
THE ENERGY GOODNESS-OF-FIT TEST AND E-M TYPE ESTIMATOR FOR
ASYMMETRIC LAPLACE DISTRIBUTIONS

John Haman

A Dissertation

Submitted to the Graduate College of Bowling Green 
State University in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2018

Committee:

Maria Rizzo, Advisor

Joseph Chao,
Graduate Faculty Representative

Wei Ning

Craig Zirbel



Copyright c©2018 

John Haman

All rights reserved



iii
ABSTRACT

Maria Rizzo, Advisor

Recently the asymmetric Laplace distribution and its extensions have gained attention in the

statistical literature. This may be due to its relatively simple form and its ability to model skew-

ness and outliers. For these reasons, the asymmetric Laplace distribution is a reasonable candidate

model for certain data that arise in finance, biology, engineering, and other disciplines. For a prac-

titioner that wishes to use this distribution, it is very important to check the validity of the model

before making inferences that depend on the model. These types of questions are traditionally

addressed by goodness-of-fit tests in the statistical literature.

In this dissertation, a new goodness-of-fit test is proposed based on energy statistics, a widely

applicable class of statistics for which one application is goodness-of-fit testing. The energy

goodness-of-fit test has a number of desirable properties. It is consistent against general alter-

natives. If the null hypothesis is true, the distribution of the test statistic converges in distribution

to an infinite, weighted sum of Chi-square random variables. In addition, we find through simula-

tion that the energy test is among the most powerful tests for the asymmetric Laplace distribution

in the scenarios considered.

In studying this statistic, we found that the current methods for parameter estimation of this

distribution were lacking, and proposed a new method to calculate the maximum likelihood esti-

mates of the multivariate asymmetric Laplace distribution through the expectation-maximization

(E-M) algorithm. Our proposed E-M algorithm has a fast computational formula and often yields

parameter estimates with a smaller mean squared error than other estimators.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

The asymmetric Laplace distribution has proven to be useful for modeling a variety of data,

and has so far enjoyed applications in fields such as engineering (Rossi and Spazzini, 2010;

Lindsey and Lindsey, 2006), finance (Kozubowski and Podgórski, 2001; Levin and Tchernitser,

2003), quality control (Peterson and Silver, 1979), astronomy (Norris, Nemiroff, Bonnell,

Scargle, Kouveliotou, Paciesas, Meegan, and Fishman, 1996), biology (Uppuluri, 1981), and

environmental sciences (Fieller, 1993). The breadth of these applications shows that there is a

need to apply simple, parametric models in situations where the Normal distribution may fail to

be adequate.

One question that is central to modeling with a parametric assumption is “how well does my

data actually match the distribution?” The solutions to questions of this type are answered in the

field of goodness-of-fit testing, which helps practitioners select a candidate model from a set of

plausible models. Selection of a reasonable statistical model is important to ensuring the validity

of all statistical procedures that depend on that model. Goodness-of-fit tests have also been

developed in the context of regression analysis, but in this dissertation we will focus on the

goodness-of-fit of a distribution to a random sample. The purpose of a random sample

goodness-of-fit test is to measure the plausibility that a hypothesized distribution generated the

data of interest. If the plausibility is relatively low, then one may consider a different distribution

as a model for the random sample.

Historically, much work on goodness-of-fit testing has been pointed at the Normal

distribution, however we will develop a set of goodness-of-fit tests for the hypothesis that data are

generated from the Laplace distribution and its extensions. In this chapter, the Laplace

distribution and an extension called the asymmetric Laplace distribution are detailed. We present
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properties and characterizations of the asymmetric Laplace distribution, and detail two common

estimation methods.

1.2 Laplace Distribution

The symmetric Laplace distribution may be characterized by a density function with two

parameters. The parameter θ regulates location, and σ regulates scale.

Definition 1.2.1. (symmetric Laplace density)

Let x ∈ R, θ ∈ R, and σ ≥ 0, then

f (x;θ ,σ) =
1√
2σ

e−
√

2
σ
|x−θ |

is the density of the symmetric Laplace distribution.

The distribution is historically important as the first probability distribution on the unbounded

real line making it a precursor to the Normal distribution, appearing in Laplace (1774), four years

prior to Laplace’s discovery of the Normal distribution in 1778 (Wilson, 1923). For this reason,

the Laplace distribution is sometimes called the First Laplace Law and the Normal distribution is

called the Second Laplace Law. For analytical and practical reasons, the Normal distribution has

received far greater attention than the Laplace distribution.

However the Laplace distribution did receive attention from economist John Maynard Keynes

in (Keynes, 1911) wherein Keynes argued the Laplace distribution minimizes the absolute

deviation from the median. This is in contrast to the Normal distribution which minimizes the

squared deviation from the mean. Keynes’ analysis that the median is the “most probable value”

for the symmetric Laplace distribution’s location parameter precedes Ronald Fisher’s maximum

likelihood technique introduced in 1912. Keynes did not include details about the support set or

parameter space of the class of distributions he considered.

An alternative means of characterizing the Laplace distribution is through its characteristic

function (CF).
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Definition 1.2.2. The CF of a Laplace random variable Y is given by

φY (t) = E[exp(itY )] =
eitθ

1+ 1
2σ2t2

.

Interestingly, this expression for the CF of a Laplace random variable is similar in form to the

density of a Cauchy random variable.

1.3 Characterizations and Parameterizations of Asymmetric Laplace Distributions

A simple way to extend the Laplace distribution to a three parameter family is to include a

skewness parameter. The presence of a skewness parameter controls the amount of probability

that is assigned to either tail of the distribution. If one tail of the distribution is “enlarged”, the

other tail must be “shrunk” to ensure that the distribution remains proper.

Definition 1.3.1. (asymmetric Laplace distribution)

A random variable Y is said to have an asymmetric Laplace distribution denoted

A L (θ ,µ,σ) if there exist parameters θ ∈ R, µ ∈ R, and σ ∈ R+ such that the CF of Y has the

form

φY (t) = E[exp(itY )] =
eiθ t

1+ 1
2σ2t2− iµt

.

The CF of the asymmetric Laplace distribution is similar to that of the classical Laplace

distribution, with the addition of the term “−iµt” in the denominator. While the form of the CF is

relatively simple, we will frequently make use of a change of variables to reparameterize the

distribution when the data are univariate.

The following observations about the asymmetric Laplace distribution were made in Kotz,

Kozubowski, and Podgorski (2001).

• If µ = σ = 0 the distribution is degenerate, as the CF φ(t) = eiθ t is degenerate at θ . The

distribution places a probability mass of 1 at θ and 0 elsewhere.

• If θ = σ = 0 the distribution is exponential with mean µ .
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• If µ = 0 and σ 6= 0 the distribution is exactly the symmetric Laplace distribution with mean

θ and variance σ2.

1.3.1 Asymmetric Laplace Reparameterization

Frequently, it is useful to reparameterize the distribution, trading µ for a new parameter, κ .

The substitution follows from factoring the denominator of the CF 1.3.1,

φY (t) = eiθ t

(
1

1+ iσκ√
2
t

)(
1

1− i σ√
2κ

t

)
=

eiθ t

1+ 1
2σ2t2− i σ√

2
( 1

κ
−κ)t

. (1.3.2)

We denote the asymmetric Laplace distribution under the (θ ,κ,σ) parameterization as

A L ∗(θ ,κ,σ).

The parameter κ is related to µ and σ in the following manner:

κ =

√
2σ

µ +
√

2σ2 +µ2
and µ =

σ√
2

(
1
κ
−κ

)
. (1.3.3)

For analytical purposes, we will require the density and distribution functions of the asymmetric

Laplace distribution.

Definition 1.3.4. ((θ ,κ,σ) parameterization) Let f (·;θ ,κ,σ) denote the density function of an

A L ∗(θ ,κ,σ) random variable. Then

f (x;θ ,κ,σ) =

√
2

σ

κ

1+κ2


exp{−

√
2κ

σ
|x−θ |}, if x≥ θ ;

exp{−
√

2
σκ
|x−θ |}, if x < θ .

Remark 1.3.5. The derivative of f does not exist at x = θ .

Definition 1.3.6. Let F(·;θ ,κ,σ) denote the distribution function of an A L ∗(θ ,κ,σ) random

variable. Then

F(x;θ ,κ,σ) =


1− 1

1+κ2 exp{−
√

2κ

σ
|x−θ |}, if x≥ θ ;

κ2

1+κ2 exp{−
√

2
σκ
|x−θ |}, if x < θ .
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Definition 1.3.7. Let F−1(·;θ ,κ,σ) denote the quantile function of an A L ∗(θ ,κ,σ) random

variable respectively. Then

F−1(p;θ ,κ,σ) =


θ + σκ√

2
log
(

1+κ2

κ2 p
)
, if p ∈

(
0, κ2

1+κ2

]
;

θ − σ√
2κ

log
(
(1+κ2)(1− p)

)
, if p ∈

(
κ2

1+κ2 ,1
)
.

(1.3.8)

Fernández and Steel (1998) proposed a general method for introducing skewness to a

symmetric distribution by introducing inverse scale factors to the positive and negative support of

the distribution. The transformation is given by

f (x)→ f (x;k) =
2κ

1+κ2


f (xκ), x≥ 0;

f (x/κ), x < 0.
(1.3.9)

When f is the density of the symmetric Laplace distribution, we obtain the density

f (x;θ ,s,κ) =
1
s

κ

1+κ2


exp
(
−κ

s (x−θ)
)
, x≥ 0;

exp
( 1

κs(x−θ)
)
, x < 0,

(1.3.10)

which agrees with the asymmetric Laplace density given in Definition 1.3.4 under s = σ√
2
.

1.3.2 Quantile Regression Parameterization

In addition to the (θ ,µ,σ) and (θ ,κ,σ) parameterizations, there is also a common

parameterization used in the quantile regression literature (Sánchez, Lachos, and Labra, 2013;

Koenker, 2005).

Definition 1.3.11.

f (x;θ ,s, p) =
p(1− p)

s
exp
(
−ρp

(
x−θ

s

))
, (1.3.12)

where

ρp(t) = t(p−1(−∞,0)(t)). (1.3.13)
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The function 1C(x) = 1 if x ∈C and 0 otherwise. This is a preferable parameterization in the

quantile regression setting because the parameter p ∈ (0,1) explicitly assigns p probability to the

right tail.

1.3.3 Rizzo-Haman Parameterization

A convenient parameterization is used in Rizzo and Haman (2016). Let us identify

pκ =
1

1+κ2 , qκ =
κ2

1+κ2 , (1.3.14)

and

λ =

√
2κ

σ
. β =

√
2

κσ
. (1.3.15)

In this notation the asymmetric Laplace density of definition 1.3.4 becomes

f (y;θ ,κ,σ) = λ pκ


exp(−λ |y−θ |) , y≥ θ ;

exp(−β |y−θ |) . y < θ .

(1.3.16)

The distribution function is

F(y;θ ,κ,σ) =


1− pκ exp(−λ |y−θ |) , y≥ θ ;

qκ exp(−β |y−θ |) , y < θ .

(1.3.17)

1.4 Properties of Asymmetric Laplace Distributions

Under parameterization given in Definition 1.3.4, if κ = 1, we have the symmetric Laplace

distribution. Parameterization (1.3.16) allows one to write the density and distribution functions

of the asymmetric Laplace distribution in a less cumbersome manner.
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Parameter Definition Value
Mean E[Y ] θ +µ

Variance E[Y −E[Y ]]2 σ2 +µ2

Median F−1(0.5;θ ,κ,σ)

θ + σ√
2κ

log
(

2
1+κ2

)
, κ ≤ 1

θ − σκ√
2

log
(

2κ2

1+κ2

)
, κ > 1

Mean Absolute Deviation E|Y −E[Y ]|
√

2σ exp(κ2−1)
1+κ2

Table 1.1 Common parameter values for a A L (θ ,µ,σ) or A L ∗(θ ,κ,σ) distribution

Various density curves of the asymmetric Laplace distribution are shown in Figure 1.1. One

can see that as the skewness parameter κ decreases from 1 to 0, the distribution places an

increasing amount of probability on the right tail.

1.5 Representations of Asymmetric Laplace Distribution

In this section we present various characterizations of the A L ∗(θ ,κ,σ) distribution and

show how the characterizations may be used to generate asymmetric Laplace random variables.

Because the distribution function given in Definition 1.3.6 is closed form, the probability inverse

transform (Devroye, 1986) may be used. Otherwise, random variates may be drawn from other

distributions mentioned in Proposition 1.5.1 below to generate asymmetric Laplace random

variates.

The representation given in Proposition 1.5.1 shows that an asymmetric Laplace random

variate is related to a Normal random variate with stochastic (Exponential) mean and variance.

Proposition 1.5.1. Let Y be an A L (θ ,µ,σ) random variable, let Z be a standard Normal

random variable, and let W, W1 and W2 be independent exponential random variables with mean

1. Then

Y d
= θ +µW +σ

√
WZ d

= θ +
σ√

2

(
1
κ

W2−κW1

)
. (1.5.2)

The notation “ d
=” denotes equality in distribution.
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Figure 1.1 Asymmetric Laplace densities with σ = 1 and κ = 1 (black), 0.7, 0.5, 0.4, 0.3, 0.2, 0.1,
0.01 (pink).
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Proof. The proof is due to Kotz et al. (2001). Begin by computing the CF of the right hand side.

Note that the density of W is given by f (w) = e−w. Then

E(exp{it(θ +µW +σ
√

WZ)}) = E[E(eit(θ+µW+σ
√

WZ))|W ]

=
∫

∞

0
eitθ+itµwE[eitσ

√
wZ]e−wdw.

(1.5.3)

Now we note that E[eitσ
√

wZ] = φZ(σ
√

wt) = e
−1
2 t2σ2w. So,

E(exp{it(θ +µW +σ
√

WZ)}=
∫

∞

0
eitθ+itµw− 1

2 t2σ2w−w

=
eitθ

1+ 1
2t2σ2− itµ

.
(1.5.4)

Remark 1.5.5. From proposition 1.5.1, Y d
= θ + σ√

2

( 1
κ

W2−κW1
)
. Because W d

=− log(U), where

U ∼ Uniform[0,1]. Letting U1,U2 ∼ Uniform[0,1], we also have that Y d
= θ + σ√

2
log
(

Uκ
1

U1/κ

2

)
.

The symbol “∼” is taken to mean “distributed as”.

Proposition 1.5.6. Let Y ∼A L ∗(θ ,κ,σ) with θ = 0 and σ = 1, and let (X1,X2) and (X3,X4) be

independent bivariate Normal random variables with mean zero and variance - covariance

matrix

Σ =
1

2κ

1+κ2 1−κ2

1−κ2 1+κ2

 , (1.5.7)

then Y d
= X1X2 +X3X4.

1.6 Parameter Estimation

We are aware of two methods of parameter estimation in the literature for the asymmetric

Laplace distribution, Method of Moments (MM) and maximum likelihood (ML). We will discuss

each of these methods in this section. The deficiencies of the ML method are demonstrated but an

improvement is proposed in Chapter 4.
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Representation Variables
θ +µW +

√
WZ Z ∼N (0,1), W ∼ Exp(1), Z,W independent

θ + 1√
2

( 1
κ

W1−κW2
)

W1,W2 i.i.d.∼ Exp(1)

θ + 1√
2

log
(

Uκ
1

U1/κ

2

)
U1,U2 i.i.d.∼ Uniform[0,1]

X1X2 +X3X4 (X1,X2),(X3,X4) i.i.d. N2(0,Σ) where Σ is given in Proposition 1.5.7

Table 1.2 Common Representations of Y ∼A L ∗(θ ,κ,σ).

