
AN ANALYSIS OF THE VARIATION IN DRESSAGE JUDGE SCORING

Sarah Kreuz

A Thesis

Submitted to the Graduate College of Bowling Green
State University in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

August 2018

Committee:

James Albert, Advisor 

John Chen 

Christopher Rump



Copyright c©August 2018

Sarah Kreuz

All rights reserved



iii
ABSTRACT

James Albert, Advisor

In any subjectively scored sport, there is always the possibility of judge bias. After events

at the 2008 Olympics at Beijing caused the scoring methods for international dressage competi-

tions to come under scrutiny, the Federation Equestre Internationale (FEI) responded to the need

for additional research into the issue. Following the patterns of previous research, their studies

relied heavily on techniques such as Analysis of Variance (ANOVA) to make conclusions about

contributing factors to judge bias and pointed to factors such as location of the event, the breed of

the horse, and the test level as indicators of bias.

While ANOVA is helpful for finding variation between groups, it does not take into account

the individuality of competitors and different sample sizes. For that reason, in this study we focus

on Bayesian multilevel models to examine the variation in dressage judge scoring. Not only do

these models allow for individual skill levels to vary between competitors, but they also adjust for

different sample sizes when some individuals provide more information than others.

In our models, we examined the fixed factors of region, test level, and judge rating, but also

allowed varying intercepts for individuals within groups for judge, horse, and rider. Since our

focus was judge bias, we used different models to see how outside factors affected variation in

judge scores. While adding different factors did show some impact on the variations for the three

groups, those effects did not necessarily indicate bias. Instead, using multilevel models implied

that most of the variation in dressage scores is due to differences between riders while judges score

fairly similarly. Furthermore, the percentage of the overall score that is due to judge variability is

quite small compared to the percentage contributed by the horse and rider implying that skill level

is the most important factor in dressage scores.
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CHAPTER 1 INTRODUCTION

1.1 Background

The earliest records of dressage come from the Greek military leader Xenophon in the aptly

titled manuscript, The Art of Horsemanship. As a military leader whose success in battle depended

on the ability of horses and riders to maneuver through a battlefield, he understood the importance

of rigorous training to improve dexterity and forge a bond between horse and rider. A disobedient

or untrained horse on the battlefield could mean the difference between glorious victory or crushing

defeat. For this reason, Xenophon began a training program to improve the athletic ability of his

cavalry and build the relationship between horse and rider that allowed their movements together

to look effortless and made horses willing to submit to the ordeal of going through battle.

Although the training Xenophon started continued in Greek military culture and spread through-

out other nations, it was during the Renaissance that dressage truly became prominent and appre-

ciated for its own sake. As beauty and art were once again considered worthy pursuits, the art of

horseback riding began to develop. Riding schools catering to the nobility emerged throughout

Europe and in 1735 the Spanish Riding School in Vienna was established, making great strides in

exploring what horse and rider could accomplish together.

As defined by the Oxford Dictionary, dressage is “the art of riding and training a horse in

a manner that develops obedience, flexibility, and balance.” When horses were still used as a

primary form of transportation, it was especially vital for cavalry men to be adept in dressage.

Civilians, however, did not always recognize the benefit of dressage training. In fact, dressage was

considered a purely military sport to the point that when it was eventually added to the Olympic

games in 1912, only military officers were allowed to compete. It was not until 1953 that civilians

as well as military personnel participated in dressage competitions. In those first Olympic games,

dressage looked more like a military exercise than an art form. Nevertheless, as riders pushed

boundaries and explored possibilities, the level of intricacy in patterns and athletic ability required
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continued to increase. Even as horseback riding decreased in its daily utility, dressage helped

strengthen the understanding of appreciating its beauty.

In order to compete in dressage, riders perform what are called “tests” which are standardized

patterns created to showcase certain levels of skill. Tests are conducted in a dressage arena which

is designed as either a 20x40 meter (small) or 20x60 meter (standard) rectangle with letters at

specific intervals around the perimeter. For example, on the short end of the rectangle on one side

is the letter A where the rider enters the arena and on the opposite side of the rectangle is C where

the judge is positioned. Sometimes there are judges at other letters such as B and E which are in

the middle of the long sides, or at H, and M which are each six meters from the corner across a

long diagonal. All of the letters that are found on the perimeter of the rectangle are marked with a

sign, however, there are also unmarked letters on the centerline of the arena at specified intervals

with the letter X exactly in the middle of the arena. When performing the test, riders use these

letters as markers for the patterns they are executing. Each pattern is broken up into a sequence

of movements which indicate what the horse and rider should be doing at that moment. Each

movement is scored individually by the judge and the points are all added together and turned into

a percentage of points possible to generate the final score for that test.

There are a few different types of tests riders can choose from based on where they are com-

peting. Some tests, like those written by the Federation Equestre Internationale (FEI) are shown at

the international level while others, like those written by the United States Equestrian Federation

(USEF), are only ridden at the national level. In USEF dressage tests, the lowest level of difficulty

is the Introductory Level which features basic maneuvers like a twenty-meter circle. The next level

of difficulty is Training Level which includes more cantering and greater variety in the patterns.

After Training Level, riders move through First to Fourth Level tests which require a much higher

skill level and feature more intricate movements as the riders progress through the levels. Every

four years these tests are updated by the USEF to remedy problems that were noted throughout

their tenure or to add skills deemed important for that level. The patterns are first decided upon

by a committee to make sure that all the necessary skills are showcased in each test from both
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directions. Once the committee has agreed on a set of movements, they conduct trial runs with

many different horses and riders at varying levels of experience. In that way, they can make sure

that certain types of horses do not have an advantage over others and that all the movement com-

binations flow together smoothly. They can also get an idea of what issues riders might run into

when performing that test. For instance, some movements may be easier for smaller horses to

perform than larger horses. If size of the horse becomes an issue, it may require rewriting part of

that movement in a way that ascertains no particular horses are given an advantage. Furthermore,

since smaller horses may take longer to complete a test, the committee needs to make sure that the

tests are not overly long. Most dressage tests are completed in under six minutes so if a new test is

consistently taking competitors longer than that time the patterns are restructured to optimize the

balance between content and length. Once all the tests have been tried out a satisfactory amount

of times the tests go into the final editing stages. All necessary movement changes are made, the

wording is edited, and the finished document is sent through many stages of proofreading. After

all final changes are approved, the committee decides the tests are ready to publish.

Part of the entire process is deciding exactly how each movement should be scored. When the

committee is revising the wording on some sections, they are making sure that the expectations are

communicated clearly to the rider as well as to the judge so that both are held to the same standard.

At the top of each test is a paragraph concerning the purpose of the test that gives both riders and

judges an overview of the goals and expectations of that level. Furthermore, placed next to each

movement is a box containing a directive idea which lets the rider know the essential qualities of

the movement and also serves as a reminder to the judge of the important aspects to score.

Each movement is scored on a scale of 0-10 with a 0 meaning the movement was not performed

at all, and 10 indicating that the execution was excellent. Half points are allowed, and on average

most riders tend to receive scores of about 6 (satisfactory), or 7 (very good). Not all movements are

considered of the same importance, however. If a movement is considered more vital to the perfor-

mance, it is given a higher weight through use of a multiplicative coefficient such as multiplying

the movement score by 2. Once the test is complete and all the movements have been scored, the
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judge awards collective marks which rate the overall performance. These collective marks are also

awarded on a scale of 0-10 and not only score the performance of the horse, but that of the rider as

well. Once all of these points have been added up the last step before awarding the final percentage

is to subtract any error penalties. If a rider performs a movement incorrectly, uses vocal cues, the

horse leaves the ring, etc. the judge will ring a bell to indicate a penalty. The first error is a 2 point

deduction, a second error is a 4 point deduction, and a third error is cause for elimination from the

class although the rider may be allowed to finish the test at the discretion of the judge. After these

points are deducted, the final overall score is assigned as a simple percentage created by taking the

number of points awarded out of the total number of points possible.

