
INFERRING RNA 3D MOTIFS FROM SEQUENCE

James Elwood Roll

A Dissertation

Submitted to the Graduate College of Bowling Green
State University in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2019

Committee:

Craig Zirbel, Advisor

Paul Morris,
Graduate Faculty Representative

James Albert

Maria Rizzo

Junfeng Shang

Copyright c©May 2019

James Elwood Roll

All rights reserved

iii
ABSTRACT

Craig Zirbel, Advisor

An outstanding problem in molecular biology is the prediction of the 3D structure of RNA

molecules based on the sequence of the RNA. An important step toward prediction of full RNA

3D structures from sequence is predicting the 3D structures of the non-helical regions, which are

often referred to as loop regions. We have developed a methodology for modeling the sequence

variability of known RNA 3D loop structures, using data from the RNA 3D Motif Atlas. Our

models are stochastic context free grammars (SCFGs) that utilize Markov random fields (MRFs)

where necessary. The models are parameterized based on the geometry of the pairwise interactions

in the loop 3D structure as well as the sequences that have been observed making the structure in

3D, with the result that a reasonable model can be generated using only one sequence variant

observed forming the 3D loop structure. Work has also been done to measure and compare how

these sequence variability models overlap in sequence space.

We have developed a software package in which these models for the sequence variability of

RNA 3D loop structures can be quickly and automatically generated. The software, called JAR3D,

is available on Github for download, and a web server and a command line tool by the same name

is publicly available. There are a variety of applications for the JAR3D package. It can be used

to align loop sequences to a particular known 3D loop geometry, as well as accept or reject a

loop sequence as a viable candidate to form a particular geometry. JAR3D can also be used to

address a matching problem: given a novel loop sequence, which known 3D geometry, if any, is

the sequence likely to form? This matching problem use case is not addressed by current tools for

RNA 3D structure prediction, and is a new addition to the field.

iv

To my father.

v
ACKNOWLEDGMENTS

I would first like to thank my wife, Nicole, who is a constant inspiration to me. I would also

like to thank my mother, whose support and encouragment has always been invaluable to me. I

thank Dr. Zirbel for his patience, and for all the time help he gave me. Finally, I would like to

thank the members of my committee, Dr. Albert, Dr. Rizzo, Dr. Sheng, and Dr. Morris, for taking

the time to read my dissertation and for their invaluable feedback.

vi

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION AND OVERVIEW . 1

1.1 Overview of the modeling problem . 1

1.2 Why model RNA loop sequence variability? . 2

1.3 Challenges to overcome in modeling RNA loop sequence variability 3

1.4 Nature of the models . 5

1.5 Results . 7

1.6 Overview of the dissertation . 10

CHAPTER 2 RNA PRIMARY, SECONDARY, AND 3D STRUCTURE 11

2.1 An introduction to RNA . 11

2.2 RNA 3D structure determination . 12

2.3 RNA secondary structure, Watson-Crick helices, and isostericity 14

2.4 RNA alignments . 17

2.5 RNA loops . 18

2.6 RNA basepairs . 21

2.7 RNA base-backbone interactions . 22

CHAPTER 3 REVIEW OF RELEVANT LITERATURE 24

3.1 Introduction to RNA 2D structure prediction . 24

3.2 Introduction to RNA 3D structure prediction . 25

3.3 Review of literature on RNA 3D structure prediction 26

3.4 Introduction to SCFGs . 32

3.5 Review of literature on SCFGs for RNA . 34

CHAPTER 4 MODELING RNA LOOP SEQUENCE VARIABILITY WITH SCFG

MODELS . 38

4.1 Statistical dependence due to RNA basepairs . 38

vii
4.2 Sequence variability in RNA basepairs and isodiscrepancy 41

4.3 Structure of SCFG/MRF models for modeling RNA loop sequence variability . . . 43

4.4 A concrete example : the SCFG/MRF model for IL 95652.3 46

4.5 Parameterization of basepair substitution probabilities 53

4.6 Using multiple instances of a loop structure . 57

4.7 Parameterization of base-backbone interactions 58

4.8 Parameterization of insertions . 59

4.9 Fixed bases . 60

4.10 Markov random field node normalization . 61

CHAPTER 5 JAR3D SOFTWARE AND WEB SERVERS 65

5.1 Introduction to JAR3D . 65

5.2 Parsing sequences against JAR3D models . 70

5.3 Using JAR3D for alignments . 71

5.4 Using JAR3D to match loop sequences to 3D structures 71

CHAPTER 6 JAR3D FALSE POSITIVE CONTROL AND VALIDATION STUDIES . . . 73

6.1 Randomly generating sequences for false positive control 73

6.2 False positive control, alignment score deficit, and cutoff score 74

6.3 Alignment extract study . 79

6.4 Comparison of JAR3D acceptance regions to RMDetect 85

CHAPTER 7 DISTRIBUTION OF JAR3D MODELS OVER RNA SEQUENCE SPACE . 88

7.1 Introduction . 88

7.2 Top k algorithm . 89

7.3 Entropy calculations . 94

7.4 Rank order cumulative probability graphs . 94

7.5 Single group rank order cumulative probability graphs 95

7.6 Examples of ROCP graphs for 10-nucleotide motif groups 96

viii
7.7 Paired rank order cumulative probability graphs 98

7.8 Using PROCP graphs to analyze sarcin-ricin groups 101

7.9 Distance measure based on rank-ordered cumulative probability 107

7.10 Relationship between distance measure and comparison graphs 108

7.11 Examples of distance measure used on IL 1.13 groups 109

7.12 Approximation of the ROCP distance . 112

7.13 Heatmaps of ROCP for sets of motif groups . 113

7.14 Heatmap for IL 1.13 5x5 motifs . 113

7.15 Heatmap for IL 1.13 sarcin-ricin motifs . 115

CHAPTER 8 FUTURE WORK . 118

8.1 JAR3D for matching sequences to motif groups 118

8.2 Improvements to JAR3D models . 119

8.3 Other applications for JAR3D . 120

BIBLIOGRAPHY . 121

APPENDIX A JAR3D WEB SERVER INPUT PAGE EXAMPLE 126

APPENDIX B JAR3D WEB SERVER LOOP LEVEL OUTPUT PAGE EXAMPLE 127

APPENDIX C JAR3D WEB SERVER ALIGNMENT PAGE EXAMPLE 128

APPENDIX D PYTHON IMPLEMENTATION OF TOP K ALGORITHM 129

ix

LIST OF FIGURES

Figure Page

2.1 E. coli 5S rRNA 3D structure. 13

2.2 E. coli 5S rRNA secondary structure. 15

2.3 E. coli 5S ribosomal RNA sequence. 16

2.4 Dot bracket notation for helices 4 and 5 from the 5S region of the E. coli ribosome. 17

2.5 Sarcin-ricin internal loop from rat 28S ribosomal RNA. 19

2.6 Kink-turn from the Haloarcula marismortui ribosome. 20

2.7 GNRA hairpin loop motif from the 60S ribosomal subunit of T. thermophila. 21

2.8 Adenine and uracil bases with Watson-Crick, Hoogsteen, and sugar edges labeled. . 21

2.9 AU Watson-Crick basepairs in cis and trans. 22

4.1 Linear arc diagram for 5S region of the E. coli ribosome. 39

4.2 Basepair diagram for a sarcin-ricin internal loop. 40

4.3 Basepair diagram for a c-loop internal loop. 41

4.4 Basepair diagram for sarcin-ricin internal loop with SCFG node overlays. 47

4.5 Examples of isosteric and non-isosteric substitutions for a AG tWH basepair. 54

4.6 Inversion function to translate IDI scores into probabilities. 56

4.7 Basepair diagram for motif group IL 16415.2 . 64

6.1 The acceptance region for IL 95652.3. 77

6.2 The acceptance region for IL 73276.5. 78

7.1 ROCP graphs for GC and UU cWW basepairs. 96

7.2 ROCP graph for IL 03282.1. 97

7.3 ROCP graph for IL 21077.1. 98

7.4 PROCP graph comparing UU cWW rank ordering against GC cWW distribution. . 99

7.5 PROCP graphs comparing IL 24982.5 and IL 05723.1. 100

7.6 PROCP graphs comparing IL 23639.1 and IL 05723.1. 101

x
7.7 PROCP graphs for 13 nucleotide sarcin-ricin motifs. 102

7.8 PROCP graphs for the 14 nucleotide sarcin-ricin motifs. 104

7.9 PROCP graphs for the 17 nucleotide sarcin-ricin motifs. 105

7.10 PROCP graphs for sarcin-ricin motifs of different sizes. 106

7.11 PROCP graphs for IL 03282.1 and IL 53323.1 with distance measures shown. . . . 110

7.12 PROCP graphs for IL 17682.1 and IL 54954.1 with observed maximum distance. . 111

7.13 PROCP graphs for IL 46306.1 and IL 52958.1 with observed maximum distance. . 112

7.14 Heatmap using mutual ROCP dissimilarity for 5x5 internal loops. 114

7.15 Heatmap using mutual ROCP dissimilarity for sarcin-ricin internal loops. 117

xi

LIST OF TABLES

Table Page

4.1 IDI matrix for a AG tWH basepair. 55

4.2 Matrix of inverted isostericity scores for an AG tWH basepair. 56

4.3 Table of substitution probabilities for a GU cSH basepair. 62

4.4 Table of substitution probabilities for a UA tWH basepair. 62

4.5 Table of product of probabilities for a basetriple. 63

6.1 Transition probabilities for random sequences for JAR3D’s false positive control. . 74

6.2 Table showing select results for the sequence recognition problem. 82

6.3 Table summarizing recognition problem performance on alignment extracts. 83

6.4 Table summarizing select results for the sequence matching problem. 84

6.5 Table summarizing recognition problem performance on alignment extracts. 85

6.6 Table summarizing comparison of JAR3D to RMDetect. 87

7.1 Table showing the top 50 sequences from the JAR3D model for IL 03282.1. 93

1

CHAPTER 1 INTRODUCTION AND OVERVIEW

1.1 Overview of the modeling problem

This dissertation focuses on the study of RNA molecules and certain statistical problems that

arise from the relationship between the nucleotide sequence of an RNA, typically represented by

a string of A, C, G, and U letters, and the 3D structure of the molecule. Because all life on

earth evolved from a common ancestor, homologous RNA molecules (molecules with a common

ancestor, the same 3D structure, and that perform the same cellular functions) can be found in

different organisms. However, mistakes made in the copying of genomic sequences have resulted

in changes in the sequences of these molecules. This can be viewed as a rejection method for

generating random variables, i.e., mutations generate new RNA sequences, and if they cannot form

a 3D structure that allows the molecule to function, the organism will die and the new sequence is

rejected.

Structured RNA molecules fold back on themselves to form helices and loops. RNA helices

are primarily and almost exclusively composed of Watson-Crick basepairs, and so the statistical

variability of their sequences is relatively easy to model. See Section 2.3 and Section 3.1 for more

information on RNA helices and the prediction of them from sequence. The loops occur between

and at the ends of helices. They come in a wide variety of geometries with various non-Watson-

Crick basepairs and other interactions. These loops have been found to be recurrent, meaning that

they are found in different RNA molecules with the same 3D geometry but often with different

sequences. The sequences of a given loop can mutate from one generation to the next but need

to maintain their 3D structure and are thus under selection pressure as explained previously. The

particular focus of this dissertation is on modeling the loop sequences that can form a given loop

3D structure.

Our approach is to make probabilistic models, based on RNA 3D structures, that describe which

sequences are likely to form the same 3D structure, which may occur in different molecules and

2
different organisms. These structures and the parameters for these models are based on previously

studied RNA 3D structures. The source of our RNA 3D loop structures is the RNA 3D Motif

Atlas (Petrov, Zirbel, and Leontis, 2013), which collects and clusters RNA 3D loop instances from

RNA-containing 3D structures in the Protein Data Bank (Berman, Westbrook, Feng, Gilliland,

Bhat, Weissig, Shindyalov, and Bourne, 2000).

1.2 Why model RNA loop sequence variability?

New RNA molecules are being discovered frequently (Kashi, Henderson, Bonetti, and Carn-

inci, 2016). For many of these molecules, only sequence level data will be available, even though

their function will likely depend on the 3D structure that they form. Because of this, prediction of

an RNA molecule’s 3D structure from its sequence is an important problem in the study of RNA.

Predicting the geometry of loops is an important step on the way to predicting the full 3D geom-

etry of an RNA molecule from its sequence. The process of predicting RNA 3D structure from

sequence, and existing approaches to the problem, is explained in more detail in Chapter 3. Our

models for RNA loop sequence variability allow us to address several problems in the study of

RNA. Our work addresses three problems in particular.

The first is an alignment problem; that is, given an RNA loop sequence and a 3D loop structure,

find the most likely way that the sequence forms the 3D structure; this is called an alignment of

the sequence to the 3D structure. By aligning multiple sequences to the same 3D structure we

can also create sequence to sequence alignments. Sequence to sequence alignments, also called

multiple sequence alignments, have a long history in the study of biological molecules and have

many uses, such as giving insights into genetic diseases. Current techniques for creating RNA

multiple sequence alignments often perform poorly in loop regions, so a tool that can improve

multiple sequence alignments in loop regions is desirable.

The second problem is a recognition or acceptance problem; in which we wish to recognize

novel sequences that can form a particular known loop 3D structure. Several other tools that model

RNA sequence variability are designed to address this problem. The typical use case here is to scan

genomes for instances of an RNA loop structure or other small RNA substructure. JAR3D is not

3
designed to scan genomes, but it can be used to accept or reject a sequence or a set of sequences

as candidates to form a particular loop geometry.

Finally, the third and most difficult problem that we address is a matching problem; given a

sequence or a group of RNA loop sequences, match them to which, if any, known 3D structure or

structures they can form. In our work, we only match to RNA loop structures in the RNA 3D Motif

Atlas, but the RNA 3D Motif Atlas is constantly adding new structures, so the number of structures

that we can match to will grow over time. The matching problem is not really addressed by other

available tools. Other tools either are made to scan genomes, and only consider one geometry at a

time, or to do de-novo prediction through fragment assembly and molecular dynamics, and what

is gained in the ability to predict new geometries is lost in accuracy and run time. This means our

models and methods offer something new and unique to the field of RNA 3D structure prediction.

1.3 Challenges to overcome in modeling RNA loop sequence variability

There are a number of issues that make modeling the sequence variability of RNA 3D loops

difficult, many of which arise from the data we have to work with. There are many RNA containing

3D structures in the PDB, and the number available is constantly growing. Many loop geometries

have only been observed once in 3D structures, with many more that have been observed less than

10 times. This is not enough to completely model the numerous possible sequence variants through

traditional statistical methods. Thus, the first difficulty with modeling the sequence variability of

RNA loops is that we have few 3D instances of these loops, and the instances that we do have do

not show much of the full range of possible sequence variability.

One possible source of additional data for modeling sequence variability is sequence align-

ments: data structures in which sequences of the same RNA molecule from many organisms are

mapped to (aligned to) a sequence that has been observed in 3D. There are some issues with using

sequence alignments to parameterize our models, however. Firstly, sequence alignments are often

unreliable, especially in loop regions. Secondly, even very reliable hand curated alignments are

for a particular location in a particular RNA molecule. This will make models parameterized from

alignments biased towards sequences that work for that particular instance of the loop, which may

4
have constraints particular to the context in which it occurs. We want to be able to detect new se-

quences that can form the same 3D geometry in novel settings, for example, in a newly-discovered

RNA, so we have decided not to use sequence alignments to parameterize models. Note, however,

that in the future, our models can be used to improve the multiple sequence alignments and remove

sequences which are unlikely to form the 3D structure in question, and then one could use these

improved alignments to build better models for sequence variability.

A problem that compounds the difficulty of the relatively small amount of data available is

the sheer number of loop structures to be modeled. We used Motif Atlas release 1.13 for our re-

search, which has 278 internal loop groups and 253 hairpin loop groups. These are large numbers,

making it impossible to construct each model by hand, or even to validate each model by hand.

Furthermore, the number of motif groups will only grow over time as new RNA 3D structures are

solved. Because of this, it is not feasible to have a modeling system that requires the models to be

parameterized by hand. An automated pipeline is needed if we want our collection of models to be

as up to date and as useful as possible.

The number of 3D structures to be modeled limits our ability to make use of other popular

methods for the prediction of molecular 3D structures, such as molecular dynamics and physics

based approaches. Imagine taking an input sequence and simulating its ability to form a particular

geometry. Each molecular dynamics or physics based calculation would likely take hours, or at

least a number of minutes (Kruse, Havrila, and Sponer, 2014). Multiply this by the over 200

structures that would need to be tried, and it will easily take a number of hours or even days to get

results on what 3D structures the sequence can form. We want results to be available in a matter of

seconds, so these other methods are simply too slow and computationally intensive to be applied

to such a broad problem in a reasonable time frame.

Many of the RNA loop structures that we want to model have complex networks of interactions

and dependencies. RNA helices have comparatively simple stacked interactions that are much

easier to model. To make computationally efficient models that take into account the complex

networks of interactions that can be found in RNA loops we developed new techniques, which are

5
discussed in Chapter 4.

There is also a considerable issue with false positives for the matching problem. With over

250 motif groups for both hairpin and internal loops, a system with a low threshold to match a

sequence to a given motif group can easily generate false positive matches when one sequence is

scored against all motif groups. In addition, it is possible that a new RNA loop sequence has a 3D

structure that has not been seen before, and has no matching group. Finally, it is possible that a

single RNA loop sequence can form multiple 3D structures depending on context, so the sequence

to 3D structure matching problem may also have multiple correct answers.

1.4 Nature of the models

The models we make for the sequence variability of RNA internal and hairpin loops are proba-

bilistic models that are based on the sequence, geometry, and interactions found in the 3D structures

in each motif group. The models are stochastic context-free grammars (SCFGs) that make use of

Markov random fields (MRFs) when necessary. SCFGs work well for modeling nested interac-

tions, which allows for most RNA loops to be modeled, due to the way RNA molecules fold back

on themselves, which creates stacks of nested interactions. RNA and RNA structures are discussed

in depth in Chapter 2. Both the generation and application of pure SCFG models are fast and ef-

ficient. A significant number of RNA loops have more complex networks of interactions, and we

can model these loops by inserting MRFs into the SCFG models for these groups. Models using

MRFs allow us to model many loops which we could not otherwise model.

The SCFG/MRF form of these models was first outlined in Michael Sarver’s dissertation

(Sarver, 2006). Sarver described the basic form of the SCFG/MRF models and discussed how

such models could be used to create multiple sequence alignments based on the 3D structure of

a complete RNA molecule. He also outlined a MLE method for parameterizing the models using

multiple sequence alignments, assuming that very high quality alignments would exist.

Here, we envision a new use case for these models, modeling the sequence variability of in-

dividual RNA 3D loops. Because high-quality alignment data is not generally available for loop

regions, we base the parameterization on the 3D geometry of the loop, the various RNA-RNA

6
interactions in the loop, and known data on the sequence variability associated with those interac-

tions. The majority of my work centers around new methods for parameterizing these SCFG/MRF

models for modeling sequence variability of RNA loop geometry. The underlying form of the

models has also been updated relative to Michael Sarver’s models in some cases, to better reflect

our current understanding of RNA structures and the needs of modeling RNA 3D geometries.

The parameters for these models are assigned using a method which uses a strong prior based

on the geometry of the motif and observations of all RNA 3D structures. Sequences from 3D

structures alone cannot be the only basis for assigning probabilities due to the low number of

3D instances available for the majority of the motif groups. Using the geometry of the motif to

assign a strong prior allows us to make models with only a single instance from 3D structures.

We use geometry through a concept called isostericity, which is explained in Section 4.2. This

“prior” parameterization is based on real and extensive studies of the geometries of RNA molecules

in solved RNA 3D structures, and can make effective models even with only one observed 3D

instance. After this geometry-based prior is calculated, it is then updated based on the specific

sequences observed in 3D structures. The more observed 3D instances a group has, the more the

final combined parameters are weighted towards observed data.

SCFGs have been used before in the study of RNA, specifically for generating sequence align-

ments based on the 2D structure of RNA molecules (Rivas and Eddy, 2001; Pedersen, Bejerano,

Siepel, Rosenbloom, Lindblad-Toh, Lander, Kent, Miller, and Haussler, 2006). RNA 2D structures

indicate which nucleotides are involved in helices. More information on RNA 2D structures can

be found in Chapter 2. Infernal (Nawrocki, Kolbe, and Eddy, 2009) is a tool for modeling RNA

2D structures and searching genomic databases for sequences that likely encode homologous RNA

structures. Infernal uses guide tree SCFGs that are very similar to those used in this work. SCFGs

and Infernal are explained further in Section 3.4 and Section 3.5.

MRFs have not previously been used in the study of RNA, but Bayesian networks have been

used to overcome the problem of complex interaction networks in a similar way by a tool called

RMDetect (Cruz and Westhof, 2011). RMDetect trains Bayesian network models on heavily cu-

7
rated sequence alignments of certain RNA loops, with the intent to search for new instances of

those loops in other RNA sequence alignments that are not tied to a full 3D structure, as well as

improve RNA 2D structures and assist in the assembly of full RNA 3D models. A comparison of

results from our method to RMDetect is given in Section 6.4.

1.5 Results

The main results of the dissertation include a new way of modeling sequence variability of RNA

loops based on pairwise interactions between nucleotides seen in 3D structures, improvements in

the SCFG/MRF formalism introduced by Sarver (Sarver, 2006), new criteria for the recognition

problem which control the false positive rate, some first results on the matching problem described

above, and new techniques for describing the overlap between the probabilistic models in sequence

space. In addition, solutions to the alignment, recognition, and matching problems have been

implemented in a software package which is available for download from Github and which is also

available as a web server which has many helpful features for displaying the output.

We have developed a software suite that implements our method for modeling RNA loop se-

quence variability, Java-based Alignment of RNA using 3D structure, or JAR3D. One part of the

system makes new JAR3D models through an automated process, based on the motif groups in a

release of the RNA 3D Motif Atlas. These models take into account observed sequence variability

and geometric constraints from basepairing and base-backbone interactions. The second part of

the system scores sequences against one or more JAR3D models, optionally making an alignment

to a JAR3D model.

Two papers have been published on the basis of this work. The first, for which I was one of six

authors, outlines how the SCFG/MRF models are made, describes the software package JAR3D,

and tells how JAR3D can be used for identifying new variants of known motifs (Zirbel, Roll,

Sweeney, Petrov, Pirrung, and Leontis, 2015). This was the culmination of over 10 years of work

in the BGSU RNA group. The second paper, for which I was the lead author, is about the JAR3D

Web Server tool that I led the development of (Roll, Zirbel, Sweeney, Petrov, and Leontis, 2016),

to make JAR3D more accessible to those studying RNA. The web server allows a user to input one

8
or more RNA loop sequences, see the best-matching motif groups, know whether the sequence is

recognized by each motif group or not, and optionally view the alignment of the sequence(s) to the

motif group.

I will now highlight results in which I played a significant role. First and foremost, I worked on

the modeling of RNA sequence variability based on instances and interactions observed in the RNA

3D Motif Atlas. I improved how we convert the differences in basepair geometries into substitution

probabilities, specifically the function that we use to invert isodiscrepancy scores. I observed that

deletion probabilities for the nodes in our models where not high enough, which was creating

too much overlap in the models, and made sure they were appropriately increased. I designed

and implemented modeling procedures to make our parameters more data driven, when the data

is available. This work shows up in how we set basepair substitution matrices when we have

multiple instances of a loop, and how we parameterize variable length insertions. I recognized the

need for hairpin nodes to implement Markov random fields, as well as the need for Markov random

fields to be normalized so that probability scores can be compared across models. I also worked

on using independence to make calculating the normalization constant for large Markov random

fields feasible. These updates to our modeling methodology for RNA loop sequence variability are

outlined in Chapter 4.

I also made major contributions to the false positive control we use for JAR3D. I figured out

how to properly generate distractor sequences to use in our false positive control studies; these

sequences mimic RNA loop sequences without necessarily fitting a particular 3D geometry. I also

suggested combining information from alignment score deficit and edit distance, which led to our

creation of the acceptance region and cutoff score. These contributions and methods are discussed

in more detail Chapter 6.

I also did much of the work in converting code that was previously written for full RNA se-

quences to a form that works for RNA loops. This includes Java code for JAR3D that Meg Pirrung

developed and Matlab code written primarily by Craig Zirbel and Michael Sarver. This code now

builds models based on Motif Atlas releases automatically as part of a pipeline, so the models

9
are updated based on the latest RNA 3D structures. As of the writing of this dissertation, there are

JAR3D models available for 20 releases of the Motif Atlas, with the latest, 3.2, taking advantage of

a major update to the Motif Atlas. The latest release has nearly 300 internal loops and 300 hairpin

loops. The source code for JAR3D is posted online through Github and is easily accessible, see

https://github.com/BGSU-RNA/JAR3D. Many updates to the JAR3D code were needed to make

this possible. I also added functionality to the Java code that parses sequences against JAR3D

models to check internal loops with both strand orientations, functionality which is needed when

parsing loops by themselves, but wasn’t needed for previous uses of JAR3D.

JAR3D can be used through a command line tool and web server, both of which I took a primary

role in developing. The web server has a number of user friendly features, such as the ability to

parse a variety of input formats, select the release of the Motif Atlas to use, and view 3D models

of instances of the motifs. A very significant feature is the ability to align input sequences to a

motif group of interest, and to see exactly where the input sequences differ from the most similar

3D sequences. I also developed a command line Java jar file, which can be run locally and thus is

more suitable for large scale analysis. The command line tool offers flexibility and fast, efficient

processing of larger alignments and batch jobs.

I also developed tools to help us understand the JAR3D models from a probabilistic standpoint.

This work is discussed in Chapter 7. JAR3D models can be viewed as probability distributions

over the space of all possible sequences. We wanted to be able to compare JAR3D models based

on these probability distributions to be able to identify those which are similar in sequence space

but might not have similar basepairing patterns. JAR3D models assign probabilities to so many

sequences that existing methods for comparing distributions were not feasible. I have developed a

dissimilarity measure and a graphical comparison tool based on rank ordering of probabilities that

allow us to do meaningful comparisons between our SCFG/MRF distributions on sequence space

without the need to consider all sequences that the groups can produce.

In addition, preliminary studies have been done on accuracy of matching novel sequences to

the correct motif group. These indicate that JAR3D can accurately match novel sequences to

10
the correct motif group, and they help to compare different approaches to the matching problem.

These preliminary studies are discussed in Section 6.3. A more comprehensive review of JAR3D’s

performance on the matching problem is planned for a future paper.

Finally and most importantly, JAR3D is being used by scientists to help in their study of RNA.

We frequently help graduate students and other researchers who want to use JAR3D for a variety

of applications, and some groups we work closely with have already published results. Theis,

Gorodkin, Zirbel, and Hofacker have used JAR3D to search genomes for motifs (Theis, Zirbel,

Zu Siederdissen, Anthon, Hofacker, Nielsen, and Gorodkin, 2015). Akkuratov et al. used JAR3D

in their study of plant orthologous intron (Akkuratov, Walters, Saha-Mandal, Khandekar, Craw-

ford, Zirbel, Leisner, Prakash, Fedorova, and Fedorov, 2014). Additional work is under way with

other research groups.

1.6 Overview of the dissertation

Chapter 1 gives an introduction to RNA and RNA 3D loops, the problems related to the study

of RNA 3D loops that we set out to address, and the tools we developed to do so. It also provides

this self-referential overview of the dissertation. Chapter 2 gives a more detailed introduction

into RNA primary, secondary, and 3D structures, as well as an introduction to other important

concepts such as RNA basepairs and isostericity. Chapter 3 gives a review of the literature on both

RNA 3D structure prediction and the use of SCFGs to model RNA sequence variability, as well as

some necessary background information for those topics. Chapter 4 discusses our methodology for

modeling RNA sequence variability with SCFG/MRF models. Chapter 5 introduces the JAR3D

software package we made that implements the SCFG/MRF methodology. Chapter 6 discusses

how we handle false positive control in JAR3D, and also explains some validation studies that we

have done. Chapter 7 discusses the idea of RNA sequence space and tools I have developed to

study how JAR3D models cover and overlap one another in sequence space. Finally, Chapter 8

gives conclusions and looks at possible follow-up and future work.

