R

I „ hx<t) -¡feydt = JB h(t - *> ¡feydt

R

and the result is now

immediate.

We shall now make further investigations of 51 = {f E K:

f(u + a) + f(u - a) = 2 f(u) + 2 f(cr) for all u, a E Rn

LEMMA 12. Suppose f E 51 and f = <p a.e. Then for almost all 

(x,t) E R2” we have <p(x + t) + <p(x - t) = 2 cp(x) + 2 cp(t).

2nPROOF: Define Fp F2: R -» R by

Fx(x,t) = f(x) + f(t)

f9(x,t) = cp(x) + cp(t)

Then {(x,t) e R2n: Fx(x,t) / F2(x,t))
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c {(x,t): t 6 Rn, f(x) i «P(x)}

U {(x,t): x € Rn, f(t) / <p(t)}

Let denote Lebesgue measure on Rn. Then p/2”) {(x,t) € Rn;

F^(x,t) » F2(x,t)} = 0. Also C(x,t) Rn: F^(x + t,x - t) / F2(x + t,x -1)} 

has 2n-dimensional Lebesgue measure 0.

Consequently

F2(x,t) = Fi<x,t) = -i Fz(x + t,x - t) = | F2(x + t,x-- t)

and thus

p,(2n) {(x,t) 0 R2n: <p(t + x) + q>(t - x) f 2 tp(t)+ 2 <p(x)} = 0

and hence the result.

f. * f
LEMMA 13. Suppose f. £ 31 3 = 1,2,... and f € K and3 V V
then f € 31.

PROOF: We shall in fact show that for all x € Rn, lim f .(x) exists.
3 - « 3

Let x € Rn and h € L’(Rn). In view of Lemma 11,

lim
j -» co

J (fj(t - x) + f^(t + x) - 2 f..(t))dt
Rn

exists and
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0 = J (fj(t - X) + f^t + x) - 2 ty(t) - 2 fy(x))dt 
Rn

for j = 1,2,.... Consequently lim f.(x) f dt exists
3 -* • 3 Rn k }

and thus lim f .(x) exists. And so F(x) = lim f(x) satisfies 
3 - “ 3 j - 00

the defining functional equation and F = f a.e. So by Lemma 12, 

f £ 91. It is now convenient to identify 91 with a collection of 

quadratic forms. If f £ 91, then there exists a^,...,an £ R such that

f(x) = £ a4^ x^ where x = (x^,...,xn).
i»3

ij i j

Since f < 0, we must have a^ < 0 1 < i < n. and hence the 

matrix A = (a^) is a symmetric n Xn negative sani-definite matrix. 

Recall E = {(Xp...,xn): -1 < x£ < 1 1 < i < n - 1, 0 < xn < 1 .

If we integrate f over E we obtain

f f f

x, = -1 x .. = -1 x = 0

1 S
3 S a 
3 1 3

£ aidxixjdxpdx2,...,dxn =

n-1

= | tr A.

In order to determine the extreme points of 91, it is necessary 

and sufficient to enumerate the extreme points of the following set.

P = {A: A a non-negative semi-definite n X n matrix with 

tr A = l}.
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PROPOSITION.

of the form

The extreme points of P

A = u u1 when u = U1
un ’

are precisely those matrices 
£

u is the transpose of u,

A

and

9 n 9||u||2 = £ u = 1.
1 3

PROOF: Let (5 be the collection of all n X n matrices

U = [u’.,...,un] where {u’,...,un} forms an othonormal set for Rn 

And let An-^ be the (n - 1) simplex

An_1
n

= {A = € R” I A. > 0 l<j<n and £ A. = 1}.
1 3 

n™*lThen we have a mapping (in fact, continuous) of An_i X & onto P 

n . . .
given by (A,u) -*'A where A = £ A. u3 (u3) . Thus P is compact 

1 3
and connected.

n
Suppose A = £ A. (u3) (u3)* with 0 < A. <1. Then we can write 

1 3 A

A = Ax B + (1 - Ax) C where B = (u* ) (u' f

n A. u^u3)1
? V -C = £ -1

both belong to P. And since A is unequal to B and C, A is not an 

extreme point of P. This shows the only possible extreme points of P 

are the rank 1 projections u u* where |, u|, =1.

It remains to show that the rank 1 projections are extreme points 

of P Let u € Rn with 11 u|, =1. And suppose 0 < A < 1, A, B € P

and u ufc = AA + (1 - A) B.

n “h
Let v € R be perpendicular to u. Then 0 = < u u v, v >

= A < Av, v > + (1 - A) < Bv, v >.
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But A, B are both non-negative semi-definite and so < Av, v > = 0

and < Bv, v > = 0. But this implies that Av = 0 = Bv. This implies 
tthat the .null space of u u , A, and B are identical, and since 

tr A = tr B = 1, we necessarily have A = B = u u .

Let us*now translate this result to 31. Let f E 31, and let A be

the matrix representing f. Then we know that A is a negative semi-

definite matrix and -2n~^ = {* f(u)du = j tr A. Thus 
£

f E Ext(3l) A. E Ext(-P) where A. = —A. And consequently 
3.2n”J"

f E Ext(3l) 4=» there exists a vector u E Rn with ,, u, | =1 and

A = -3«2n-x u u . And thus an explicit determination of Ext(3l) is 

completed.

