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ABSTRACT

Hanfeng Chen, Advisor

Most statistical approaches of molding the relationship between the explanatory variables and

the responses assume subjects are independent. However, in clinical studies the longitudinal data

are quite common. In this type of data, each subject is assessed repeatedly over a period of time.

Therefore, the independence assumption is unlikely to be valid with longitudinal data due to the

correlated observations of each subject. Generalized estimating equations method is a popular

choice for longitudinal studies. It is an efficient method since it takes the within-subjects correla-

tion into account by introducing the n ⇥ n working correlation matrix R(↵) which is fully char-

acterized by the correlation parameter ↵. Although the generalized estimating equations’ method-

ology considers correlation among the repeated observations on the same subject, it ignores the

between-subject correlation and assumes subjects are independent.

The objective of this dissertation is to provide an extension to the generalized estimating equa-

tions to take both within-subject and between-subject correlations into account by incorporating

the random effect b to the model. If our interest focuses on the regression coefficients, we regard

the correlation parameter ↵ and as nuisance and estimate the fixed effects � using the estimating

equations U(�, Ĝ, ↵̂). If our interest focuses either on both � and the variance of the random ef-

fects b or on the coefficient parameters and the association structure, then building an additional

system of estimating equations analogous to U(�, G,↵) can serve to estimate either � and G, si-

multaneously or � and ↵, simultaneously. In this later two cases the correlation matrix must be

specified carefully. It is sensitive to the misspecification of the working correlation matrix R(↵)

in contrast to the first case which allows to the misspecification of the working correlation matrix

R(↵) when we are interested on the fixed effects parameter only. Moreover, the later two cases

require the first four moments to be specified while the first case depends only on the first two

moments.
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This estimating equations method has no closed form solution and can be solved iteratively.

For example, Newton-Raphson is a popular iterative method to be used. We illustrate through sim-

ulation studies and real data applications the performance of the proposed methods in terms of bias

and efficiency. Moreover, we investigate their behaviors compared to those for existing methods

such as generalized estimating equations (GEE), generalized linear models (GLM) and generalized

linear mixed models (GLMM). For further studying the performance of newly proposed method,

the new approach is applied to the epilepsy data that was studied by many others Fitzmaurice,

Laird, and Ware (2012).
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CHAPTER 1 LITERATURE REVIEW

1.1 Introduction

The essential job for many clinical studies is to model the relationship between the explanatory

variables and the response using statistical models such as general linear model and generalized

linear model. The point is to estimate the parameters of interest included in the model and interpret

the results. The response follows either a continuous or discrete distribution but the observations

are assumed to be independent, so it can be handled by such models.

Following up and collecting data repeatedly from the same subject such as blood pressure,

cholesterol level, etc are quite common in medical studies. With the increasing availability of

longitudinal data, the assumption of independent observations is not ideal. Taking the correlation

between observations (within-subject correlation) into account increases the efficiency of regres-

sion parameter estimation. Numerous models have been proposed for this purpose. These models

can be divided into two major categories referred to as conditional and marginal models.

Generalized Linear Model (GLM) proposed by Nelder and Baker (1972) is a common frame-

work to estimate the regression coefficients of linear models. The word “Generalized” points to

non-Gaussian distributions since GLM methodology is applicable to any distribution belongs to

the exponential family distributions either continuous or discrete. This approach was extended by

McCullagh and Nelder (1983) and McCullagh (1984) to accommodate the longitudinal data with

the assumption that the repeated observations per subject are independent. These approaches are

helpful, however, assuming that the repeated measurements are independent for the same subject

while in fact they are correlated may effect the efficiency of these approaches.

To overcome these issues, Liang and Zeger (1986) and Zeger and Liang (1986) extended these

approaches to Generalized Estimating Equations (GEE) by introducing a working correlation ma-

trix Ri(↵) which is an ni ⇥ ni a correlation matrix and fully characterizes the matrix Vi. The

matrix Vi is the analogous matrix to the variance-covariance matrix of Yi. GEE became a popular
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methodology to estimate the regression parameters of marginal distributions for correlated when

the correlation is regarded as a nuisance. Generalized estimating equations is known to provide

consistent estimators even if the working correlation matrix is not accurate.

GEE methodology was extended to GEE1 by Prentice (1988) for binary outcomes by devolv-

ing an additional estimating equation for the association parameters. This approach can model the

regression coefficients � and the correlation parameter ↵, simultaneously. Later on, GEE1 was

extended to GEE2 by Prentice and Zhao (1991) for discrete and continuous responses in the expo-

nential family. Unlike GEE, GEE1 and GEE2 approaches are sensitive to the misspecification of

the working correlation matrix as illustrated by Heagerty and Zeger (1996)

Subjects are often assumed to be independent and no between-subject correlation. However,

patients that go to the same clinic have correlated data. The within-subject correlation is often

taken into account in generalized estimating equations (GEE) by the correlation matrix introduced

by Liang and Zeger (1986).

In this dissertation, we extend the GEE approach into a more general case to incorporate both

within-subject and between-subject associations. We consider three scenarios: (i) considering

the regression coefficient � are the parameters of interest. (ii) considering both the regression

coefficient and the association structure are the parameters of interest. (iii) considering both the

regression coefficient and the variance of the random effects are the parameters of interest.
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1.2 Generalized estimating equations

Let Yi = (yi1, yi2, · · · , yini)
0

be the ni ⇥ 1 response vector generated from a distribution in the

exponential family, Xi = (xi1, xi2, · · · , xini)
0

is the ni ⇥ p vector of covariates for the i-th subject

i = 1, · · · , K corresponding to te fixed effects � 2 Rp
, and ✏i is the model error.

In matrix notation,

Yi =

2

66666664

yi1

yi2
.

.

.

yini

3

77777775

, � =

2

66666664

�0

�1

.

.

.

�p

3

77777775

, ✏ =

2

66666664

✏i1

✏i2
.

.

.

✏ini

3

77777775

Xi =

2

66666664

x
0
i1

x
0
i2

.

.

.

x
0
ini

3

77777775

=

2

66666664

xi11 xi12 xi13 . . . xi1p

xi21 xi22 xi23 . . . xi2p

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xini1 xini2 xini3 . . . xinip

3

77777775

The generalized estimating equation methodology is applicable to any distribution belonging to

the exponential family. Therefore, the response can be continuous or discrete. The maximization

of the likelihood of the longitudinal data is extremely difficult. GEE provides consistent estimates

depending only on the first two moments

g(E(yij)) = x
0

ij�

v(E(Yi)) = v(µi)
(1.2.1)

where function g called the link function, it connects E(yij) to x
0
ij�, µi is a vector consists of

µij = E(yij) and v(·) is known variance function (See Table 1.1) Liang and Zeger (1986).

1.2.1 Link function

Modeling data set using generalized estimating equations methodology requires determining

three essential components. Random Component which specifies the probability distribution of the
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response variable from the exponential family. Systematic Component (explanatory variables) that

particularizes the explanatory variables (xi1, xi2, · · · , xini) in the model. These variables are linear

in parameters (�1, · · · , �p), the linear combination (x
0
ij�) called linear predictor Hutcheson and

Sofroniou (1999). The third component is the Link Function g(·) which connects the previous two

components (i.e the random and the systematic components) by relating the expected value of the

yij to the random component as

g(E(yij)) = x
0

ij� (1.2.2)

The appropriate g(·) is the function that makes the relationship between the transformed mean

and the systematic component linear. The link function is assumed to be monotonically increas-

ing in µi which guarantees each value of X
0
i� has only one corresponding to E(Yi) = µi and

differentiable to ensure that the coefficient parameters � can be estimated Swan (2006).

In the normal distribution, the mean and the predictor parameters range from �1 to 1 and

that preforms a linear relationship, and hence the link function g(·) is identity. Since in GEE the

distribution of the response can be any distribution from the exponential family. So, it can be

continuous or discrete which in some distributions the relationship between the predictor and the

expected value of Yi is not linear and requires link function to be used to address this issue. For

instance, the mean of the binary distribution ranges from 0 to 1 but the predicted parameter ranges

from �1 to 1. An appropriate link function can transform the mean of the binary distribution

from [0, 1] to (�1,1) McCullagh and Nelder (1989). (See Table 1.1 for the common choices of

link functions for distribution such as Normal, Poisson, Binomial, Gamma and Inverse Gamma)

1.2.2 Variance function

The variance function v(µi) characterizes the variance as it depends on the mean. In other

words, it expresses the relationship between the mean and the variance.

The variance function is meaningful since it allows the mean and the variance to be commu-

nicate in a unique way, and hence it classifies the members in the class of exponential family

distribution Firth (1991).
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The links and variance functions that are commonly used for Normal, Poisson, Binomial,

Gamma and Inverse-Gamma distributions are summarized by McCullagh and Nelder (1989) as

in Table 1.1

Table 1.1: Link and variance functions of some distributions of exponential family McCullagh and

Nelder (1989)

Distribution Notation Link Variance Function

Normal N(µ, �2) Identity v(µ) = 1

Poisson P (�) log v(µ) = �

Binomial B(m, ⇡)/m logit v(µ) = µ(1� µ)

Gamma G(µ, v) reciprocal v(µ) = µ2

Inverse Gamma IG(µ, �2) 1/µ v(µ) = µ3

Generalized estimating equations methodology by Liang and Zeger (1986) is in fact an exten-

sion to Generalized Linear Model (GLM) proposed by McCullagh and Nelder (1983). GLM is an

extensive treatment that refers to a wide class of models. In this model, yi1, · · · , yini , i = 1, · · · , K

are assumed to be independent random variables, and drawn from a distribution in the exponential

family.

1.2.3 Working correlation matrix

The working correlation matrix Ri(↵) is an ni⇥ni matrix that is fully specified by the unknown

correlation parameter ↵. The main rule of this correlation matrix is assuming the within-subject

association is known since the within-subject correlation is rarely known. With the existence of the

matrix Ri(↵) the coefficient parameters can be estimated based on pairwise correlated responses

which improve the efficiency of the standard errors.

Unfortunately, there is no determined way of choosing a specific working correlation matrix,

it is completely left to the researchers’ own discretion and this is one of the complications of

the GEE approach Swan (2006). Pankhurst, Connolly, Jones, and Dobson (2003) recommended

choosing Ri(↵) carefully by ensuring it is consistent with the empirical correlations. The standard
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choice structures of the working correlation matrix are independent, unstructured, exchangeable,

and autoregressive (AR(1)) Zeger and Liang (1986).

(1) (Independent structure) This is the basic form of the working correlation matrix forms. The

independent structure is basically the identity matrix (Ri = Ini) and has no ↵ to be estimated,

since it assumes no pairwise within-subject association,

Corr(yij, yik) = 0, 8 j 6= k

This form is unlikely to be valid for longitudinal data since the repeated observations for

the same subject are highly correlated. Using this type of structure can lead to large loss in

efficiency. This structure is used in GLM which is helpful to find an initial � estimate to be

used in GEE algorithm. The function of the independent working correlation is defined as

Ri,j =

8
>><

>>:

1 i = j

0 otherwise.

In matrix notation,

Ri =

2

66666664

1 0 0 . . . 0

0 1 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 1

3

77777775

(2) (Unstructured structure) This type of working correlation matrix has no specific structure as

no constraints are imposed to values of this correlation matrix.

Corr(yij, yik) = ↵jk = ↵kj = Corr(yik, yij), 8 j 6= k

It assumes that all pairwise associations are different. This form is easy to understand but

at the same time it is very computationally expensive to be estimated, especially in the large
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data set as it requires the contrivance to be estimated for each pair of times (i.e. all ni(ni �

1)/K). It can be written as follows

Ri,j =

8
>><

>>:

1 i = j

↵ij otherwise.

Or in matrix notation,

Ri =

2

66666664

1 ↵12 ↵13 . . . ↵1ni

↵21 1 ↵23 . . . ↵2ni

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

↵ni1 ↵ni2 ↵ni3 . . . 1

3

77777775

(3) (Exchangeable structure) This form is also called compound symmetry. It assumes the ob-

servations within a subject are equally correlated

Corr(yij, yik) = ↵, 8 j 6= k

The big feature of this correlation matrix is that, only one parameter needs to be estimated

but it ignores the time varying between observations. It can be written as

Ri,j =

8
>><

>>:

1 i = j

↵ otherwise.

Or in matrix notation,

Ri =

2

66666664

1 ↵ ↵ . . . ↵

↵ 1 ↵ . . . ↵

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

↵ ↵ ↵ . . . 1

3

77777775

(4) (Autoregressive structure) First Order Autoregressive AR(1) assumes the correlation in-
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creases as if the measurements are closer in time and decreases as the distance getting farther

between time points.

Corr(yij, yik) = ↵|j�k|, 8 j 6= k

The autoregressive structure is defined as

Ri,j =

8
>><

>>:

1 i = j

↵|j�k|
otherwise.

In matrix notation,

Ri =

2

66666664

1 ↵|j�k| ↵|j�k| . . . ↵|j�k|

↵|j�k| 1 ↵|j�k| . . . ↵|j�k|

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

↵|j�k| ↵|j�k| ↵|j�k| . . . 1

3

77777775

These examples of the working correlation structures are summarized in Table 1.2

1.2.4 GEE

The assumption that the pairwise correlation among the repeated measures (↵) is not zero

Corr(yij, yik) = ↵ijk

extends GLM method to GEE Liang and Zeger (1986) and Zeger and Liang (1986). The exact

covariance matrix of Yi is unknown, but if the working correlation matrix R(↵) is chosen correctly

then the approximation of the covariance matrix of Yi is

Vi
GEE

= A1/2Ri(↵)A
1/2

(1.2.3)

In other words,

Cov(Yi) ⇡ A
1/2
i Ri(↵)A

1/2
i (1.2.4)
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where Ri(↵) is the working correlation matrix which fully characterizes by ↵ and Ai is ni ⇥ ni

diagonal matrix consists of the second moment of Yi

Ai = diag{v(µi)}

The coefficient parameter vector � is obtained by solving the estimating equations,

U
GEE

(�,↵(�)) =
KX

i=1

✓
Di

GEE

(�,↵(�))

◆0✓
Vi

GEE

(�,↵(�))

◆�1✓
Si

GEE

(�,↵(�))

◆
= 0, (1.2.5)

where Si
GEE

= (Yi�µi), Di
GEE

= @(E(Yi))/@� and Vi
GEE

= A
1/2
i RiA

1/2
i is as defined in 1.2.3 which

is a function of � and ↵. As a result, (1.2.5) is a function of � and ↵. Changing (1.2.5) to be a

function of � only, can be done by replacing ↵ by its estimates ↵̂ Liang and Zeger (1986),

U
GEE

(�, ↵̂(�)) =
KX

i=1

✓
Di

GEE

(�, ↵̂(�))

◆0✓
Vi

GEE

(�, ↵̂(�))

◆�1✓
Si

GEE

(�, ↵̂(�))

◆
= 0, (1.2.6)

and �̂ is a solution to the (1.2.6) which is used as an estimate for �. To fit this model, a popular

method of finding a solution of GEE is solving the resulting (nonlinear) equations iteratively using

the Fisher ”method of scoring” algorithm.

�̂(t+1) = �̂(t) +

 KX

i=1

✓
Di

GEE

(�, ↵̂(�))

◆0✓
Vi

GEE

(�, ↵̂(�))

◆�1

Di
GEE

(�, ↵̂(�))

��1

⇥
 KX

i=1

✓
Di

GEE

(�, ↵̂(�))

◆0✓
Vi

GEE

(�, ↵̂(�))

◆�1

Si
GEE

(�)

� (1.2.7)

In general, the parameter ↵ can be estimated from Pearson residuals

r̂ij =
yij � µijp

v(µij)
(1.2.8)

using the method of moments. Table 1.2 presents by Molenberghs and Verbeke (2005) shows the
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common choices of the working covariance matrix.

Table 1.2: The most common choices of the working correlation matrix where N =
P

ni Molen-

berghs and Verbeke (2005)

Structure Corr(Yij, Yik) Estimator

Independence 0 -

Exchangeable ↵ ↵̂ = 1
N

PN
i=1

1
ni(ni�1)

P
i 6=j rijrik

AR(1) ↵|j�k| ↵̂ = 1
N

PN
i=1

1
ni�1

P
ini�1 rijri,j+1

Unstructured ↵|jk| ↵̂ = 1
N

PN
i=1 rijrik

In this approach the estimates �̂ are still valid (i.e. consistent) even if one misspecified the cor-

relation structure with loss of efficiency but the standard errors may not Crowder (2001). Moreover,

the parameter estimates �̂ is asymptotically normally distributed

V
GEE

= lim
K!1

K

✓ KX

i=1

D
0

i
GEE

V �1
i
GEE

Di
GEE

◆�1✓ KX

i=1

D
0

i
GEE

V �1
i1 Cov(Yi)V

�1
i
GEE

Di
GEE

◆

⇥
✓ KX

i=1

D
0

i
GEE

V �1
i
GEE

Di
GEE

◆�1
(1.2.9)

as K ! 1 with zero mean.