11

CHAPTER 2 RNA PRIMARY, SECONDARY, AND 3D STRUCTURE

2.1 An introduction to RNA

RNA is an acronym for ribonucleic acid, a nucleic acid molecule that is involved in a variety

of cellular functions. Many RNA molecules are important in forming proteins, such as messenger

RNA or mRNA, which carries protein information. Other RNA molecules besides mRNA are

often called non-coding RNA. Some of these are also important in the forming of proteins, such

as ribosomal RNA or rRNA, which forms ribosomes which reads mRNA and forms proteins, and

transport RNA or tRNA, which brings the amino acids that form proteins to the ribosome. In

addition to these well known and studied RNAs there are a wide variety of other non-coding RNAs

that have been discovered in recent years, and that continue to be discovered.

RNA molecules are long chained molecules that are made of of smaller, repeated parts called

nucleotides. RNA nucleotides each have a common backbone and one of four bases, adenine,

cytosine, guanine, and uracil, typically denoted by A, C, G, and U, respectively. It is similar to

DNA, which is also made up of adenine, cytosine and guanine, but DNA has thymine instead of

uracil. DNA is always produced to be double stranded, and both strands are made together so that

each nucleotide is paired in a helix. On the other hand, RNA is copied from DNA and is single

stranded and can fold back upon itself to form helices similar to those in DNA, as well as other

structures. The structure or structures an RNA molecule can form is dependent on the sequence of

A, C, G, and U bases that make up the molecule.

The International Union of Pure and Applied Chemistry, or IUPAC, has a set of codes are that

are used to represent nucleotides, or sets of nucleotides. All IUPAC codes are a single capital letter.

As discussed above, there are the basic A, C, G, and U codes which represent the four RNA bases.

The other codes represent sets of bases. For example N is short for nucleotide and can be any of

the four bases, and Y is short for Pyrimidine and can be C or U.

The three dimensional structures that many RNA molecules make when they fold back upon

12
themselves are integral to the functions that the RNAs perform in cells. Mistakes in the process

through which DNA is passed on through reproduction can lead to mutations that change the

sequence of RNA bases in a molecule for the offspring and subsequent generations. It is possible,

however, for the same 3D structure to form from different sequences of RNA, and for the molecule

to still perform its function even after mutations have occurred. However, some sequence changes

will alter the structure of the RNA in a way that will not be function, and are not observed. Thus, we

see sequence variability in a given RNA molecule from one organism to the next, but the possible

variability is restrained.

2.2 RNA 3D structure determination

As previously discussed, the function of RNA molecules is often dependent on the 3D struc-

ture of the molecule after it folds back on itself. This means that the study of RNA molecules

often involves determining the 3D structure of them experimentally. It is, however, difficult and

expensive to experimentally determine the 3D structure of an RNA. The 3D structure for the 5S

molecule that helps form E. coli’s ribosome is show below in Figure 2.1. The structure has been

color coded to help with interpretation of the model. The molecules that form the backbone are in

grey, and those forming Watson-crick double helices are colored in orange, red, green, blue, and

brown. The molecules in black are those in the loop regions.

Because RNA molecules are very, very small, determining their 3D structure experimentally

is not a simple task. The 3D structure of 5S ribosomal RNA pictured above in Figure 2.1 was

discovered through X-ray crystallography. The 2009 Nobel Prize in Chemistry was awarded to

Thomas Steitz, Ada Yonath and Venkatraman Ramakrishnan for work done solving the structure of

the ribosome with X-ray crystallography in the late 1990s and early 2000s (Samhita and Varshney,

2010). X-ray crystallography is a process in which many copies of a RNA molecule are formed

into a crystal. The crystal is then bombarded with X-rays, which causes the X-rays to diffract in

different directions. The pattern in which the X-rays diffract can then be captured and analyzed to

“solve” for the 3D structure of the RNA molecule. Unfortunately, crystallizing RNA molecules is

both difficult and expensive, and is not feasible for some RNA molecules.

13

Figure 2.1 E. coli 5S rRNA 3D structure.

Another technique used to analyze the 3D structure of RNA molecules is nuclear magnetic

resonance, or NMR, spectroscopy. NMR spectroscopy uses electromagnetic radiation to create a

shift in the spin and energy level on the nuclei of the atoms in a molecule. These shifts can be

measured and used to solve for a structure. NMR is fairly effective and affordable compared to

X-ray crystallography, but unfortunately is only suitable for small RNAs of 100 nucleotides or less.

There are also newer methods being developed to solve the structures of RNAs and other

molecules, such as cryo-EM (cryo electron microscopy), which involves analyzing molecules that

have been frozen in a solution instead of crystallized (Bai, McMullan, and Scheres, 2015). This

promises to reduce the cost and increase the rate of solving RNA 3D structures, but even then it is

simply not feasible to for the structures for all of the vast number of RNAs that are being sequenced

to be solved for. Because of this, a very important problem in the study of RNA is prediction of

RNA 3D structure from sequence.

14

2.3 RNA secondary structure, Watson-Crick helices, and isostericity

When an RNA molecule folds back on itself to form a 3D structure, the primary substructures

that will make up the resulting structured RNA is Watson-Crick helices. Watson-Crick helices

are made up of consecutive Watson-Crick basepairs. These Watson-Crick basepairs, when seen

in helices, are typically between an A and a U or a C and a G, and these are combinations are

called canonical Watson-Crick basepairs. However, helices may also occasionally contain Watson-

Crick pairs with G and a U. More on basepairs can be found in Section 2.6. In general, the

order nucleotides appear in a basepair matters, so there are four canonical Watson-Crick base

combinations, AU, CG, GC, and UA. Both the GU and the UG combinations also appear in helices,

but less frequently and are again not considered canonical combinations. Watson-Crick basepairs

are called cWW basepairs for short. More on these 3 letter abbreviations, and other types of RNA

basepairs, is in Section 2.6.

The four canonical Watson-Crick base combinations can be used interchangeably in helices,

meaning that if an AU basepair mutates into a CG combination, it would not change the overall

structure of the helix or the larger RNA. This is because the four canonical are very geometri-

cally similar. We refer to this similarity as isostericity, and it specifically measures the change

the backbone of the RNA molecule would have to make to accommodate a change in the base

combination being used to make a basepair. For changes between the four canonical Watson-Crick

base combinations, the change in the backbone is miniscule, so we refer to these base combina-

tions as isosteric. To change from a canonical Watson-Crick base combination, such as CG, to a

UG pair requires the backbone to shift a more noticeable but still fairly small amount, so we refer

to the CG and UG Watson-Crick basepairs as near-isosteric. Interestingly, UG and GU Watson-

Crick basepairs differ from the canonical basepairs in different ways, so switch from a UG to a

GU Watson-Crick base combination creates a substantial shift in the backbone of the RNA, so we

would refer to UG and GU Watson-Crick base combinations as non-isosteric. It is through isos-

tericity that we can understand the sequence variability seen in Watson-Crick helices. For example,

if we observe a GC basepair, we would put high probability on seeing GC, CG, AU, and UA in the

15
same position in homologous molecules, some probability on GU and UG, and low probabilities

on other possible base combinations.

From an RNA 3D structure, the nucleotides involved in creating Watson-Crick basepairs and

Watson-Crick helices can be identified. This information can be used to to create a diagram which

shows the Watson-Crick helices in the model and which nucleotides are forming Watson-Crick

basepairs to form those helices. These diagrams are called RNA 2D diagrams, because they are

drawn in a simple 2 dimensional manner and provide a level of information between an RNA

sequence and its full 3D structure. A 2D structure diagram for the 5S region of E. coli’s ribosome

is shown below in Figure 2.2. There are five helices in the 5S chain, and they are shown in the

diagram and labeled 1-5. The sequence for the 5S region of the E. coli ribosome is shown below

in Figure 2.3. RNA sequences are typically represented by a string of the letters A, C, G, and U.

Figure 2.2 E. coli 5S rRNA secondary structure. Note the sequence runs counter clockwise, starting
with UGCC in the upper right, and corresponds to the sequence in Fig seq example below. This is
called 5’ to 3’ order, and is the usual way of representing RNA sequences. Obtained from RFAM
(Griffiths-Jones et al., 2003).

In the 2D structure above in Figure 2.2, Watson-crick basepairs are indicated by a dot between

16
UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAU
GCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGU
GUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

Figure 2.3 E. coli 5S ribosomal RNA sequence. Obtained from RFAM (Griffiths-Jones et al.,
2003).

the bases. In other 2D structure diagrams, the basepairs might be indicated with a dash instead,

making helices look like ladders. Bases not involved in a helix are typically drawn in circular loops

in 2D diagrams. These RNA “loops” are the main focus of our research, and are discussed in more

detail in Section 2.5.

Bases can bulge out of a helix without changing the overall structure of the helix. This occurs

in helices 2 and 3 in Figure 2.2 above. In helix 2 a single A is bulging out, and in helix 3 two As

are bulging out. Because these bulged bases do not create a change in the structure of the rest of

the helix, we do not consider them as a feature that breaks a helix into two seperate helices, like the

loop region between helix 2 and 3. These bulges can happen in many places in RNA molecules, and

are another aspect of sequence variability that we understand and can model. Later, in Chapter 4,

we will discuss how we build the possibility for similar bulged bases in out models for non-helical

regions of RNA.

When working with RNAs, we may want to refer the sequence of just a substructure within

the RNA, such as a helix. For example, we might want to talk about the sequence of helix 2 in

Figure 2.2 above. The sequence starts with UGCC at the top and runs counter clockwise, so the

sequence of helix 4 would be written as GGAUG ... UAUCC. In the BGSU RNA group, we use a *

symbol to denote a break in a sequence when talking about RNA sub-structures, so we would write

the sequence GGAUG*UAUCC. Note that we can see the canonical basepairing in the sequence.

The basepairs go from the outermost bases to the innermost, with the outermost G matching with

the outermost C, then the next G with the next C, and so on. The innermost basepair is a GU

combination, which is not uncommonly seen in helices.

RNA secondary structures can also be expressed in what is called dot-bracket notation. This is

a way of notating which nucleotides in a sequence are making Watson-Crick basepairs in an RNA

17
using just text. A line of text is written above the sequence, in a fixed width font, with opening and

closing brackets or parentheses indicating nucleotides that are making a Watson-Crick basepair

as part of a helix, and a dot symbol or period over bases which are not. As an example, the

dot bracket notation for helices 4 and 5 of the E. coli 5S structure shown in Figure 2.2 is shown

below in Figure 2.4. Note that the parentheses or brackets also indicate which other base a base is

making the basepair with, so the first G is making a Watson-Crick basepair with the last C, as the

parentheses above them are paired together.

(((((....((((((((...))))))))....)))))
GGAUGAGAGCGUACCCCUCUGGGGUGUGAUGGUAGCC

Figure 2.4 Dot bracket notation for helices 4 and 5 from the 5S region of the E. coli ribosome.
Parentheses indicate bases that are making Watson-Crick basepairs, and periods indicate those that
are not.

2.4 RNA alignments

It is possible that when working with RNA sequences one will have access to multiple se-

quences, from different organisms, thought to share a common ancestor (we say they are homolo-

gous) and fold into the same structure. For many structure prediction applications, RNA sequences

need to be aligned before they can be used. An alignment of RNA sequences is a data structure

that somehow shows which nucleotides in the sequence are in the same place performing the same

function in the 3D structure of an RNA. Making alignments is not a simple task, because evolu-

tion may cause insertions or deletions in the sequence of the RNA as different organisms evolve,

resulting in sequences of different lengths.

The most common way of making alignments is by arranging RNA sequences into columns,

with the columns corresponding to a specific location and function within the overall structure of

the RNA. For example, the first and last columns of the alignment might be positions in an opening

Watson-Crick basepair in a helix. Other alignments assign ranges of nucleotides to structural

features instead of each individual base to a column. For example, nucleotides 1-5 and 96-100

might be assigned to helix 1 for sequence 1, and nucleotides 1-6 and 97-102 might be assigned

to the same helix 1 in sequence 2. This allows for structural features to vary in size in a way that

18
is difficult to do well in column-based alignment, but these feature-based alignments are hard to

make and require in depth knowledge of the underlying RNA structure.

2.5 RNA loops

The primary focus of this dissertation is the prediction of the 3D geometries of RNA internal

and hairpin loops from sequence. This is an important step in the process of predicting RNA 3D

structures from RNA sequences. Internal loops and hairpin loops occur between two RNA helices

or at the end of helices, respectively. Many RNAs also contain junction loops, where three or

more helices meet, although JAR3D does not yet work with junction loops. There is a three-way

junction in Figure 2.2 above in Section 2.3.

It is useful when studying RNA internal loops to have a format to express the sequence of the

internal loop by itself without the other nucleotides in the RNA. To do this we need to indicate

where the “break” in the internal loop is, where the first strand ends and the second begins. We

use the * character to indicate this break in the strands. We also include the last cWW base

pair on the helices, the flanking basepairs, with the internal loops. This is because sometimes

the flanking nucleotides make other interactions with nucleotides in the internal loops, creating

dependencies between them and the interior nucleotides. So, if an internal loop has a sequence

written CAAGU*ACCUG, we know that the first nucleotide, a C, is making a cWW basepair with

the last nucleotide, a G. The fifth and sixth nucleotides, a U and an A, are also making a cWW

basepair, and are separated by the * to indicate that they are on different strands. The sequence is

listed in the usual 5’ to 3’ order used for RNA.

RNA loops are much more varied in their structure than helices. Sometimes loop structures may

even be unique to the molecule and location that they occur in. However, many loop structures are

modular, and occur both in different molecules and multiple times within the same molecule. Some

of these recurrent loop structural motifs have been observed in many different RNA molecules and

have been well studied.

One of the most studied internal loop structures is the sarcin-ricin internal loop motif. Sarcin-

ricin internal loops are very stable and provide binding sites for proteins and other RNA molecules.

19
Sarcin-ricin internal loops have been observed in many different RNA molecules, including several

in the ribosome, which have received the most study. A sarcin-ricin internal loop from the 28S

ribosomal RNA of a rat is show below in Figure 2.5. It was taken from PDB structure 1Q96,

and is listed in the RNA 3D Motif Atlas as loop IL 1Q96 001 in motif group IL 85647.3, which

can be viewed at http://rna.bgsu.edu/rna3dhub/motif/view/IL_85647.3. The

sequence of the loop is CUCAGUAU*AGAACCG, and the nucleotides are color coded. The first

strand runs from the C in the lower left to the U in the upper right, and the second strand runs G

in the lower right to the A in the upper left. The G in the middle of the first strand, seen bulging

out of the left side, is the binding site. The G and the following U are also side by side, instead of

stacked on top of each other on different levels.

Figure 2.5 Sarcin-ricin internal loop from rat 28S ribosomal RNA. This loop is a member of RNA
3D Motif Atlas group IL 85647.3.

Another well known internal loop structural motif is the kink-turn. As the name implies, a kink-

turn internal loop creates a tight turn between two helices. There are a variety of different kink-turn

structures, and many kink-turn structures are repeated in different molecules. A kink-turn from the

large ribosomal subunit of Haloarcula marismortui is shown below in Figure 2.6. It was taken from

PDB structure 1S72. In the RNA 3D Motif Atlas, it has the loop ID IL 1S72 048, and is a member

of motif group IL 65553.8, which can be viewed at http://rna.bgsu.edu/rna3dhub/

motif/view/IL_65553.8. Its sequence is CGAGAAC*GGGAG. The first flanking basepair

is at the top of the figure, facing up, the second is in the lower right, facing to the right. The

kink-turn creates an approximately 90 degree turn between the helices that flank it.

http://rna.bgsu.edu/rna3dhub/motif/view/IL_85647.3
http://rna.bgsu.edu/rna3dhub/motif/view/IL_65553.8
http://rna.bgsu.edu/rna3dhub/motif/view/IL_65553.8

20

Figure 2.6 Kink-turn from the Haloarcula marismortui ribosome. It is a member of RNA 3D Motif
Atlas group IL 65553.8.

A well known hairpin loop is the GNRA motif. It is named after the sequence of nucleotides

after the last Watson-Crick basepair. The N stands for nucleotide, and can be any of the four

bases, and the R stands for puRine, which means A or G. Typical sequences seen in a GNRA

loop would then be GAGA, GGGA, or GAAA. Full sequence variability can be viewed on the

motif group’s webpage at http://rna.bgsu.edu/rna3dhub/motif/view/HL 67042.12#variants. GNRA

hairpins are quite common, so common, in fact, that HL 67042.12 is the largest hairpin loop

group in the RNA 3D Motif Atlas release 1.13. Like sarcin-ricin internal loops serve as binding

sites for other molecules, as well as long range interactions within a molecule. A GNRA loop

from the 60S ribosomal subunit of T. thermophila is shown below in Figure 2.7, taken from PDB

structure 4A1B. In the RNA 3D Motif Atlas, it has the loop ID HL 4A1B 011, and is a member

of motif group HL 67042.12, which can be viewed at http://rna.bgsu.edu/rna3dhub/

motif/view/HL_67042.12. Its sequence is UGAAAA. Note we include the flanking UA

cWW basepair at the beginning and end of the sequence. In this instance both the N and the R

are As. The NRA part of the loop is clearly stacked over the flanking basepair, which is another

characteristic of the motif.

These are just a small sampling of the known loop structures. The 3D structures of new RNAs

are rapidly being solved, and with them come new RNA loop structures. Some of these will be the

same as existing RNA loops, but many will be new structures.

http://rna.bgsu.edu/rna3dhub/motif/view/HL_67042.12
http://rna.bgsu.edu/rna3dhub/motif/view/HL_67042.12

21

Figure 2.7 GNRA hairpin loop motif from the 60S ribosomal subunit of T. thermophila. It is a
member of the RNA 3D Motif Atlas motif group HL 67042.12.

2.6 RNA basepairs

While RNA double helical regions consist of stacked Watson-Crick basepairs, loop regions fre-

quently contain non Watson-Crick basepairs. Watson-Crick basepair means that both nucleotides

are bonding on their Watson-Crick edges. Using the Leontis-Westhof notation (Leontis and West-

hof, 2001; Leontis, Stombaugh, and Westhof, 2002), nucleotides have three edges, Watson-Crick,

Hoogsteen, and sugar. Basepairs are symmetric in the sense that a sugar-Hoogsteen basepair is the

same as a Hoogsteen-sugar basepair, so there are 6 possible edge combinations. Figure 2.8 below

shows an A and a U with their edges labeled.

Figure 2.8 Adenine and uracil bases with Watson-Crick, Hoogsteen, and sugar edges labeled.

There are also two possible orientations for each edge combination, cis and trans. Cis indicates

that both bases have the same orientation with respect to the RNA backbone, and trans indicates

that one has been flipped, so the base-backbone connections will be on different sides. All edge

combinations can be cis or trans, so there are 12 total basepair families. Examples of AU cis-

Watson-Crick Watson-crick and trans-Watson-Crick Watson-Crick basepairs are shown below in

22
Figure 2.9.

Figure 2.9 AU Watson-Crick basepairs in cis and trans. Yellow arrows highly the base-backbone
connection. For the cis pair, they are on the same side, for the trans pair, they are on opposite sides.

For shorthand, basepairs are referred to with a three letter code, first a c or t for cis or trans,

then W, S, or H for the edge of the first base, and finally another W, S, or H for the edge of

the second base. So a cis-Watson-crick Watson-crick basepair is referred to as a cWW basepair,

and a trans-Hoogsteen sugar basepair is a tHS basepair. The four bases give each basepair 16

possible base combinations, resulting in 192 possible choices of basepair family and base combi-

nation. The order of the bases does not matter, so there is no difference between, for example a

AU tSH basepair and a UA tHS basepair. It is also worth noting that some base combinations are

not possible because the charges on the edge of the bases would repel one another, for example

a GG cWW basepair is not possible. Most base combinations are possible and have been ob-

served in 3D structures. See the RNA Basepair Catalog for all observed base combinations across

the 12 basepair families, http://ndbserver.rutgers.edu/ndbmodule/services/

BPCatalog/bpCatalog.html.

2.7 RNA base-backbone interactions

Basepairing is not the only way that nucleotides in an RNA can interact with the rest of the

RNA molecule. The base part of a nucleotide can also make hydrogen bonds with the backbone of

another nucleotide in the RNA molecule. There are two types of base-backbone interactions, base-

ribose or base-phosphate interactions. Our studies have shown that bases making a base-phosphate

interactions are conserved at a very high rate (> 90%), and those that are making base-ribose

interactions are also very highly conserved, as discussed in the first JAR3D paper and shown in its

http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html
http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html

23
supplementary material (Zirbel et al., 2015). Note that only the base for which the base part of the

molecule is interacting is constrained, the backbone is the same for all bases, so the base with the

interacting phosphate is not constrained.

24

CHAPTER 3 REVIEW OF RELEVANT LITERATURE

This chapter will review the literature relevant to our methodology for RNA loop sequence

modeling. The chapter will first introduce RNA 2D and 3D structure prediction, then review the

relevant literature on RNA 3D structure prediction. There is then an introduction to stochastic

context free grammars (SCFGs), then finally a review of the relevant literature on SCFGs used in

the study of RNA.

3.1 Introduction to RNA 2D structure prediction

This section will give a brief introduction to RNA 2D structure prediction, as it is necessary

background information for the review of RNA 3D structure prediction in Section 3.3.

There are a number of reasons that RNA 3D structure prediction often starts with 2D struc-

ture prediction. The fact that helices are the substructure that are repeated the most in structured

RNAs, and the fact that they have a very reliable sequence pattern in the appearance of consecutive

AU, CG, GC, and UA basepairs, make RNA 2D structures a good starting point for RNA struc-

ture prediction. Unfortunately, a single RNA sequence might fold many different ways that form

reasonable looking 2D structures, so finding the right one is not a simple task.

RNA helices are very stable structures, and the physics and chemistry involved in the folding

of RNA means that more stable arrangements are more likely to form. Because of this, a very

reasonable and effective method of predicting RNA 2D structures from a sequence is to find the

fold that will produce the most stable structure. This method is known as free energy minimiza-

tion. Free energy minimization looks for the structure that minimizes a quantity called Gibb’s

free energy change, which measures the difference between the energy of the folded structure and

the completely unfolded state of the molecule. A number of factors contribute to this. In gen-

eral, a structure with more Watson-Crick basepairs will be more stable and have a lower Gibbs

free energy change than one with less. However, longer helices are also more stable than several

shorter helices, so a structure with a few long helices might have a better Gibbs free energy change

25
than a structure with more Watson-Crick basepairs in shorter helices. One of the oldest and best

known tools for predicting RNA 2D structure using free energy minimization is MFold, described

in (Zuker, 2003) and currently available at http://unafold.rna.albany.edu.

In addition, it has been shown that the order of basepairs in a helix, which affects how the

basepairs stack on top of each other in the helix, also affects the stability of the structure. These

stacking parameters were first described by the Turner group in (Turner and Mathews, 2009). Tak-

ing the stacking (sometimes referred to as nearest neighbor) effects into account greatly improved

RNA 2D structure prediction. The Turner nearest neighbor parameters are used by MFold.

When more than one sequence is available, RNA 2D structure prediction becomes more reli-

able. When multiple sequences are available, the known sequence variability of helices can be fully

leveraged. This is done by searching through columns of aligned RNA molecules for columns that

show covariation between GC, AU, UA, and CG, an indication that the nucleotides correspond-

ing to the columns are making a Watson-Crick basepair. Covariation means that a change in one

column means a change in another column is likely, and the sort of covariation being looked for

in RNA 2D structure prediction is that which preserves canonical Watson-Crick basepairs. This

technique is known as comparative sequence analysis, and is still considered the most reliable way

to predict RNA 2D structure, though it has actually been in use for quite a long time. It was first

used to predict the structure of transfer, or tRNA, in 1965 (Holley, Apgar, Everett, Madison, Mar-

quissee, Merrill, Penswick, and Zami, 1965), and those predictions were later confirmed when the

3D structure of tRNA was solved in 1974 (Robertus, Ladner, Finch, Rhodes, Brown, Clark, and

Klug, 1974).

3.2 Introduction to RNA 3D structure prediction

Predicting RNA 3D structure directly from sequence is even more difficult, and perhaps impos-

sible in some cases, than solving structures via x-ray diffraction, NMR, or electron microscopy. So

far there are no reliable computational methods for predicting RNA 3D structure from sequence.

Being able to predict 3D structure from sequence is highly desirable though, because it is com-

paratively inexpensive and easy to reliably determine the sequence of an RNA. It is therefore an

http://unafold.rna.albany.edu

26
important problem in the study of RNA to be able to predict an RNA molecule’s 3D structure from

its sequence.

When a 2D structure has been predicted for an RNA sequence, attempts at predicting the full 3D

structure can be made. Because the 3D structure of Watson-Crick double helices is well known and

quite regular, the secondary structure of an RNA is nearly as good as a full 3D structure for helical

regions. The gap between 2D structure prediction and 3D structure prediction is then, primarily,

the prediction of the 3D structure of the loop regions. The structure of the loop regions determines

the orientations of the helices and thus contributes to the final 3D structure of the RNA. One of the

functions of JAR3D is to assist in the prediction of the 3D structure of these loop regions.

3.3 Review of literature on RNA 3D structure prediction

This section reviews different methods for prediction of the 3D structure of RNAs from se-

quence. Some of them start with 2D structures, others predict the 2D structures along the way

using techniques talked about above in Section 3.1. Many rely on matching small stretches of

sequences to small fragments of existing 3D structures, and using those 3D structural fragments to

assemble new 3D structures.

One of the first attempts at breaking down RNA 3D structural elements and using this infor-

mation to assist in tertiary structure prediction was Lemieux and Major’s examination of cyclic

motifs (Lemieux and Major, 2006). They divided the large ribosomal subunit (LSU) into 4 nu-

cleotide cycles, then clustered those cycles based on basepair and stacking classifications. The

cycles were essentially arranged in squares, so that each position can be dependent on two of the

other positions. So, they can model stacked basepairs, and base triples, as long as there are no extra

nucleotides between the bases making the triple.

They theorized that these small cyclic motifs comprised most of the LSU, and could likely

be used in tertiary structure prediction for other RNA molecules. They do this through what can

be described as a fragment assembly method, meaning that parts of the sequence are matched to

sequences seen in 3D structure fragments, and then a new 3D structure is assembled from those

existing 3D fragments. In this case, overlapping four nucleotide sets from sequences are matched

27
to cycles, and overlapping cycles are assembled into a new structure. The tools they built to do

these predictions are called MC-Fold, which produces augmented secondary structures that include

non Watson-Crick basepairs, based on the cyclic motifs, and MC-Sym, which takes the augmented

secondary structures and produces 3D structures (Parisien and Major, 2008). They reported being

able to reproduce 11 of 13 test structures. MC-Fold and MC-Sym work on full RNA structures

instead of motifs specifically, and runtime increases exponentially with size, so the test structures

and suggested use cases have short sequences, generally less than 50 nucleotides. MC-Fold and

MC-Sym work on single sequences at a time. MC-Fold and MC-Sym are capable of making de

novo predictions of loop regions, since the system assembles 3D structures from small fragment

sets. For known motif geometries, though, we believe we can build more accurate sequence models

by matching sequences to entire motif geometries.