As was indicated earlier, a listing of the extreme points is 

unnecessary, however the above results can be combined to formulate 

the following theorem.

THEOREM 3. Let K = {f E Q: f real valued, f(0) < 0, and

f f(u)du = -2n_^}. Let 31 = (f E K: f(u + a) + f(u - a) = 2 f(u)+ 2 f(ar) 
JE
for all u, a E Rn}*

Then 31 is a weak* closed subset of K and hence weak* compact.

The Krein-Milman Theorem guarantees that Ext(3l) is non-empty, and 

f E Ext(3l) if and only if the matrix A corresponding to f is of the 

form A = -3*2n-^ u u"1" where u is a unit vector in Rn.
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CHAPTER III

THE GENERAL LEVY-KHINCHINE REPRESENTATION

In this chapter, we make further investigation of general 

continuous functions cp: Rn -» C which are logarithmns of infinitely 

divisible characteristic functions. Again, we shall let Q stand for 

this collection of functions, and write cp = f + ig. We start with 

redefining the set K and show that K is uniformly bounded and the 

extreme points of K are precisely those functions which appear in the 

Levy-Khinchine integrand.

and

Let K = (© E Q: © = f + ig, ©(0) <0, F f(u)du = -2 ,
J. JE

forali i 1 < i < n, J g(0,...,xx,...0)dxi = o}.

We may sometimes use f and g indiscriminately, but they will 

always stand for the real and imaginary parts of the © in question.

LEMMA 1 Suppose © E K and g is a continuous linear functional.

Then g s o.

PROOF: If g is a continuous linear functional, there exists a vector 

PER” such that g(u) = < P,u > for all u E Rn. Write

P = (P ,...,P ), and let i E (1,2,...,n). Then 
1 *1 (\

A r1
0 = J g(0,...,xi,...,0)dxi = J Px Xx dxx = y and so P = 0, and 

hence g(u) m 0.

DEFINITION. © E Q is called degenerate if f(u) « f(0).

©1, ©2 E Q are said to be of the same type if there exists an a > 0,

b E Rn> c E R such that a ©x(u) + i < b,u > + c = ©2(u) for all u E Rn
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LEMMA 2. For every non-degene rate ep £ Q there is a cp^ £ K of the 

same type as cp.

PROOF: Let cp £ Q be non-degenerate. Define ®Q(u) = cp(u) - cp(O), 

then <pQ £ Qq. Now cpQ is non-degenerate and so fQ < 0 and fQ / 0. 

Thus if (t)dt = A + iB, we must have A < 0. For each

i — l,2,...,n, set t^ —

2n-l
By defining cp^(u) = —(cpQ(u) - 2i < u,t >) we see that £ K 

and i® tbe same type as <P*

LEMMA 3. There exists a real number c such that for all cp £ K, we 

have jf(u)j < c(l + |, u( | 2).

PROOF: This argument was presented in Chapter II.

r
,0)dx^ and t = (t^,...,,t ) * n7gQ( °» ” • >x¿» * ” »

LEMMA 4. Let cp £ K with cp(O) = 0. Then there exists a c such that

, g(0,...,x.,...,0)Jdx. < c for all i = 1,2,...,n.
Jo i x -

PROOF: Let i £ {l,2,...,n} be fixed. We shall use the inequality 

2 f(u) - (g(u + or) - g(u - a) - 2 g(cr)) < 0 for all u, a £ Rn 

(See Appendix, page 30 ). Let cr0 = (0,...,cr?,...,0) and

= be Such that g(«n)= ®aX g(°>« ”,«•>•”,°)

and g(Pn) = min g(O,...,cr,,...,O). First assume that a? < 3?.
1

In the above inequality, let cr = aQ, and u = - aQ. We then have

-2 f(PQ - <*0) > 2 g(érQ) - g(0Q) + g(30 - 2 or0) > g(«0) since 

g(P0 “ 2 <P0) > “ g(«0)*
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0 Q0Since cp € K entails cp € K, if ac > 0* we then would replace

g by -g, and obtain -2 f(QfQ - 0Q) > -g(0Q). Since

J g(0,...,xi,...,0)dxi = 0, we have J |g(0,...,x.,...,0)| dx* =

- 2 f g (0,...,x0)dx. — 2 j g ( 0,...,x0)dx.•
Jo 1 Jo

Recalling that f’s are uniformly bounded on every bounded

neighborhood of 0, if a? < 0?, we have

, g(0, • • • »Xp • • • »0)1 dx* < 2 g(«0) < -2 f(or0 - 0Q) < c. Or if

“i > Pi» Jq - ~2 1 “2 f% “ - C*

And if aQ = 0Q, then g(0,...,Xp...,0) = 0 on 0 < x^ < 1-

So if cp € K with cp(O) = 0, and i e {l,2,...,n}, there exists

a real number c such that

pl
J 1g(0,...,xi,...,0)|dxi < c.