1.6.1 Method of Moments

MM estimators (Casella and Berger, 2002) have closed form solutions for the parameters of

the asymmetric Laplace distribution. For simplicity we assume the location parameter θ is known

and without loss of generality equal to 0. In this case (Kotz et al., 2001) show that the MM

estimates of µ and σ are given by

µ̃ =
1
n

n

∑
i=1

Xi

and

σ̃ =

√
1
n

n

∑
i=1

X2
i −2X̄2

where X̄ = 1
n ∑

n
i=1 Xi.

1.6.2 Maximum Likelihood Estimation

The ML estimation problem for asymmetric Laplace data has been given thorough treatment

in Kotz et al. (2001). We will describe the two most common scenarios; when the location

parameter θ is known, and when none of the parameters are known a priori.
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1.6.3 Location Parameter Known

The density of a random variable X ∼A L ∗(θ ,κ,σ) is given in Definition 1.3.4. The

likelihood function of the parameters θ , σ , and κ under this distribution is given by

L(θ ,κ,σ) =
2n/2

σn
κn

(1+κ2)
n exp

(
−
√

2κ

σ

n

∑
i=1

(xi−θ)+−
√

2
κσ

n

∑
i=1

(xi−θ)−

)
, (1.6.1)

where

(xi−θ)+ =


xi−θ if xi ≥ θ ;

0 if xi ≤ θ ,

and

(xi−θ)− =


θ − xi if xi ≤ θ ;

0 if xi ≥ θ .

The log likelihood is therefore

`(θ ,κ,σ) =
n
2

log(2)−n log(σ)+n log
(

κ

1+κ2

)
−
√

2
σ

(
κ

n

∑
i=1

(xi−θ)++
1
κ

n

∑
i=1

(xi−θ)−

)
.

(1.6.2)

A simplification of ` is given, which will be useful for the purpose of optimization. Let

Q(κ,σ) = log(κ)− log(1+κ
2)− log(σ)−

√
2

σ

[
κ,

1
κ

]
Z̄, (1.6.3)

where

Z̄ =
1
n

n

∑
i=1

Z(i) =

[
1
n

n

∑
i=1

Z(i)
1 ,

1
n

n

∑
i=1

Z(i)
2

]′
=

[
1
n

n

∑
i=1

(xi−θ)+,
1
n

n

∑
i=1

(xi−θ)−

]′
.

There are three cases to consider;

1. x(1) < θ < x(n),

2. θ < x(1), and
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3. θ > x(n).

Cases 2 and 3 are dealt with in detail on p. 167 of Kotz et al. (2001). In case 2, the parameters

that maximize the likelihood are κ = 0 and σ = 0. In case 3, κ = ∞ and σ = 0 jointly maximize

the likelihood. Clearly, these solutions are not admissible because they do not lie in parameter

space of (σ ,κ). However it is plausible to conclude that the underlying distribution in these cases

is a single tailed exponential distribution.

Case 3 admits a genuine solution. Taking derivatives,

∂Q(κ,σ)

∂σ
=− 1

σ
+

√
2

σ2

[
κ,

1
κ

]
Z̄ = 0;

∂Q(κ,σ)

∂κ
=

1
κ
− 2κ

1+κ2 −
√

2
σ

[
1,− 1

κ2

]
Z̄ = 0.

(1.6.4)

Equivalently, we can write [
−κ,

1
κ2

]
Z̄ = 0;

√
2
[

κ,
1
κ

]
Z̄ = σ .

(1.6.5)

The system of equations (1.6.5) admits the following explicit solutions for κ̂ and σ̂ (Kotz,

Kozubowski, and Podgórski, 2002)

κ̂ =
4
√

β (θ)
4
√

α(θ)
, (1.6.6)

and

σ̂ =
√

2 4
√

α(θ) 4
√

β (θ)
(√

α(θ)+
√

β (θ)
)
. (1.6.7)

1.6.4 Unknown Parameters

We consider the case where no parameters are known a priori. This scenario was first studied

in Hartley and Revankar (1974) and Hinkley and Revankar (1977). To optimize the likelihood

function, we may maximize the log-likelihood function `(θ ,κ,σ), which is equivalent to
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maximizing the function

`′(θ ,κ,σ) =− log(σ)+ log
(

κ

1+κ2

)
−
√

2
σ

(
κα(θ)+

1
κ

β (θ)

)
, (1.6.8)

where the functions α and β are given by

α(θ) =
1
n

n

∑
i=1

(xi−θ)1xi>θ (θ) and β (θ) =
1
n

n

∑
i=1

(xi−θ)1xi<θ (θ). (1.6.9)

As in Section 1.6.3, we consider three separate cases.

1. x(1) < θ < x(n),

2. θ < x(1), and

3. θ > x(n).

We may disregard situations (2) and (3) because, while θ technically has an unrestricted

parameter space R, if θ̂ does not lie within the range of the data, the asymmetric Laplace

distribution may provide a poor fit to the data.

Now consider the parameter estimates σ̂ and κ̂ from equations (1.6.7) and (1.6.6) derived

from the case in which the parameter θ is known. If θ̂ > x(1) and θ̂ < x(n) then α(θ)> 0 and

β (θ)> 0. Therefore,

`′(θ ,κ,σ)≤ `′(θ , σ̂ , κ̂) (1.6.10)

which is equivalent to

`′(θ ,κ,σ)≤ g(θ), (1.6.11)

where

g(θ) =− log(
√

2)−2log
(√

α(θ)+
√

β (θ)
)
−
√

α(θ)
√

β (θ). (1.6.12)

We will show that it is sufficient to examine the reduced function (1.6.12) rather than work with

the original reduced log-likelihood function `′. After determining the value of θ that maximizes
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the function g, we can recalculate the parameter estimates σ̂ and κ̂ using θ̂ = argmaxg(θ). We

restrict our attention to the function g when θ ∈ (x(1),x(n)). We may instead consider minimizing

the function

h(θ) = 2log
(√

α(θ)+
√

β (θ)
)
+
√

α(θ)
√

β (θ). (1.6.13)

Lemma 1.6.14. The function h (1.6.13) is continuous on the closed interval [x(1),x(n)] and

concave down on each of the subintervals (x(i),x(i+1)) for i = 1,2, . . . ,n−1.

In light of Lemma 1.6.14, the function h has a local minimum at each of the points

x(1), . . . ,x(n). A global minimum must lie in this finite set.

We may check for the global minimum using exhaustion and set θ̂ = x(r) where

x(r) = argmin(h(x(i))), i = 1, . . . ,n. (1.6.15)

Once the global minimum x(r) is determined, the maximum likelihood estimators of the

remaining parameters may be computed by maximizing function (1.6.10). We find using

techniques from calculus that

κ̂ =

4
√

β (θ̂)

4
√

α(θ̂)
(1.6.16)

and

σ̂ =
√

2 4
√

α(θ̂)
4
√

β (θ̂)

(√
α(θ̂)+

√
β (θ̂)

)
(1.6.17)

1.6.5 Deficiencies in Maximum Likelihood Estimation

A simulation is performed to examine the applicability of the maximum likelihood estimators

detailed in Section 1.6.4. In this simulation study, the sample size is allowed to vary within

{30,50,100,200}, and the skewness parameter within the set κ ∈ {1,1.1,1.2,1.5,2,3,5,10}. The

effect of increasing the parameter κ corresponds to a greater left skew.

For each κ , n deviates from a A L ∗(θ = 0,κ,σ =
√

2) distribution are drawn, and the ML

estimators of Section 1.6.4 are computed. The process is repeated 500 times and the ML
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parameter estimate of κ is recorded. If θ̂ = x(1) or θ̂ = x(n), an admissible ML estimate of κ does

not exist, so κ̂ is recorded as NA.

One of the striking findings of the simulation is that frequently the ML estimates fail to exist,

even under moderate skewness and sample size. Table 1.3 shows the results of the simulation:

each cell contains the estimated probability that bona fide ML estimates can be determined from

genuine asymmetric Laplace data. For a fixed κ , it is clear that frequently the estimates of θ̂ fall

on the first or last order statistic, leading in estimates of κ and σ that do not lie in their respective

parameter spaces. Even under the assumption that there is no skewness present in the data

(κ = 1), we still find that parameter estimation fails 25% of the time in samples of size 30. The

problem is clearly exacerbated as κ increases. Larger sample sizes may be taken as a

countermeasure against this estimation failure, but in practice, situations where additional data

collection is possible are unlikely. The findings of this simulation were impetus for developing

κ = 1 1.1 1.2 1.5 2 3 5 10
n = 30 0.252 0.290 0.250 0.158 0.050 0.002 0.000 0.000

50 0.514 0.504 0.466 0.382 0.100 0.002 0.000 0.000
100 0.838 0.836 0.816 0.630 0.428 0.040 0.000 0.000
200 0.982 0.976 0.974 0.906 0.706 0.274 0.000 0.000

Table 1.3 Estimated probability A L ∗ ML estimates exist

alternative parameter estimation techniques with attractive finite sample properties, which are

discussed in Chapter 4.

Fragiadakis and Meintanis (2009) found that a modification to the function h in

equation 1.6.13 may lead to more reliable maximum likelihood estimates. They consider

minimizing the function

h′(θ) = 2log
(√

β (θ)+
√

α(θ)
)

(1.6.18)

over each of the sample order statistics x(1), . . . ,x(n) to arrive at the ML estimate of location,

θ̂ = x(r) = argmin(h′(x(i)), i = 1, . . . ,n. A graphical comparison of functions (1.6.13) and (1.6.18)

is shown in Figure 1.2 for a sample data set of 10 observations from the
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Figure 1.2 Plot of functions (1.6.13) and (1.6.18) for a random sample of size 10 from A L ∗(θ =
0,σ =

√
2,κ = 1

2)

A L ∗(θ = 0,κ = 1
2 ,σ =

√
2) distribution. In this case, we can observe that the two objective

functions choose the same estimate of θ̂ .

We find that the estimates of the parameters chosen by optimizing (1.6.18) tend to exist more

frequently than those chosen by the ML method of Kotz et al. (2001). Fragiadakis and Meintanis

(2009) also claim that the estimators (θ̂ , σ̂ , κ̂) are more accurate and efficient, but it is difficult to

validate this claim when the ML estimators detailed in (Kotz et al., 2001) frequently fail to exist.

A simulation study was performed to ascertain the frequency of existence under the same

conditions that produced Table 1.3. The findings are shown in Table 1.4. Comparison of Tables

1.3 and 1.4 make it clear that using the new objective function (1.6.18) yields legitimate

estimators more often.
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κ = 1 1.1 1.2 1.5 2 3 5 10
n = 30 0.978 0.960 0.964 0.882 0.710 0.378 0.088 0.050

50 1.000 1.000 1.000 0.982 0.926 0.622 0.248 0.046
100 1.000 1.000 1.000 0.998 0.994 0.902 0.446 0.058
200 1.000 1.000 1.000 1.000 1.000 0.994 0.804 0.194

Table 1.4 Estimated probability A L ∗ maximum likelihood estimates exist (using 1.6.18)
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CHAPTER 2 REVIEW OF EXISTING GOODNESS OF FIT TESTS

In this chapter, we review previous work developed to test the goodness-of-fit hypothesis for

asymmetric Laplace distribution. Many goodness-of-fit tests are developed with some generality

and applied specifically to this distribution.

The goodness-of-fit problem for asymmetric Laplace distributions may be formulated as

follows. Let X1, . . . ,Xn be independent and identically distributed observations from a distribution

F . Then two types of null hypotheses are typically considered:

H0 : F = A L ∗(θ = θ0,κ = κ0,σ = σ0),

where the ordered triple of parameters (θ0,κ0,σ0) is specified. or

H0 : F ∈A L ∗(θ ,κ,σ).

This second hypothesis corresponds to the case where the parameters (θ ,κ,σ) are all or partially

unknown. In the literature, the first type of null hypothesis is known as a simple hypothesis and

the second type of hypothesis is known as a composite hypothesis. Although these hypotheses

look similar in notation, in practice they require different treatment. It is important to be mindful

about the meaning of the decision of these tests. A rejection of the hypothesis means that data are

not consistent with the distribution F : It is unlikely that F could have generated the data

X1, . . . ,Xn. However a failure to reject the hypothesis doesn’t imply F generated the data, nor does

it imply that F is the best fit for the data. Thus, a goodness-of-fit test may not provide an absolute

indication of the usefulness of a parametric model, but may help practitioners select from a set of

possible models.
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Figure 2.1 Comparison of the EDF (blue) of a random sample of 50 observations from A L ∗(θ =
0,σ =

√
2,κ = 1/2) to the true distribution function (red)

2.1 Tests Based on the Empirical Distribution Function

The oldest and most widely used goodness-of-fit tests are based on empirical distribution

functions. Many of these tests have a general form that makes them applicable to a wide range of

distributions.

The empirical distribution function (EDF) is

F̂n(x) =
1
n

n

∑
i=1

1xi≤x. (2.1.1)

These functions approximate the true distribution function of the data by a step-wise function.

Use of EDFs is justified by the strong law of large numbers and the Glivenko-Cantelli theorem,

which states that under the null hypothesis, the empirical distribution function converges

uniformly to F , the true distribution function, as sample size n tends to infinity.
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Therefore, to test the hypothesis of the data being generated by a specific distribution, one

may check that the distance between the EDF and hypothesized distribution function is small.

Theorem 2.1.2. Glivenko-Cantelli Theorem

||F̂n(x)−F(x)||∞ = sup
x∈R
|F̂n(x)−F(x)| a.s.→ 0

as n→ ∞.

The left-hand side of Theorem 2.1.2 is the test statistic of the Kolmogorov-Smirnov test for

the hypothesis H0 : X1, . . . ,Xn ∼ F (William, 1971; Durbin, 1973),

Dn = sup
x∈R
|F̂n(x)−F(x)|.

When Dn is larger than the critical value Kα,n, we reject the hypothesis that the data was

generated by the distribution F at the α significance level. That is, there is evidence that the data

X1, . . . ,Xn do not arise from the hypothesized distribution F .

Other measures of distance between the EDF and the hypothesized distribution function have

also been proposed based on replacing the sup norm in Theorem 2.1.2 with the L2 norm:

∫
R

n(F̂n(x)−F(x))2w(x)dF(x), (2.1.3)

where w(x) is a weight function. When w(x) = 1, the statistic is the Cramer-von Mises statistic.

When w(x) = (F(x)(1−F(x)))−1, the statistic is the Anderson-Darling statistic (DasGupta,

2008). The weight function used in Anderson-Darling distance has the effect of placing more

weight on outliers in the data. The statistical distances (2.1.3) are implemented by transforming

the original order statistics X(1), . . . ,X(n) to uniform order statistics u(i) = F(x(i)) and computing

the following goodness-of-fit statistics.
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Figure 2.2 Illustration of Kolmogorov-Smirnov statistic Dn. The hypothesized distribution (red) is
A L ∗(5,2,

√
2)
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The Cramer-von Mises statistic (D’Agostino and Stephens, 2017):

Cn =
1

12n
+

n

∑
i=1

(
2i−1

2n
−F(x(i))

)2

, (2.1.4)

or the Anderson-Darling test statistic (D’Agostino and Stephens, 2017):

An =−n− 1
n

(
n

∑
i=1

(2i−1)(log(F(x(i)))+ log(1−F(xn−i+1)))

)
. (2.1.5)

Performing goodness-of-fit tests with the statistics Cn and An is similar to using the statistic

Dn; large values of the test statistics lead to a rejection of the null hypothesis at the prescribed

level α . Puig and Stephens (2007) detail steps to test the composite hypothesis of asymmetric

Laplacity.

A comparison of the Anderson-Darling, Cramer-von Mises, and Kolmogorov Smirnov test

was studied by Chen (2002), concluding that the Anderson Darling test is the overall most

powerful against the alternatives considered when the null hypothesis is the Laplace distribution.

