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ABSTRACT

Junfeng Shang, Advisor

The stock market is an integral part of investments as well as the economy as a whole. The

prediction of stock prices is a exciting and challenging problem that has been considered by many

due to the complexity and noise within the market as well as the potential profit that can be yielded

from accurate predictions.

The purpose of this study is to construct and compare models used for the prediction of weekly

closing prices for some of the top stocks in the NYSE as well as to discuss the relationship between

stock prices and the predictor variables. Relationships considered in the study include that with

macroeconomic variables such as the Federal Funds Rate and the M1 money supply as well as

market indexes such as the CBOE Volatility Index, the Wilshire 5000 Total Market Full Cap Index,

the CBOE interest rate for 10-year T-notes and bonds, and NYSE commodity indexes including

XOI and HUI.

Models are built using methods of regression analysis and time series analysis. Models are

analyzed and compared with one another by considering their predictive ability, accuracy, fit to the

underlying model assumptions, and usefulness in application. The final models considered are a

pooled regression model considering the median weekly closing price across all stocks, a varying

intercept model considering the weekly closing price for each individual stock, and an ARIMA

time series model that predicts the median weekly closing stock price based on past prices.
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CHAPTER 1 DATA DESCRIPTION

1.1 Introduction to Data

When it comes to creating an investment portfolio to build up held assets, there are several

different asset classes to choose from which include bonds, cash equivalents, and equities. Equities,

or stocks, are the most volatile type of these asset classes but also have the ability create a large

profit. The key is to know when to buy and when to sell. This is why understanding patterns in

equity prices is vital to those who wish to invest in the stock market.

The purpose of this study is to estimate the values of time series data within each selected stock

of the New York Stock Exchange (NYSE). The study focuses on various stocks within a certain

exchange rather than in a certain index such as the S&P 500, because we want to keep the values

estimated to be consistent within the same market. Stocks within the S&P 500 are sold in different

exchanges which can affect the estimated price of that stock. Because of this, the model provides

insight exclusively for participation within the NYSE. Out of all possible exchanges, the NYSE

was chosen in this model since it is the largest stock exchange in the world.

Stock data is time series since it contains prices over time where each time point is related to

the previous time point. It is possible to look at stock prices over different time intervals such

as hourly, daily, weekly and monthly. This study looks at weekly time intervals. The reason is

that when looking at daily stock data, there are some days that are missing. Excluding these data

points would make the intervals between time points unequal, which would not be appropriate for

time series analysis. A solution to this problem would be to fill in the missing data. However,

this study chooses to instead use weekly time points since there can be a great amount of variation

among stock prices per day. This variation could be largely due to white noise which we are not

necessarily interested in tracking. This study is interested in looking at trends over longer periods

of time.

There are approximately 2,800 companies that have equities listed in the NYSE. Instead of
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trying to fit a model that encompasses all of these stocks, this model focuses on a subset of stocks

within the NYSE. There are two options for doing this. The first is to take a random sample

of stocks and create a model looking at the stocks within that sample. The second is to take a

selection of the most common or most popular stocks within the exchange. This study follows the

latter option. Using a model to create predictions for more popular stocks makes the study more

relevant in application for those who participate within the NYSE. On the other hand, a random

selection could include more obscure stocks, although which could provide a more diverse look at

equites, would be less practical for application. The selection of common stocks that are modeled

in this study are those within the NYSE 100.

1.2 New York Stock Exchange 100

The New York Stock Exchange 100, or NYSE 100, composes of a list of very promising, high

achieving, and popular stocks. A stock must be well established to become a part of the NYSE

100. Since this group consists of successful and popular stocks, it provides a sample of stocks for

this model that is relevant in application. This study looks at weekly closing stock prices in the

NYSE 100 for each Friday from January 1, 2000 through December 23, 2017. This model includes

85 stocks from the NYSE 100. There are some stocks within the NYSE 100 that are missing from

this study because they did not have the full range of data between these two dates. With this data

for individual stocks, this model includes three different variables.

The first variable related to the NYSE 100 is the variable which this model is a predictor for. For

each of the 85 stocks, this study contains data for the closing price for each Friday from January 1,

2000 through December 23, 2017. The goal of this model is to be able to predict the closing price

for a stock at a certain time point. For each stock, there are 939 data points which were retrieved

from Yahoo! Finance. This study defines the closing price as Yit for each stock i = 1, .., 85 for

each week t = 1, ..., 939 . The other two variables describing each of these stocks are used as

variables to predict the closing price.

One variable that is used as a predictor is the volume of stock sold each week. For each Friday,

this study looks at the data for the volume of each stock sold at each time point. The volume sold
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in the previous week is used to predict the volume sold in the current week. The data was retrieved

from Yahoo! Finance. This study defines the volume sold as Vit for each stock i = 1, ..., 85 for

each week t = 1, ..., 939 .

The second predictor variable is how stocks within the NYSE are categorized by sector. This

is a way that stocks are grouped with other stocks that cater to the same sections of the economy

and market. The 85 stocks that are modeled in this study belong to 7 distinct sectors. 20 stocks

belong to the Consumer Goods (CG) sector. This sector includes both cyclical and non-cyclical

goods and services. Industry groups within this sector include automobile manufacturers, home

construction, leisure goods and services, textiles and apparel, entertainment, broadcasting, retail,

food, consumer services, cosmetics, and household products. 18 stocks belong to the Basic Ma-

terials (BSC) sector. Industry groups within this sector include chemicals, mining, metals, forest

products, and paper. 16 stocks belong to the Financial (FIN) sector. Industry groups within this

sector include banks, financial services, and insurance. 12 stocks belong to the Industrial (IDU)

sector. Industry groups within this sector include construction, and industrial goods and services

such as building materials, industrial equipment, aerospace, electrical components, and industrial

transportation. 10 stocks belong to the Healthcare (HCR) sector. Industry groups within this sector

include biotechnology, healthcare providers, medical products, and pharmaceuticals. 5 stocks be-

long to the Technology (TEC) sector. Industry groups within this sector include communications

technology, technology services, technology hardware and equipment, and software. The last 4

stocks belong to the Utilities (UT) sector which includes electric, gas, and water utilities. Sectors

will be treated as categorical variables in the model and are discussed later in this study.

1.3 Macroeconomic Variables

Changes in stock prices are connected to several aspects of the economy, including those at the

highest levels. Macroeconomic variables are those features of a national or international economy

that describe the state of the market as a whole. These variables tend to be recorded monthly

or annually rather than weekly. Because of this, macroeconomic variables are more useful for

observing trends over long periods of time rather than accounting for variation in the short run.
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Within this modeling process, we will consider several of these factors to see any possible relations

between the changes in equities and the economy at a macroeconomic level.

The Federal Funds Rate (DFF) is the rate of interest in which institutions exchange funds held at

Federal Reserve Banks. Institutions may lend portions of balances and funds to other institutions.

This interest rate is influenced by the Federal Reserve, and decisions on the rate are determined by

the state of the market. Changes in the interest rate influences spending. If the funds rate is high,

exchange and spending is deterred resulting in decreased stock prices. On the other hand, if the

funds rate is low, the cost of exchanging funds and spending becomes cheaper. This encourages

borrowing and spending, leading to increased stock prices. The data obtained for the funds rate is

monthly, however there are cases where consecutive months have the same interest rate when the

rate is not changed. The data was originally released by the Board of Governors of the Federal

Reserve System and was retrieved from the Federal Reserve Bank of St. Louis (FRED). This study

defines DFF as DFFt for each week t = 1, ..., 939. (Online, a)

M1 is the entire supply of physical money in the United States and is composed of federal notes

and coins as well as some accounts such as demand deposits. M1 is also called narrow money

because it includes only physical money and liquid assets that can be easily converted to physical

money. M1 will always increase over time due to inflation. The data obtained is weekly, was

originally released by the Board of Governors of the Federal Reserve System, and was retrieved

from FRED. The units for this data is in billions of U.S. dollars and is seasonally adjusted. This

study defines M1 as M1t for each week t = 1, .., 939. (Online, b)

1.4 Market Indexes

This model will look at different indexes that are used to illustrate different aspects of the equity

market. Unlike the macroeconomic factors which give a broad look on the state of the economy,

these indexes can be used to look at the state of the stock market specifically.

The Chicago Board Options Exchange (CBOE) created the Volatility Index (VIX) to measure

market expectations of volatility in stock index prices. The VIX serves as a way to measure market

risk. A low VIX index indicates low expected volatility meaning that stock prices are not expected
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to change quickly. A high VIX index indicates a high expected volatility meaning that stock prices

are expected to change quickly. A higher amount of volatility also indicates increased uncertainty

and risk in the market, which can deter investments and spending. The data obtained is weekly.

The VIX data was originally released by the CBOE and was retrieved from FRED. This study

defines VIX as V IXt for each week t = 1, ..., 939 . (Online, c)

The CBOE also has an index that measures the interest rate for 10-year T-notes and bonds.

TNX is the ticker symbol for this index. Equities or stocks are a type of asset class along with

bonds. Since both equities and bonds are used in financial portfolios, it is possible that changes

in bond rates can affect whether or not a person decides to invest in stocks or bonds. The data

obtained is weekly and was retrieved from Yahoo! Finance. This study defines TNX as TNXt for

each week t = 1, ..., 939.

The Wilshire 5000 Total Market Full Cap Index is one of several Wilshire Indexes. The Total

Market Index is known as being a comprehensive measure of equity in the U.S. market by including

the average price of nearly 5000 different stocks from various exchanges. The data obtained is

weekly, was originally published by Wilshire Associates, and was retrieved from FRED. This

study defines the Wilshire 5000 as WILt for each week t = 1, ..939. (Online, e)

Stock prices can also be related to prices of major commodities within the United States. The

NYSE provides current prices of various commodity groups alongside the prices of their equities

for reference. The NYSE and looks at three different commodity groups. The first is softs and

includes goods such as coffee, cocoa, sugar, and cotton. The NYSE does not have an index for

summarizing the prices of softs, so instead this model looks to the other two commodity groups.

The second commodity group is energy and includes fuels such as gas and oil. In this study, the

changes in prices of fuels are modeled using the NYSE ARCA Oil and Gas Index (XOI). The

index provides the average prices of major oil and gas components within the market. The data

is weekly and was retrieved from Yahoo! Finance. This study defines XOI as XOIt for each

week t = 1, ..., 939. The third and final commodity group is precious metals and includes rates

for gold, silver, and platinum. In this study, the changes in prices of precious metals are modeled
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by the NYSE ARCA Gold Bugs Index (HUI). The index provides the average prices of stocks in

companies within the gold mining industry. The data obtained is weekly and was retrieved from

Yahoo! Finance. This study defines HUI as HUIt for each week t = 1, ..., 939. (Online, d)
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CHAPTER 2 INTRODUCTION TO THE STUDY

2.1 Objective of the Study

The prediction of stock prices is an interesting and challenging endeavor that has been consid-

ered by economists, financial analysts, statisticians and computer scientists alike. The stock market

has intrigued many due to the complexity and uncertainty of the market as well as the potential

financial gain that can come from accurate predictions. A classic dream is to “make it big” on the

stock market and data modelers have considered many different techniques to achieve this end.

In literature, perhaps the most common method for stock prediction is through machine learn-

ing and neural networks due to its versatile nature in using many predictor variables and its lenient

model assumptions. The most common neural network is the Artificial Neural Network (ANN)

see in studies such as one by Moghaddama, Moghaddamb, and Esfandyari (2016), who consider

the prediction of daily NASDAQ rates using the day of the week and historical prices as inputs

to produce accurate predictions. The drawback with neural networks is that they act as a sort of

“black box” building relations between the stock prices and the predictors meaning that it is diffi-

cult to interpret the model and the relationships therein. So although neural networks and machine

learning tend to be the most popular choice for stock predictions, this study turns to more classical

methods including multiple linear regression and time series analysis to provide more meaningful

interpretations.

Chang, Wang, and Zhou (2012) who study the daily stock trends using another type of neural

network, the evolving partially connected neural network (EPCNN) explain that “mining stock

market trend is a challenging task due to its high volatility and noisy environment”. Stock prices

can be very volatile especially in the short run, which is why unlike many other studies, this study

will consider a longer time interval using weekly data rather than daily data to account for this

noisy short term environment. Chang, Wang, and Zhou (2012) also express the strong relationship

between stock trends and other outside factors which is why in this study, we consider many other
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economic variables as described in Chapter 1.

This study takes advantage of the ability of classical models to provide insight in the relation-

ship between stock prices and other predictor variables. We also consider larger time periods to

account for the access noise in the short term.