LEMMA 5. Let cp 6 K with cp(O) = 0. Then there is a real number c 

such that , g(a), 5 c For a11 <* € R° of the form a = (0,... ,cr,... ,0) 

where i is arbitrary and -1 < or < 1.

PROOF: Let u and a be of the form specified in the lemma. By 

integrating the inequality 2 f(0,...,u^,...,0) + (g(0,...,u^ _ cr,...,0) 

- g(0,...,ui - <>^,...,0) - 2 g(0,,0)) < 0 over In we have

,g(0»’**,Oi£»,,,»0)| < I du£ + yJ |g(0»’,,»U£ + •• • »0)1 du£

+ I J I«(0,...,u± - ^,...,0)1 dur
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By the oddness of g we have

1 g(0,. • • ,og , • • • ,0)J < J j f(0,• • • ,tb,... ,0)| dux

1 ipfi+1
jT I I8(0,• • • »u^,..• ,0)|din

.-1

a.+l
1

<2 + (* 1 g(0, • • • ,2ui,... ,0)| du.
da.-l 1

1
2

n-1 r| g(0,.•• ••,0)| <2 + 2 J 18(0, • ♦ • ,Up.. • ,0), + J f(0,.. • ,Up... ,0)1 du^

Since -1 < er < 1 and |g(2u), < 2| g(u)|) + 2| f(u) 

j*1

< c by lemmas 3 and 4.

LEMMA 6. If © E K with ©(0) = 0, then there is a real number c 

such that 1 g(u)J < c(l + |, u| j 2) for all u E Rn*

PROOF: By lemma S, there exists a cQ such that )g(ei)| < cQ for all 

g where e* is the standard basis vector e^ = (0,...,1,...,0). To 

complete the proof we make use of the inequalities

|g(u + v) - g(u) - g(v)l 2 < 4 f(u) f(v) and

]g(nu) - n g(u)l < -n(n - 1) f(u) for all u, v E Rn, n E N- (See 

Appendix page , page ). Let U = {x = (x^, •.. ,xn): -1 < x^ < 1 for 

all 3 = 1,...,n}. Let x E U with x = (x^,...,xn). First let 

u = (XpO,... ,0) and v = (0,x2,0,...,0). Then

|g(x1,x2,0,...,0)| 2 < 4 f(u) f(v) + 1 g(u)l 2 + j g(v)| 2 < c± by-*
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lemmas 2 and 4. Now let u = (x^,x2,0,...,0) 

and again we get | g(x15x2,x3,0,..-,0)| < c2- 

we easily see that there exists c such that 

and x £ u, then |g(x)| < c.

Now let t £ Rn\{o} be arbitrary. Then

and v = (0,0,x3,0,...,0) 

Continuing in this manner, 

if cp £ K with cp(O) = 0

(i + L| J t| | ] t)
le(t)l = Itrt----- _■ ■ ■ I i (i + [INI]) I e(

i * Cl|t||]
t
L||t||3

)

+ d + tilt||3) (d|t||]) 1f(—-7—-)! < c(i + ||t|1) 
i + LU I ]

+ C(1 + I, I ) 11 tl I < c’(l + IJtJI2)

and the lemma now follows.

Realizing if co £ K, then -1 < cp(O) < 0, we have the following 

theorem.

THEOREM 1. There exists a real number c such that for all cp £ K,

I <p(t)| £ c(l + || t|| 2) for all t £ Rn.

We now determine the function belonging to Ekt(K). By the Normal 

Characterization Theorem, (See Appendix, page 33), if ep £ K and f 

satisfies f(u + a) + f(u - a) = 2 f(u) + 2 f(a), then g must be 

linear. But if g is linear, and <p £ K, then g = 0. So we shall 

again let 91 = {<p £ K: f(u + a) + f(u - a) = 2 f(u) + 2 f(a) for all 

u, a £ Rn}.
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PROPOSITION 1. If © € Ext(K), then

(i) ©(u) s -1 or

(ii) ©(u) = cp(e^<^,U>_ 1 - 2i < Yp,u >) for appropriate

c. £ R and vo € Rn or 
P P

(iii) ©(u) e Ext(9l).

PROOF: This proof somewhat parallels the argument given in Chapter II.

Let © 0 Ext(K), then we know ©(0) = -1 or 0. If ©(0) = -1,

then f(u) s -1 and so g is linear. Which in turn implies that g a 0. 

and ®(u) = -1.

n 1Now assume ®(0) = 0. Let a £ Rn and 0 < e < tj- • Then the

functions to— (u) = ©(u) + e (©(u + a) + ©(u - a) - ©(») - ©(-a)) a,e ~~
1 +belong to Qn. As before, fix in e, 0 < e < such that $jj are

non-degenerate, and pick ®^,©2 € Qq H K to be of the same type as

|+ and respectively. Thus for suitably chosen positive
Ci} 6 Of y 6

numbers a^(a), a2(a) and vectors b^a), b2(a) we have 

*+,e(u) = a1(«) ®i(u) * 1 < >

(1)
*a,e(u) = cp2^U^ + 1 < b2^w^»u >

However, © = | + j Wlies

(2) ©(u) = i a^(a) ©x(u) + y a2(a) + 7 C bi(a) + b2(“)»u •*

By taking the real part of (2), and integrating over E, we see 

that a^cr) + a2(a) = 2. Now © C K and
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a.(a) a0(a)
—2— <Px(u) + —2— <P2(u) E K, so bx(a) + b2(a) = 0.