However, Chen did not include the asymmetric Laplace distribution in the study.

2.2 Tests Based on the Empirical Characteristic Function

Goodness-of-fit tests based on the empirical characteristic function present an alternative

method to testing the goodness-of-fit hypothesis.

The empirical characteristic function (ECF) of a sample x1, . . . ,xn is given by

φ̂(t) =
1
n

n

∑
j=1

exp
(
itx j
)
, (2.2.1)

where i =
√
−1. Under the null hypothesis, we expect the ECF to be close to the hypothesized

CF, under some measure of distance between functions.

A goodness-of-fit test for the asymmetric Laplace based on the ECF was introduced in

Fragiadakis and Meintanis (2009), although they consider a different parameterization of the
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distribution, with the CF

φY (t) =
exp(iθ t)

1+σ2t2− i(1
k − k)σt

, (2.2.2)

which is only minimally different than the CF given in Definition 1.3.2. Under this

parameterization, if the hypothesis of asymmetric Laplacity is true

D(t|θ ,κ,σ)≡
(

1+σ
2t2− i

(
1
κ
−κ

)
t
)

φY (t)− exp(iθ t) = 0. (2.2.3)

So a reasonable goodness-of-fit test can rely on computing the deviation from 0 of the

D(t|θ ,κ,σ) from the standardized sample Zi =
Xi−θ̂

σ̂
. Use of this transformation is justified

because the parameters θ and σ are location and scale parameters. Because the maximum

likelihood estimates of these parameters are consistent (Kotz et al., 2001), the standardized

sample tends to the A L ∗(θ = 0,σ = 1,κ) distribution. Therefore the function

D̂(t|κ̂) =
(

1+ t2− i
(

1
κ̂
− κ̂

)
t
)

φ̂Z(t)−1 (2.2.4)

tends to 0 under the hypothesis H0 : F ∈A L . The test statistic to measure the deviation from 0

is

T̂w = n
∫
R
|D̂(t|κ̂)|2w(t) dt, (2.2.5)

where the function w(t) is a weight function. The statistic 2.2.5 may be computed as

T̂w =
1
n

n

∑
j,k=1

[
I(4)c (z j− zk)+

(
2+
(

1
κ̂
− κ̂

)2
)

I(2)c (z j− zk)+ I(0)c (z j− zk)

]

+nI(0)c (0)−2
n

∑
j=1

[
I(2)c (z j)+

(
1
κ̂
− κ̂

)
Is(z j)+ I(0)c (z j)

] (2.2.6)

where

I(m)
c (b) =

∫
R

tm cos(bt)w(t) dt, m = 0,2,4, (2.2.7)
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and

Is(b) =
∫
R

t sin(bt)w(t) dt. (2.2.8)

The statistic T̂w is most convenient when w admits the integrals (2.2.7) and (2.2.8) with closed

form expressions. Fragiadakis and Meintanis (2009) recommend using w(t) = exp(−a|t|).

Because the distribution of the test statistic (2.2.6) depends on the transformed data Z1, . . . ,Zn

and the unknown skewness parameter κ , the decision boundary of the test statistic cannot be

tabulated. Rather, it needs to be investigated computationally for each sample depending on the

skewness estimate κ̂ . Fragiadakis and Meintanis (2009) propose the following method, relying on

a parametric bootstrap. The procedure is as follows:

1. Given the sample X1, . . . ,Xn, compute the parameter estimates (θ̂ , σ̂ , κ̂) and the

standardized data Z1, . . . ,Zn,

2. Calculate the test statistics Tw based on the Zi’s and parameter estimates.

3. (a) Generate a bootstrap sample Z∗1 , . . . ,Z
∗
n ∼A L ∗(θ = 0,κ = κ̂,σ = 0).

(b) Calculate the test statistic T ∗w based on the bootstrapped data and the parameter

estimates (θ = θ̂ ∗,κ = κ̂∗,σ = σ̂∗).

Repeat steps (a) and (b) M times, to calculate M bootstrap replicates of T ∗w .

4. Obtain the level α decision boundary, CTw , the (1−α)-quantile of T ∗w,1, . . . ,T
∗

w,M.

Simulations presented in Fragiadakis and Meintanis (2009) show their ECF test can be

slightly more powerful than the AD test in certain situations. Unfortunately a tuning parameter

needs to be set in the weight function w(t) = exp(−a|t|) which complicates the use of this test.

The most appropriate value of the tuning parameter a depends on the distribution of the sample

data, which generally won’t be known in practice. Even if the distribution of the data is known

(for example, in a simulation study) a search still needs to be performed to find an appropriate

value for a. For these two reasons, we don’t consider this ECF test as appropriate as the

traditional, general tests such as Anderson-Darling and Kolmorgorov-Smirnov.



25

2.3 Other Goodness-of-Fit tests for Laplace Distribution

Visual inspection of Probability-Probability (P-P) plots or Quantile-Quantile (Q-Q) plots is a

reasonable method for assessing the goodness-of-fit of a data set to a distribution. These visual

tests serve in particular as excellent methods for diagnosing poor goodness-of-fit in the tails of the

distribution. We recommend the use of Q-Q plots to practitioners that seek to answer questions of

“Is my data close to being asymmetric Laplace?” rather than the binary goodness-of-fit question

that is studied in this dissertation.

Choi and Kim (2006) suggest a goodness-of-fit test for the symmetric Laplace distribution

based on its maximum entropy property. They show through simulation that their entropy based

test is more powerful than EDF tests against several skewed and non-skew alternative hypotheses.

The author is not aware of an attempt to extend this type of goodness-of-fit test to the asymmetric

Laplace distribution. Other tests for the goodness-of-fit hypothesis for the symmetric Laplace

distribution exist, for example Yen and Moore (1988) and Rublı́k (1997), but neither of these tests

have been extended to the asymmetric case.
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CHAPTER 3 UNIVARIATE ENERGY STATISTICS

In this chapter, a new goodness-of-fit test for the univariate asymmetric Laplace distribution is

presented based on energy distance between the ECF and the asymmetric Laplace CF given in

Definition 1.3.1. New results for the distance standard deviation of the asymmetric Laplace

distribution are also shown. An energy goodness-of-fit test for the generalized asymmetric

Laplace distribution (also called the Variance Gamma distribution) is derived under a parameter

restriction.

3.1 Energy Distance Preliminaries

Energy distance, first described in (Székely, 2000), is a statistical distance between

distributions. Functions of energy distances are called energy statistics. The name energy refers to

the inherent “potential” energy of the data with respect to a hypothesized distribution.

Justification for usage of the term “energy” can be found in Székely and Rizzo (2013).

Definition 3.1.1. (Energy Distance, Székely and Rizzo (2013))

The energy distance between two independent d-dimensional random variables X and Y is

E (X ,Y ) = 2E||X−Y ||d−E||X−X ′||d−E||Y −Y ′||d, (3.1.2)

provided E||X ||< ∞, E||Y ||< ∞. Here X ′ is an i.i.d. copy of X and Y ′ is an i.i.d. copy of Y .

Remark 3.1.3. When d = 1 the norms || · || in (3.1.2) are absolute values,

E (X ,Y ) = 2E|X−Y |−E|X−X ′|−E|Y −Y ′|.

Remark 3.1.4. The observations need not lie in space Rd . Energy distance generalizes to

separable Hilbert spaces as long as the underlying metric is conditionally negative definite

(Székely and Rizzo, 2017).



27
Energy distance measures the statistical potential energy between two distributions. We liken

statistical distributions in a probability space to physical objects in the universe. As Newton’s

relative potential energy between objects in space is large when the bodies are far apart,

intuitively, if two distributions are dissimilar, their statistical energy is large as well. When two

statistical distributions have energy distance equal to 0, the distributions must agree. This matches

the physical notion that potential energy of an object with respect to itself is 0. These ideas are

stated in greater detail in Székely and Rizzo (2017).

Theorem 3.1.5. (Energy distance properties)

1. E (X ,Y )≥ 0

2. E (X ,Y ) = 0 if and only if X d
= Y .

The square root of energy distance is a metric on the space of d-dimensional distribution

functions (Székely and Rizzo, 2017) and therefore is suitable to handling hypotheses of the form

H0 : F = G, where F and G are distribution functions. Suppose X and Y are random variables

with CFs φX(t) and φY (t). The distance between two characteristic functions may be measured

using a weighted integral, ∫
R
|φX(t)−φY (t)|2w(t) dt. (3.1.6)

According to Székely and Rizzo (2005), energy distance E (X ,Y ) is related to distance between

CFs.

Proposition 3.1.7. If d-dimensional random variables X and Y are independent with finite first

absolute moments and CFs φX(t) and φY (t), then their energy distance is

E (X ,Y ) =
1
cd

∫
R

|φX(t)−φY (t)|2

||t||d+1
d

dt, (3.1.8)

where

cd =
π(d+1)/2

Γ(d+1
2 )

. (3.1.9)
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3.1.1 One Sample Univariate Energy Goodness-of-Fit Test

Energy statistics may be formulated as V -statistics or U-statistics. It is traditional to write

energy statistics as V -statistics to ensure the non-negativity of the statistic. Preventing the statistic

from attaining negative values allows us to more closely identify energy distance as a statistical

distance. However, the use of V -statistics does introduce bias in the estimation of energy distance.

Suppose a univariate random sample X1, . . . ,Xn is collected. Let h : R×R→ R be a

symmetric kernel function. Then energy statistics may be defined as a V -statistic

Vn =
1
n2

n

∑
i=1

n

∑
j=1

h(Xi,X j) (3.1.10)

or U-statistic

Un =
1

n(n−1)

n

∑
i=1

n

∑
j=1, j 6=i

h(Xi,X j) (3.1.11)

where the kernel function h is given by

h(x,y) = E|x−Y |+E|y−Y |−E|Y −Y ′|− |x− y| (3.1.12)

for the one sample goodness-of-fit test. Under the hypothesis H0 : F = G, E[h(x,Y )] = 0, so the

kernel is said to be degenerate.

Use of this statistic for the energy goodness-of-fit test is bolstered by the theory of V-statistics.

Because the kernel h of the statistic En is degenerate, E[h2(Y,Y ′)]< ∞, the limiting distribution of

the test statistic Qn = nEn is an infinite quadratic form

Qn→
∞

∑
i=1

λiZ2
i , (3.1.13)

where the Zi are i.i.d. standard Normal random variables and the coefficients λi are solutions to

the integral equations ∫
R

h(x,y)ψi(y)dF(y) = λiψi(y), (3.1.14)
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where h is the kernel function defined in equation (3.1.12) and ψi ∈ L2 are called eigenfunctions.

If the weight function w(t) in equation (3.1.6) is 1/πt2, we arrive at the expression considered in

Rizzo (2002):

Qn = n
∫
R
|φ̂(t)−φF(t)|

1
πt2 dt. (3.1.15)

3.2 Energy Statistic for Asymmetric Laplace Distribution

The asymmetric Laplace energy statistic depends on the derivation of E|y−Y | and E|Y −Y ′|.

These expectations were first derived in Rizzo and Haman (2016).

Proposition 3.2.1. If Y ∼A L ∗(θ ,σ ,κ), then for any fixed y ∈ R

E|y−Y |=


y−θ −µ + 2pκ

λ
exp(−λ |y−θ |), y≥ θ ;

−y+θ +µ + 2qκ

β
exp(−β |y−θ |), y < θ .

(3.2.2)

Proof. (Rizzo and Haman (2016), Appendix)

Suppose that Y ∼A L ∗(θ ,κ,σ) and x ∈ R is constant. Then

E|x−Y |=
∫

x≤y
(y− x) fY (y)dy+

∫
x>y

(x− y) fY (y)dy

= x(2FY (x)−1)−E(Y )+2
∫

∞

x
y fY (y)dy (3.2.3)

= x(2FY (x)−1)+E(Y )−2
∫ x

−∞

y fY (y)dy. (3.2.4)

Case 1: x≥ θ . In this case y≥ x≥ θ in the integrand in (3.2.3), so that

∫
∞

x
y fY (y)dy =

∫
∞

x
ypκλe−λ |y−θ |dy =

pκ

λ
e−λ |x−θ |(λx+1).
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Thus (3.2.3) can be simplified to

E|x−Y |= x(2(1− pκe−λ |x−θ |)−1)−E(Y )− pκ

λ
e−λ |x−θ |(λx+1)

= x−θ −µ +
2pκ

λ
e−λ |x−θ |, x≥ θ .

Case 2: x < θ . In this case y≤ x < θ in the integrand in (3.2.4), so that

∫ x

−∞

y fY (y)dy =
∫ x

−∞

ypκλe−β |y−θ |dy =
pκλ

β 2 e−β |x−θ |(xβ −1).

Hence using (3.2.4) we have

E|x−Y |= x(2FY (x)−1)+E(Y )−2
∫ x

−∞

y fY (y)dy

= x
(

2qκe−β |x−θ |−1
)
+θ +µ− 2pκλ

β 2 e−β |x−θ |(xβ −1)

=−x+θ +µ−2xe−β |x−θ |
(

qκ −
pκλ

β

)
+

2λ pκ

β 2 e−β |x−θ |

=−x+θ +µ +
2qκ

β
e−β |x−θ |, x < θ .

In the last step we used the identities qκβ = pκλ and λ pκ

β 2 = qκ

β
.

Proposition 3.2.5. If Y ∼A L ∗(θ ,κ,σ) or Y ∼A L (θ ,µ,σ) where µ = σ√
2
( 1

κ
−κ), then

E|Y −Y ′|= pκ

β
+

qκ

λ
+

p2
κ

λ
+

q2
κ

β
. (3.2.6)

=
σ√

2

(
k+

1
k
− 1

k+ 1
k

)
(3.2.7)

=
σ√

2

√4+
2µ2

σ2 −
1√

4+ 2µ2

σ2

 . (3.2.8)

Proof. (Rizzo and Haman (2016), Appendix)
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Generally we can suppose that θ = 0. Then if Y ∼A L ∗(0,κ,σ) we have E|Y −Y ′|= L+U,

where, by Proposition 3.2.2,

L =
∫ 0

−∞

(−y+µ +
2qκ

β
e−β |y|) · pκλe−β |y|dy

=
qκ

β
+µqκ +

qκλ

β 2 =
qκ

β
+µqκ +

q2
κ

β
,

and

U =
∫

∞

0
(y−µ +

2pκ

λ
e−λ |y|) · pκλe−λ |y|dy =

pκ

λ
−µ pκ +

p2
κ

λ
.

Observe that µ =
√

2
σ
(k− 1

k ) implies µ = 1
λ
− 1

β
. Substituting, we obtain

E|Y −Y ′|= qκ

β
+

pκ

λ
+

q2
κ

β
+

p2
κ

λ
+µ(qκ − pκ)

=
qκ

β
+

pκ

λ
+

q2
κ

β
+

p2
κ

λ
+

qκ

λ
− qκ

β
− pκ

λ
+

pκ

β

=
pκ

β
+

qκ

λ
+

p2
κ

λ
+

q2
κ

β
.