Another tool that uses small fragments of RNA to predict 3D structures was published a year

later in FARNA (Das and Baker, 2007). FARNA stands for Fragment Assembly of RNA, and

was inspired by the Rosetta tool for protein structure prediction. FARNA works by assembling

test structures from fragments of RNA observed in 3D structures, then running molecular dynamic

simulations on those test structures. This is less computationally intensive and less time consuming

than running molecular dynamics simulations from scratch, yet is still much more computationally

intensive than MC-Sym and the JAR3D system we developed. Their tests on FARNA found about

a 90% success rate in predicting Watson-Crick basepairs, which was in line with most secondary

structure prediction tools at the time. They also found that they could identify about a third of

non-Watson-Crick basepairs in the RNA structures they tested. This was a good first step towards

prediction of structures in loop regions.

The FARNA methodology was built upon with a tool that specifically focused on RNA motifs,

called FARFAR, or Fragment Assembly of RNA with Full-Atom Refinement (Das, Karanicolas,

and Baker, 2010). FARNA and FARFAR both work by taking small fragments of RNA 3D struc-

tures matched to sequences, and assembling them into new structures. They work with smaller

fragments than MC-Fold and MC-Sym, of 1-3 nucleotides each. Both FARNA and FARFAR then

28
refine the model using a low resolution energy function, then FARFAR further refines the model at

an atomic level. FARNA tests found that FARFAR was able to reproduce 50% of a set of 32 6-20

nucleotide motifs, a definite improvement over FARNA, but still leaving room for improvement.

FARNA and FARFAR work on one sequence at a time, and have the ability to predict completely

new geometries, whereas many other tools only look for new instances of known geometries.

RNAWolf (Höner zu Siederdissen, Bernhart, Stadler, and Hofacker, 2011) is similar to MC-

Fold in that it produces extended secondary structures, secondary structures that include non-

Watson Crick basepairs. Unlike MC-Fold, however, RNAWolf allows for base triples of non ad-

jacent nucleotides. RNAWolf is built on a 2D structure prediction tool, MC-Fold-DP, that uses

dynamic programming. They compared the tool to state of the art thermodynamic folding algo-

rithms, and found that it performed poorly in general, but did much better on 3D data specifically

gathered from the Protein Data Bank. The authors themselves admit that RNAWolf does not reach

their desired level of accuracy.

RNA-MoIP, or RNA Motif Integer Programming, also does RNA structure prediction by as-

sembling models from fragments seen in 3D structures (Reinharz, Major, and Waldispühl, 2012).

The program produces augmented secondary structures with non Watson-Crick basepairs simi-

lar to MC-Fold, and they feed these secondary structures to MC-Sym to produce 3D structures.

RNA-MoIP is designed to work on larger structures than MC-Fold, and they tested it on a set

of 9 structures ranging from 53-128 nucleotides. These came from a larger set of structures, with

smaller structures and structures with pseudoknots removed, as well as removing two more that did

not have homologous loops in the dataset. The first version of RNA-MoIP required exact sequence

matches to the fragments from 3D structures, but it has since been extended to allow deletions and

insertions, with the latter only allowed in junctions, and is also now available as a web server (Yao,

Reinharz, Major, and Waldispühl, 2017).

RNAComposer (Popenda, Szachniuk, Antczak, Purzycka, Lukasiak, Bartol, Blazewicz, and

Adamiak, 2012) is another fragment assembly tool for predicting RNA 3D structure. The program

takes a sequence and secondary structure as input, and primarily builds a 3D structure by matching

29
elements of the secondary structure to 3D structures, like helices and loops, in the RNA FRABASE,

a database of RNA 3D structure fragments (Popenda, Błażewicz, Szachniuk, and Adamiak, 2007).

It also allows for generation of structural elements that are missing from their structural dictionary,

using the CYANA structure calculation program. The structural elements from RNA FRABASE,

or CYANA calculated structures when needed, are then combined into a full 3D structure for

the molecule. Their approach allows them to tackle larger molecules than many other fragment

assembly methods, and is accurate when structures are available in the RNA FRABASE. However,

they found that although the CYANA calculated regions had several good properties, they were

much less accurate than those from the RNA FRABASE.

RMDetect (Cruz and Westhof, 2011) is one of the first attempts at modeling and identifying

RNA motifs without piecing together fragments from 3D structures. Instead of using 3D fragments,

RMDetect trains Bayesian network models for entire motifs on hand curated sequence alignments.

In Cruz and Westhof’s paper, they made models for four RNA motifs, the G-bulge loop, C-loop,

kink-turn, and tandem-GA loop. They found a false discovery rate of 23% in a control test of

known sequences. They were also able to use the models to find 21 unreported instances of the

motifs in a set of 1,444 alignments.

A pipeline was made to automatically produce RMDetect models on a much broader scale

(Theis, Höner zu Siederdissen, Hofacker, and Gorodkin, 2013). This pipeline, metaRNAmod-

ules, extracts RNA motif instances from the RNA 3D Motif Atlas at BGSU and maps them onto

Rfam sequence alignments. They used 977 internal loop and 17 hairpin loop instances, and found

their models to have “clear discriminatory power.” Their models are based on a single alignment,

whereas the original RMDetect models are consensus models based on sets of highly curated align-

ments. Because the new models were trained on smaller, lower quality data sets, they did not

perform as well, but they do cover a much broader range of motifs.

RNAMotifScanX (Zhong and Zhang, 2015) is another tool for searching sequences for new

instances of known motif families. The search tool is based on “a base-interaction graph alignment

algorithm.” Their paper shows query results for five motif families, the kink-turn, C-loop, sarcin-

30
ricin (referred to as G-bulge in RMDetect publications), reverse kink-turn, and E-loop. They found

it performed well compared to other motif search algorithms, such as RMDetect. It is also quite

fast and efficient.

RNA Puzzles is a competition in which competitors are challenged to predict the full 3D struc-

ture of RNAs from sequences. The RNA molecules for these competitions have been solved in

crystal structures, but publication of the 3D structures is held until after the RNA Puzzles compe-

tition. As of February 2019, 21 RNA puzzles have been run.

Three articles have been published summarizing the results of RNA Puzzles competitions

(Cruz, Blanchet, Boniecki, Bujnicki, Chen, Cao, Das, Ding, Dokholyan, Flores, et al., 2012; Miao,

Adamiak, Blanchet, Boniecki, Bujnicki, Chen, Cheng, Chojnowski, Chou, Cordero, et al., 2015;

Miao, Adamiak, Antczak, Batey, Becka, Biesiada, Boniecki, Bujnicki, Chen, Cheng, et al., 2017),

and they serve as a good summary of the “state of the art” in RNA 3D structure prediction. In the

most recent review, it was found that homology based predictions, that is predictions for which 3D

structural data exists for a homologous molecule from another organism, is quite good. They stated

“It is possible to model nearly all the structural details when a clear homologue can be identified.”

For molecules without homologues with known 3D structure, predictions for smaller molecules

were quite promising and obtained by multiple independent groups. For larger molecules without

homologues, results were not as good. Some groups predicted structures that were close to the

actual structure, but ranked poorer models better than their best models.

Fragment assembly methods, such as MC-Fold, RNAWolf, and RNA Composer, are effective

at homology modeling and assembling new structures when fragments have high sequence identity

with fragments in their databases. Motif search tools, like RMDetect and RNAMotifScanX, are

effective at finding new instances of well known motif geometries, when the sequences have been

observed in alignments. Motifs for which high quality alignments are not available are therefore

not handled as well. These search tools are also made for search for new instances of particular

geometries, as opposed to predicting the geometry of a particular sequence or set of homologous

sequences.

31
The review of the literature shows several areas that our method, and the JAR3D software suite,

adds to the current state of motif prediction. Firstly, our JAR3D has a more complete approach to

comparing to existing geometries than similar tools like RMDetect and RNAMotifScanX, as it

creates models for all of the structures in the RNA Motif Atlas, instead of curated set of well

studied motifs. Because it uses this approach, our method is the only one available that attempts

to answer the question “Does this motif sequence form a geometry that has been observed before

in 3D?” In addition, our method more completely models the network of interactions in the 3D

motifs, and so will more faithfully match novel sequences to known geometries. In addition, our

method can create alignments of sequences or sets of sequences to these structures, so that it makes

specific predictions of the 3D position of each nucleotide in the sequence. Reliance on sequences

observed in 3D data is a limitation of many currently existing 3D RNA prediction tools. Sequence

data is a way to expand the base of available data for these tools, but it generally needs to be in

high quality alignments to be useful. Alignments often do quite well in helical regions and suffer

in loop regions. Our method’s ability to align loop sequences can be used to improve alignments

and could therefore be quite useful for future 3D structure prediction tools. Third, the JAR3D

software runs much faster than many other tools, especially those that rely on molecular dynamics

simulations, such as fragment assembly tools.

Overall, while progress has been made on predicting full RNA 3D structures from sequence,

the problem is nowhere near being solved. Current tools are either slow, unreliable, or both. The

JAR3D software is fast and makes some strides with reliability, when dealing with predicting

already known 3D geometries, and also makes strides in dealing with the fact that one sequence

might make multiple geometries. But because the overall 3D structure prediction is not solved,

the methods listed above can be thought of as complementary instead of being in competition with

each other. For example, a researcher might first use the JAR3D software to see if a loop sequence

matches a structure that is already known from 3D structures, and then, if it isn’t, use a fragment

assembly method like FARFAR to attempt a de novo prediction of its 3D structure.

32

3.4 Introduction to SCFGs

Our approach to modeling RNA loop sequence variability uses Stochastic Context-Free Gram-

mars, or SCFGs, to model RNA loop regions. When RNAs fold back on themselves to form 2D

and 3D structures, they form networks of long range dependencies. These dependencies between

the different letters in different positions of the RNA sequence are caused by the nucleotides cre-

ating basepairs. The need to maintain these basepairs creates a statistical dependence between

the positions. These long range dependencies are often nested, which is well modeled by SCFGs.

A more complete discussion of the dependencies seen in RNA sequence variation is in Section

4.1. Because of this, SCFGs have a long history of use in the study of RNAs, which is reviewed

in Section 3.5 below. This section gives an introduction to context free grammars (CFGs) and

SCFGs.

Context-free grammars (CFGs) can be made to model possible RNA secondary structures by

describing a sequence of possible ways to re-write a text string consisting of “terminal” and “non-

terminal” symbols. For example, to model cWW basepair helices, one can construct a simple CFG

with one non-terminal symbol (B for basepair) and five non-terminal symbols (a, c, g, and u for

the four bases and * for the strand break). Note that lower case letters are used for the four bases

instead of the usual uppercase letters for easier differentiation from non-terminal symbols. The

production rule (or re-write rule) for the non-terminal symbol B is shown below.

B→ aBu | uBa | gBc | cBg | ∗

This means that the symbol B can be re-written in five different ways, four of which generate

an au, ua, gc, or cg basepair, and the final one which produces an * symbol.

A generation history refers to a series of uses of the rewrite rule to produce a sequence. For

example, the above grammar could produce a four basepair helix as follows:

B→ cBg → caBug → cauBaug → caucBgaug → cauc ∗ gaug

33
In the resulting sequence, the first letter, c, makes a Watson-Crick basepair with the last letter,

g; the second pairs with the second last, and so on.

This simple CFG can be made into a stochastic context free grammar by assigning probabilities

to the possible productions. For example, we could give each of the four basepairs a 20% proba-

bility and also give the break symbol a 20% probability. This would cause the grammar to produce

helices of geometric length, with an average length of 4. Grammars like this can be extended so

they can model generic RNA sequences, including double helices, hairpin loops, junction loops,

and internal loops, and we will refer to them as general SCFGs.

Say we want more have control over the length of the sequences produced, for example, to

model a four basepair helix specifically. One way to achieve this is through the use of a special

type of SCFG, called a guide tree SCFG. In traditional SCFGs, non-terminal symbols can repeat

in a generation history many times, but in a guide tree SCFG, each non-terminal symbol is unique

and occurs only once, and in a set order. A simple guide tree SCFG for a four basepair cWW helix

can be made using rules similar to the one used in the CFG above. This guide tree SCFG is shown

below:

B1→ aB2u | uB2a | gB2c | cB2g (each with 25% probability)

B2→ aB3u | uB3a | gB3c | cB3g (each with 25% probability)

B3→ aB4u | uB4a | gB4c | cB4g (each with 25% probability)

B4→ aTu | uTa | gTc | cTg (each with 25% probability)

T→ ∗ (with 100% probability)

The above guide tree SCFG will always start with B1, then move to B2, then to B3, then to

B4, then terminate. It also offers greater flexibility when it comes to assigning probabilities to

the production rules. For example, CG and GC basepairs have stronger bonds than AU and UA

basepairs, and we may find that it is more likely to see CG and GC at the beginning and end of the

34
helix. With a guide tree SCFG, one can assign higher probabilities to CG and GC in B1 and B4

while leaving the distribution even in B2 and B3.

3.5 Review of literature on SCFGs for RNA

Stochastic Context-Free Grammars, or SCFGs, have a long history of use in the study of RNAs.

This section will discuss the history of the use of SCFGs to study RNA, including the previous

work from the BGSU RNA group that led to the creation of JAR3D.

In 1994, two groups independently published papers on using general SCFGs to model RNA

secondary structure. Both Eddy and Durbin (Eddy and Durbin, 1994) and (Sakakibara, Brown,

Hughey, Mian, Sjölander, Underwood, and Haussler, 1994) independently described methods for

modeling the secondary structure of tRNAs. Sakakibara, whose paper came out later in the year,

noted that the models were very similar, but they were trained differently. Eddy and Durbin’s

method assumed that both the structure of the grammar and its parameters need to be estimated.

They defined an iterative process in which a grammar is constructed based on an initial align-

ment, then parameters are set using an expectation maximization algorithm. This model is used

to improve the training alignment, which can then be used to re-estimate the grammar and its

parameters. This process is iterated until it converges.

Sakakibara started with a set of four different grammars, so his work only needed to address the

parameter estimate problem. He developed a method he called the “Tree Grammar Re-estimator”.

This algorithm works on folded sequences, so some basepairs must already be identified in the

alignment. Both methods produced grammars that could perform similar tasks; discriminating

tRNA sequences from non-tRNA sequences, and making alignments of tRNA sequences. It is

worth noting that tRNAs were used because they were one of the only RNA molecules at the time

for which many confirmed sequences were available, and that the base grammars were general

CFGs for use with any structured RNAs. The parameters to make the CFGs SCFGs were trained

with the goal that tRNA sequences would have high probabilities and other RNA sequences would

have low probabilities.

Eddy’s work was expanded on in QRNA (Rivas and Eddy, 2001) QRNA uses three probabilistic

35
models, two hidden Markov models (HMMs), called OTH and COD, and an SCFG, called RNA,

that work together to model sequence variability of RNA sequences in alignments. The OTH model

assumed that nucleotides in the alignment mutated independently, the COD model assumed that

nucleotides coded homologous proteins, and the RNA model assumed the sequences were forming

a conserved secondary structure. These models can then be used together to scan genomes or

test specific alignments for genes that encode non-coding RNAs. The performance of the system

was broken down based on the percentage of sequence identity in alignments of SRP RNAs and

RNaseP RNAs. The system performed quite well for alignments with 50-90% sequence identity,

with both high specificity and sensitivity. Specificity suffered for alignments with higher sequence

identity, while sensitivity suffered for those with lower sequence identity.

In 1999, Knudsen and Hein described a method for predicting RNA secondary structures us-

ing SCFGs (Knudsen and Hein, 1999). They described a method that takes alignments of RNA

molecules and produces predictions of a common secondary structure. The method uses a simple

SCFG with three nonterminal symbols, one for “stems” (Watson-Crick helices), one for loops, and

another that can produce either single nucleotides or new stems, and two terminal symbols, one

for single bases and another for Watson-Crick basepairs. The probabilities for the production rules

are estimated using the inside-outside algorithm. The method also uses evolutionary data, which

requires a phylogenetic tree associated with the alignment, however, the authors describe a method

for estimating a tree if one is not provided.

Knudsen and Hein found that their method compared favorably to other folding methods at the

time, but did have several limitations. Their method relies on having aligned sequences, which is a

strength when high quality alignments are available and is a weakness when they are not available.

The method cannot predict pseudoknots, a limitation shared by many other secondary structure

prediction tools. Finally, due to the simple nature of the SCFG they used, helices and loops were

assumed to be of geometric length. In 2003, Knudsen and Hein improved their method and released

a tool called pfold (Knudsen and Hein, 2003). The improvements were primarily to the efficiency

of the algorithm, which allowed it to be applied to larger RNAs, and improvements that made the

36
method more robust to errors in input alignments. Knudsen and Hein’s method was also built upon

in 2006 in EvoFold (Pedersen et al., 2006), which searched the human genome for genes encoding

structured RNAs using an alignment of the human genome to seven other vertebrate genomes.

The groundwork for our SCFG/MRF models was laid out in 2006 in Michael Sarver’s disser-

tation (Sarver, 2006). Sarver’s work with SCFGs was focused on using them for alignment of

multiple RNA sequences using their common structure. Unlike other SCFG RNA tools , Sarver

described grammars that were specific to a particular RNA 3D structure, as opposed to being gen-

eral grammars for describing structured RNAs, or grammars that were based on 2D structures.

Nonterminal symbols appear only once, in a set sequence. Such SCFGs are sometimes referred to

as guide-tree SCFGs. Sarver’s work also went beyond modeling secondary structure by describing

ways to model the non-Watson-Crick interactions in the loop regions of structured RNA molecules.

Sarver describes a number of different types of “nodes”, templates for types of nonterminal

symbols that can appear. The basepair, initial, cluster, and hairpin nodes appear in our SCFG/MRF

models. Junction nodes and alternative nodes are described in Sarver’s dissertation, but not used

in our SCFG/MRF models describing internal and hairpin loops. Sarver also described how to

parameterize these nodes using a multiple sequence alignment which is also aligned to an RNA 3D

structure, using maximum likelihood estimators. Because no method for parameterizing the gram-

mars without an alignment was given, Sarver’s work described a method for improving existing

alignments using 3D structure, as opposed to aligning sequences from scratch. More comparisons

with Sarver’s work will be given in Chapter 4.

Infernal, short for “INFErence of RNA ALignment” is another tool that uses guide tree SCFGs

to model RNA structures (Nawrocki et al., 2009). Infernal builds guide tree SCFGs based on a

multiple sequence alignment, or a single sequence, and an attached consensus secondary structure

that indicates which bases are involved in basepair interactions. The grammar is built based on

the secondary structure, then parameterized using the sequence alignment. There are two main

use cases for Infernal models; scanning genomes for sequences that form the same secondary

structure, and producing alignments of novel sequences to a particular RNA secondary structure.

37
Although designed for use with secondary structures indicating Watson-Crick helices, Infernal

can also model non Watson-Crick basepairs when provided with an appropriate alignment and

secondary structure. It is, however, limited to the typical nested structures SCFGs are best suited

for, and cannot model pseudoknots, base triples, or crossed basepairs.

38

CHAPTER 4 MODELING RNA LOOP SEQUENCE VARIABILITY WITH SCFG MODELS

This chapter will discuss how we use guide tree stochastic context free grammars (SCFGs),

supplemented with Markov random fields (MRFs), to model the sequence variability in RNA loops.

Here, we need to go beyond the modeling of Watson-Crick basepairs that was described in Section

2.3 when discussing modeling sequence variability based on 2D structures. We use observations

and data from existing 3D structures to inform these new models.

4.1 Statistical dependence due to RNA basepairs

RNA molecules fold back on themselves when forming 3D structures. This folding means that

bases that are far apart in the sequence of the chain might be making basepairs or interacting in

other ways. Each basepair creates a statistical dependency between the bases involved in it, so

that if one of them changes (due to a DNA copying error) the other is likely to change as well

(over the next many generations in that genetic line of descent), to keep the basepair isosteric

or near isosteric to the original, so the overall structure of the molecule doesn’t change. These

interactions in an RNA molecule create complicated patterns of long range statistical dependence

in RNA sequences.

The network of basepair interactions made by RNA molecules when they fold back on them-

selves often result in networks of nested basepair interactions. These networks of nested depen-

dencies are very efficiently modeled by stochastic context free grammars (SCFGs), one of the two

main tools used in JAR3D models. SCFGs were introduced in Section 3.4. Linear arc diagrams

are an excellent way of viewing the nested nature of basepair interactions in RNA structures. A

linear arc diagram for the E.coli 5S ribosomal RNA from chain A of PDB structure 2QBG is shown

below in Figure 4.1. This figure was generated by the tool R3D Align, and is the top half of an

alignment to another 5S structure (Rahrig, Leontis, and Zirbel, 2010). The alignment can be seen

at http://rna.bgsu.edu/r3dalign/results/50dcfcf045337. Each arc represents

a basepair and thus a dependence between two nucleotides. The cyan and green arcs show non-

http://rna.bgsu.edu/r3dalign/results/50dcfcf045337

39
Watson-Crick basepairs, and most of these are nested as well. Some do break the nested structure,

around position 40, and so cannot be modeled using the typical SCFG techniques discussed in

Section 3.4. These basepairs are one of the reasons for augmenting SCFGs with Markov Random

Fields, which we explain next.

Figure 4.1 Linear arc diagram for 5S region of the E. coli ribosome. It was taken from PDB
structure 2QBG.

Unfortunately, not all dependencies in RNA molecules create these easily modeled nested in-

teractions. Within-strand basepairs, basepairs that occur between bases that are on the same strand

within a loop instead of on opposing strands, break the typical nested interaction structure that is

easily modeled by SCFGs. Because bases have three edges that can make interactions, they are not

limited to making only single base pairs, but may also be making basepairs on two edges at once,

creating a base triple.

The three dimensional graphic in Figure 2.5 above shows a base triple, which also has a within-

strand interaction. The triple is between the G, the adjacent U on the same strand, and an A on

the other strand. A two dimensional basepair diagram of the sarcin-ricin motif is shown below in

Figure fig:base triple motif, and it shows the same triple. These two dimensional basepair diagrams

are similar to secondary structures but show non-Watson-Crick basepairs as well. The symbols

between the bases indicate the edges involved in the basepair as well as the bases’ orientations. A

circle indicates the Watson-Crick edge, a square the Hoogsteen edge, and a triangle the sugar edge.

Open symbols indicate a trans pair and closed symbols indicate a cis pair.

A base triple does not always have a within-strand interaction, but it will always create an

in-strand dependency, because the base triple creates a dependence between the two bases in the

40
triple not making a basepair, through transitivity. These within-strand dependencies create a more

complex network of dependencies than is usually modeled in RNA with SCFGs alone. Note that

it also possible, although much less common, for a base to be making interactions on all three of

its edges, forming a network of four dependent interacting bases.

Figure 4.2 Basepair diagram for a sarcin-ricin internal loop. This is the diagram for loop
IL 85647.3. The G and U in the left strand are involved in a cHS basepair, and the U is also
making a tWH basepair with the A on the other strand, forming a base triple.

Finally, it is also possible for basepairs to “cross” each other in RNA loop regions, which also

breaks the nested dependency structure. At least one of the crossing basepairs is usually involved

in base triples, creating even more complex networks of difficult to model interactions. This can

be seen wherever the arcs cross each other in Figure 4.1. Figure 4.3 below shows an extreme

case of crossing bases, the c-loop. C-loops are modeled by motif group IL 73276.5, and they

change the orientation of Watson-Crick helices by increasing their “twist”. IL 73276.5 can be

viewed at http://rna.bgsu.edu/rna3dhub/motif/view/IL_73276.5. Both flank-

ing Watson-Crick basepairs are involved in base triples that cross the motif, resulting in a network

http://rna.bgsu.edu/rna3dhub/motif/view/IL_73276.5

41
of dependencies that spans the entire motif.

Figure 4.3 Basepair diagram for a c-loop internal loop. This is the diagram for IL 73276.5. C-
loops have a complex network of dependencies between nucleotide positions. The Watson-Crick
basepairs are indicated by an edge with a closed circle and no other symbol, one between circles
labeled N and N, the other between circles labeled B and V.

4.2 Sequence variability in RNA basepairs and isodiscrepancy

As discussed in Chapter 1, errors in copying DNA lead to sequence changes in RNA, some

of which do not disrupt the 3D structure of the molecule, and some of which are fatal and so are

not observed. We wish to model the probability of observing a change in a given RNA basepair.

There are 12 basepair families, each of which has up to 16 base combinations. This makes it

prohibitive to estimate the probabilities of all possible base combinations in all basepair families

being substituted by another base combination in a homologous molecule using data. A further

complicating factor for the problem being addressed by JAR3D is that we are hoping to identify

known motif structures in new molecules, not just in homologous molecules. A basepair may have

additional constraints in one molecule that are not present in another. A data-only approach might

lead one to believe a substitution is impossible in all instances of the motif, when it is instead only

impossible in that particular instance of a motif, in the context in which it was found.

42
One might also think that you could use molecular dynamics and free energy calculations,

similar to those used in 2D structure prediction, to compute what sequence changes are acceptable

in a given motif. Unfortunately, most attempts to date have not worked very well. The calculations

are hard to do, take a long time, and the results are so far have not been very reliable. See, for

example, Jiri Sponer’s research into the molecular dynamics of the sarcin-ricin motif (Kruse et al.,

2014) under sequence changes.

What we need for the problem we are addressing is a quick, efficient way to calculate or

estimate substitution probabilities for non-Watson-Crick basepairs. We can look at Watson-Crick

basepairs for inspiration. Study of Watson-Crick helices has shown us that geometrically similar

base combinations are more likely to substitute for each other, and that this assumption matches

up with the physics involved with RNA folding. This has led us to an approach not based on data

frequency or physics, but on geometry and isostericity. This helps us avoid the need for extensive

datasets, which we lack, and complicated physics calculations, which our application often does

not have time for.

As introduced in Section 2.3, if the geometries of two different base combinations in the same

basepair family are very similar, we say that they are isosteric. Specifically, isostericity between

basepairs means that the atoms that connect the bases to the backbone of the molecule are in very

similar positions and are the same distance apart. When basepairs are isosteric, they can often be

substituted for one another in a molecule without affecting the molecule’s structure or function. In

general, the more isosteric a base substitution is, the more likely it is to occur.

Isostericity gives us a way to estimate the probability that base substitutions will occur without

needing to deal with detailed physics simulations and calculations. An isostericity based IsoDis-

crepancy Index (IDI) score is used to give a numeric measure to the similarity between two base-

pairs (Stombaugh, Zirbel, Westhof, and Leontis, 2009). It is worth mentioning that although this

method has worked quite well for us, there will always be ways to improve on estimation of these

substitution probabilities. This method is a good starting point and is what we were capable of at

the time.

43

4.3 Structure of SCFG/MRF models for modeling RNA loop sequence variability

This section will explain the SCFG/MRF structure of the models we use to model RNA loop

sequence variability. This will include discussions of the basic SCFG nodes used to model nested

interactions as well as the MRFs used to model more complex networks of interactions. The

general structure of the SCFG/MRF models was outlined in Michael Sarver’s dissertation (Sarver,

2006). Updates to the structure of the SCFG/MRF models have been noted.

It should be noted that how the models are parameterized is completely new. Sarver’s work

anticipated estimating the parameters for the models from sequence alignments, because his work

anticipated making SCFG/MRF models for the sequence variability of specific RNA molecules,

based on the 3D structure of those models and on available multiple sequence alignments of

the molecule. Our SCFG/MRF models are for RNA loop structures, and we parameterize us-

ing isostericity and verified 3D sequences instead of sequence alignments. How we parameterize

SCFG/MRF models for RNA loop sequence variability is discussed in detail later in this chapter.

The software package and web servers that implement and use these models will be discussed in

Chapter 5.

The production rules for the non-terminal symbols in our models are much more complicated

than those in the simple guide tree SCFG above in Section 3.4. We refer to the non-terminal

symbols as nodes. There are 5 different types of nodes in JAR3D, and we give each a single letter

abbreviation for easy reference. There are basepair (B) nodes, fixed (F) nodes, cluster (C) nodes,

initial (I) nodes, and hairpin (H) nodes. These nodes are described briefly in this section. Fixed

nodes are new as compared to Sarver (Sarver, 2006) and hairpin nodes have been extended, but the

other node types appeared in Sarver’s dissertation.