The data differs from one another and hence the patterns of correlation between observations

may vary among studies. Gaining more efficiency in standard errors requires specifying the pair-

wise correlation pattern correctly.

GLM and GEE are very similar, but in some cases the GEE method is chosen over GLM

method. In GLM we assume that the repeated observations for a subject are independent. This is

very unlikely to be valid if ni > 1 (i.e. repeated observations) and then the correlation must be

taken into account. However, if ni = 1 (i.e. single observation) then the GLM can be applied to

obtain a description for a variety of continuous or discrete variables yij .
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1.3 Second-order of generalized estimating equations (GEE2)

Zhao and Prentice (1990), Prentice and Zhao (1991), Zhao, Prentice, and Self (1992) and Cha-

ganty (1997) among others have extended the GEE approach in terms of estimating the correlation

structure or the matrix R(↵) instead of using method of moments to estimate ↵ from the Pear-

son residual when R(↵) 6= Ini . Precisely, Zhao and Prentice (1990) build a system of estimating

equations analogous to the system of Liang and Zeger (1986). Let,

Ti = (Yi � E(Yi))(Yi � E(Yi))
0

= (ti11, ti22, · · · , tijj, ti12, ti23, · · · , ti,j�1,j)
0

(1.3.1)

be an ni(ni � 1)/2 + ni ⇥ 1 vector with E(Ti) = ⇣i. The system below allows to model � and ↵,

simultaneously

Ui
GEE

[�,↵(�)] =
KX

i=1

✓
Di

GEE

(�,↵(�))

◆0✓
Vi

GEE

(�,↵(�))

◆�1✓
Si

GEE

(�,↵(�))

◆
= 0

Ui
GEE2

[�,↵(�)] =
KX

i=1

✓
Di

GEE2

(�,↵(�))

◆0✓
Vi

GEE2

(�,↵(�))

◆�1✓
Si

GEE2

(�,↵(�))

◆
= 0

(1.3.2)

where Si
GEE2

= Ti � ⇣i, Di
GEE2

= @E(Ti)/@↵ and Vi
GEE2

= Var(Ti). The matrix Vi
GEE2

looks very

similar to the matrix Vi
GEE

but in fact they are different. Vi
GEE2

is ni(ni�1)/2+ni⇥ni(ni�1)/2+ni

and since it is not straightforward to determine a working covariance model for Ti, because var(Ti)

requires the third and fourth moments be specified, therefore the independence is often assumed

Diggle (2002).
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The general form of 1.3.2 can be written as

UGEE2[�,↵(�)] =
KX

i=1

✓
DGEE2(�,↵(�))

◆0✓
VGEE2(�,↵(�))

◆�1✓
SGEE2(�,↵(�))

◆

=
KX

i=1

2

64
Di11 Di12

Di21 Di22

3

75

0 2

64
Vi11 Vi12

Vi21 Vi22

3

75

�1 2

64
Si1

Si2

3

75 = 0

(1.3.3)

where,

DGEE2(�,↵(�)) =

2

64
Di11 Di12

Di21 Di22

3

75 =

2

64
@µi

@�
@µi

@↵

@⇣i
@�

@⇣i
@↵

3

75 ,

VGEE2(�,↵(�)) =

2

64
Vi11 Vi12

Vi21 Vi22

3

75 =

2

64
Var(Yi) Cov(Yi, Ti)

Cov(Ti, Yi) Var(Ti)

3

75

SGEE2(�,↵(�)) =

2

64
Si1

Si2

3

75 =

2

64
yi � µi

Ti � ⇣i

3

75

However, dealing with the matrix DGEE2(�,↵(�)) in 1.3.3 with its actual form raise some

potential complications such as the interpretation of a mean vector that contains a correlation pa-

rameter is no longer simple. To address this issue assume that the matrix Di is a diagonal matrix

(i.e.

@µi

@↵ = 0 and

@⇣i
@↵ = 0) Ziegler, Kastner, and Blettner (1998).

For the working covariance matrix VGEE2(�,↵(�)) Prentice and Zhao (1991) consider different

structures.

• Independent working covariance matrix VGEE2(�,↵(�)) by assuming the elements of yi are

independent. Therefore, that the working covariance matrix is diagonal.

Cov(Yi, Ti) = Cov(Ti, Yi) = 0
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• Gaussian working covariance matrix VGEE2(�,↵(�)) by assuming that the elements of yi

are distributed normally, then

Cov(yij, tiktil) = E((Yij � µij)(yik � µik)(yil � µil)) = 0, 8 j, k, l

and,

Cov(tijtik, tiltim) = E((yij�µij)(yik�µik)(yil�µil)(yim�µim))��ijk�ilm, 8 j, k, l,m.

where, �ijk is the covariance between the j-th and k-th observations for the i-th subject.

• Gaussian working covariance matrix VGEE2(�,↵(�)) with common third and fourth corre-

lations. Therefore, in this case we use

E((yij � µij)(yik � µik)(yil � µil)) = �jkl
p
�ijj�ikk�ill

and,

E((yij � µij)(yik � µik)(yil � µil)(yim � µim)) = �ijk�ilm + �ijl�ikm + �ijm�ikl

+ �jklm
p
�ijj�ikk�ill�ill

where the parameter {�jlm}jlm and {�jklm}jklm, can be estimated as

�̂jlm =
1

N

X

i

((yij � µij)(yik � µik)(yil � µil))p
�ijj�ikk�ill
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�̂jklm =
1

N

X

i

(yij � µij)(yik � µik)(yil � µil)(yim � µim)� �ijk�ilm + �ijl�ikm + �ijm�iklp
�ijj�ikk�ill�ill

where N is the total, N =
PK

i=1 ni Lane (2007).

The parameter estimate

p
K(�̂ � �),

p
K(↵̂� ↵), is asymptotically normally distributed

H = lim
K!1

K(H0H1H0) (1.3.4)

where

H0 =

✓ KX

i=1

✓
DGEE2(�,↵(�))

◆0✓
VGEE2(�,↵(�))

◆�1✓
DGEE2(�,↵(�))

◆◆�1

H1 =

✓ KX

i=1

✓
DGEE2(�,↵(�))

◆0✓
VGEE2(�,↵(�))

◆�1

Cov(Yi)

✓
VGEE2(�,↵(�))

◆�1✓
DGEE2(�,↵(�))

◆◆

as K ! 1 with zero mean.

Since the primary interest lies on � and ↵, the estimates of � and ↵ are obtained by Newton-

Raphson algoritm

2

64
�̂(t+1)

↵̂(t+1)

3

75 =

2

64
�̂(t)

↵̂(t)

3

75+

 KX

i=1

D
0

GEE2(�̂
(t), ↵̂(t))(VGEE2(�̂

(t), ↵̂(t)))�1DGEE2(�̂
(t), ↵̂(t))

��1

⇥
 KX

i=1

D
0

GEE2(�̂
(t), ↵̂(t))(VGEE2(�̂

(t), ↵̂(t)))�1SGEE2(�̂
(t), ↵̂(t))

�
(1.3.5)

Iterate until convergence.

1.4 Linear mixed-effects models

Linear mixed-effects models are extensions of linear regression models for data that are col-

lected and summarized in groups. These models describe the relationship between a response
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variable and independent variables, with coefficients that can vary with respect to one or more

grouping variables. A mixed-effects model consists of two parts, fixed effects and random effects.

Fixed-effects terms are usually the conventional linear regression part, and the random effects are

associated with individual experimental units drawn at random from a population. The random

effects have prior distributions while fixed effects do not. Mixed-effects models can represent the

covariance structure related to the grouping of data by associating the common random effects

to observations that have the same level of a grouping variable. The classic linear mixed model

(LMM) is defined as follows:

Yi = Xi� + Zibi + ✏i, i = 1, · · · , K, (1.4.1)

where Yi is the ni ⇥ 1 response vector, � 2 Rp
is the fixed effects and bi 2 Rq

is the random

effects, Xi is the ni ⇥ p design matrix corresponding to the fixed effects, Zi is the ni ⇥ q design

matrix to the random effects, and ✏i is the model error. Assume that yi1, · · · , yni are independent

and that ✏ij and bi are independent with

✏ij ⇠ N(0, �2
✏ I), for i = 1, · · · , K; j = 1, · · · , ni

bi ⇠ N(0, G),

V ar(Yi) = Z
0

iGZi + �2
✏ Ini

(1.4.2)

Note that the linear model with fixed effect is the special case of Zi = 0. The simple linear

mixed model is another special case. Consider

yij = �i0 + bi1xij + ✏ij, i = 1, · · · , K, j = 1, · · · , ni, (1.4.3)

where yij is the j-th measurement on the i-th subject, �i0 is the fixed intercept parameter and bi1

is the random slope parameter for the i-th subject, and xij is a covariate (for observation time or

something else).
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1.5 Generalized linear mixed model

Although the linear mixed model framework is very useful, its downside is that it is applica-

ble to continuous distributions only. It can not be applied to discrete distributions such as count

and binary. The framework of LMM Laird and Ware (1982) has been extended to a more general

framework called generalized linear mixed model (GLMM) to accommodate distributions like lo-

gistic and log-normal Breslow and Clayton (1993). In fact, the linear mixed model which assumes

identity link function is a special case of the generalized linear mixed model.

Let Yi be the ni ⇥ 1 response vector belongs to a distribution in the exponential family, � 2 Rp

is the fixed effects and bi 2 Rq
is the random effects, Xi is the ni ⇥ p design matrix corresponding

to the fixed effects, Zi is the ni ⇥ q design matrix to the random effects, and ✏i is the model error.

Assume that yi1, · · · , yini are independent with the conditional mean and covariance

g(E(yij|bi)) = x
0

ij� + x
0

ijbi,

Cov(Yi|bi) = Cov(✏i) = �2
✏ Ini

(1.5.1)

where g is some known link function. The mutually independent random effects bi have some

probability distribution with zero mean and a covariance matrix G.

bi ⇠ N(0, G), i = 1, · · · , K. (1.5.2)

The marginal covariance is given by

Cov(Yi) = Z
0

iGZi + �2
✏ Ini (1.5.3)

For instance, GLMM can be used to model a count response. Let yij be generated from a

possion distribution with mean �ij . The common link function for modeling such a response is the
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log function (table 1.1)

yij ⇠ poisson(�ij), i = 1, · · · , K, j = 1, · · · , ni

bi ⇠ N(0, G),

log(E(Yij|bi)) = x
0

ij� + z
0

ijbi,

(1.5.4)

Patterson and Thompson (1971), Hemmerle and Hartley (1973) and Harville (1977) among oth-

ers discussed iterative algorithm for Maximum Likelihood (ML) and Restricted Maximum Likeli-

hood (REML) in mixed models under the assumption of independent random effects Chen (2010).

Later on, Neuhaus and McCulloch (2006) showed independence assumption can result in biased

estimates.

1.6 Structure of the Dissertation

The main idea of this dissertation is taking both the pairwise (within-subject) and between-

subject correlation into account aiming to gain more efficiency. In Chapter 2, we first consider the

regression coefficients are the parameter of interest. We propose new estimating equations that can

accommodate the main idea of this dissertation when the structure of the working correlation ma-

trix is regarded as a nuisance. Based on various working correlation structures (i.e. independent,

unstructured, AR(1), MA(1)), with different sample sizes we conduct a simulation study to assess

the performance of new approaches in terms of bias and efficiency. After examining the perfor-

mance of the new approaches, we compare the simulated outcomes with those for some existing

elected methods.

In Chapter 3, when either the regression coefficients and correlation structure or the regression

coefficients and variance of the random effects are parameters of interest, we extend the approach

in Chapter 2 by means of GEE2 to handle all the parameters. Also, we conduct a simulation study

to assess the performance of new approaches in terms of bias and efficiency following the simu-

lation studies in the second chapter. We present an iterative method of estimating the parameters-

Newton-Raphson algorithm.
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To further examine the newly proposed approach, an application of proposed method on real

life data (epilepsy data) is provided in Chapter 4. In Chapter 5, we conclude with our overall

discussion, and then end up this chapter with the plan of future work. Finally, the R codes used in

the simulation studies are attached in the appendix.
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CHAPTER 2 GENERALIZED ESTIMATING EQUATIONS FOR MIXED MODELS

2.1 Introduction

In longitudinal studies, the data is collected repeatedly for the same subject over a period of

time, occur frequently in clinical trials or medicine. To estimate the regression parameters in a

marginal model, it is common to analyze such models using the generalized estimating equations

method Liang and Zeger (1986) which requires only the first two moments to be specified. This

method is known to provide consistent regression parameter estimates. Generalized estimating

equations method can handle the correlation between the pairwise within-subject association but

ignores between-subject association. Incorporating random effects in generalized estimating equa-

tions allows such method to handle both within-subject and between-subject association.

2.2 Incorporating random effects in GEE

Let Yi = (yi1, · · · , yini)
0
be the ni⇥1 response vector for the i-th subject and Xi = (xi1, · · · , xini)

0

be the ni⇥p matrix of covariate values for the i-th subject i = 1, · · · , K corresponding to the fixed

effects � 2 Rp
, Zi is the ni ⇥ q design matrix to the random effects bi 2 Rq

, yij is generated from

a distribution in the exponential family with the conditional mean and variance

g(E(Yi|bi)) = X
0

i� + Z
0

ibi (2.2.1)

where g is a link function (See Section 1.2.1). The random effects bi are assumed to be mutually

independent, following the normal distribution with zero mean and covariance matrix G. The exact

covariance matrix of Yi is unknown, but if the working correlation matrix R(↵) is chosen correctly

then the approximation of the covariance matrix of Yi is

Vi
GEEM

= Cov[E(Yi|bi)] + E[Cov(Yi|bi)]

= Z
0

iGZi + A
1/2
i Ri(↵)A

1/2
i

(2.2.2)
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In other words,

Cov(Yi) ⇡ Z
0

iGZi + A
1/2
i Ri(↵)A

1/2
i (2.2.3)

where matrix Ai is a diagonal matrix consists of the second moment of the model and Ri(↵) is a

correlation matrix (See section1.2.3). Therefore, the model error is not necessarily independent.

Molenberghs, Verbeke, and Dem´etrio (2007) use similar idea to 2.2.3, but for Poisson distribution.

Moreover, they ignore the association between observation with considering the correlation matrix

to be always identity. The model 2.2.3 is more general, it can handle the association between

observations and the variation between subjects. Furthermore, our newly proposed model 2.2.3

is applicable to any distribution belonging to the exponential family. While the model proposed

by Molenberghs et al. (2007) is only applicable to Poisson distribution. The model proposed by

Molenberghs et al. (2007) is studies in this dissertation but with assuming Ri(↵) is not identity

while they assumed the matrix Ri(↵) is identity (See Section 2.3).

2.2.1 Generalized estimating equations for mixed model

Let µi = (µi1, · · · , µini) denote the vector of marginal mean of a distribution from exponential

family. The generalized estimating equation for mixed model (GEEM) for the coefficient parame-

ters � and the variance of the random effect G is given by

U
GEEM

[�,↵(�), G] =
KX

i=1

2

64
@µi(�,↵, G)/@�

@µi(�,↵, G)/@G

3

75

0


ZiGZ

0

i + A
1/2
i Ri(↵)A

1/2
i

��1

⇥

Yi � µi(�,↵, G)

�

=
KX

i=1

✓
Di

GEEM

(�,↵, G)

◆0✓
Vi

GEEM

(�,↵, G)

◆�1✓
Si

GEEM

(�,↵, G

◆
= 0

(2.2.4)
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where Vi
GEEM

as defined in 2.2.2 , Si
GEEM

= (Yi � µi(�,↵, G)) and

Di
GEEM

=

2

64
@µi(�,↵, G)/@�

@µi(�,↵, G)/@G

3

75

0

Wang, Lee, Zhu, Redline, and Lin (2013). For estimating the coefficient parameters � estimating

equations 2.2.4 cannot be used in its actual form due to so many unknown parameters as shown in

the next sections.