©(u) = X ©x(u) + (1 - X) ©2(u) f°r some 0 < X < 1.

extreme, © = ©x = ©2« Collecting this, if © E Ext(K), 

chosen A(a) E R, and B(a) E Rn

Thus

But if © is 

for suitably

(, 1 - cos < piyt > dt).
JE

(3) A(a) ©(u) = ©(u + a) + ©(u - a) - ©(a) - ©(-a) -2i < u,B(o?) >

for all u, a E Rn.

Let us first consider the real part of (3). Then we get

(4) A(a) f(u) = f(u + a) + f(u - a) - 2 f(a).

The analysis of Chapter II, shows that either A(a) s 2, and 

f E Ext(3l) or A(o')=-2cos< P,® > for some P E R^fo} and 

f(u) = Cp(cos < P,u > - 1) where c^ = 2n“1

In the former, we also know that if © = f + ig and f E 31, then 

g s 0. Assuming the latter, we turn to the solutions of the imaginary 

part of (3), namely

(5) A(a) g(u) = g(u + cr) - g(u - a) - 2 < u,B(a) >.

Let E Rn be such that A(ax) = cos < P,ax > = 0 and

sin < P,«x > = 1. In (5), let a = or^, u = t + to obtain 

0 = g(t + 2 arp + g(t) - 2 < t + ofjjB^) > and so
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(6) g(t + 2 cp + g(t) = 2 < t + a1,B(a1) >

In particular if t = 0, g(2 = < 2 of^,B(of^)>. Now let a be

arbitrary, and u = 2 »p Then 2 cos < B,« > g(2 « ) =

= g(2 + o) + g(2 crx - a) - 2 < 2 «pB(cr) > or

(7) 2 cos < 0,cr > 2 < ofpB(op > = g(2 a^ + a) +g(2 cr1-2)-4 < afpB(ar) >

= g(2 + a) + g(cr) + g(2 - ot) + g(-a) - 4 < a-pB(ar) >

= 2 < ot + “pBiap > + 2 < -w + ffpB(^) > - 4 < OfpB(a) >

= 4(< apB(«p > - < >)•

Thus 4 < 0fpB(«) > = 4(< o'1,B(o'1) > - cos < 3,or > < afpB(cp >) 

which Implies that

(8) < &1,B(a') ** = < »pB(cp > (1 - cos < B,ar >)

for all a £ Rn. In (5), let or = t + «p u = p

A(t + Q'1) g(cp = g(t + 2 cp + g(-t) - 2 < OfpB(t + cp. But

A(t + cp = -2 sin < t,0 >, g(t + 2 cp = -g(t) + 2 < t + crpB(cp > and 

2 < ffpB(t + ct--^) > = 2 < o?pB(cp > (1 - cos < 0,t + « >) =

2 < p,B(cp > (1 + sin < P,t >). Thus
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(9) -2 sin < t,0 > gCffj) = “2 g(t) - 2 < ^,0(0^) > sin < 0,t >

+ 2 < t,B(a^) > and finally

(10) g(t) = (giap - < 0'1,B(o-1) >) sin < t,0 > + < tjBio'P >

- c(Cg(sin < P,t > + < t,B(cr^) >)).

determine c and B(a^). Since g(0,...,x^,...,0)dx^ = 0
0

we see that Bia^) = -2(Yp • • • ,Yn) where

We now

for all i,

1 - cos 0.
Y - ------ --------1 0 / o and Y. = 0 if 0. = 0. Let

3 P-j 3 3 3

Yp=<Yi»•••>Yn)* Then we have g(t) = c(cp(sin < t,0 > - 2 < t,Yg >))• 

Substituting f(u) = Cg(cos <0,u>-l) in the inequality 

|g(2u) - 2 g(u)| < -2 f(u) we see that

|g(2u) - 2 g(u)| = |c(Cg(sin < 2u,0 > - 2 < 2u,yp >))

-2c(cg(sin < u,0 > -2 < u,Yp >))|

= | cj | Cp| (2 sin < u,0 > cos < u,0 > - 2 sin < u,0;>'’j

< -2 f(u) = 2| Cp| | cos < u,0 > - l| .

Thus Jc) J sin < u,0 >J <1 for all u € Rn • So , c) < 1. But if © 

is extreme c = + 1. However the © corresponding to c^ = -1 and 0
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is the same as if = 1 and -0. So the solution in the second case

is ©p(t) = cp(e - 1 - 2i < u,Yp >) where

. . , 1 - cos P. 1 - cos P
c8 = 2n"X( 1 - cos < P,u > du)“X and y. = (------ g------ “,•••,------ g------ -)

p dE P pi pn

Appealing to the arguments given in Chapter II, we will have completed

the task of determining Ext(K) provided we prove

PROPOSITION 2: For any 0 E R^fo), the function

©p(t) = Cp(e - 1 - 2 < t,Vg >) defined above, is an extreme

point of K.