A basepair (B) node usually produces one base on each strand. Basepair nodes have a very

small probability of being deleted, and if they are deleted, they produce no nucleotides. If not

deleted, the basepair node will always produce a nucleotide on each strand, and the nucleotides

produced will typically be dependent. Our models assign non-zero probability to all 16 base com-

binations, even if they are extremely unlikely. Probabilities for basepairs are expressed by basepair

44
substitution matrices, which are 4x4 matrices that give probabilities for each of the base combi-

nations. How these matrices are calculated is discussed in Section 4.5. A basepair node can also

produce insertions on either strand after the two nucleotides making the basepair. This can be 0,

1, or even more nucleotides on either strand, generated independently of each other and of the

nucleotides generated for the basepair itself.

A fixed (F) node simply generates a single base on one of the strands. Fixed nodes can also

be deleted, with a very small probability, and if deleted they will not produce any bases. They

give a distribution over the four possible bases of A, C, G, and U. Fixed nodes are used to model

nucleotides that are not involved in basepair interactions, but are interacting with the nucleotides

in the loop in some other way. This could be base-backbone interactions, or the nucleotide could

be stacked on other bases in the loop. The need for fixed nodes was not anticipated in Michael

Sarver’s dissertation, so they are a new addition to the SCFG/MRF methodology. Fixed nodes are

discussed in 4.9.

A cluster (C) node can be used to generate 2 or more dependent bases simultaneously. Cluster

nodes can be deleted as well, and will produce no nucleotides if deleted. Because they often model

more nucleotides than other nodes, the probability of cluster nodes being deleted is extremely

small. Cluster nodes implement Markov Random Fields (MRF) to model these more complex

networks of dependency. Cluster nodes may model multiple basepairs, each one using a 4x4

substitution matrix as described in Section 4.5. Cluster nodes may also be used to model bases

that are stacked on other bases in the cluster node or making base-backbone interactions but are

not involved in basepairing. These bases are modeled as fixed positions, and are parameterized

similarly to fixed nodes, as described in Section 4.9. In practice these fixed positions are modeled as

self interactions, and are parameterized with a diagonal 4x4 matrix. This is so that all interactions

modeled by a cluster node are between two nucleotides, which simplifies their coding. Fixed

positions in cluster nodes are new compared to Sarver (2006).

In addition to modeling interacting nucleotides, cluster nodes may also model variable length

insertions, nucleotides in between the interacting nucleotides which are not making any stacking,

45
basepairing, or base-backbone interactions. Variable length insertions can happen between any of

the base positions in the cluster node, but are only allowed for and modeled if an insertion has been

observed in 3D sequences. Cluster nodes do not model insertions after the modeled bases. These

insertions are modeled by the addition of an initial node, described below.

Initial (I) nodes model variable length insertions on both strands. They are called initial nodes

because all our models start with an initial node, but they are used in other situations as well.

Initial nodes do not have a deletion probability, because they have the ability to produce no bases

built into them without being deleted. Ideally, motif sequences passed into our system will not

have any nucleotides outside of the flanking cWW basepairs. However, sometimes users may have

many loops pulled from sequence alignments, and depending how the alignments were made and

curated, extra nucleotides may be passed in. Modeling the possibility of extra nucleotides outside

of the flanking basepair allows our system to parse these sequences reasonably so that one bad

sequence will not ruin the scoring for the whole batch. This is not the only time the possibility of

extra nucleotides need to be modeled, however. Initial nodes are also used after cluster and fixed

nodes, to model the possibility of insertions after the features modeled by those nodes. Basepair

nodes have insertion probabilities built into the node itself, so they do not need to be followed by

an initial node.

Finally, all of our loop motif model will end with a hairpin (H) node. A hairpin node only

produces terminal symbols, meaning no nodes will follow it. In internal loops, the hairpin node

has a 100% chance of generating a “*” symbol to represent the break between strands, and nothing

else. This means that internal loop models cannot parse sequences without the strand break symbol.

Hairpin nodes cannot be deleted.

In a hairpin motif model, the hairpin node models all nucleotides after the last basepair that

follows the nested basepair structure. In Michael Sarver’s work, hairpin nodes could just model

these nucleotides as fixed positions or variable length insertions. I discovered that crossed basepairs

and base triples could occur in hairpins past the nested basepair structures. Because of this, we

converted hairpin nodes to MRF nodes, and they now operate nearly identically to cluster nodes

46
when they are in hairpin motif models, with the only difference being that the hairpin node is still

not followed by another node.

4.4 A concrete example : the SCFG/MRF model for IL 95652.3

In this section we will look at an example of a specific SCFG/MRF model, the model for

motif group IL 95652.3. The geometry of the instances in IL 95652.3 is known colloquially as a

sarcin-ricin motif. The JAR3D model for IL 95652.3 contains examples of each of the node types

discussed in Section 4.3. In this section, the probabilities and parameters for the model will simply

be given, and in later sections we will discuss the procedure by which we set the parameters and

how those procedures are based on observed data.

Motif group IL 95652.3 has 14 core nucleotides, eight on the left strand and six on the right.

There are four instances of the motif from 3D structures, and they can be viewed at http://rna.

bgsu.edu/rna3dhub/motif/view/IL_95652.3. The model is made up of five basepair

nodes, a cluster node that models a base triple, and a single fixed node. In addition to these seven

nodes that model specific nucleotides, three initial nodes are used to model possible variable-length

insertions at the start of the model and after the cluster and fixed nodes, and the model is capped

with a hairpin node that produces the strand break character *. A basepair diagram for IL 95652.3,

generated by VARNA, with overlays showing how the SCFG nodes model the motif is shown

below in Figure 4.4. Note that, from the model’s perspective, the top strand is the left strand and

the bottom strand is the right strand.

The first node seen in the model is an initial node, in node I1. All of our loop models start

with a node like this, to allow for nucleotides before the first flanking basepair. If produced,

these nucleotides would be outside of the internal loop. They are accounted for only due to the

possibility of there being an error in input. Initial nodes are comprised of four probability vectors.

Two vectors are for the number of nucleotides inserted on each strand, generally with zero being

the most likely result. The other two probability vectors are for the distribution of the nucleotides

that are produced. The lengths of the insertions as well as the nucleotides produced, if any, are

independent.

http://rna.bgsu.edu/rna3dhub/motif/view/IL_95652.3
http://rna.bgsu.edu/rna3dhub/motif/view/IL_95652.3

47

Figure 4.4 Basepair diagram for sarcin-ricin internal loop with SCFG node overlays. This image
shows the consensus basepair diagram for IL 95652.3 with overlays indicating the nodes in the
SCFG model for the motif group. Basepair nodes are blue, the fixed node is green, the cluster node
is orange, initial nodes are yellow, and the capping hairpin is in grey. For this example, the nodes
are numbered in the order they appear in the model for easy reference.

Node I1 has a 0.01% chance of producing one nucleotide, on each strand independently, with

the remaining 99.99% probability being for no nucleotides being produced on that side. If a nu-

cleotide is produced, there is an equal probability of it being an A, C, G, or U. These probabilities

are always the same because they are never changed by the training data; the training data will

never have extra nucleotides outside of the flanking basepairs.

The next node in the model, B2, is a basepair node used to model the flanking GC Watson-Crick

basepair. Basepairs are modeled with a substitution matrix. A substitution matrix is a 4x4 prob-

ability matrix that gives probabilities for each of the 16 possible base combinations for the pair.

The probabilities in the substitution matrix are set based on not only the frequency of basepairs ob-

served in 3D structures, but also on the geometry of observed basepairs, so that base combinations

with similar geometries are given higher probabilities, even if they have not been observed in 3D

48
instances of the motif. How these matrices are parameterized is discussed in detail in Section 4.5

and in Section 4.6.

The first basepair modeled, in node B2, is an interesting case. Because it is a canonical cWW

basepair, we may expect to see high probabilities for AU, UA, GC, and CG basepairs. This is

because these four canonical cWW basepairs are very geometrically similar and interchange fre-

quently. We would also expect to see these probabilities shifted slightly in favor of the GC base-

pair, as this is the specific basepair observed in the four 3D structures that comprise motif group

IL 95652.3. However, one of the bases in the cWW basepair, the C, is also involved in a base-

backbone interaction, with the following nucleotide in its chain. If this C is changed to another

nucleotide, it will either significantly change the geometry of this base backbone interaction, or the

interaction will not take place. For this reason, the model gives roughly 60% probability to the GC

combination. Most of the rest of the probability is given to the other canonical cWW basepairs,

with about 8% going to the most similar CG basepair, and 7% going to the nearly as similar AU and

UA base combinations. The influence of base-backbone interactions on substitution probabilities

is explained in Section 4.7.

Basepair nodes can also model insertions that happen after them, so initial nodes are not re-

quired after every basepair node. No insertions were observed after B2, or any of the other base-

pairs in the model for motif group IL 95652.3, in any of the four 3D instances in the motif group.

Because of this, all the insertion lengths and letter distributions seen in basepair nodes in the model

are the same. The basepair nodes can produce 0, 1, or 2 nucleotides on each strand, with probabili-

ties of 99.599004%, 0.0039996%, and 0.001%. If insertions do occur, the four bases all occur with

equal probability, independent of the number of nucleotides inserted or the letter of any other bases

inserted. These insertion probabilities are set based on a rough sense of how often insertions occur

in RNA motifs and on the number of 3D instances which have zero insertions at these locations.

Since every 3D motif has different physical characteristics, there is no other data to train on to

determine the correct probability distribution over possible numbers of insertions.

Node B3 models a trans-Sugar-Hoogsteen (tSH) basepair. Unlike the cWW basepair modeled

49
in node B2, there is some variation in the sequences seen in 3D for this tSH basepair. Three of the

instances from 3D structures are GA basepairs, but one is an AA basepair. GA and AA tSH base-

pairs are fairly geometrically similar to each other, as are a number of other base combinations in

this basepair family, so this node is fairly diffuse across the 16 base combinations. The commonly

observed GA combination is given a 16% probability, and the AA, CA, UA, CU and AC combina-

tions each get 12 to 13% probability. The AU and GU combinations can also form tSH basepairs.

Each is somewhat similar geometrically to one of the observed combinations but not the other, so

they are given slightly lower 9 to 10% probability. The remaining base combinations have not been

observed to form tSH basepairs in any RNA-containing 3D structures, or, in the case of GG, are

very dissimilar to the observed combinations geometrically, and are given low probabilities. Node

B3 produces insertions after the basepair with the same probabilities as node B2.

Node B4 models a trans Hoogsteen-Hoogsteen (tHH) basepair. In all 3D instances in the motif

group the base combination observed was AA. Even though several other base combinations are

geometrically similar to an AA tHH basepair, node B4’s probability of producing an AA is 57%,

because the A on the longer strand is also making a base-backbone interaction. The AC combina-

tion is geometrically similar to the AA tHH basepair, and preserves the A making a base-backbone

interaction, so it has a 10% probability even though it was not observed in any 3D instance. The

GC, CG, and UC combinations are geometrically similar, but since they change the base making a

base backbone interaction, they are given 6% probabilities. The remaining combinations have very

low probabilities. Details on how these basepair substitution probabilities are parameterized are

discussed in Section 4.5 and in Section 4.6. Node B4 also produces insertions after the basepair

with the same probability as node B2.

Cluster node C5 models the characteristic sarcin-ricin base triple. Because base triples break

the nested basepair structure that is well modeled by SCFGs, they are modeled by a node that

implements a Markov Random Field (MRF), like the cluster node. A cluster node consists of fixed

positions, which represent each core nucleotide modeled by the cluster node, and interactions

between these positions.

50
Cluster node C5 is fairly simple for a cluster node, and has three fixed positions and two inter-

actions. There are two positions on the left strand and one position on the right strand. There is an

interaction between the two positions on the left strand, and it is a cis Sugar-Hoogsteen (cSH) base-

pair. The other interaction is between the second position on the left and the position on the right

and is a trans Watson Crick-Hoogsteen (tWH) basepair. In all 3D structures for this motif group,

and indeed for the vast majority of sarcin-ricin motifs in general, the cSH base combination is GU

and the tWH base combination is UA. This is because a change in any of the three nucleotides will

greatly change geometry of at least one of the two basepairs, because the both involve the second

position on the left strand (the U).

In the case of the GU cSH basepair, no other base combination is very similar geometrically,

and the G is involved in a base-backbone interaction, so the node gives the GU combination nearly

50% probability. No other combination receives more than six percent probability. The UA tWH

basepair is even more specific, and the node gives the UA combination 57% probability, with again

no other combination getting more than six percent probability.

To obtain the actual probability that a cluster node produces a set of nucleotides, the probabili-

ties for the involved interactions need to be multiplied together. Because positions can be shared by

interactions, the sum over all possible base combinations will not add to 100%. This creates some

problems, particularly when comparing models for different motif groups. To combat this, cluster

nodes have normalization constants. This constant is the number that the probabilities need to be

divided by such that the sum over all possible base combinations does sum to 1. The normalization

constant for C5 is 0.47, and exactly how this normalization constant is calculated is discussed in

Section 4.10. We then find that the probability for the node to produce the classic GUA base triple

is 0.491 * 0.573 / 0.472, which is about 59.6%. This might not seem like an overly high probability

for something that is almost always conserved in nature, but we should remember that our models

are intentionally diffuse. A probability of 59.6% over a base triple is actually quite high, for our

models. MRF node normalization is covered in more depth in Section 4.10.

Cluster nodes can model insertions between the fixed positions that are modeled in the node.

51
This is only done where insertions are observed in the 3D structures, and since none were observed

in the instances in this motif group, the cluster node does not allow for any insertions.

Cluster nodes cannot, however, produce insertions after the node like basepair nodes, so initial

nodes are used to model possible insertions. No insertions were observed after node C5, so the

length and base probabilities for the initial node, I6, that follows it are the same as the the insertion

probabilities in the basepair nodes, like B2.

Node B7 models a trans Hoogsteen-Sugar (tHS) basepair. The sequences seen in 3D structures

show three AG base combinations in this position and one AA base combination. Node B7 is

an interesting case, because the second base is making a base-backbone interaction, but we do

see some variation in the sequences seen in 3D structures, seeing 3 G’s and 1 A in that position.

This means that when we parameterize the model, we will average three matrices which heavily

favor having a G in that position with one that heavily favors having an A in that position. This

results in the AG combination having a 31% probability, and the similar UG combination having

a 22% probability, even though it has not been observed. The observed AA combination has a

14% probability, and the geometrically similar CA combination has an 11% probability. All other

combinations have very low probability. Details on how these basepair substitution probabilities

are parameterized are discussed in Section 4.5 and in Section 4.6. Node B7 produces insertions

after the basepair with the same probabilities as node B2.

Node F8 is a fixed node. Fixed nodes are used to produce a single base on one strand that

is not basepairing with other nucleotides in the motif. Such nucleotides are modeled as a fixed

node instead of as a variable length insertion when the base is either stacking on other bases or is

making a base-backbone interaction. Node F8 produces a nucleotide on the left strand between B7

and B10, a position which is included in the core of the model because it stacks with the bases in

B7 and B10 on the left strand. Two Cs and two Us were observed in 3D structures in this position.

This results in about a 42% probability of the model producing a C or U, and an 8% chance of

it producing an A or G. Fixed nodes do not produce insertions so possible insertions after F8 are

handled by an initial node, I9. Fixed positions are discussed in more detail in Section 4.9.

52
Node I9 is another initial node that models insertions after the fixed node F8. Because F8 is

modeling a fixed position on the left strand, the probability of the initial node producing nucleotides

on the right strand is zero. Node B7 is already modeling possible insertions in this position. On the

left strand, the probabilities are the same as seen in node I6. This is because in both positions we

are accounting for the possibility of seeing new insertions when we have not seen any in our 3D

data. Note that if I9 could produce insertions on the right stand, it is possible that both B7 and I9

could produce insertions between the modeled positions in B7 and B10 in the right strand, resulting

in undesirable ambiguity. Having initial nodes that occur after fixed nodes only produce insertions

on the same strand as the fixed node avoids this ambiguity.

The last basepair in the model, the closing flanking cWW basepair, is modeled by node B10. All

four sequences from 3D structures have a GU base combination in this position. GU and UG are

near-isosteric to the canonical cWW basepairs (AU, CG, GC, and UA), and therefore sometimes

appear in helices and as flanking cWW basepairs. Node B10 has a 38% chance of producing a

GU combination, and a 30% chance of producing an AC base combination, which is an isosteric

substitution. The canonical AU, CG, GC, and UA combinations have around a 4% chance of being

produced, and UG about 1.5%, as it is geometrically quite different from GU. Details on how these

basepair substitution probabilities are parameterized are discussed in Section 4.5 and in Section

4.6. The closing basepair node B10 can produce insertions, but like the insertions produced by

node I1, these nucleotides would be outside of the flanking basepairs, and therefore would not

really be a part of the internal loop. Because of this, B10 produces insertions following the same

probabilities as node I1, not the probabilities used by the other basepair nodes, such as B2.

All of our SCFG/MRF motif models end with a hairpin node. If the node is actually modelling a

hairpin motif, the hairpin node implements an MRF like a cluster node, and models all interactions

after the last nested basepair. In a internal loop, the closing hairpin node simply produces the *

chain break character with 100% probability, which is exactly what the final node in the model,

H11, does.

53

4.5 Parameterization of basepair substitution probabilities

Dependencies between positions in an RNA sequence occur as a result of basepairs. Because

of this, the most important thing to correctly model is the anticipated sequence for basepairs.

The primary tool we use to anticipate sequence variability in basepairs is isostericity, which was

introduced in Section 2.3 and Section 4.2. This section will discuss how we use isostericity to

make basepair substitution matrices, which model the sequence variability for a basepair. There

are four possibilities for each base in a basepair, so the basepairs are modeled with 4x4 matrices of

probabilities. We refer to these 4x4 matrices as substitution matrices.

The basis for using isostericity was laid out by the BGSU RNA group in (Stombaugh et al.,

2009). In this paper they introduced the isodiscrepancy index, or IDI for short, the first quantitative

measure for basepair isostericity. Our basepair sequence variability modeling is based on this

IDI score. IDI measures how much the backbone of the RNA would have to move, in units of

Angstroms, to change to different nucleotides making the same basepair.

We use IDI to classify substitutions between basepairs into 3 groups. Two basepairs with an

IDI less than 2 are said to be isosteric, meaning their geometries are very similar. For example,

UA, AU, CG, and GC cWW basepairs are all isosteric. Two basepairs with IDI between 2 and 3.5

are called near isosteric. Near isosteric base substitutions are less common than isosteric substitu-

tions, because they cause some change in geometry. Two basepairs with an IDI greater than 3.5 are

said to be non-isosteric. Substitutions between non-isosteric base combinations are rare because

of the large geometry change needed to accommodate them. IDI values for the different base-

pairs are available in the RNA Basepair Catalog, see http://ndbserver.rutgers.edu/

ndbmodule/services/BPCatalog/bpCatalog.html.

In the 2009 paper, our group studied how often isosteric, near isosteric, and non-isosteric base

substitutions are in bacterial alignments of E. coli and Thermus thermophilus. It was reported

that non-isosteric substitutions appear in only 2% of cases. This is for both cWW and non-cWW

basepairs. Near isosteric base substitutions are more common for cWW basepairs, occurring in

10% of cases, while they remain rare for non-cWW basepairs, again occurring in only 2% of

http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html
http://ndbserver.rutgers.edu/ndbmodule/services/BPCatalog/bpCatalog.html

54
cases. These probabilities inform how we convert IDI scores into probabilities, as will be shown

later in this section.

Figure 4.5 below shows three tWH basepairs, an AG, and AA, and a CC. The connections to

the backbone have been highlighted to make the similarities and differences more clear. The AG

and AA are very similar and will have a low IDI. They are both very dissimilar to the CC tWH

basepair, with which they will have a high IDI. The original AG basepair is shown on the left,

with the A colored red and G colored green. The Watson-Crick edge of the A is in contact with

the Hoogsteen edge of the G and the backbone connections are on opposite sides of the contacting

edges, which is why this is annotated as a tWH pair. An isosteric AA tWH basepair is shown in

the middle, with nearly identical backbone connections, highlighted with thick yellow bars. On

the right, a non-isosteric CC tWH basepair is shown on the right, with very different backbone

connections.

Figure 4.5 Examples of isosteric and non-isosteric substitutions for a AG tWH basepair.

To make a 4x4 substitution matrix for a particular basepair, the starting point is a 4x4 IDI

matrix, based on the IDI values for each base combination compared to a particular basepair. For

example, the IDI matrix for a AG tWH basepair is shown below in 4.1. AG has an IDI of zero

with another AG basepair, because it is the same. AA and AC tWH basepairs are isosteric to AG

tWH basepairs, have low values of IDI (1.28 and 1.94, respectively), and have a very similar 3D

geometry. They are marked in blue. CG, GG, and UU are near isosteric and are in yellow. UA,

UG, and CC are non-isosteric, with CC being particularly dissimilar, as noted above. These are

colored orange and red. Several base combinations cannot make a tWH basepair, including AC,

AU, CU, GA, GC, and UC. These are colored gray.

55
A C G U

A 1.28 X 0 X
C 1.94 5.23 2.26 X
G X X 2.67 2.01
U 3.67 X 3.83 2.56

Table 4.1 IDI matrix for a AG tWH basepair. Base combinations that cannot make a tWH basepair
are marked with an X.

After the IDI matrix for a basepair is obtained, we convert the IDI values into probabilities. The

IDI scores need to be inverted, because basepairs with low IDI are closer to the original basepair

and should have higher probability.

A piecewise linear function is used to convert IDI scores. The function is shown in Figure 4.6

below. Isosteric substitutions get the highest scores, then there is a steep drop to near isosteric

scores, then a gradual decrease to the minimum score of 0.01 at an IDI of 9. Base combinations

that cannot make a particular basepair are given a score of 0.01, as well.

There are a number of reasons that this piecewise linear empirical method was decided upon.

Initially, a smooth function, 1/(1 + d2), was used. I discovered that this function created substitu-

tion matrices that were too diffuse, giving too high probability to non-isosteric basepair substitu-

tions. This resulted in models that were very non-specific, in the space of all possible sequences,

a concept which is explored more in Chapter 7. Adjusting the same function to have a steeper

drop-off resulted in probabilities that were too low for isosteric substitutions, resulting in models

that would not predict many possible sequences that have not yet been seen in 3D. We decided that

using a piecewise linear function allows the characteristics of the function to be set quite easily

and to reflect known rates at which isosteric, near-isosteric, and non-isosteric substitutions occur,

and there are no discernible disadvantages to using a non-smooth function for the inversion. That

function is shown below in Figure 4.6.

The inverted scores for the AG tWH matrix are shown in Table 4.2 below. The scores fall

between 0 and 1, but need to be normalized to add to 1.

As previously mentioned, base combinations that cannot make the basepair in an IDI matrix

are given an inversion score of 0.01, the lowest possible score for a base combination that can

56

Figure 4.6 Inversion function to translate IDI scores into probabilities. The function is piecewise
linear between these (IDI,Score) points: (0,1), (1.8,0.8), (2.2,0.13), (3.1,0.07), (3.5,0.05), (7,0.03),
(9,0.01), (10.0,0.01).

A C G U
A 0.86 0.01 1 0.01
C 0.78 0.04 0.13 0.01
G 0.01 0.01 0.1 0.45
U 0.05 0.01 0.05 0.11

Table 4.2 Matrix of inverted isostericity scores for an AG tWH basepair. The base combinations
that cannot make the tWH basepair have been given the minimum inversion score of 0.01.

make the basepair. One might think it would be more sensible to assign a score of 0, or some

very small number, but doing so actually carries several disadvantages. We want not just to score

single sequences against models, but also multiple sequences extracted from multiple sequence

alignments. It does this by taking the mean of the log probability for the most likely parse for each

sequence. Sequence alignments can contain errors, both in sequences and the alignment itself. It is

also possible that not all sequences in an alignment are making the same structure in the position

where a particular loop is. If an overly low score was given for non-isosteric substitutions or

substitutions that cannot make the pair, a single bad sequence could ruin the overall score for an

alignment of loop sequences that otherwise fit the group very well. A score of negative infinity (the

logarithm of 0) is quite possible, and would be given to any sequence the model cannot produce,

so one erroneous sequence could quite easily ruin the matching for a group of loop sequences.

These SCFG/MRF models are also used to align sequences to motif groups. If the probability

57
for a combination of bases was too low, the model might find an alternative parse for the sequence

that would not make much sense in an alignment. It would be strange and not useful if an alignment

suggested that a basepair was deleted from an internal loop and then a nucleotide was inserted on

either strand. This is how the models would align a sequence to a model if the probability in a

basepair substitution matrix was overly low, however.

4.6 Using multiple instances of a loop structure

We have discussed how the geometry of a single basepair is converted into a substitution matrix

using IDI scores, but we can make also make models based on multiple instances of the same motif

geometry. In this section we will cover how we combine information from multiple instances of a

motif when making a model.

When there are multiple instances of a basepair, a substitution matrix is calculated for each

instance following the steps outlined in Section 4.5. These matrices are also adjusted for base-

backbone interactions, as described later in Section 4.7. It is possible that not all instances of

the motif will have the same base-backbone interactions, so this step might cause instances with

the same nucleotides to have different substitution matrices. Finally, all the matrices are averaged

together.

Although the basepair probabilities in our models are based primarily on the geometry of base-

pairs through isostericity, we also use more traditional statistical methods to adjust these probabil-

ities based on the existing data. The more existing examples from 3D structures that we have for a

particular motif group, the more that probabilities should be shifted towards the distribution seen in

3D sequences. A weighted average is used to combine the substitution matrix obtained from isos-

tericity and adjusted for base-backbone interactions with one based on the frequencies of sequences

observed from 3D structures. The factor used to weight the instances matrix is (N/(N+100)), where

N is the number of sequences observed from 3D structures. So, if the motif group is a singleton

with one instance from 3D, 1% weight will be given to the frequency matrix and 99% weight will

be given to the isostericity matrix. If there are 100 instances from 3D structure in the motif group,

half weight will be given to both the frequency matrix and the IDI matrix. The largest motif group

58
in release 1.13 is motif group IL 97217.11, which has 248 members, so it will be heavily weighted

towards the frequency matrix.

4.7 Parameterization of base-backbone interactions

Base-backbone interactions occur between atoms in a base and atoms in the RNA backbone that

connects the bases together in a chain. Studies have shown that bases involved in base-backbone in-

teractions are strongly conserved (Stombaugh et al., 2009; Zirbel et al., 2015), because any change

in the base that is interacting with the backbone tends to create a large change in the geometry of the

interaction. This is because base-backbone interactions tend to use very specific parts of the base

involved in the interaction. There are two types of base-backbone interactions, base-phosphate and

base-ribose. Most positions making base-phosphate interactions are over 90% conserved. Because

of this, any bases making the base part of a base-backbone interactions have all probability matri-

ces and vectors associated with them shift strongly towards conserving the observed base. We do

not, however, push the probability of conservation all the way to the observed 90%. This is partly

because of our desire for our models to be diffuse, but also because many of the bases in our study

are making basepair interactions as well, which also contribute to conservation. The atoms on the

backbone don’t vary with the base connected to the backbone, so base-backbone interactions can

be thought of as single base interactions.

To model the effect of base-backbone interactions, the Dirichlet priors are adjusted by a con-

stant factor, weakening their effect, before being added to count vectors. Bases involved in base-

phosphate interactions are more highly conserved then those involved in base-ribose. Accordingly,

the factor used for base-phosphate interactions, 7, is slightly larger than the one used for base-

ribose interactions, 5. These factors are used to weaken the prior distribution used to smooth out

the probability matrices and vectors, as well as strengthen columns in substitution matrices. With-

out further studies on base-backbone interactions, we do not have the data to estimate more specific

parameters.