2.2.2 Estimating ↵ and G

G is the variance matrix for the random effects bi. Specifically, it is the variance matrix for

bi0 and bi1. The matrix G can be estimated from the data using Nonlinear Mixed-Effects Models

method proposed by Lindstrom and Bates (1990). Generally, ↵ can be estimated as

↵̂uv =
KX

i=1

r̂iur̂iv
N

(2.2.5)

where N =
P

ni and r̂ is the Pearson residual given by 1.2.8 (See Section 1.2).

2.2.3 Estimation Parameter �

It is extremely difficult to estimate � under the actual form of the generalized estimating equa-

tion 2.2.4. As a solution, we may employ the estimation of the covariance matrix of the random

effects and the estimation of the correlation parameter ↵. Therefore, the estimation equation of �

is given by

U
GEEM

[�, ↵̂(�), Ĝ] =
KX

i=1

✓
@µi(�, ↵̂, Ĝ)/@�

◆0✓
ZiĜZ

0

i + A
1/2
i Ri(↵̂)A

1/2
i

◆�1

⇥
✓
Yi � µi(�, ↵̂, Ĝ)

◆

=
KX

i=1

✓
D̃i

GEEM

(�, ↵̂, Ĝ)

◆0✓
Ṽi

GEEM

(�, ↵̂, Ĝ)

◆�1✓
S̃i

GEEM

(�, ↵̂, Ĝ)

◆
= 0

(2.2.6)
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This is the estimating equation 2.2.4 but with replacing the correlation parameter ↵ and the random

effects by their estimates. That is,

S̃i
GEEM

= Yi � µi(�, ↵̂, Ĝ)

Ṽi
GEEM

= Z
0

iĜZi + A
1/2
i Ri(↵̂)A

1/2
i

D̃i
GEEM

= @µi(�, ↵̂, Ĝ)/@�.

This is nonlinear equations and a popular method of finding a solution of the GEE is solving

the resulting (nonlinear) equations iteratively using the Fisher “method of scoring” algorithm. The

Fisher scoring iterative equation is

�̂(t+1) = �̂(t) +

✓ KX

i=1

✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆0✓
Ṽi

GEEM

(�̂(t), ↵̂, Ĝ)

◆�1✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆◆�1

⇥
✓ KX

i=1

✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆0✓
Ṽi

GEEM

(�̂(t), ↵̂, Ĝ)

◆�1✓
Si

GEEM

(�̂(t), ↵̂, Ĝ)

◆◆

(2.2.7)

Theorem 2.2.8. The estimator �̂ of � is consistent and
p
K(�̂ � �) has the asymptotic normal

distribution with covariance matrix

HGEEM = lim
K!1

K(H0GEEMH1GEEMH0GEEM) (2.2.9)

where

H0GEEM =

✓ KX

i=1

D
0

iGEEM
V �1
iGEEM

DiGEEM

◆�1

H0GEEM =

✓ KX

i=1

D
0

iGEEM
V �1
iGEEM

Cov(Yi)V
�1
iGEEM

DiGEEM

◆

as K ! 1 with zero mean.



23

Algorithm 1 Fisher algorithm

1: Find the initial value �̂(0) using generalized linear model GLM()

2: Estimate ↵̂ via Pearson residual (See Table 1.2)

3: Estimate Ĝ via Nonlinear Mixed-Effects Models method nlme()

4: For given ↵̂ and Ĝ find the matrix

Ṽi
GEEM

= Vi
GEEM

(�, ↵̂, Ĝ)

5: Update

�̂(t+1) = �̂(t) +

✓ KX

i=1

✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆0✓
Ṽi

GEEM

(�̂(t), ↵̂, Ĝ)

◆�1✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆◆�1

⇥
✓ KX

i=1

✓
Di

GEEM

(�̂(t), ↵̂, Ĝ)

◆0✓
Ṽi

GEEM

(�̂(t), ↵̂, Ĝ)

◆�1✓
Si

GEEM

(�̂(t), ↵̂, Ĝ)

◆◆

6: Evaluate convergence using changes ||�̂(t+1) � �̂(t)||
7: Repeat steps (2) - (6) until criterion is satisfied

Proof. The proof is similar to Liang and Zeger (1986). Let ↵⇤ = ↵̂(�, Ĝ) and

E(K�1
KX

i=1

52Ui
GEEM

(�,↵⇤)) = K�1
KX

i=1

@µi

@�

0

V �1
i
GEEM

@µi

@�

= K�1
KX

i=1

D
0

i
GEEM

V �1
i
GEEM

Di
GEEM

(2.2.10)

be the expected Hessian matrix and the information matrix of K�1/2
PK

i=1 Ui
GEEM

(�,↵⇤)) is given

by the CLT as

lim
K!1

(K�1
KX

i=1

D
0

i
GEEM

V �1
i
GEEM

Cov(Yi)V
�1
i
GEEM

D
0

i
GEEM

) (2.2.11)

Gourieroux, Monfort, and Trognon (1984). Under regularity conditions, it can be shown by Taylor

series that K�1/2(�̂ � �) can be approximated by

✓
K�1

KX

i=1

�52 Ui
GEEM

(�,↵⇤)

◆�1✓
K�1/2

KX

i=1

Ui
GEEM

(�,↵⇤)

◆
(2.2.12)
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where the first term in 3.1.17

52Ui
GEEM

(�,↵⇤) =
@

@�
Ui

GEEM

(�,↵⇤) +
@

@↵⇤Ui
GEEM

(�,↵⇤)
@

@�
↵⇤(�) (2.2.13)

and the second term in 3.1.17

K�1/2
KX

i=1

Ui
GEEM

(�,↵⇤) = K�1/2
X

Ui
GEEM

(�,↵)+K�1
KX

i=1

@

@↵
Ui

GEEM

(�,↵)K�1/2(↵⇤�↵)+op(1)

(2.2.14)

The second term in 3.1.18 is free of Yi and therefore

@
@↵⇤Ui

GEEM

(�,↵⇤) is op(1) and

@
@�↵

⇤(�) is op(1).

Then, the remaining two terms by LLN have equivalent asymptotic distribution with zero mean and

co-variance matrix as in 3.1.16. Similarly, for the second term of 3.1.19 and the remaining two

terms by CLT converge to the same limit which is the expected Hessian matrix 3.1.15 and this

completes the desired result.

2.3 GEEM for count longitudinal data

Let Yi = (yi1, · · · , yini)
0
be the ni⇥1 response vector for the i-th subject and Xi = (xi1, · · · , xini)

0

be the ni⇥p matrix of covariate values for the i-th subject i = 1, · · · , K corresponding to the fixed

effects � 2 Rp
, Zi is the ni ⇥ q design matrix corresponding to the random effects bi 2 Rq

, Yi is

generated from Poisson distribution

Yi ⇠ poisson(�i) (2.3.1)

with the conditional mean and variance

g(�i) = g(E(Yi|bi) = X
0

i� + Z
0

ib (2.3.2)

where g = log is the link function and

bi ⇠ N(0, G) (2.3.3)
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2.3.1 Marginal means, variances and covariances

The marginal mean E(yij) = exp(x
0
ij� + 1

2x
0
ijGxij) = µi and variance for Poisson distribution

have been derived by Molenberghs et al. (2007) with the assumption that the correlation matrix

is identity. The vector of the marginal mean, µi depends on explanatory variables Xi, the design

matrix Zi and the variance matrix of the random effects G, through the inverse of the link function.

The working covariance matrix given by

Cov(Yi) ⇡ Cov[E(Yi|bi)] + E[Cov(Yi|bi)]

= Mi

✓
exp(Z

0

iGZi)� Jni

◆
Mi +M

1/2
i RiM

1/2
i

(2.3.4)

OR,

ViGEEM = Cov[E(Yi|bi)] + E[Cov(Yi|bi)]

= Mi

✓
exp(Z

0

iGZi)� Jni

◆
Mi +M

1/2
i RiM

1/2
i

(2.3.5)

where Mi = diag{µi}, Jni is ni ⇥ ni matrix with all elements are ones and Ri is the working

correlation matrix. The working correlation matrix Ri should be chosen carefully. The generalized

estimating equations for the parameters ✓ = (�
0
, b

0
)
0

is given by 2.2.4 with ViGEEM as defined in

2.3.5.

2.4 Simulation study

After proposing the first-order generalized estimating equation for mixed models, simulation

studies are needed to investigate the finite sample performance of the proposed method in terms of

bias and efficiency. Then, compare the simulated outcomes with those for existing elected methods.

The language of R have been used for all the generation and the calculation of the simulation

data in this dissertation. The R codes used for this purpose are available in the appendix. The
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references of R codes are Xu (2013) and Pavlou (2012).

We are interested in the performance of simulating correlated longitudinal count data responses

with known correlation structure. Particularly, under the following cases: first, the performance of

the newly estimating procedure based on different design structures of the working correlation ma-

trix; second, the comparison of the simulated outcomes with those for some existing methods. We

consider two scenarios: (i) high longitudinal correlated count responses with correlation parameter

↵ close to 1; (ii ) medium longitudinal correlated count responses with correlation parameter ↵

ranges between 0.4 to 0.6.

For each scenario we generate correlated Poisson random variables for K correlated subjects.

That is, we generate a dataset from the underlying model 2.4.1. Combining the fixed effects and

random effects gives

⌘ = X
0

i� + Z
0

ibi

which form a linear predictor (See section 1.2.1). The underlying model is

y = ⌘ + ✏ = X
0

i� + Z
0

ibi + ✏ (2.4.1)

where ✏ is disturbance term. We choose the following parameters: the coefficients parameter �; the

correlation parameter ↵; the variance of the random effects G corresponding to high and medium

correlated simulated dataset.

2.4.1 Simulation 1

The simulation study is needed to investigate the finite sample performance of the proposed

method in term of bias and efficiency.

Scenario 1

For this scenario, the simulated dataset is highly correlated. We consider K = 50, 100, 150,

and set ni = 4 under the cases below. In each case consider the true model with p = 4 for fixed

effects parameters with true parameter vector � = (3, .5, 1, .2), and q = 2 for random effects.
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case (I) First, using the packages corcounts and mmm generate the responses Yi ⇠ Poisson(�i)

for the i-th cluster with the correlation matrix

Ri(↵) =

2

66666664

1.000 0.850 0.850 0.850

.0850 1.000 0.850 0.850

0.850 0.850 1.000 0.850

0.850 0.850 0.850 1.000

3

77777775

(2.4.2)

where the structure of the correlation matrix is exchangeable (compound symmetry). Then,

generate the covariates matrix Xi as

xij =

8
>>>>>>>>>><

>>>>>>>>>>:

0 if j = 0

1 if j = 1

2 if j = 2

3 if j = 3

(2.4.3)

xi =

8
>><

>>:

0 for the first K/2 clusters

1 for the remaining clusters

(2.4.4)

Assume that, zij = xij . When xi = 1 the matrices Xi and Zi are as following

X
0

i =

2

66666664

1 0 1 0

1 1 1 1

1 2 1 2

1 3 1 3

3

77777775

Z
0

i =

2

66666664

1 0

1 1

1 2

1 3

3

77777775
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which produces the model

E(yij|bi) = exp

8
>><

>>:

�0 + b0i + �2 if j = 0

�0 + b0i + �1 + b1i + �2 + �3 if j = 1, 2, 3.

(2.4.5)

The general form of the model when xi = 1 can be written as

log(E(Yi|bi)) =

2

66666664

1 0 1 0

1 1 1 1

1 2 1 2

1 3 1 3

3

77777775

⇥

2

66666664

�0

�1

�2

�3

3

77777775

+

2

66666664

1 0

1 1

1 2

1 3

3

77777775

⇥

2

64
b0i

b1i

3

75

When xi = 0 the matrices Xi and Zi are as following

X
0

i =

2

66666664

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

3

77777775

Z
0

i =

2

66666664

1 0

1 1

1 2

1 3

3

77777775

which produces the model

E(yij|bi) = exp

8
>><

>>:

�0 + b0i + �2 if j = 0

�0 + b0i + �1 + b1i + �2 + �3 if j = 1, 2, 3.

(2.4.6)
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The general form of the model when xi = 0 can be written as

log(E(Yi|bi)) =

2

66666664

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

3

77777775

⇥

2

66666664

�0

�1

�2

�3

3

77777775

+

2

66666664

1 0

1 1

1 2

1 3

3

77777775

⇥

2

64
b0i

b1i

3

75

E(yij|bi) = exp

8
>><

>>:

�0 + b0i if j = 0

�0 + b0i + �1 + b1i if j = 1, 2, 3.

(2.4.7)

Hence, the model for this simulated data is given by

log(E(yij|bi)) = �0 + �1xij + �2xi + �3xij ⇤ xi + b0i + b1izij (2.4.8)

with i = 1, · · · , K and j = 0, 1, 2, 3.

case (II) The simulation study in the previous case studied the behavior of the finite samples K =

50, 100, 150 with the highly correlated data that were generated under compound symmetry

structure of the correlation matrix Ri(↵). In this case, we repeat the same process mentioned

above but switching the correlation structure to autoregressive order 1 (AR(1)). Generate the

correlated data following the model in 2.4.1 with true correlation matrix when

↵ = 0.929 (2.4.9)

case (III) Repeat the exact processes with generating highly correlated data with the unstructured cor-
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relation matrix

Ri(↵) =

2

66666664

1.000 0.900 0.800 0.700

0.900 1.00 0.830 0.850

0.800 0.830 1.000 0.96

0.700 0.850 0.960 1.000

3

77777775

(2.4.10)

Scenario 2

In this scenario the longitudinal data is not highly correlated but we are still assuming the

observations for each cluster are correlated. That is, we are assuming the correlation parameter

↵ is between 0.3 and 0.5. Consider K = 50, 100, 150, and we set ni = 4 under the cases below.

In each case consider the true model with p = 4 for fixed effects parameters with true parameter

vector � = (3.00, 0.50, 1.00, .2), and q = 2 for random effects.

case (I) Generate the correlated data following the model in 2.4.1 with true exchangeable (compound

symmetry) correlation matrix

Ri(↵) =

2

66666664

1.000 0.459 0.459 0.459

0.459 1.000 0.500 0.459

0.459 0.459 1.000 0.459

0.459 0.459 0.459 1.000

3

77777775

(2.4.11)

case (II) Generate the correlated data following the model in 2.4.1 with true autoregressive order 1

(AR(1)) correlation matrix when

↵ = 0.300 (2.4.12)

case (III) Repeat the exact processes by generating correlated data with the unstructured correlation
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matrix given by

Ri(↵) =

2

66666664

1.000 0.400 0.600 0.700

0.400 1.000 0.600 0.370

0.600 0.600 1.000 0.600

0.700 0.370 0.600 1.000

3

77777775

(2.4.13)

2.4.2 Simulation 2

We compare the simulated outcomes with those of existing selection methods such as GEE,

GLM and GLMM. We compare our proposed method to GEE since it is the basis of our method.

GEE proposed to handle only marginal model and our model is conditional; hence we also compare

our method with some selected approaches that are applicable to conditional models.

2.4.3 Plots for simulated data when K = 50

Visualizing the data before finding and analyzing the estimates is very helpful. Figures (2.1),

(2.5) and (2.9) are box-plots of the observations while figures (2.2), (2.6) and (2.10) are the box-

plots of the log of the observations for K = 50, K = 100 and K = 150, respectively. Figures (2.3)

and (2.8) show the trajectory of each cluster individually figures (2.4), (2.7) and (2.11) show the

trajectory of all the clusters in one profile.
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Figure 2.1: Boxplots of numbers of observations when K = 50.
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Figure 2.2: Boxplots of log of numbers of observations for K = 50.
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2.4.4 Plots for simulated data when K = 100
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Figure 2.5: Boxplots of numbers of observations when K = 100.
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Figure 2.6: Boxplots of log of numbers of observations for K = 100.
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2.4.5 Plots for simulated data when K = 150
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Figure 2.9: Boxplots of numbers of observations when K = 150.
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Figure 2.10: Boxplots of log of numbers of observations for K = 150.
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Table 2.1: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the newly proposed method (GEEM), GEE Liang and Zeger (1986), GLM

McCullagh (1984) and GLMM method, for 5, 000 simulations applying the model 2.4.1 with cor-

relation matrix as shown in 2.4.13

.