Previous studies such as those by Al-Tamimi, Alwan, and Rahman (2011) and Sharif, Purohit,

and Pillai (2015) consider regression analysis for the prediction of stock prices using other pre-

dictor variables even though it is understood that there is a dependent relationship within the data

due to its time series nature. However, as this study will show, despite failing to meet the underly-

ing assumption of independence, regression can still be used to statistically show the relationships

between stocks and other variables that are known from an economic standpoint.

2.2 Outline of the Study

In this section we briefly discuss what you can expect to see in this study. As stated previously,

the goal of this study is to compare various models used for the prediction of the weekly closing

stock price for selected stocks in the NYSE.

In Chapter 1, you become familiar with the the data that was collected and is used for the

modeling process as well as for testing the fit of the models. In Chapter 2, we have discussed the

motivation of the study and literature related to the prediction of stock prices. Chapter 3 is where

we begin to look at each model separately. This chapter is dedicated to the pooled multiple linear

regression model which is based on the median weekly stock price over all indexes. Chapter 4

discusses the time series model which takes advantage of the time series nature of the data. This

model also considers the pooled weekly median stock price over all indexes. Chapter 5 analyzes

the third model which is also a multiple linear regression model. However, instead of considering

the pooled price, this model considers each of the 85 selected stocks in the NYSE individually.

This study is concluded in Chapter 6 which gives comparisons of the three models as well as

discusses further considerations for modeling. f

Victoria Switlyk
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CHAPTER 3 POOLED REGRESSION MODEL

3.1 Multiple Linear Regression

Multiple linear regression is a model used create predictions based on information that is known

of other variables. This study uses regression models to show how the variation of stock prices are

related to our predictor variables and how these variables can be used to explain variation in prices.

Since the data are time series, we consider time as one of these predictor variables. In this study

we consider several regression models, however, this chapter focuses on a pooled model.

How the data are currently, there are multiple values of Yit for each time period since we are

considering the closing price for each individual stock for each time period. When considering each

stock type, we are essentially considering a varying intercept model, or a model that considers the

changes or variation among each stock type. For our first model, we will look at a pooled model

which examines the top stocks of the NYSE as a whole.

To create the pooled model, we consider predicting Yt which represents the median closing

stock price for each week t. When pooling the closing price over all stock indexes, we consider

the median rather than the average. The average merges the variability within the data over time

while the median will retain the patterns of variation.

Furthermore, the distribution of prices at time t tends to be right skewed. This is because

there are some larger and more popular companies within the NYSE 100 that have much higher

stock prices than other companies. Figure 3.1 illustrates the difference in the distribution of closing

prices when looking at the price for each stock for each week as opposed to considering the median

price for each week. For the original price data, we see that the distribution is highly right skewed.

For the median price, we see that the distribution is no longer skewed, but it does appear to be

bimodal. This could be due to fluctuations in the economy over time causing prices to sit at

different levels over different periods. Considering the median is a different perspective on pooling

index prices compared to the calculations usually used for stock market indexes, such as the S&P
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500 which considers the weighted average price which is dependent on the number of stock shares

for that company.

Figure 3.1: Distribution of Price

We also remember that one of our predictor variables, the volume of stock i sold at time t is

also a variable that depends of the stock index. Similarly with the closing price, in this model we

consider the median volume sold at time t over each stock i. In other words, we are looking at Vt

rather than Vit.

When conducting regression modeling, we first partition the data into two parts: training and

testing data. The training data is used in the process of creating the model. Once created, we use

the chosen model to make predictions for the testing data in order to check the fit of our model and

make sure that there is not an overfitting of the model to the training data. Since the pooled data

contains one data point or observation for each week, t, the data set for this model contains 939

data points. The data are randomly partitioned into the two groups with a 70%-30% split. In other

words, there are 657 observations in the training data and 282 observation in the testing data. For

the purpose of creating the model, use only the training data. We will look at the testing data later

in our analysis.

Before creating the model, we look at the mathematical qualities that go into the creation of

a multiple linear regression model. For this model, we assume that the relationship between the

median closing stock price at week t and our selected set of predictors variables, Xt1, ..., Xtk,
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roughly follows the linear regression model

Yt = β0 + β1Xt1 + ...+ βkXtk + εt,

where εt is a random variable that represents the error. We suppose E(εt) = 0 such that the

expected median closing stock price,

E(Yt) = β0 + β1Xt1 + ...+ βkXtk,

is a function of our predictor variables. β0 is the intercept and β1, ..., βk are the slopes. All of

the beta coefficients are defined as fixed and unknown parameters. The regression model uses the

least squares estimates of β1, ..., βk which are the values that minimize the residual sum of squares

(RSS),

RSS =
n∑
t=1

ε2t =
n∑
t=1

(Yt − β0 −
k∑
j=1

βjXtj)
2.

The notation for a multiple regression model can be simplified by writing the model in terms of

vectors and matrices. We set Y as the vector of median closing prices Yt from t = 1, ..., 657. X is

set as the (k+ 1)X657 matrix of all K predictor variables Xtj from t = 1, ..., 657 and j = 1, ..., k.

The first column of the matrix is a vector of all ones corresponding to the intercept. We then

have β as the vector of the unknown parameters β0, ..., βk and ε as the vector of error terms from

t = 1, ..., 657. Defined with matrices, we can rewrite the model as

Y = Xβ + ε.

We can also rewrite the residual sum of squares as

RSS = ε′ε = (Y −Xβ)′(Y −Xβ).
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Finally, we will define the least squares estimates of the models beta parameters as

β̂ = (X ′X)−1X ′Y.

The k predictor variables in X come from the group of original predictor variables discussed

in the first chapter. We decide which predictor variables to include in the model based on variable

selection methods.

3.2 Stepwise Variable Selection

Classically, there are three popular methods of variable selection which include forward se-

lection, backwards elimination, and stepwise selection. Each of these methods determine which

predictor variables should be included in the model based on some selection criterion. We consider

variable selection with the goal of minimizing the Akaike Information Criterion (AIC), which is

defined as

AIC = 2k − 2log(L(β)),

where k is the number of parameters andL(β) is the likelihood function. The median closing prices

are assumed to be normally distributed such that Y∼N(Xβ, σ2). This means that the likelihood

function of the beta coefficients given some point, can be defined as

L(β) = f(Y ) =
n∏
i=1

f(Yt).

AIC is a criterion used for model comparison where the ideal model is the one with the small-

est AIC. The criterion considers the fit of the model to the data using the likelihood function.

Subtracting the likelihood function means that the AIC will decrease with an increased likelihood

function. We can choose the maximum likelihood estimate, β̂ of the model parameters at which

the likelihood function reaches its maximum possible value. In other words, the maximum likeli-

hood estimate of the beta parameters is the value that maximizes the occurrence of the data that the

model is built on. The added 2k indicates that a model with a greater number of parameters, while



13
possibly increasing the likelihood, decreases the AIC. In other words, when considering AIC as

our selection criterion, a less complex model is preferred to avoid an overfitting of the model to the

training data.

Now that we have established AIC as the selection criterion, we consider the three classical

methods of variable selection. The method of forward selection begins with a null model where

Y = 1. Then for each step or iteration in the process, a variable is added until either the AIC

is minimized or there are no more predictor variables to introduce into the model. Backward

elimination begins with a full model where Y = Xβ + ε. In the full model, X contains all of the

predictor variables that we are considering for the model. Then for each step or iteration in the

process, a variable is removed from the model until the AIC reaches a minimum value. This study

uses the method of stepwise selection since it is a combination of the previous methods. Stepwise

selection begins with the null model where Y = 1. For each iteration in the process, a variable is

either introduced to or removed from the model. The process ends once the AIC is minimized.

Table 3.1 shows each of the iterations of the stepwise process for the pooled training data. In

this variable selection procedure, all of the possible predictor variables were included in the final

model. This means that each variable increased the maximum likelihood function so as to outweigh

the cost of adding an additional variable. In the end, the procedure leaves us with the full model.

Looking at some of the specifics of the stepwise selection, we see that there are 9 iterations, and for

each iteration a variable was introduced to the model. We also see that for each iteration, the AIC

decreases at a slower rate. This indicates that there are diminishing returns for the reduction of

AIC due to the cost of adding an additional variable. Finally, we note that the variables introduced

into the model first are the variables that increase the likelihood function the most.

Even though the stepwise process gives a full model, this is not the final model. To select

the final model, we must consider the significance of the predictor variables and possible multi-

collinearity between predictor variables.
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Table 3.1: Iterations of the stepwise process and the corresponding AIC

Iteration Add/Remove AIC
0 - 3422.66
1 +WIL 1869.37
2 +XOI 1388.94
3 +V IX 1290.56
4 +HUI 1243.28
5 +TNX 1238.86
6 +DFF 1205.88
7 +M1 1201.46
8 +TIME 1193.40
9 +V 1188.19

3.3 Model Assumptions and Diagnosis

In this section, we select the final model for predicting the median stock price in the NYSE by

considering multicollinearity as well as the significance of the predictor variables. After obtaining

the final model, we check to see if our model satisfies the underlying assumptions of a multiple

linear regression model.

We see from the previous section that the stepwise process gives the full model as the model

with the lowest AIC. A reason for this outcome could be possible multicollinearity. Multicollinear-

ity in a model occurs when predictor variables are highly correlated with one another. This means

that each predictor variable can be used to explain the variation in our response variable, however,

the information that is explained by each variable will be the same. In other words, highly cor-

related predictor variables tell us the same information about our response. Multicollinearity is

undesirable because it adds unnecessary complexity to the model.

One way to check for multicollinearity is by assessing the correlation between each of the

predictor variables. Figure 3.2 gives the correlation between each of the variables in the model

rounded to the nearest tenth. Notice that some of the strongest correlations involving predictor

variables include time, the Wilshire 5000 index, and M1. For example, there is a strong positive

correlation between M1 and time (nearly 90%). This relationship is due to the effect of inflation

over time. Inflation causes prices to increase over time relating to an increase of the money supply.
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Figure 3.2: Correlation Matrix

The result of inflation over time can be an underlying effect for correlation between our predictors

and time.

To deal with multicollinearity, it is best to remove predictor variables that are highly corre-

lated with other predictors. The Variance Inflation Factor (VIF) for each variable can be used to

determine which predictors should be removed from the model and is defined as

V IFj =
1

1−R2
j

.

If we consider theX1, ..., Xk predictor variables, thenR2
j is the correlation coefficient for the fit

ofXj on the remaining k−1 variables. The correlation coefficient will be discussed later in further

detail, but it represents the amount of variation inXj explained by the remaining predictors. IfXj is

highly correlated with the other predictors, R2
j will be closer to 1 meaning that V IFj will be larger.

A general rule of thumb is that a VIF greater than 10 indicates a problem of multicollinearity.

Table 3.2 gives the VIF for each Xj in the full model. M1 is the most highly correlated with

the other predictor variables with a VIF of 133.05 followed by time with a VIF of 93.76. When
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Table 3.2: VIF of predictor variables

Variable VIF VIF
WIL 53.12 5.79
XOI 7.52 4.35
V IX 2.76 2.69
HUI 4.75 3.28
TNX 12.82 7.34
DFF 5.22 3.69
M1 133.05 -

TIME 93.76 -
V 3.79 2.60

analyzing the correlation matrix, we can see that these two variables are indeed highly correlated

with the other predictors. We now consider a reduced model where M1 and time are removed. In

this model, all VIF’s are less than 10 indicating that this solved the problem of multicollinearity in

the model.

Before we choose the final model, we first check to see if each of the variables within the model

are significant. If a predictor variable is significant, then the variation in the predictor variable can

be used to explain the variation in the median closing price. In terms of the model, the slope

coefficient for the variable will be significantly greater than zero. When testing for the significance

of a variable we can test the null hypothesis that the beta coefficient for that variable is equal to

zero versus the alternative hypothesis that the beta coefficient is not equal to zero. We can also

think of the test as

H0 : E(Y ) = β0 + β1X1 + ...+ β7X7

Ha : E(Y ) = β0 + β1X1 + ...+ β6X6.

Here, the null hypothesis is that the expected value of the median closing price follows a re-

duced model where one variable is removed leaving 6 predictor variables. The alternate hypoth-

esis is that the expected value follows the full model instead where the 7 predictor variables are

included. The 7 variables in the model for the alternative hypothesis are the 7 remaining variables
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after M1 and TIME were removed due to multicollinearity. The test statistic is

F =
SSRF − SSRR

SSEF/(n− k − 1)
,

where SSRF and SSRR are the sum of squares for the regression model for the full and reduced

models. These represent the amount of variation explained by the model. SSEF is the error sum

of squares for the model or the amount of variation that is not explained by the model. n − k − 1

is the degrees of freedom under the full model where n = 657 is the number of observations in the

training data and k = 7 is the number of predictor variables that we are considering for the full

model. We are interested to see if the gain in the regression sum of squares is significant enough

to justify keeping that additional variable in the model. The corresponding p-value for the test is

p− value = P (F1,n−k−1 ≥ F ),

where 1 represents the additional variable that the full model has over the reduced model. Thus

F1,n−k−1 represents an F-distribution with 1 and n − k − 1 degrees of freedom, and the p-value

is the probability that we obtain a value of F from this distribution that is greater than our test

statistic. Table 3.3 gives the F-statistics and corresponding p-values for each of the 7 variables that

we are considering.