PROOF: Suppose ©x, ©2 E K and 0 < X < 1 are such that

©p = X ©^ + (1 - X) ©2- Fix 9f E Rn and define L^: K-*Qq by the 

rule

(1) (Lff ©)(u) = 2 ©(u) - [e"x<w,P>(©(u + a) - ©(a))

+ ei<Qf,e>(©(u - a) - ©(-o'))].

Then L ©o E Qn and so Re L ©o < 0. We also note that if a P ’ 0 a P —

©’,©'* E K and 0 < Y < 1, then ^(y ©’ + (1 - y)©" ) = Y ©’ + (1 - y)l>a ©”•

Now

(2) (Lff ©g)(u) = La(cp(ex<0,u>- 1 - 2i < u,yp >)

= 2(Cg(e1<P,U>- 1 - 2i < u,Yg >)) -
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r -i<cr,f}> ( i<B,u + cr> 1 .. .[e ,K cR(e » - 1 - 2i < u + a,Y0 > -

ei<e’’>+ 1 ♦ 21 < «,Yfl >) ♦ ei<«.6> (ei<“-“,e>

- 1 - 2i < u - a,Yg > - e~i<a*^>+ l - 2i < cr,Yg >)]

= C, 1[2(ei<S"u>-l-2i<u>Y9>)-(ei<e’u>-l-e-i<“’B>2i<u,YB)

i<S,u> . i<cr,P>_. .-n+ e ’ -1-e ’ 2i < u,Vp >)J

= eg 2(ei<e>u>. 1 - 21 < u.Y, >-ei< P>0>+ 1 * ie-1<’’’><<,,Y(i >

+ ie^<or,®'>< u,yr >)• Huis

i<o,P> -l<a,p>
(3) (p ®g)(u) = Cg 2(2i < u,yp >) (--------------- 5---------------- - 1)

= 2 Cp(2i < u,y0 >) (cos < 3,cr > - 1).

Thus Re L ®. = 0, and since L ®_=X.L <p + (l-X)L cp„ we have a 3 ’ or p cr cr 2

Re L* p - 0 for i = 1,2.< Henceforth, we shall let ® stand for 

either p or p. Since Re L* ® s 0, there exists a vector A(cr) £ Rn 

such that L* <p(u) = 2i < A(er),u > for all u £ Rn. Thus ® satisfies 

the following identity
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(4) ©(u) - (e“1<a,P>(©(u + o)-©(o)) + ei<Qf»0:>(©(u-o)-©(-a)))

= i <nA(o),u > for all u € Rn • By taking the imaginary parts of both 

sides of (4), we obtain

< A(o),u > = g(u) - -i [cos < o,0 > (g(u + a) - g(o))

- sin < a,P > (f(u + a) - f(o) + cos < 0,0 > (g(u - o)

+ g(<*)) + sin < a,0 > (f(u - a) - f(o))]

(5) = g(u) + i sin < cr,0 > (f(u + o) - f(u - o)

- i cos < o,0 > (g(u + o) + g(u - a)).

We now determine A(o). We shall use [0] to denote the vector

space spanned by 0. Let o^ € [0] be such that cos < 0,a^ > = 1 and

cos < 0,on/2 > = -1. Let o € Rn. We shall now show
iy -

< A(o),u > = i (1 - cos < 0,o >) < A(o'1/2),u > for all u 6 Rn.

If u i 0, then fa(u) = 0 and so f(u) = 0. Then f(u + o) = f(o)
P

and g(u + o) = g(u) + g(o) for all a£Rn. Therefore

< A(o),u > = g(u) - i cos < o,0 > 2 g(u) = g(u) (1 - cos < o,P >). On 

the other hand, < A(Oj/2),u > = 2 g(u) and consequently

< A(o),u > = -i (1 - cos < 0,o >) < A(o1/2),u > for all u j_ 0. Now

< ACo),©! > = g(ox) (1 - cos < o,0 >) from (5) and fi^) = 0. Thus
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< > - 2 g(ax) and i (1 - cos < 0,^ >) < A^a^/2)^^ > =

gCap (! “ cos < «»P >) = < A(a)2,afx >. Now let u E [0] = [o^]. Then

u = k «x for some k E R* Then < A(a),u > = k < A(«x),ax >

= k(-^ (1 - cos < 0,a >)) < A(o'x/2),«1 > = i (1 - cos < 0,« >) < A(ax/2),u>.

Finally let u E R° be arbitrary. Then we may express u = v^ + y2 

when yx j_ 0 and y2 E [0]» Using the above computations we have

< A(a),u > = < A(a),yx > + < A(a),y2 >

= i (1 - cos < 0,or >) (< A(o'1/2),y1 > +

< A(q'1/2),v2 >) = i (1 - cos < 0,a >) < A(a1/2),u > .

Since < A(a),u > = i (1 - cos < 0,a >) < A(o,/2),u > for all u,
Z 1 / <-

we must have

(6) A(a) h (1 - cos < P,a >) A(»x/2).