K Parameters GEEM GEE GLM GLMM

�0 4.360(.99841) 4.361(.99980) 4.371(.99980) 4.093(1.09235)

K=50 �1 0.654(.00529) 0.651(.00587) 0.647(.00587) 0.647(.00861)

�2 0.664(.02157) 0.671(.02233) 0.667(.02233) 0.529(.04277)

�3 0.222(.00540) 0.223(.00518) 0.224(.00518) 0.244(.00850)

�0 4.225(.99930) 4.223(.99868) 4.229(.99885) 4.002(1.87739)

K=100 �1 0.691(.00763) 0.691(.00781) 0.690(.00765) 0.690(.00956)

�2 0.912(.02050) 0.911(.02000) 0.909(.01998) 1.736(0.0731)

�3 0.187(.00893) 0.190(.00892) 0.190(.00898) 0.198(.01201)

�0 4.242(.97899) 4.241(.98066) 4.242(.98066) 4.042(.98568)

K=150 �1 0.686(.00367) 0.686(.00335) 0.686(.00335) 0.685(.00366)

�2 0.925(.01733) 0.924(.01788) 0.924(.01788) 0.861(.01918)

�3 0.197(.00459) 0.198(.00443) 0.198(.00443) 0.198(00464)
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Table 2.2: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the newly proposed method (GEEM), GEE Liang and Zeger (1986), GLM

McCullagh (1984) and GLMM method, for 5, 000 simulations applying the model 2.4.1 with cor-

relation matrix as shown in 2.4.10

.

K Parameters GEEM GEE GLM GLMM

�0 4.392(.97769) 4.392(.97855) 4.401(.97730) 4.003(1.02969)

K=50 �1 0.654(.00775) 0.650(.00828) 0.648(.00860) 0.688(.01861)

�2 0.665(.02776) 0.667(.02684) 0.664(.02763) 0.520(0.09627)

�3 0.213(.00816) 0.214(.00829) 0.214(.00851) 0.214(.02500)

�0 4.254(.99784) 4.252(.99897) 4.253(.99994) 3.992(1.87739)

K=100 �1 0.685(.00583) 0.685(.00578) 0.685(.00566) 0.680(.02600)

�2 0.898(.01843) 0.899(.01843) 0.899(.01739) 1.536(.07198)

�3 0.192(.00560) 0.191(.00568) 0.190(.00595) 0.198(.01120)

�0 4.269(.97485) 4.268(.97550) 4.269(.97553) 4.062(1.00517)

K=150 �1 0.681(.00745) 0.681(.00746) 0.681(.00747) 0.681(.00946)

�2 0.918(.02080) 0.918(.02028) 0.919(.02134) 0.862(.03991)

�3 0.198(.00675) 0.197(.00667) 0.197(.00686) 0.197(.00886)
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Table 2.3: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the newly proposed method (GEEM), GEE Liang and Zeger (1986), GLM

McCullagh (1984) and GLMM method, for 5, 000 simulations applying the model 2.4.1 with cor-

relation matrix as shown in 2.4.9

.

K Parameters GEEM GEE GLM GLMM

�0 4.407(.97396) 4.407(.97362) 4.411(.97308) 4.008(.98105)

K=50 �1 0.647(.00752) 0.645(.00806) 0.644(.00834) 0.644(.01340)

�2 0.655(.02290) 0.654(.02332) 0.653(.02503) 0.504(.02712)

�3 0.217(.00694) 0.218(.00726) 0.219(.00754) 0.219(.00954)

�0 4.265(1.00192) 4.265(1.00185) 4.264(1.00299) 4.040(1.02149)

K=100 �1 0.682(.00658) 0.681(.00664) 0.681(.00669) 0.679(.02706)

�2 0.889(.01677) 0.888(.01532) 0.887(.01486) 1.333(.09209)

�3 0.194(.00557) 0.194(.00564) 0.195(.00581) 0.198(0.00804)

�0 4.259(.97736) 4.259(.97596) 4.261(.97419) 4.100(.98212)

K=150 �1 0.683(.00474) 0.682(.00537) 0.682(.00570) 0.688(.00700)

�2 0.921(.01794) 0.922(.01813) 0.921(.01962) 0.858(.02354)

�3 0.197(.00442) 0.197(.00467) 0.197(.00494) 0.197(.00994)
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Table 2.4: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the newly proposed method (GEEM), GEE Liang and Zeger (1986), GLM

McCullagh (1984) and GLMM method, for 5, 000 simulations applying the model 2.4.1 with cor-

relation matrix as shown in 2.4.11

.

K Parameters GEEM GEE GLM GLMM

�0 4.352(.98275) 4.352(.98876) 4.368(.98726) 4.007(1.67351)

K=50 �1 0.631(.00925) 0.624(.00974) 0.621(.00965) 0.062(.00950)

�2 0.674(.01779) 0.674(.01976) 0.670(.01813) 0.558(.01816)

�3 0.241(.00866) 0.245(.00884) 0.246(.00868) 0.246(.0088)

�0 4.223(.99228) 4.352(.98876) 4.233(.99329) 4.311(1.07446)

K=100 �1 0.682(.00573) 0.624(.00774) 0.678(.00627) 0.678(.00770)

�2 0.909(.01922) 0.974(.01976) 0.904(.01924) 1.633(.04749)

�3 0.197(.00702) 0.245(.00784) 0.200(.00784) 0.211(0.00788)

�0 4.252(.97341) 4.250(.97706) 4.256(.97797) 4.252(1.03558)

K=150 �1 0.678(.00670) 0.677(.00687) 0.676(.00686) 0.676(.00586)

�2 0.920(.01824) 0.921(.01827) 0.920(.01896) 0.858(.03260)

�3 0.202(.00564) 0.203(.00581) 0.203(.00586) 0.203(.00596)
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As mentioned above, we generate the data based on the model 2.4.1 with various choices

of correlation structures ranging from highly correlated data to medium correlated data. In this

chapter our interest focuses on the regression coefficients and estimate the fixed effects � using the

estimating equations 2.2.6.

Generalized estimating equations method Liang and Zeger (1986) is known to provide consis-

tent estimates. We estimate the fixed effects � using the estimating equations 2.2.6 and compare the

estimates to those from generalized estimating equations method using the function gee() . In

addition, we compare the estimates on our newly propsed model to the estimates of some selected

methods such as GLM, GLMM using the functions glm(),and glmmML(), receptively.

Tables 2.1 and 2.2 show the results of the first scenario. Tables 2.3 and 2.4 show the results of

the second scenario. In general, Tables 2.1-2.4 show that the generalized estimating equations for

mixed model GEEM 2.2.6 perform very well under both scenarios.

GLM and GEE methods are known to provide content estimates. In comparison to these two

methods it can be seen that all the estimates of fixed effects parameter �̂ of the all methods analyzed

are very close to those provided by generalized estimating equations method for all choices of

sample sizes (i.e. for K = 50, K = 100 and K = 150). In addition, the estimated provided by

our newly propsed method are slightly closer to the true beta values in almost all ceases. Although

there are slight differences between the standard deviations provided by the methods shown in

Tables 2.1-2.4 but they are very close. It can be seen that among the four methods GLMM produces

estimators with higher standard deviations. While our proposed method produces the least standard

deviations among all methods in almost all cases. We conclude that GEEM is the most efficient

between content estimators, here.
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CHAPTER 3 SECOND-ORDER GENERALIZED ESTIMATING EQUATIONS FOR MIXED

MODELS

3.1 GEE2 for mixed models

GEE2 approach is another class of estimating equations proposed by Prentice (1988) for longi-

tudinal binary data and devolved by Prentice and Zhao (1991) for longitudinal data for any distri-

bution in exponential family. This system has been used to estimate the parameter � and the cor-

relation estimates ↵ for marginal models simultaneously via a joint estimating equations Ziegler,

Kastner, Gr¨omping, and Blettner (1996).

For some longitudinal studies the correlation structure is of scientific interest, for instance,

epidemiological studies. The correlation structure has been studied by numerous authors as Pren-

tice and Zhao (1991), Carey, Zeger, and Diggle (1993), Yi and Cook (2002) among others but for

marginal distributions. We extend their method for conditional distributions in two ways. First

way, assuming we are interested in the variability between subjects in addition to the coefficient

parameters. Alternatively, assume that we are interested in the coefficient parameters and the as-

sociation structure.

Assume that the random effects bi is following normal distribution with zero mean and 2 ⇥ 2

variance matrix G.

bi i.i.d N(0, G) (3.1.1)

Let Yi = (yi1, · · · , yini)
0

be the ni ⇥ 1 response vector and Xi = (xi1, · · · , xini)
0

be the ni ⇥ p

matrix of covariate values for the i-th subject i = 1, · · · , K corresponding to the fixed effects

� 2 Rp
, Zi is the ni ⇥ q design matrix corresponding to the random effects bi 2 Rq

, yij, is

generated from a distribution in exponential family with conditional mean

g(E(Yi|bi)) = X
0

i� + Z
0

ibi (3.1.2)
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where g is a link function. The random effects bi are assumed to be mutually independent following

the normal distribution with zero mean and covariance matrix G. The exact covariance matrix of Yi

is unknown but if the working correlation matrix R(↵) is chosen correctly then the approximation

of the covariance matrix of Yi is

Vi
GEEM

= Cov[E(Yi|bi)] + E[Cov(Yi|bi)]

= Z
0

iGZi + A
1/2
i Ri(↵)A

1/2
i

(3.1.3)

In other words,

Cov(Yi) ⇡ Z
0

iGZi + A
1/2
i Ri(↵)A

1/2
i (3.1.4)

where matrix Ai is a diagonal matrix that consists of the second moment of the model and Ri(↵)

is a correlation matrix (See section1.2.3), and therefore the model error is not necessarily indepen-

dent.

The first part of the second-order system of the generalized estimating equations for the condi-

tional model is as shown in 3.1.3 with the Vi
GEEM

. Since, the second-order system consists of a pair

of estimating equations we construct an analogue estimating equations to 3.1.3 to solve for two

parameters � either (�, b) or (�,↵) � while considering the third parameters as a nuisance.

3.1.1 Estimation � and G, simultaneously

Sutradhar and Jowaheer (2003) have used Prentice and Zhao (1991) method to estimate the

variance of the random effects. They used it for univariate random effect. We extend it to multi-

variate normal random effect. To accomplish this estimation by means of GEE, define

Ti = (yi � µi)(yi � µi)
0

= ((yi1 � µi1)
2, (yi2 � µi2)

2, · · · , (yij � µij)
2,

(yi1 � µi1)(yi2 � µi2), · · · , (yi,j�1 � µi,j�1)(yij � µij))
0

= (ti11, ti22, · · · , tijj, ti12, ti23, · · · , ti,j�1,j)
0

(3.1.5)
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be an ni(ni � 1)/2 + ni ⇥ 1 vector with E(Ti) = ⇣i. Then construct a parallel system of

estimating equations to 2.2.6 as

U
GEEM2

[�,↵(�), G] =
KX

i=1

✓
@⇣(�,↵, G)/@G

◆0✓
Vi

GEEM2

(�,↵, G)

◆�1✓
Ti � ⇣(�,↵, G)

◆

=
KX

i=1

✓
Di

GEEM2

(�,↵, G)

◆0✓
Vi

GEEM2

(�,↵, G)

◆�1✓
Si

GEEM2

(�,↵, G)

◆
= 0

(3.1.6)

where Si
GEEM2

= Ti � ⇣i, Di
GEEM2

= @⇣i/@G, and Vi
GEEM2

is the working covariance matrix of the

vector Ti and might contain information about higher moments (i.e third and fourth moments) of

yi Lo, Fung, and Zhu (2007).

For constructing the ni(ni � 1)/2 + ni ⇥ ni(ni � 1)/2 + ni matrix Vi
GEEM2

some authors used

the law of total probability covariance as

Cov(t2ij, tiltim) = Cov[E(t2ij|bi)] + E[Cov(tiltim|bi)] (3.1.7)

Cov(t2ij, t
2
il) = Cov[E(t2ij|bi)] + E[Cov(t2il|bi)] (3.1.8)

Cov(tijtik, tiltim) = Cov[E(tijtik|bi)] + E[Cov(tiltim|bi)] (3.1.9)

Rudary (2009). Since the second order Vi
GEEM2

matrix consist of higher moments order such as third

and fourth moments as 3.1.7-3.1.9 which are highly unstable and to this reason we consider Vi
GEEM2

is ni(ni � 1)/2 + ni ⇥ ni(ni � 1)/2 + ni identity matrix Wakefield (2009).
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We have built the parallel estimating equations in 3.1.6. To simultaneously model � and G we

use the estimating equation 2.2.6 and its parallel 3.1.6 to form one system given by

U
full

(�,↵(�), G) =
KX

i=1

2

64
Di11 Di12

Di21 Di22

3

75

0 2

64
Vi11 Vi12

Vi21 Vi22

3

75

�1 2

64
Si1

Si2

3

75

=
KX

i=1

✓
Di

full

(�,↵(�), G)

◆0 ✓
Vi

full

(�,↵(�), G)

◆�1✓
Si

full

(�,↵(�), G)

◆
= 0

(3.1.10)

where,

Di
full

(�,↵(�), G) =

2

64
Di11 Di12

Di21 Di22

3

75 =

2

64
@µi

@�
@µi

@G

@⇣i
@�

@⇣i
@G

3

75

Vi
full

(�,↵(�), G) =

2

64
Vi11 Vi12

Vi21 Vi22

3

75 =

2

64
Var(Yi) Cov(Yi, Ti)

Cov(Ti, Yi) Var(Ti)

3

75

Si
full

(�,↵(�), G) =

2

64
Si1

Si2

3

75 =

2

64
Yi � µi

Ti � ⇣i

3

75

The vector Si
full

(�,↵(�), G) consist of the Si1 = Yi�µi and Si2 = Ti�⇣i. The form of GEEM2

that we have proposed in 3.1.10 is the general form. Prentice and Zhao (1991) provided three

special structures to 3.1.10, independence structure, normal structure and normal structure with

common third and fourth order correlation (See section 1.3). Our model is complicated enough and

have two layers of correlations within- and between-subject correlations. The general structure in

3.1.10 is not plausible due to the complication of interpretation. Therefore, choosing independence
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structure reduces the GEEM2 3.1.10 to the following reduced GEEM2 form

U
redu

(�,↵(�), G) =
KX

i=1

2

64
Di11 0

0 Di22

3

75

0 2

64
Vi11 0

0 Vi22

3

75

�1 2

64
Si1

Si2

3

75

=
KX

i=1

✓
Di

redu(G)
(�,↵(�), G)

◆0 ✓
Vi

redu(G)
(�,↵(�), G)

◆�1✓
Si

redu(G)
(�,↵(�), G)

◆
= 0

(3.1.11)

where,

Di
redu(G)

=

2

64
Di11 0

0 Di22

3

75 =

2

64
@µi

@� 0

0 @⇣i
@G

3

75

Vi
redu(G)

=

2

64
Vi11 0

0 Vi22

3

75 =

2

64
Var(Yi) 0

0 Var(Ti)

3

75

Si
redu(G)

=

2

64
Si1

Si2

3

75 =

2

64
Yi � µi

Ti � ⇣i

3

75

The matrices Di11, Di22, Vi11 and Di22 remain as defined above in the general form of GEE2

but because we are assuming independence structure the matrices Di12, Di21, Vi12 and Di21 are all

zeros.
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Algorithm 2 Fisher algorithm for GEEM2

1: Find initial values of �̂ using GLM()

2: Find initial values of the variance matrix G through the function nlme() .

3: Estimate ↵̂ via Pearson residual (See Section 1.2)

4: Iterate until convergence


�̂(t+1)

Ĝ(t+1)

�
=


�(t)

G(t)

�
�

 KX

i=1

(Di
redu(G)

(�(t), ↵̂, G(t)))
0�
Vi

redu(G)
(�(t), ↵̂, G(t))

��1
Di

redu(G)
(�(t), ↵̂, G(t))

��1

⇥
 KX

i=1

(Di
redu(G)

(�(t), ↵̂, G(t)))
0
(Vi

redu(G)
(�(t), ↵̂, G(t)))�1Si

redu(G)
(�(t), ↵̂, G(t))

�

5: Evaluate convergence using ||�̂(t+1) � �̂(t)||
6: Repeat steps (2) - (5) until criterion is satisfied

Theorem 3.1.12. The estimators (�̂, Ĝ) of (�, G) are consistent and is asymptotically normal

p
K

✓
(�̂ � �), (Ĝ�G)

◆0

! N(0, H) (3.1.13)

where the asymptotic covariance matrix H is

H = lim
K!1

K

✓ KX

i=1

D
0

ifull
V �1
ifull

Difull

◆�1✓ KX

i=1

D
0

ifull
V �1
ifull

Cov(Yi)V
�1
ifull

Difull

◆✓ KX

i=1

D
0

ifull
V �1
ifull

Difull

◆�1

(3.1.14)

as K ! 1 with zero mean.