Table 3.3: Significance of predictor variables

Variable F-Statistic p-value
WIL 17493.01 <0.0001
XOI 941.14 <.0001
V IX 123.02 <.0001
HUI 53.85 <.0001
TNX 6.72 .0098
DFF 35.50 <.0001
V .1194 .7298

For most of the predictor variables, the p-values for the test statistics are close to zero indicating

that for each of those tests, there is sufficient evidence to reject the null hypothesis and conclude
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that the predictor variable is significant within the model. The only insignificant variable in the

model is the median volume sold in week t which has an F-statistic of 0.1194 and a corresponding

p-value of 0.7298. Since the p-value is much greater than 0, there is not sufficient evidence to

reject the null hypothesis, and we conclude that the median volume is not a significant variable for

predicting the median closing price when also considering our other predictor variables.

After removing volume, we can define the final pooled model as

Ŷt = β̂0 + β̂1WILt + β̂2XOIt + β̂3V IXt + β̂4HUIt + β̂5TNXt + β̂6DFFt,

where Ŷt is the predicted median closing price at week t, β̂0, ..., β̂6 are the parameter estimates for

the y-intercept and slope coefficients. The chosen predictor variables include the Wilshire 5000

Index (WIL), the Oil and Gas Index (XOI), the Volatility Index (VIX), Gold Bugs Index (HUI),

the interest rate for 10-year T-notes and bonds (TNX), and the Federal Funds Rate (DFF).

Before considering the specifics of the model such as interpretations and applications, we first

discuss the diagnostics of the model. We wish to see whether the selected model satisfies the un-

derlying assumptions for a linear regression model. The four main assumptions of the model as

shown by Dielman (2005), are linearity between the closing price and our predictor variables, in-

dependence of the error terms or residuals, constant variance or homoscedasticity of the residuals,

and normality for the distribution of the residuals. We analyze each assumption individually.

The chosen pooled model is a linear regression model meaning that it is assumed that there is

a linear relationship between the weekly median closing stock price and the predictor variables.

This assumption can be visualized by looking at a plot of the residuals and fitted values. If there is

a linear relationship, then the residuals should be distributed centered around a straight line across

all values to. The plot gives a red line that represents the center of the residuals for each set of

values. It appears that the relationship is linear except for large fitted values where it appears to be

slightly curved.

Next we wish to test whether the residuals are independent of each other. This means that we
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Figure 3.3: Residuals vs Fitted Values

are interested in the correlation between the residuals. The correlation can be visualized by looking

at a plot of the autocorrelation function for the residuals.

Figure 3.4: Autocorrelation of the Residuals

Based on the plot, we notice that there are significantly high correlations among the residuals.

We can also check for the independence of the residuals with formal testing using the Durbin-

Watson test where we test the null hypothesis that the autocorrelation among the residuals is zero
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against the alternative which suggests that the autocorrelation is greater than zero, or

H0 : ρ = 0

Ha : ρ > 0.

The test statistic is defined as

d =

∑n
t=2(et − et−1)2∑n

t=1 e
2
t

,

where we consider the ratio of the sum of squares of the difference between each residual and the

previous residual and the sum of squares of the errors. The value of the test statistic obtain from

the residuals of the pooled model is t = 0.39664 with a corresponding p-value of nearly zero.

These results indicate that there is significant evidence to reject the null hypothesis and conclude

that the autocorrelation of the residuals is greater than zero. In other words, we conclude that the

residuals are not independence and that the model assumption of independence is violated. One

possible reason that we obtain this result is because the data are time series data. For time series

data, there is generally a correlation among previous values which could indicate a correlation in

the residuals. For example, the closing price for one week will be correlated to the closing price of

the previous week since in general, there is not going to be a major shift in the economy that will

drastically change the median stock price in one week as opposed to a longer time period.

The third model assumption that we must acknowledge is that of constant variance of the

residuals or homoscedasticity. We assume that the residuals have variances that are equal and

unknown. This can be checked visually by looking at a plot of the residuals versus the fitted

values. If the variances are equal, then we should expect the residuals to appear randomly and

equally spread among all values. We note from the plot that the residuals across all values tend to

be centered around zero showing that the model tends to provide predicted prices centered around

the actual prices across all values. We also notice that there are a few values that have extremely

high or low residuals that could be due to the presence of outliers where the model was not as
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accurate in its predictions. Finally, we can see that for larger values such as predicted prices over

$70, we see that the variance appears to be smaller than for other values. When the closing median

stock prices is predicted to be a high value such as above $70, the corresponding residuals tend to

be smaller. This means that these high predictions tend to be higher than the actual closing price.

In conclusion, the variance appears to be constant except for some extremely large fitted values.

Finally, we consider the assumption of normality for the distribution of the errors or residuals

which we assume in the creation of the model. In other words, εt ∼ N(0, σ2) for some variance.

For the model to be correct, it is assumed that E(εt) = 0. We must furthermore assume that the

errors also follow a normal distribution when testing for the significance of the model parameters as

well as forecasting with the model. Normality can be checked both graphically as well as with the

use of formal testing. Visually, we turn to the normal Q-Q plot of the standardized residuals versus

the theoretical quantities where the residuals follow the normal distribution. If the assumption of

normality is met, then the standardized residuals and the theoretical values should be very similar

meaning that the normal Q-Q plot shows values that do not stray far from a straight line.

Figure 3.5: Normal Q-Q Plot

Based on the plot, points near zero tend to follow a straight line while points farther out tend to

stray farther from the line created a curved shape on the end points. This indicates that values closer

to the zero are closer to the theoretical values following the normal. This observation is intuitive
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since theoretically the mean is places at zero. Values on the end points of the graph indicate values

that differ greatly from the normal model. These values can indicate a skewed distribution for the

residuals as well as outliers. Unusual values will always be present as very large or very small

values and will stray from the normal. Since the data we are analyzing for the pooled model is

the median closing stock price, this will exclude the effects of outliers present across individual

stock indexes. However, outliers can still be present in the form of extremely large or small median

prices. The unusual prices can be due to external effects or anomalies in the market or across the

economy as a whole. For example, we see that there is a curve of many smaller values that stray

from the line. These could indicate unusually lower prices due to some economic downturn such

as the Great Recession which was brought on by a crash in the housing market.

The normality assumption can also be checked with formal testing using the Anderson-Darling

test for normality. This test is versatile because it can be used to check if a sample distribution fits

any probability distribution. This means that this test can be applied specifically for the testing of

normality. The null hypothesis that the residuals come from a normal distribution is tested against

the alternative hypothesis that the errors are not normally distributed.

H0 : εt are normally distributed

Ha : εt are not normally distributed.

The Anderson-Darling test considers the distance between the sample distribution of the ob-

served residuals and the hypothesized normal distribution. The test statistic A2 is used to quantify

the discrepancy rather than simply looking at the plot. The test also places a higher weight on the

endpoint values which is where there tends to be the greatest difference from the normal. The test

statistic is defined as

A2 = −n
n∑
i=1

2i− 1

n
[log(F (et)) + log(1− F (en+1−t))],

where the function F (∗) is the cumulative normal distribution. Therefore, if the standardized resid-
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ual distribution closely follows the normal, then it is expected to have a smaller test statistic. The

value of test statistic for the residuals based on the pooled model is A2 = 0.96234. The corre-

sponding p-value for the test statistic is 0.01516. If we are basing our decision with a standard

95% confidence level, we can conclude that there is sufficient evidence to reject the null hypoth-

esis and conclude that the residuals do not follow a normal distribution. Holding a 95% level of

confidence indicates that we allow the type I error, or the probability of falsely rejecting the null

hypothesis, to be up to 5%. In other words, the p-value tells us that the probability that we obtain a

test statistic of 0.96234 given that the residuals come from a normal distribution is approximately

2%. In conclusion, the test results indicate that the normality assumption is not satisfied. This

result could possibly be related to a problem with linearity in the model.

3.4 Interpretation and Fit of the Model

In this final section, we consider the fit of the model by considering the error and analyzing the

testing data. We also discuss interpretations of the model coefficients and what the model tells us

about how the median stock prices relate to the predictor variables.

Perhaps the most common way to assess the fit or the predictive capabilities of the model is with

the coefficient of determination which is a value that represents the percentage of the variability in

the response value that can be explained by the variability in the predictor variables. The coefficient

of determination is defined as

R2 = 1− SSR

SST
,

where SSR is the sum of the squares of the residuals, or
∑

t e
2
t , and SST is the total sum of

squares, or
∑

t(yt − ȳ)2. The residuals represent the amount of error caused by the discrepancies

between the estimated values and the actual values. Therefore the ratio of the residual sum of

squares and the total sum of squares gives the percentage of variation related to the residuals. This

represents the unexplained variance which is not accounted for by the model. Therefore R2 then

gives the variation of the median stock price that is accounted for by the model. Models that have

a higher coefficient of determination tend to be a better fit and give better predictions because the
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model is able to explain more of the variation in the stock price. The coefficient of determination

for the pooled model isR2 = 0.9664. This indicates that 96.64% of the total variance in the weekly

median stock price for the top stocks in the NYSE 100 is linearly associated with the variance in

the Wilshire 5000 Index (WIL), the Oil and Gas Index (XOI), the Volatility Index (VIX), Gold

Bugs Index (HUI), the interest rate for 10-year T-notes and bonds (TNX), and the Federal Funds

Rate (DFF). The percentage of explained variation is very high indicating that the model provides

a good fit for the median stock price for the top stocks in the NYSE.

The problem with consideringR2 as a measurement of the fit for the model is that it will always

increase when more predictor variables are added to the model. This means that based solely on the

R2 a better model would be a model with more predictor variables. However, this is not true. As

discussed previously, when creating a model, the goal is to have a well fit model that is as simple

as possible. Additional variables can bring additional explanation to the variation of the response

variable, however, there is a point where adding an additional variable is not worth the increasing

the complexity of the model. An example would be predictor variables that are highly correlated

with each other. If we have too many variables, it is likely we will see a high correlation among

predictors. Highly correlated predictors give the information about the variability in the response,

so it would be unnecessary to include all of them into the model. To account for the complexity

of the model when considering the fit, we look instead to the adjusted coefficient of determination

which is defined as

R2
adj = 1− SSR/(n−K − 1)

SST/(n− 1)
.

Looking at the equation, the adjusted value is similar to R2. The difference is the the residual

sum of squares and the total sum of squares are divided by their respective degrees of freedom.

Therefore, the adjusted coefficent of determination considers both the sample size, n, and the

number of predictor variables in the model, K. The adjusted value R2
adj will never be larger than

R2. While the unadjusted value will always increase with each additional predictor variables added

to the model, the adjusted value will only increase if the additional variation explained by the added

predictor variable is greater considering the added complexity to the model. The interpretation of
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the adjusted coefficient is nearly the same as the unadjusted value. Given the two values, R2

adj is

preferred given the consideration of model complexity. The adjusted coefficient of determination

for the pooled model is R2
adj = 0.9661 and indicates that 96.61% of the total variance in the

weekly median stock price for the top stocks in the NYSE 100 is linearly associated with the

variance in the Wilshire 5000 Index (WIL), the Oil and Gas Index (XOI), the Volatility Index

(VIX), Gold Bugs Index (HUI), the interest rate for 10-year T-notes and bonds (TNX), and the

Federal Funds Rate (DFF). Compared to the unadjusted value, the adjusted value is only slightly

smaller. This indicates that all of the predictors give additional explanation in the price variation

meaning that their inclusion within the model is beneficial to the fit of the model considering

the increased complexity. The interpretation yields a similar conclusion as the unadjusted value

and indicates that the model is successful in explaining the variation in the weekly median stock

prices. Furthermore, we then expect the model to provide accurate price forecasts which will be

tested later using the testing data.

Considering the coefficient of determination is useful for determining the fit of the model and

how well the predictors overall explain the variation in the response, however, we are interested to

consider each predictor individually to gain information on the relationship between each of the

macro and microeconomic variables in the model and the weekly median closing price. This is

done by interpreting the beta coefficients for the predictor variables from the final pooled model.