1.2 Motivation

Even with extensive training programs, sports that rely on subjective judges are constantly

searching for ways to minimize any possible judge bias and achieve the most objective assess-

ments possible. Failures at attaining this goal, however, continue to arise as evidenced by the

figure skating scandal at the 2002 winter Olympics, as well as the debate surrounding Paul Hamms

gymnastics gold medal in the 2004 summer Olympics. Dressage is no exception to the conversa-

tion about judge bias. On the unofficial level, competitors complain about unfair judging based on

superficial qualities. It is not uncommon for riders and trainers to make comments about how other

competitors place higher based on gender rather than skill or about how a judge scored them lower

because their horse was a certain breed.

After the 2008 Summer Olympics in Beijing, an official complaint on dressage judge scoring

practices was issued by FEI President, Princess Haya (Eurodressage, 2008). In a letter published by

Eurodressage, she listed several concerns about conflicts of interest for judges selected to preside

at the Olympic Games. Many of these concerns related back to whether or not the judges chosen

had sufficient training in order to accurately judge at the Olympic level.

Due to these concerns, the FEI commissioned a task force to look into the established judging

practices and develop recommendations for improvements. After consulting scoring methods in

other sports such as ice skating and gymnastics, and carefully reviewing current dressage protocols,
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the task force published their proposal (Federation Equestre Internationale, 2009). This proposal

contained several measures that would change the way internationally ranked judges were trained

and selected for events as well as how those events were designed.

While dressage judge scoring only came under strict scrutiny in 2008, a few papers were written

on the topic prior to that time. One of the earlier papers addressing the subject was by Deuel and

Russek-Cohen (1995), which focused on analyzing scoring factors in the three-day events at the

world championships from 1988 to 1992. Eventing shows include dressage as one of the events,

however, that is not the sole purpose of the competition. Horses at these events have to be skilled

in multiple disciplines, one of which is dressage, but they also need to excel in jumping and cross-

country courses. With such a diverse skill set necessary to compete at these shows, it introduces

some nuances to the scores. Therefore, although this paper did look at the dressage scores on their

own to see how they contributed to the overall eventing score, the authors were looking through a

slightly different lens than they would for a dressage competition.

In 2005, Tim Whitaker teamed up with Julian Hill to write two articles for the journal Equine

and Comparative Physiology about judge bias in dressage. Similar to Deuels research, these two

articles focused on judge scoring at British eventing competitions. In their first paper, Whitaker

and Hill (2005b) concentrated on discussing judge scoring bias in the dressage portion of three-day

events. Through the use of analysis of variance (ANOVA), they were able to discover differences

between scores in the dressage ring based on the location of the event and the test performed.

In their second paper for Equine and Comparative Physiology, Whitaker and Hill (2005a) still

examined judge scoring at British eventing competitions, however, they moved their focus from

analyzing differences between dressage scores toward using linear regression to discern how much

each of the three events contributed to the final overall rider score. The final eventing score is

tallied by combining the scores from each of the three events. The paper states that originally 75%

of the final score was supposed to be explained by the cross-country score while 18.75% came from

dressage and 6.25% from show jumping. In more recent years, these requirements have become

less strict with the only guidelines indicating that cross-country should carry the most weight,
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but not stipulating how much weight. Using multivariate analysis, Whitaker and Hill found that

dressage was actually being given the most weight in the final score with over 50% of the eventing

score allocated from dressage events at all test levels. While this result does not directly indicate

whether judge bias is involved in that score or not, it does point out that judge bias at dressage

competitions is a significant factor to consider not only at dressage events, but at any type of show

which includes dressage as part of the competition.

More recently, the FEIs examination of the issues cited during the 2008 Olympics in Beijing

prompted others to reexamine dressage judge scoring practices as well. In January of 2010, an

article was published in the Journal of Quantitative Analysis in Sports titled “Scoring Variables and

Judge Bias in United States Dressage Competitions” by Diaz, Johnston, Lucitti, Neckameyer, and

M. Moran (2010). While the FEI took an international approach to the problem, this study engaged

in a more focused view on the issue by narrowing their data to competitions within the United

States. This was the first paper to look solely as U.S. dressage competitions from a statistical

viewpoint. In their analysis, they primarily used ANOVA and some analysis of means (ANOM) to

look for unusual deviations from typical judge rulings. After completing all their analysis, these

methods showed significant variations in judge scores by region, test level, and horse breed.

1.3 Taking a Bayesian Perspective

Many of these research papers relied heavily on ANOVA to conduct their analyses. The purpose

of ANOVA is to recognize significant differences between group means. For example, in Diaz et

al., one of the groups they were interested in was region. While it is not reasonable to expect each

region to have the exact same mean, theoretically there should not be a lot of difference between

the average dressage score for an East Coast region and a Midwest region. ANOVA assumes that

all group means are the same and finds the probability of our observed group means occurring

under that assumption. In this example, after analyzing variances between and within the different

regions, ANOVA is able to determine if one regions mean score is higher or lower than would be

considered normal under our assumption of equal means.

While an ANOVA is a useful tool for showing which factors contribute significant amounts to
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overall variation, it cannot account for the variation that should exist based off different athletic

abilities. While previous research in judge scoring indicated that region is a significant factor in

variation, the authors could not determine if the judges in that region were scoring higher because

of bias or if the riders in that region were better athletes. Similarly, perhaps ANOVA shows that test

level is a significant factor in scoring. That tells us nothing about whether the judges are scoring

one test more harshly than another or if riders who choose to compete with that test are able to

perform better than riders who choose another test.

In any sport, we expect to see variation. When an athlete is announced as the winner of a

competition it is because they performed better than any of the other competitors. In dressage, we

expect one rider to receive higher scores than another. If one person has been riding for twenty

years and on the show circuit for ten years and they perform the same test as someone that started

riding a year ago and is competing at their first show, the more experienced rider will most likely

receive the higher score. In this scenario, the difference in dressage scores was not the result of

judge bias but rather a difference in athletic ability.

The goal of this paper is to quantify how much of the variation in dressage scores is due

to differences between judges and how much is due to differences between riders. We want to

see whether factors like region and test level affect how judges score rides or if it is possible

that confounding factors such as riders in certain areas of the United States having better training

resources are the true source of variation.

When looking for an appropriate model, we have three options. The first option would be to

make one model with one estimate for the average judge score. This model, however, would not

give us enough information as it would treat every judge the same and ignore possibly relevant

grouping characteristics. Another choice for a model would be to consider every person individu-

ally. This model would give us way too much information as it would create a separate model for

each individual. This would completely ignore relevant similarities that we could use to help us

create better estimates for individuals with smaller sample sizes.

For that reason, we wanted to take a hybrid approach and use a Bayesian hierarchical model
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to exhibit the variation. Multilevel models allow us to look at individuality within groups. For

instance, suppose we separate our data by the groups judge, horse, and rider. Within each of those

groups are many individuals with their own scoring records and experiences. Using random effects

for judge, horse, and rider can then tell us how far the average dressage score for each individual

in that group deviates from the population mean. To take it a step further, we can also add fixed

factors like region and test level to see how they affect the variation within each group. In that way,

we not only allow for individuality but can capture information about different groups as well.