To prove (3.2.6) we substitute pκ = β

λ+β
, qκ = λ

λ+β
, and apply several identities of the type

λ

β
= κ2, λ +β =

√
2

σ
(k+ 1

k ), etc. After lengthy algebraic manipulation we obtain (3.2.7):

pκ

β
+

qκ

λ
+

p2
κ

λ
+

q2
κ

β
=

σ√
2

(
k+

1
k
− 1

k+ 1
k

)

and the right hand side equals (3.2.8) using another identity

√
4+

2µ2

σ2 = k+
1
k
.
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The one-sample, univariate energy V -statistic for performing a goodness-of-fit test was

introduced in Székely (2000):

nÊ (y1, . . . ,yn,X) = n

(
2
n

n

∑
i=1

E|X− yi|−E|X−X ′|− 1
n2

n

∑
i=1

n

∑
j=1
|yi− y j|

)
(3.2.9)

The statistic depends on the sample y1, . . . ,yn and the hypothesized distribution Fx. A

goodness-of-fit test statistic based on the energy statistic 3.2.9 and Propositions 3.2.5 and 3.2.1 is

Q̂n ≡ nÊ (y1, . . . ,yn,X) = 2
n

∑
i=1


yi−θ −µ + 2pκ

λ
exp(−λ |yi−θ |), yi ≥ θ

−yi +θ +µ + 2qκ

β
exp(−β |yi−θ |), yi < θ

(3.2.10)

−n
(

pκ

β
+

qκ

λ
+

p2
κ

λ
+

q2
κ

β

)
− 1

n

n

∑
i=1

n

∑
j=1
|yi− y j|.

where X represents an asymmetric Laplace random variable with parameters θ , µ , λ , β , pκ , and

qκ . The energy statistic (3.2.10) has a simple computational form that is amenable to computer

implementation. The double sum ∑
n
i, j=1 |yi− y j| can be linearized to improve the computational

speed of the energy test. Following Rizzo (2002), we may use

n

∑
i=1

n

∑
j=1
|yi− y j|= 2

n

∑
k=1

((2k−1)−n)y(k) (3.2.11)

to modify the univariate energy statistic. The notation y(k) denotes the kth order statistic of the

sample y1, . . . ,yn. This amounts to a reduction in computational complexity from O(n2) to

O(n log(n)) because of sorting time.

3.3 Univariate Energy Goodness-of-Fit Simulations

In this section, we consider the empirical power of the univariate energy test for the

asymmetric Laplace distribution compared to other popular tests: Anderson-Darling (AD),

Cramer von-Mises (CvM), and Kolmogorov Smirnov (KS). Multiple testing scenarios are
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considered in this simulation study, but all scenarios have a similar procedure, which is presently

described:

1. For a given sample size n and α = P(Type I error), generate data under an alternative

distribution.

2. Calculate the energy test statistic Q̂n for the asymmetric Laplace distribution, and any other

applicable test statistics such as the AD statistic An (2.1.5), CvM statistic Cn (2.1.4), and the

KS statistic Dn.

3. Calculate the p-value of each statistic, compare it to α , and record the result of the test.

4. Repeat steps (1) — (3) a large number of times.

The AD and CvM tests were conducted using the R library goftest (Faraway, Marsaglia,

Marsaglia, and Baddeley, 2017), and the KS test was implemented with the function ks.test()

from the R library stats (R Core Team, 2018). We take α = 0.1 for all tests.

3.3.1 Simple Hypotheses

We investigate the power of the energy test for the asymmetric Laplace distribution under the

simple hypothesis. Under the simple hypothesis, we consider the parameters of the distribution to

be known. Therefore, the test may be written

H0 : Fn ∼A L (θ0,σ0,κ0) (3.3.1)

In these tests, we take θ0 = 0 and σ0 = 1, and the number of simulation replicates is 5000.

p-values for the energy test are obtained via “on-the-fly” Monte Carlo with 200 replicates. The

standard error of each empirical power estimate is
√

p(1−p)
5000 < 0.5√

5000
= 0.007.

Figure 3.1 shows the power of the energy test against other tests when the skewness parameter

κ is misspecified in samples of size 30. Under the null hypothesis, y1, . . . ,y30 ∼A L ∗(0,1,1).

The alternative is that y1, . . . ,y30 ∼A L ∗(0,1,κ). Under the null hypothesis, the model is
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symmetric Laplace. We observe that the energy test and the Anderson-Darling tests are

essentially equally powerful. All tests empirically control the Type I error rate close to α = 0.1.

Figure 3.2 shows a similar scenario in which we consider κ = 2 under the null hypothesis.

Under this hypothesis, we find that the energy test performs better than alternative tests when the

alternative distribution’s κ exceeds 2. Otherwise the energy test is very competitive with the

existing goodness-of-fit tests.

Figure 3.3 shows the empirical Type I errors rates of the four tests considered in this

simulation. We find that in larger samples of size 250 or 500 the energy, KS, and AD tests control

the type I error rate close to the nominal level. We observe that the CvM test empirically keeps

the type I error rates below the significance level of the test in samples of size 100 and 250.

3.3.2 Alternative Distributions

Various alternatives to the (asymmetric) Laplace distribution are considered. The asymmetric

Laplace distribution is unique in the family of univariate distributions in that its mode is peaked

and its tails decay exponentially. In these simple hypothesis simulations, we consider

distributions with location parameter 0 and scale parameter 1.

Normal

f (x|µ,σ) =
1√

2πσ2
exp
(
−(x−µ)2

2σ2

)
Student’s t

f (x|v) =
Γ
(v+1

2

)
√

vπΓ
( v

2

) (1+
x2

v

)− v+1
2

Laplace-Normal Mixture L N (p) d
= pN (0,1)+(1− p)L (0,1)

Random variates from the Normal distribution are generated with rnorm, and from the

Student’s t distribution with rt. Both functions are available in base R. Random variates from the

Laplace-Normal mixture are generated from a custom function.

Figures 3.4 — 3.9 show the power of the tests against several alternative distributions detailed

in Section 3.3.2. We observe that the energy test is generally the most powerful test one could

employ in this limited set of testing situations. Testing against the Normal distribution (Figure
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Figure 3.1 Power of testing A L (0,1,1) against A L (0,1,κ) with varying κ
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Figure 3.2 Power of testing A L (0,1,2) against A L (0,1,κ) with varying κ
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Figure 3.3 Type I error rates of four goodness-of-fit tests for the A L (0,1,1) hypothesis

3.4) or a mixture distribution (Figures 3.7 – 3.9) shows that the energy test and AD test are

equally matched. Testing against Student’s t distribution (Figures 3.5 and 3.6) show that the

energy test is considerably more powerful than the AD test in samples of size less than 100.

3.3.3 Composite Hypotheses

In this section, we demonstrate the power of the energy test for the A L ∗ distribution using

parameters estimated from the E-M algorithm. The details of this algorithm are considered

separately in Section 4.4.1. We consider the distributions detailed in Section 3.3.2 and add to that

list the skew-Normal distribution. Random variates from the skew-Normal distribution are
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Figure 3.4 Power of testing A L (0,1,1) against the Normal distribution with varying sample size
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Figure 3.5 Power of testing A L (0,1,1) against the Student’s t distribution (df = 1) with varying
sample size
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Figure 3.6 Power of testing A L (0,1,1) against the Student’s t distribution (df = 5) with varying
sample size
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Figure 3.7 Power of testing A L (0,1,1) against L N (0.3) with varying sample size
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Figure 3.8 Power of testing A L (0,1,1) against L N (0.7) with varying sample size
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Figure 3.9 Power of testing A L (0,1,1) against L N (0.9) with varying sample size
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generated using the function rsn from the package sn (Azzalini, 2017). The density of the

normalized skew-Normal distribution considered in this simulation study is 2φ(x)Φ(αx) where φ

denotes the density of the standard Normal distribution and Φ denotes the distribution function of

the standard Normal distribution. The parameter α regulates the asymmetry of the distribution

and α = 0 recovers the standard Normal distribution.

Figure 3.10 shows the empirical Type I error rates of the energy, AD, and CvM tests for

sample sizes n = 50,100,250. The KS test is omitted from the composite tests. Because these

tests are conducted under estimated parameters, the test decision may not be calculated as if the

parameters are known as in section 3.3.1. A solution to this difficulty is to use a parametric

bootstrap to simulate the distribution of each test statistic, then choose the 1−α quantile of the

simulated distribution to make a test decision. For the asymmetric Laplace distribution, the

situation is further complicated by the presence of the skewness parameter κ . Thus the

distribution of test statistics depends on the sample size of the data and the skewness of the data.

The parametric bootstrap procedure is detailed:

1. Calculate κ̂EM, the estimate of κ , from the centered and scaled data y1, . . . ,yn.

2. Calculate each test statistic (Q̂n, An, Cn) of the transformed data using the parameters

θ0 = 0, σ0 = 1, and κ0 = κ̂EM.

3. Generate B Monte Carlo samples from the A L (0,1, κ̂EM) distribution.

4. Calculate test statistics Q̂(b)
n , A(b)

n and C(b)
n , b = 1, . . . ,B conditioned on κ̂

(b)
EM.

5. Calculate cQ,1−α , the (1−α) quantile of Q̂(1)
n , . . . , Q̂(B)

n (and similarly for other test

statistics).

6. Reject H0 : y1, . . . ,yn ∼A L if Q̂n > cQ,1−α (and similarly for other test statistics).

In our simulations we use B = 200 bootstrap replicates and 2000 Monte Carlo simulations are

performed in the composite hypothesis simulation study.
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Figure 3.10 shows the empirical Type I error rates of the energy, AD, and CvM tests under

estimated parameters. The significance level of the simulation is set at 10% for all tests. We

observe that these tests generally regulate the Type I error rate below the 10% threshold in

samples of size 50. The energy and AD tests control Type I error close to 10% in larger sample

sizes, but the CvM test appears to empirically control the Type I error below the nominal level in

each sample size studied.

Figure 3.10 Type I error rates for three composite tests of the asymmetric Laplace distribution

Figure 3.11 shows the power of goodness-of-fit tests against the Normal distribution with

unknown parameters. We observe that the AD and energy tests have virtually indistinguishable

power at each of the sample sizes. The CvM test is slightly less powerful. As with each



46

Figure 3.11 Power of testing the composite A L hypothesis against Normally distributed data
(sample size varies)

alternative, the power of a consistent test is expected to approach 1, and in the case of the Normal

distribution, we find that the power of the energy is nearly 1 in samples as small as 250.

Figures 3.12 and 3.13 show the power of each test statistic when the alternative distribution is

from the Student’s t family. We observe higher powers among all statistics when the alternative

distribution is t2. This is due to the heavier tails exhibited in the t2 distribution. Testing against the

t2 distribution, we find that the energy test outperforms the AD and CvM tests. The difference

between the tests’ powers disappears as the degrees of freedom is increased to 5. Figure 3.13

shows that all three tests are equally powerful when testing against the t5 distribution.
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Figure 3.12 Power of testing the composite A L hypothesis against t2 distributed data (sample
size varies)
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Figure 3.13 Power of testing the composite A L hypothesis against t5 distributed data (sample
size varies)
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Figure 3.14 Power of testing the composite A L hypothesis against L N (0.25) distributed data
(sample size varies)

Figures 3.14 — 3.16 show the power of the composite tests against a Laplace-Normal mixture

alternative where the mixing parameter p is taken to be 0.25, 0.50, and 0.75. An increase in the

parameter p results in a larger proportion of the data being generated from the Normal

distribution. Accordingly, we observe greater powers among all goodness-of-fit tests under

p = 0.75 (Figure 3.16) than p = 0.25 (Figure 3.14).

Figures 3.17 — 3.20 show the power of each composite asymmetric Laplace test against a

range of different skew-Normal distributions with varying skewness parameter α . Each of these

power curves exhibit roughly the same pattern: The asymmetric Laplace hypothesis is not likely
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Figure 3.15 Power of testing the composite A L hypothesis against L N (0.50) distributed data
(sample size varies)
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Figure 3.16 Power of testing the composite A L hypothesis against L N (0.75) distributed data
(sample size varies)
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Figure 3.17 Power of testing the composite A L hypothesis against S N (α = 1) distributed data
(sample size varies)

to be rejected in small samples of size 50, but likely to be rejected in samples of size 100.

Additionally, as we increase the skewness parameter, we find that the AD test performs slightly

better than the energy test. Under each level of skewness, we find that power is nearly 1 in

samples of size 250.

Our simulation study shows that the energy test for the asymmetric Laplace hypothesis is a

powerful competitor to the AD test under a variety of alternative distributions. It’s important to

note that this simulation study is not comprehensive, as not every relevant sample size, alternative

distribution, and completing goodness-of-fit test can be examined. Other the other hand, the KS
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Figure 3.18 Power of testing the composite A L hypothesis against S N (α = 2) distributed data
(sample size varies)
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Figure 3.19 Power of testing the composite A L hypothesis against S N (α = 3) distributed data
(sample size varies)
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Figure 3.20 Power of testing the composite A L hypothesis against S N (α = 4) distributed data
(sample size varies)
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test is a widely applied test for assessing a univariate goodness-of-fit hypothesis for simple

hypotheses, and it is clear that under a range of alternative hypotheses, the energy test bests the

KS test in terms of power.

3.4 Distance Variance and Distance Standard Deviation for Asymmetric Laplace Distribution

Distance correlation (Székely, Rizzo, and Bakirov, 2007) is a measure of dependence between

random vectors X ∈ Rp and Y ∈ Rq. Unlike classical correlation which measures the linear

dependence, distance correlation is sensitive to linear and non-linear types of dependence.

Additionally, sample distance correlation has a fast and simple computing formula for bivariate

data (Huo and Székely, 2016). These properties have made this measure of dependence popular in

both theoretical and applied settings.

Random variables X and Y are independent if the joint CF of (X ,Y ) factors. In the hypothesis

testing setting, this is equivalent to testing

H0 : φX ,Y (s, t) = φX(s)φY (t);

H1 : φX ,Y (s, t) 6= φX(s)φY (t),
(3.4.1)

where φ represents the Fourier transform (characteristic function). Distance covariance is defined

to be

V 2(X ,Y ) = ||φX ,Y (s, t)−φX(s)φY (t)||2

=
∫
Rp+q

1
cpcq

|φX ,Y (s, t)−φX(s)φY (t)|2

||s||p+1
p ||t||q+1

q
ds dt,

(3.4.2)

where cp =
π(p+1)/2

Γ((p+1)/2) . Distance standard deviation (Székely et al., 2007) is defined to be the

square root of

V 2(X)≡ V 2(X ,X) = ||φX ,X(s, t)−φX(s)φX(t)||2, (3.4.3)
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which has a remarkable expression (Székely et al., 2007) in terms of distances between i.i.d.

copies of X if we assume E[||X ||2]< ∞,

V 2(X) = E[||X−X ′||2]+ [E||X−X ′||]2−2E[||X−X ′|| · ||X−X ′′||]. (3.4.4)

Recently Edelmann, Richards, and Vogel (2017) showed that a computing formula for distance

variance can be given in terms of the moments of spacings of order statistics if X is real valued.

Theorem 3.4.5. (Edelmann et al., 2017) Let X be a real valued random variable with E|X |< ∞,

and let X ′ and X ′′ be i.i.d. copies of X. If X1:3 ≤ X2:3 ≤ X3:3 are the order statistics of (X ,X ′,X ′′),

then

V 2(X) = (E|X−X ′|)2− 4
3
E[(X2:3−X1:3)(X3:3−X2:3)]. (3.4.6)

The following theorem is particularly useful for computing distance variances for statistical

distributions.

Theorem 3.4.7. (Edelmann et al., 2017)

V 2(X) = 8
∫ x=∞

x=−∞

∫ y=∞

y=x
F2(x)[1−F(y)]2 dy dx. (3.4.8)

A proof is given in Edelmann et al. (2017), along with explicit computations of the distance

variance for a select set of univariate distributions. Several of these distance variances are

computed using a combination of equation (3.4.6) with the results from Gerstenberger and Vogel

(2015). In this section we will show that one can compute the distance variance directly

using (3.4.8) for the A L ∗ family of distributions.