The coefficients give the relationship between each predictor and the median closing price by

analyzing the change or variability in stock price related to the change in our predictors. Table 3.4

lists the independent variables in the final model along with the corresponding beta coefficients

which are estimates of the model parameters built from the least squares regression model.

The estimate for the parameter β0 or the y-intercept is 22.4656 and can be interpreted as the

predicted median stock price when all predictors take a value of zero. The intercept does not have

a meaningful interpretation in this model since it does not make sense for any of the predictors to

take a value of zero.

The regression coefficient for the variables WIL is 0.3539 and indicates that holding all other
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Table 3.4: Estimates of Model Parameters

Variable Parameter Estimate
Intercept β0 22.4656
WIL β1 0.3539
XOI β2 0.0136
V IX β3 -0.1587
HUI β4 -0.0094
TNX β5 -1.3197
DFF β6 0.5498

variables constant, when the Wilshire 5000 Index increases by 1 point, it is predicted that the

median closing stock price for the top stocks is NYSE 100 will increase by an average of $0.3539

or approximately 35 cents. As discussed earlier, the Wilshire 5000 is used as a method to estimate

the state of the stock market as a whole, so it is expected that we see a positive relation with the

median closing price and the Wilshire Index.

The regression coefficient for XOI is 0.3539 and indicates that holding all other variables

constant, when the NYSE ARCA Oil and Gas Index increases by 1 point, it is predicted that

the median closing stock price for the top stocks in the NYSE 100 will increase by an average

of approximately 35 cents. Since oil and gas are commodity goods, their price has a positive

relationship with the price of stocks across the board.

The regression coefficient for V IX is -0.1587 and indicates that holding all other variables

constant, when the CBOE Volatility Index increases by 1 point, it is estimated that the median

closing stock price for the top stocks in the NYSE 100 will decrease by an average of approximately

16 cents. Here we see the negative relationship between expected volatility and stock price. When

it is expected that stock prices will become more volatile, people are more hesitant to invest in the

market relating to a decrease in price.

The coefficient for HUI is -0.0094 and indicates that holding all other variables constant,

when the Gold Index increases by 1 point, it is predicted that the median closing stock price for

the top stocks in the NYSE 100 will decrease by an average of approximately 1 cent. The price

of gold and the price of stocks have a negative relationship. This is because although there is
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a correlation between the two, they are not considered to be equivalent assets. This means that

if the prices of stock equities are down, investors tend to choose to move their holds into gold

instead, hoping to gain higher returns rather than continue to invest in a declining asset. For a well

balanced investment portfolio, it is safest to invest in a variety of assets such as stocks as well as

gold because different assets can hold different price trends.

The coefficient for TNX is -1.3197 and indicates that holding all other variables constant,

when the CBOE interest rate for 10 year T-note bonds increases by 1 percent, it is estimated that

the median closing stock price for the top stocks in the NYSE 100 will decrease by an average of

approximately $1.32. Similarly with gold, bonds are a separate type of asset from stocks. Bonds

are commonly found along with other equities in an investment portfolio. When the rates on bonds

are increased, then there is a higher yield for bonds value meaning that investors will tend to invest

more in bonds as opposed to stocks.

The regression coefficient for DFF is 0.5498 and indicates that holding all other variables

constant, when the Federal Funds Rate increases by 1 percent, it is predicted that the median

closing stock price for the top stocks in the NYSE 100 will increase by an average of approximately

55 cents. As explained earlier, the Federal Funds Rate is the interest that companies and banks must

pay when borrowing from the federal reserve. From an economic standpoint, when the funds rate

increases, it becomes more costly for businesses to invest or expand on their business, and higher

costs are generally related to lower profit. Therefore, we might predict an inverse relationship

between the funds rate and stock prices, however, we see a positive relationship instead. When the

economy is suffering, the Federal Reserve lowers the borrowing rate in order to promote borrowing

and spending. For example, during the Great Recession, there are both low stock prices as well as

low Federal Funds rates.

Now that we have considered the fit and interpretation of the model based on the adjusted

R2 and the estimates of the model parameters, we look to see the performance of the model for

predictions and forecasting. At the beginning of the modeling process, the data are partitioned such

that the testing data are not used in the creation of the model. This means that if the pooled model
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is used to make predictions for the testing data, we can compare the actual values to the predicted

values. Using data that was not used in the creation of the model is important to make sure that the

model is not over-fit to the training data.

The predicted values are obtained by plugging in the values for each of the predictor variables

for each week into the model. The training data include the values for 282 randomly selected

weeks from the original data set. The figure below is a plot of the training data representing the

actual median closing prices and the predicted closing prices obtained from the model.

Figure 3.6: Fit of Testing Data vs Predicted Values

If the model is successful, we should expect to see predicted values that are close to the actual

values. From the plot, there is a very strong correlation between the predicted and training values

indicating that the model has created accurate predictions. Since these predictions were made on

data not used in the creation of the model, we conclude that there is not a problem of overfitting of

the model to the training data.
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CHAPTER 4 TIME SERIES ANALYSIS

4.1 Exploratory Data Analysis

Time series analysis is available uniquely to data that occur sequentially over intervals of time.

The closing price of stocks are time series data because the price can be recorded over various time

intervals. Data can be recorded in any time interval including daily, weekly, monthly, and yearly.

The data however must be recorded in a way such that the time passed between each observation

is equal. Stock prices are recorded and updated constantly during open market hours so that stock

brokers and stock traders can make quick buying and selling decisions. Therefore, data for daily

stock prices are easily obtainable for any stock in the market. Despite the availability, this study

prefers to consider weekly prices for two reasons.

The first reason is the requirement that the time series data have equal intervals between ob-

servations. Since the New York Stock Exchange does not have trading hours on weekends and

holidays, there are not updated prices on these days meaning that daily stock data would have

missing values. There are methods such as bootstrapping for dealing with missing data, however

there is a second reason for why we simply consider weekly data.

The second reason is that considering shorter time intervals such as daily data means that there

is more variation within our data as stock prices can have periods of increase and decrease from

day to day as well as throughout a single day. Changes during very short time periods can be the

result of white noise or unpredictable anomalies. So although there are stock brokers or traders

who time deals to the minute or second based on price trends in the immediate short run, for the

purposes of predictive analysis, considering longer time intervals such as weekly data give more

stable predictions and clearer price trends.

So why consider a time series analysis as opposed to simply using a regression model such

as the one constructed in the previous chapter? Since time series analysis considers data that are

observed in sequential intervals, a time series model is built with the knowledge that the data
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observations are not independent from each other. This means that the closing price at the end of

a week is correlated to the closing price at the end of the previous week. Even though there are

differences in prices each week, the prices in consecutive weeks tend to be similar to each other

unless there is an anomaly in the state of the economy that causes prices to change drastically. The

fact that consecutive observations in time series data are dependent of each other causes issues

in a regression model where independence is assumed. Recall the regression model from the

previous chapter where our model fails to assume independence between the residuals. A time

series analysis of the data is our way of dealing with dependence in the data.

Before we begin our time series analysis, let us clarify the data that is being considered. In this

analysis we are looking to forecast or predict the weekly median closing price for the top stocks in

the NYSE as is done in the pooled regression model from the previous chapter. At the end of this

section, we consider what would change in our analysis if we were to use the weekly closing price

for each index rather than the median.

The first step in the time series analysis is a first look at the data to consider any patterns, trends,

cycles, or abnormalities that occur in the weekly closing stock price over time. This consideration

is the exploratory data analysis of the time series data before modeling can occur. We visualize

these patterns through a time series plot of the data as shown in Figure 4.1 which includes the

median closing price for the NYSE for each week from January 01, 2000 through December 23,

2017.

Based on the time series plot, there is an overall increasing trend in the median stock price from

January 01, 2000 through December 23, 2017. This indicates that over time, the median weekly

closing price tends to increase. Based on economic theory, this makes sense because over time,

inflation will drive prices higher. The data analyzed in this study has been recorded over 17 years

which is a substantial period of time such that the effects of inflation are visible. Any sequence

of random variables, Yt, is defined as a stochastic process and includes times series data such as

the weekly median closing stock price. For time series or a stochastic process, the mean function

or expected value at time t is E(Yt) = µt. This indicates that the expected median closing stock
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Figure 4.1: Closing Price for each Week

price is dependent on the time period. This conclusion intuitively appears natural for time series

data since we know that the data are dependent on time. In addition, the mean or expected median

closing price is generally different for each week which is why we consider µt for each time point.

Although there is a clear increasing trend in the closing price over time, there is a clear ab-

normality in this trend that occurs between late 2007 through mid 2009. Starting in late 2007,

there is a break in the increasing trend. At this point in time, the median closing price drastically

decreases compared to the prices previously observed in the data. The visibility of this anomaly

is not coincidental, but instead reflects the period that covers the Great Recession which officially

occurred from December 2007 through June 2009. When the recession began in 2007, it was a re-

sult of a crash in the United States real estate market which then brought repercussions to a global

recession. Since the top stocks in the NYSE 500 mainly include companies based in the United

States, the median closing prices for these stocks decrease sharply at this initial shock. During the

early to mid 2000’s, the housing market in the United States was booming which led to increased

investment in mortgage-backed securities. These securities were issued at high rates which were

not strictly regulated during this time. Because of the booming housing market, the value of the

securities were high, but because of loose regulations, the mortgage-backed securities were is-

sued at high-risk rates. When the housing market crashed in late 2007, these securities drastically
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decreased in value causing many financial institutions invested in these securities unable to meet

financial obligations or file for bankruptcy. The financial instability in major institutions expanded

on the economic shock of the market crash. The recession led to decreased GDP, increased un-

employment, decreased spending and other negative economic repercussions including a dramatic

decrease in stock prices across the board. Even though the effects of the Great Recession on GDP

and unemployment was not a large as the effects of the Great Depression, the effects of the former

lasted for such a significant period of time and then spread across the world that it still holds the

title ”Great”. Response to the crisis included federal funds rates to be set at minimum levels by the

Federal Reserve. This action was to stimulate the economy by promoting spending and borrowing

to increase liquidity of assets in the economy.

We have pointed out the overall increasing trend as well as the abnormality in the median price

that occurred during the Great Recession. Lastly we use the time series plot to analyze the variation

in the closing price over time. When we consider variation, we are interested in the change in the

median closing price. Based on the plot, we see that the variation does not appear to be constant.

Over short periods of time, there can be small or large changes in the stock prices. In the short

run, stock prices can vary greatly leading to unpredictable prices. These unpredictable short run

changes are referred to as white noise. For example, a policy change such as the change in the

federal funds rate can influence the economy including stock prices. Short term effects can be

stabilized in the long run which is a reason why we consider longer periods of time in this study.

Here we consider weekly stock prices rather than daily data. First we will consider the variation in

price for a single week or time point t. For the analysis we consider the value or price at each time

point as a random variable. The variance for the median closing price at time t can be defined in

the same way as any random variable. Here we define the variance as

V (Yt) = E(Yt − µt)2,

which is the squared expected value of the difference between the observed closing price and the
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true closing price at time t. For time series data, we also consider the variation between time

periods, or the covariance. The auto-covariance function (ACVF) between the median closing

price at times t and t+ h is defined as

γt,t+h = Cov(Yt, Yt+h)

= E[(Yt − µt)(Yt+h − µt+h)],

which represents the expected value of the product of the differences between the closing price

and the true mean closing price for weeks t and t + h. h represents a time period or lag after time

week t. The auto-covariance functions can be used to measure the linear dependence for median

closing price at various weeks. From the covariance, we can define the autocorrelation function

(ACF) between the median closing price at times t and t+ h as

ρt,t+h = Corr(Yt, Yt+h) =
γt,t+h√

V (Yt)V (Yt+h)
.

The correlation between the median closing price at times t and t + h represents the amount

of variation in each variable that can be explained by the other. We see from the formula that the

correlation is a ratio of the covariance and the product of the standard deviations which represents

the overall variations of both variables. We note that γt,t = V (Yt) and γt+h,t+h = V (Yt + h) since

the covariance between the same variable is simply the variance.

Next we discuss some of the properties of the correlation. First notice that |γt,t+h| ≤
√
γt,tγs,s

. Since the covariance, γt,t+h, measures the variation between the median closing prices at weeks t

and t+h, it is bounded by the variation of the two variables. Therefore, the correlation between the

two random variables are bounded between -1 and 1. In other words, |ρt,t+h| ≤ 1. When |ρt,t+h|

is closer to one, the covariance or interaction between the two variables is close to the overall

variations each. This indicates that the overall variance can be closely explained by the variation

between the variables indicating that there is a strong relationship between the variables. In other

words, the median closing stock price at week t + h is related to the closing price at a previous
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week t. A value of ρt,t+h close to zero indicates that the variation between the two variables is

small relative to the overall variations of both variables. In other words, the closing prices would

be considered uncorrelated.