Proof. The proof follows the same lines as in proof of Theorem 2.2.8. and

E(K�1
KX

i=1

52Ui
GEEM2

(�,↵⇤)) = K�1
KX

i=1

@µi

@�

0

V �1
i
GEEM2

@µi

@�

= K�1
KX

i=1

D
0

i
GEEM2

V �1
i
GEEM2

Di
GEEM2

(3.1.15)

be the expected Hessian matrix and the information matrix of K�1/2
PK

i=1 Ui
GEEM2

(�,↵⇤)) is given
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by the CLT as

lim
K!1

(K�1
KX

i=1

D
0

i
GEEM2

V �1
i
GEEM2

Cov(Yi)V
�1
i
GEEM2

D
0

i
GEEM2

) (3.1.16)

Gourieroux et al. (1984). Under regularity conditions, it can be shown by Taylor series that

K�1/2(�̂ � �) can be approximated by

✓
K�1

KX

i=1

�52 Ui
GEEM2

(�,↵⇤)

◆�1✓
K�1/2

KX

i=1

Ui
GEEM2

(�,↵⇤)

◆
(3.1.17)

where the first term in 3.1.17

52Ui
GEEM2

(�,↵⇤) =
@

@�
Ui

GEEM2

(�,↵⇤) +
@

@↵⇤Ui
GEEM2

(�,↵⇤)
@

@�
↵⇤(�) (3.1.18)

and the second term in 3.1.17

K�1/2
KX

i=1

Ui
GEEM2

(�,↵⇤) = K�1/2
X

Ui
GEEM2

(�,↵)+K�1
KX

i=1

@

@↵
Ui

GEEM2

(�,↵)K�1/2(↵⇤�↵)+op(1)

(3.1.19)

The second term in 3.1.18 is free of Yi and therefore

@
@↵⇤Ui

GEEM2

(�,↵⇤) is op(1) and

@
@�↵

⇤(�) is

op(1). Then, the remaining two terms by LLN have equivalent asymptotic distribution with zero

mean and co-variance matrix as in 3.1.16. Similarly for the second term of 3.1.19 and the remaining

two terms by CLT converge to the same limit which is the expected Hessian matrix 3.1.15 and the

completes the desired result.

3.1.2 Estimating � and ↵, simultaneously

The correlation structure of the matrix Ri is of interest in some longitudinal studies. Prentice

and Zhao (1991) proposed a second-order of estimating equation for this propose. Liang, Zeger,

and Qaqish (1992) used the phrase GEE2 for the second-order generalized estimating equations

which estimate ↵ and � simultaneously. Their method has been used for marginal models, we

have used it in the previous section to estimate the coefficient parameters and the covariance of the
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random effects in the conditional models.

We are primarily interested in � but because the correlation structure may also be of interest in

some studies, GEE2 method allow one to model pairwise association in addition to the coefficient

parameters. We use the reduced form of GEE2 3.1.11 while considerig the covariance of the

random effects as nuisance.

The second-order of the generalized estimating equation in this case is given by

U
redu(↵)(�,↵(�), G) =

KX

i=1

2

64
Di11 0

0 Di22

3

75

0 2

64
Vi11 0

0 Vi22

3

75

�1 2

64
Si1

Si2

3

75

=
KX

i=1

✓
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redu(↵)
(�,↵(�), G)

◆0✓
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redu(↵)
(�,↵(�), G)

◆�1✓
Si

redu(↵)
(�,↵(�), G)

◆
= 0

(3.1.20)

where,

Di
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=
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3
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2

64
@µi

@� 0

0 @⇣i
@↵

3

75
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redu(↵)
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64
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0 Var(Ti)

3

75

Si
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2

64
Si1

Si2

3
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2

64
Yi � µi

Ti � ⇣i

3

75

The matrices Di11, Di22, Vi11 and Di22 remain as defined above in the general form of GEE2

but because we are assuming independence structure the matrices Di12, Di21, Vi12 and Di21 are all

zeros.



54

Algorithm 3 Fisher algorithm for GEE2

1: Find initial values of �̂ using GLM()

2: Find initial values of the variance matrix ↵ through the function gee() .

3: Iterate until convergence
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�
=


�(t)

↵(t)

�
�

 KX
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(3.1.21)

3.2 Simulation study

After proposing the second-order generalized estimating equation for mixed models, simula-

tion studies are needed to investigate the finite sample performance of the proposed method in

terms of bias and efficiency. Then, compare the simulated outcomes with first order generalized

estimating equation for mixed models proposed in Chapter 2. The language R has been used

for all the generation and the calculation of the simulation data. The R codes used for this

purpose are available in the appendix. The references of R codes are Xu (2013) and Pavlou

(2012). We generate the data in the same manner as shown in Chapter 2.

We estimate the parameter coefficients and the variance matrix of the random effect using

estimating equation 3.1.11. Then, we compare the estimates and the standard deviations to the es-

timates and the standard deviations in Chapter 2. Then, we estimate the fixed effects parameter and

the correlation parameter ↵ using the estimating equation 3.1.20. The results of these estimation

are shown in Tables 3.1 - 3.4.
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Table 3.1: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the proposed methods (GEEM) in Chapter 2, and the second-order GEEM

in Chapter 3, for 5, 000 simulations applying the model 2.4.1 with correlation matrix as shown in

2.4.13

K Parameters GEEM GEEM2

�0 4.360(.99841) 4.357(.999839)

�1 0.654(.00529) 0.661(.009265)

K=50 �2 0.664(.02157) 0.671(.034598)

�3 0.222(.00540) 0.213(.010155)

var(b0i) � 0.528

var(b1i) � 0.301

�0 4.225(.99930) 4.1820(.977966)

�1 0.691(.00763) 0.6857(.006670)

K=100 �2 0.912(.02050) 0.8884(.018058)

�3 0.187(.00893) .1956(.0039883)

var(b0i) � 0.502

var(b1i) � 0.306

�0 4.242(.97899) 4.177(1.187227)

K=150 �1 0.686(.00367) 0.683(.006486)

�2 0.925(.01733) 0.898(.016719)

�3 0.197(.00459) 0.198(.004231)

var(b0i) � 0.469

var(b1i) � 0.319
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Table 3.2: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the proposed methods (GEEM) in Chapter 2, and the second-order GEEM

in Chapter 3, for 5, 000 simulations applying the model 2.4.1 with correlation matrix as shown in

2.4.10

K Parameters GEEM GEEM2

�0 4.392(.97769) 4.214(.98296)

K=50 �1 0.654(.00775) 0.672(.00698)

�2 0.665(.02776) 0.742(.02750)

�3 0.213(.00816) 0.199(.00818)

var(b0i) � 0.375

var(b1i) � 0.318

�0 4.254(.99784) 4.548(.99887)

K=100 �1 0.685(.00583) 0.692(.00736)

�2 0.898(.01843) 0.921(.01884)

�3 0.192(.00560) 0.185(.00502)

var(b0i) � 0.496

var(b1i) � 0.305

�0 4.269(.97485) 4.558(.98670)

K=150 �1 0.681(.00745) 0.690(.00842)

�2 0.918(.02080) 0.937(.01035)

�3 0.198(.00675) 0.192(.00748)

var(b0i) � 0.457

var(b1i) � 0.302
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Table 3.3: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the proposed methods (GEEM) in Chapter 2, and the second-order GEEM

in Chapter 3, for 5, 000 simulations applying the model 2.4.1 with correlation matrix as shown in

2.4.9

K Parameters GEEM GEEM2

�0 4.407(.97396) 4.247(.98469)

K=50 �1 0.647(.00752) 0.666(.00766)

�2 0.655(.02290) 0.625(.02339)

�3 0.217(.00694) 0.222(.00754)

↵ � 0.837

�0 4.265(1.00192) 4.575(1.00232)

K=100 �1 0.665(.00578) 0.685(.00602)

�2 0.889(.01677) 0.897(.01620)

�3 0.194(.00557) 0.192(.00563)

↵ � 0.877

�0 4.259(.97736) 4.587(.98362)

K=150 �1 0.683(.00474) 0.684(.00523)

�2 0.921(.01794) 0.920(.01946)

�3 0.197(.00442) 0.196(.00504)

↵ � 0.857



58

Table 3.4: Parameter estimates (standard deviations in parentheses) of the true beta values

(3.00, 0.50, 1.00, 0.20) when number of clusters K = 50, 100 and 150 with ni = 4 per each clus-

ter, is compared for: the proposed methods (GEEM) in Chapter 2, and the second-order GEEM

in Chapter 3, for 5, 000 simulations applying the model 2.4.1 with correlation matrix as shown in

2.4.12

K Parameters GEEM GEEM2

�0 4.352(.98275) 4.609(.9850)

K=50 �1 0.631(.00925) 0.654(.01017)

�2 0.674(.01779) 0.741(.0234)

�3 0.241(.00866) 0.218(.0114)

↵ � 0.345

�0 4.223(.99228) 4.551(.99351)

K=100 �1 0.682(.00573) 0.684(.00574)

�2 0.909(.01922) 0.914(.01495)

�3 0.197(.00702) 0.192(.00807)

↵ � 0.373

�0 4.252(.97341) 4.567(.98523)

K=150 �1 0.678(.00670) 0.680(.00721)

�2 0.920(.01824) 0.912(.02041)

�3 0.202(.00564) 0.199(.00405)

↵ � 0.370
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In this chapter we focus our interest either on both � and the variance of the random effects

b with regarding the correlation parameter ↵ as nuisance or on the coefficient parameters and

the association structure ↵ and regard the variance of the random effects as nuisance. We build

additional system of estimating equations analogous to equation 2.2.6 can serve to estimate either

� and G, simultaneously or � and ↵, simultaneously.

When our interest focuses either on both � and G or on both � and ↵, we report the simulation

results using equation 3.1.11 in Tables 3.1- 3.4 for various choices of correlation matrix. We

compare the simulation results of second-order generalized estimating equation for mixed models

which proposed in this chapter with first-order generalized estimating equations for mixed models

which proposed in Chapter 2. Although the estimates produced by GEEM2 are slightly higher

than those produced by GEEM method proposed in Chapter 2 but the difference is very small

under all samples sizes. For the standard deviations, it can be seen that in almost all cases the

GEEM2 produces estimates with higher standard deviations but the differences are very small. In

conclusion, Both methods perform well across the simulations experiments and choosing between

these two methods depends on the goal of the study.
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CHAPTER 4 REAL DATA APPLICATIONS

4.1 Introduction

In estimating parameter estimates, standard errors, the random effects and the covariance struc-

tures matrices, the simulation studies in Chapter 2 and Chapter 3 have provided quite efficient

results in comparison to the other methods.

To further investigate the behavior of the proposed models, the new approaches are applied to

real-life data (epilepsy data) that was studied by many others Fitzmaurice et al. (2012). Generalized

estimating equations approach is known to provide consistent estimates Liang and Zeger (1986).

Therefore, evaluating the performance of the approaches that was proposed in the previous chapters

will be done by comparing the parameter estimates and standard errors with those from GEE.

4.2 Data description

According to Fitzmaurice et al. (2012), in 1987 the data was collected on 59 epileptics in

placebo-controlled clinical under rigorous controls Leppik et al. (1987). Subjects with repeated

seizures were registered in a randomized clinical trial for the treatment of epilepsy. The patients

were randomized to either the anti-epileptic drug (Progabide) or the placebo. Before the treatment

started, the number of seizures were counted up over an 8-week interval for each subject Fitz-

maurice et al. (2012). The goal is to examine weather Progabide reduces the number of seizures

significantly compared to placebo Berridge and Crouchley (2011). See Figure 4.1 for the number

of seizures for each subject. Figure 4.2 and Figure 4.3 show the baseline data of number of seizures

for each subject in placebo or Progabide group, respectively.
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Figure 4.1: Number of seizures per each subject in the sample during 8-week prior to the treatment.



62

subject effect plot

subject

ba
se

 20

 40

 60

 80

100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

period effect plot

period
ba
se

30.79

30.79

30.79

30.79

30.79

30.79

30.79

1 2 3 4

Figure 4.2: Number of seizures per each subject in the placebo group over 8-week period prior to

the treatment.

subject effect plot

subject

ba
se

 20

 40

 60

 80

100

120

140

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

period effect plot

period

ba
se

31.61

31.61

31.61

31.61

31.61

31.61

1 2 3 4

Figure 4.3: Number of seizures per each subject in Progabide group over 8-week period prior to

the treatment.
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The data shows a lot of variation in the sense that the number of seizures for some subjects

are very extreme in terms of having unusual repeated seizures from other values in the random

sample. Either having very high or very low number of seizures compared to other observations of

the patients in the random sample.

Subject 3 and subject 4 are examples of patients who recorded very low number of seizures.

Subject 3 had 4 seizures during the 8-week period which is the baseline period and continued to

have either very low number of seizures or no seizures at all during the visits after the treatment

has started, and subject 4 had 8 seizures during the baseline period and continued to have very low

numbers during the visits as well.

While subject 49 and subject 18 are examples of patients who recorded very high numbers of

seizures, subject 49 had 151 during the same period and continued to have very high number of

observations during the visits after the treatment has started but the subject had 111 seizures during

the baseline seizure and he recorded low number of seizures during the visits. His/her observations

lie abnormal from other observations.

Figure 4.4 and Figure 4.5 show the number of seizures during the baseline period and during

the visits post randomization for placebo and Progabide groups, respectively. Also, Figure 4.6 and

Figure 4.7 show the boxplot of log number of seizures during the baseline period and during the

visits post randomization for placebo and Progabide groups, respectively.

The data was collected to investigate the effectiveness of the treatment (Progabide). The ques-

tion here is, does the Progabide drug reduce the number of seizures? To answer this question we

will perform mixed models of this data using the newly proposed approach in Chapter 2.
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Figure 4.4: Boxplots of numbers of seizures for the placebo group during the baseline period and

during visits post randomization.
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Figure 4.5: Boxplots of numbers of seizures for the Progabide group during the baseline period

and during visits post randomization.
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Figure 4.6: Boxplots of log of numbers of seizures for the placebo group during the baseline period

and during visits post randomization.
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Figure 4.7: Boxplots of log of numbers of seizures for the Progabide group during the baseline

period and during visits post randomization.
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Figure 4.8: Number of seizures per each subject in the sample during 8-week prior to the treatment.
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Figure 4.9: Number of seizures per each subject in the sample during 8-week prior to the treatment.
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Each subject was observed individually by counting the number of seizures for an 8-weak

period before randomization. Then, the subjects were randomized to be treated with either placebo

or Progabide with observing the number of seizure for a 2-week period during 4-visits. A total

of 59 patients with a total of 4-visits, each subject has four observations and in total there are

236 observations after post randomization. Including baseline observation, each patient has 5

observations and in total there are 295 observations. In the placebo group, we have 28 patients

with 140 observations and the remaining patients are assigned randomly into Progabide group.

There is definitely individual level variation in each group and there is variation between both

groups in general. Figure 4.1 shows heterogeneity between the 95 patients.

4.3 A GEEM Model for the Seizure Data

Here, we fit the model by letting the response explained by the same covariates shown below.

Table 4.1 shows epilepsy data of 4 participants out of 59.

• y : the response that consists of the number of seizures that had happened prior to the

start of the experiment and this is in the 8-week period, and the number of seizures post

randomization as well.

• age: of each subject at the experiment time.

• Treatment : the treatment that had been used post randomization which is either placebo

or Progabide.
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• id : identifying each subject by the number of the measurement. Each subject has five

measurements

• Time : shows the time period for each subject, 0 represents the baseline measurement, 1

represents the measurement at the first visit after the experiment has started, 2 represents the

measurement at the first visit after the experiment has started and so on.

• W : shows the prior and post randomization period.

Table 4.1: The data of some participants in epilepsy study. The data was downloaded from website:

”http://www.hsph.harvard.edu/fitzmaur/ala2e/epilepsy.sas7bdat”

.

id y age Treatment

Time

W

log(W)

1 11 31 placebo

0

8

2.08

1 5 31 placebo 1 2 0.693

1 3 31 placebo

2

2

0.693

1 3 31 placebo 3 2 0.693

1 3 31 placebo

4

2

0.693

2 11 30 placebo 0 8 2.08

2 3 30 placebo

1

2

0.693

2 5 30 placebo 2 2 0.693

2 3 30 placebo

3

2

0.693

2 3 30 placebo 4 2 0.693

4 6 36 placebo

0

8

2.08

4 2 36 placebo 1 2 0.693

4 4 36 placebo

2

2

0.693

4 0 36 placebo 3 2 0.693

4 5 36 placebo

4

2

0.693

49 151 22 Progabide 0 8 2.08

49 102 22 Progabide

1

2

0.693

49 65 22 Progabide 2 2 0.693

49 72 22 Progabide

3

2

0.693

49 63 22 Progabide 4 2 0.693

59 12 37 Progabide

0

8

2.08

59 1 37 Progabide 1 2 0.693

59 4 37 Progabide

2

2

0.693

59 3 37 Progabide

3

2

0.693

59 2 37 Progabide

4

2

0.693
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Let

yij = number of seizures for the i-th subject at j-th measurement.