Proposition 3.4.9. Suppose Y ∼A L ∗(θ ,κ,σ). Then

V 2(X) = 8(I1 + I2 + I3), (3.4.10)
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where

I1 =
σ2

2κ2(1+κ2)2

(
1
4
− 1

3(1+κ2)
+

1
8(1+κ2)2

)
, (3.4.11)

I2 =
κ4σ2

8(1+κ2)4 , (3.4.12)

I3 =
σ2κ6

2(1+κ2)2

(
1
4
− κ2

3(1+κ2)
+

κ4

8(1+κ2)2

)
. (3.4.13)

Proof. Without loss of generality, we may set the location parameter θ = 0. Then we calculate

V 2(X) = 8
∫ x=∞

x=−∞

∫ y=∞

y=x
F2(x)[1−F(y)]2 dy dx

by evaluating the integral in three parts. Write (3.4.8) as the sum:

V 2(X) = 8(I1 + I2 + I3), (3.4.14)

where

I1 =
∫

∞

0

∫
∞

x
F2(x)[1−F(y)]2 dy dx

I2 =
∫ 0

−∞

∫
∞

0
F2(x)[1−F(y)]2 dy dx

I3 =
∫ 0

−∞

∫ 0

x
F2(x)[1−F(y)]2 dy dx

(3.4.15)

then substitute F with the parameterization given in equation 1.3.17. We find that

I1 =
∫

∞

0

∫
∞

x
[1− pκ exp(−λx)]2[pκ exp(−λy)]2 dy dx

=
p2

κ

4λ 2 −
2p3

κ

6λ 2 +
p4

κ

8λ 2 ,

(3.4.16)
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I2 =
∫ 0

−∞

∫
∞

0
[qκ exp(βx)]2[pκ exp(−λy)]2 dy dx

=
(pκqκ)

2

4λβ

(3.4.17)

I3 =
∫ 0

−∞

∫ 0

x
[qκ exp(βx)]2[1−qκ exp(βy)]2 dy dx

=
q2

κ

4β 2 −
2q3

κ

6β 2 +
q4

κ

8β 2

(3.4.18)

Changing back to parameterization (1.3.4) using equations (1.3.14) and (1.3.15) gives equation

(3.4.11).

Table 3.1 shows the approximate standard deviation σ(X) and distance standard deviation

V (X) for the A L ∗ distribution for various parameters σ and κ . Note that V (X)< σ(X) for

each distribution in Table 3.1, as was shown in Edelmann et al. (2017).

σ =
√

2× 1 1.2 1.4 1.5 1.6 1.7 1.8 2 3 4 5

κ = 1 σ(X) 1.41 1.70 1.98 2.12 2.26 2.40 2.55 2.83 4.24 5.66 7.07
V (X) 0.76 0.92 1.07 1.15 1.22 1.30 1.37 1.53 2.29 3.06 3.81

κ = 1.5 σ(X) 1.64 1.97 2.30 2.46 2.62 2.79 2.95 3.28 4.92 6.57 8.21
V (X) 0.91 1.09 1.27 1.36 1.46 1.55 1.64 1.82 2.73 3.64 4.55

Table 3.1 Values of σ(X) = (Var(X))1/2 and V (X) for X ∼A L ∗(0,σ ,κ).

3.5 Generalized Asymmetric Laplace Energy Test

The generalized asymmetric Laplace (also called variance gamma) distribution (Pearson,

Jeffery, and Elderton, 1929; Teichroew, 1957) is an extension of asymmetric Laplace, and was

first studied in relation to the sample covariance of the bivariate Normal distribution. Recently,

the distribution has seen widespread use in financial modeling due to its flexibility and relatively

excellent fit to empirical data (Madan and Seneta, 1990; Madan, Carr, and Chang, 1998; Levin

and Tchernitser, 2003).
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Parameter Definition Value
Mean E[Y ] θ + τµ

Variance E[Y −E[Y ]]2 τ(σ2 +µ2)

Table 3.2 Common parameter values for a G A L (θ ,µ,σ ,τ) distribution

Definition 3.5.1. A random variable Y is said to have a generalized asymmetric Laplace

(variance gamma) distribution if its CF is given by

φY (t) =
exp(iθ t)(

1+ 1
2σ2t2− iµt

)τ , (3.5.2)

where θ ,µ ∈ R, and σ ,τ > 0. We denote the distribution G A L (θ ,σ ,µ,τ).

Remark 3.5.3. When τ = 1 we recover the A L (θ ,σ ,µ) distribution.

As in 1.3.2, we may factor the CF, leading to a new parameterization,

φY (t) = eiθ t

(
1

1+ iσκ√
2
t

)τ(
1

1− i σ√
2κ

t

)τ

. (3.5.4)

We denote this distribution G A L ∗(θ ,σ ,κ,τ). This parameterization for the CF allows us to

express the density function of the variance gamma distribution. Additionally, this

parameterization constitutes a location-scale family in the parameters θ and σ (Kotz et al., 2001).

The expression of the density of the variance gamma distribution incorporates a Bessel

function.

Definition 3.5.5. The density of the G A L ∗(θ ,σ ,κ,τ) distribution has the form

√
2exp

(√
2

2σ
(1/κ−κ)(x−θ)

)
√

πσ τ+1/2Γ(τ)

(√
2|x−θ |
κ + 1

κ

)τ− 1
2

K
τ− 1

2

(√
2

2σ

(
1
κ
+κ

)
|x−θ |

)
. (3.5.6)
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Definition 3.5.7. Abramowitz and Stegun (1964) The modified Bessel function of the first kind I

with index λ is given by the convergent power series

Iλ (x) =
∞

∑
m=0

1
m!Γ(m+λ +1)

(x
2

)2m+λ

. (3.5.8)

The modified Bessel function of the second kind K with index λ is given by

Kλ (x) =


π

2
I−λ (x)−Iλ (x)

sin(λx) , λ /∈ Z

lim
α→λ

π

2
I−α (x)−Iα (x)

sin(αx) , λ ∈ Z.
(3.5.9)

Remark 3.5.10. The function Kλ (·) is known by many names including the modified Bessel

function of the Second Kind, the modified Bessel function of the Third Kind, and the modified

Hankel function. In this dissertation, we will only refer to Kλ (·) as the modified Bessel function of

the second kind.

The following integral representations of Kλ are available respectively in the Abramowitz and

Stegun (1964), Olver (1974), and Watson (1995).

Proposition 3.5.11. The modified Bessel function of the second kind may be expressed as

Kλ (x) =
1
2

(x
2

)λ
∫

∞

0
t−λ−1 exp

(
−t− x2

4t

)
dt, x > 0 (3.5.12)

Kλ (x) =
(x/2)λ Γ(1/2)

Γ(λ +1/2)

∫
∞

1
exp(−xt)(t2−1)λ−1/2 dt, λ ≥−1/2 (3.5.13)

Kλ (x) =
∫

∞

0
exp(−xcosh(t))cosh(λ t) dt, λ ∈ R (3.5.14)

Lemma 3.5.15. The modified Bessel function of the second kind is an even function of the index

λ : Kλ (x) = K−λ (x).
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Proposition 3.5.16. For any λ = r+ 1

2 , r a non-negative integer, the modified Bessel function of

the second kind has a closed form expression:

Kr+1/2(x) =
√

π

2x
exp(−x)

r

∑
k=0

(r+ k)!
(r− k)!k!

(2x)−k. (3.5.17)

In particular, if r = 0, we have

K1/2(x) =
√

π

2x
exp(−x). (3.5.18)

Proposition 3.5.16 leads to a crucial simplification of the variance gamma density 3.5.6 when

τ = n is integer valued.

f (x|θ = 0,σ = 1,κ,n) =
1

(n−1)!

n−1

∑
i=0

(n−1+ i)!
(n−1− j)! j!

2
n−i

2 |x|n−1−i

(κ +1/κ)n+i


exp(−

√
2κ|x|), x≥ 0;

exp(−
√

2
κ
|x|), x < 0.

(3.5.19)

We will write the following to simplify notation.

Proposition 3.5.20. The density given in equation (3.5.19) can be written as,

f (x) =
n−1

∑
i=0

Ai|x|n−1−i


exp(−βx), x≥ 0;

exp(λx), x < 0,
(3.5.21)

where λ =
√

2
κ

and β =
√

2κ , and

Ai =
(n−1+ i)!2

n− j
2

(n−1)!(n−1− i)!i!(κ + 1
κ
)n+i

. (3.5.22)

3.5.1 Generalized Asymmetric Laplace Representations

The generalized asymmetric Laplace distribution admits many representations that mirror

those studied in Section 1.5.
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Proposition 3.5.23. If Y ∼ G A L (θ ,σ ,µ,τ) then

Y d
= θ +µW +σ

√
WZ (3.5.24)

where Z ∼ N(0,1) and W ∼ Gamma(shape = τ, scale = 1). Explicitly, the density function of W

is given by

fW (x) =
1

Γ(τ)
xτ−1 exp(−x), x > 0. (3.5.25)

Proposition 3.5.26. If Y ∼ G A L ∗(θ ,σ ,κ,τ) then

Y d
= θ +

σ√
2

(
1
κ

G1−κG2

)
, (3.5.27)

where G1, G2 are independent random variables with Gamma distribution given by (3.5.25).

If τ = n, a positive integer, then Gamma distribution Gi, i = 1,2 is equivalent to the Erlang

distribution, the distribution of the sum of i.i.d. Exponential random variables.

Remark 3.5.28. We prefer to use (3.5.27) to generate random variance gamma variates.

If τ = n, a positive integer, then the corresponding G A L ∗(θ ,σ ,κ,n) density is the density

of the sum of n independent A L ∗(θ ,σ ,κ) random variables. In this case, the modified Bessel

function of the second kind, Kn−1/2(·) admits the closed form expression (3.5.19).

Proposition 3.5.29. Let (Xi,Yi)
′, i = 1, . . . ,n, be i.i.d. N2(0,Σ) where

Σ =

1 ρ

ρ 1

 (3.5.30)

and define

Tn = n
n

∑
i=1

(Xi− X̄)(Yi− Ȳ ),

= n
n

∑
i=1

XiYi−

(
n

∑
i=1

Xi

)(
n

∑
i=1

Yi

)
.

(3.5.31)
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Then Tn ∼ G A L ∗ with parameters

θ = 0, σ =
√

2n
√

1−ρ2,

κ =

√
1−ρ

1+ρ
, τ =

n−1
2

.
(3.5.32)

Remark 3.5.33. For bivariate Normal data with an odd sample size, the distribution of Tn

reduces to the simplified G A L because the parameter τ is an integer.

3.5.2 Expected Distances for Generalized Asymmetric Laplace

The energy statistic (3.2.9) has a simple form, but as in Section 3.2, the expectations need to

be further evaluated to ease computational load. The expectations E|Y − y| and E|Y −Y ′| may be

computed using techniques familiar from calculus.

Proposition 3.5.34. Let Y ∼ G A L ∗(θ = 0,σ = 1,κ,n). Then,

E|Y − y|=
n−1

∑
i=0

Ai



λ i−n−1(i−λy−n)Γ(n− i)+β i−n−1(n− i−βy)Γ(n− i)+

2λ i−n−1γ∗(n− i+1,−λy)+2λ i−nγ∗(n− i,−λy), y < 0;

λ i−n−1(n+λy− i)Γ(n− i)−β i−n−1(n− i−βy)Γ(n− i)+

2β i−n−1γ∗(n− i+1,βy)−2β i−nγ∗(n− i,βy), y < 0.
(3.5.35)

The function γ∗(a,x) is the upper incomplete gamma function (Abramowitz and Stegun,

1964).

Definition 3.5.36. The upper incomplete gamma function is

γ
∗(a,x) =

∫
∞

x
ta−1 exp(−t) dt. (3.5.37)

The function generally does not have an analytic form, but is accurately approximated by a

number of computer implementations. If the index a in (3.5.37) is restricted to the positive

integers, then γ∗ has an analytic expression which is amenable to further calculations.



65
Proposition 3.5.38. If a is a positive integer, then

γ
∗(a,x) = (a−1)!exp(−x)

a−1

∑
k=0

xk

k!
, (3.5.39)

and the expression for the expected distance between two i.i.d. G A L ∗ random variables is

analytic.

Proposition 3.5.40. If Y,Y ′ ∼ G A L ∗(θ = 0,σ = 1,κ,n), the expected distance between Y and

Y ′ is

E|Y −Y ′|=
n−1

∑
i=0

Ai [λ
i−n−1

Γ(n− i)(iI1−λ I2−nI1)+β
i−n−1

Γ(n− i)(nI1− iI1−β I2)

+λ
i−n−1

Γ(n− i)(nI3 +λ I4− iI3)−β
i−n−1

Γ(n− i)(nI3− iI3−β I4)

+2β
i−n−1I5 +2λ

i−n−1I6− 2β
i−nI7 +2λ

i−nI8
]
,

(3.5.41)

where each of the functions I j, j = 1, . . . ,8 are defined in the appendix.

The integrals I j, j = 1, . . . ,8 may be computed using integration by parts. Using (3.5.40) and

(3.5.34), the univariate energy goodness-of-fit statistic (3.2.9) may be computed for the variance

gamma distribution. When the parameter τ is not integer valued, it is possible to use numerical

integration to determine the values of the expected distances E|Y − y| and E|Y −Y ′|.

3.5.3 Variance Gamma Energy Test

We present simulations showing the power of the energy goodness-of-fit test for the simple

variance gamma null hypothesis. Under the simple hypothesis, we consider the parameters of the

distribution to be known. Therefore, the test may be written,

H0 : Fn ∼ G A L (θ0,σ0,κ0,τ0). (3.5.42)
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In this simulation study, we take θ0 = 0 and σ0 = 1, and the number of simulation replicates to be

5000. The p-values for the energy test are obtained via “on-the-fly” Monte Carlo with 200

replicates. The standard error of each empirical power estimate p̂ is
√

p̂(1−p̂)
5000 < 0.5√

5000
≈ 0.007.

Figure 3.21 shows the power of the energy test against other tests when the skewness

parameter κ is misspecified in samples of size 30. Under the null hypothesis,

y1, . . . ,y30 ∼ G A L (0,1,1,2). The alternative is that y1, . . . ,y30 ∼ G A L (0,1,κ,2). We observe

that the energy test and the Anderson-Darling tests are essentially equally powerful, however

there is little difference between all four tests in this case. All tests empirically control the Type I

error rate close to α = 0.1 in this small sample size, as indicated on the plot at κ = 1.

Figure 3.22 shows the scenario of testing misspecified shape parameter τ . The null hypothesis

for this simulation is that y1, . . . ,y30 ∼A L (0,1,1.5) We find that all tests are very competitive

when τ < 1 in the alternative. When τ > 1 under the alternative hypothesis, the energy test is the

most powerful among the four tests we consider.
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Figure 3.21 Power of testing G A L (0,1,1,2) against G A L (0,1,κ,2) with varying κ (sample
size = 30)
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Figure 3.22 Power of testing G A L (0,1,1.5,1) against G A L (0,1,1.5,τ) with varying τ (sample
size = 30)
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CHAPTER 4 MULTIVARIATE LAPLACE PARAMETER ESTIMATION

Estimation of the parameters of the asymmetric Laplace distribution is in itself an interesting

and important topic. In this dissertation, robust and reliable parameter estimation is crucial if a

goodness of fit test is used for the composite goodness-of-fit hypothesis. Previous treatment of

this problem has been performed in the univariate setting through maximum likelihood (ML) and

method of moments (MM) estimation (Section 1.6). Furthermore, MM has been used to

determine the parameters of the multivariate asymmetric Laplace distribution (Kollo and

Srivastava, 2005; Visk, 2009; Hürlimann, 2013). In this chapter, the multivariate generalization of

the asymmetric Laplace distribution is introduced, and an E-M type algorithm is detailed to

address the parameter estimation problem from a ML perspective. The E-M estimator is

applicable in both the univariate and multivariate setting and is shown to have better performance

than the ML estimator of Kotz et al. (2001) in the univariate case, and the method of moments

estimator of Visk (2009) in the multivariate case. Simulations that examine the bias and standard

error of the E-M estimates are presented in Section 4.5.1. A proof-of-concept goodness-of-fit test

for the multivariate asymmetric Laplace distribution is presented at the end of this chapter.