Before we can model the time series process, we need to be able to make an assumption about

the behavior or structure of the process over time. If we are to make a model based on the observed

time series data with the purpose of predicting future values, we must assume that the structure of

the process remains the same. This type of process is considered to be stationary. With stationarity,

there is strict stationarity, however we simply wish to model a weakly stationary process which is

weaker mathematically but holds some similar assumptions. For a stochastic process to be weakly

stationary, the mean function must be constant over time, and the variance must be constant over

time. Both of these requirements indicate that if met, the process maintains the same structure over

time. If the mean function is constant over time, then the expected value of the closing price at

any time point is the same. In other words, E(Yt) = µ. This is stronger than the definition of the

expected value or mean function that we have previously defined. For the second requirement, if

the variances are equal, then Vt = Vt+h = V0 such that the variance is not a function of time but is a

constant for all weeks. We can write the constant variance in terms of covariance as γ0. Also, when

we consider constant variance over time, the covariance between random variables that are equal

distances apart should be equal. In other words, Cov(Yt, Yt+h) = Cov(Yt+k, Yt+k+h) for some lag

h and some time period k. This is the same as saying γh,t = γh,t+k = γh. Therefore, the variance is

constant and not dependent on time. Instead the covariance between the closing prices Yt and Yt+h

is instead based on the time lag difference between them, h. We can also extend the implications

of constant variance to the correlation between two random variables in the stationary time series

process. Suppose we consider the correlation between weeks t and t + h for a stationary process.

Then, based on our redefined values for the variance and covariance we obtain, ρt,t+h =
γt,t+h

γ0
.

Based on these redefined formulas, notice that for a stationary process, the variance is a constant

value, and the covariance and correaltion between two variables is dependent on the lag h between

them.
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Based on our observations of the time series plot, we first noticed that due to inflation, the

median closing stock price increases over time. This indicates that rather than being constant over

time, the function is instead dependent on time. This would then indicate that the median stock

price over time is not a stationary process because the requirement of a constant mean is not met.

We also noticed periods where the change in the closing stock price is either larger or smaller.

The most obvious example of this was the extreme decrease in price observed during the Great

Recession. Because the occurrence of the recession is an anomaly in the economy, not only can

it be related to a non-stationary process, it can also have a potential of creating a model that is

overfitted to this anomaly. For the sake of providing a model that better meets the underlying

assumptions and makes accurate predictions, we will consider time series models that are based on

the only the data after the the Great Recession as well as the entirety of the data. In other words,

we will consider the modeling process based on the data from January 1, 2000 through December

23, 2017 as well as the data from June 6, 2009 through December 23, 2017.

Figure 4.2: Closing Price for each Week: Post Great Recession

Figure 4.2 shows the time series plot of the median closing price after the end of the Great

Recession. Based on the plot, we see that the anomaly in the data has been removed. However,

there is still the same increasing trend due to inflation. There is still some visible changes in

variation over time. For example, it appears that from 2009 to 2014 the increasing trend is steeper
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or more drastic than from 2014 through 2017. Both of these observations indicate that the time

series data after the Great Recession are also non-stationary.

Stationarity can also be formally tested using the Augmented Dickey-Fuller (ADF) test which

tests the null hypothesis that the data are not stationary against the alternative hypothesis that the

data are stationary. For the entire set of data for all 939 weeks, the test statistic is -2.0018 with a

p-value of 0.5776, which indicates that there is not sufficient evidence to reject the null hypothesis

and we conclude that the data are non-stationary. For the data occurring after the Great Recession,

the test statistic is -2.5896 with a p-value of 0.3282, which indicates that there is not sufficient

evidence to reject the null hypothesis and we conclude that the data are non-stationary. Both of

these conclusions align with those constructed from the time series plots. Also, the p-value for

the data after the Great Recession is smaller than that for the entire data set which indicates that

removing the drastic drop in price that occurred during the recession has reduced non-stationarity

in the data.

Similarly with the construction of the pooled model, the data for both time intervals must be

partitioned into training and testing data. Since the data are being retained as time series, the data

are not partitioned randomly. Instead, the data for the last year will be reserved for testing so that

the actual data can be compared with the model predictions. For the entire data set, the 888 weeks

from January 1, 2000 through December 31, 2016 make up the training data while the 51 weeks

from January 7, 2017 through December 23, 2017 make up the testing data. For the post-recession

data, the 396 weeks from June 6, 2009 through December 31, 2016 make up the training data while

the year of 2017 still represents the testing data set. Both models use the same testing data, which

means that it is simpler to compare the fits of the models based on the accuracy of their predictions.

Since it has been established that the data are non-stationary, it is necessary to make the data

stationary before modeling can be done. The most common way to obtain stationarity is through

differencing. This means that instead of modeling the price at week t which is increasing over

time, we consider the difference or change in price over each week. In other words, we wish to

model ∆Yt = Yt− Yt−1. Figure 4.3 shows the time series plots for the first order difference for the
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entire data and for the post-recession data.

Figure 4.3: Time Series Plot of First Order Difference

From the graph, we see that for both time period, the average value appears to be centered

around zero. This indicates that the median closing price tends to be similar to the median closing

price for the previous week. In other words, the stock price does not differ greatly on a weekly

basis. Furthermore, this indicates that the first order difference are stationary data because the

mean is not dependent on time but is rather a constant. By looking at the variation, we see that

it tends to be constant for both data sets. One exceptions would be for the entire data set, the

impact of the Great Recession is still visible although not as drastic as the data was before the

differencing. At the point of the recession there is an extremely small difference illustrating the

catastrophic decrease in price when the housing market crashed. Some change in variation is also

slightly visible for the data occurring after the recession. It appears that there is greater price

variability for more recent weeks which is illustrated by the larger and smaller differenced values

for the more current data. In conclusion, based on the time series plots, it appears that the first

order difference appears to be stationary.

We can formally test the hypothesis that the first order difference are not stationary against the

null hypothesis that the first order difference are stationary using the ADF test. Performing the test

for the entire data set yields a statistic of -10.818 with a corresponding p-value of less than 0.01

which means that there is sufficient evidence to reject the null hypothesis and conclude that the
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differenced data for the entire data set are stationary. The test statistic for the first order difference

of the post-recession data is -7.7475 with a corresponding p-value of less than 0.01 which means

that there is sufficient evidence to reject the null hypothesis and conclude that the differenced post-

recession data are stationary. Since the data are stationary, we continue to the modeling process

using the first order differences for both data sets.

4.2 Model Identification and Selection

It has been determined that the differenced data, ∆Yt = Yt − Yt−1 are stationary. When fitting

a model for a stationary time series, we model the data based on past observations and past errors.

In other words, the differenced data can be expressed as

∆Yt =

p∑
j=1

φj∆Yt−j +

q∑
i=0

θiεt−i,

where εt represent the white noise that is assumed to be normally distributed with mean 0 and

variance σ2
ε . The past p observations included in the model and the corresponding coefficients of φ

represent the components of an auto-regressive process of order p. The past q white noise terms and

the corresponding coefficients of θ represent the components of a moving average process of order

q. These types of models are called Univariate Box-Jenkins (UBJ) models. They are also referred

to as ARIMA(p, d, q) models where AR(p) indicates the auto-regressive component, MA(q)

indicates the moving average component, and d is the degree of differencing for non-stationary

data. As discussed on the previous section, first degree differencing is satisfactory meaning that

we consider the median closing stock price to follow an ARIMA(p, 1, q). The goal is to identify

possible candidate models of auto-regressive and moving average components and then select the

model with the best fit.

Since the the differenced data are stationary, we can simply the notation. We can write the

mean as E(∆Yt) = µt = µ since there is a constant mean difference. We write the variance as

V (∆Yt) = γt,t = γ0 since the variance is constant over time. The covariance between any two

observations ∆Yi and ∆Yj where |i − j| = h can be simply written as γh since the covariance
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is a function of the lag. Based on these observations, we define the correlation between any two

observations ∆Yi and ∆Yj where |i − j| = h, as ρh = γh
γ0

which is the autocorrelation function

(ACF).

First we consider the auto-regressive model of degree p, AR(p), which we define as

∆Yt = φ1∆Yt−1 + ...+ φp∆Yt−p + εt.

From the equation, we see that the process is based on the previous p observations. Let us

consider a simple AR(1) model. If we consider the equation for the AR(1) and then multiply each

side of the equation by ∆Yt−h and take the expected values, the autocorrelation function, ρh, can

be derived as

ρh =
γh
γ0

=
φγh−1
γ0

= φh,

as shown in the text by Cryer and Chan (2008) Based on the theoretical values of the autocorre-

lation function for an AR(1) model, we can identify an process as being auto-regressive if ACF

experiences exponential decay. However, the autocorrelation function does not allow us to identify

the degree of the auto-regressive process. For this, we turn to the partial autocorrelation function

(PACF). The parital autocorrelation at lag k is defined as the correlation of two observation ∆Yt

and ∆Yt−k accounting for the effect of the variables in between, Yt−1, ..., Yt−k+1. In other words,

φkk = Corr(Yt, Yt−k|Yt−1, ..., Yt−k+1).

As shown in the text by Cryer and Chan (2008) this means that for an auto-regressive process

of degree p, φk,k = 0 for k > 1. Furthermore, an AR(p) model can be identified by a dampening

of the PACF after lag p.

Next we discuss the moving average model of degree q, MA(q), which we define as

∆Yt = εt + θ1εt−1 + ...+ εt−q.
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The moving average process defines the differenced median closing price as a function of

the current random error and previous random error terms. Since the error terms are assumed to

be normally distributed with mean zero, the expected value of the differenced data would also

be zero. Lets consider the simplest moving average model which is one of degree one where

∆Yt = εt + θ1εt−1. Then the variance is γ0 = σ2(1 + θ2). The autocorrelation function is then

ρh = −θ
1+θ2

for h = 1 and ρh = 0 for h > 1. This can be expanded to the general case for any

MA(q) model. If a process follows anMA(q) model, the autocorrelation is zero for any lag greater

than q. Therefore, the moving average component can be identified from a plot of the ACF.

Now that we have defined the auto-regressive and moving average components of the UBJ

model, we can analyze the sample autocorrelation functions (SACF) and sample partial autocorre-

lation functions (SPACF) of the differenced data in order to identify appropriate ARIMA(p, 1, q)

candidate models.

We begin by observing the autocorrelation for the first order difference of the entire data set

which is plotted in Figure 4.4. From the autocorrelation function, we first see that the the corre-

lation for a lag of zero is 1. This is because any point is 100% correlated with itself. Also, there

is a significant correlation when the lag is 1. This means that there is a significant relationship

between the difference in price between two weeks and the difference in price for the week prior.

In other words, there is a significant correlation between ∆Yt and ∆t−1 for any week t. After lag

2, the correlation becomes insignificant. In other words, there is not a significant relationship be-

tween ∆Yt and∆t−2 for any week t. These observations indicate the presence of a moving average

component of order 1 within the model. Therefore, the first candidate model that we consider is an

ARIMA(0, 1, 1). This means that we consider a model where the price difference is a function of

the previous error term. In other words, we consider ∆Yt = εt + θεt−1.

Next, we analyze the sample partial autocorrelation function. From the plot, we notice that the

SPACF is significant for a lag of 1, and then becomes insignificant for any lag greater than 1. This

means that when accounting for the effect of all intervening variables, there is only a significant

relationship between the difference in price and the difference in price for the previous week. These
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observations indicate the presence of an auto-regressive component of degree 1 within the model.

Therefore, the second candidate model that we consider is an ARIMA(1, 1, 0). This means that

we consider a model where the difference in price is a function of the previous price difference. In

other words, we consider ∆Yt = φ∆Yt−1 + εt.

Since the correlation plots indicate the presence of a moving average component and an auto-

regressive component, the third candidate model that we include is an ARIMA(1, 1, 1) where the

price difference is a function of the previous price difference as well as the previous error term. In

other words, we include the model ∆Yt = φ∆Yt−1 + εt + θεt−1.

Figure 4.4: SACF and SPACF of Price Difference

Now that we have identified candidate models when considering the entirety of the data, we

now turn to the SACF and SPACF of the price difference for the post-recession data which is

plotted in Figure 4.5. From the autocorrelation function, we see that again there is a correlation

of 1 for lag 0 indicating the absolute correlation with a value to itself. There is also significant

correlation for lags 1 and 10 while the correlation for all other lags are insignificant. Based on these

observations, the first candidate model that we consider is an ARIMA(0, 1, 1) which includes the

moving average component of degree 1. Even though a lag of 10 is significant, we will not include

an MA(10) component in our candidate model because it would include the all intervening lags

which we find to be insignificant. In other words, the first candidate model is ∆Yt = εt + θεt−1.