Since these models create estimates for each individual in our groups, we can also estimate

overall scores for each judge or rider. One issue with comparing judges or riders is that the in-

dividual means are based off different sample sizes. With Bayesian multilevel models, this is no

longer an issue. When estimating judge scores, we will get both a population average as well as

estimated average score for each judge. If one judge only scores four or five rides, they do not

have a lot of information about their judging trends while another judge that scores over twenty

rides yields a lot more information. The model will then pull each of these estimates towards the

population average, however, the judge with less information about them will be pulled closer to

the population average than the judge with more observations. This allows us to use the informa-

tion we have from other individuals in that group to create more accurate results even with limited

access to data.

Although Bayesian techniques have not been used to assess equestrian judging methods, it has

been used for analysis of bias in other fields. One of the more recent publications by Zupanc and

Strumbelj (2018) focused on rater effects in essay scoring. In that paper, they were looking for

rater bias on essays written by students graduating secondary school in Slovenia. These essays

were each assessed by multiple graders and the variances were analyzed to see how much was due

to bias. Although they were using a Bayesian model to assess essay grades, they also pointed out

that their model “can be applied in any setting where a set of performances is rated by a set of

raters and where at least some performances are assessed by two or more different raters” (Zupanc

and Strumbelj, 2018).
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In our scenario, our performances happen each time a test is ridden. At times, there will be

multiple judges positioned around the ring, however, these positions all have different perspectives

and are not fulfilled at every competition. Therefore, we chose to focus only on the judge at C

to eliminate that additional factor of perspective and make much more data available for analysis.

With the limitation of only using one judge score per ride, we have to ignore any possible time

differences in one show season. Throughout a show season, a rider will compete in the same test

level multiple times, therefore they will have multiple judge scores per test within a year which we

can treat as one performance assessed by multiple raters. Once we make that generalization, we

can create a model very similar to the one discussed in Zupanc and Strumbelj.
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CHAPTER 2 EXPLORATORY DATA ANALYSIS

2.1 Data Collection

The data for this project was collected from publicly available files on Horse Show Office’s

website – a horse show management company based out of Dexter, Michigan. In order to focus on

the most current information, we selected rides from the year 2017 for analysis. The variables pro-

vided by Horse Show Office were Show Name, Location, Dates (Show Weekend), Class Number,

Test Name, Arena, Date (Individual Day), Judge(s), Time of Ride, Rider Number, Horse, Owner,

Rider, Score(s), Total Score, Status, Place, and Division which we then used to create our final

dataset.

The first change we made to the provided variables was to convert the time of ride into a

categorical variable. While we still wanted to know the general times of each ride, there should

not be a significant difference from one hour to the next. There may, however, be a difference

between morning and afternoon rides since that allows time for weather changes or judge fatigue.

By indicating whether the ride occurred in the AM or PM instead of the exact minute of the ride,

we simplified the variable for ease of analysis while still preserving all pertinent information.

After creating the categorical variable for time, we augmented the data set with information

we thought may be influential to judge bias. One of those additional variables was the competition

region. The USEF has separated the United States into nine competition regions. To create the

variable, we simply looked at the state indicated in the show location variable and noted which

region included that state. Seven of the nine regions were represented in our data, however, Region

6 (northwest corner of the U.S) and Region 9 (southwest) did not appear in our data set at all.

We also wanted to look at the level of training received by each judge. There are five different

types of judge classifications in the United States. The lowest level is the “L” graduate that has

passed the initial coursework towards becoming a registered judge. While “L” program graduates

cannot preside at recognized shows, they are allowed to judge at schooling shows or other unrec-
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ognized shows that do not require judge credentials. Completing the “L” program is the first step

in achieving higher judge ratings, however, only those candidates that graduate with distinction

having scored above an 80 on the written exam and above a 70 on the practical exam are allowed

to apply for the next higher level of “r” judge. For that reason, we have separated “L” graduates

and “L” graduates with distinction (notated here as “LD”) since they do represent slightly different

levels of qualifications.

Once applicants pass through the “L” program with distinction, they still need to achieve high

scores in their own riding, apprentice judge for already recognized judges, secure recommenda-

tions from several USEF licensed officials, and complete many more hours of training and ex-

ams before receiving their “r” license. Once someone receives their “r” license they become a

“recorded” judge and are allowed to judge through Second Level tests at recognized shows. If

they want to judge at higher levels they need to gain more experience and complete even higher

levels of the training they went through to get their “r” license. If they do meet those training re-

quirements, they can receive their “R” license to become a “registered” judge who is permitted to

judge through Fourth Level at recognized shows. Repeating a similar process will allow someone

to reach the highest level of USEF judge which is the “S” license or “senior” judge who is allowed

to judge through Grand Prix at the national level.

2.2 Exploration

Since the judge at C is the only position that is consistent throughout every test and every show,

we focused solely on those scores for this analysis. We started exploring the data by looking at

the overall distribution of the scores. In Figure 2.1 we see that the scores look fairly normally dis-

tributed with a mean of 63.25 and a standard deviation of 4.995. There are some pretty significant

outliers, however, with the lowest score at 38.75 and the highest at 80.96.
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Figure 2.1: Judge Scores

Since the scores exhibit a symmetric distribution, we do not need to attempt any transforma-

tions that would complicate our interpretations. From this distribution, we would expect typical

scores to fall between 53 to 73%. That raises the question of what caused those unusually high and

low scores to occur.

Ideally, we would want the unusual scores to occur because of exceptionally good or terrible

rides. If instead these scores were the result of some type of bias, we would expect to see unusual

variation in scores within one variable rather than spread out across categories. In most other

papers on the subject of judge bias, they discovered unusual patterns in variation by region. Since

that variable has been a consistent issue in previous research, it is a good starting point for our

exploration.
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Figure 2.2: Judge Scores by Region

In Figure 2.2, we see pretty equal spreads for all regions with the exception of Region 3. Since

Region 3 has the smallest number of rides out of all regions, however, we would expect to see a

larger standard deviation. We also notice quite a few outliers both above and below the median

throughout all regions. The number of outliers increases with the number of rides in each region

as Region 8 seems to have the highest number of outliers but they also have the highest number of

rides, while Region 3 seems to have the fewest outliers but that is expected since they also have the

fewest rides. With a wide range of possible scores going from 0 to 100% and the typical range of

scores only falling between 53 to 73%, its not really concerning to have this many outliers unless

we find that all the outliers are coming from the same judge.

One of the most interesting things about this graph is that although most of the median scores

look pretty close to the overall average of 63%, Region 7 has a median score close to 66%. This

mirrors the results found by Diaz et al. when they also noted that Region 7 (which includes the

states of California, Nevada, and Hawaii) held the highest average scores of any region. It may be

interesting to take a closer look at what is happening in that particular area and explore the cause

of that distinction. Perhaps the judges in that region do have a tendency to rate rides higher than

the rest of the United States judges, but perhaps they have a higher concentration of skilled horse

and rider pairs in that area.
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The next variable of interest was the test level. With the difference in skill level for each type

of test, it is possible that some levels are judged more harshly than others. Although there are

three tests in every level, rather than examining eighteen individual tests we took a look at the six

different levels.
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Figure 2.3: Judge Scores by Test Level

In Figure 2.3 we see hardly any variations in scores for the different test levels. The spreads

for each tests scores stay pretty consistent and the means only differ through a range of about 1.5

percentage points. One reason this might be happening is that when a rider selects a test to ride,

they are not restricted to choosing tests sequentially. That means riders are free to select tests that

fit their skill level as well as the abilities of their horse. Some riders will also skip levels, such as

Second Level, which are more difficult in order to reach the higher levels without receiving low

scores on tests where they might perform poorly. With all the self-selection of tests, riders will

tend to elect to compete where they will fall in the average range so that they feel like they can

succeed but also have room to improve their scores.