For example, say that a motif group has fixed position. This motif group has only one instances

in 3D structures, and the position is a G. If the base was not making a base-backbone interaction,

59
the base count vector would be [0, 0, 1, 0] and the base prior vector would be [0.5, 0.5, 0.5, 0.5],

resulting in a combined vector of [0.5, 0.5, 1.5, 0.5] and a normalized vector of about[0.222, 0.222,

0.333, 0.222]. If the position makes a base ribose interaction weakens the prior by a factor of five

to [0.1, 0.1, 0.1, 0.1], resulting in a combined vector of [0.1, 0.1, 1.1, 0.1] and a normalized vector

of about [0.07, 0.07, 0.79, 0.07], nearly 80% conserved. If the position is making a base phosphate

interaction, the normalized vector would be [0.055, 0.055, 0.835, 0.055], reflecting the higher

conservation rates for bases making base-phosphate interactions. In both cases the observed base

is shifted to be more likely to be conserved, but not the the extent that we observed in the data.

4.8 Parameterization of insertions

Variable length insertions occur in RNA loops when a base or multiple bases “bulge” out from

a loop. These bases are not making any sort of interaction (basepair, base-backbone, or stacking)

with any of the other bases in the loop.

Four nodes can produce variable length insertions. Basepair nodes model a variable length in-

sertion on both strands. Initial nodes can also produce variable length insertions after both strands,

and sometimes are used to produce insertions on only one strand. Cluster and hairpin nodes, can

produce variable length insertions that have been observed in sequences from 3D structures be-

tween positions modeled by the MRF.

Variable length insertions are parameterized differently depending on whether or not they have

been observed in 3D structures at a particular position. If no insertions have been observed, then

we estimate the probability insertions might occur at that position based on percentage of loop

positions that have insertions in the RNA 3D Motif Atlas. If any of the 3D structures has variable

length insertions at the position, then we know that insertions are biologically allowed there, and

we switch to parameterization that leans heavily on the sequences that have been observed in 3D

structures.

Regardless of the node that is modeling them, all variable length insertions are parameterized in

the same manner. If no insertions are observed in sequences from 3D structures, a fixed distribution

depending on the number of sequences in the motif group is used. All of these distributions have

60
at least a 99% chance of having no insertions, with a slight probability of 1 insertion and an even

smaller chance of 2 insertions. If there are more sequences from 3D structures the probability

goes down, to a final distribution for motif groups with four or more 3D instances. If insertions do

occur, they will have an equal chance of being A, C, G, or U.

When at least one sequence with an insertion is observed in a 3D structure, the probabilities

for insertions are based on the sequences from 3D structures. A vector of counts for sequence

lengths of insertions is created, and then slightly smoothed out so that observed insertion length

also slightly increases the probability of seeing slightly longer or shorter sequences. The smoothing

effect is lessened the more data is available (i.e., the more sequences from 3D structures are in the

motif group). Specifically, each instance will add 1 to the count for its length, 1/(20*L) for counts

one more or one less, and 1/(400*L) for the count two more than the observed length, where L is

the number of instances from 3D structures. The vector is then normalized into probabilities. The

probabilities for inserted bases are also updated based on sequences from 3D structure. Counts for

the four bases are tallied, then a prior of 0.5 is added to each count, then the vector is normalized.

4.9 Fixed bases

Not all conserved bases in motif groups are involved in an interaction with another base. These

bases are either involved in base backbone interactions, or are stacked with another base. In either

case, the base is modeled as a single base interaction. This could be either a single base interaction

in a cluster or hairpin node, or a fixed node if the base is not inside an MRF. The concept of fixed

bases is something we have come to understand since Michael Sarver’s dissertation, and are a new

addition to our methodology. Either way, a vector with the frequencies for the different bases is

combined with a prior weight vector and then normalized for probabilities. The prior vector adds

0.5 to each of the frequency counts, unless the fixed base is involved in a base-backbone interaction.

If the base is making a base backbone interaction, the influence of the prior is substantially reduced,

to reflect the high conservation rate seen for bases making base-backbone interactions, see Section

4.7 for details on how this is done.

61

4.10 Markov random field node normalization

For Initial, Basepair, and Fixed nodes, the sequences that can be generated are built up from

simple operations such as generating a basepair or generating an insertion length and then a letter

A, C, G, or U for the inserted bases. These are done independently, and one can directly calculate

the probability of each generation history and these probabilities add up to one. This is not the

case for Cluster and Hairpin nodes that utilize Markov Random Fields (MRFs). This section will

discuss how such nodes are normalized. Normalization of these nodes is important in comparing

the results between different models.

The nodes that make use of MRFs (cluster and hairpin nodes) are not automatically normalized.

Each basepair in an MRF node has its own substitution probability matrix. So, for example, he

probabilities for a base triple will be determined by two different substitution probability matrices,

one for each basepair. When calculating the probability score for a sequence making a triple, the

probability scores for each basepair are multiplied together. However, because one of the bases is

included in both basepairs, the sum of probability scores over all possible sequences for the triple

will be less than one.

This is an issue when one wishes to compare a sequence’s probabilities against different mod-

els, because models using cluster nodes will have inherently lower scores, and the larger the cluster

node the lower the scores will be. Normalization can easily remedy this problem, however. If, for

each cluster and hairpin node in a model the probabilities over all possible sequences are summed,

a normalization constant for the node is obtained. If the scores for sequences against this model

are divided by this constant, the sum of probabilities over all possible generation histories will be

one, creating a level playing field.

Consider, for example, a simple cluster node for modeling a base triple. The triple from

IL 95652.3, discussed in Section 4.4, is a good example. The node will contain two basepairs,

one between nucleotides 1 and 2, and another between nucleotides 2 and 3. Substitution matrices

for these basepairs are shown below in 4.3 and 4.4.

There are 64 different possible sequences for this triple, because the 2nd base in the first base-

62
GU cSH A C G U
A 0.054 0.056 0.003 0.003
C 0.052 0.061 0.001 0.061
G 0.037 0.02 0.041 0.491
U 0.005 0.054 0.001 0.061

Table 4.3 Table of substitution probabilities for a GU cSH basepair. This table shows the substitu-
tion probabilities for the basepair that forms the first half of the base triple in IL 95652.3.

UA tWH A C G U
A 0.025 0.005 0.026 0.005
C 0.053 0.044 0.035 0.005
G 0.005 0.005 0.063 0.025
U 0.573 0.005 0.066 0.057

Table 4.4 Table of substitution probabilities for a UA tWH basepair. This table shows the substitu-
tion probabilities for the basepair that forms the second half of the base triple in IL 95652.3.

pair must be the same as the 1st base in the second basepair. This means the sum over all 64

different combinations will be less than 1. 4.5 shows the probability for each possible sequence,

as well as the sum of the probabilities for each sequence.

The sum of the probabilities over all generation histories is the normalization constant. Di-

viding the original probabilities by this constant, a set of proper probabilities that sum to 1 is

obtained. Thus, for example, the probability of the GUA base triple becomes 0.281052 / 0.471704

= 0.595823.

For some MRF nodes, however, simply iterating over all sequences in the cluster node is not

required to calculate the normalization constant. In some cases, the cluster node can be broken

down into smaller parts to simplify the process. Some cluster nodes can produce so many gener-

ation histories that they cannot realistically be enumerated. This method makes it possible for all

cluster nodes used by JAR3D thus far to be normalized. Motif group IL 16415.2 provides a good

example; its basepair diagram is shown below in Figure 4.7. The 8 positions in the cluster node

result in 48; over 65,000; possible sequences.

It is, however, not necessary in this case to even iterate over all of the sequences that the cluster

node can generate to find the normalization constant for it. Instead, each independent group of

63
Seq. Prob. Seq. Prob. Seq. Prob. Seq. Prob.
AAA 0.00138 CAA 0.00133 GAA 0.00094 UAA 0.00012
AAC 0.00029 CAC 0.00028 GAC 0.0002 UAC 2.5E-05
AAG 0.00142 CAG 0.00137 GAG 0.00097 UAG 0.00012
AAU 0.00029 CAU 0.00028 GAU 0.0002 UAU 2.5E-05
ACA 0.00296 CCA 0.00322 GCA 0.00107 UCA 0.00288
ACC 0.00247 CCC 0.0027 GCC 0.0009 UCC 0.0024
ACG 0.00198 CCG 0.00215 GCG 0.00072 UCG 0.00192
ACU 0.0003 CCU 0.00033 GCU 0.00011 UCU 0.00029
AGA 1.6E-05 CGA 3E-06 GGA 0.00022 UGA 3E-06
AGC 1.6E-05 CGC 3E-06 GGC 0.00022 UGC 3E-06
AGG 0.00019 CGG 0.00004 GGG 0.00259 UGG 0.00004
AGU 7.6E-05 CGU 1.6E-05 GGU 0.00103 UGU 1.6E-05
AUA 0.00144 CUA 0.03507 GUA 0.28105 UUA 0.0349
AUC 1.3E-05 CUC 0.00033 GUC 0.00262 UUC 0.00033
AUG 0.00017 CUG 0.00404 GUG 0.03234 UUG 0.00402
AUU 0.00014 CUU 0.00351 GUU 0.02816 UUU 0.0035

Total 0.4717

Table 4.5 Table of product of probabilities for a basetriple. This table shows the products of
probabilities for all possible basetriples using the probabilities from the substitution matrices in
Table 4.3 and Table 4.4. Note that the highest entry, GUA, is in bold and is italic.

basepair interactions can be iterated over separately, and the resulting constants can be multiplied

to give the overall normalization constant. The cluster node in IL 16415.2 contains eight positions.

One of the positions is not involved in any basepairing, and can safely be ignored. The remaining

seven create two disjoint sets of base triples. The normalization constants for these two sets can

be calculated separately. Positions 2, 5, and 7 are involved in a base triple, the simplest situation

which requires normalization, and only requires 64 sequences have their probabilities calculated.

Positions 1, 3, 4, and 8 are in another set, connected by two base triples between positions 1, 3,

and 4 and 1, 4, and 8. This four position set will require the calculation of probabilities for only

256 sequences. These means the normalization constant for the node can be found by calculating

probabilities for only 320 sequences, not 65,000.

The ability to break down cluster node normalization to independent position sets allows us to

now properly normalize all cluster and hairpin nodes, when it was previously impossible for us to

do so for a number of larger nodes.

64

Figure 4.7 Basepair diagram for IL 16415.2. IL 16415.2 is an internal loop which has an
SCFG/MRF model that contains a large cluster node. The positions in the cluster node have
been numbered. Due to basepair crossing, IL 16415.2 contains a large cluster node covering 8
nucleotides.

65

CHAPTER 5 JAR3D SOFTWARE AND WEB SERVERS

This chapter will introduce and discuss the software package we developed to implement our

SCFG/MRF models for RNA loop sequence variability. The software is called JAR3D, which

stands for Java Alignment of RNA in 3D. The source code for JAR3D is available on GitHub, and

both a command line tool and a Web Server have been made available to researchers.

The JAR3D software package consists of two main parts. The first is a set of Matlab programs

that analyze RNA 3D structures to produce SCFG/MRF models for RNA loop sequence variability,

based on the RNA loop motif groups in the RNA 3D Motif Atlas. The second part implemented

and Java and is used to compare novel sequences to JAR3D models.

Section 5.1 introduces the JAR3D software suite. Section 5.2 describes how the JAR3D

java code compares novel sequences to JAR3D SCFG/MRF models. Section 5.3 discusses us-

ing JAR3D to align sequences to a loop geometry. Finally, Section 5.4 discusses using JAR3D to

match novel loop sequences with unknown geometry to possible geometries from 3D structures

using the JAR3D SCFG/MRF models.

5.1 Introduction to JAR3D

JAR3D, short for Java-based Alignment of RNA using 3D structure, is a collection of programs

that make and score probabilistic models of the sequences which form RNA 3D structures. These

models utilize Stochastic Context Free Grammars (SCFGs) and Markov Random Fields (MRFs)

and are referred to as SCFG/MRF models. A JAR3D SCFG/MRF model for an RNA 3D structure

can be used both to assess the likelihood that an RNA sequence forms a 3D structure and to align

a sequence to a 3D structure.

Alignment of RNA sequences to an RNA 3D structure via a JAR3D model essentially means

assigning nucleotides in the sequence to positions in the 3D structure. There are two primary

reasons one might be interested in aligning RNA sequences to 3D structures. The first is to align

sequences to each other, and the second is to infer 3D structure of RNA motifs. The JAR3D model

66
acts as the link between the sequence and the 3D structure; the model is based on the 3D structure

and sequences can then be aligned to the model. RNA structures can have insertion of nucleotides,

deletion of nucleotides, and changes in structural elements, so this is not always a straightforward

problem. The JAR3D Java code can use either the CYK (Cocke–Younger–Kasami) (Younger,

1967) algorithm to produce a most likely alignment between the structural elements of an RNA 3D

structure and a given RNA sequence. It can also use the inside-outside algorithm (Baker, 1979) to

calculate the total probability that a model will produce a given sequence.

JAR3D models can be used to align novel sequences to 3D structures when a homologous 3D

structure has been solved. For example, someone might be interested in studying the ribosome of

a bacterium for which no ribosomal 3D structure has been solved. However, many 3D structures

have been solved for the ribosome of E. coli. A JAR3D model could be used to align the sequence

of the novel bacterial ribosome to the E. coli ribosomal structure, which should be very similar to

the ribosome of the novel bacterium. Areas which align poorly might be of particular interest for

future study.

Another use for JAR3D is to match sequences of RNA internal loops (IL) and hairpin loops

(HL) to possible 3D structures. RNA has a wide range of cellular functions, and the 3D structure of

an RNA is key to the performance of that function. Matching sequences of RNA internal loops and

hairpin loops to known 3D motifs is an important step on the path to predicting the 3D structure

formed by a full-length RNA sequence.

JAR3D is primarily implemented through two programming languages. The JAR3D models

are produced by a set of Matlab programs. The models are used to parse and align sequences to

models by a set of Java programs. The code is freely available and easily accessed at https:

//github.com/BGSU-RNA/JAR3D.

JAR3D models for RNA motifs are more diffuse, by design, than the sequence variation typi-

cally observed in the few 3D instances of the motif that have been observed experimentally. This

is so that they can catch potential new instances of a motif. Because of this, the probabilities for

even the most likely sequences for a JAR3D model to generate are usually quite small. Because

https://github.com/BGSU-RNA/JAR3D
https://github.com/BGSU-RNA/JAR3D

67
the probabilities are quite low, we take the natural logarithm of the probability of the model gener-

ating the sequence. Because we are interested in sequence alignments, we usually do not use the

total probability of a model generating a sequence, but rather the probability for the most likely

generation history. We call the logarithm of the maximum probability generation history result an

Alignment Score, because it is a result of aligning the sequence to the model, and we use the word

score to avoid implying a relationship to the probabilities found in nature.

The work that would eventually become JAR3D started as Matlab code, written by Michael

Sarver as part of his 2006 dissertation work (Sarver, 2006). Unfortunately, the parsing was too

slow, even using the CYK algorithm, so that part of the system was ported to Java, and JAR3D was

born. Model generation does not suffer from the same need for efficiency and speed that parsing

does, since models are generated infrequently, so that code was left in Matlab. The initial work of

translating JAR3D’s implementation of the CYK algorithm into Java was done by Meg Pirrung.

I picked up were Meg left off, fixing bugs, making parts of the the JAR3D code more efficient,

adding many new features, and, most importantly, modifying it for modeling 3D loop sequence

variability.

One of the major changes I had to make to JAR3D was adding parsing for both strand orders

for internal loops. Because internal loops are two stranded, a sequence could possibly form the

geometry of a JAR3D model in two different ways, and both ways need to be checked to find

the best parse for a sequence. To better understand this need, an example will be shown using

motif group IL 85647.3, a motif group for the sarcin-ricin motif. Sarcin-ricin motifs have a char-

acteristic AGUA sequence within their longest strands. This sequence appears in every instance

of IL 85647.3 seen in 3D. The sequence CUCAGUAU*AGAACCG is seen twice in 3D instances

of IL 85647.3. However, if the other strand order, AGAACCG*CUCAGUAU, was given as input

to JAR3D, it could score very poorly, because the signature sub-sequence is on the wrong strand.

This is why we need to check both strand orders for internal loop sequences.

I added code to JAR3D to reverse strand order for internal loop sequences given as input and

score both orientations. After both orientations have been parsed, the orientation with the highest

68
maximum probability generation history is selected as the orientation to use when comparing the

sequence to the model, and is recorded for output.

Anothing major addition I made to the JAR3D code was the addition of a command line inter-

face. JAR3D functions initially just produced Java objects or text files, and had to be called from

Matlab or within a Java Development Environment such as Eclipse. I produced two Java jar files,

one for use with the JAR3D web server which is discussed more below, and one designed to be

called independently from the command line.

The command line version of JAR3D, the main function of which can be viewed at

https://github.com/BGSU-RNA/JAR3D/blob/master/src/main/Java/edu/

bgsu/rna/jar3d/cli/Main.Java, takes fasta-formatted internal or hairpin loops, as a

group or a list, and produces simple but highly informative csv formatted output. Fasta format is a

text-based format for representing nucleotide sequences. In fasta files, each nucleotide sequence

is prefaced with a descriptor line which indicates where the sequence came from. For example,

the sarcin-ricin sequence from the strand order example above could be expressed in fasta format

as shown below. Multiple sequences can be expressed in a fasta file, each preceded by its own

descriptor line, as shown below.

>Sarcin-Ricin Sequence 1

CUCAGUAU*AGAACCG

The command line version also needs to be given a text file that lists the JAR3D models that

the sequences in the fasta file will be parsed against. This text file could list models from an entire

Motif Atlas release, a single model, or something in between. Two csv files are created as output,

one that has “sequence level” results for each sequence in the input file and one that has “loop

level” results, which combine results for all the sequences in the sequence file against all models

in the model list file. The format and contents of this output is explained in detail in Appendix F

of (Zirbel et al., 2015).

The JAR3D command line tool is distributed as a JAR file. A .jar file is an archive of Java

files that make Java code easy to distribute, and they can be run on almost any platform using the

https://github.com/BGSU-RNA/JAR3D/blob/master/src/main/Java/edu/bgsu/rna/jar3d/cli/Main.Java
https://github.com/BGSU-RNA/JAR3D/blob/master/src/main/Java/edu/bgsu/rna/jar3d/cli/Main.Java

69
Java Virtual Machine. The JAR3D command line JAR file is fast and powerful, and is useful for

experienced users who want to process large amounts of data. It does, however, requires the user

to have command line expertise, and for the user to download JAR3D model files, or make them

themselves.

Besides the command line tool, JAR3D is also available through a web server (Roll et al., 2016).

The JAR3D web server provides a convenient, user friendly way for users to access JAR3D. The

JAR3D web server can be found at http://rna.bgsu.edu/jar3d. I worked extensively on

the JAR3D webserver, particularly the Java jar file that it uses. Anton Petrov helped with the user

interface and Blake Sweeney developed an input/output system for the both the jar file used by the

command line tool and the webserver, and also helped with the user interface of the web server. A

major component of the JAR3D webserver which I developed is a routine to show the alignment

of input sequence(s) to a specified JAR3D model.

The input page for the JAR3D web server allows for a variety of input formats. All inputs

can either be fasta formatted or sequence only, with each sequence on a new line. Sequence only

inputs are given generic fasta headers by the PHP code that processes the input, such as “Sequence

1, Sequence 2, ...”. Both hairpin loops and internal loops can be input as single loops, either as

single sequences or as multiple sequences from homologous molecules. Full molecule sequences

can also be input, provided that they are aligned and a dot-bracket secondary structure indicating

the Watson-Crick basepairs is also provided; in this case, the web server separates out the internal

and hairpin loops and submits their sequences to JAR3D, showing the results for all loops on the

results page. Appendix A shows an example query on the JAR3D web server input page.

The loop level output page generated after submitting a query to the JAR3D web server shows

the top scoring groups, and provides a link to view all results if desired. There are also links

available that will produce alignments of input sequences to a specific group. Using JAR3D for

alignments is discussed more in Section 5.3. The loop level output page generated by the input

shown in Appendix A is shown in Appendix B. An alignment of the input sequences to a specific

JAR3D model is shown in Appendix C.

http://rna.bgsu.edu/jar3d

70

5.2 Parsing sequences against JAR3D models

In Chapter 4, we discussed how we build JAR3D models for the sequence variability for an

RNA motif. In this chapter, we will discuss how JAR3D models can be used. Most use cases for

JAR3D models involve taking an RNA loop sequence and seeing how likely it is that a JAR3D

model would generate that sequence, and how it would generate the sequence. This process is

called parsing the sequence against the model.

There are actually two relevant probabilities one might want to calculate when parsing a se-

quence against an SCFG model. This is because it is possible for SCFGs to produce the same

sequence in different ways. Each method of producing a particular sequence is called a genera-

tion history. The easiest to understand is total probability, which is the sum of the probabilities

of all possible generation histories for the sequence. Or, more simply put, the probability that the

particular sequence is produced if the model is asked to produce a random sequence. The second

probability which parsing a sequence against a model can produce is the maximum generation

history probability, the probability of the most likely generation history for the sequence. We call

this the maximum probability for short. The latter is less computationally complex to find, and for

our models is often very close to total the probability, because typically there is only one straight-

forward way for a JAR3D model to generate a given sequence, and a mixture of deletions and

insertions are needed in every other generation history.

Because even our fairly small JAR3D SCFG/MRF models can produce billions of sequences, it

is not feasible to save these probabilities for every sequence that every JAR3D model can produce.

This means that it is necessary that these probabilities can be calculated quickly and efficiently

upon request. This is the primary reason that JAR3D models are restrictive SCFGs, because there

is an algorithm to quickly and efficiently parse sequences against stochastic context free grammars.

The Cocke–Younger–Kasami algorithm, commonly abbreviated as the CYK algorithm, is a very

efficient parsing algorithm for context free grammars (Younger, 1967). JAR3D employs the CYK

algorithm to produce maximum generation history probability. A second algorithm, the Inside-

Outside algorithm, is also implemented to calculate total probability if needed, but using CYK to

71
produce maximum generation history probabilities is JAR3D’s default.

It is important to note that, although parsing a sequence against a JAR3D model produces a

probability, that probability is not meant to estimate or reflect the probability of finding that se-

quence making a particular RNA 3D motif in nature. We simply do not have the available data to

estimate such probabilities. For the applications we have for JAR3D models, though, such proba-

bilities are not needed. We simply need to be able to compare probabilities of the same sequence

being generated by different models, or to compare probabilities of multiple sequences being gen-

erated by the same model. Because of this, it is important that JAR3D models are parameterized

in a very consistent manner.

5.3 Using JAR3D for alignments

One of the most basic uses for JAR3D models is to align a sequence or set of sequences to

a 3D geometry using a JAR3D model for the sequences consistent with the observed geometry.

One of the advantages of a guide-tree SCFG approach is that the CYK algorithm, which finds the

highest probability parse for a sequence by an SCFG model, also easily produces a traceback for

that parse. The traceback for the parse of a JAR3D model creates a direct mapping between the

sequence and the nodes in the SCFG, which have a natural mapping to the 3D structure that the

model is based on. Thus, every nucleotide in the sequence will be mapped to either a position in

the 3D structure or to an insertion location between two positions.

The JAR3D web server can also produce alignments of input sequences to specific motif groups

when requested from the loop level output page. These alignments show exactly what each nu-

cleotide in the input sequence is expected to do in the matched structure, using the maximum

probability generation history. An alignment of the input sequences to a specific JAR3D model is

shown in Appendix C.

5.4 Using JAR3D to match loop sequences to 3D structures

Another use for JAR3D is to match new loop sequences to possible motif 3D structures. For this

problem, we have a loop sequence or a set of homologous loop sequences, and we want to know

72
which, if any, known 3D structures the sequences are able to form. This is a difficult problem

for a number of reasons. Firstly, there are hundreds of known 3D structures that the sequences

could form. This makes matching a sequence to the correct group more difficult, and makes false

positives likely. Secondly, a sequence could form a novel 3D structure, one that has not been seen

before in 3D structures, so it might match nothing. Control of false positive matches is addressed

in Chapter 6. Third and finally, some motif sequences might be able to form more than one 3D

structure. These are sometimes called polymorphic motifs, meaning that the structure of the loop

will change depending on the situation that molecule is in. Many instances of this have been

observed across the RNA 3D Motif Atlas.

73

CHAPTER 6 JAR3D FALSE POSITIVE CONTROL AND VALIDATION STUDIES

In this chapter we will talk about how we control for false positives in JAR3D and describe

some validation studies we have done to test JAR3D’s effectiveness. Because the RNA 3D Motif

Atlas contains over 270 internal loop geometries and over 230 hairpin loop geometries to compare

novel sequences to, it is very important to control for false positives. Section 6.1 outlines how we

generate random RNA loop sequences to use as a distractors in controlling for false positives, and

Section 6.2 talks about the methods we developed to control for false positives using those random

sequences. Section 6.3 looks at a study of JAR3D’s performance on the recognition and matching

tasks for two alignments of sarcin-ricin loops. Finally, Section 6.4 compares the ability of JAR3D

models to recognize novel loop sequences to a similar tool, RMDetect (Cruz and Westhof, 2011).

6.1 Randomly generating sequences for false positive control

Every possible RNA sequence can be scored against a given JAR3D model. How do we tell if

the sequence scores well enough to possibly form the associated 3D structure? This is especially

relevant when we score a sequence against hundreds of JAR3D models; we want to control for

the possibility of false positive matches. To develop a system to control for false positives when

using JAR3D, we need a population of distractor sequences that look like RNA loop sequences,

but should not be accepted by the given model. We considered using the loop sequences from other

3D structures as the population of distractor sequences, but sequences vary so much in size that

many would be trivial to reject. This problem also precludes using alignment data from other 3D

structures for false positive control. So, for data that should not be accepted, we decided it would

be best to generate random loop sequences of the appropriate length.

We generated a set of random loop sequences for each loop length observed in the RNA 3D

Motif Atlas. We also included observed lengths with an insertion on either or both strands, since

models allow for insertions beyond what is observed. For internal loops, since both strand order-

ings are considered when comparing a sequence to the JAR3D models, we only look on strand

74
lengths with the shorter strand on the left. This resulted in 93 different pairs of lengths for internal

loops, ranging from (2,3) to (13,17).

In addition to sequences being of the correct length, we also took some statistics from the loop

sequences in the RNA 3D Motif Atlas to insure a similar distribution of nucleotides. Because we

include the flanking cWW basepairs in loops, the flanking basepair positions in random sequences

(and their probabilities) are always CG (0.2761), GC (0.3596), AU (0.1121), UA (0.1251), GU

(0.0639), UG (0.0632), which reflect the frequencies with which those flanking pairs are seen in

loop sequences seen in 3D structures.

Positions in the interior of the sequences are generated using a Markov chain trained on the

sequences from 3D data. This means that distribution of a nucleotide in the interior is dependent on

the previous nucleotide, which echos what is seen in helices based on the Turner energy parameters.

The distribution for the first nucleotide in the interior of the sequence is A (0.2653), C (0.1527),

G (0.3227), U (0.2593). The transition matrix that is used afterwards is shown below in Table 6.1.

The end result is sequences that look like loop sequences in general, but have no restrictions on

sequence variability from basepair or base-backbone interactions, so they have no reason that they

should match any particular 3D motif.

A C G U
A 0.459 0.124 0.236 0.181
C 0.432 0.191 0.225 0.152
G 0.508 0.120 0.175 0.197
U 0.434 0.139 0.243 0.184

Table 6.1 Transition probabilities for random sequences for JAR3D’s false positive control.

6.2 False positive control, alignment score deficit, and cutoff score

Because there are so many possible motif geometries, good false positive control is essential

for both the recognition and the matching problems. We considered a number of different options

before deciding on a method to accept or reject a given sequence for a given model. We use what

we call an acceptance region and a measure called the cutoff score, which will be discussed in this

section. The acceptance region is based on two numbers; alignment score deficit (calculated from

75
a JAR3D model) and interior edit distance from the given sequence to sequences of 3D instances.