From the sample partial autocorrelation function, we notice that similarly with the SACF, there
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is a significant correlation for lags 1 and 10 and the correlation for all other lags are insignificant.

Based on these observations, we choose an ARIMA(1, 1, 0) model as the second candidate model

which includes an auto-regressive component of degree one. This means that the model defines the

price difference as a function of the previous price difference. In other words, the second candidate

model is ∆Yt = φ∆Yt−1 + εt. An AR(10) component is not included in the candidate model since

all intervening lags are insignificant.

Figure 4.5: SACF and SPACF of Post-Recession Price Difference

Finally, the third candidate model is an ARIMA(1, 1, 1) model which combines the auto-

regressive and moving average components of the previous two candidate models. In other words,

the third candidate model is ∆Yt = φ∆Yt−1 + εt + θεt−1. Notice that the candidate models chosen

are the same when considering the entirety of the data and only the post-recession data. However,

this does not mean that the models will be the same for both data sets. Because the models will be

built using different training data, the model fits will differ as well as the parameter estimates.

Three candidate UBJ models have been identified for both sets of training data which means

that a final model can be selected for each using a selection criterion. For consistency, we use

the same criterion used for regression modeling. We again use the Akaike Information Criterion

(AIC) defined as AIC = 2k− 2log(L) where k is the number of unknown parameters and L is the

likelihood function. As discussed previously, the model with the smallest AIC is selected since a

model that is least complex with the best fit is desirable. Table 4.1 gives the value of the selection
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criterion for each of the candidate models.

Table 4.1: Candidate Models and AIC

Model Equation AIC
ARIMA(0,1,1) ∆Yt = εt + θεt−1 2947.85
ARIMA(1,1,0) ∆Yt = φ∆Yt−1 + εt 2947.35
ARIMA(1,1,1) ∆Yt = φ∆Yt−1 + εt + θεt−1 2948.98

Based on the AIC, all of the models have similar fits. The largest AIC is for theARIMA(1, 1, 1)

model meaning that the adding the additional complexity to the model with the additional unknown

parameter does not improve on the fit. TheARIMA(0, 1, 1) andARIMA(1, 1, 0) are very similar

with AIC values of 2947.85 and 2947.35 respectively. However, since the ARIMA(1, 1, 0) has

the smallest AIC, it is chosen as the best fit. This means that the difference in closing price is best

modeled as a function of the previous price difference when considering the entire data set.

Next we consider model selection process for the candidate models based on the post-recession

data. Table 4.2 gives the value of the AIC for each of the candidate models. Even though the

candidate models are the same for the post-recession data, the fits will differ since different training

data are involved.

Table 4.2: Post-Recession Candidate Models and AIC

Model Equation AIC
ARIMA(0,1,1) ∆Yt = εt + θεt−1 1337.058
ARIMA(1,1,0) ∆Yt = φ∆Yt−1 + εt 1337.651
ARIMA(1,1,1) ∆Yt = φ∆Yt−1 + εt + θεt−1 1333.520

The first thing that we can notice is that the AIC are significantly lower for each of the candidate

models when the post-recession data are used rather than the entirety of the data. In other words,

we are able to produce models with better fits when only modeling based on the data occurring

after the recession. This is what we would expect since the recession is an anomaly and does

not represent the typical trend for the closing stock prices. When considering the post-recession

data, the model with the best fit is an ARIMA(1, 1, 1) since it has the smallest AIC with a value

of 1333.520. This is interesting since this model contains more unknown parameters than the
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other candidate models meaning that the added complexity of the model is outweighed by the

improvement of the fit. The ARIMA(1, 1, 1) is chosen as the final model since it is the model

with the smallest AIC.

4.3 Diagnostics

Before we interpret the final model, we first must consider the diagnostics of the models in-

cluding the significance of the parameter estimates and the assumptions of the model. We have

described the model as ∆Yt = φ∆Yt−1 + εt + θεt−1, however the error for the current week is not

obtainable. Therefore, to use the model, we write it in terms as the predicted price difference

∆Ŷt = φ̂∆Yt−1 + θ̂εt−1,

where the error is represented by the difference between the predicted price difference and the

actual value. The values of the estimates for the unknown parameters are given in table 4.3.

Table 4.3: Coefficients for the ARIMA(1,1,1) Model

Parameter Estimate p-value
φ 0.70381 <0.0001
θ -0.82398 <0.0001

From the table we see that the coefficient for the auto-regressive component is 0.70381 with a

corresponding p-value of less than 0.0001 which means that the auto-regressive component, or the

previous price difference, is significant in the prediction of the price difference. The coefficient

for the moving average component is -0.82398 with a corresponding p-value of less than 0.0001

which means that the moving average component, or the previous error term, is significant in the

prediction of the price difference.

Next, we check to see if the selected model meets the model assumptions. The assumptions are

normality, constant variance, and independence of the residuals. First we will check to see if the

residuals are normally distributed. Normality can be checked visually using a Q-Q Normal Plot and

tested formally using the Anderson-Darling test. Figure 4.6 shows the Q-Q plot of the residuals. As
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discussed previously, the plot gives the values of the standardized residuals against the theoretical

values based on a normal distribution. Therefore, if the residuals come from a normal distribution,

the plot should follow a straight line. Based on the plot, we see that the residuals tend to follow

the normal model except for extremely large or small values that occur on the endpoints.

Figure 4.6: Normal Q-Q Plot for Residuals of Time Series Model

We use the Anderson-Darling test to test the null hypothesis that the standardized residuals

are normally distributed against the alternative hypothesis that the residuals are not normally dis-

tributed. The value of the test statistic is A = 1.5122 with a corresponding p-value of 0.0007

which indicates that there is sufficient evidence to reject the null hypothesis and conclude that the

residuals are not normally distributed. This means that the assumption of normality is not satisfied.

To check for the independence and constant variance of the residuals, we look to some diag-

nostics plots shown in Figure 4.7.

The second model assumption is that the variance of the residuals is constant over time. From

the plot of the standardized residuals, we see that they tend to be centered around zero or the mean.

The variance over time is represented by how large or small the residuals are. It appears that there

tends to be a larger amount of variance for more current periods of time which was an observation

that was also noticeable from the original time series plot. This indicates a possible problem with

the assumption of constant variance in the model.
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Figure 4.7: Time Series Model Diagnostics Plots

The third model assumption is that the residuals are independent from each other. To check this

assumption, we first look at the autocorrelation function of the residuals. Based on the plot, it ap-

pears that the correlation is insignificant for all lag values except for zero which is expected. Based

on the ACF, it would appear that the assumption of independence is satisfied. Independence can

also be formally tested using the Ljung-Box test which tests the null hypothesis that the residuals

are independent against the alternative hypothesis that the residuals are correlated. The p-values

for the test are visualized in the plot since the test is performed for every lag value. For each value

of the lag, the p-value corresponding to the Ljung-Box test is significantly greater than 0.05 indi-

cating that at a 5% significance level, there is not sufficient evidence to reject the null hypothesis
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and we conclude that the residuals are independent. Therefore, we conclude that the independence

assumption is satisfied. The results of the diagnostics are significant because the time series model,

unlike the regression model, is able to provide independent residuals.

4.4 Forecasting and Model Interpretation

Now that the final model is selected, we now wish to interpret the model, test the fit of the

model, and check the accuracy of the model’s predictions. We have defined the model in terms

of the first order difference in price, however, the model can be rewritten in terms of the median

closing price by simply substituting ∆t with Yt − Yt−1. The substitution yields:

∆Yt = φ∆Yt−1 + θεt−1

Yt − Yt−1 = φ(Yt−1 − Yt−2) + θεt−1

Yt = (1 + φ)Yt−1 + θεt−1.

Since we have the estimated values of the model parameters, we obtain the final equation of

the time series model as

Ŷt = 1.7038Yt−1 − 0.8240εt−1.

The value 1 + φ = 1.7038 indicates that holding all other variables constant, when the median

closing price increases by $1, the median closing price for the next week is predicted to increase

by an average of approximately $1.70. The value θ = −0.8240 indicates that holding all other

variables constant, when the error increases by 1, the median closing price for the next week is

predicted to decrease by an average of approximately 82 cents.

Finally, we use the time series model to make predictions for the weekly median closing price

from January 7, 2017 through December 31, 2017. Figure 4.8 shows a plot of the training data

along with the values predicted from the model.

From the forecasting plot, it is clear that the model retains the increasing trend of the median

closing price over time. However, the model does not capture the periods of increase and decrease

in price that occur in the short run. Instead, the time series model is better for describing the price
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Figure 4.8: Time Series Forecasting

without considering short term changes or the ’white noise’ that occurs. In other words, the model

appears successful in predicting the overall trend in price over time, but is not useful for predicting

short term anomalies.

The fit of the model can also be assessed by comparing the predicted values for the weekly

closing price from January 7, 2017 through December 31, 2017 with the actual closing prices.

These actual values represent the testing data set and were not used in the building of the model.

Figure 4.9 shows a comparison of the time series plots for the predicted values and the actual values

which illustrates the variation visible in the weekly closing price opposed to the steady rising trend

provided by the model. In conclusion, the time series model can predict the increasing trend in

price but cannot predict short-run variation.
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Figure 4.9: Time Series Plots for Predicted and Actual Prices
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CHAPTER 5 VARYING INTERCEPT REGRESSION MODEL

5.1 Regression Revisited

Previously in this study, we have considered a pooled regression model and a time series model.

These two models differ greatly since the regression model considers the effects of other macro

and microeconomic factors that are related to stock prices while the times series model simply

considers past observations based on the dependence of stock prices to historical prices. However,

both models share an important commonality. Both models predict the median stock price at a

specific week t. Instead of considering each stock individually, the median is used to describe

the closing price for the top stocks of the NYSE as a whole. These types of models are useful to

predict the overall state of the stock market and can be used as a market index for popular stocks in

the NYSE. However, these models cannot be used to predict the prices for individual stocks, which

is why we also consider a regression model with a varying intercept. If we consider each stock

separately, the model then can be used by anyone who is invested into a particular stock within

the top stocks in the the NYSE. This type of model is also useful for comparing the differences

in prices over time for different stock types. Analyzing these patterns can be helpful to investors

considering various stocks and which stocks tend to have higher or more steady prices.

First we look at the data that will be used for the modeling process. The pooled models used

the median price meaning that there was only one observation for each of the 939 weeks collected.

Since we are interested in each individual stock type, this model will use the entire data set col-

lected which includes the closing stock price for each of the 939 weeks for each of the 85 stocks

chosen from the NYSE 100. For the modeling process, the data set is randomly partitioned at a

70%-30% split for the training data which is used in the creation of the model and the testing data

which is used to analyze the fit of the model. In other words, out of the 79,815 observations, 60,882

are in the training data and 18,993 are in the testing data. As described previously when discussing

the pooled model, the distribution of stock prices is skewed right due to a minority of companies
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that on average have high stock values. To normalize the distribution, the log transformation of the

stock price will be used as shown in Figure 5.1.

Figure 5.1: Distribution of Log Price

In the previous chapter, the specifics of the format of a multiple linear regression model were

discussed. Here we highlight the differences in the multiple regression model when considering

the median price over all stocks versus the closing price for each stock individually. The pooled

regression model followed the following format

Yt = β0 + β1Xt1 + ...+ βkXtk + εt,

where β0 is the intercept and k is the number of predictor variables. For the varying intercept

model, we consider

log(Yit) =
84∑
i=1

[αiIi] + β0 + β1Xt1 + ...+ βkXtk + εt,

where i = 1, ..., 85 represent the 85 stock indexes in the NYSE 100 that we are considering and Ii

is an indicator function relating to each index i. In other words, the stock index is a dummy variable

which corresponds to a unique coefficient αi such that αi + β0 represents a different intercept for

each stock. It is for this reason that the model is referred to as having a varying intercept. Notice
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that the model does not include a coefficient for the 85th index so that there is not an issue of

multicollinearity among the variables. The intercept for the 85th stock index is represented simply

by β0. Also notice that the equation is being used to model log(Yit) which is the log of the closing

price for each index i for each week t.