The variable that proved the most interesting was the certification level of the judge. We de-

cided to look at each individual test and see how the different types of judges’ scores differed.

Since each test has a different focus, even within the same level, we thought it would be important

to look at each of those tests individually.
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Figure 2.4: Introductory Level Judge Scores

Intro A appears to have pretty constant median scores for the riders except for the scores from

the “L” program graduates with distinction. Intro B experiences a slight rise in scores as the judge

training increases and Intro C appears pretty constant throughout. We do see a few outliers in Intro

B tests, but those are likely from either exceptionally good rides for the high outliers, or riders that

were having a rough day with their horse for the low ones. The general trend here is that the very

experienced judges appear more lenient in their scoring of beginning riders than judges that have

recently gone through the initial judge training program.
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Figure 2.5: Training Level Judge Scores
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The Training Level scores look a little more consistent than the Intro test scores. We do see a

lot more outliers, but with the large amounts of rides in this level that is not unexpected. Overall, it

once again looks like “L” and “LD” graduates score slighter lower than the rated judge scores with

the “LD” percentages in Training Level 3 appearing especially low. Training Level tests are still

considered to require lower skill levels as it is the level that riders usually begin with when they start

showing. With that in mind, we have a similar situation to the Introductory tests where the highly

experienced judges may be exhibiting more leniency in their scoring for beginning competitors.
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Figure 2.6: First Level Judge Scores

In the First Level test scores, it looks like the “LD” category is consistently much lower than all

the rest. “L” looks a little lower than the official judges for First Level 3, but nothing like the dips

that “LD” scores are taking. This behavior is a little unusual since “L” and “LD” judges have the

exact same training and the only difference between the two categories is how well they performed

on their training assessments. The most obvious difference between “LD” and all the other judge

ratings for this test level is the number of observations in each group. Out of all the categories,

“LD” judges scored the most First Level rides which gives us more information on how they

would score those rides than we have for any other type of judge. Thus, it is possible that the other

categories of judges on average would score lower except that we do not have enough information

on them to see that behavior with the raw data. This is another instance where Bayesian multilevel
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models will help us alleviate this issue through shrinking observations with smaller amounts of

data towards the overall mean so that these differences in amount of information do not mask

general trends.

Figure 2.7 looks at the scores for Second Level. Since “L” and “LD” judges cannot score these

rides at rated shows, they had very low frequencies for these rides. Thus, we chose to omit the “L”

and “LD” scores in this category.
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Figure 2.7: Second Level Judge Scores

For Second Level, it looks like the higher the judge rating, the lower the judge tends to score

the rides. If we look back at Figures 2.4, 2.5, and 2.6 we see similar behavior happening in every

level. While other levels sometimes switched whether “r” or “R” judges scored higher, “S” judges

consistently scored the lowest of all three types of rated judges.

This behavior could possibly reflect some of the perspective gained through experience. While

“r” and “R” judges did not show large differences in judgement for Training and First Level tests,

Second Level is the highest level that “r” rated judges can officiate at rated shows which may mean

that they have a less experienced eye for newer and more intricate moves than the more seasoned

“R” judges. “S” judges then have by far the most experience of these judges and may start looking

more critically at riders who elect to try their skills at the higher-level tests.

When looking at Third Level tests, we only focused on “R” and “S” judges since there were
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no tests for “r” judges and the number of tests judged by “L” and “LD” graduates were extremely

small.
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Figure 2.8: Third Level Judge Scores

In Figure 2.8 we see that the “S” judges are scoring slightly lower than the “R” judges. This

is most obvious in Third Level Test 2, however, as Third 1 and Third 3 only exhibit miniscule

differences. This further indicates the possibility that higher trained judges score rides lower than

a newer judge would.

Lastly, we looked at the Fourth Level tests. Similar to the Third Level tests, we only plotted

“R” and “S” rated judges.
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Figure 2.9: Fourth Level Judge Scores

Fourth Level has a more obvious difference between the scores from the two types of judges.

Similar to how we saw a distinct difference between “r” and “R” judges once we reached the

threshold of “r” judge expertise, Fourth Level is the top level that “R” judges are permitted to

score. Although lower levels show a trend of “S” judges scoring lower than “R” judges, Fourth

Level takes that difference and increases it substantially. Since Fourth Level is the threshold of “R”

judge experience, it is possible that the difference in judge skill level is starting to become more

defined and the difference between scores shows up more significantly than it did in the lower

levels.

2.3 EDA Conclusions

From our initial analysis, it does not look like region and test level have as large of an impact as

previous research has suggested. While many previous papers cite region as one of the important

factors in dressage judge bias, our data does not indicate such bias at first glance. Although we

do see a higher average score in California and Nevada, we do not yet have sufficient evidence

to claim that judge bias is the cause of that peak. Many other factors, such as available training

resources, may contribute to that behavior. All other regions show reasonably consistent median

scores in these plots.



20
Test level also does not indicate the large amounts of judge bias suggested by previous research.

In fact, our exploration of the data shows reasonably consistent median scores as well as spreads

throughout all test levels. Rather than judge bias, this behavior indicates educated self-selection by

riders. Since the averages are pretty close, it suggests that riders are choosing to compete in levels

that are appropriate for their skill level so that an average performance at any level will receive

about the same score.

The variable that actually shows the most variation in scores is the level of judge training. In

the first few levels, the more experienced judges appeared to score much more leniently than the

newer judges. Nevertheless, for these levels, it is possible that this is not a case of bias. “L” and

“LD” judges are usually contracted for smaller schooling shows which attract amateur riders. If a

show can afford an upper level judge like an “S” judge, they are most likely attracting riders who

frequently show and are trying to make riding into more of a profession than a hobby. Therefore,

“L” and “LD” judges are more likely to see the riders that are earning lower scores at those levels

than “S” or even “R” judges. Once we reach the higher test levels, there is more consistency in the

quality of rider. When we look at Second Level and above, we see that the more experienced the

judge is, the lower they tend to score rides. Whether that is caused by the training program itself

or is a byproduct of gaining experience would be areas for further study if this trend is established

as significant.
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CHAPTER 3 BAYESIAN MULTILEVEL MODELING

3.1 Varying Intercepts Model

When looking at scores in any sport, we expect to see some variation. In fact, diversity in

scores is necessary for any type of sporting competition. The variation we expect, however, is

one that allows us to see that a particular athlete is superior to another in order to determine the

winner of a competition. We want to see the differences between performances and resolve that one

was distinctly better than another. In scoring competitors, the ideal situation would be to have all

sources of variation tied up in differences between athletes skill levels and eliminate any variation

caused by the individual judging the event.

For that reason, we want to separate these possible sources of variation in our model to see

where the variability in scores is truly coming from. Bayesian multilevel models allow us to make

these distinctions through varying intercepts or slopes for different groups while also giving the

freedom to include fixed effects like those used in regression models. For our scenario, we can use

judge, rider, and horse as our varying intercepts to see how each group contributes to the overall

variation. Then, we can designate region, test name, and judge rating as fixed factors to see if they

significantly affect the variation associated with the different judges or not.