As will be illustrated in Figures 6.1 and 6.2 below, both numbers are informative about the match

of a sequence to a motif group.

An alignment score is simply the max log probability score for a sequence, which is the log

of the maximum probability parse for the sequence. Alignment scores are negative numbers, and

their size depends on how many nodes there are in the JAR3D model. The alignment score deficit

is the difference between the best alignment score of sequences from 3D instances of the motif and

the alignment score of the given sequence. Alignment score deficit is a positive number, usually

between 0 and 20. It roughly tallies the effect of sequence changes compared to sequences seen in

3D structures; lower numbers indicate a better match. Using the alignment score deficit instead of

the straight alignment score makes it easier to compare alignment scores between different motif

groups.

Edit distance is the minimum Levenshtein edit distance from a given sequence to the sequences

observed in 3D structures for the motif group. Interior edit distance is the edit distance, exclud-

ing the flanking basepairs. We ignore the flanking basepairs because for many loop geometries,

the flanking cWW basepairs can change to other canonical cWW basepairs without changing the

geometry of the loop.

After extensive manual examination of the scores of 3D sequences, sequences from multiple

sequence alignments, and randomly-generated distractor sequences, we set a maximum acceptable

interior edit distance of 5 and a maximum acceptable alignment score deficit of 20. Sequences

beyond these limits are simply too different from the observed 3D sequences to make any claim

that they can form the 3D structure. The acceptance region is further constrained by the inequality

Deficit+3 ∗EditDistance <= k, where the constant k is specific to each motif group. For each

JAR3D model, we set k so that 4% of the sequences from the set of randomly generated sequences,

with interior edit distances between 1 and 5 and alignment score deficit less than 20, fall within

the cutoff region. Also, the minimum value of k is set to 9.5 and the maximum value is set to

25 to avoid overly small or large cutoff regions; manual examination determined that these were

76
necessary for JAR3D models for very small and very large motifs, respectively. The coefficient 3

that is multiplied by edit distance was originally estimated separately for each motif group using

linear regression (on deficit and edit distance as predictors of being a known sequence or random

sequence as the response variable), giving numbers sometimes below and sometimes above 3.

However, as it was not clear what features of the motif called for higher or lower values of this

coefficient, and as the parameter selection needs to run autonomously without human supervision,

it was safer to simply use 3 as the consensus value. This can be refined with additional study. In

summary, a sequence falls within the cutoff region if its interior edit distance is less than or equal

to 5, its alignment deficit is less than 20, and if Deficit+ 3 ∗ EditDistance <= k.

We also calculate a cutoff score to quantify where in the acceptance region the sequence falls.

A sequence with 0 alignment score deficit and 0 interior edit distance will have a cutoff score of

100. Cutoff score falls linearly to the line that defines the acceptance region, so if a sequence’s

Deficit+ 3 ∗EditDistance = k exactly, the sequence’s cutoff score will be 0. A negative cutoff

score indicates that the sequence falls outside the acceptance region and is rejected by the group.

Importantly, the interpretation of the cutoff score is the same for all motif groups, making it easier

for users of the JAR3D website to interpret the results.

Figures 6.1 and 6.2 below show the acceptance regions for IL 95652.3 and IL 73276.5. The

grey areas are the acceptance regions, and the line in the middle of it denotes a cutoff score of

50. The coordinates for three sets of sequences are also shown on the graphs. Blue Xs indicate

sequences from 3D structures, black dots indicate sequences extracted from an associated multiple

sequence alignment, and red dots indicate randomly generated distractor sequences. Ideally, most

of the black dots will fall inside of the cutoff region. However, alignments are not perfect, and due

to errors in the alignments, it is likely that many of the sequences in the alignment extract should

not be accepted by the models. A full analysis of JAR3D’s performance on sequences extracted

from multiple sequences alignments for IL 95652.3 is available in Section 6.3, and analysis of

more cutoff graphs is available in Zirbel et al. (2015).

For any one particular motif group, the acceptance region is set to accept 4% of the randomly

77

Figure 6.1 The acceptance region for IL 95652.3. Blue Xs are sequences from 3D structures, black
dots are sequences from an alignment extract, and red dots are randomly generated sequences.
Note that the black dots have been shifted to the right by a uniformly distributed random variable
between 0 and 0.25 so that they are all visible; red dots have been shift to the right by numbers
from 0.25 to 0.5.

78

Figure 6.2 The acceptance region for IL 73276.5. Blue Xs are sequences from 3D structures, black
dots are sequences from an alignment extract, and red dots are randomly generated sequences. As
with the other acceptance region graph, the black dots have been shifted to the right by a uniformly
distributed random variable between 0 and 0.25 so that they are all visible; red dots have been shift
to the right by numbers from 0.25 to 0.5.

79
generated distractor sequences which have edit distance up to 5 and alignment score deficit up to

20. When a novel sequence is presented to JAR3D, it is compared to over 250 models for different

loop geometries, and it could be accepted by any of them. We found that 22.6% of the sequences

in the set of random internal loop sequences were accepted by at least 1 group. To put this number

into a bit more context, 4.8% of randomly generated sequences have interior edit distance 0 to

one or more groups, and so should be accepted by those groups, and 7.4% of randomly generated

sequences have a cutoff score over 50 with respect to at least one motif group. This means that

the 22.6% number should not be interpreted as a false positive rate, although it is giving us similar

information. It is possible, and for smaller sequence lengths even quite likely, to randomly generate

sequences that would form one, or even more, of the 277 internal loop geometries. Strand ordering

also complicates things, as both strand orderings need to be considered for internal loops. For

example, there are 22 5x5 geometries modeled in IL 1.13, so all 5x5 sequences have 44 chances

to match a group. Because an insertion is not an automatic rejection, the 5x6 sequences can match

to all 44 of these 5x5 groups as well as any of the 6x5 and 5x6 motif groups. In general, there are

simply no true negatives, only sequences that we suspect should be negative. We simply do not

have enough information to definitively claim that a sequence cannot form a given geometry.

6.3 Alignment extract study

To examine JAR3D’s performance on the recognition and matching problems, we have done

a small scale study using alignment extracts of sarcin-ricin motif loops. We use motif group

IL 95652.3; recall that the SCFG/MRF model for this group was described in detail in Section

4.4. Two instances in the motif group can be aligned to multiple sequence alignments. The first

alignment extract is from a Silva (Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, and

Glöckner, 2012) alignment of eukaryal small ribosomal subunit sequences, which contains loop

IL 4BPP 052 in motif group IL 95652.3 in Motif Atlas release 1.13. The second alignment ex-

tract is from a GreenGenes (DeSantis, Hugenholtz, Larsen, Rojas, Brodie, Keller, Huber, Dalevi,

Hu, and Andersen, 2006) alignment, of bacterial small ribosomal subunit sequences which contains

loop IL 1FJG 034 in IL 95652.3.

80
From these alignments we have removed all sequences with interior edit distance to instances in

IL 95652.3 of zero. Edit distance of zero means that the sequence is an exact match to a sequence

seen in 3D, and interior means we ignore the flanking Watson-Crick basepairs. Leaving these

sequences in would essentially be using training data as testing data, so they are removed. Thus,

the sequences we consider here are truly novel sequences for this motif group. For the rest of

this section, “the Silva alignment” or “the GreenGenes alignment” refers to the alignments after

these interior edit distance zero sequences have been removed. This results in 31,298 rows in the

Silva alignment, and 65,530 rows in the GreenGenes alignment. Many sequences appear in the

alignment more than once, because the same sequence occurs in more than one organism. For

example, the sequence GAAGUACG*UGAAAC occurs on 23,773 rows of the Silva alignment,

and so we say it has multiplicity 23,773. If we look at only unique sequences, the Silva alignment

has 829 unique sequences, and the GreenGenes alignment has 2,249 unique sequences.

We will first look at a recognition problem, using the cutoff region described in Section 6.2. The

question we are trying to answer here is: which of the novel sequences in the two alignments does

the model for IL 95652.3 recognize as possible sequence variants? If a sequence has a positive

cutoff score, it falls in the cutoff region and is recognized by the model. Therefore, we might refer

to a sequence that meets the cutoff as “recognized” or “accepted” by the model for IL 95652.3.

Table 6.2 shows some example results for the recognition problem from the Silva alignment.

The first three rows show the sequences with the highest multiplicity for the alignment. All of them

have interior edit distance of one, and all the changes are expected to cause little change in the 3D

geometry of the motif, so they are easily within the cutoff region and recognized by JAR3D.

The next two rows, 4 and 5, show the two sequences with highest multiplicity that don’t make

the cutoff. The sequence with the highest multiplicity that doesn’t make the cutoff is sequence 4,

GAAGUACG*UGAAC. It is interior edit distance of two away from the closest sequence in 3D.

This isn’t an overly large interior edit distance, but one of the edits is a deletion on the right strand.

The other edit, a substitution, is actually so poor for the basepair the nucleotide that changed is

making, that JAR3D aligns the sequence to the group by deleting that nucleotide and making a low

81
probability insertion. Because both edits would make large changes to the geometry of the loop, the

sequence is not recognized by the model. The typical GUA sarcin-ricin base triple is maintained, so

it is possible that this is a properly aligned, biologically viable sequence, that is just geometrically

different from the sarcin-ricin geometry modeled in IL 95652.3. It also could be a small issue

with the alignment, as adding another C to the end of the right strand makes the resulting sequence

match IL 95265.3 fairly well, with an interior edit distance of 2. The sequence with the extra C,

GAAGUACG*UGAACC appears in both the Silva alignment and the GreenGenes alignment, but

only once in both.

The next sequence, sequence 5, has the second highest multiplicity that isn’t recognized by the

model is AAGUACG*UGAAAC. It has an interior edit distance of 1, a deletion on the left strand.

Normally, this would not be enough of a change to make the JAR3D model miss recognition of the

sequence, since the deletion does not affect the GUA triple. However, the outside flanking basepair

is also changed to AC. This doesn’t affect the interior edit distance, but an AC cWW basepair is

non-isosteric with the canonical cWW basepairs seen in Watson-Crick helices. This sequence is al-

most certainly making a sarcin-ricin geometry, and small issues with the alignment caused an align-

ment problem with the outside flanking basepair. In fact, the sequence GAAGUACG*UGAAAC,

with a G added the front of the left strand, matches IL 95652.3 quite well; and in fact is the se-

quence with the highest multiplicity in 6.2.

Finally, we look at the last two sequences, 6 and 7, that only appear in the alignment extract

once. These sequences don’t make the cutoff, and it is fairly obvious they should not. They are

included to highlight some of the complications that can arise when working with alignment data.

These sequences are UGUGUGUG*AGACGGAC and GUAUU*UGA, with interior edit distance

of 5 and 6, respectively. These sequences are quite different from the sequences we expect to

see for the geometry in IL 95652.3, both in size and in the nucleotides seen in the sequence. In

addition, none of the flanking cWW basepairs for either sequence are canonical. This strongly

suggests problems with the alignment for these sequences, or possibly a situation where this RNA

molecule in these organisms has a completely different structure than what was observed in the 3D

82
structures that motif group IL 95652.3 was based on. The existence and the frequency of sequences

like this explain why we chose to parameterize JAR3D models based on 3D instances instead of

on sequence variability observed in multiple sequence alignments. But now we can use the JAR3D

models to automatically recognize and exclude such sequences, and then use the remaining vetted

sequences to improve the parameterization of the models.

Sequence Multiplicity Recognized Cutoff
Score

Interior Edit
Distance

1 GAAGUACG*UGAAAC 23773 Yes 83.99 1

2 GUAGUAUG*UGAAAC 1270 Yes 83.77 1

3 GAAGUACG*UAAAAC 672 Yes 79.91 1

4 GAAGUACG*UGAAC 83 No -8.52 2

5 AAGUACG*UGAAAC 77 No -1.37 1

6 UGUGUGUG*AGACGGAC 1 No -103.04 5

7 GUAUU*UGA 1 No -147.01 6

Table 6.2 Table showing select results for the sequence recognition problem. This table show
select sequences and the results of the analysis for the recognition problem using some sequences
selected from the Silva extract corresponding to loop IL 4BPP 052 in motif group IL 95652.3.

Table 6.3 below summarizes JAR3D’s performance on the recognition problem. If we look

at all rows in the alignment, the JAR3D model for IL 95652.3 recognizes 98% of the sequences

in each alignment. Looking at just unique sequences, the JAR3D model recognizes roughly 65%

of the sequences in both alignments. It is important to note that looking at unique sequences

gives an outsized weight to sequences which only appear in the alignment once and are probably

not properly aligned, like those in the last two rows of 6.2. Because sequence alignments are

unreliable, the most important takeaway from this study is that JAR3D performs very well on the

highest multiplicity sequences, which are those that we have the most evidence for those being

legitimate instances of the loop geometry in question.

Now we will look at JAR3D’s performance on the matching problem, using the same alignment

extracts. For each unique sequence in each alignment extract, we score the sequence against 270

non-trivial internal loop motif groups (we exclude motif groups whose JAR3D model only includes

the two flanking Watson-Crick basepairs, leaving 270 motif groups). For each motif group, we

83

Alignment All
Sequences

Unique
Sequences

Silva 98.00% 64.17%

GreenGenes 98.05% 65.72%

Table 6.3 Table summarizing recognition problem performance on alignment extracts. This ta-
ble summarizes the results of JAR3D’s performance on the recognition problem using Silva and
GreenGenes alignment extracts corresponding to instances in motif group IL 95652.3.

calculate the Maximum Log Probability Score (MLPS), which is the log of the probability of the

most probable parse of the sequence. Since these are internal loop sequences, we present the two

strands to JAR3D in two different orders and take the higher MLPS. Then we find the highest

MLPS across all 270 motif groups. The correct match occurs when the model for IL 95652.3

has the highest MLPS. This is a matching problem with n=1, and there are 270 possible motif

geometries that the sequence could be matched to, so this is a difficult problem.

In Table 6.4 below a sample of representative sequences from the GreenGenes alignment are

listed, and the results for those sequences on the matching problem. Sequences 1-3 in Table

GGmatching are the highest multiplicity sequences in the alignment. They are all interior edit

distance 1 away from a sequence observed in 3D structures, and they all match to IL 95652.3

using MLPS.

Sequences 4-5, GAGUACG*UAAAAC and GAGUACG*UGAAAC are both one deletion on

the left strand away from sequences seen in 3D structures. They are the first two sequences by

multiplicity that do not match to IL 95652.3 using MLPS. Deletions are given low probability by

JAR3D models, so the penalty for the deletions is enough to give several other JAR3D models

higher MLPS scores. It is worth noting that both of the sequences do make the cutoff region for

IL 95652.3, even though it is not the top match for them. It is an open scientific problem whether

these sequences fold into the same geometry as is seen in motif group IL 95652.3, and so it is not

known if these sequences really should match that group or not. In the statistics, however, they

will reduce the apparent success rate of JAR3D.

Sequence 6, GUA*UGAAAU, appears in the alignment only once, and is interior edit distance

84

Sequence Multiplicity Matched to
IL 95652.3

Interior
Edit
Distance

1 GAAGUACG*UGAAAC 14205 Yes 1

2 GGACUACG*UAAAAC 8230 Yes 1

3 GAAGUACG*UAAAAC 7245 Yes 1

4 GAGUACG*UAAAAC 607 No 1

5 GAGUACG*UGAAAC 581 No 1

6 GUA*UGAAAU 1 No 5

7 GUAGUAGG*UGAUUU 1 No 4

Table 6.4 Table summarizing select results for the sequence matching problem. This table summa-
rizes the results for the matching problem using sequences selected from the GreenGenes extract.

5 from the most similar sequence observed in 3D structures. The flanking cWW basepairs for this

loop (GU and AU) are sensible, but the edits are all deletions on the left strand. This means there

is no physical way for this sequence to form the sarcin-ricin loop geometry. There is probably an

error in the alignment of the left strand for this sequence, as the right part does look like it is part

of a sarcin-ricin motif. Here, we would not want this sequence to match motif group IL 95652.3,

but since it is in the test set, it is counted as an error by JAR3D.

Finally, sequence 7, GUAGUAGG*UGAUUU, is an interesting case. It appears in the align-

ment only once and is interior edit distance 4 away from the most similar sequence observed in 3D

structures. It is interesting in that does not make the cutoff for IL 95652.3, so it is not recognized

by the model, but it does match best to IL 95652.3 using MLPS. Even though the sequence is not

a particularly good match to IL 95652.3, it is an even worse match for the other groups. This high-

lights the fact that it is often better to look at all the measures together, instead of solely focusing

on MLPS or the cutoff region.

Table 6.5 below summarizes JAR3D’s performance on the matching problem, using the results

of the alignment extracts. Given the difficulty of the n=1 matching problem with so many al-

ternative models, JAR3D performed quite well. About 95% of rows in the alignment matched

IL 95652.3 as the top model by MLPS. When just looking at unique sequences, around 60%

85
matched correctly. Keep in mind that it is not known what percentage of the sequences really

should match IL 95652.3 best; we simply don’t have data on that. Again, the most important

takeaway is that JAR3D matches the sequences with high multiplicity.

Alignment Multiplicity Unique
Sequences

Silva 95.79% 58.75%

GreenGenes 94.58% 62.78%

Table 6.5 Table summarizing recognition problem performance on alignment extracts. This table
summarizes the results of JAR3D’s performance on the matching problem using Silva and Green-
Genes alignment extracts.

It can often be difficult to match a sequence to the correct geometry, particularly for smaller se-

quences, where a single sequence can easily be a good match for multiple geometries. However, a

researcher studying an RNA molecule will often know the sequence of the molecule from multiple

organisms, and the sequence variability across those multiple organisms may only be consistent

with one geometry. If we presented 5 distinct novel sequences to JAR3D and calculated the aver-

age MLPS of the five sequences against each model, we would expect that the percentage of the

time that JAR3D would match to IL 95652.3 would be substantially higher than the percentages

seen here.

6.4 Comparison of JAR3D acceptance regions to RMDetect

An important finding of the JAR3D paper was that, even with the false positive controls de-

scribed above, JAR3D accepts more appropriate sequences than a similar motif recognition tool,

RMDetect.

RMDetect is a tool designed to scan genomes and multiple sequence alignments for possible

instances of loop geometries. When RMDetect was released, there were models for four internal

loop geometries, the C-loop, sarcin-ricin, kink-turn, and tandem GA loops. Here we will look at

a comparison to the performance of JAR3D and RMDetect on sarcin-ricin loops, specifically a set

of loop sequences that correspond to IL 2QBG 011, which is in motif group IL 85647.3. There

are 320 distinct sequences taken from the Silva bacterial LSU alignment.

86
6.6 below summarizes the results of the comparison. The table also shows the five most re-

peated sequences in the alignment in each of four categories: sequences that both RMDetect and

JAR3D recognize, sequences that only RMDetect recognizes, sequences that only JAR3D recog-

nizes, and sequences that neither recognize. RMDetect was run with its default parameters, and

recognition for JAR3D means a sequence falls within the cutoff region as described in Section 6.2.

There are 121 sequences recognized by both JAR3D and RMDetect, and this includes many of

the high multiplicity sequences in the alignment. The higher the multiplicity of a sequence in the

alignment, the more likely it is to be correctly aligned and to fold into the correct geometry. There

are 136 sequences recognized by neither JAR3D or RMDetect as well. These have lower multi-

plicity, and many may be included due to errors in the alignment, or fold into another geometry

that should not be matched, but is biologically viable.

There are 7 sequences accepted by RMDetect that are not accepted by JAR3D. These sequences

are all singletons in the alignment, and often have large edit distances that include deletions that

would likely cause them to fold into a different geometry, so it is not at all clear that they should

be recognized as valid sarcin-ricin sequences.

There are 56 sequences that are accepted by JAR3D but not by RMDetect. This is a large

difference, and it could be attributed to JAR3D simply having a more lax acceptance criterion.

However, many of the sequences recognized by JAR3D but not recognized by RMDetect have

high multiplicity and low edit distance, indicating that there is a high probability that they do fold

into the correct geometry and should be accepted. The JAR3D cutoff score for many of these

sequences is also quite high, meaning that even if we were to tighten the standard we use for false

positive control the sequences would still be accepted.

87

Accepted by both: 121 Multiplicity Interior
Edit
Distance

Cutoff Score

CUAAGUAC*GGAACUG 7415 0 98.27

CUAAGUAG*UGAACUG 1951 0 86.36

CUCAGUAC*GGAAGUG 1488 1 60.47

CUUAGUAG*CGAACUG 1106 1 82.87

CUCAGUAC*GGAACUG 614 0 100

RMDetect accepts, JAR3D does not: 7
ACAAGUAC*UGACCGA 1 3 -4.09

CUAAGUA*AGAACUG 1 1 -0.58

CUAAGUAC*CUG 1 4 -296.71

CUAAGUAC*GGAAACGUG 1 2 -4.73

CUAAGUAC*GGAGUG 1 2 -26.55

JAR3D accepts, RMDetect does not: 56
CUAAGUAC*AGAACUG 1129 0 -0.58

CUUAGUAC*AGAACUG 617 1 -21.47

CUUAGUAA*CGAACUG 138 1 -72.49

CUUAGUAG*CGAAUUG 78 1 -126.65

CUAAGUAA*AGAACUG 47 0 -10.43

Accepted by neither: 136
CUAAGUAC*GAACUG 35 1 -0.58

CUUUUUCG*CAAAGUG 9 4 -21.47

GGAAAAAC*UGGAUUG 8 5 -72.49

UUAAUCGU*AGCCCG 7 6 -126.65

CCAAAUAG*CAAACCG 6 4 -10.43

Table 6.6 Table summarizing comparison of JAR3D to RMDetect. This table summarizes the
results of a comparison between JAR3D and RMDetect on 320 unique sequences corresponding
the the sarcin-ricin loop in helix 29 taken from the Silva bacterial LSU alignment.

88

CHAPTER 7 DISTRIBUTION OF JAR3D MODELS OVER RNA SEQUENCE SPACE

7.1 Introduction

From a probabilistic standpoint, JAR3D models are categorical distributions over the space of

possible internal loop or hairpin loop sequences, which can be of varying length. The space of

possible sequences is quite large, even though it is discrete. For example, consider a 5x5 internal

loop model. Most of the probability for the model will be concentrated on sequences with five

base on each strand, which is a quite manageable 410 = 1, 048, 576 sequences. However, JAR3D

models also allow for variable length insertions. If this 5x5 model is made of five consecutive

basepair nodes, it will allow for variable length insertions before and after the flanking Watson-

Crick basepairs, and between each set of basepairs in the motif. The insertion points before and

after the fanking basepairs can add one base each, and the interior insertion points can add two

bases each. This means that a model for a 5x5 motif can produce 15x15 sequences. Because

insertions can be any base, all 430 = 1.15 ∗ 1018 15x15 sequences can be produced by the model,

as can all shorter sequences!

It is desirable to be able to both understand a single model’s distribution over sequence space,

and to compare a pair of models and their distributions over sequence space. For example, when

looking at a single model, one might want to know if the model is diffuse and spreads probability

over many sequences, or concentrates probability on fewer sequences. Computing informational

entropy is one way of addressing this problem. When comparing two models, one might want to

know if the distributions assign similar probabilities to the same sequences. However, the space

of possible sequences is so large that it is difficult to apply traditional methods for visualizing the

amount of spread and for comparing distributions. Because JAR3D models allow for all 4-base

sequences of an appropriate length for the model and also allow for insertions and deletions, this

is true even for the smallest JAR3D models.

Traditional measures for comparing discrete distributions, such as relative entropy, would re-

89
quire the enumeration of all sequences assigned probability by the model. Because JAR3D models

assign probability to such a large number of sequences, these methods are not feasible. However,

JAR3D models have very long and thin tails, and assign comparatively large probabilities to much

fewer sequences. Because of this, methods for analyzing and comparing models that only need

information on high probability sequences would be quite useful.

As part of this research, a number of tools have been developed to assist in the study of these

distributions, and are discussed in this chapter. They include an algorithm for finding the sequences

assigned the highest probability for a model, a cumulative probability style graph useful for under-

standing how diffuse a model is as well as for understanding the overlap between two models, and

a measure of similarity between models that can be calculated without considering all sequences

assigned non-zero probability by the models.

7.2 Top k algorithm

When working with SCFG/MRF models for RNA 3D motif sequence variability, it is desirable

to be able to list the best-scoring sequences for a group in order, from highest to lowest probability.

Under some circumstances it might be desirable to list the top k sequences, in others we might

want all sequences with a probability above a particular threshold, or to list sequences in order

until a certain amount of the probability mass of the model has been accounted for. A simple

algorithm has been developed that will list the best-scoring sequences for the models under any of

these circumstances.

The SCFG/MRF models consist of a sequence of nodes which generate subsequences indepen-

dently. As a prerequisite to the algorithm, a list of possible sequence outputs, with probabilities,

for each node of the guide tree model is required. For most models and nodes it is simple write a

program to list all of them. However, some motifs have cluster nodes which account for so many

different nucleotide positions that making an exhaustive list is not reasonable, and for these nodes

it is sufficient to list the most probable outputs. How many sequences need to be calculated de-

pends on how many most probable sequences are needed overall, several thousand should be more

than sufficient in most cases. Note that as a consequence of the sheer number of sequences that

90
some cluster and hairpin nodes can produce, for some nodes the input list of sequences will have

probabilities that add up to considerably less than 1.

The list of these possible outputs need to be sorted by their probability. The algorithm does

not require that the scores be probabilities, or that the overall score for the combined output be

the sum or product of the node scores. It does, however require that the output scoring function

is increasing in all of its variables. For example, the algorithm could work with the logarithms of

probabilities and sum them. The algorithm keeps track of 2 lists of possible outputs: the list of

most probable sequences, a list of candidate sequences, and additionally, a dictionary of possible

future candidates sequences. In this discussion “output” will refer to the output of a particular node

and “sequence” will refer to a full set of node outputs.

The algorithm needs three main data structures: a “best list” of the top scoring sequences

in order, a “candidate list” of possible additions to the best list, and a dictionary of outputs

that have met some but not all of the requirements to be on the candidate list. We will write

a, b, c, . . . for the 1st, 2nd, 3rd, . . . nodes. Then a1 is the most likely output to be generated by

Node a, b1 is the most likely to be generated by Node b, etc. The algorithm discusses the par-

ents and children of sequences, which are defined as follows. For a given sequence an1bn2cn3...

its parents are an1−1bn2cn3, an1bn2−1cn3..., an1bn2cn3−1..., etc. The children for the sequence are

an1 + 1bn2cn3..., an1bn2+1cn3..., an1bn2cn3+1..., etc. Each sequence will have exactly m parents

and m children, except the most probable sequence, which has no parents, and the most probable

sequence’s children, which only have one parent.

The algorithm hinges on fact that for a sequence to be added to the best list, all of its parents

must be on the best list already. This is because each node’s output is independent, and the input

is given in order of best scoring to worst scoring for each node. The candidate list is all sequences

for which have all of their parents in the best list, and the dictionary tracks sequences for which

some but not all parents are in the best list.

The best list can be initialized with the most likely sequence,a1b1c1..., since the input should be

listed from best score to worse score in all node values. The candidate list can then be initialized

91
with each of the children of the best sequence, a2b1c1, a1b2c2, a1b1c2, etc. At this point the list of

future potential candidates is empty. The list of potential future candidates contains an array of

booleans which indicate which parents of the potential candidate have already been moved to the

best sequences list. If all of these booleans are true, then the potential candidate is upgraded to a

true candidate and can be removed from the list of potential future candidates.

After the initialization has finished the algorithm proceeds with three steps:

1. Select the candidate output with the best score from the candidate list, add it to the list of

best scoring sequences, and remove it from the candidate list.

2. Update the dictionary entries for the new “best” sequence’s children, or add them to the

dictionary if it is not already present.

3. Move any outputs for which all dictionary entries are true from the dictionary to the candidate

list.