T imeij =

8
>><

>>:

1 if j = 1, 2, 3, 4

0 if j = 0.

T reatmenti =

8
>><

>>:

1 if Progabide

0 if placebo.

Wij =

8
>><

>>:

8 if j = 0

2 if j = 1, 2, 3, 4.

with i = 1, · · · , 59 and j = 0, 1, 2, 3, 4. Consider that the conditional model fulfills

log

✓
E(yij|bi)
Wij

◆
= �0 + �1T imeij + �2Treatmenti + �3T imeij ⇤ Treatmenti

+ b0i + b1iT imeij

(4.3.1)

where this model can be rewritten for each treatment group as below. For placebo group 4.3.1 can

be written as

log

✓
E(yij|bi)
Wij

◆
=

8
>><

>>:

�0 + b0i if j = 0

�0 + b0i + �1 + b1i if j = 1, 2, 3, 4.

(4.3.2)

and for Progabide group 4.3.1 can be written as

log

✓
E(yij|bi)
Wij

◆
=

8
>><

>>:

�0 + b0i + �2 if j = 0

�0 + b0i + �1 + b1i + �2 + �3 if j = 1, 2, 3, 4.

(4.3.3)

Fitzmaurice et al. (2012). Here, the parameter �3 is the parameter of interest since the exponen-
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tiated of �3 represents the expected change of rate of seizures for a participant assigned to Pro-

gabide treatment compared to a participant assigned to placebo treatment in post randomization

period Wakefield (2009). The response yij is explained by the time, treatment in addition to the

interaction between the time and treatment.

Note that, due to the differences in length of the time periods before and after randomization

log(Wij) is included in the model Fitzmaurice et al. (2012). The random effects

bi ⇠ N(0, G)

where G is 2⇥ 2 covariance matrix. The covariance matrix Ri(↵) is assumed to be exchangeable

- namely, that

Corr(Yij, Yik) = ↵, 8 j 6= k

The big feature of this correlation matrix is that, only one parameter needs to be estimated but it

ignores the time varying between observations. It can be written as

Ri,j =

8
>><

>>:

1 i = j

↵ otherwise.

Or in matrix notation for i-th subject,

Ri =

2

66666664

1 ↵ ↵ ↵ ↵

↵ 1 ↵ ↵ ↵

↵ ↵ ↵ 1 ↵

↵ ↵ ↵ ↵ 1

3

77777775

The results given in Table 4.2 shows the parameter estimates, standard errors and P-value for

the fixed effects part of our model which is what we are interested in. No subject was excluded

from the sample, even those who recorded abnormal observations. Deciding whether the Progabide
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drug is decreasing the number of seizures. The test stated as

H0 : �3 = 0 vs H1 : �3 6= 0

Table 4.2 shows that, for 0.05 level the evidence against the null hypothesis is strong, so we

reject the null hypothesis and conclude that a significant interaction exists.

For a subject from placebo group, the seizure rate doesn’t change after being treated with

placebo treatment. On the contrary, the seizure rate of a subject that participated in Progabide

does change which is lower than prior to treatment by about 27%. On the other hand, generalized

estimating equations estimates obtained by the gee() function in R Language which provides

slightly different results but they are still very close and indicate the same results in general as

shown in Table 4.3 and Table 4.4. The GEE methods indicates that for a subject belonging to

placebo group has no change in seizure rate after being treated with placebo but for a subject

assigned to Progabide treatment the reduction on the seizure rate is 27%.

In general, both of our proposed approaches in Chapter 2 and generalized estimating equations

approach using either geeglm() or gee() show that, for .05 a significant interaction exists.

Since the parameter estimates are unknown, we compare our parameter estimates with those for

existing GEE which is known to provide consistent estimates.

Table 4.2: Parameter estimates for fixed effects part applying the newly proposed GEEM approach

on epilepsy data

Fixed Effects Parameter Estimate Standard Error

P-value

Intercept 1.2110 0.1880

0.0000

Time -0.0010 0.0470

0.4730

Treatment 0.0840 0.2078

0.3740

Time ⇥ Treatment -0.3141 0.05764

0.0102

Visualizing the analysis of epilepsy data assesses the results that we have obtained. The plots

4.10 - Figure 4.13 are obtained by using sjplot package. First, with the function sjp.lmer
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Table 4.3: Parameter estimates for applying the generalized estimating equation method Liang and

Zeger (1986) using geeglm() function in R language

Fixed Effects Parameter Estimate Standard Error P-value

Intercept 1.2124 0.1663

0.0000

Time - 0.0022 0.04851 0.5600

Treatment 0.0831 0.2690

0.3200

Time ⇥ Treatment -0.3200 0.0640 0.0235

we specified sort.est = "Time" and then with function sort.est = "Time" we

sort the effects in order.

Table 4.4: Parameter estimates for applying the generalized estimating equation method Liang and

Zeger (1986) using gee() function in R language

Fixed Effects Parameter Estimate Standard Error P-value

Intercept 1.29007 0.1658 0.0000

Time -0.00176 0.0482

0.366

Treatment 0.03778 0.2087 0.1811

Time ⇥ Treatment -0.25301 0.0575

0.0095

For the placebo group, Figure 4.10 and Figure 4.11 show that there are quite some variations

in the intercept. While for Time there is not much of a variation. It is more or less around the

specific line. There are quite some variations in the intercept for subjects who participated in the

Progabide group and for this group Time shows slight variation.
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Figure 4.10: The plot of the random effects of random intercept and random coefficient Time for

placebo group.
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Figure 4.11: Resorting the plot of the random effects of random intercept and random coefficient

Time for placebo group.
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Figure 4.12: The plot of the random effects of random intercept and random coefficient Time for

Progabide group.
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Figure 4.13: Resorting the random effects of random intercept and random coefficient Time for

Progabide group.
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4.4 A GEEM2 Model for Epilepsy Data

Deciding whether the Progabide drug is decreasing the number of seizures using GEEM2 ap-

proach. The test stated as

H0 : �3 = 0 vs H1 : �3 6= 0

Table 4.5 and 4.6 show that, for 0.05 level the evidence against the null hypothesis are strong,

so we reject the null hypothesis and conclude that a significant interaction exists.

For a subject from the placebo group, the seizure rate doesn’t change after being treated with

the placebo treatment. On the contrary, the seizure rate of a subject that participated in Progabide

does change which is lower than prior to treatment by about 27%.

Table 4.5: Parameter estimates for fixed effects part and variance of random effect applying the

proposed GEEM2 approach on epilepsy data.

Fixed Effects Parameter Estimate Standard Error

P-value

Intercept 1.2120 0.1800

0.0000

Time -0.0020 0.0410

0.4850

Treatment 0.0840 0.2078

0.3740

Time ⇥ Treatment -0.3071 0.05764

0.0102

Var(b0i) 0.527 � �

Var(b1i) 0.201 � �

For the comparison between the two newly proposed methods, it can be seen that both preform

very well. The estimates of � are very closed in the two methods. The first-order of the generalized

estimating equation slightly produces lower standard errors.

Tables 4.2, 4.5 and 4.6 show that in both methods the seizure rate doesn’t change after being

treated with the placebo treatment while the seizure rate of a subject that participated in Progabide

does change which is lower than prior to treatment by about 27% in GEEM and lower than prior

to treatment by about 26% in GEEM2 .
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Table 4.6: Parameter estimates for fixed effects part and the correlation parameter applying the

proposed GEEM2 approach on epilepsy data.

Fixed Effects Parameter Estimate Standard Error P-value

Intercept 1.1100 0.1800

0.0000

Time 0.0018 0.0470 0.4770

Treatment 0.0840 0.2667

0.3010

Time ⇥ Treatment -0.3110 0.0518 0.0090

↵ 0.817 � �
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CHAPTER 5 SUMMARY AND CONCLUSION

Generalized linear mixed model consisted of two parts, fixed effects and random effects. This

approach is very helpful and widely used in different fields. It differs than linear mixed models

by so unique features such as: It is applicable to any distribution that belongs to the exponential

family not only normal distribution and in case of abnormality appropriate link function is often

applied.

Generalized estimating equation is a simple method since it does not depend on the likelihood

which is not plausible due to its difficulty of maximization. This method has a unique feature as it

is known to provide consistent estimates.

5.1 Conclusion Remarks

In this dissertation, we combined the above two methods and introduced first-order of gener-

alized estimating equations for mixed models and then extended it to second-order. The newly

proposed approaches in Chapter 2 and its extension in Chapter 3 are general approaches based on

continuous and discrete distributions in exponential family. We mainly focused on the longitudinal

data generated from Poisson distribution with normal random effects.

In the first-order generalized estimating equations for mixed model, we primarily focused on

the fixed effects. We regard the association parameter and the variance of the random effect as

nuisances in Chapter 2. We proposed estimating equation to estimate the regression coefficients �

with extracting the values of the variance of the random effects G and the association parameter ↵

from well known methods such as method of moment for the association parameter and GLMM

method for the variance of the random effects. These estimating equations methods have no closed

form solution and we solved iteratively using Newton-Raphson as it is a popular iterative method

for generalized linear model and generalized estimating equations.
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The second-order generalized estimating questions for mixed model in Chapter 3 is an exten-

sion of the first-order in Chapter 2. We proposed additional estimating equations as an analogue

to the essential estimating equations to have a parallel system. This new system can estimate addi-

tional parameter in addition to the coefficient regression parameters �. First, we primarily focused

on the fixed effects and the variance of the random effects. We regard the association parameter

as a nuisance with extracting its value using method of moments. Second, we focus on the fixed

effect and the association parameter and regard the variance of the random effects as a nuisance.

We extended Newton-Raphson to handle this parallel system.

A simulation study was conducted to investigate the behaviors of the newly proposed methods,

in section 2.4 for GEEM and in section 3.2 for GEEM2. In section 2.4, we compare the first-order

generalized estimating for mixed models approach with the results of some selected methods.

The simulation study has been done under various correlation matrices ranging between strong

correlation to uncorrelated data. The results reported in Tables 2.1-2.4 show that the estimates of

� are very close to the estimates which are provided by GEE method more than any other method.

Moreover, our proposed method has reduced the standard deviations of the GEE method Liang and

Zeger (1986)

Furthermore, in section 3.2 we conducted extensive simulation studies and compared the results

of our proposed method in Chapter 2 to its extension in Chapter 3. The proposed method performs

very well in reducing the standard errors as the samples size increases. It is worth pointing out that

as the sample size K increases the difference between the standard errors of our proposed methods

decreases.

We finally apply the proposed method to real-life data (epilepsy data) to further evaluate its

behavior. The result shows that the GEEM and GEEM2 methods provide consistent estimates.

In general, this kind of estimation equations have been shown and proven by many authors to

provide consistent estimates. Since the correlation of the data is unknown and this might lead to

misspecification of the model and hence the standard errors might get effected. Therefore, the

sandwich method have been used to adjust the standard errors.
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5.2 Future Research

In the future, we plan to extend our proposed approach to analyze the correlated data with

measurement error. We assume the collected data are accurate while it is not due to measurement

error that may arise from various sources which can lead to severe bias. A measurement error takes

place if we cannot exactly observe some variables, either one or more, in the underlying model. We

need to correct the measurement error to obtain unbiased estimates for the parameters of interest.

According to Buonaccorsi (2010), a measurement error model with LMM can be expressed as

Xi� + Zibi = Xi1�1 +Xi2�2 + Zi1bi1 + Zi2bi2, (5.2.1)

where Xi2 and Zi2 are observed exactly while Xi1 and Zi1 are subject to measurement error. If

we only consider the simpler case that �1 is a scalar and Zi1 = 0, i.e. the case that there is no

measurement error occurring to the random effect part of the model. Put Zi2 = Zi and bi2 = bi, so

that

Yi = �1Xi1 +Xi2�2 + Zibi + ✏i. (5.2.2)

The measurement error for Xi1 is assumed to be additive:

Wi = Xi1 + ui, (5.2.3)

where Wi is the error-prone measure of Xi1, E(ui) = 0, Cov(ui) = ⌃ui and u1, · · · , un are

assumed independent. In addition to 5.2.2 and 5.2.3 it is assumed that E(Xi1) = µXi and

Cov(Xi1) = ⌃X . Both ui in 5.2.3 and Xi1 are independent of random quantities in 5.2.2. Then,

E(Wi) = µXi, Cov(Wi) = ⌃W = ⌃X + ⌃u.

To sum up, Yi,Wi, Xi2 and Zi are available data for analysis on the regression parameters �1, �2

of interest.
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APPENDIX A SELECTED R PROGRAMS

• A sample of complete code that gives the result shown in Table 2.1 when K = 50.

## I n s t a l l Packages

# i n s t a l l . p a c k a g e s ( gee )

# i n s t a l l . p a c k a g e s ( Ma t r i x )

# i n s t a l l . p a c k a g e s ( lme4 )

# i n s t a l l . p a c k a g e s (MASS)

# i n s t a l l . p a c k a g e s ( c o r c o u n t s )

# i n s t a l l . p a c k a g e s (mmm)

# i n s t a l l . p a c k a g e s ( geepack )

# i n s t a l l . p a c k a g e s ( p l y r )

# i n s t a l l . p a c k a g e s ( d p l y r )

# i n s t a l l . p a c k a g e s ( haven )

# i n s t a l l . p a c k a g e s ( t i d y r )

# i n s t a l l . p a c k a g e s ( d p l y r )

# i n s t a l l . p a c k a g e s (glmmML)

# i n s t a l l . p a c k a g e s ( geepack )

# i n s t a l l . p a c k a g e s ( brms )

# i n s t a l l . p a c k a g e s ( mvtnorm )

###################################################

###################################################

## Load p a c k a g e s

l i b r a r y ( gee )

l i b r a r y ( Ma t r i x )

l i b r a r y ( lme4 )

l i b r a r y (MASS)
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l i b r a r y ( c o r c o u n t s )

l i b r a r y (mmm)

l i b r a r y ( geepack )

l i b r a r y ( p l y r )

l i b r a r y ( d p l y r )

l i b r a r y ( haven )

l i b r a r y ( t i d y r )

l i b r a r y ( d p l y r )

l i b r a r y (glmmML)

l i b r a r y ( geepack )

l i b r a r y ( brms )

l i b r a r y ( mvtnorm )

###################################################

###################################################

## G e n e r a t e c o r r e l a t e d c o u n t d a t a

# sim . lon g . count1<�f u n c t i o n ( seed ){

s e t . s eed ( 1 )

k <� 50 ; T.<�4;

be ta0<�3

be ta1 <�.5

be ta2<�1

be ta3 <�.2

n<�r e p ( 4 , k )

n1=16

z1= m a t r i x ( 1 , sum ( n ) , 1 )

y1= m a t r i x ( 0 , sum ( n ) , 1 )

x1= m a t r i x ( 0 : 3 , sum ( n ) , 1 )
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r11 = m a t r i x ( 0 , ( sum ( n ) /2) � n1 , 1 )

r12 = m a t r i x ( 1 , ( sum ( n ) / 2 ) + n1 , 1 )

r1 = r b i n d ( r11 , r12 )

marg ins <� c ( ” Po i ” , ” Po i ” , ” Po i ” , ” Po i ” ) ; r a n e f . c o v a r = d i a g ( c ( . 4 , . 3 ) ) ;

b .11= rmvnorm ( n =1 , s igma= r a n e f . c o v a r )

mu1 <� c ( exp ( b e t a 0 + b e t a 1 ⇤x1 [ 1 ] + b e t a 2 ⇤ r1 [ 1 ] + b e t a 3 ⇤x1 [ 1 ]⇤ r1 [ 1 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 1 ] ) , exp ( b e t a 0 + b e t a 1 ⇤x1 [ 2 ] + b e t a 2 ⇤ r1 [ 2 ]

+ b e t a 3 ⇤x1 [ 2 ]⇤ r1 [ 2 ] + b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 2 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 3 ] + b e t a 2 ⇤ r1 [ 3 ] + b e t a 3 ⇤x1 [ 3 ]⇤ r1 [ 3 ] + b . 1 1 [ 1 , 1 ]