The simplest model we can use to see the effect of judge bias is a varying intercept model with

judge as the group. While it does not look at any other contributing factors, it does give us an idea

of how much of the overall variation in scores is due to judge subjectivity. We set up the overall

model for the scores yi as a normal distribution, but we also add a layer by including a distribution

for our judge group as well.

When adding the distribution for judges, we need to assign what is called a prior distribution.

One of the benefits of Bayesian analysis is that it allows us to use previous information to create

more accurate models. If we know something about the distribution of a variable, we are able to

include that information within the model and reduce the levels of uncertainty in our results. How-
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ever, if we do not want to influence the results of our model we can also assign an uninformative

prior which assumes we do not have any information about the distribution. For all of our models

in this analysis we will use uninformative prior distributions centered around a mean of 0. Using

this distribution gives us a varying intercept model of the form

yi ∼ N(µ+ αjudgej[i] , σ2
ε ), for ride i = 1, ..., n

αjudgej ∼ N(0, σ2
judge), for judge j = 1, ..., J

Which yields parameter estimates of σ̂2
judge = 2.502 for the judge effect with an estimated residual

variance of σ̂2
ε = 22.617 representing an error for the variation not explained by the judge effect.

The total variance in our model is the sum of these two sources of variation giving us σ̂2
y = 25.119.

To find the typical range of judge scores, we can add and subtract the standard deviation σ̂y = 5.012

to our estimated average judge score of 63.25. Thus, on average we expect the typical judge score

to fall between 58.2 to 68.3%.

If we focus on the size of the standard deviation, the model says that a judges average final

score will typically be 63.25 ± 5.012%. Whether a judge score is biased depends on where those

5.012 percentage points are coming from. If they say that a more talented rider generally scores 5

points higher than an average one, there are no issues with judge bias. However, if those percentage

points say that some judges tend to score all riders 5 percentage points higher than other judges

do, then we may have some judge subjectivity issues involved.

The varying intercepts model tells us that out of the total variance of 25.119, 2.502 is due to

the judge effect while 22.617 is from the residual variation which is unexplained by the individual

judge. That means that approximately 10% of the variation is coming from the subjectivity of the

judge while 90% is coming from other factors we have not yet explored. While this does not tell

us why judges are scoring the way they do, it does tell us that one tenth of the variability in a

riders score is determined by which judge is scoring their ride. That means that one tenth of the

variability in their score is taken out of a riders hands and is instead decided upon subjectively.
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Now that we know how much judge scores tend to vary, we can also discern which judges

tend to score higher and which tend to score lower. Bayesian multilevel models allow us to extract

random effects for each individual in our designated groups which we can then add to the estimated

average score from the overall model to find estimated average scores for each individual judge.

Figure 3.1 illustrates the estimated values for each of the 130 judges and compares them with their

observed average scores.
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Figure 3.1: Observed Average Judge Scores vs. Estimated Average Judge Scores

In the comparison, we see that the random effects create a shrinking effect towards the overall

mean in order to get better estimates even when we do not have a lot of data points. For instance,

we observe a distinct outlier where Leonie Fernandes average score is 51.25%. Upon further

investigation, however, Leonie Fernandes only scored one ride in our dataset from the position

at C. This leaves us with very little information about how Fernandes typically scores tests since

we only have one observation. Using the random effects provided by our multilevel model, we

estimate that Fernandes will actually produce an average score of 62.05%. In this case, we see a

lot of shrinkage towards the population mean since we did not have a lot of information about that

judge.

If, however, we do have a lot of information about how a judge tends to score tests, we will

not see as much shrinkage in our estimates. An example is Willette Brown who scored 469 rides.
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Using those rides, we found her average score as 66.17%. Our model, however, estimates that her

average score will be about 66.11%. So, we see that her estimate moved down towards our overall

mean slightly, but not significantly since we already had so much information about her judging

behavior that the model did not need to make a lot of changes.

While Figure 3.1 shows us a picture of how the model changed our observed averages into

better predictions of behavior trends, it does not give us a lot of insight into these predictions.

Figure 3.2 shows a clearer distribution of our estimated judge scores.
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Figure 3.2: Estimated Judge Scores with One Varying Intercept

We see that most judges are predicted to award final scores around the average of 63.25%,

however, there are some judges that tend to score outside the average range. Out of these unusual

scores, it appears more typical for a judge to score less harshly than their peers. This suggests that

if a judge is going to deviate from typical scoring methods, they prefer to give the benefit of the

doubt when assigning points. While judges that score very harshly on average are much fewer in

number we are still interested in why judges are making choices on their scores that remove them

from the average.
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3.2 Two Varying Intercepts

Since the scoring system is designed to quantify competitors skill levels, the rider should be

one of the biggest factors in score variability. Ideally, when a judge watches a rider they are only

focusing on that riders performance. This is not always the case, however, as gender bias, personal

interest in a competitors success, or a preconceived idea of a competitors abilities based on past

experience always have the possibility of arising.

With multilevel modeling, we can add a group for the individual riders in order to take into

account how each rider generally performs. If one rider is a stronger competitor than another, they

should exhibit higher dressage scores throughout their career and it would not indicate any sort of

bias. If, however, a judge tends to score some riders differently than most other judges it might

indicate some bias. Looking at the general trends here will help since a judge might score one

rider differently than their average scores if they have an unusually good or poor ride. In order to

visualize this behavior, we fit the model

yi ∼ N(µ+ αjudgej[i] + αriderk[i] , σ
2
ε ), for ride i = 1, ..., n

αjudgej ∼ N(0, σ2
judge), for judge j = 1, ..., J

αriderk ∼ N(0, σ2
rider), for rider k = 1, ..., K

Once again, we used uninformative priors for judge and rider variation. This model in turn gives us

the estimated variances σ̂2
rider = 12.668 for the rider effect, σ̂2

judge = 1.801 for the judge effect and

a residual variance of σ̂2
ε = 10.356 which we add together for an overall model estimated variance

of σ̂2
y = 24.825.

If we look at the percentages each component represents out of the total variance of 24.825

we see that 51% of the variation is due to the riders skill while 7.3% of the variation is due to

judge subjectivity. This shows us that if we take rider individuality into account, the judges are

not differing in their assessments as much as they were when we treated each rider the same. This
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is encouraging since it means that most judges are able to recognize competitors skills and score

them appropriately. Figure 3.3 illustrates the distribution of estimated average judge scores under

this model.
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Figure 3.3: Estimated Judge Scores with Two Varying Intercepts

First, we see that the overall average has decreased to 62.9% and that our distribution looks

slightly more symmetric than it did before. The most interesting behavior in this distribution,

however, is that it points out very distinct outliers both above and below the mean.

If we look at the judge with the low outlier, we see that the model estimates her average score

will be 59.18%. This estimate is almost 2 percentage points higher than her observed average score

which leads us to ask why she is scoring so low. Examining the 17 rides she judged in our dataset,

all the rides represented are Third Level tests at one particular show. We also notice that her scores

have one of the largest standard deviations in our dataset as her scores have a standard deviation of

σ = 6.73 while the average standard deviation in our observed data is σ = 4.64. This is because

while many of those 17 rides were given fairly average scores she also awarded some very low

scores that day. Whether that was due to riders having a bad day or if she was judging particularly

harshly that day is unknown.