These steps need simply be repeated until the desired termination criterion is met. If the can-

didate list is kept sorted and updated by properly placed insertions, the first step will be to “pop”

the top entry from the list. If memory is limited, the memory burden of the potential candidate

dictionary can be transferred to a computational burden: the parents of each child that would have

been added to the dictionary can be searched for in the best list, and if they are all present the child

is added to the candidate list.

If a dictionary is used for potential candidates, the algorithm is quite computationally efficient.

If there are m nodes, then each step involves n updates to the dictionary and checks to see if

dictionary outputs can be moved to the candidate list, and at most n insertions into the candidate

list, though it will be quite rare to have n updates to the candidate list. It is only necessary to

compute the score for a sequence when it is added to the candidate list.

The other performance concern is the amount of memory used by the algorithm. Both the

candidate list and potential candidate dictionary grow at less than linear rates. Both can increase

by at most n in each step. There is no outlier case where the candidate list can consistently grow

92
at this rate, however, the requirements to be added to the list are too stringent for it to happen even

two steps in a row. For n sequences to be added to the candidate list even once would require many

previous steps in which very few sequences were added to the candidate list. The dictionary can

grow at a rate of n per step if changes consistently occur in only one variable. If this were to occur,

the candidate list would not be growing at all, only one new output would be added to replace the

one moved to the best list.

7.1 below shows the top 50 sequences from the JAR3D model for IL 03282.1, as well as their

probabilities, found through this algorithm. The most probable sequence, GAGGU*AAGUC, has a

probability of 0.75%. Note that probability here refers to maximum generation history probability,

not total probability.

An implementation of this algorithm in Python can be found in Appendix D.

93

Number Sequence Probability Number Sequence Probability
1 GAGGU*AAGUC 0.0075 26 UAGGC*GAGUA 0.00553
2 GAGAU*AGGUC 0.00701 27 UAGAA*UGGUA 0.00553
3 CAGGU*AAGUG 0.00696 28 UAGGG*CAGUA 0.0055
4 GAGGA*UAGUC 0.00691 29 AAGAC*GGGUU 0.0052
5 CAGAU*AGGUG 0.0065 30 AAGAG*CGGUU 0.00517
6 GAGGC*GAGUC 0.00646 31 UAGAC*GGGUA 0.00517
7 AAGGU*AAGUU 0.00646 32 UAGAG*CGGUA 0.00514
8 GAGAA*UGGUC 0.00646 33 GAUGU*AAAUC 0.00099
9 GAGGG*CAGUC 0.00642 34 GAGAU*AAGUC 0.00093

10 UAGGU*AAGUA 0.00642 35 GAGGU*GAGUC 0.00093
11 CAGGA*UAGUG 0.0064 36 GAUAU*AGAUC 0.00092
12 GAGAC*GGGUC 0.00604 37 GAGGU*AAGUU 0.00092
13 AAGAU*AGGUU 0.00604 38 CAUGU*AAAUG 0.00091
14 GAGAG*CGGUC 0.006 39 GGGGU*AAGUC 0.00091
15 UAGAU*AGGUA 0.006 40 GAUGA*UAAUC 0.00091
16 CAGGC*GAGUG 0.00599 41 GAGCU*AUGUC 0.0009
17 CAGAA*UGGUG 0.00599 42 GAGAU*GGGUC 0.00087
18 CAGGG*CAGUG 0.00595 43 CAGAU*AAGUG 0.00087
19 AAGGA*UAGUU 0.00595 44 GGGGU*AAGGC 0.00086
20 UAGGA*UAGUA 0.00591 45 CAGGU*GAGUG 0.00086
21 CAGAC*GGGUG 0.0056 46 GAGAU*AGGUU 0.00086
22 CAGAG*CGGUG 0.00557 47 GAGAA*UAGUC 0.00086
23 AAGGC*GAGUU 0.00556 48 CAUAU*AGAUG 0.00086
24 AAGAA*UGGUU 0.00556 49 GGGAU*AGGUC 0.00085
25 AAGGG*CAGUU 0.00553 50 GAUGC*GAAUC 0.00085

Table 7.1 Table showing the top 50 sequences from the JAR3D model for IL 03282.1. The proba-
bilities for the sequences are also shown.

94

7.3 Entropy calculations

One way to get a basic understanding of how diffuse or compact a probability distribution is

would be to calculate the informational, or Shannon, entropy. First described by Claude Shan-

non in (Shannon, 1948), informational entropy measures the average rate at which information is

produced by a stochastic process. It is defined by the equation below:

S = −
∑
i

Piln(Pi)

So, the more rare an event is, the more information it carries when it occurs. Therefore, the

higher the informational entropy of a distribution, the more diffuse the distribution is.

Calculating informational entropy does require iterating over all possible values for a distribu-

tion, but informational entropy is also additive between independent events. Because the nodes in

a JAR3D model are independent, we can simply calculate the informational entropy of each node

in a model, and then add them together to get the informational entropy of the entire model. It

is this property that makes calculating informational entropy for JAR3D models possible, as even

fairly small JAR3D models can produce too many sequences to iterate over in a reasonable amount

of time.

7.4 Rank order cumulative probability graphs

JAR3D models are diffuse by design, and assign probabilities to billions to trillions or more

sequences. Above, we listed the top-scoring 50 sequences from motif group IL 03282.1, in de-

creasing order of probability. Listing all of the top 100,000 sequences in a table is not feasible,

and would be very difficult to absorb. But in fact in many groups the 100,000th sequence still

has appreciable probability. In fact, the 100,000th most likely sequence in the JAR3D model for

IL 03282.1, GGUGA*GAAUA, has a probability of 2.7 ∗ 10−7. While this is quite small, it is not

entirely negligible.

Because the sequences are discrete and hard to break down into specific dimensions, visualiza-

tion of the way in which JAR3D models distribute their probability over the space of all possible

95
sequences is difficult using traditional lists of possible outcomes or probability density graphs. The

distributions created by JAR3D models are essentially very large categorical distributions, which

would traditionally be graphed with bar graphs. A bar graph with 50 bars, each with a sequence

label, would be difficult to absorb. One with 100,000 or more rows would be nearly meaningless.

Instead, I have developed a new kind of graph to help make sense of the distribution of JAR3D

models over sequence space.

A rank-order cumulative probability (ROCP) graph is one way to visualize JAR3D models,

and such graphs will also give us a way to compare models pairwise. The basic idea is to sort the

possible sequences in decreasing order of probability and then graph the cumulative probability

versus sequence number. We will introduce the idea with an example below.

Graphs like these could be also be used for other categorical distributions. Sorting by de-

creasing probability is often recommended for categorical data when making other graphs for

categorical data, such as bar graphs representing probabilities.

7.5 Single group rank order cumulative probability graphs

It is useful to look at simple examples with a small number of possible sequences to understand

how the graphs before moving on to JAR3D models which cover, as discussed in Section 7.1, can

assign probability to quintillions of sequences. We begin with a simple example, where we can

easily list all possible outcomes. Basepairs allow for 16 possible sequences, and below in Figure

7.1 are graphs for substitution probability distributions for GC and UU cWW basepairs, taken from

JAR3D substitution matrices.

The graph shows the number of sequences in the cumulative sum on the x axis and cumulative

probability on the y axis, with sequences ordered from most to least likely. So, for example, the

height at x=3 would be the sum of the first three most probable sequences. The graphs are stepwise

approximations of concave down curves.

The graphs are useful in revealing how the distributions distribute probability. For example, in

the graphs above we see that GC cWW basepairs assign similar probabilities to four different base

combinations, resulting in a fairly diffuse distribution, at least compared to a UU cWW basepair,

96

Figure 7.1 ROCP graphs for GC and UU cWW basepairs. The base combination that is added to
the cumulation is shown at each step. The same 16 possible base combinations are summed over
in each group, but in different orders based on the rank ordering of the distributions.

which assigns over 70% of its probability to its native UU combination. Because the graphs show

the sum of probabilities over all possible sequences, they terminate at probability one.

In practice, at least for JAR3D models, it is useful to make ROCP graphs to cover a certain

percent of all probability for a model or for the first N sequences, since JAR3D models have very

long tails and it is not feasible to calculate probabilities for all sequences a model can generate.

7.6 Examples of ROCP graphs for 10-nucleotide motif groups

Some examples for internal loops with a total of 10 nucleotides are shown below. We also

calculate the entropy of each model. By themselves, these graphs give information about how dif-

fuse a model is, giving a graphical interpretation to information summarized by the informational

entropy of the model. Three different motif groups are examined, each modeling internal loops

that have 10 core nucleotides.

First is the graph for IL 03282.1, pictured below in Figure 7.2. It has an informational entropy

of 13.12. This is fairly low for motif groups of its size, as it concentrates its probability on relatively

few sequences, because all nucleotides in the group are involved in a basepair. Basepairs shift

probabilities towards particular base combinations, making the model less diffuse.

97

Figure 7.2 ROCP graph for IL 03282.1. IL 03282.1 is a motif group model for a 10 nucleotide
motif with an informational entropy of 13.12.

Below, we look at IL 21077.1, show below in Figure 7.3. It has an informational entropy of

18.87. This group contains no basepairs beyond the flanking cWW basepairs, so it is much more

diffuse than the previous models. The piecewise linear appearance of the graph reveals that it

assigns the same probability to many sequences.

98

Figure 7.3 ROCP graph for IL 21077.1. IL 21077.1 is a model for a motif group with 10 nu-
cleotides and an informational entropy of 18.87.

7.7 Paired rank order cumulative probability graphs

Rank order cumulative probability (ROCP) graphs can also be used to compare two different

models to see if they are assigning probability to sequences in the same part of sequence space.

Say that one wishes to compare model A to model B. One can score the N most probable sequences

for model B against model A, and compare the cumulative probability curves generated by these

sequences against the curves generated by the N most probable sequences for the original group.

We call these “Paired Rank Order Cumulative Probability”, or PROCP, graphs.

Again, it is useful to look at a simple example where all possible sequences can be explored be-

fore discussing JAR3D models. An example comparing GC cWW basepairs to UU cWW basepairs

is shown below in Figure 7.4.

The blue curve generated by the N most probable sequence for group A scored against group

A represents the steepest possible curve that can can be generated for group A. The red curve is

generated by the N most probable sequences for group B scored against group A. So the closer the

red (bottom) curve generated by scoring the N most probable sequences for model B against group

A is to the blue curve, the closer model A and model B are in sequence space. If the models assign

99

Figure 7.4 PROCP graph comparing UU cWW rank ordering against GC cWW distribution. The
blue curve is the same as it was in the single distribution ROCP graphs, for a GC cWW basepair.
The red curve sums the probabilities for GC cWW basepair as well, but in the rank order for UU
cWW basepairs.

most of their probability in different parts of sequence space, then the B sequences versus A model

curve will stay very close to zero until N is quite large. Because both models assign probability to

a finite number of sequences, eventually both curves approach 1.

Some examples comparing 5x5 internal loop models are shown below. Since A sequences

versus B model produces different graphs from B sequences versus A model, both are shown.

Graphs comparing the models for IL 05723.1 and IL 24982.5 are shown in Figure 7.5. Both

motif groups have a variety of sequences from 3D, but they share a sequence from 3D in com-

mon. Also, they share a number of basepairs in common. Because of this, their curves are fairly

close together. Because their geometries are different, there are some sequences only given high

probability by one group or the other, so the curves do not overlap completely.

Graphs comparing IL 05723.1 and IL 23639.1 are shown in Figure 7.6. Unlike IL 05723.1

and IL 24982.5, these two groups are assigning probability in relatively different parts of sequence

space. Even though these two motif groups are very different for motif groups originating from 3D

instances of the same sequence length, the red lines do climb at a steady rate and reach about 20%

100

Figure 7.5 PROCP graphs comparing IL 24982.5 and IL 05723.1. The left graph shows
IL 24982.5 sequences versus IL 24982.5 model (blue) and IL 05723.1 sequences versus
IL 24982.5 model (red). The right graph shows IL 05723.1 sequences versus IL 05723.1 model
(blue) and IL 24982.5 sequences versus IL 05723.1 model (red).

probability after 100,000 sequences for both graphs. This is because both groups will like the same

nucleotides in the four positions that account for the flanking basepairs, AU, UA, CG, GC, and to

a lesser extent GU and UG. This means that there are only 46 = 4096 possible interior sequences

with 36 relevant flanking sequences possible for a 5x5 motif. So, even a list of random sequences

(with appropriate flanking basepairs) will accumulate a reasonable amount of probability after

100,000 sequences.

101

Figure 7.6 PROCP graphs comparing IL 23639.1 and IL 05723.1. The left graph shows
IL 23639.1 sequences versus IL 23639.1 model (blue) and IL 05723.1 sequences versus
IL 23639.1 model (red). The right graph shows IL 05723.1 sequences versus IL 05723.1 model
(blue) and IL 23639.1 sequences versus IL 05723.1 model (red).

7.8 Using PROCP graphs to analyze sarcin-ricin groups

Using the comparison cumulative probability graphs on a group of related motifs gives some

insights into how JAR3D works in practice. Here we will look at PROCP graphs for the 12 sarcin-

ricin motif groups in IL 1.13. There are 12 sarcin-ricin motif groups in IL 1.13, ranging in in

number of nucleotides from 13 to 17 nucleotides.

There are three 13 nucleotide motif groups in IL 1.13, IL 49493.4, IL 97191.1, and

IL 31754.1. IL 49493.4 has 13 instances, while the other two are singletons. They share a tWH

basepair and the characteristic sarcin base triple, but differ somewhat in the final two non-flanking

basepairs. Because all three groups are the same size and have similar basepairing, they assign

high probabilities to many of the same sequences. The PROCP graphs for the 13 nucleotide sarcin

groups are shown below in Figure 7.7.

Not all the sarcin-ricin groups are so similar, however. Not all sarcin-ricin groups have the

same number of nucleotides on each strand, and some that do are still dissimilar. Take, for example,

IL 95653.3 and IL 94973.1, both 14 nucleotide sarcin-ricin motif groups, shown below, along with

102

Figure 7.7 PROCP graphs for 13 nucleotide sarcin-ricin motifs. The 13 nucleotide sarcin-ricin
motifs include IL 31754.1, IL 49493.4, and 97191.1. They all show a fairly high amount of overlap
in sequence space, because their basepairing patterns are very similar.

103
comparisons to IL 71685.1, which also has 14 nucleotides, shown below in Figure 7.8, along with

PROCP graphs for the other 14 nucleotide sarcin-ricin motifs.

IL 71685.1 has an insertion on the shorter strand compared to the 13 nucleotide motif groups,

while IL 95653.3 and IL 94973.1 are both very similar to 13 nucleotide sarcin-ricin motifs with

an insertion on the longer strand. However, the insertion point is different in each group. This

causes the groups to concentrate in relatively different parts of sequence space, even though their

3D structures are very similar. To fit one 14-nucleotide sequence to a different model, you need to

not have a conserved insertion, and you need to add an unusual insertion.

It is possible that the 13 nucleotide sarcin-ricin motifs groups appear to be similar primarily

because the part of sequence space occupied by 13 nucleotide sequences is comparatively small

compared to the part of sequence space occupied by longer sequences. This would imply that the

14 nucleotide sarcin-ricin motif groups would only appear to be more dissimilar because there are

simply more 14 nucleotide sequences which need to be assigned probability. However, if we look

at the comparison graphs for the largest sarcin-ricin groups, which have 17 nucleotides, we see that

this is not the case.

The comparison graph for the 17 nucleotide sarcin-ricin groups, IL 54954.1 and IL 17682.1,

are shown below in Figure 7.9. We can see that even though they assign probability to the much

larger part of sequence space than the 14 nucleotide groups, they show a high amount of over-

lap. The red line holds fairly close to half the height of the blue line in both graphs. There are

some other pieces of information that this graph does a good job of illustrating. It shows that as

the motif groups get larger, it takes many more sequences to cover a reasonable amount of their

probability. IL 17682.1 covers about 50% of its total probability in the first 500,000 sequences,

while IL 54954.1 covers less than 30%. The 13 nucleotide sarcin-ricin groups cover around 80%

of their probability in 500,000 sequences, and the 14 nucleotide groups cover about 70%. For

groups much larger than these sarcin-ricin groups, millions of sequences or more would need to be

scored to assess the similarity between the groups.

104

Figure 7.8 PROCP graphs for the 14 nucleotide sarcin-ricin motifs. The 14 nucleotide sarcin-ricin
motifs include IL 71685.1, IL 95653.3 and IL 94973.1. They show a very low amount of overlap
in sequence-space, especially compared to the 13 nucleotide sarcin-ricin motifs.

105

Figure 7.9 PROCP graphs for the 17 nucleotide sarcin-ricin motifs. The 17 nucleotide sarcin-ricin
motifs include IL 54954.1 and IL 17682.1. They show a high amount of overlap in sequence-
space, although a comparatively small amount of their probability is covered in the first 500,000
sequences compared to the smaller sarcin-ricin groups.

As mentioned before, IL 17682.1 covers about 50% of its probability in its first 500,000 se-

quences while IL 54954.1 covers only about 30%. This is quite a large difference given that the

motif groups are the same size and have very similar 3D structures, and also overlap a fair amount

in sequence space. This tells us that whatever is different between IL 17682.1 and IL 54954.1

makes the later more diffuse than the former. Further investigation reveals that IL 17682 does not

have the GUA base triple that most sarcin-ricin motifs do. The bulged base gets probability spread

out over A, C, G, U. The sarcin-ricin graphs also highlight an inherent asymmetry in the JAR3D

models. JAR3D models give more probability to sequences that are longer than the sequences from

3D used to make the model than they give to shorter sequences. This is by design, because extra

nucleotides can be inserted into an internal loop and bulge out to the side, allowing the sequence

to still fold into the same structure. However, if crucial nucleotides are deleted, such as a basepair,

the resulting structure will likely be different. Since sarcin-ricin motifs come in different sizes

that have very similar overall structures over most of the motifs, they can be used to illustrate this

disparity, as shown below in Figure 7.10.

106

Figure 7.10 PROCP graphs for sarcin-ricin motifs of different sizes. The graphs show the 14
nucleotide IL 95652.3 and the 13 nucleotide IL 49493.4 (top), and 15 nucleotide IL 94973.1 and
14 nucleotide IL 76486.1 (bottom). In both case, the sequences from the larger group show some
overlap with the smaller group, but the short sequences show little to no overlap with the larger
group.

107

7.9 Distance measure based on rank-ordered cumulative probability

The two-group comparison graphs give a good indication of how much two JAR3D models

overlap in sequence space, but it is often desirable to compare many groups at once, in which case

a single number giving a measure of the distance between the JAR3D models would be prefered

to having many graphs to sort through. However, traditional measures for measuring the distance

between categorical distributions, such as relative entropy, require enumerating over all possible

values (in the case of JAR3D models, sequences). Unfortunately, JAR3D models assign probability

to far too many sequences for it to be feasible to enumerate over all of them when comparing even

two groups. Because of this, I developed a method that can give a measure of the distance between

the JAR3D models without enumerating over all possible values.

The distance measure can be used for any two categorical distributions that assign probabil-

ity to the same countable set of m outcomes. We will call these distributions A and B. Let

{a1, a2, ...am} be the outcomes ordered from most to least probable against distribution A and

let {b1, b2, ...bm} be the outcomes ordered from most to least probable against distribution B.

The distance measure between the groups, rocp(A,B), can then be expressed as rocp(A,B) =

max nA({a 1...an}) − A({b1. . . bn}). Because {a1...am} is ordered from most to least probable

against distribution a, for any n between 0 and m, maxnA({a1...an})−A({b1. . . bn}) will be posi-

tive. Because A({a1...am}) = 1, rocp(A,B) will be less than or equal to 1. It should be noted that

the distance measure is not symmetric, that is rocp(A,B) does not necessarily equal rocp(B,A).

This distance measure has a number of desirable properties. It will always fall between 0

and 1 (inclusive), as outlined above, and is fairly easy to interpret. A distance of 0 indicates

that the distributions have identical rank ordering of the possible outcomes. In this special case,

rocp(A,B) will always equal rocp(B,A). Unfortunately, a distance of zero does not imply that

the distributions themselves are identical, as they can vary in anyway that does not change the rank

ordering of outcomes. If both rocp(A,B) and rocp(B,A) are equal to 1, then the two distributions

are completely disjoint. It is possible that rocp(A,B) = 1 but rocp(B,A) < 1, in which case

A assigns 0 probability to b1 to bna, where na is the number of outcomes A assigns a positive

108
probability, but B assigns some probability to at least 1 outcome in a1 to anb. Finally, in many

cases, the distance can be found without enumerating over all possible values.

Because A({a1...an}) and A({b1...bn}) are increasing with respect to n and are bound above by

1, the maximum value that A({a1...an})−A({b1. . . bn}) from some n1 to m is 1−A({b1. . . bn}).

If the maximum value of A({a1...an})− A({b1. . . bn}) over 1 to n1 is greater than or equal to the

maximum possible from n to m, then we can be sure that the maximum over all possible n has been

found, and there is no need to do further calculations.

7.10 Relationship between distance measure and comparison graphs

The distance measure easily maps to the two-group comparison graphs. The distance measure

is the maximum distance that occurs between the comparison red line and the maximum blue line

over the graph. Because the graph of group A sequences scored against group B and group B

sequences scored against group A are different graphs, the distance measure is not symmetric.

Because the graphs are not calculated to their end, they may not actually cover the location of

the actual distance however. However, calculations can be done based on the state of the graphs at

the last calculated point to determine if the maximum has been conclusively found. If the maximum

hasn’t been conclusively found, bounds can be calculated for the maximum between the remainder

of the curves, as well as an extrapolated estimation of the maximum distance between the curves.

The maximum distance that could be observed after the end of a calculated graph is one minus

the current last value of the red comparison curve. This could be achieved if the blue curve attains

its maximum value of one before the red curve increases again. If the maximum distance observed

in the enumerated data is greater than this value, then the maximum has already been observed

conclusively. Even if this is not the case, it is possible that the currently observed maximum is the

actual maximum. This is more likely if the currently observed maximum is in the interior of the

graph, and less likely if the currently observed maximum is the last point in the graph.

In the case that the maximum is not conclusively observed in the enumerated graph data, an

estimate can be made for the maximum distance after the enumerated data. The estimate used is

to assume that the ratio between the height of the red and the blue curves is maintained until the

109
blue curve reaches one. This can simply be found by dividing the last value for the red curve by

the last value for the blue curve, and subtracting the result from one. This value will always fall

between the maximum value for the distance after the graph of one minus the current value and

the minimum value for the distance after the graph, which is the distance between the curves at the

last point in the graph. If this is greater than the largest distance observed in the graph, it is used

as an estimate of the actual distance. If the maximum distance observed in the graph is larger, it is

used.

7.11 Examples of distance measure used on IL 1.13 groups

To illuminate how the difference measure is calculated, several examples of the distance mea-

sure to compare motif groups from IL 1.13 will be shown in this section.

Show below in Figure 7.11 are the two PROCP graphs for IL 03282.1 and IL 53323.1, both di-

rections, with the distance measure shown. IL 03282.1 and IL 53323.1 are both 5x5 motif groups.

Even though the red comparison line reaches nearly 50% by the end of the graph for both graphs,

the groups assign probability to fairly different parts of sequences space, which is evident when

looking at the distance measure for the graphs. For the graph scoring IL 03282.1 sequences against

the IL 53323.1 motif group, a maximum distance of 0.675 is observed after accumulating the prob-

ability of the first 9851 sequences. For scoring IL 53323.1 sequences against the IL 03282.1 motif

group, a maximum distance of 0.703 is observed after accumulating the probability of the first

7054 sequences.

IL 032282.1 and IL 53323.1 are both fairly specific for JAR3D motif groups, assigning around

80% of their probability in their first 10,000 sequences. This is the reason the distance measures

between the groups are relatively high despite the fairly high value for the red comparison line

by the end of the graph. In this case the maximum distance has been observed with certainty in

both graphs. The final value for the red line in the graph scoring IL 03282.1 sequences against the

IL 53323.1 motif group is 0.532, meaning the maximum that the distance measure could be after

the graph is is 0.468. The final value for the red line in the graph scoring IL 53323.1 sequences

against the IL 03282.1 motif group is 0.558, meaning the maximum that the distance measure

110

Figure 7.11 PROCP graphs for IL 032282.1 and IL 53323.1 with distance measures shown. The
motif groups are both 5x5, and are relatively different for groups of that size.

could be after the graph is is 0.442. In both cases, the maximum possible distance between the

lines after the portion shown in the graphs is less than the maximum distance between the lines

observed in the graphs, so the observed maximum is the overall maximum.

In some cases, it can be fairly obvious that the true value for the distance measure has not yet

been observed. As an example, there are the 17 nucleotide sarcin-ricin motifs, IL 54954.1 and

IL 17682.1. The PROCP graphs for IL 54954.1 and IL 17682.1, with indicators for the location

of the maximum observed distance added, and are shown below in Figure 7.12. Because the

motifs they model are so large, even after accumulating probability from the most probable 500,000

sequence only about 40% of the probability IL 17682.1 is covered, and about half of that for

IL 54954.1. The groups are fairly similar and the red comparison line remains at about 50% of the

blue line. The observed maximum distance for both graphs occurs at 500,000 sequences. Because

at the end of the graphs it seems the blue line is still increasing at a faster rate than the red line, it

is quite likely that the maximum distance between the curves has not yet been observed.

In other cases, it is not clear if the maximum distance between the lines has or has not been

observed. The 5x5 motif groups IL 46306.1 and IL 52958.1 serve of an example of this case, and

are shown below inFigure 7.13. They are fairly disperse compared to the other 5x5 motif groups,

111

Figure 7.12 PROCP graphs for IL 17682.1 and IL 54954.1 with observed maximum distance.
Both maximum distances occur at 500,000 sequences, and more data likely needs to be calculated
to find the actual ROCP dissimilarity measure.

and cover about 70% of their probability in their 100,000 most probable sequences. They are also

fairly similar, with the red comparison line stay fairly close to the blue line. For the graph scor-

ing IL 46306.1 sequences against the IL 52958.1 motif group, a maximum distance of 0.374 is

observed after accumulating the probability of the first 28379 sequences. For scoring IL 52958.1

sequences against the IL 46306.1 motif group, a maximum distance of 0.381 is observed after ac-

cumulating the probability of the first 14682 sequences. Both the maximums happen well before

the end of the calculated data, but it is possible that the actual maximum occurs after the enumer-

ated calculated data, because the distance from the red line to one for both graphs is greater than

the observed maximum to this point.

For this particular instance, however, it is likely that the observed maximum distances are the

actual maximum distances. Given that we known that the underlying distributions are 5x5 JAR3D

motif groups, it is unlikely that the red line will remain relatively flat long enough for distance to

pass the observed maximum distance, since both distributions concentrate most of their probability

on sequences of the same length. In general, however, it would be necessary to process more

sequence to be sure the correct maximum distance has been found.

112

Figure 7.13 PROCP graphs for IL 46306.1 and IL 52958.1 with observed maximum distance.
Both maximum distances occur before 500,000 sequences, but it is not clear they are the maximum
when they are observed.

7.12 Approximation of the ROCP distance

Calculating the ROCP distance based on the 100,000 or 5000,000 most likely sequences will

find the exact distance for some comparisons, but not all. If the exact distance has not been found,

one of two assumptions are made to estimate the distance based on available information. If the

current maximum distance is in the interior of the sequence list, that is, if it occurs somewhere

other than at the last sequences added to the sum, it is assumed that the current maximum is the

global maximum. While this will not always be the case, if the sums have grown closer, it is likely

they will continue to do so, so the current maximum is likely to remain the maximum.

If the current maximum occurs at the last sequences added to the cumulative sums, then the

maximum distance is still growing. In this case, the ROCP difference measure is estimated with

the ratio between the in-group ordered sum and the comparison-group sum. It is assumed that this

ratio is the same when the in-group sum reaches 1, and the difference at that point is the maximum.

This is very unlikely to actually occur, but it gives a reasonable and conservative estimate of the

ROCP difference.