+b . 1 1 [ 1 , 2 ] ⇤ x1 [ 3 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 4 ] + b e t a 2 ⇤ r1 [ 4 ] + b e t a 3 ⇤x1 [ 4 ]⇤ r1 [ 4 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 4 ] ) )

c o r s t r <� ” u n s t r ”

c o r p a r 1<�m a t r i x ( c ( 1 , 0 . 4 , 0 . 6 , 0 . 7 ,

0 . 4 , 1 , 0 . 6 , 0 . 3 7 ,

0 . 6 , 0 . 6 , 1 , 0 . 6 ,

0 . 7 , 0 . 3 7 , 0 . 6 , 1 ) , n c o l =T . , byrow=T . )

Y. b e g i n i n g 1 <� r c o u n t s (N=k , marg ins = margins , mu=mu1 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing11<�m a t r i x ( c (Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 1 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 2 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 3 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 4 ] ) , ( ( sum ( n ) / 2 ) + n1 ) / T . , T . )

mu2 <� c ( exp ( b e t a 0 + b e t a 1 ⇤x1 [ 1 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]

+ b e t a 3 ⇤x1 [ 1 ]⇤ r1 [ (



89

sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 1 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 2 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]

+ b e t a 3 ⇤x1 [ 2 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 2 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 3 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b e t a 3 ⇤x1 [ 3 ]⇤ r1 [ ( s

um( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 3 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 4 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+

b e t a 3 ⇤x1 [ 4 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 4 ] ) )

Y. b e g i n i n g 2 <� r c o u n t s (N=k , marg ins = margins , mu=mu2 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing12<�m a t r i x ( c (Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) :

k , 1 ] , Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 2 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 3 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 4 ] ) , ( ( sum ( n ) /2) � n1 ) / T . , T . )

Y. b e g i n i n g 1 <� r b i n d (Y. beg in ing11 , Y. b e g i n i n g 1 2 )

id1<�m a t r i x ( r e p ( seq ( 1 : k ) , 4 ) )

ID= as . m a t r i x ( r e p ( 1 : k , n ) , n , 1 )

d a t 1 = l i s t ( x1=x1 , y1=y1 , z1=z1 , ID=ID , r1 = r1 )

# r e t u r n ( d a t 1 )

sim . lo ng . count1<�as . d a t a . f rame ( c b i n d ( ID , y1 , x1 , z1 , r1 ) )

names ( sim . lon g . c ou n t 1)<�c ( ” ID ” , ” y1 ” , ” x1 ” , ” z1 ” , ” r1 ” )

###################################################

###################################################

GEE . Mixed . Simu<�f u n c t i o n ( sim . long . cou n t 1 ){

da t1<�d a t a . f rame ( i d = sample ( sim . long . count1$ID , k⇤T . , r e p =F ) )
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c o u n t s s<� sim . long . co un t 1 %>%

group by ( ID ) %>%

do ( d a t a . f rame ( nrow=nrow ( . ) ) )

# S p l i t t h e d a t a i n t o t h e c l u s t e r s .

# Each s b j e c t i s d e f i n e d as a ” l i s t ”

c l u s t e r <� l i s t ( )

idua<�u n iq u e ( sim . long . count1$ID )

f o r ( i i n 1 : l e n g t h ( i d u a ) )

c l u s t e r [ [ i ]]<�sim . long . co un t 1 [ sim . long . count1$ID == i d u a [ i ] , ]

y<�sim . lon g . coun t1$y1

x<�as . m a t r i x ( sim . long . coun t1$x1 )

r<�sim . lon g . c o u n t 1 $ r 1

z<�as . m a t r i x ( sim . long . coun t1$x1 )

# F i t a geeglm t o o b t a i n a v e c t o r o f i n i t i a l e s t i m a t e s f o r b e t a

( b e t a i n )

C .M1=5000

beta00cm1= numer ic (C .M1)

beta11cm1= numer ic (C .M1)

beta22cm1= numer ic (C .M1)

beta33cm1= numer ic (C .M1)

f o r ( l i n 1 :C .M1){

Y. b e g i n i n g 1 <� r c o u n t s (N=k , marg ins = margins , mu=mu1 , c o r s t r = c o r s t r ,
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c o r p a r = c o r p a r 1 )

Y. beg in ing11<�m a t r i x ( c (Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 1 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 2 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 3 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 4 ] ) , ( ( sum ( n ) / 2 ) + n1 ) / T . , T . )

Y. b e g i n i n g 2 <� r c o u n t s (N=k , marg ins = margins , mu=mu2 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing12<�m a t r i x ( c (Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) :

k , 1 ] , Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 2 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 3 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 4 ] ) , ( ( sum ( n ) /2) � n1 ) / T . , T . )

Y. b e g i n i n g 1 <� r b i n d (Y. beg in ing11 , Y. b e g i n i n g 1 2 )

y1<�y1+ as . v e c t o r ( t (Y. b e g i n i n g 1 ) )

geeglm . simu <� geeglm ( f o r m u l a = y1 ˜ x1 + r1 + x1 : r1 ,

f a m i l y = p o i s s o n ( l i n k = ” l o g ” ) ,

i d = ID ,

c o r s t r = ” a r 1 ” ,

s c a l e . f i x = FALSE)

b e t a i n 0 = geeglm . s i m u $ c o e f f i c i e n t s [ 1 ]

b e t a i n 1 = geeglm . s i m u $ c o e f f i c i e n t s [ 2 ]
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b e t a i n 2 = geeglm . s i m u $ c o e f f i c i e n t s [ 3 ]

b e t a i n 3 = geeglm . s i m u $ c o e f f i c i e n t s [ 4 ]

b e t a i n =c ( b e t a i n 0 , b e t a i n 1 , b e t a i n 2 , b e t a i n 3 )

#N i s t h e number o f c l u s t e r s

N<�l e n g t h ( c o u n t s s $ I D )

#p i s t h e number o f p a r a m e t e r s

p<�l e n g t h ( b e t a i n )

a c c u r a c y <� 0 .0 01

e r r o r <�1

# i t e r a i s t h e number o f i t e r a t i o n s

i t e r a <�0

w h i l e ( e r r o r >a c c u r a c y ){

I0 <�0; I1 <�0; I2<�0

i t e r a <� i t e r a +1

f o r ( i i n 1 : l e n g t h ( i d u a ) ) {

# n i i s t h e number o f members i n t h e i t h c l u s t e r

ni<�l e n g t h ( c l u s t e r [ [ i ] ] $ID )

x . f u l l <�c b i n d ( 1 , c l u s t e r [ [ i ] ] $x ,

c l u s t e r [ [ i ] ] $r , c l u s t e r [ [ i ] ] $x⇤ c l u s t e r [ [ i ] ] $ r )

z . f u l l <�c b i n d ( 1 , c l u s t e r [ [ i ] ] $x )

y<�as . v e c t o r ( c l u s t e r [ [ i ] ] $y )

G<�m a t r i x ( c ( gg$vcov [ 1 ] , 0 , 0 , gg$vcov [ 2 ] ) , nrow =2 , n c o l = 2 )

mu<� l i s t ( )

j =0

f o r ( i i n 1 : nrow ( x . f u l l ) ) {

mu [ [ i ] ] <� as . v e c t o r ( x . f u l l [ i , ]%⇤% b e t a i n +
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t ( z . f u l l [ i ,])%⇤%G%⇤%z . f u l l [ i , ] )

}

M <� d i a g (mu)

##################################

## Update b e t a

#####################################

mu <� c (mu [ [ 1 ] ] , mu [ [ 2 ] ] , mu [ [ 3 ] ] , mu [ [ 4 ] ] )

D<�M%⇤%x . f u l l

H0 . be t a<� m a t r i x ( r e p ( 0 , p⇤p ) , nrow=p , n c o l =p )

H1 . be t a<� m a t r i x ( r e p ( 0 , p ) , nrow=p , n c o l =1)

Ri . Matr ix<�m a t r i x ( rho , nrow=ni , n c o l = n i )

d i a g ( Ri . Ma t r i x )<�1

T.<�4

J <� m a t r i x ( c ( 1 ) , T . , T . )

Vi . Matr ix<�M%⇤%exp ( z . f u l l%⇤%G%⇤%t ( z . f u l l )� J)%⇤%M+

(M)%⇤%Ri . Ma t r i x

H0 . be t a<�H0 . b e t a + t (D)%⇤% ginv ( Vi . Ma t r i x)%⇤%D

H1 . be t a<� H1 . b e t a + t (D)%⇤% ginv ( Vi . Ma t r i x ) %⇤%((y�mu ) )

I 0 i n <�( t (D)%⇤%ginv ( Vi . Ma t r i x)%⇤%D)

I0<�( I0 + I 0 i n )
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I 1 i n<�t (D)%⇤%ginv ( Vi . Ma t r i x )%⇤%(y�mu)

I1<�I1 + I 1 i n

I 2 i n<�t (D)%⇤%ginv ( Vi . Ma t r i x )%⇤%(y�mu)%⇤% t ( y�mu)%⇤%

ginv ( Vi . M a t r i x)%⇤%D

I2<�I2 + I 2 i n

}

# sigma2 . d e l t a <�(y�mu . new ) ˆ 2 / ( N�p )

b e t a . new<� ( b e t a i n + g inv ( I2 ) %⇤% H1 . b e t a )

f o r ( i i n 1 : nrow ( x . f u l l ) ) {

mu . new <� as . v e c t o r ( x . f u l l [ i , ]%⇤% b e t a . new +

t ( z . f u l l [ i ,])%⇤%G%⇤%z . f u l l [ i , ] )

}

# rho <�((y [ i ]�mu . new)%⇤% t ( y [ i ]�mu . new ) )

rho <� 0

e r r o r <�sum ( ( b e t a . new�b e t a i n ) ˆ 2 )

b e t a i n <�b e t a . new

mu <�mu . new

i f ( ! ( i t e r a <25)) p r i n t ( ” I t e r a t i o n s > 25” )

i f ( ! ( i t e r a <25))

r e t u r n ( l i s t ( Converge =” E r r o r ” ) )

}

beta00cm1 [ [ l ] ] = b e t a . new [ 1 ]

beta11cm1 [ [ l ] ] = b e t a . new [ 2 ]

beta22cm1 [ [ l ] ] = b e t a . new [ 3 ]

beta33cm1 [ [ l ] ] = b e t a . new [ 4 ]

}
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r o b u s t <�(g inv ( I0 )%⇤%( I2)%⇤%ginv ( I0 ) )

b e t a .GEEM. cm1=c ( mean ( beta00cm1 ) , mean ( beta11cm1 ) ,

mean ( beta22cm1 ) , mean ( beta33cm1 ) )

sd . cm1=c ( sd ( beta00cm1 ) , sd ( beta11cm1 ) , sd ( beta22cm1 ) ,

sd ( beta33cm1 ) )

s . e . cm1=c ( sd [ 1 ] / s q r t (C .M1) , s q r t ( sd [ 2 ] / ( C .M1) ) , sd [ 3 ] / s q r t (C .M1) ,

sd [ 4 ] / s q r t (C .M1) )

se . be t a<�s q r t ( ( ( d i a g ( r o b u s t ) ) [ 1 : p ] ) ) / N

b e t a . f i t . cm1<�c b i n d ( b e t a = b e t a . new , S . E=( se . b e t a )

,M. C . E s t i m a t e = b e t a .GEEM. cm1 , M. C . S . E=( s . e . cm1 ) ,

M. C . S .D=( sd . cm1 ) )

co lnames ( b e t a . f i t . cm1)<�c ( ” E s t i m a t e ” , ”S . E . ” ,

”M. C . E s t i m a t e ” , ”M. C . S . E” , ”M. C . S .D” )

R e s u l t . cm1= l i s t ( Converge =”YES” , Beta = round ( b e t a . f i t . cm1

, 4 ) , N u m b e r o f I t e r a t i o n s = i t e r a )

r e t u r n ( R e s u l t . cm1 )

}

GEE . Mixed . Simu ( sim . long . c ou n t 1 )

• A sample of complete code that gives the result shown in Table 3.1 when K = 50.

## G e n e r a t e c o r r e l a t e d c o u n t d a t a

s e t . s eed ( 1 )

k <� 50 ; T.<�4;

be ta0<�3

be ta1 <�.5

be ta2<�1

be ta3 <�.2

n<�r e p ( 4 , k )
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n1=16

z1= m a t r i x ( 1 , sum ( n ) , 1 )

y1= m a t r i x ( 0 , sum ( n ) , 1 )

x1= m a t r i x ( 0 : 3 , sum ( n ) , 1 )

r11 = m a t r i x ( 0 , ( sum ( n ) /2) � n1 , 1 )

r12 = m a t r i x ( 1 , ( sum ( n ) / 2 ) + n1 , 1 )

r1 = r b i n d ( r11 , r12 )

marg ins <� c ( ” Po i ” , ” Po i ” , ” Po i ” , ” Po i ” )

r a n e f . c o v a r = d i a g ( c ( . 4 , . 3 ) )

b .11= rmvnorm ( n =1 , s igma= r a n e f . c o v a r )

mu1 <� c ( exp ( b e t a 0 + b e t a 1 ⇤x1 [ 1 ] + b e t a 2 ⇤ r1 [ 1 ] + b e t a 3 ⇤x1 [ 1 ]⇤ r1 [ 1 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 1 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 2 ] + b e t a 2 ⇤ r1 [ 2 ] + b e t a 3 ⇤x1 [ 2 ]⇤ r1 [ 2 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 2 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 3 ] + b e t a 2 ⇤ r1 [ 3 ] + b e t a 3 ⇤x1 [ 3 ]⇤ r1 [ 3 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 3 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 4 ] + b e t a 2 ⇤ r1 [ 4 ] + b e t a 3 ⇤x1 [ 4 ]⇤ r1 [ 4 ]

+b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 4 ] ) )

c o r s t r <� ” u n s t r ”

c o r p a r 1<�m a t r i x ( c ( 1 , 0 . 4 , 0 . 6 , 0 . 7 ,

0 . 4 , 1 , 0 . 6 , 0 . 3 7 ,

0 . 6 , 0 . 6 , 1 , 0 . 6 ,

0 . 7 , 0 . 3 7 , 0 . 6 , 1 ) , n c o l =T . , byrow=T . )

Y. b e g i n i n g 1 <� r c o u n t s (N=k , marg ins = margins , mu=mu1 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing11<�m a t r i x ( c (Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 1 ] ,
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Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 2 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 3 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 4 ] ) , ( ( sum ( n ) / 2 ) + n1 ) / T . , T . )

mu2 <� c ( exp ( b e t a 0 + b e t a 1 ⇤x1 [ 1 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]

+ b e t a 3 ⇤x1 [ 1 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 1 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 2 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]

+ b e t a 3 ⇤x1 [ 2 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 2 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 3 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+

b e t a 3 ⇤x1 [ 3 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 3 ] ) ,

exp ( b e t a 0 + b e t a 1 ⇤x1 [ 4 ] + b e t a 2 ⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]

+ b e t a 3 ⇤x1 [ 4 ]⇤ r1 [ ( sum ( n ) / 2 ) + n1 ]+ b . 1 1 [ 1 , 1 ] + b . 1 1 [ 1 , 2 ] ⇤ x1 [ 4 ] ) )

Y. b e g i n i n g 2 <� r c o u n t s (N=k , marg ins = margins , mu=mu2 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing12<�m a t r i x ( c (Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . )

+ 1 ) : k , 1 ] , Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 2 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 3 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 4 ] ) , ( ( sum ( n ) /2) � n1 ) / T . , T . )

Y. b e g i n i n g 1 <� r b i n d (Y. beg in ing11 , Y. b e g i n i n g 1 2 )

y1<�y1+ as . v e c t o r ( t (Y. b e g i n i n g 1 ) )

id1<�m a t r i x ( r e p ( seq ( 1 : k ) , 4 ) )

o p t i o n s ( warn = �1 )

ID= as . m a t r i x ( r e p ( 1 : k , n ) , n , 1 )

d a t 1 = l i s t ( x1=x1 , y1=y1 , z1=z1 , ID=ID , r1 = r1 )

sim . lo ng . count1<�as . d a t a . f rame ( c b i n d ( ID , y1 , x1 , z1 , r1 ) )

names ( sim . lon g . c o u n t 1)<�c ( ” ID ” , ” y1 ” , ” x1 ” , ” z1 ” , ” r1 ” )
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GEE . Mixed . Simu2<�f u n c t i o n ( sim . long . cou n t 1 ){

da t1<�d a t a . f rame ( i d = sample ( sim . long . count1$ID , k⇤T . , r e p =F ) )

c o u n t s s<� sim . lo ng . co u n t 1 %>%

group by ( ID ) %>%

do ( d a t a . f rame ( nrow=nrow ( . ) ) )