4.1 Multivariate Asymmetric Laplace Distribution

The multivariate Laplace distribution is the d-dimensional analog of the classical Laplace

distribution. This distribution is useful for modeling multivariate data that exhibits leptokurtosis,

asymmetry, and heavier than Normal tails. Let Σ be a d×d nonnegative definite symmetric

matrix, and let θ = (θ1,θ2, . . . ,θd) be a location parameter vector. The symbol ᵀ denotes matrix

transpose. Then a real, vector valued random variable X has multivariate Laplace distribution if it

possesses the characteristic function

φ X(t) = E[exp(itᵀX)] =
eitᵀθ

1+ 1
2 tᵀΣt

. (4.1.1)
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We regard t as a fixed column vector and tᵀ as a fixed row vector. A generalization of this

distribution arises when a skewness parameter vector m is introduced. We follow the treatment of

the multivariate asymmetric Laplace distribution given by Kotz, Kozubowkski and Podgórski

(Kotz et al., 2001, Ch. 6), however we include θ = (θ1,θ2, . . . ,θd) as a location parameter in this

model. As in Chapter 1, we extend the model to account for asymmetry.

Definition 4.1.2. A real, vector valued random variable Y has a multivariate asymmetric Laplace

distribution A L d(θ ,m,Σ) if there exist parameters θ ∈ Rd , m ∈ Rd , and a d×d nonnegative

definite symmetric matrix Σ such that the characteristic function of Y has the form

φ Y(t) =
eitᵀθ

1+ 1
2 tᵀΣt− imᵀt

, t ∈ Rd. (4.1.3)

When m = 0, (4.1.3) is the CF of the symmetric multivariate Laplace distribution (4.1.1),

which is an elliptically contoured distribution. This form of the CF has appeared earlier in articles

on multivariate geometric stable distribution (Kozubowski, 1997; Kozubowski and Panorska,

1999).

The family A L d(θ ,m,Σ) is closed under translations and linear transformations.

Proposition 4.1.4. (Visk (2009)) If y∼A L d(θ ,m,Σ), then for any d-dimensional vector a,

y+a∼A L d(θ +a,m,Σ).

Proposition 4.1.5. If y∼A L d(θ ,m,Σ), then for any p×d full rank matrix A with p≤ d,

Ay∼A L p(Aθ ,Am,AΣAᵀ).

Proof. By properties of CFs,

φY(t) = E[exp(i(AY)ᵀt)] = E[exp(iYᵀAᵀt)] = φY(Aᵀt). (4.1.6)

In terms of CF (4.1.3),

exp(i(Aᵀt)ᵀθ)

1+ 1
2(Aᵀt)ᵀΣ(Aᵀt)− imᵀ(Aᵀt)

=
exp(itᵀ(Aθ))

1+ 1
2 tᵀAΣAᵀt− i(Am)ᵀt

. (4.1.7)
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A consequence is that the multivariate asymmetric Laplace family may be centered and scaled

to a “standard” distribution. If Y∼A L d(θ ,m,Σ), then Σ
−1/2(Y−θ)∼A L d(0,Σ−1/2m,I).

Definition 4.1.8. Let θ , m ∈ Rd and Σ be a d×d positive definite matrix. The density of

Y∼A L d(θ ,m,Σ) is

f (y;θ ,m,Σ) =
2e(y−θ)ᵀΣ

−1m

(2π)d/2|Σ|1/2

(
(y−θ)ᵀΣ

−1(y−θ)

2+mᵀΣ
−1m

)ν/2

Kν/2

(√
(2+mᵀΣ

−1m)((y−θ)ᵀΣ
−1(y−θ)

)
,

(4.1.9)

where ν = 2−d
2 and Kν(x) is the modified Bessel function of the second kind, defined in (3.5.9).

Remark 4.1.10. We use the expression q(y) = (y−θ)ᵀΣ
−1(y−θ) to simplify the expression of

the density, allowing us to write

f (y;θ ,m,Σ) =
2e(y−θ)Σ−1m

(2π)d/2|Σ|1/2

(
q(y)

2+mᵀΣ
−1m

)ν/2

Kν/2

(√
(2+mᵀΣ

−1m)q(y)
)
. (4.1.11)

The following representation for the multivariate asymmetric Laplace distribution is given.

This representation is useful for generating A L d variates, and is used in the derivation of the

E-M algorithm.

Theorem 4.1.12. Suppose Y∼A L d(θ ,m,Σ) and let X∼Nd(0,Σ). Let Z be a standard,

exponentially distributed random variable with mean 1, independent of X. Then

Y d
= θ +mZ +

√
ZX. (4.1.13)

Proof. The proof is similar to that of Proposition 1.5.1. Let Z be an exponential random variable

with mean 1. The density of Z is fZ(z) = exp(−z). Let X∼Nd(0,Σ), independent of Z. Now we
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consider the expression θ +mZ +Z1/2X. Conditioning on Z, we can express the CF of 4.1.13 as

E[exp(itᵀ(θ +mZ +Z1/2X))]

=
∫

∞

0
exp(itᵀθ + itᵀmz)E[exp(itᵀz1/2X)]exp(−z)dz.

(4.1.14)

The CF of X is φX(t) = exp(−1
2 tᵀΣt). It follows that φX(z1/2t) = exp(−1

2 tᵀΣtz). So,

∫
∞

0
exp(itᵀθ + itᵀmz)E[exp(itᵀz1/2X)]exp(−z)dz

= exp(itᵀθ)
∫

∞

0
exp
(
−z
(

1+
1
2

tᵀΣt− tmᵀt
))

dz

=
exp(itᵀθ)

1+ 1
2 tᵀΣt− imᵀt

.

(4.1.15)

This matches the CF given in (4.1.3).

Parameter Definition Value
Mean E[Y] θ +m
Covariance E[(Y−E[Y])(Y−E[Y])ᵀ] Σ+mmᵀ

Table 4.1 Mean vector and covariance matrix for a A L d(θ ,m,Σ) distribution.
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Figure 4.1 Contour plot of the densities of a bivariate Gaussian and three bivariate asymmetric
Laplace distributions
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4.2 Method of Moments Estimation

MM estimates when θ 6= 0 have been studied in Visk (2009) and Hürlimann (2013), however

these procedures can lead to negative estimates of the dispersion matrix Σ. These estimates are

non-admissible. In the bivariate asymmetric Laplace distribution with location parameter θ = 0,

the distribution has CF

φ(t1, t2) =
1

1+ σ2
1 t2

1
2 +ρσ1σ2t1t2 +

σ2
2 t2

2
2 − im1t1− im2t2

, (4.2.1)

with parameters m = (m1,m2)
ᵀ and

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 . (4.2.2)

If observations Y = (Y11,Y12), . . . ,(Yn1,Yn2) are collected, then the corresponding MM estimators

are:

m̂1 =
1
n

n

∑
i=1

Yi1 = Ȳ1;

m̂2 =
1
n

n

∑
i=1

Yi2 = Ȳ2;

σ̂
2
1 =

1
n

n

∑
i=1

Y 2
i1−2Ȳ 2

1 ;

σ̂
2
2 =

1
n

n

∑
i=1

Y 2
i2−2Ȳ 2

2 ;

ρ̂ =
1
n ∑

n
i=1Yi1Yi2−2Ȳ1Ȳ2

σ̂1σ̂2
.

(4.2.3)
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4.2.1 General Method of Moments

Visk’s procedure applies in the general situation in which θ is unknown. The third moment of

A L d(θ ,Σ,m) (“coskewness”) is (Visk, 2009)

m̄3 ≡ E[(Y−θ)⊗ (Y−θ)ᵀ⊗ (Y−θ)] = 2m⊗mmᵀ+vec(Σ)mᵀ+2m⊗Σ+2Σ⊗m,

and is used when determining the moment estimators. The star product (MacRae, 1974) is defined

for two matrices Ap×q and Brp×qs where B consists of r× s size blocks Bi j, i = 1, . . . , p,

j = 1, . . . ,q. The star product of A and B is defined to be the r× s matrix

A?B =
p

∑
i=1

q

∑
j=1

ai jBi j.

The star product is a useful matrix algebra tool for “reducing” the size of a matrix. Visk derives

the star product

1p×p ? m̄3 = (S−M2)m+2M(̇Σ+mmᵀ)1p (4.2.4)

with M = ∑
d
i=1 mi and S = ∑

d
i, j=1(Σ+mmᵀ). If M is known, the estimate for m can be computed.

Summing (4.2.4) on both sides leads to a cubic equation, which yields an estimate for M:

M =
1

S−M2 (H−2MS),

or

M−3MS+H = 0, (4.2.5)

with H = ∑
d2

i=1 ∑
d
j=1(m̄3)i j. As in Kollo (2008), we estimate the p2× p matrix of third central

moments by

m̂3 =
1
n

n

∑
i=1

(Y i− Ȳ )⊗ (Y i− Ȳ )ᵀ⊗ (Y i− Ȳ ) (4.2.6)
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so

Ĥ =
d2

∑
i=1

d

∑
j=1

m̂3 (4.2.7)

and

Ŝ =
d

∑
i=1

d

∑
j=1

ˆCov(Y ). (4.2.8)

There is one solution to (4.2.5) that preserves the positive definiteness of Σ:

M =
−z
4
− S

z
− i 3
√

3
2

(
z
2
− 2S

z

)
, z =

3
√
−4H +4

√
H2−4S3. (4.2.9)

The MM point estimate m̂ is given by (4.2.9) and (4.2.4). With m̂ computed, the remaining

parameter estimates may be computed through

Σ̂ =
1

n−1

n

∑
i=1

(yi− ȳ)(yi− ȳ)ᵀ− m̂m̂ᵀ, θ̂ = ȳ− m̂. (4.2.10)

The procedure is extended by Hürlimann (2013) to incorporate fourth central moments

(“cokurtosis”) of the asymmetric Laplace distribution.

4.3 Review of the E-M Algorithm

Let θ ∈Θ be a set of model parameters. The expectation-maximization (E-M) algorithm

(Dempster, Laird, and Rubin, 1977) is an iterative procedure which may be used to produce ML

parameter estimates, i.e., solutions to the equations

∂

∂θ
L(θ |y) = 0. (4.3.1)

The procedure is useful when analytic estimates are difficult or impossible to derive due to the

form of the assumed likelihood function underlying the data. It is applicable for estimation of

parameters of a distribution from a data set that contains missing or incomplete data. The

motivation of the procedure is based on the notion of missingness, and giving consideration to the

distribution of what is missing given what is observed (Givens and Hoeting, 2012).
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There are two main applications of this procedure. It may be that data are truly missing due to

problems or limitations of the sampling process. The second (more common) application is to

formulate an intractable likelihood function L(θ |y) (called the “incomplete data likelihood”) in

terms of a simpler likelihood Lc(θ |x) (“complete data likelihood”) by positing the existence of

latent variables X (McLachlan and Krishnan, 2007).

A brief description of the E-M algorithm is given based on details in McLachlan and Krishnan

(2007). Suppose that X and Y are the sample spaces of X and Y respectively and let fc(x|θ)

denote the probability density function of the complete data X. Furthermore, let there be a

many-to-one function g : X → Y . Rather than observe the complete data x in X , we observe

the incomplete data y in Y . Then the incomplete data probability density is the marginal density

of the complete data density:

f (y|θ) =
∫
X (y)

fc(x|θ) dx, (4.3.2)

where X (y) is the subset of X determined by y = g(x). The E-M algorithm solves (4.3.1), the

incomplete data likelihood equation, iteratively in terms of the complete data likelihood, Lc.

Because Lc is unknown, it is replaced by its conditional expectation E[Lc] given the data y and the

current estimate of θ .

First, initial parameters estimates θ
(0) are proposed. The “E-step” of the algorithm is to

calculate the conditional expectation of Lc given θ
(0).

1. E-step:

Q(θ |θ (0)) = E
θ
(0)[logLc(θ |x)|y] (4.3.3)

2. M-step: Select θ
(1) such that

Q(θ (1)|θ (0))≥ Q(θ |θ (0)) (4.3.4)

for all θ ∈Θ. The E-step and the M-step are then iterated until some convergence criterion is met.

An important result of Dempster et al. (1977) is that the E-M algorithm must converge to a local
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or global maximum. This is guaranteed by the monotonicity of the incomplete likelihood,

L(θ (t+1)|y)≥ L(θ (t)|y).

Stopping criteria for the E-M algorithm are usually built upon (θ (t+1)−θ
(t))ᵀ(θ (t+1)−θ

(t))

or |Q(θ (t+1)|θ (t))−Q(θ (t)|θ (t−1))|.

4.4 Application of E-M to the Asymmetric Laplace Distribution

The E-M algorithm may be applied to determine the parameters of the multivariate

asymmetric Laplace distribution. Given representation (4.1.13), we observe that the conditional

distribution of Y|Z is multivariate Normal with mean θ +mZ and variance-covariance matrix ZΣ.

A Generalized Inverse Gaussian (GIG) random variable is defined in Barndorff-Nielsen (1997) as

a random variable having probability density function

fGIG(z;γ,δ ,λ ) =
(

γ

δ

)λ

(2Kλ (δγ))−1zλ−1 exp
(
−1

2
(δ 2z−1 + γ

2z)
)
. (4.4.1)

Theorem 4.4.2. The distribution of Z|Y = y is GIG with parameters

γ =
√

2+mᵀΣ
−1m, (4.4.3)

δ =
√

q(y), (4.4.4)

λ =
2−d

2
. (4.4.5)

Theorem 4.4.2 is due to Barndorff-Nielsen (1997), but we give a new proof.

Proof. Suppose Y∼A L d(θ ,m,Σ). By Theorem 4.1.12, Y d
= θ +mZ +

√
ZX with Z ∼ Exp(1)

and X∼Nd(0,Σ). It is clear that [Y|Z = z]∼Nd(θ +mz,zΣ). Because Y|Z is multivariate

normal, the density of [Y|Z = z] is

fY|Z=z(y) =
1

(2πz)d/2det(Σ)1/2 exp
[
− 1

2z
(y− (θ +mz))ᵀΣ

−1(y− (θ +mz))
]
. (4.4.6)



79

The density of Z is fZ(z) = exp(−z). The density of [Z|Y = y] is fZ|Y=y(z) =
fY|Z=z(y) fZ(z)

fY(y)
by

Bayes’ Theorem. Therefore, the density of [Z|Y = y] is given by

exp(−z)
(2πz)d/2det(Σ)1/2 exp

[
− 1

2z(y− (θ +mz))ᵀΣ−1(y− (θ +mz))
]

2exp((y−θ)ᵀΣ−1m)

(2π)d/2det(Σ)1/2

(
q(y)

2+mᵀΣ−1m

) 2−d
4

K2−d
2

(√
q(y)(2+mᵀΣ−1m)

) . (4.4.7)

Grouping terms together,

fZ|Y=y(z) =

( √
q(y)√

2+mΣ−1m

)−d
2 −1

z−d/2 exp
[−1

2z (y−θ −mz)ᵀΣ−1(y−θ −mz)− z
]

2exp((y−θ)ᵀΣ−1m)K1− d
2
(
√

q(y)(2+mᵀΣ−1m))
. (4.4.8)

Let λ = 2−d
2 , δ =

√
q(y), and γ =

√
2+mᵀΣ−1m. Then we may write the density as

fZ|Y=y(z) =

(
γ

δ

)λ zλ−1 exp
[−1

2z (y−θ −mz)ᵀΣ−1(y−θ −mz)− z− (y−θ)ᵀΣ−1m
]

2Kλ (δγ)
. (4.4.9)

The final part is to show that

− 1
2z
(y−θ −mz)ᵀΣ

−1(y−θ −mz)− z− (y−θ)ᵀΣ
−1m =−1

2

(
q(y)

z
+(2+mΣ

−1m)z
)
.