A(«,/2) -i<u B>
Let c =-----y~~~ • By setting ^(u) = e ,p (<p(u) - i < c,u >) we

see that

(7) |(u) - | £$(u + a) + ^(u - a) - e”1< P,U>(|(a) + $(’-«))]

= e’1<u,^>[©(u) - i < c,u > - i (e“i<Of,^>(©(u + a)
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—i < c,u + a > - ©(a) + i < c ,o >) + ei<a,^’>(©(u - a)

-i < c,u - a) - ©(-o) - i < c,o >))].

Applying (4) and (6) to (7) we have (7)

= e“i<u’P>[®(u) - j (e"i<a»P>(©(u + a) - ©(«)) + ei<0f’P>(©(u-o)-©(-ff)))

- i < c,u > - (e"*i<Qf,^>(-i < c,u > + ei<®»^>(-i < c,u >))]

= e i<u’P>[i < c,u > (1 - cos < 0,o >) - i < c,u > 

i<o,0> -i<o,0> .
- i < C,U > (I------------------------------)] = e_i ,°>[i<C,U>(l-COS<P,ff>)

- i < C,U > (1 — COS <0,0 >)] = 0

Thus Ku) = e"i<u,^>(©(u) - i < c,u >) satisfies i}r(u) = tfr<-u)

and

(8) fy(u) - | [|(u + or) + $(u - o) - e~i<P,u>(|(a) + 'jr(-o))] = 0.

Express $ = p + iq, take the real part of 8, and interchange u and 

at to get

(9) p(u) - i (p(u + o) + p(u - o) - 2 cos < 0,o > p(e)) = 0

p(ff) - (p(u - o) + p(« - u) - 2 cos < 0,u > p(u)) = 0

And by subtracting, we have
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p(u) (1 - cos < {3,cr >) = p(a) (1 £ cos < P,u >)

or

(10) p(u) = c^(l - cos < 3,iu >)

for some p £ R. Next take the imaginary parts of (8).

q(u) - -i (q(u + a) + q(u - cr) + sin < B,u > 2 p(cr)) = 0. This

implies

1 2(11) q(u) - 2 (q(u + cr) + q(u - cr)) = p(l - cos < B,cr >) ain < B,u >

Set F(u) = q(u) - p sin <g,u >. By using the usual trigonometric 

rules and the oddness of q, we see that F is linear, and hence there 

is an a £ Rn such that F(u) = < q,u > for all u £ Rn. This in turn 

yields q(u) = p sin < 3,u > + < q,u >. Collecting this we have

(12) i_i< P,u>(®(u) - i < c,u >) = ijr(u)

= p(u) + iq(u)

= p(l - cos < 3,u >)

+ i p sin < 3,u > + i < a,u >

i< P,u> ) + i < a,u >.= p(l - e
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which yields

(13) ©(u) - i < c,u > = c1(ei<®,u>- 1) + i ei<^,u>< a,u >.

Taking therealparts of (13), we have (14) f(u) = cx(cos < g,u > - 1)

- sin < 0,u > < a,u >. If a / 0, it would be easy to produce a u f Rn 

such that f(u) > 0. Consequently a = 0. and f(u) = cx(cos<0,u>-1 ). 

But since f £ K we must have c^ = c^. Returning to (13), we see that

g(u) = Cp(sin < 0,u >) + < c,u >. But the restrictions of K on g 

force c = «2 Cg Yp, where Yg is as above. Thus

©(u) = Cp(ex<^’u>- 1 - 2 i < u,Yg >) = ®g(u) which completes the 

proof of Proposition 2.

It would be very gratifying to conclude the Levy-Khinchine 

Representation by appealing to Choquet*s Theorem. However at present, 

the fact that K is compact can not be established.
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CHAPTER IV

AN APPLICATION TO UNIMODAL DISTRIBUTIONS

In this chapter, Khinchine's representation of unimodal distributions 

is obtained through the use of extreme points.

DEFINITION Let F: R "♦ R be monotone non-decreasing, right continuous, 

and 0 < F(-«&)< F( + ®)< 1. If F is convex on (-®,0) and F is 

concave on (0,+®) , F is called a (generalized) unimodal distribution.

The concept of unimodality is closely related to absolute continuity 

as the following can be established. See Lukács [6].

LEMMA 1. F is a unimodal distribution if and only if there exist two 

non-negative, integrable functions f,g, f: (-®,0)-* R is non-decreasing 

g: (0,+ ®)-» R is non-increasing and

F(-®) + J f(u)du if x < 0

F(x)

F(+®) - J g(u)du if x > 0

With the aid of Lemma

THEOREM 1. A distribution 

corresponding distribution

1, Khinchine established the following theorem.

F is unimodal if and only if there exists a 

G yielding the following representation:
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xi+ VG(X) ■x J if
— 0000

F(x) =< Xx + X2 G(0) if x = 0

xi+ x2[g<x> + * J ^r1 -if x > 0.

x < 0

here X^ = F(-<=) , X2 = F( + ®) - F(-»). G(-®) = 0, G( + °°) - 1.

Using integration by parts and Theorem 1, assuming X^ =0, X2 = 1,

we obtain the following corollary concerning the corresponding

characteristic functions.