# S p l i t t h e d a t a i n t o t h e c l u s t e r s .

# Each s b j e c t i s d e f i n e d as a ” l i s t ”

c l u s t e r <� l i s t ( )

idua<�u n iq u e ( sim . lo ng . count1$ID )

f o r ( i i n 1 : l e n g t h ( i d u a ) )

c l u s t e r [ [ i ]]<�sim . lo ng . co un t 1 [ sim . long . count1$ID == i d u a [ i ] , ]

y<�sim . lon g . coun t1$y1

x<�as . m a t r i x ( sim . l ong . coun t1$x1 )

r<�sim . lon g . c o u n t 1 $ r 1

z<�as . m a t r i x ( sim . l ong . coun t1$x1 )

M. C=5000

b e t a 0 0 .GEEM2G= numer ic (M. C)

b e t a 1 1 .GEEM2G= numer ic (M. C)

b e t a 2 2 .GEEM2G= numer ic (M. C)

b e t a 3 3 .GEEM2G= numer ic (M. C)

v a r . b0= numer ic (M. C)

v a r . b1= numer ic (M. C)
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f o r ( l i n 1 :M. C){

Y. b e g i n i n g 1 <� r c o u n t s (N=k , marg ins = margins , mu=mu1 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing11<�m a t r i x ( c (Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 1 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 2 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 3 ] ,

Y. b e g i n i n g 1 [ 1 : ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) , 4 ] ) , ( ( sum ( n ) / 2 ) + n1 ) / T . , T . )

Y. b e g i n i n g 2 <� r c o u n t s (N=k , marg ins = margins , mu=mu2 , c o r s t r = c o r s t r ,

c o r p a r = c o r p a r 1 )

Y. beg in ing12<�m a t r i x ( c (Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 )

+n1 ) / T . ) + 1 ) : k , 1 ] , Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 2 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 3 ] ,

Y. b e g i n i n g 2 [ ( ( ( ( sum ( n ) / 2 ) + n1 ) / T . ) + 1 ) : k , 4 ] ) , ( ( sum ( n ) /2) � n1 ) / T . , T . )

Y. b e g i n i n g 1 <� r b i n d (Y. beg in ing11 , Y. b e g i n i n g 1 2 )

y1<�y1+ as . v e c t o r ( t (Y. b e g i n i n g 1 ) )

g l m e r L a p l a c e . simu <� glmmML( f o r m u l a = y1 ˜ x1 + r1 + x1 : r1 ,

f a m i l y = p o i s s o n , c l u s t e r = ID )

beta0GEEM2G= g l m e r L a p l a c e . s i m u $ c o e f f i c i e n t s [ 1 ]

beta1GEEM2G= g l m e r L a p l a c e . s i m u $ c o e f f i c i e n t s [ 2 ]

beta2GEEM2G= g l m e r L a p l a c e . s i m u $ c o e f f i c i e n t s [ 3 ]
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beta3GEEM2G= g l m e r L a p l a c e . s i m u $ c o e f f i c i e n t s [ 4 ]

betainGEEMG=c ( beta0GEEM2G , beta1GEEM2G , beta2GEEM2G ,

beta3GEEM2G )

# I n i t i a l v a r i a n c e o f random e f f e c t s

g l m e r L a p l a c e . simu <� glmer ( f o r m u l a = y1 ˜ x1 + r1 + x1 : r1 + ( x1 | ID ) ,

d a t a = sim . long . count1 ,

f a m i l y = p o i s s o n ( l i n k = ” l o g ” ) ,

nAGQ = 1)

g<�as . d a t a . f rame ( VarCorr ( g l m e r L a p l a c e . simu ) )

G<�m a t r i x ( c ( gg$vcov [ 1 ] , 0 , 0 , gg$vcov [ 2 ] ) , nrow =2 , n c o l = 2 )

r and . e f f . b<�m a t r i x ( c ( gg$vcov [ 1 ] , gg$vcov [ 2 ] ) , nrow =2 , n c o l = 1 )

U0=c ( betainGEEMG , ran d . e f f . b )

#N i s t h e number o f c l u s t e r s

N<�l e n g t h ( c o u n t s s $ I D )

#p i s t h e number o f p a r a m e t e r s

p<�l e n g t h ( betainGEEMG )

a c c u r a c y <� 0 .0 0 1

e r r o r <�1

# i t e r a i s t h e number o f i t e r a t i o n s

i t e r a <�0

w h i l e ( e r r o r >a c c u r a c y ){

I0 <�0; I1 <�0; I2<�0

i t e r a <� i t e r a +1

f o r ( i i n 1 : l e n g t h ( i d u a ) ) {

# n i i s t h e number o f members i n t h e i t h c l u s t e r

ni<�l e n g t h ( c l u s t e r [ [ i ] ] $ID )



101

# n i i i s t h e number o f e l e m e n t s i n t h e i t h column of mat ix D

n i i <�(n i ⇤ ( n i �1)) /2+1

x . f u l l <�c b i n d ( 1 , c l u s t e r [ [ i ] ] $r , c l u s t e r [ [ i ] ] $x , c l u s t e r [ [ i ] ] $x⇤ c l u s t e r [ [ i ] ] $ r )

z . f u l l <�c b i n d ( 1 , c l u s t e r [ [ i ] ] $x )

y<�as . v e c t o r ( c l u s t e r [ [ i ] ] $y )

q<�l e n g t h ( z . f u l l [ 1 , ] )

u1<� c ( ( c l u s t e r [ [ i ] ] $y1 ) ˆ 2 )

u2<�c ( ( c l u s t e r [ [ i ] ] $y1 [ j ] ) ⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 1 ] ) ,

( c l u s t e r [ [ i ] ] $y1 [ j ] ) ⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 2 ] ) ,

( c l u s t e r [ [ i ] ] $y1 [ j ] ) ⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 3 ] ) ,

( c l u s t e r [ [ i ] ] $y1 [ j + 1 ] )⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 2 ] ) ,

( c l u s t e r [ [ i ] ] $y1 [ j + 1 ] )⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 2 ] ) ,

( c l u s t e r [ [ i ] ] $y1 [ j + 2 ] )⇤ ( c l u s t e r [ [ i ] ] $y1 [ j + 3 ] ) )

u<�c ( u1 , u2 )

mu<� l i s t ( )

f o r ( j i n 1 : nrow ( x . f u l l ) ) {

mu [ [ j ] ] <� as . v e c t o r ( x . f u l l [ j , ]%⇤%betainGEEMG +

t ( z . f u l l [ j ,])%⇤%G%⇤%z . f u l l [ j , ] )

}

M1 <� d i a g (mu)
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mu <� c (mu [ [ 1 ] ] , mu [ [ 2 ] ] , mu [ [ 3 ] ] , mu [ [ 4 ] ] )

lambda . i <� c (mu [ [ 1 ] ] ˆ 2 , mu [ [ 2 ] ] ˆ 2 , mu [ [ 3 ] ] ˆ 2 , mu [ [ 4 ] ] ˆ 2 , mu [ [ 1 ] ] ⇤mu [ [ 2 ] ] ,

mu [ [ 2 ] ] ⇤mu [ [ 3 ] ] , mu [ [ 3 ] ] ⇤mu [ [ 4 ] ] )

M2 <� d i a g ( lambda . i )

##################################

## Update b e t a

#####################################

zz . f u l l <�m a t r i x ( c ( z . f u l l [ 1 , ] ˆ 2 , z . f u l l [ 2 , ] ˆ 2 , z . f u l l [ 3 , ] ˆ 2 , z . f u l l [ 4 , ] ˆ 2 ,

z . f u l l [ 1 , ] ⇤ z . f u l l [ 2 , ] , z . f u l l [ 2 , ] ⇤ z . f u l l [ 3 , ] , z . f u l l [ 3 , ] ⇤ z . f u l l [ 4 , ] ) , 7 , 2 )

DX<�M1%⇤%x . f u l l

DZ<�M2%⇤%zz . f u l l

n . X<�p ; n . Z<�q

D11<�m a t r i x ( r e p ( 0 , n i ⇤n .X) , nrow=ni , n c o l =n .X)

D12<�m a t r i x ( r e p ( 0 , n i ⇤n . Z ) , nrow=ni , n c o l =n . Z )

D21<�m a t r i x ( r e p ( 0 , n i i ⇤n .X) , nrow= n i i , n c o l =n .X)

D22<�m a t r i x ( r e p ( 0 , n i i ⇤n . Z ) , nrow= n i i , n c o l =n . Z )

D<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( n .X+n . Z ) ) , nrow= n i + n i i , n c o l =n .X+n . Z )

V11<�m a t r i x ( r e p ( 0 , n i ⇤ n i ) , nrow=ni , n c o l = n i )

V12<�m a t r i x ( r e p ( 0 , n i ⇤ n i i ) , nrow=ni , n c o l = n i i )

V21<�m a t r i x ( r e p ( 0 , n i i ⇤ n i ) , nrow= n i i , n c o l = n i )

V22<�m a t r i x ( r e p ( 0 , n i i ⇤ n i i ) , nrow= n i i , n c o l = n i i )

V<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( n i + n i i ) ) , nrow= n i + n i i , n c o l = n i + n i i )
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S11<�m a t r i x ( r e p ( 0 , n i ⇤1 ) , nrow=ni , n c o l =1)

S21<�m a t r i x ( r e p ( 0 , n i i ⇤1 ) , nrow= n i i , n c o l =1)

S<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( 1 ) ) , nrow= n i + n i i , n c o l =1)

H0<� m a t r i x ( r e p ( 0 , ( n . Z+n .X) ⇤ ( ( n . Z+n .X ) ) ) , nrow =( n . Z+n .X) , n c o l =( n . Z+n .X) )

H1<� m a t r i x ( r e p ( 0 , ( n . Z+n .X) ) , nrow =( n . Z+n .X) , n c o l =1)

Ri . s igma2 . d e l t a <� m a t r i x ( r e p ( 0 , n i i ˆ 2 ) , nrow= n i i )

d i a g ( Ri . s igma2 . d e l t a )<�1

Ri . Matr ix<�m a t r i x ( 0 , nrow=ni , n c o l = n i )

d i a g ( Ri . Ma t r i x )<�1

T.<�4

J <� m a t r i x ( c ( 1 ) , T . , T . )

Vi . Matr ix<�M1%⇤%exp ( z . f u l l%⇤%G%⇤%t ( z . f u l l )� J)%⇤%M1+(M1)

%⇤%Ri . Ma t r i x

D11<�DX

D12<�m a t r i x ( r e p ( 0 , n i ⇤n . Z ) , nrow=ni , n c o l =n . Z )

D21<�m a t r i x ( r e p ( 0 , n i i ⇤n .X) , nrow= n i i , n c o l =n .X)

D22<�DZ

D<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( n .X+n . Z ) ) , nrow= n i + n i i , n c o l =n .X+n . Z )

V11<�Vi . Ma t r i x
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V12<�m a t r i x ( r e p ( 0 , n i ⇤ n i i ) , nrow=ni , n c o l = n i i )

V21<�m a t r i x ( r e p ( 0 , n i i ⇤ n i ) , nrow= n i i , n c o l = n i )

V22<�Ri . s igma2 . d e l t a

V<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( n i + n i i ) ) , nrow= n i + n i i , n c o l = n i + n i i )

S11<�y�mu

S21<�u�lambda . i

S<�m a t r i x ( r e p ( 0 , ( n i + n i i ) ⇤ ( 1 ) ) , nrow= n i + n i i , n c o l =1)

D[ 1 : ni , 1 : n .X]<�D[ 1 : ni , 1 : n .X]+D11

D[ 1 : ni , ( n .X+ 1 ) : ( n .X+n . Z)]<�D[ 1 : ni , ( n .X+ 1 ) : ( n .X+n . Z ) ] + D12

D[ ( 1 + n i ) : ( n i + n i i ) , 1 : n .X]<�D[ ( 1 + n i ) : ( n i + n i i ) , 1 : n .X]+D21

D[ ( 1 + n i ) : ( n i + n i i ) , ( n .X+ 1 ) : ( n .X+n . Z)]<�D[ ( 1 + n i ) : ( n i + n i i ) ,

( n .X+ 1 ) : ( n .X+n . Z ) ] + D22

V[ 1 : ni , 1 : n i ]<�V[ 1 : ni , 1 : n i ]+V11

V[ 1 : ni , ( n i + 1 ) : ( n i + n i i )]<�V[ 1 : ni , ( n i + 1 ) : ( n i + n i i ) ] + V12

V[ ( 1 + n i ) : ( n i + n i i ) , 1 : n i ]<�V[ ( 1 + n i ) : ( n i + n i i ) , 1 : n i ]+V21

V[ ( 1 + n i ) : ( n i + n i i ) , ( n i + 1 ) : ( n i + n i i )]<�V[ ( 1 + n i ) : ( n i + n i i ) , ( n i + 1 ) : ( n i + n i i ) ] + V22

S [ 1 : ni , 1]<�S [ 1 : ni , 1]+ S11

S [ ( 1 + n i ) : ( n i + n i i ) , 1]<�S [ ( 1 + n i ) : ( n i + n i i ) , 1]+ S21

H0<�H0+ t (D)%⇤% gin v (V) %⇤%D

H1<�H1+ t (D)%⇤% gin v (V) %⇤%(S )
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I 0 i n<�t (D)%⇤%V%⇤%D

I0<�I0 + I 0 i n

I 1 i n<�t (D)%⇤%V%⇤%S

I1<�I1 + I 1 i n

I 2 i n<�t (D)%⇤%V%⇤%S%⇤%t ( S)%⇤%V%⇤%D

I2<�I2 + I 2 i n

}

U1<� U0 � g inv ( H0 ) %⇤% H1

f o r ( i i n 1 : nrow ( x . f u l l ) ) {

mu . new <� as . v e c t o r ( x . f u l l [ i , ]%⇤% b e t a . new + t ( z . f u l l [ i ,])%⇤%G%⇤%z . f u l l [ i , ] )

}

# rho <�((y [ i ]�mu . new)%⇤% t ( y [ i ]�mu . new ) )

rho <� 0

e r r o r <�sum ( ( U1�U0 ) ˆ 2 )

U0<�U1

mu <�mu . new

i f ( ! ( i t e r a <25)) p r i n t ( ” I t e r a t i o n s > 25” )

i f ( ! ( i t e r a <25))

r e t u r n ( l i s t ( Converge =” E r r o r ” ) )

}

b e t a 0 0 .GEEM2G[ [ l ] ] = U1 [ 1 ]

b e t a 1 1 .GEEM2G[ [ l ] ] = U1 [ 2 ]

b e t a 2 2 .GEEM2G[ [ l ] ] = U1 [ 3 ]

b e t a 3 3 .GEEM2G[ [ l ] ] = U1 [ 4 ]
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v a r . b0 [ [ l ] ] = U1 [ 5 ]

v a r . b1 [ [ l ] ] = U1 [ 6 ]

}

betaGEEMG=c ( mean ( b e t a 0 0 .GEEM2G) , mean ( b e t a 1 1 .GEEM2G) ,

mean ( b e t a 2 2 .GEEM2G) , mean ( b e t a 3 3 .GEEM2G) ,

mean ( v a r . b0 ) , mean ( v a r . b1 ) )

sdGEEMG=c ( sd ( b e t a 0 0 .GEEM2G) , sd ( b e t a 1 1 .GEEM2G) ,

sd ( b e t a 2 2 .GEEM2G) , sd ( b e t a 3 3 .GEEM2G) ,

sd ( v a r . b0 ) , sd ( v a r . b1 ) )

seGEEMG=c (sdGEEMG [ 1 ] / s q r t (M. C) , s q r t (sdGEEMG [ 2 ] / (M. C ) ) ,

sdGEEMG [ 3 ] / s q r t (M. C) , sdGEEMG [ 4 ] / s q r t (M. C) ,

sdGEEMG [ 5 ] / s q r t (M. C) , sdGEEMG [ 6 ] / s q r t (M. C) )

betaFitGEEMG<�c b i n d ( b e t a =betaGEEMG , S .D = (sdGEEMG) ,

S . E=(seGEEMG ) )

co lnames ( betaFitGEEMG)<�c ( ” E s t i m a t e ” , ” S .D” , ”S . E . ” )

R e s u l t = l i s t ( Be ta = round ( betaFitGEEMG , 1 0 ) )

r e t u r n ( R e s u l t )

}

GEE . Mixed . Simu2 ( sim . lon g . cou n t 1 )
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