The judge with the higher than average score is a little more concerning. While all her scores

were obtained at the same show, they spanned a two-day time period and contained 89 rides rep-
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resenting all possible test levels. Her observed standard deviation of σ = 3.98 was also slightly

below the average standard deviation in our dataset, indicating that she was pretty consistent in

giving higher than average scores.

3.3 Three Varying Intercepts

Dressage as a competition is about the partnership between horse and rider. Therefore, we

would be remiss to exclude the horses contribution to the equation. Just like in any other partner-

ship, some personalities work better together than others even though exceptional skill is able to

make almost any professional relationship work. Previous research has also suggested that horse

breed is a significant factor in dressage judge bias. For instance, breeds that are traditionally built

for dressage, such as Oldenburgs, are thought to generally score higher than a Thoroughbred or

Arabian. While some would argue that an Arabian can perform just as well as an Oldenburg on a

test and still score lower, it is also possible that the Oldenburg simply performed better. To test this

theory, we add the horse effect to the equation giving us a model of the form

yi ∼ N(µ+ αjudgej[i] + αriderk[i] + αhorsel[i] , σ2
ε ), for ride i = 1, ..., n

αjudgej ∼ N(0, σ2
judge), for judge j = 1, ..., J

αriderk ∼ N(0, σ2
rider), for rider k = 1, ..., K

αhorsel ∼ N(0, σ2
horse), for horse l = 1, ..., L

This is turn gives us parameter estimates of σ̂2
horse = 5.110 for the horse effect, σ̂2

rider = 8.782 for

the rider effect, σ̂2
judge = 1.799 for the judge effect and a residual variance of σ̂2

ε = 9.301 for an

overall estimated variance of σ̂2
y = 24.992.

We first notice that the variation due to the judge effect did not change at all when we added

the horse to the equation. This is encouraging since it suggests that the source of judge bias is

not coming from the horse they are watching. Instead, it suggests that different scores for different

types of horses is due to the horses ability to execute movements rather than a judge predetermining
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that a particular breed will score higher or lower than another. The variation due to the rider,

however, did decrease significantly from 51% of the overall variation to 35%. Therefore, while

the horse does not affect judge decisions it does affect rider performance. Because the variation

between riders decreased when we added the horse to the equation we see that the horse can act as

a stabilizing factor. Two riders with vastly different skill levels can ride the same horse and their

scores will not reveal all the disparity between their skill levels simply because the horse is able to

mask some of those differences.
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Figure 3.4: Estimated Judge Scores with Three Varying Intercepts

In Figure 3.4, both the overall average and the general shape of the distribution for judge scores

stayed almost exactly where they were with the model that only included judge and rider effects.

Since adding the horse did not have an impact on judge variability we would not expect to see a

large change in our distribution of average judge scores. Thus, we still see the same outliers that

we did in our previous model regardless of the horse the competitor rode.

3.4 Adding a Fixed Factor – Region

While the varying intercept factors in the previous sections revolved around the subjectivity and

skill levels associated with individuals sometimes external factors have an impact on competitors

as well. In particular, we have looked at region, test level, and judge rating as possibly influential
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external factors in this analysis. While our initial exploration of the data was able to give some

insight into how these factors affect the final score, we are more interested in how these factors

affect the judges decisions.

First, we want to look at how region affects judge variability. While we could go back to the

first model with only judge as the varying intercept, it would be more informative to include rider

and horse in the model as well. When we were exploring the data, we saw that Region 7 typically

produced higher scores than other regions but were not able to conclude if that difference was due

to judge bias or rider skill in that area. If we include all three varying intercepts, we can get a better

idea of where that difference falls.

This model will take on the form

yi ∼ N(µ+ βregion · regioni + αjudgej[i] + αriderk[i] + αhorsel[i] , σ2
ε ), for ride i = 1, ..., n

αjudgej ∼ N(0, σ2
judge), for judge j = 1, ..., J

αriderk ∼ N(0, σ2
rider), for rider k = 1, ..., K

αhorsel ∼ N(0, σ2
horse), for horse l = 1, ..., L

and yields the parameter estimates σ̂2
horse = 5.037 for the horse effect, σ̂2

rider = 8.610 for the rider

effect, σ̂2
judge = 1.858 for the judge effect and a residual variance of σ̂2

ε = 9.297 which we add

together for an overall model estimated variance of σ̂2
y = 24.802.

If we look back at our base model with three varying intercepts, we see very little change

in variation. This implies that the region has little to no impact on judge bias, on the quality of

the rider, or on the quality of the horse. In fact, it also had very little impact on our residual

standard deviation meaning that the region offers us hardly any information on the final score at

all. Although the parameter estimates for our random effects do not show much impact from the

regional effects, there are a few distinctions which show up in the parameter estimates for the fixed

effects.
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Table 3.1: Estimates for Fixed Factor – Region

Fixed Effect Estimate Std. Error t value
Intercept 62.77 0.2448 256.45
Region 2 0.1942 0.2596 0.75
Region 3 0.8539 0.5706 1.50
Region 4 0.9219 0.3901 2.36
Region 5 0.1897 0.3760 0.50
Region 7 2.6327 0.4650 5.66
Region 8 -0.2593 0.2479 -1.05

In Table 3.1, the estimates for βregion reveal how much each region is expected to deviate

from the model intercept. The intercept estimate is the expected average score for the omitted

region, Region 1, and all the other estimates reveal how much higher or lower each regions score

is expected to fall compared with Region 1. These estimates reveal some slight grouping in the

regions as Region 2, Region 5, and Region 8 do not differ that much from the estimate for Region

1, Regions 3 and 4 have very similar values, and Region 7 exhibits an estimated average score

much higher than any other region. When conducting the exploratory analysis, Figure 2.2 showed

a strong distinction in the Region 7 scores. Looking at the t-values for each region, Region 7 does

show the most significance with the largest t-value at 5.66. Since adding regions to the model did

not affect our parameter estimates for group variations, however, this model does not give us much

insight as to why that particular region is showing higher scores.
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Figure 3.5: Estimated Judge Scores After Adding Region

The shape of the distribution for the estimated average judge scores does show slight changes.

We now see a stronger concentration of scores from 62 to 63% and more diversity in the less

frequent average score values. Those two changes cancel each other out when recalculating the

variance which is why we do not see any significant changes to judge score variation upon adding

region to the model. So, Figure 3.5 implies that region does have an impact on our estimated

average judge scores since adding any variable to our model will change our estimates slightly,

however, that impact does not affect how much the scores are varying overall.

3.5 Adding a Fixed Factor – Test Level

Another factor that has often been pointed to as a source of judge bias is the test level. Previous

research argues that judges tend to score particular tests differently. While we did not see much

evidence supporting this claim in our exploratory data analysis, with all the previous research

indicating that this behavior exists it is still worthwhile to model the relationship. Adding test

name as a fixed factor and maintaining uninformative priors for the grouping factors would create

a model on the form

yi ∼ N(µ+ βtest · testi + αjudgej[i] + αriderk[i] + αhorsel[i] , σ2
ε ), for ride i = 1, ..., n
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αjudgej ∼ N(0, σ2

judge), for judge j = 1, ..., J

αriderk ∼ N(0, σ2
rider), for rider k = 1, ..., K

αhorsel ∼ N(0, σ2
horse), for horse l = 1, ..., L

Creating this model gives us variance estimates of σ̂2
horse = 4.450 for the horse effect, σ̂2

rider =

10.185 for the rider effect, σ̂2
judge = 1.851 for the judge effect and a residual variance of σ̂2

ε = 8.775

which we add together for an overall model estimated variance of σ̂2
y = 25.261.