5.2 Stepwise Variable Selection

Similarly with the modeling process for both the pooled regression model and the time series

model, the Akaike Information Criterion (AIC) is again used as the selection criterion. The step-

wise selection process begins with the null model and each step of the process then adds or removes

variables until the smallest AIC is obtained. All variables that are considered in the process are

identical to those considered in the pooled model except for two variables. The first variable is the

dependent variable that is being modeled which is the log closing price for each stock index for

each week. This difference is discussed in the previous section. The second variable that differs

from the pooled model is the volume. In the pooled model, volume represents the weekly median

volume sold across all stocks while in the varying intercept model, volume represents the weekly

volume sold for each index individually. The other candidate predictor variables (Wilshire 5000

Index (WIL), Oil and Gas Index (XOI), Volatility Index (VIX), Gold Bugs Index (HUI), the in-

terest rate for 10-year T-notes and bonds (TNX), Federal Funds Rate (DFF), Money Supply (M1),

and TIME) remain the same since they are not related to specific stock therefore do not differ for

each stock index.

Table 5.1 shows each of the iterations of the stepwise process for the training data. There are

9 iterations in the process and for each step a variable was added to the model. Unlike the process

for the pooled model which yielded a full model, when considering each stock individually the

Gold Index (HUI) was not added into the model. Also, if we compare the iterations to that of the

pooled model, we notice that the order in which variables are added into the model differ. This

indicates that the relationship between the closing price and the various micro and macroeconomic

predictor variables differ when considering each stock individually as opposed to considering the

median across all stocks.
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Table 5.1: Iterations and AIC for the Stepwise Process

Iteration Add/Remove AIC
0 - -31651.85
1 +IDX -74701.11
2 +WIL -90274.54
3 +XOI -93120.6
4 +V -96448.91
5 +M1 -96608.61
6 +TIME -96829.34
7 +V IX -96901.5
8 +DFF -96935.42
9 +TNX -96937.78

The process also shows that the categorical variable representing the stock index is the first

variable added into the model. This indicates that the stock index is the variable most related to the

closing price. This makes sense since some stocks can see increasing prices and other stocks can

see decreasing prices over time depending on the financial health of its corresponding company.

Before selecting the final model, we must first analyze the relationship between the predictor

variables to check for any possible problem of multicollinearity. As discussed previously, to re-

move the effects of multicollinearity, it is necessary to remove predictor variables that are highly

correlated to other predictors. Again we rely on the Variance Inflation Factor (VIF) to quantify the

correlation of the each predictor relative to the other predictors. Table 3.2 gives the VIF for each

predictor in the model selected by the stepwise process. The table shows the the predictors with

the highest VIF are the Wilshire 5000, M1, and time. It is not surprising that these variables would

be highly correlated with other predictors since the Wilshire is representative of stock prices as

a whole while M1 and time are both related to the effects of inflation. To remove the effects of

multicollinearity, these three variables are removed from the model. The VIF for the remaining

variables are also listed in the table. After removing the highly correlated predictors, we see that

there no longer appears to be a problem of multicollinearity within the model.
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Table 5.2: VIF of predictor variables

Variable VIF VIF
IDX 1.0033 1.0032
WIL 7.1368 -
XOI 2.7199 1.3988
V 1.3496 1.3332
M1 9.8433 -

TIME 6.5781 -
V IX 1.2708 1.1033
DFF 2.2827 1.8453
TNX 3.5399 2.1564

5.3 Diagnostics and Model Assumptions

Now that the variables for the final model are chosen, we run some diagnostics on the model.

First, we look to see if each of the variables within the model are significant, then we check to see

if the model meets the assumptions for linear regression.

If a variable is significant within the model, then that means that the slope or coefficient for that

variable is significantly different from zero. We test the null hypothesis that the slope coefficient

is equal to zero against the alternative hypothesis that the slope coefficient is not equal to zero.

Tables 5.3, 5.4 and 5.5 show the test statistics and corresponding p-values for each of the predictor

variables. For each variable, the corresponding p-value is less than 0.05 which indicates that there

is sufficient evidence to reject the null hypothesis and conclude that the slope coefficients are

significantly greater than zero. The only exception is the variable corresponding to the stock index

DVN. However, we still include the variable since it represents one category for the stock index

variable.

Now we check to see if the model meets the four underlying assumptions of the linear regres-

sion model. The first assumption is that there is a linear relationship between the log of the weekly

closing stock price and the predictor variables. The relationship can be visualized from the plot

of residuals versus the fitted values. If there is a linear relationship, the residuals should have a

distribution centered around a straight line across all fitted values. The plot shows some curvature



55
of the relationship which indicates possible problems with linearity.

Figure 5.2: Residuals vs Fitted Values

The second assumption that we assess is the constant variance of the residuals. We can check

for constant variance visually by also looking at the fitted residual plot. For the variance to be

constant, the residuals should be spread out equally around zero for all fitted values. From the plot

we see that this is not the case. For fitted values below 2, the values of the residuals are much higher

than for other fitted values. This indicates a problem of heteroscedasticity among the residuals.

The third assumption is that the residuals are independent of one another. Independence is

tested formally using the Durbin-Watson test where the null hypothesis that the autocorrelation

among the residuals is zero is testing against the alternative hypothesis that the autocorrelation

is greater than zero. The test statistic for the varying intercept model is d = 0.037461 with a

corresponding p-values of less than 0.0001. This indicates that there is sufficient evidence to reject

the null hypothesis and conclude that the autocorrelation among the residuals is greater than zero.

In other words, we conclude that the independence assumption has been violated.

The final assumption is that the residuals are normally distributed. Normally can be tested

visually using the Q-Q normal plot which plots the standardized residuals against the theoretical

values from the normal model. If the residuals follow the normal model, the plot should follow

a straight line. From the plot, we see that very large and small values tend to stray from the
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theoretical quantities.

Figure 5.3: Normal Q-Q Plot

Normality is also tested formally using the Anderson-Darling test where the null hypothesis

that the residuals are normally distributed is tested against the alternative hypothesis that the resid-

uals are not normally distributed. The test statistic for the varying intercept model is A = 686.87

with a corresponding p-value of less than 0.0001. This indicates that there is sufficient evidence to

reject the null hypothesis and conclude that the residuals are not normally distributed. This means

that the normality assumption has been violated.

From the diagnostics, it is shown that each of the predictor variables are significant in the model

and that there are serious issues with the assumptions of the model. In the next section, we look to

see how useful the model is for making predictions given these violations.

5.4 Model Fit and Interpretation

The final model obtained for the varying intercept regression can be written as

log(Ŷit) =
84∑
i=1

[α̂iIi] + β̂0 + β̂1XOIt + β̂2Vit + β̂3V IXt + β̂4DFFt + β̂5TNXt.

In the section we consider the fit of the model analyzing the coefficient of determination and by

comparing the values predicted by the model to the testing data. We also look at the interpretation
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of the model as a way to explain the relationship between the closing stock price and the predictor

variables.

The coefficient of determination for the varying intercept model is R2 = 0.6433 and indicates

that 65.33% of the total variance in the log of the weekly closing stock price for the top stocks

in the NYSE 100 is linearly associated with the variation in the weekly traded volume for each

stock index (V), the Oil and Gas Index (XOI), the Volatility Index (VIX), the interest rate for 10-

year T-notes and bonds (TNX), and the Federal Funds Rate (DFF). The percentage of explained

variation is relatively high indicating that the model provides a good fit for the log weekly closing

stock price. The coefficient of determination adjusted for the degrees of freedom is R2
adj = 0.6428

and indicates that considering the complexity and sample size used in the model, 64.28% of the

total variance in the log of the weekly closing stock price for the top stocks in the NYSE 100 is

linearly associated with the variation in the weekly traded volume for each stock index (V), the Oil

and Gas Index (XOI), the Volatility Index (VIX), the interest rate for 10-year T-notes and bonds

(TNX), and the Federal Funds Rate (DFF). Even accounting for the degrees of freedom in the

model, the explained variance is still high which indicates that the model is a good fit.

Interpreting the coefficients for the predictor variables gives insight on the relationship between

the closing price for each stock and each predictor individually. The coefficient forXOI is 0.00051

and indicates that holding all other variables constant, when the NYSE ARCA Oil and Gas Index

increases by one point, it is predicted that the closing stock price will increase by 0.0510%. This

means that there is a positive relationship between the overall oil and gas prices and the prices of

individual stocks in the NYSE.

The regression coefficient for V is -1.608e-09 and indicates that holding all other variables

constant, when the weekly volume increases by one unit, it is estimated that the closing stock

price will decrease by a percentage that is near zero, or 1.608e-07%. This means that when more

volume of a stock is sold, the price tends to be cheaper. This makes sense because people tend to

buy more when prices are lower. Also notice that the coefficient for volume is extremely small yet

still significant based on the p-value. This is because the weekly volume of stock sold is extremely
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high, therefore a change in one unit is very small. However, when considering larger changes in

volume yields a more substantial predicted decrease in the price.

The slope coefficient for V IX is -0.007607 and indicates that holding all other variables con-

stant, when the CBOE Volatility Index increases by one point, it is estimated that the closing stock

price will decrease by an average of approximately 0.7578%. This indicates that there is a negative

relationship between volatility and price meaning that when there is more volatility or uncertainty

for the future, buyers tend to hold off and prices decrease.

The coefficient for DFF is 0.03756 and indicates that holding all other variables constant,

when the Federal Funds Rate increases by one percent, it is predicted that the closing stock price

will increase by an average of 3.8274%. This illustrates a positive relationship between the interest

rate and price as also seen in the pooled model.

The coefficient for TNX is -0.1047 and indicates that holding all other variables constant,

when the CBOE interest rate for 10 year T-note bonds increases by 1%, it is estimated that the

closing stock price will decrease by an average of 9.94%. Similarly to the pooled model, we again

see a negative relationship.

Lastly, we consider the intercepts of the model represented by the dummy variables for each in-

dividual stock. Since the coefficients for each dummy variable is significant but one, this indicates

a significant difference in the closing stock prices for each variable.

Before the modeling process was started, the data are split into the training data, which the

model is built off of, and the testing data. Since the testing data was not used in the building of the

model, we compare the predicted values for the testing data based on the chosen varying intercept

regression model against the actual testing data. From Figure 5.4, we see that there is indeed a

rather strong correlation between the predicted and actual values. However, the relationship does

not appear to be as strong as the one seen for the pooled regression model. This makes sense since

the varying intercept model has a smaller coefficient of determination.
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Figure 5.4: Predicted Data vs Actual Data
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Table 5.3: Model Estimates I

Variable Estimate Test Statistic p-value
Intercept 3.815e+00 165.346 < .0001
IDXABT -5.100e-01 -22.212 < .0001
IDXAGN 3.220e-01 13.675 < .0001
IDXAIG 1.843e+00 78.965 < .0001
IDXAPA 1.883e-01 7.958 < .0001
IDXAPX 9.476e-02 4.000 < .0001
IDXBA 4.703e-01 19.635 < .0001

IDXBAC -6.773e-02 -2.532 .0113
IDXBAX -5.031e-01 -22.123 < .0001
IDXBEN -5.226e-01 -22.509 < .0001
IDXBK -2.584e-01 -10.978 < .0001

IDXBMY -2.447e-01 -10.112 < .0001
IDXBRKB 4.976e-01 20.769 < .0001

IDXC 1.297e+00 55.567 < .0001
IDXCAT 1.993e-01 8.293 < .0001
IDXCCL -2.156e-01 -8.869 < .0001
IDXCL -1.635e-01 -6.806 < .0001

IDXCOP -1.010e-01 -4.407 < .0001
IDXCVS -2.281e-01 -9.442 < .0001
IDXCVX 4.561e-01 18.853 < .0001

IDXD -9.544e-02 -3.963 < .0001
IDXDE 8.030e-02 3.344 < .0001

IDXDHR -5.056e-01 -22.514 < .0001
IDXDIS -1.553e-01 -6.630 < .0001

IDXDUK 1.851e-01 7.874 < .0001
IDXDVN 1.797e-02 0.739 .4598

IDXDWDP -2.067e-01 -8.494 < .0001
IDXEMR -1.065e-01 -4.403 < .0001
IDXEXC -1.881e-01 -7.796 < .0001

IDXF -1.141e+00 -46.816 < .0001
IDXFCX -7.737e-01 -32.552 < .0001
IDXFDX 6.492e-01 27.391 < .0001
IDXGD 4.007e-01 16.783 < .0001
IDXGE -2.213e-01 -9.038 < .0001
IDXGIS -3.572e-01 -14.715 < .0001

IDXGLW -9.511e-01 -39.500 < .0001
IDXGS 1.073e+00 46.136 < .0001

IDXHAL -4.763e-01 -19.805 < .0001



61
Table 5.4: Model Estimates II

Variable Estimate Test Statistic p-value
IDXHD 1.153e-01 4.771 < .0001
IDXHIG -7.709e-02 -3.215 .0013
IDXHON 1.122e-01 4.955 < .0001
IDXHPQ -1.005e+00 -43.466 < .0001
IDXIBM 9.789e-01 41.790 < .0001
IDXITW 1.136e-01 4.689 < .0001
IDXJMP 8.976e-02 3.673 < .0001
IDXJNJ 4.242e-01 17.738 < .0001