COROLLARY 1 A characteristic function © is of a unimodal distribution 

if and only if there is a characteristic function g such that

<p(t) = i J g(u)du.
0

Our goal is to obtain Theorem 1 using the method of extreme points. 

For this purpose, we make a detailed investigation of the following set 

K: K = (F: R — R: F is a unimodal distribution].

We first want to establish K is a compact, convex set, but it is 

necessary to consider equivalence classes of K as follows:

K = (f: R -» R: there is an F € K, f = F a.e.]
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We may identify K with K. In order to establish the compactness of
rv

K, it suffices to do the same for K.

LEMMA 2. K is a weak* closed subset of B, where B = {f € L ( R):

ess sup ) f(x)J < l}. 
x € R

PROOF: Let f € K n = 1,2,..., and f £B be such that fn f.

Choose F € K such that F = f a.e. By the Weak Compactness Theorem n n n
(Loeve, [5]) there exists a subsequence {n^} and a distribution

function G such that F G. This implies G is unimodal,
nk

(Lukács, [6]) and F (t) -» G(t) a.e. (t). Hence f -* G a.e.
nk k

So by the Lebesgue Dominated Convergence Theorem, for all g£L'(R) we

have

lim F f (t) g(t)dt = f G(t) g(t)dt. 
k - » J R nk R

And, hence for all g £L'(R) it is the case that

F G(t) g(t)dt = F f(t) g(t)dt.
’’ R 3 R

This implies f(t) = G(t) a.e. so 'f £ K.

Thus we have established that K is a compact set and clearly K

is convex, so that the Krein-Milman Theorem applies. To establish the 

extreme points we introduce the following concept.

DEFINITION Let F be a unimodal distribution. F is called an
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elementary unimodal distribution if, in addition, F satisfies the 

following two conditions:

(i) F(-®) = 0, F(+®) = 1

(ii) If G and F - G are both unimodal distributions, then 

there is a real number, X, 0 < X < 1, such that G = XF.

THEOREM 2. The extreme points of K are the elementary unimodal 

distributions together with the functions F_æ =1 and F+w = 0.

PROOF: Clearly F æ , F+œ are extreme points of K. Let F £ K be

an elementary unimodal distribution. We now show F is an extremal 

point of K. Let Fp F2 £ K and 0 < X < 1 be such that

F = XF-^ + (1 - X) F2« Since it is true of F, we necessarily have

F^-«) = 0 = F2(-®)

and P-j_(+a#) = 1 = F2(+®) .

If 0 < X < 1 then F, XFp F - XF^ £ K so since F is elementary, 

there exists an a > 0 such that F = «F^. But F( + ®) = F^( + °°) , 

therefore a = 1. So F - F^ = F2 and as a result F is an extreme 

point of K.

Conversely, let F be an extreme point of K. If F is constant, 

then F = F or F, . So assume F(+®) - F(-®) > 0.

Suppose 0 < F( + “) <1. Then

F = F( + «) (f(7^) ) + (1 - F( + «)) F+w-
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This forces F( + ») = 1. Now suppose 0 < F(-®) < 1. Then

and T? belong t0 K> and

P(x) =

+ [F(xj

but if F is to be extreme, it must be that F(-“) =0. Finally, let 

G £ K be such that G / 0, F and F - G E K.

Define F^x) = and F2(x) = then

F(x) = G( + «°) Fx(x) + (1 - G( + ®)) F2(x) but F is extreme, hence

F = F^ so XF - G for some X > 0. Thus F is an elementary unimodal

distribution.

LEMMA 3. Let F be an extreme point of K. Then F(0) = 0 or 1.

PROOF: Suppose to the contrary 0 < F(0) < 1. Define G(x) to be F(x) 

or F(0) accordingly as x < 0 or x > 0.

Then G and F - G are unimodal but G is not a multiple of F 

since F( + ®) = 1.

THEOREM 3. The elementary unimodal distributions are the following:

0 x < a

1 - x/a a < x < 0« < 0, Fa(x) =

1 x > 0
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o=0, FQ(x) = e(x)

o > 0, Fff(x) =

0

x/o

1

x < 0

0 < x < a

x > o.

PROOF: We first show each Fff(x), o e R, is an elementary unimodal

distribution. Clearly Fq is elementary. Let o < 0 be fixed. Let 

G € K be such that F - G also belongs to K. Thus 1 - G(x) and 

G(x) are both non-decreasing on (0,+ ®), hence G(x) = G(0) if x > 0

Let y = G(0). If y ~ °> G = 0. So assume Y > 0- Claim G = Y F • 

Since G and F* are convex on (-®,0) , there exists non-decreasing 

non-negative functions g and f such that

r xG(x) = J g(u)du x < 0

and V*)= J Vu)du x < 0.

Now fa(x) = -i I[a()]. Thus (Fft-G)(x) = J f/u) - g(u)du
u > J — 00

and f* - g is non-decreasing and non-negative. Hence g(u) = c 1^ 

Thus

r0
Y = G(0) = J g(u)du co

Thus g(u) = Y
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So G = yF*. Similarity if a > 0, is an elementary unimodal

distribution.

Thus it remains to show if F is elementary, then F(x) = e(x) or 

a suitable uniform distribution.