Once again, the variation associated with the judge effect hardly changed at all. The variation

for horse and rider, however, do change when we include test level in the model. The change

implies that if we see differences in average scores for different test levels it is not due to judges

altering their assessment practices for separate levels but is more likely due to changes in competi-

tors abilities. It is also interesting to note that a lot of the responsibility for variation in score is

shifted to the rider when we consider the test level. Often, a horse is capable at competing at higher

levels of competition, but because their rider is inexperienced the horse is not able to perform to

their full potential. Unless the rider knows how to ask their horse to perform certain movements the

horse will not execute patterns as well as they could in the hands of another rider. Thus, when there

are significant differences in scoring patterns for the test levels, it is more likely because certain

types of riders are choosing to compete at those levels than that judges are basing their decisions

off preconceived ideas about that test.

The baseline test in this model is First Level 1. Unsurprisingly, the other First Level tests’ βtest

parameter estimates and t-values indicate that their average scores do not vary that much from test

1. More interesting is the fact that the higher levels, Second Level, Third Level, and Fourth Level,

all show average scores significantly lower than the average First Level scores. Conversely, the

lower levels, Intro and Training Level, both indicate significantly higher average scores than the

First Level tests.

Comparing these results with the variance estimates from the random effects suggests that

riders who elect to compete at lower levels tend to score higher than riders choosing to undertake
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Table 3.2: Estimates for Fixed Factor – Test Level

Fixed Effect Estimate Std. Error t value
Intercept 62.78 0.1948 322.3
First 2 0.4945 0.1643 3.0
First 3 0.1194 0.1527 0.8

Fourth 1 -1.7647 0.2606 -6.8
Fourth 2 -1.5595 0.3215 -4.9
Fourth 3 -2.4932 0.3265 -7.6
Intro A 2.8300 0.4023 7.0
Intro B 2.3969 0.3539 6.8
Intro C 1.6238 0.3502 4.6

Second 1 -1.1801 0.2142 -5.5
Second 2 -1.7822 0.2625 -6.8
Second 3 -1.4234 0.2066 -6.9
Third 1 -0.9408 0.2255 -4.2
Third 2 -1.5291 0.3179 -4.8
Third 3 -0.8656 0.2137 -4.0

Training 1 1.7133 0.1986 8.6
Training 2 1.9035 0.1814 10.5
Training 3 1.0127 0.1551 6.5

more difficult tests. This behavior appears consistent across all judge scores, however, indicating

that the disparity between scores based on test level is due to test difficulty rather than judge

leniency. Lower level tests were designed as introductions to the art of dressage and therefore

simply do not provide as much room for critical judging as more complex tests.
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Figure 3.6: Estimated Judge Scores After Adding Test Level

Figure 3.6 shows the distribution of estimated judge score averages after adding test level to

the model and our estimates actually look more uniform than they had previously. It is not a huge

change, but it does appear that adding the test level as a factor in our model allows slightly more

consistency in judge scoring. This further indicates that although tests typically receive different

scores, these scores are coming from all judges and not just a subset of biased individuals.

3.6 Adding a Fixed Factor – Judge Rating

Out of all the fixed factors we considered in our analysis, the judges level of training emerged

with the most potential for impact on a judges scoring tendencies. We saw distinct differences in

how types of judges were scoring the tests based on their certification level so this variable offers

the most possibility of introducing bias into judge scores. We use the same process as before to

create the model

yi ∼ N(µ+ βrating · ratingi + αjudgej[i] + αriderk[i] + αhorsel[i] , σ2
ε ), for ride i = 1, ..., n

αjudgej ∼ N(0, σ2
judge), for judge j = 1, ..., J

αriderk ∼ N(0, σ2
rider), for rider k = 1, ..., K
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αhorsel ∼ N(0, σ2

horse), for horse l = 1, ..., L

which yields variance estimates of σ̂2
horse = 5.103 for the horse effect, σ̂2

rider = 8.818 for the rider

effect, σ̂2
judge = 1.634 for the judge effect and a residual variance of σ̂2

ε = 9.298 which we add

together for an overall model estimated variance of σ̂2
y = 24.853.

Adding the judge certification does not affect the variations associated with horse and rider.

Since the level of judge training has no relationship with any of the athletes skills this is exactly

what we expected to see. The more interesting aspect of this model is the decrease in judge score

variability. If we include judge rating in the model, the judge effect accounts for 6.6% of the overall

variation a decrease of 0.6% from our original three varying intercepts model.

The decrease in variation implies that more experienced judges are going to score rides dif-

ferently than a newer judge. When we group the judges by their experience level, we see less

variability within the groups than we saw when we treated every judge as if they had the same

level of training.

Table 3.3: Estimates for Fixed Factor – Judge Rating

Fixed Effect Estimate Std. Error t value
Intercept 63.19 0.4761 132.71

LD -0.1335 0.6183 -0.22
r 0.7241 0.6377 1.14
R 0.3349 0.5744 0.58
S -0.5946 0.5015 -1.19

While adding judge experience to the model reduced the overall variation in judge scores, there

is a reasonable amount of variation within each group. The smallest standard error is found in the

group for “S” judges at 0.5015 which is on the higher end of the standard deviations compared with

those for region and test level. We also notice that none of the groups have significantly different

parameter estimates. Thus, even though there is some variation in our models random effects for

judge scores and some variation within each group of judge type, these differences still do not

emerge as significant.
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Figure 3.7: Estimated Judge Scores After Adding Judge Rating

Along with the smaller spread, the upper outlier of 66.4% no longer looks as unusual as it did

before. While that judges estimated score is still quite a bit higher than the average estimate, there

are now other judges that have estimated average scores almost as high. Although no other judges

cross the 66% threshold, three of them do have average score estimates over 65.5%. With less

uncharacteristic behavior in the distribution, it generates more confidence in our estimated results.
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CHAPTER 4 CONCLUSIONS

4.1 Interpreting the Results

While previous research indicated that region, test level, and horse breed were significant fac-

tors in assessing judge bias, this analysis did not find that those particular factors affected judge

decisions. In fact, introducing the individual rider into the equation decreased judge variability so

that riders were consistently earning scores appropriate for their skill level. Furthermore, adding

the horse to the equation had almost no effect on judge variability offering no evidence that the

breed of a horse will have any impact on judging decisions.

Since so much research emphasized the significance of fixed factors like region and test level

in dressage scoring, it is impossible to deny that outside factors can influence a riders final score.

The question we wanted to address was whether the impact of these factors affected how the judge

viewed a ride or affected the quality of the ride itself. The first fixed variable we explored, region,

not only did not appear as a significant influence on judge decisions but did not seem to affect

horse or rider variability either. While the parameter estimates showed significant differences

between regions and Region 7 produced significantly higher mean scores than any other region,

the multilevel models did not indicate that this difference was due to effects from judge, horse,

or rider. That leaves very little information known about why this abnormality appears to occur.

However, the fact that the model does not indicate the differences have any relationship with judge

subjectivity is encouraging for the dressage judging system.

Test level also did not influence judge score variability in these models. Dressage judges tended

to score in the same ranges whether they were watching beginning riders or advanced ones. In-

cluding test level in the model did reveal, however, that it affects horse and rider performance.

Thus, we do see a difference in scores due to test level, but the evidence suggests that this is due to

competitors skill levels rather than any subjectivity of the judge. Test level also places more em-

phasis on the riders skill instead of the horses ability as a more experienced rider is able to execute
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a better performance regardless of the horse they are riding.