(4.4.10)

Denote the left hand side F.

F=− 1
2z

[
(y−θ)ᵀΣ

−1(y−θ)−2z2(y−θ)ᵀΣ
−1m+ z2mᵀ

Σ
−1m

]
− z− (y−θ)ᵀΣ

−1m,

=−1
2

q(y)
z

+(y−θ)ᵀΣ
−1mz− 1

2
mᵀ

Σ
−1m− z− (y−θ)ᵀΣ

−1mz,

=−1
2

q(y)
z
− 1

2
zmᵀ

Σ
−1m− z,

=−1
2

[
q(y)

z
+(2+mᵀ

Σ
−1m)z

]
,

=−1
2

[
δ 2

z
+ γ

2z
]
.
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Therefore density (4.4.7) may be written in the form of the density given in equation (4.4.1) and

Z|Y = y is GIG.

Theorem 4.4.11. The raw moments of a random variable Z that possesses a GIG distribution are

(Barndorff-Nielsen, 1997)

E[Zk] =

(
δ

γ

)k Kλ+k(γδ )

Kλ (γδ )
. (4.4.12)

Two of these raw moments, E[Z|Y = yi] and E[ 1
Z |Y = yi] are useful for deriving the E-M

algorithm. We define

ηi ≡ E[Z|Y = yi] =

√
q(yi)√

2+mᵀΣ
−1m

K2−d/2

(√
q(yi)(2+mᵀΣ

−1m)

)
K1−d/2

(√
q(yi)(2+mᵀΣ

−1m)

) , (4.4.13)

and

ξi ≡ E
[

1
Z
|Y = yi

]
=

√
2+mᵀΣ

−1m√
q(yi)

K−d/2

(√
q(yi)(2+mᵀΣ

−1m)

)
K1−d/2

(√
q(yi)(2+mᵀΣ

−1m)

) . (4.4.14)

Because the conditional distribution of [Y|Z = zi] is multivariate Gaussian, one may write the

log-likelihood function ` of [Y|Z = zi] as

`(θ ,m,Σ) ∝−n
2

log(|Σ|)− 1
2

n

∑
i=1

1
zi
(yi−mzi−θ)ᵀΣ

−1(yi−mzi−θ). (4.4.15)
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Theorem 4.4.16 (E-M Estimates for A L d — M-step). Taking partial derivatives of (4.4.15)

and equating to zero yields

θ̂ =
∑

n
i=1

1
zi

yi−nm̂

∑
n
i=1

1
zi

, (4.4.17)

m̂ =
∑

n
i=1 yi−nθ̂

∑
n
i=1 zi

, (4.4.18)

Σ̂ =
1
n

n

∑
i=1

1
zi

(
yi− θ̂

)(
yi− θ̂

)ᵀ− zim̂m̂ᵀ. (4.4.19)

Proof. Suppose Y∼A L d(θ ,m,Σ). By Theorem 4.1.12, [Y|Z = zi]∼Nd(θ +mzi,ziΣ). Thus,

the log-likelihood `(θ ,m,Σ) of the data is given by equation (4.4.15). We calculate the partial

derivatives of ` with respect to each parameter.

∂`(θ ,m,Σ)

∂θ
=

1
2

n

∑
i=1

1
zi

[
2Σ
−1(yi−mzi−θ)

]
, (4.4.20)

∂`(θ ,m,Σ)

∂m
=

1
2

n

∑
i=1

1
zi

[
2Σ
−1(yi−mzi−θ)

]
zi, (4.4.21)

∂`(θ ,m,Σ)

∂Σ
=−n

2
Σ
−1 +

1
2

n

∑
i=1

1
zi

Σ
−1(yi−mzi−θ)(yi−mzi−θ)ᵀΣ

−1. (4.4.22)

Solving for θ in (4.4.20),

n

∑
i=1

1
zi

Σ
−1(yi−mzi−θ)

set
= 0,

n

∑
i=1

1
zi
(yi−mzi−θ) = 0,

n

∑
i=1

1
zi
(yi−mzi) =

n

∑
i=1

1
zi

θ .

(4.4.23)

Therefore

θ̂ =
∑

n
i=1

1
zi
(yi− m̂zi)

∑
n
i=1

1
zi

=
∑

n
i=1

1
zi

yi−nm̂

∑
n
i=1

1
zi

. (4.4.24)
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Solving for m in (4.4.21),

n

∑
i=1

1
zi

[
Σ
−1(yi−mzi−θ)

] set
= 0,

n

∑
i=1

(yi−mzi−θ) = 0,

n

∑
i=1

(yi−θ)−m
n

∑
i=1

zi = 0,

n

∑
i=1

yi−nθ = m
n

∑
i=1

zi.

(4.4.25)

Therefore

m̂ =
∑

n
i=1 yi−nθ̂

∑
n
i=1 zi

. (4.4.26)

Solving for Σ in (4.4.22),

−n
2

Σ
−1 +

1
2

n

∑
i=1

1
zi

Σ
−1(yi−mzi−θ)(yi−mzi−θ)ᵀΣ

−1 set
= 0,

−n
2

I +
1
2

n

∑
i=1

1
zi

Σ
−1(yi−mzi−θ)(yi−mzi−θ)ᵀ = 0,

n

∑
i=1

1
zi

Σ
−1(yi−mzi−θ)(yi−mzi−θ)ᵀ = nI.

(4.4.27)

Therefore

Σ̂ =
1
n

n

∑
i=1

1
zi
(yi− θ̂)(yi− θ̂)ᵀ− zim̂m̂ᵀ. (4.4.28)

We propose the following E-M algorithm, which corrects the algorithm given by Eltoft, Kim,

and Lee (2006). The difference between the algorithm proposed in this text, and the one of Eltoft

et al. (2006) is in the M-step of the E-M algorithm. Where the previous algorithm relied on a

regression to estimate parameters, we propose an algorithm that relies the explicit maximization

of (θ ,m,Σ).
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4.4.1 E-M Algorithm for Multivariate Asymmetric Laplace Distribution

1. Initialize the parameter estimates

θ̂
(0)
j =

1
n

n

∑
i=1

yi j, j = 1, . . . ,d, (4.4.29)

m̂(0) = 0, (4.4.30)

Σ̂
(0)

=
1
n

n

∑
i=1

(yi− θ̂)(yi− θ̂)ᵀ. (4.4.31)

2. Calculate ηi and ξi, i = 1, . . . ,n, using (4.4.13) and (4.4.14) and the most recent parameter

estimates of θ , Σ and m.

3. Update the values of the parameter estimates in the following order:

θ̂
(t)

=
∑

n
i=1 ξiyi−nm̂(t−1)

∑
n
i=1 ξi

,

m̂(t) =
∑

n
i=1 yi−nθ̂

(t)

∑
n
i=1 ηi

,

Σ̂
(t)

=
1
n

n

∑
i=1

ξi

(
yi− θ̂

(t)
)(

yi− θ̂
(t)
)ᵀ
−ηim(t)m(t)ᵀ.

4. Repeat steps 2 and 3 until a convergence criterion is achieved. Because the density of the

multivariate asymmetric Laplace distribution is unbounded at θ , we recommend stopping

the procedure when (θ (t)−θ
(t−1))ᵀ(θ (t)−θ

(t−1))< ε , where ε is a small threshold

supplied by the user.

If any of the parameters are known a priori, we can skip the update step for the respective

parameter. The code for this procedure was written in C++ and is given in Appendix B.

4.4.2 Bias Corrected E-M Estimation

Because the parameter estimates yielded by the E-M algorithm are generally biased

(investigated empirically in Section 4.5.3), we propose a bootstrap method that ameliorates a
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portion of the bias. The method is based on bootstrap resampling and detailed in Rizzo (2007).

Let ζ̂ be an estimate of the parameter ζ of a statistical distribution. The bias of ζ̂ for ζ is defined

to be biasζ (ζ̂ ) = E[ζ̂ ]−ζ .

To estimate the bias of a parameter estimate ζ̂ , we take B samples of size n with replacement

from the original data and calculate ζ̂ on each of the B synthetic data sets. Thus we have a

collection ζ̂ (1), . . . , ζ̂ (B) for each of the B resampled data sets. The bootstrap estimate of bias is

b̂iasζ (ζ̂ ) =
1
B ∑

B
b=1(ζ̂

(b)− ζ̂ ) = ζ̂ (b)− ζ̂ . Therefore, to correct the bias inherent to an estimator ζ̂ ,

we may use the estimator ζ̂BC ≡ ζ̂ − b̂iasζ (ζ̂ ) = ζ̂ − (ζ̂ (b)− ζ̂ ) = 2ζ̂ − ζ̂ (b).

Empirically we find that the E-M algorithm is quick to converge to the ML estimates, usually

taking less than 20 iterations to find optimal estimates. Due to this computational efficiency,

bootstrapping the E-M method does not present a great computational burden, and we have found

that compiling the algorithm in C++ and creating 500 bootstrap replicates takes a few seconds on

an Intel dual core i7-4600U processor. However the decrease in bias of the estimators comes at a

cost — larger standard errors.

The jack-knife estimator of bias cannot be used with our E-M algorithm as the estimator of θ

is not a “smooth” function of the data (Rizzo, 2007). Simulations involving the bias corrected

E-M estimator are shown in Section 4.6.

4.5 E-M Algorithm Simulation

In this section, results of an extensive simulation study are reported to investigate the

empirical properties of the proposed E-M estimation methods. All simulations were implemented

in the R statistical computing environment (R Core Team, 2018) and executed on a Dell E7240

laptop with an Intel i7-4600U CPU or at the Ohio Supercomputer Center (Ohio Supercomputer

Center, 1987) Owens cluster.



85
A bivariate asymmetric Laplace distribution is used. We considered a distribution with the

parameters given by

Y∼A L 2

θ =

−5

3

 , m =

1.5

0.5

 , Σ =

 3 1.5

1.5 1


 . (4.5.1)

The simulation was conducted in two scenarios:

1. Location parameter θ is known.

2. Location parameter θ is unknown.

For sample sizes n = 25,50,100,250,500,1000,2000, we selected 10,000 replicates from

distribution (4.5.1). At each replication, the E-M algorithm and the MM algorithm were applied

and the estimates were collected. An algorithm that describes our random variable generation

procedure is detailed below.

4.5.1 Simulating Multivariate Asymmetric Laplace Variates

We use the simulation method of Kotz et al. (2001), which takes advantage of representation

4.1.12. The algorithm is as follows:

Generator for Y∼A L d(θ ,m,Σ):

1. Generate an exponentially distributed random variable W with mean 1.

2. Generate a multivariate Normal random variable X ∼Nd(0,Σ).

3. Return Y = θ +mW +
√

WX.

4.5.2 Scenario 1: Fixed Location

With fixed location θ = (−5,3)ᵀ, we perform a simulation to investigate the bias and standard

errors of the skewness parameter m and dispersion parameter Σ. Figures 4.2 and 4.3 show a large

difference between the E-M estimator and the MM estimator when sample sizes are small. This
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Figure 4.2 Bias of E-M and MM Estimates of m1. The true value of m1 is 1.5. The location
parameter θ is known. Sample size varies from 25 to 2000.

disagreement is due to the removal of many method of moments samples that resulted in non

positive definite covariance matrix estimates. As sample size increases, the proportion of

admissible covariance estimates increases. We find that the E-M and MM estimators agree in

these larger samples, and may have a negligible amount of bias for the parameter m.

Figures 4.4—4.6 show that parameter estimates of Σ are clearly biased. However the E-M

estimates show significantly less bias and more precision than method of moments estimates.

Both estimators tend to underestimate elements of Σ.
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Figure 4.3 Bias of E-M and MM Estimates of m2. The true value of m2 is 0.5. The location
parameter θ is known. Sample size varies from 25 to 2000.
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Figure 4.4 Bias of E-M and MM Estimates of Σ11. The true value of Σ11 is 3. The location
parameter θ is known. Sample size varies from 25 to 2000.
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Figure 4.5 Bias of E-M and MM Estimates of Σ12. The true value of Σ12 is 1.5. The location
parameter θ is known. Sample size varies from 25 to 2000.
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Figure 4.6 Bias of E-M and MM Estimates of Σ22. The true value of Σ22 is 1. The location
parameter θ is known. Sample size varies from 25 to 2000.
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Scatter plots are created to show the MM estimates (vertical axis) and E-M estimates

(horizontal axis) at a more granular level. The scatter plots only show the estimates derived when

sample size is set at 2000 observations in the simulation. A red line is drawn to show where

moment and E-M estimators agree, and a red dot is added at the true value of the population

parameter. Only cases with admissible E-M and moment estimators are shown are plotted.

In Figures 4.7 and 4.8, we find that point estimates of the skewness parameter lie on the line

indicating perfect agreement. This observation shows that E-M estimates of skewness converge to

the sample average. However, in our E-M algorithm, we initialize skewness estimates at the

sample average.

Contour lines from a two-dimensional kernel density estimator are added to the scatter plots

of Σ estimates to show the concentration of estimates. From this one can see that many of the

estimates are concentrated near the true parameter value. In this fixed parameters case, the

contour lines form approximate ellipses with major axes aligned with the 45◦ line.

Figures 4.9 - 4.11 show scatter plots of estimates of elements of the dispersion matrix Σ.

Generally there is more variability in the estimates that overestimate the parameter value, and

much of that variability is spread in the vertical direction rather than the horizontal direction. This

indicates that moment estimates may overestimate the dispersion parameters compared in the

E-M estimates in some extreme cases.

4.5.3 Scenario 2: Unknown Location

The second part of the simulation study examines the behavior of our parameter estimation

method under unknown parameters. As in Section 4.5.2, we generate 10,000 replicates from

samples of size, 25, 50, 100, 250, 500, 1000, and 2000. Because the location parameter θ is

assumed unknown, both estimation procedures change to accommodate this lack of information.

The MM procedure employed is as in Visk (2009) and detailed in Section 4.2.1. The E-M

algorithm applied was detailed in Section 4.4.1.

Figures 4.12 - 4.18 show the bias of each estimation method with the true parameter denoted

by a solid black line. Samples resulting with inadmissible estimates were discarded. We find that
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Figure 4.7 Scatter plot of Estimates of m1. Sample size is 2000. The true value of m1 is 1.5.
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Figure 4.8 Scatter plot of Estimates of m2. Sample size is 2000. The true value of m2 is 0.5.
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Figure 4.9 Scatter plot of Estimates of Σ11 with known location parameter. Sample size is 2000.
The true value of Σ11 is 3.



95

Figure 4.10 Scatter plot of Estimates of Σ12 with known location parameter. Sample size is 2000.
The true value of Σ12 is 1.5.
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Figure 4.11 Scatter plot of Estimates of Σ22 with known location parameter. Sample size is 2000.
The true value of Σ22 is 1.
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Figure 4.12 Bias of E-M and MM Estimates of m1 with unknown location parameter. Sample size
varies from 25 to 2000.

the standard errors of E-M estimates are generally smaller for each parameter, and that bias is

decreased by a significant amount. An exception is found in the estimates of Σ22, shown in Figure

4.18.

In samples with less than 100 observations, the E-M method outperforms the moment method

by a wide margin. When sample size exceeds 500 the moment method shows less bias. For

moderate sized samples it is unclear which method yields a better estimate of this parameter.

Scatter plots are drawn to show a detailed view of point estimates in samples of size 2000.