Let a = F(O-). If F(0) = 0, then a = 0 and F is continuous 

at a. If F(0) = 1, then a = 0 or 1. For if 0 < a < 1, pick 

e > 0 such that 0<(l-e)a<(l + e) a < 1. Now define F^ and F2 

as

(1 + e) F(x) 
Fl(K) = L

if x < 0

if x > 0

(1 - e) F(x) F2(x, = { if x < 0

if x > 0.

then F = F-^ + F2 which contradicts F as being extreme. So a = 0

or 1. If a = 0,

Suppose

f > 0 a

F(0) = 1
,e„ f 

— 00

F(x) = e(x), otherwise F is continuous at 0. 

and F(x) / e(x). Then there is an f £ L'(-®,0),

f(u)du = 1 and f is non-decreusing.

Let p = supp f = U[a,o] where the union is taken over all 

intervals [a,o] such that f(x) > 0 a.e. on [a,0]. Let y £ p be 

such that

0 <
— 00

f(u)du < 1.
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Define

f(x) if x < y
fl(x) = /

f(Y) if x > y

and

r f,(t)dt

I f (o)

if x < 0

if x > 0

Then Fx is 

elementary, there

unimodal and F - F^ is unimodal. 

is an a = «(y) such that

Now since F is

But this implies

F^ = ctF.

fp(x) = off(x) a.e. x < 0.

But if x < Y, fj(x) = f(x), therefore <*(y) = 1 which implies if 

x > Y, f(x) = f(Y). But Y € Kf was arbitrary, thus f is a.e. 

constant on K^. Thus = [a,0] for some a, and f = -1/or since

P G
J f(u)du = 1.

— 00

Hence F is the uniform distribution prescribed above. Proceeding 

in exactly a similar manner, if F(0) = 0, then if F is to be 

extreme, F = F for some a > 0.
3 rv
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Collecting the above, we now formulate the following theorem.

THEOREM 4. K is a compact, convex set in the weak* topology of L°°( R). 

Moreover the extreme points are precisely the following functions:

F J*) s 1

F (x) = (1 - -) Ir + Izn x Ot < 0, cr ' K a' L«>°J (0,®)

Fq(x) = e(x) = I[0><b)

Fo/X) = a ^O,«] + I(®,+ ®) a>°

F (x) s °-

Now let [~oo, + oo] denote the compactified real line. Define 

$: [-oog+w] -♦ k by $(<*) = F , then clearly $ is a homeomorphism, 

so that Ext(K), the set of extreme points of K, is compact and 

homeomorph ic to [-•,+ »].

So, in view of Choquet’s Theorem, for each F £ K, then is a 

probability measure P on [-*, + “] such that

F = J F* dp(a)‘

[-», + «]
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This integral is to be interpreted in the following sense: For 

every weak* continuous linear functional X we have

X(F) = J X(Fa) dP(a) 

[-•,+ «]

Consequently, for each h 6 L'(R), we have

Jh(t) F(t) dt = 
R

(F h(t) F (t)dt)dP(ff) 
3 R

= J h(t) ( Fa(t) dP(o))dt.J

The last interchange of integrals 

Theorem. But since this holds for all

is permitted by the Fubini 

h £ L'(R) we have

F(t) = J Fa(t) dP(o)

= P{-»} + F F (t) dP(o)
J R

v. Let us consider F F (t) dP(o). Since for fixed t, the integral 
3 R a

is continuous in o, we can consider

F F (t) dG(o) where G is given by 
J R «
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G(x) = P(-®,x].

If t = 0,

1 if a < 0

V°> =
10 if a > 0

thus F(0) = J Fa(0) dG(ar) = G(0). If t < 0, and a < 0,
R

f 1 - t/a if a < t < 0

, F0(t) = 0, and F*(t) = 0 for a > 0

if t < a

Consequently Fa(t) dG(w)
t*

J
— CO

(1 - 5) dG(«).

= G(t) dG(°0 .
a

If t > 0, and o < t, Fff(t) ~ ■L> And if « > t, Fa(t) ~

00
Thus J Fff(t) dG(a) = G(t) + t J .

R t

Collecting all this, we now state the following Theorem.

THOEREM 5. For each F £ K, then exists a probability distribution G 

on R, and real numbers xx, X2 > 0, Xx + X2 < 1 such that
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X1 + X2[G(x) - x J dG(Qf)
a if x < 0

F(x) = '<! ■ Xx + X2 G(0) if x = 0

h + *2 W*’ + * I. if x > 0dG£«i
a

here X^ = F(-®) , X2 = F(+®) - F(-®) . By ignoring these constants 

and assuming F to be a probability distribution, we see F has the 

following representation:

t-J dG(or)
ot ■]dy

• J..........11 dG(of)

(0>x) y
•]dy + G(0) x > 0.a

x < 0

By using this last form and integration by parts, it is easy to 

establish that if cp is the characteristic function of F and g is 

the characteristic function of G, then for all t e R,

<p(t) = 7 [ g(u)du.

So by the Uniqueness Theorem (Lukács [6]), we immediately conclude 

the probability distribution G occurring in Theorem 5 is also unique.
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