113

7.13 Heatmaps of ROCP for sets of motif groups

Heatmaps are a useful way of displaying pairwise distances between multiple objects in a

group. In this section we will look at heatmaps using the ROCP difference measure based on 3

sets of motif groups, 5x5 motifs, sarcin-ricin motifs, and the entire IL 1.13 motif atlas release. The

heatmaps will show the ROCP distances between SCFG/MRF models for sequence variability.

Most heatmaps are symmetric because they use distance metrics which are symmetric. The

ROCP difference is not symmetric however, so the resulting heatmaps will be asymmetric as well.

The asymmetric heatmaps can reveal more information about the motif groups, but can also be

harder to read, especially when many groups are being compared at once. Symmetric heatmaps

could be made by taking the average, minimum, or maximum of rocp(A,B) and rocp(B,A).

7.14 Heatmap for IL 1.13 5x5 motifs

We will start by looking at a heatmap using the ROCP dissimilarity measure for the 5x5 internal

loops from IL 1.13. These are 12 motif groups with exactly five nucleotides on each strand for all

3D instances of the motifs. A heatmap for these 12 motifs is shown below in 7.14. Note that

because the ROCP difference measure isn’t symmetric, the heatmap is asymmetric.

One of the most obvious things that is shown by this heatmap is that the 5x5 motifs have

a fair amount of overlap, as there are no white squares and very few light yellow squares. It

also apparent that there are three pairs of motif groups that are very similar to each other;

IL 81398.1 and IL 52958.1, IL 24982.5 and IL 05723.1, and IL 69536.1 and IL 58454.1. The

first pair, IL 81398.1 and IL 52958.1 are also part of a larger cluster which includes IL 23639.1

and IL 46306.1. The last motif group in the ordering generated for the heatmap, IL 53323.1 in the

lower right, also seems to be comparatively dissimilar to the other 5x5 motif groups, as well.

The heatmap is asymmetric because it is based on the asymmetric ROCP difference measure,

but on the whole it is fairly close to symmetric. The most asymmetry occurs in the row and column

associated with IL 70237.3. The column for IL 70237.3 is the lightest in the heatmap, while the

row is darker yellows, with oranges indicating similarity with the IL 81398.1 to IL 46306.1 clus-

114

Figure 7.14 Heatmap using mutual ROCP dissimilarity for 5x5 internal loops. This heatmap uses
the mutual ROCP dissimilarity for the 12 motif groups in IL 1.13 that have exactly 5 nucleotides
on both strands for all 3D instances of the motif. It is asymmetric since it uses the asymmetric
ROCP difference measure.

115
ter. This means that while the sequences ordered by IL 70237.3 score well against those models

and alright against the rest, IL 70237.3 scores the sequences ordered by the other groups poorly.

Investigation of IL 70237.3 reveals why this is the case. IL 70237.3 has only 2 basepairs beyond

the flanking basepairs, but both of them are forming base triples with the flanking basepairs. These

base triples make IL 70237.3 comparatively specific compared to other 5x5 motif groups, and the

dependencies that single out the sequences which IL 70237.3 scores well are not present in the

other 5x5 motif groups.

7.15 Heatmap for IL 1.13 sarcin-ricin motifs

We will next look at a heatmap for the sarcin-ricin motifs in IL 1.13. This is another group of

12 motif groups from IL 1.13, but with a different unifying feature. Sarcin-ricin motifs are defined

by their basepairing pattern, particularly a defining basetriple. Sarcin-ricin motifs are discussed in

more detail in Section 4.4. Because the basepairs that occur outside of the defining basepairing

pattern can vary in number and type, there are a variety of sarcin-ricin motif groups of varying

sizes, from 13 to 17 nucleotides. The heatmap for the IL 1.13 sarcin-ricin motifs is shown below

in Figure 7.15.

There are a large number of ROCP distances near one, indicating little overlap in sequence

space, especially in comparison to the the 5x5 IL 1.13 motifs. Much of these differences can be

attributed to the differences in sequence length in the sarcin-ricin motifs. A difference of more

than one nucleotide in the sequence length of the motif groups will result in very little overlap

between the groups. This also explains some of the asymmetry in the heatmap, as the motif group

models are much more likely to add a nucleotide as an insertion than they are to delete a nucleotide

or basepair. This means when comparing a group to a slightly larger group, they smaller group is

more likely to give higher probability to the sequences from the larger group than vice versa.

There are three fairly clear clusters in the heatmap. The strongest is actually in the similarity

between the largest sarcin-ricin motifs, the 17 nucleotide groups, IL 54954.1 and IL 17682.1,

which are very similar to each other and dissimilar to all the other sarcin-ricin motifs. IL 85647.3

and IL 76486.1, the 15 nucleotide sarcin-ricin groups also show similarities with each other but

116
are fairly dissimilar to the other sarcin-ricin motif groups. There is some asymmetric similarity

between the 15 nucleotide sarcin-ricin motifs and the 14 nucleotide group IL 94973.1.

Three groups stand out as very strongly dissimilar to all other sarcin-ricin motif groups,

IL 95652.3, IL 86981.1, and IL 71685.1. As was discussed in the section on ROCP comparison

graphs, the 14 nucleotide sarcin-ricins, including IL 95652.3 and IL 71685.1, are very dissimi-

lar to each other despite having the same number of nucleotides because of where the additional

nucleotides occur in comparison to the basic sarcin-ricin geometry. IL 86981.1 has a bifurcated

basepair, a basepair with with a water molecule in the middle of it. This makes it very dissimilar

to the other sarcin-ricin motifs, even the other 15 nucleotide groups.

117

Figure 7.15 Heatmap using mutual ROCP dissimilarity for sarcin-ricin internal loops. This
heatmap uses the ROCP dissimilarity measure for the 12 motif groups in IL 1.13 that are clas-
sified as sarcin-ricin motifs based on their basepairing pattern. It is asymmetric since it uses the
asymmetric ROCP difference measure.

118

CHAPTER 8 FUTURE WORK

8.1 JAR3D for matching sequences to motif groups

One of the primary goals for JAR3D is that people studying RNA could use JAR3D to match

sequences of RNA loops of unknown structure to motif groups. Many of our tools have been

designed with this task in mind, but we have not yet published work showing how effective JAR3D

is at this task. We have been waiting on two things before pursuing this publication.

The first is improvements to the RNA 3D Motif Atlas. The recent release of Motif Atlas version

3.2 is what we have been waiting for, and it provides several improvements. In particular, there

are several new structures, as well as new structure quality indicator controls, that ensure that only

x-ray structures that meet quality standards are included. These quality standards now work at the

loop level, whereas in previous releases of the RNA 3D Motif Atlas quality indicators where only

used at the structure level.

The other thing we need is high quality alignments that have been attached to 3D structures to

use as testing data for the matching problem. Obtaining testing data has been difficult for a number

of reasons. Because our training data is so sparse already, we cannot create a quality testing set

by splitting our training data into two sets, as it will severely reduce the quality of our training

data and produce a test data set that is still fairly small. Using sequence alignments for testing

data can also be problematic. Firstly, we cannot be sure that the alignment is completely accurate,

and many traditional alignment techniques can be especially unreliable near loop regions. JAR3D

relies on loop sequences and their flanking Watson-Crick basepairs being accurately extracted

from the overall RNA sequence. This issue can be overcome by using higher quality, often hand

curated, alignments, but finding such alignment sets covering a sufficient number of different loop

structures has proven difficult.

The other issue with sequence alignments is that we cannot be sure that the 3D structure that

is attached to the alignment is conserved by all the sequences in the alignment and the loop level.

119
It is not unheard of for homologous RNAs to have different loop structures that perform the same

function. This problem can be dampened by using high quality alignments between sequences for

organisms that are fairly closely related from an evolutionary standpoint, as this will reduce the

chances of different structures having evolved.

Despite the limitations, sequence alignments are still the best possible source for testing data

for the JAR3D motif group matching application. Now that the new version of the Motif Atlas,

and the accompanying JAR3D models, are available, the next priority for JAR3D will be finding

alignments to use as data and seeking publication for an article on using JAR3D to match novell

loop sequences to possible known 3D structures.

8.2 Improvements to JAR3D models

There are a number of potential improvements that could be made to the way that JAR3D mod-

els are made and parameterized. This section will discuss some of these possible improvements.

The first way JAR3D might be improved involves how IDI data is mapped to probability. The

current function used to do this, pictured in Section 4.5 in Figure 4.6, was chosen carefully based

on previous studies of basepair substitutions, but it is still an ad hoc function. We believe that a

data driven approach might produce a better function that will produce better substitution matrices

and more accurate models.

The data needed to make such a function will be difficult to obtain, however. One would need

very accurate data, most likely from alignments, on exactly which nucleotides are involved in each

of the different basepair families. Most non-Watson-Crick basepairs occur in loop regions, where

many alignments are unreliable. One possible solution is use current JAR3D models to improve

alignments, then use the improved alignments to improve the IDI to probability functions, and

possibly repeat in an iterative fashion.

Such data could also be used to investigate if it is appropriate to use the same IDI to probability

function for all basepairs. It is possible that different functions should be used for different basepair

families, or for basepairs involved in base triples.

The way variable length insertions are handled in JAR3D might also be improved through data

120
driven research. We known that while insertions in loop regions are rarer than those in helices,

they do occur and need to be accounted for. Because our training data is sparse and variable length

insertions in loop regions are fairly rare, we cannot simply only model variable length insertions

where they are observed.

Our current solution models variable length insertions in all locations where they have not

been observed in the same way. Is this appropriate? Are there locations in loop regions where

variable length insertions are more or less likely to occur, such as near base triples, near base-

backbone interactions, or between specific families of basepairs? Answers to these questions could

be used to better parameterize models, and hopefully make them less diffuse by reducing insertion

probabilities in areas where they are even more unlikely to occur.

8.3 Other applications for JAR3D

Another possible use case for JAR3D is to return to JAR3D’s originally intended purpose,

aligning entire sequences to models for entire 3D structures. Sequence-based alignments that are

not aware of 3D structure won’t do as well in aligning loop regions in particular, and JAR3D could

be used to produce better alignments. The improvements made to the JAR3D code for use with

motifs will help with this application, as well. I did some work on doing this with the 5s region of

the ribosome when I started working with the BGSU RNA group.

Even though this is the original use case for JAR3D, updates will be needed to make a useable

tool. The code that makes JAR3D models for entire 3D structures can benefit from the lessons

we learned working on loop motifs, as well as new features such as modeling variable length

Watson-Crick helices. A web server could also be developed to put the tool in the hands of RNA

researchers more easily.

121

BIBLIOGRAPHY

Akkuratov, E. E., L. Walters, A. Saha-Mandal, S. Khandekar, E. Crawford, C. L. Zirbel, S. Leis-

ner, A. Prakash, L. Fedorova, and A. Fedorov (2014, Sep). Bioinformatics analysis of plant

orthologous introns: identification of an intronic tRNA-like sequence. Gene 548(1), 81–90.

Bai, X. C., G. McMullan, and S. H. Scheres (2015, Jan). How cryo-EM is revolutionizing structural

biology. Trends Biochem. Sci. 40(1), 49–57.

Baker, J. K. (1979). Trainable grammars for speech recognition. The Journal of the Acoustical

Society of America 65(S1), S132–S132.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and

P. E. Bourne (2000). The protein data bank. Nucleic acids research 28(1), 235–242.

Cruz, J. A., M.-F. Blanchet, M. Boniecki, J. M. Bujnicki, S.-J. Chen, S. Cao, R. Das, F. Ding,

N. V. Dokholyan, S. C. Flores, et al. (2012). Rna-puzzles: a casp-like evaluation of rna three-

dimensional structure prediction. Rna 18(4), 610–625.

Cruz, J. A. and E. Westhof (2011). Sequence-based identification of 3d structural modules in rna

with rmdetect. Nature methods 8(6), 513.

Das, R. and D. Baker (2007). Automated de novo prediction of native-like rna tertiary structures.

Proceedings of the National Academy of Sciences 104(37), 14664–14669.

Das, R., J. Karanicolas, and D. Baker (2010). Atomic accuracy in predicting and designing non-

canonical rna structure. Nature methods 7(4), 291.

DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi,

P. Hu, and G. L. Andersen (2006). Greengenes, a chimera-checked 16s rrna gene database and

workbench compatible with arb. Appl. Environ. Microbiol. 72(7), 5069–5072.

122
Eddy, S. R. and R. Durbin (1994). Rna sequence analysis using covariance models. Nucleic acids

research 22(11), 2079–2088.

Griffiths-Jones, S., A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy (2003). Rfam: an rna

family database. Nucleic acids research 31(1), 439–441.

Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, M. Marquissee, S. H. Merrill, J. R. Penswick,

and A. Zami (1965, Mar). Structure of a ribonucleic acid. Science 147(3664), 1462–1465.

Höner zu Siederdissen, C., S. H. Bernhart, P. F. Stadler, and I. L. Hofacker (2011). A folding

algorithm for extended rna secondary structures. Bioinformatics 27(13), i129–i136.

Kashi, K., L. Henderson, A. Bonetti, and P. Carninci (2016, Jan). Discovery and functional analysis

of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim. Biophys.

Acta 1859(1), 3–15.

Knudsen, B. and J. Hein (1999). Rna secondary structure prediction using stochastic context-free

grammars and evolutionary history. Bioinformatics (Oxford, England) 15(6), 446–454.

Knudsen, B. and J. Hein (2003). Pfold: Rna secondary structure prediction using stochastic

context-free grammars. Nucleic acids research 31(13), 3423–3428.

Kruse, H., M. Havrila, and J. Sponer (2014, Jun). QM Computations on Complete Nucleic Acids

Building Blocks: Analysis of the Sarcin-Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H,

and MM Approaches. J Chem Theory Comput 10(6), 2615–2629.

Lemieux, S. and F. Major (2006). Automated extraction and classification of rna tertiary structure

cyclic motifs. Nucleic acids research 34(8), 2340–2346.

Leontis, N. B., J. Stombaugh, and E. Westhof (2002). The non-watson–crick base pairs and their

associated isostericity matrices. Nucleic acids research 30(16), 3497–3531.

Leontis, N. B. and E. Westhof (2001). Geometric nomenclature and classification of rna base pairs.

Rna 7(4), 499–512.

123
Miao, Z., R. W. Adamiak, M. Antczak, R. T. Batey, A. J. Becka, M. Biesiada, M. J. Boniecki,

J. M. Bujnicki, S.-J. Chen, C. Y. Cheng, et al. (2017). Rna-puzzles round iii: 3d rna structure

prediction of five riboswitches and one ribozyme. Rna 23(5), 655–672.

Miao, Z., R. W. Adamiak, M.-F. Blanchet, M. Boniecki, J. M. Bujnicki, S.-J. Chen, C. Cheng,

G. Chojnowski, F.-C. Chou, P. Cordero, et al. (2015). Rna-puzzles round ii: assessment of rna

structure prediction programs applied to three large rna structures. Rna 21(6), 1066–1084.

Nawrocki, E. P., D. L. Kolbe, and S. R. Eddy (2009). Infernal 1.0: inference of rna alignments.

Bioinformatics 25(10), 1335–1337.

Parisien, M. and F. Major (2008). The mc-fold and mc-sym pipeline infers rna structure from

sequence data. Nature 452(7183), 51.

Pedersen, J. S., G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-Toh, E. S. Lander, J. Kent,

W. Miller, and D. Haussler (2006). Identification and classification of conserved rna secondary

structures in the human genome. PLoS computational biology 2(4), e33.

Petrov, A. I., C. L. Zirbel, and N. B. Leontis (2013, Oct). Automated classification of RNA 3D

motifs and the RNA 3D Motif Atlas. RNA 19(10), 1327–1340.

Popenda, M., M. Błażewicz, M. Szachniuk, and R. W. Adamiak (2007). Rna frabase version 1.0:

an engine with a database to search for the three-dimensional fragments within rna structures.

Nucleic acids research 36(suppl 1), D386–D391.

Popenda, M., M. Szachniuk, M. Antczak, K. J. Purzycka, P. Lukasiak, N. Bartol, J. Blazewicz,

and R. W. Adamiak (2012). Automated 3d structure composition for large rnas. Nucleic acids

research 40(14), e112–e112.

Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner

(2012). The silva ribosomal rna gene database project: improved data processing and web-based

tools. Nucleic acids research 41(D1), D590–D596.

124
Rahrig, R. R., N. B. Leontis, and C. L. Zirbel (2010). R3d align: global pairwise alignment of rna

3d structures using local superpositions. Bioinformatics 26(21), 2689–2697.

Reinharz, V., F. Major, and J. Waldispühl (2012). Towards 3d structure prediction of large rna

molecules: an integer programming framework to insert local 3d motifs in rna secondary struc-

ture. Bioinformatics 28(12), i207–i214.

Rivas, E. and S. R. Eddy (2001). Noncoding rna gene detection using comparative sequence

analysis. BMC bioinformatics 2(1), 8.

Robertus, J. D., J. E. Ladner, J. T. Finch, D. Rhodes, R. S. Brown, B. F. Clark, and A. Klug (1974,

Aug). Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250(467), 546–551.

Roll, J., C. L. Zirbel, B. Sweeney, A. I. Petrov, and N. Leontis (2016, 07). JAR3D Webserver:

Scoring and aligning RNA loop sequences to known 3D motifs. Nucleic Acids Res. 44(W1),

W320–327.

Sakakibara, Y., M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood, and D. Haussler

(1994). Stochastic context-free grammers for trna modeling. Nucleic acids research 22(23),

5112–5120.

Samhita, L. and U. Varshney (2010). The ribosome and the 2009 nobel prize in chemistry. Reso-

nance 15(6), 526–537.

Sarver, M. (2006). Structure-based multiple RNA sequence alignment and finding RNA motifs. Ph.

D. thesis, Bowling Green State University.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical jour-

nal 27(3), 379–423.

Stombaugh, J., C. L. Zirbel, E. Westhof, and N. B. Leontis (2009). Frequency and isostericity of

rna base pairs. Nucleic acids research 37(7), 2294–2312.

125
Theis, C., C. Höner zu Siederdissen, I. L. Hofacker, and J. Gorodkin (2013). Automated identifi-

cation of rna 3d modules with discriminative power in rna structural alignments. Nucleic acids

research 41(22), 9999–10009.

Theis, C., C. L. Zirbel, C. H. Zu Siederdissen, C. Anthon, I. L. Hofacker, H. Nielsen, and J. Gorod-

kin (2015). RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure. PLoS

ONE 10(10), e0139900.

Turner, D. H. and D. H. Mathews (2009). Nndb: the nearest neighbor parameter database for

predicting stability of nucleic acid secondary structure. Nucleic acids research 38(suppl 1),

D280–D282.

Yao, J., V. Reinharz, F. Major, and J. Waldispühl (2017). Rna-moip: prediction of rna secondary

structure and local 3d motifs from sequence data. Nucleic acids research 45(W1), W440–W444.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3. Information

and control 10(2), 189–208.

Zhong, C. and S. Zhang (2015). Rnamotifscanx: a graph alignment approach for rna structural

motif identification. RNA 21(3), 333–346.

Zirbel, C. L., J. Roll, B. A. Sweeney, A. I. Petrov, M. Pirrung, and N. B. Leontis (2015, Sep).

Identifying novel sequence variants of RNA 3D motifs. Nucleic Acids Res. 43(15), 7504–7520.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic

acids research 31(13), 3406–3415.

126

APPENDIX A JAR3D WEB SERVER INPUT PAGE EXAMPLE

127

APPENDIX B JAR3D WEB SERVER LOOP LEVEL OUTPUT PAGE EXAMPLE

128

APPENDIX C JAR3D WEB SERVER ALIGNMENT PAGE EXAMPLE

129

APPENDIX D PYTHON IMPLEMENTATION OF TOP K ALGORITHM

i m p o r t s y s

i m p o r t i t e r t o o l s

i m p o r t math

from o p e r a t o r i m p o r t i t e m g e t t e r

d e f main (i n f i l e , o u t f i l e , memfile , l i m i t) :

fo = open (o u t f i l e , ”w”)

fm = open (memfile , ”w”)

probs , c h a r s = r e a d d a t a (i n f i l e)

l i m i t = i n t (l i m i t)

n = l e n (p r o b s)

t o p = []

t o p s e t = s e t ()

c a n d i d a t e s = []

soon = d i c t ()

f i r s t = [0]∗ n

t o p . append ((f i r s t , p r o b p r o d u c t (probs , f i r s t)))

t o p s e t . add (g e t s e q u e n c e (f i r s t , c h a r s))

f o r i i n r a n g e (n) :

can = [0]∗ n

130

i f l e n (p r o b s [i]) > 1 :

can [i] = 1

c a n d i d a t e s . append ((can , p r o b p r o d u c t (probs , can)))

i = 1

fm . w r i t e (’K, Cans , Soon ’+ ’\n ’)

w h i l e i < l i m i t :

i f l e n (c a n d i d a t e s) == 0 :

b r e a k

n e x t b e s t = max (c a n d i d a t e s , key= i t e m g e t t e r (1))

c a n d i d a t e s . remove (n e x t b e s t)

seq = g e t s e q u e n c e (n e x t b e s t [0] , c h a r s)

i f seq n o t i n t o p s e t :

t o p s e t . add (seq)

t o p . append (n e x t b e s t)

i = i + 1

(c a n d i d a t e s , soon) = u p d a t e (c a n d i d a t e s , soon , probs , n e x t b e s t , n)

i f (l e n (t o p)%10000 == 0) :

p r i n t (” Found ” + s t r (l e n (t o p)) + ” CProb = ” +

s t r (n e x t b e s t [1]) + ” Cans = ” + s t r (l e n (c a n d i d a t e s))

+ ” Soon = ” + s t r (l e n (soon)))

f o r ind , dup i n enumera t e (t o p) :

fo . w r i t e (’> ’+ s t r (i n d +1)+ ’ ’+ s t r (dup [0]) . r e p l a c e (’ , ’ , ’ ; ’) +

’ ’+ s t r (dup [1]) + ’\ n ’)

fo . w r i t e (g e t s e q u e n c e (dup [0] , c h a r s)+ ’\n ’)

fo . c l o s e ()

fm . c l o s e ()

131

d e f p r o b p r o d u c t (probs , i n d s) :

o u t = 1

f o r ind , i i n enumera t e (i n d s) :

node = p r o b s [i n d]

prob = node [i]

o u t = o u t ∗ prob

r e t u r n o u t

d e f u p d a t e (c a n d i d a t e s , soon , probs , n e x t b e s t , n) :

i n d s = n e x t b e s t [0]

f o r i i n r a n g e (l e n (i n d s)) :

s o o n i n d s = l i s t (i n d s)

s o o n i n d s [i] += 1

i f s o o n i n d s [i] >= l e n (p r o b s [i]) :

c o n t i n u e

key = s t r (s o o n i n d s)

prob = p r o b p r o d u c t (probs , s o o n i n d s)

i f key i n soon :

soon [key] = soon [key] + 1

e l s e :

soon [key] = 1 + s o o n i n d s . c o u n t (0)

i f soon [key] == n :

c a n d i d a t e s . append ((s o o n i n d s , p rob))

d e l soon [key]

r e t u r n (c a n d i d a t e s , soon)

d e f g e t s e q u e n c e (nums , c h a r s) :

s i z e = l e n (nums)

seq = c h a r s [0] [nums [0]]

132

f o r i i n r a n g e (1 , s i z e) :

j = nums [i]

seq = seq . r e p l a c e (’& ’ , c h a r s [i] [j])

seq = seq . r e p l a c e (’ & ’ , ’ ’)

r e t u r n seq

d e f r e a d d a t a (f i l e n a m e) :

w i th open (f i l e n a m e , ’ r ’) a s raw :

l i n e s = raw . r e a d l i n e s ()

p r o b s = []

c h a r s = []

f o r l i n e i n l i n e s :

p a r t s = l i n e . s p l i t (’\ t ’)

node = i n t (p a r t s [0])

prob = f l o a t (p a r t s [3] . s t r i p ())

i f l e n (p r o b s) >= node :

p r o b s [node −1] . append (prob)

c h a r s [node −1] . append (p a r t s [1] + ’&’ + p a r t s [2])

e l s e :

p r o b s . append ([prob])

c h a r s . append ([p a r t s [1] + ’&’ + p a r t s [2]])

r e t u r n (probs , c h a r s)

i f n a m e == ” m a i n ” :

i n f i l e = s y s . a rgv [1]

o u t f i l e = s y s . a rgv [2]

memfi le = s y s . a rgv [3]

l i m i t = s y s . a rgv [4]

main (i n f i l e , o u t f i l e , memfile , l i m i t)

	TITLE PAGE
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION AND OVERVIEW
	1.1 Overview of the modeling problem
	1.2 Why model RNA loop sequence variability?
	1.3 Challenges to overcome in modeling RNA loop sequence variability
	1.4 Nature of the models
	1.5 Results
	1.6 Overview of the dissertation

	CHAPTER 2 RNA PRIMARY, SECONDARY, AND 3D STRUCTURE
	2.1 An introduction to RNA
	2.2 RNA 3D structure determination
	2.3 RNA secondary structure, Watson-Crick helices, and isostericity
	2.4 RNA alignments
	2.5 RNA loops
	2.6 RNA basepairs
	2.7 RNA base-backbone interactions

	CHAPTER 3 REVIEW OF RELEVANT LITERATURE
	3.1 Introduction to RNA 2D structure prediction
	3.2 Introduction to RNA 3D structure prediction
	3.3 Review of literature on RNA 3D structure prediction
	3.4 Introduction to SCFGs
	3.5 Review of literature on SCFGs for RNA

	CHAPTER 4 MODELING RNA LOOP SEQUENCE VARIABILITY WITH SCFG MODELS
	4.1 Statistical dependence due to RNA basepairs
	4.2 Sequence variability in RNA basepairs and isodiscrepancy
	4.3 Structure of SCFG/MRF models for modeling RNA loop sequence variability
	4.4 A concrete example : the SCFG/MRF model for IL_95652.3
	4.5 Parameterization of basepair substitution probabilities
	4.6 Using multiple instances of a loop structure
	4.7 Parameterization of base-backbone interactions
	4.8 Parameterization of insertions
	4.9 Fixed bases
	4.10 Markov random field node normalization

	CHAPTER 5 JAR3D SOFTWARE AND WEB SERVERS
	5.1 Introduction to JAR3D
	5.2 Parsing sequences against JAR3D models
	5.3 Using JAR3D for alignments
	5.4 Using JAR3D to match loop sequences to 3D structures

	CHAPTER 6 JAR3D FALSE POSITIVE CONTROL AND VALIDATION STUDIES
	6.1 Randomly generating sequences for false positive control
	6.2 False positive control, alignment score deficit, and cutoff score
	6.3 Alignment extract study
	6.4 Comparison of JAR3D acceptance regions to RMDetect

	CHAPTER 7 DISTRIBUTION OF JAR3D MODELS OVER RNA SEQUENCE SPACE
	7.1 Introduction
	7.2 Top k algorithm
	7.3 Entropy calculations
	7.4 Rank order cumulative probability graphs
	7.5 Single group rank order cumulative probability graphs
	7.6 Examples of ROCP graphs for 10-nucleotide motif groups
	7.7 Paired rank order cumulative probability graphs
	7.8 Using PROCP graphs to analyze sarcin-ricin groups
	7.9 Distance measure based on rank-ordered cumulative probability
	7.10 Relationship between distance measure and comparison graphs
	7.11 Examples of distance measure used on IL_1.13 groups
	7.12 Approximation of the ROCP distance
	7.13 Heatmaps of ROCP for sets of motif groups
	7.14 Heatmap for IL_1.13 5x5 motifs
	7.15 Heatmap for IL_1.13 sarcin-ricin motifs

	CHAPTER 8 FUTURE WORK
	8.1 JAR3D for matching sequences to motif groups
	8.2 Improvements to JAR3D models
	8.3 Other applications for JAR3D

	BIBLIOGRAPHY
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