IDXKBM 3.926e-01 16.998 < .0001
IDXKO -3.703e-01 -15.338 < .0001
IDXLLY 2.019e-01 8.416 < .0001
IDXLMT 6.368e-01 26.832 < .0001
IDXLOW -3.907e-01 -16.257 < .0001
IDXMCD 1.888e-01 7.758 < .0001
IDXMDT 8.891e-02 3.677 .0002
IDXMMM 6.406e-01 27.096 < .0001

IDXMO -6.111e-02 -2.539 .0111
IDXMRK 5.357e-02 2.231 .0257
IDXMRO -9.647e-01 -41.726 < .0001
IDXMS -9.943e-02 -4.135 < .0001

IDXNEM -2.802e-01 -11.536 < .0001
IDXNKE -1.016e+00 -43.930 < .0001
IDXNOV -4.585e-01 -20.117 < .0001
IDXOXY -5.327e-02 -2.367 .0179
IDXPEP 3.311e-01 13.631 < .0001
IDXPFE -3.247e-01 -13.294 < .0001
IDXPG 2.825e-01 11.804 < .0001

IDXPNC 3.071e-01 12.716 < .0001
IDXPX 3.165e-01 13.055 < .0001
IDXRIG 7.307e-02 3.130 .0018

IDXSCCO -1.252e+00 -53.332 < .0001
IDXSLB 1.766e-01 7.338 < .0001
IDXSO -3.067e-01 -12.752 < .0001

IDXSPG 4.977e-01 22.136 < .0001
IDXT -2.533e-01 -10.461 < .0001

IDXTGT 9.282e-02 3.808 .0001
IDXTRV 1.836e-01 7.646 < .0001
IDXTWX 1.893e-01 8.150 < .0001
IDXUNP -3.432e-01 -14.616 < .0001
IDXUPS 4.530e-01 18.774 < .0001
IDXUSB -4.123e-01 -17.083 < .0001
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Table 5.5: Model Estimates III

Variable Estimate Test Statistic p-value
IDXUTX 3.060e-01 12.823 < .0001
IDXVLO -5.957e-01 -25.974 < .0001
IDXVZ -1.207e-01 -5.198 < .0001

IDXWFC -2.233e-01 -9.227 < .0001
IDXWMT 2.629e-01 10.814 < .0001
IDXXOM 4.266e-01 17.574 < .0001

XOI 5.100e-04 68.014 < .0001
VOLUME -1.608e-09 -56.565 < .0001

VIX -7.607e-03 -32.367 < .0001
DFF 3.756e-02 22.100 < .0001
TNX -1.047e-01 -32.590 < .0001
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CHAPTER 6 CONCLUSION

6.1 Model Comparisons

Now that each of the three models have been thoroughly explored, we now look to compare

the benefits and drawbacks of the models. Table 6.1 gives the equations for the pooled regression,

time series, and varying intercept regression models.

Table 6.1: Model Equations

Pooled Regression
Ŷt = β̂0 + β̂1WILt + β̂2XOIt + β̂3V IXt + β̂4HUIt + β̂5TNXt + β̂6DFFt
Time Series
Yt = (1 + φ)Yt−1 + θεt−1
Varying Intercept Regression
log(Ŷit) =

∑84
i=1[α̂iIi] + β̂0 + β̂1XOIt + β̂2Vit + β̂3V IXt + β̂4DFFt + β̂5TNXt

First lets consider the time series model against the regression models. The benefit of the

regression models over the time series model is that multiple regression allows the consideration

of other variables as predictors and provides insight on the relationship between the closing stock

price and these additional factors. A benefit of the time series model over the regression models

is that the time series better fits the nature of the data where the closing price is highly correlated

with the closing price of the previous week. For this data, more underlying assumptions of the

time series model are satisfied over the underlying assumptions of linear regression. The time

series model also uses previous observations which are more readily available information that

current data which is used for prediction in the regression models. A benefit of the regression

models is that time is not used as a variable but rather as an index. In other words, the model only

requires knowledge of the values for the week of interest, not the time relative to other data points.

Now that we have compared the time series against the regression models, we consider the

differences between the two regression models. The pooled regression model uses the median

or ’pooled’ weekly closing stock price over all of the stock indexes considered from the NYSE.

The benefit of this is that the model can be used to give a comprehensive overview of the trends
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of these selected stocks. The drawback to pooling the data is that the model cannot be used to

predict individual stocks. On the other hand, the varying intercept model considers each stock

individually which allows for investors interested in specific NYSE stock to compare the trends

of each. However, the varying intercept model includes the index as a categorical variable which

adds 84 dummy variables to the model making it a much more complex model than the pooled re-

gression. Finally, the regression models can be compared by their predictive ability by considering

the coefficient of determination or the amount of variation in the closing price that is explained by

each model. The amount of variation explained by the pooled model is 96.61% and the amount

of variation explained by the varying intercept model is much lower with 64.28%. In conclusion,

the pooled model gives a general comprehensive view of the NYSE stocks overall with high ac-

curacy in predictive power while the varying intercept model gives more in depth information on

individual stocks at the cost of lower predictive capabilities.

6.2 Further Considerations

In the future, it would be interesting to consider some different models such as neural networks

to predict the weekly closing stock price for each index since these types of models have more

lenient model assumptions. This could be a more comprehensive analysis since the regression

models do not tend to meet the underlying model assumptions.

It would also be interesting to consider individual time series models for each stock index rather

than the pooled median price. This would be a study interesting for investors interested in specific

stock within the ones selected from the NYSE.
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APPENDIX SELECTED R PROGRAMS

Pooled Regression Model

• Calculate the Medians for Price and Volume

MPRICE<−s a p p l y ( s p l i t ( Stock$PRICE , Stock$TIME ) , median )

MVOLUME<−s a p p l y ( s p l i t ( Stock$VOLUME , Stock$TIME ) , median )

• Partition the Data

p o o l d a t a<−d a t a . f rame ( c b i n d (MPRICE ,MVOLUME, Pool ) )

s e t . s eed ( 1 2 3 )

ind<−sample . s p l i t (Y=pooldata$MPRICE , S p l i t R a t i o = 0 . 7 )

t r a i n . p o o l d a t a<−p o o l d a t a [ ind , ]

v a l i d . p o o l d a t a<−p o o l d a t a [ ! ind , ]

• Stepwise Regression

n u l l <−lm (MPRICE˜ 1 , d a t a = t r a i n . p o o l d a t a )

f u l l <−lm (MPRICE ˜ . , d a t a = t r a i n . p o o l d a t a )

poolmodel<−s t e p ( n u l l , d a t a = t r a i n . p o o l d a t a , scope =

l i s t ( uppe r = f u l l ) , d i r e c t i o n = ” bo th ” )

summary ( poolmodel )

• Multicollinearity

v i f ( poolmodel )

# Remove C o r r e l a t e d V a r i a b l e s

poolmodel1<−lm ( f o r m u l a = MPRICE ˜ WILSHIRE + XOI + VIX +

HUI + TNX + DFF + MVOLUME, d a t a = t r a i n . p o o l d a t a )

v i f ( poolmodel1 )
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• Variable Significance

poolmodel2<−lm ( f o r m u l a = MPRICE ˜ WILSHIRE + XOI + VIX +

HUI + TNX + DFF , d a t a = t r a i n . p o o l d a t a )

summary ( poolmodel2 )

anova ( poolmodel2 )

• Check Model Assumptions

p l o t ( poolmodel2 )

# Durbin Watson T e s t

d w t e s t ( poolmodel2 , a l t e r n a t i v e = ” g r e a t e r ” )

# Anderson D a r l i n g T e s t

ad . t e s t ( p o o l m o d e l 2 $ r e s i d u a l s )

• Testing Data in the Model

yha t<−p r e d i c t . lm ( poolmodel2 , v a l i d . p o o l d a t a )

p l o t ( v a l i d . pooldata$MPRICE , yha t , y l a b = ” P r e d i c t e d P r i c e ” , x l a b =

” A c t u a l P r i c e ” )

Time Series Model

• Data Partition

t s t r a i n <−MPRICE[ − ( 8 8 9 : 9 3 9 ) ]

t s t e s t <−MPRICE[ − ( 1 : 8 8 8 ) ]

t s t r a i n <− t s ( t s t r a i n )

t s t e s t <− t s ( t s t e s t )

• Time Series, ACF, and PACF Plots

p l o t (DATE, MPRICE , t y p e =”n ” , x l a b =” Median C l o s i n g P r i c e ” , y l a b =” Date ” )

l i n e s (DATE, MPRICE , pch =16)

a c f ( t s t r a i n )

p a c f ( t s t r a i n )
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• First Order Difference

l a g d i f 1 <−d i f f ( t s t r a i n , l a g =1)

p a r ( mfrow=c ( 1 , 1 ) )

p l o t ( l a g d i f 1 )

p a r ( mfrow=c ( 1 , 2 ) )

a c f ( l a g d i f 1 )

p a c f ( l a g d i f 1 )

a c f ( l a g d i f 1 , p l o t =F )

p a c f ( l a g d i f 1 , p l o t =F )

• Candidate Models

t smodel1<−a r ima ( t s t r a i n , o r d e r =c ( 1 , 1 , 0 ) )

t smodel2<−a r ima ( t s t r a i n , o r d e r =c ( 0 , 1 , 1 ) )

t smodel3<−a r ima ( t s t r a i n , o r d e r =c ( 1 , 1 , 1 ) )

AIC ( t smode l1 , t smode l2 , t s m o d e l 3 )

• Diagnostic Testing

# S i g n i f i c a n c e o f Model P a r a m e t e r s

l i b r a r y ( l m t e s t )

c o e f t e s t ( t s m o d e l 1 )

# Anderson D a r l i n g T e s t

ad . t e s t ( t s m o d e l 1 $ r e s i d u a l s )

qqnorm ( t s m o d e l 1 $ r e s i d u a l s )

# C o n s t a n t V a r i a n c e / I n d e p e n d e n c e

t s d i a g ( t s m o de l 1 )

• Forecasting

nobs= l e n g t h ( t s t r a i n )

t s f i t = a r ima ( t s t r a i n , o r d e r =c ( 1 , 1 , 0 ) , x r eg =1: nobs )
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f o r e = p r e d i c t ( t s f i t , 51 , newxreg =( nobs + 1 ) : ( nobs + 5 1 ) )

t s . p l o t ( t s t r a i n , f o r e $ p r e d , c o l = 1 : 2 )

Varying Intercept Regression Model

• Data Partition and Transformation

# S e t seed t o g e t t h e same r e s u l t s each t ime

s e t . s eed ( 1 2 3 )

# S e t c a t e g o r i c a l v a r i a b l e s ( IDX and SECTOR) as f a c t o r

S tock [ , 1 ] = as . f a c t o r ( S tock [ , 1 ] )

S tock [ , 2 ] = as . f a c t o r ( S tock [ , 2 ] )

# C r e a t e T r a i n and V a l i d a t i o n d a t a

ind<−sample . s p l i t (Y=Stock$PRICE , S p l i t R a t i o = 0 . 7 )

t r a i n . Stock<−Stock [ ind , ]

v a l i d . Stock<−Stock [ ! ind , ]

# Trans fo rm P r i c e

l o g . PRICE<−l o g ( t r a i n . Stock$PRICE )

t r a i n . Stock1<−d a t a . f rame ( c b i n d ( t r a i n . S tock [ ,−3] , l o g . PRICE ) )

• Model Selection

# S t e p w i s e R e g r e s s i o n

n u l l <−lm ( l o g . PRICE ˜ 1 , d a t a = t r a i n . S tock1 )

f u l l <−lm ( l o g . PRICE ˜ . , d a t a = t r a i n . S tock1 )

varmodel1<−s t e p ( n u l l , d a t a = t r a i n . Stock1 , scope =

l i s t ( uppe r = f u l l ) , d i r e c t i o n = ” bo th ” )

summary ( varmodel1 )

# M u l t i c o l l i n e a r i t y

v i f ( varmodel1 )

v i f ( varmodel2 )
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# F i n a l Model

varmodel2<−lm ( l o g . PRICE ˜ IDX + XOI + VOLUME + VIX + DFF +

TNX, d a t a = t r a i n . S tock1 )

summary ( varmodel2 )

• Checking Model Assumptions

p l o t ( varmodel2 )

# Durbin Watson T e s t

d w t e s t ( varmodel2 , a l t e r n a t i v e = ” g r e a t e r ” )

# Anderson D a r l i n g T e s t

ad . t e s t ( v a r m o d e l 2 $ r e s i d u a l s )
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