In our analysis, we introduced the fixed variable of judge certification to the conversation.

Throughout all our models, the judges experience level was the only fixed variable we found to

influence judge decision variability. If we group judges based on the certification they hold we

are able to minimize the variability in scores due to judge subjectivity. While the ideal situation

would have all judges scoring riders the same, this result does indicate that the USEF judge train-

ing program is producing results. As a judge receives more training in the field of dressage, their

perceptions on how to score rides is continually evolving. With this information, program coordi-

nators can become more aware of how certain types of judges will tend to score rides and perhaps

even refine their training programs to better educate newer judges and minimize the discrepancies

between types of judges mindsets.

When researchers analyze the differences in test scores based off these fixed effects, they want

to answer the question of whether or not judge bias exists. Once they find variation in scores based

off a fixed variable they start to claim judge bias. The purpose of this analysis was to look behind

the initial glimpse of variation in scores and ascertain a better idea of the true cause. While it may

be true that dressage scores are significantly higher in Region 7, it would be presumptuous to claim

that judges in Region 7 award higher scores than judges in other regions. Not accounting for the

variability in individual riders abilities leaves an incomplete picture of how scores are earned and

places more power in judges hands than actually exists. This study used multilevel modeling in

order to include individuality of both judges and riders in the model. By including individuality,

we were able to estimate how each judge would typically score a ride and identify judges that

scored unusually high or low on average. Other than one or two judges, however, this analysis did

not reveal a large amount of variation in scores due to a judge effect. In fact, the largest portion of

variation in dressage scores was due to the rider effect. That leaves the responsibility for earning

high scores exactly where it should be in the hands of the rider.
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4.2 Future Research

Even with the variation we were able to explain in this modeling process, there were certain

aspects that further research could develop. One of these would be collecting more data on judge

characteristics. Variables like gender, age, years of experience, and number of shows judged could

all add insight into fixed effects that may influence judge subjectivity. Do male and female judges

score the same? Does a judge who recently received their “S” certification score the same as

someone who has held the same certification for twenty years? How do judges scores change as

they gain show experience? While collecting this data could take more time, the results would

introduce much greater insight into judging decisions.

Although this study focused on judging patterns in the overall score, every final score is com-

piled from many movement scores. Horse Show Office provides the movement scores from every

test on their website. Using that information could highlight if certain movements have higher vari-

ability in how judges are scoring which could lead to more concentrated training on those passages

when judges are going through certification programs.

There will always be some variability in judge scores no matter how rigorous the training pro-

gram is that the judges complete. The ultimate goal is to reduce variation due to judge subjectivity

so that the riders skill is the most important aspect of the competition. With more analysis ex-

ploring sources of variation, new training programs can be developed to combat undesired scoring

behaviors until variability from the judge effect is minimized.
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APPENDIX A SELECTED R PROGRAMS

All models in this analysis were created using the statistical software R (R Core Team, 2017)). 

In order to create the multilevel models, we used the lmer function found in the package lme4 

created by Bates, Mächler, Bolker, and Walker (2015)). The lmer function fits a  l inear mixed 

effects model meaning that it includes both fixed a nd r andom e ffects. I n t his s ection, w e have 

included the code and output for some of the models explored in this paper.

.1 One Varying Intercept Model

The first m odel w e c reated w as t he s implest m odel. I t o nly i ncludes t he r andom e ffect for 

judges which it treats as a varying intercept and generates estimated average scores for each indi-

vidual judge.

Model1 <- lmer(C˜(1|JudgeC))

A summary of the output for this model yields variances and standard deviations for the random 

effects. Since we did not add any fixed effects, the only fixed effect in our output is the intercept 

which is the parameter estimate for µ.

Linear mixed model fit by REML [’lmerMod’]

Formula: C ˜ (1 | JudgeC)

REML criterion at convergence: 74379.4

Scaled residuals:

Min 1Q Median 3Q Max

-4.8331 -0.6261 0.0206 0.6548 3.9900

Random effects:
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Groups Name Variance Std.Dev.

JudgeC (Intercept) 2.502 1.582

Residual 22.617 4.756

Number of obs: 12440, groups: JudgeC, 130

Fixed effects:

Estimate Std. Error t value

(Intercept) 63.2463 0.1518 416.8

.2 Two Varying Intercepts Model

The second model we created included both judge and rider as varying intercepts.

Model2 <- lmer(C˜(1|JudgeC) + (1|Rider))

The output from this model is also fairly straightforward. We have simply added another ran-

dom effect and grouping which have their own parameter estimates. Therefore, we can now extract

estimated mean values for every judge and for every rider.

Linear mixed model fit by REML [’lmerMod’]

Formula: C ˜ (1 | JudgeC) + (1 | Rider)

REML criterion at convergence: 69363.2

Scaled residuals:

Min 1Q Median 3Q Max

-5.0985 -0.5370 0.0237 0.5650 4.1323

Random effects:
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Groups Name Variance Std.Dev.

Rider (Intercept) 12.668 3.559

JudgeC (Intercept) 1.801 1.342

Residual 10.356 3.218

Number of obs: 12440, groups: Rider, 2842; JudgeC, 130

Fixed effects:

Estimate Std. Error t value

(Intercept) 62.897 0.145 433.7

.3 Adding a Fixed Effect

Some of the later models also included fixed effects. This will increase the amount of terms in

the second table and will also generate a correlation matrix. As an example, we will show the code

and output for the very last model we created.

M6 = lmer(C ˜ factor(JudgeCRating) + (1|JudgeC)+(1|Horse)+(1|Rider))

When writing this model, we need to note that the fixed factor is a categorical variable. The

function “factor causes the model to treat judge rating as if we had created columns of coded

variables. For numeric variables, simply including the variable name in the model is sufficient.

Linear mixed model fit by REML [’lmerMod’]

Formula: C ˜ factor(JudgeCRating) + (1 | JudgeC) + (1 | Horse) + (1 | Rider)

REML criterion at convergence: 68878.1

Scaled residuals:

Min 1Q Median 3Q Max

-4.4674 -0.5265 0.0236 0.5597 4.2424
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Random effects:

Groups Name Variance Std.Dev.

Horse (Intercept) 5.103 2.259

Rider (Intercept) 8.818 2.969

JudgeC (Intercept) 1.634 1.278

Residual 9.298 3.049

Number of obs: 12440, groups: Horse, 3102; Rider, 2842; JudgeC, 130

Fixed effects:

Estimate Std. Error t value

(Intercept) 63.1889 0.4761 132.71

factor(JudgeCRating)LD -0.1335 0.6183 -0.22

factor(JudgeCRating)r 0.7241 0.6377 1.14

factor(JudgeCRating)R 0.3349 0.5744 0.58

factor(JudgeCRating)S -0.5946 0.5015 -1.19

Correlation of Fixed Effects:

(Intr) f(JCR)L fc(JCR) f(JCR)R

fctr(JCR)LD -0.704

fctr(JdgCR) -0.736 0.525

fctr(JdCR)R -0.816 0.585 0.615

fctr(JdCR)S -0.938 0.668 0.705 0.782

Including a fixed factor yields a lot more output in our model summary. In addition to the

parameter estimates for the variance components of our random effects, we also have estimates

for each factor of the fixed effect categorical variable. As fixed effects, they also provide t-values

to specify how significant each level is for the model. The summary also includes a correlation
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matrix for the fixed effects which can indicate any multicollinearity problems.
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