Contour lines are drawn atop the scatter plots to show the concentration of the point estimates
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Figure 4.13 Bias of E-M and MM Estimates of m2 with unknown location parameter. Sample size
varies from 25 to 2000.
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Figure 4.14 Bias of E-M and MM estimates of θ1. Sample size varies from 25 to 2000.
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Figure 4.15 Bias of E-M and MM estimates of θ2. Sample size varies from 25 to 2000.
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Figure 4.16 Bias of E-M and MM estimates of Σ11. Sample size varies from 25 to 2000.
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Figure 4.17 Bias of E-M and MM estimates of Σ12. Sample size varies from 25 to 2000.
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Figure 4.18 Bias of E-M and MM estimates of Σ22. Sample size varies from 25 to 2000.
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Figure 4.19 Scatter plot with non-parametric contours of estimates of m1. Sample size is 2000 and
location parameter θ is unknown.

from the 10,000 replicates. Figures 4.19 - 4.22 show scatter plots for estimates of θ1, θ2, m1, and

m2. The contour lines on these scatter plots show that most of the variation is concentrated in the

vertical direction.

Contours drawn on the estimates of dispersion parameters show a different trend – a group of

moment estimates tends to fall below the parameter estimate. This shape can be seen in the scatter

plots of each dispersion parameter. This group of estimates that breaks from the elliptical trend

that we would expect in the contour lines is due to moment estimates that trend toward

inadmissibility; that is, non-positive definite Σ.
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Figure 4.20 Scatter plot with non-parametric contours of estimates of m2. Sample size is 2000 and
location parameter θ is unknown.
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Figure 4.21 Scatter plot with non-parametric contours of estimates of θ1. Sample size = 2000.
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Figure 4.22 Scatter plot with non-parametric contours of estimates of θ2. Sample size is 2000.
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Figure 4.23 Scatter plot with non-parametric contours of estimates of Σ11. Sample size is 2000 and
location parameter θ is unknown.
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Figure 4.24 Scatter plot with non-parametric contours of estimates of Σ12. Sample size is 2000 and
location parameter θ is unknown.
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Figure 4.25 Scatter plot with non-parametric contours of estimates of Σ22. Sample size is 2000 and
location parameter θ is unknown.
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4.6 Bias Corrected E-M Estimator

Following Section 4.4.2, a simulation study was performed to investigate the properties of

E-M estimates after a bootstrap bias correction was performed. As in previous simulations,

10,000 replications were performed of data generated from distribution (4.5.1). The sample sizes

were taken to be 50,100,250,500 or 1,000. The sample size 2000 taken in previous simulations

was omitted due to time constraints at the Ohio Supercomputer Center. At each replication, E-M

parameter estimates and bias corrected E-M parameter estimates were calculated. The number of

bootstrap samples was taken to be 500 for all replications, though in practice a higher number e.g.

2000 is recommended.

The results of the procedure are shown in Figures 4.26 - 4.29. In this simulation, the location

parameter θ and asymmetry parameter m were specifically investigated.

Generally we find a reduction in bias across the estimates of all parameters, however the bias

correction method underestimates the magnitude of bias for each parameter. The result is that bias

corrected estimates of parameters still admit a degree of bias, however we observe an over 50%

decrease in bias for each parameter estimate at each sample size. Standard errors of the estimates

on the other hand are larger due to the increased number of a parameters estimated.

4.7 Goodness-of-Fit Tests

We consider the hypothesis

H : Y1, . . . ,Yn ∼A L d(θ ,Σ,m) (4.7.1)

for some θ ∈ Rd , a positive definite Σ ∈ Rd×d , and m ∈ Rd . A test of this hypothesis has been

considered in Fragiadakis and Meintanis (2011) as an extension of their test of symmetric

Laplacity. Similar to the test of univariate asymmetric Laplacity (2.2), the test of the multivariate

hypothesis can be constructed by observing that under the null hypothesis, the CF (4.1.1), when

multiplied by its denominator, should be close (in some sense) to 1. We reduce the problem by
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Figure 4.26 Bias of bias corrected E-M and E-M estimates of θ1. Sample size varies from 50 to
1000.
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Figure 4.27 Bias of bias corrected E-M and E-M estimates of θ2. Sample size varies from 50 to
1000.
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Figure 4.28 Bias of bias corrected and E-M estimates of m1. Sample size varies from 50 to 1000.
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Figure 4.29 Bias of bias-corrected E-M and E-M estimates of m2. Sample size varies from 50 to
1000.
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considering the case where θ = 0 and Σ = Id . Under the null,

φY(t)
(

1− im̂ᵀt+
1
2

tᵀt
)
−1 = 0. (4.7.2)

Fragiadakis and Meintanis (2011) suggest the use of the test statistic

Tn,W = n
∫
Rd

∣∣∣∣φ̂Y(t)
(

1− im̂ᵀt+
1
2

tᵀt
)
−1
∣∣∣∣2W (t) dt (4.7.3)

where φ̂Y(t) is the multivariate empirical CF φ̂Y(t) = 1
n ∑

n
i=1 exp(itᵀyi) and W is a suitable weight

function. For computational purposes, one may take W (t) = exp(−a||t||2). In this composite test,

parameters are estimated through MM.

4.8 Multivariate Asymmetric Laplace Energy Test

The energy test of the hypothesis (4.7.1) makes use of the statistic (3.2.9) with the absolute

values replace by Euclidean norms. Therefore to conduct an energy goodness-of-fit test in the

multivariate setting, we apply the test statistic

Qn,d = n

(
2
n

n

∑
i=1

E||xi−Xi||−E||X−X′||− 1
n2

n

∑
i, j=1
||xi−xj||

)
. (4.8.1)

The expressions

E||xi−X||=∫
Rd
||xi−x|| 2e(x−θ)Σ−1m

(2π)d/2|Σ|1/2

(
q(x)

2+mᵀΣ
−1m

)ν/2

Kν/2

(√
(2+mᵀΣ

−1m)q(x)
)

dx
(4.8.2)

and

E||X−X′||=∫
Rd

E||xi−X|| 2e(x−θ)Σ−1m

(2π)d/2|Σ|1/2

(
q(x)

2+mᵀΣ
−1m

)ν/2

Kν/2

(√
(2+mᵀΣ

−1m)q(x)
)

dx
(4.8.3)
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are key to evaluating the one-sample energy goodness-of-fit statistic. Thus far, we do not know of

an analytic expression for these expected values. As a proof-of-concept, one may conduct the

energy goodness-of-fit test for the multivariate asymmetric Laplace distribution by first computing

these expectations using numerical integration. Multivariate numerical integration in this scenario

is complicated by two obstacles. The multivariate asymmetric Laplace model has an unbounded

density at θ due to the presence of the Bessel function of the second kind and in order to compute

E||X−xi|| and E||X−X′||, we must integrate over the support of the X which is unbounded.

To deal with the unbounded domain of integration, a transformation is applied to change the

bounds of integration to the hyper-cube [θ1−1,θ1 +1]× . . .× [θd−1,θd +1]. Specifically, we

use the transformations

si =
xi−θi

1− (xi−θi)2 i = 1, . . . ,d. (4.8.4)

The resulting Jacobian determinant for the numerical integration is

d

∏
i=1

1+(xi−θi)
2

(1− (xi−θi)2)2 . (4.8.5)

Numerical integration will be unstable in a neighbor of θ . In response, we create a grid of

quadrants that meet at θ so that any subdivision of the planes will not include θ . For example, if

d = 2, we divide [θ1−1,θ1 +1]× [θ2−1,θ2 +1] into four equal quadrants that each share a

vertex with θ . If d = 3, we divide the cube into 8 cubes of unit volume. The process may be

continued for larger d. Unfortunately, the integration of (4.8.3) requires integration over 2d

dimensions which results in a slower evaluation time.

We used the Cuba library (Hahn, 2005) to perform the numerical integration. The Cuhre

algorithm (Berntsen, Espelid, and Genz, 1991) is used to approximate multivariate integrals.

Cuhre is a deterministic algorithm which uses one of several quadrature rules of polynomial

degree in a globally adaptive subdivision scheme. Cuhre is relatively fast and accurate for low

dimensional multivariate integration.
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n = 50 n = 100 n = 250
2.711 2.704 2.707

Table 4.2 Simulation estimates of critical values for testing A L 2(0,0,I) at the α = 0.10 level for
samples of size 50, 100, and 250.

Numerical integration was performed in C++ and exported to the R environment using the

Rcpp library for R (Eddelbuettel and François, 2011). Source code for the numerical integration

of (4.8.2) and (4.8.3) is included in Appendix B.

Following the computation of expected values (4.8.2) and (4.8.3), the computation of the

energy goodness-of-fit statistic may proceed by inserting these estimates into equation (4.8.1).

4.9 Multivariate Asymmetric Laplace Energy Test Simulations

A simulation was performed to assess the adequacy of the multivariate asymmetric Laplace

test. In this section, we consider the simple hypothesis that the underlying distribution is

bivariate, symmetric Laplace. Due to this simple hypothesis, we may calculate critical values of

the test through Monte Carlo simulation. The critical values of the energy test are given in Table

(4.2). Critical values are determined by Monte Carlo simulation with 5000 replicates. An

example of the composite test is shown in Section 5.2, but the power analysis of the composite,

multivariate Laplace distribution is omitted from this dissertation.

Random variates were generated from each alternative distribution in samples of size 50, 100,

and 250. The simulation size is set to 2000 replicates to determine to empirical power of the

energy test. Specific alternative distributions are listed in Section 4.9.1. None of the alternative

distributions exhibit the excess kurtosis that is found in the bivariate Laplace distribution so the

test is quite powerful for this simple hypothesis. Type I error rates are given in the first line of

Table 4.3 and found to be controlled close to the to 10% level.

We find generally that the energy test is quite powerful against many of the alternative

distributions featured in Table 4.3. The energy test can detect multivariate Normality with 72%

power in samples of size 100, and is extremely powerful when testing against the multivariate

Student’s t distribution, and the skew Normal distribution.
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4.9.1 Alternative Multivariate Distributions

Four alternative distributions are considered in this simulation study.

Bivariate Normal

fN (x;θ ,Σ) =
1√

(2π)2det(Σ)
exp
(
−1

2
(x−θ)ᵀΣ

−1(x−θ)

)

Bivariate Student’s t

fT (x;v) =
Γ
( v

2 +1
)

Γ
( v

2

)
πvdet(Σ)1/2

[
1+

1
v

xᵀΣ
−1x
]− v

2−1

YT
d
=

(√
χ2

v
v

)−1

ZN

Bivariate Normal-Laplace Mixture

YL N (p) d
= pYL +(1− p)ZN

Bivariate Skew-Normal

YS N
d
= λ |ZN |1+

√
1−λ 2ZN
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Distribution n = 50 n = 100 n = 250
L2(0,0,I) 10 10 10

L N (0.75) 12 13 19
L N (0.50) 18 24 45
L N (0.25) 26 44 87

N2(0,I) 39 72 99

T2(2) 100 100 100
T2(5) 100 100 100

S N (0.25) 77 98 100
S N (0.50) 99 100 100
S N (0.75) 100 100 100

Table 4.3 Power and type I error of the bivariate energy test for H : x1, . . . ,xn ∼ A L (0,0,I) for
n = 50,100,250.
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CHAPTER 5 APPLICATION OF ESTIMATION AND TESTING TECHNIQUES

Characterizing the distribution of financial returns is often of interest in the field of

quantitative finance. Financial returns may be the change in value of a stock, bond, currency,

mutual fund, option or other financial instrument. Complex time series methods have been

developed to model the value of various financial assets. However, in this chapter, we will focus

on the simpler problem of testing the goodness-of-fit of the asymmetric Laplace distribution to

the daily logarithmic returns of a mutual fund and a stock.

Often the distribution of financial returns is found to be leptokurtic, that is, their histogram is

found to be fat-tailed and sharply peaked. Depending on the financial instrument, there may also

be a degree of asymmetry to the returns. Various distributions have been proposed to capture

these features such as Stable, Pareto, mixture models, and double Weibull. Kozubowski and

Podgorski (Kozubowski and Podgórski, 2001) showed empirically that the asymmetric Laplace

distribution is a strong competitor against these models for describing the distribution of currency

exchange rates.

5.1 Univariate Example

The historical price of Vanguard LifeStrategy Growth fund (VASGX) is used as an example.

VASGX is a mutual fund composed of 80% stocks and 20% bonds. A portion of stocks and bonds

in the fund are international. VASGX is an example of a mutual fund that provides a great degree

of diversification for an investor, but is subject to currency and international risks, in addition to

the nominal risk inherent to the US stock market.

The daily return of the fund was downloaded from Yahoo! Finance via the quantmod package

in R. A period of 2000 days was collected from 2007-01-03 to 2018-01-29. Let Pt be the daily

closing price of VASGX on day t. The logarithmic daily return is calculated as rt ≡ log
(

Pt
Pt−1

)
.

After this transformation, there are 1999 observations. A histogram of the data with fitted

asymmetric Laplace density is presented in Figure 5.1.
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Figure 5.1 Histogram of daily log returns of VASGX with estimated asymmetric Laplace density
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Figure 5.2 Q-Q plot of sample quantiles against A L ∗ quantiles with estimated parameters
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Fitting the asymmetric Laplace model to the data results in the parameter estimates given in

Table 5.1. We find the location parameter θ is nearly 0. The skewness parameter κ is slightly

larger than 1 indicating that a symmetric Laplace model may be appropriate.

We wish to test the composite hypothesis r1, . . .rm ∼A L with unknown parameters. An

argument could be made that the location parameter θ is 0 a priori, but we do not make this

assumption. The value of the energy test statistic is computed after centering and scaling the data.

The p-value of the composite energy goodness-of-fit test is computed through a parametric

bootstrap. This p-value only depends on the skewness estimate κ̂ and sample size because we

perform the composite test on standardized data. All parameters are estimated through the E-M

algorithm (Section 4.4.1).

The p-value of the test (Table 5.1) is relatively large. This does not imply that the asymmetric

Laplace hypothesis is true, rather, it shows that we lack sufficient evidence to conclude otherwise.

However, we are comforted by the fact that this p-value was gathered from a sample of size 1999.

The combination of the energy test and the “peakedness” of the histogram (Figure 5.1) lead us to

believe that the asymmetric Laplace model is a good fit for this data (or conservatively, as least

not a bad fit). A Q-Q plot is given in Figure 5.2. The Q-Q plot shows minimal cause for concern

over our hypothesized distribution.

Ticker Symbol Sample Size θ̂EM σ̂EM κ̂EM Energy Statistic p-value
VASGX 1999 0.001 0.007 1.072 1.062 0.335

Table 5.1 VASGX: Parameter estimates and goodness-of-fit

5.2 Multivariate Example

We now consider an example of testing the multivariate goodness-of-fit hypothesis.

Previously we found that A L may be a sufficient model for the logarithmic daily returns on

VASGX. We now wish to determine if the bivariate A L 2 model is sufficient for modeling the

joint distribution of the logarithmic daily returns of VASGX and BA, Boeing’s stock price.

Original stock prices are shown in Figure 5.3. The price of Boeing is larger and more volatile than

the price of the Vanguard mutual fund, which is smaller but more stable.
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Figure 5.3 Share price of BA (gray) and VASGX (black) over the period of the study.
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Ticker Symbol Sample Size θ̂ Σ̂ m̂(

VASGX
BA

)
1999

(
0.0009
0.0016

) (
0.00006 0.00007
0.00007 0.0002

) (
−0.0007
−0.0008

)
Table 5.2 VASGX and BA A L 2 parameter estimates

Before standardizing the data, we compute E-M estimates of bivariate asymmetric Laplace

parameters. One may compute bias corrected parameter estimates, but in this example we

calculate E-M estimates. The results of the procedure to shown in Table 5.2. As in the univariate

example, we observe a location parameter close to the origin, and a small degree of asymmetry.

A multivariate energy test is conducted to assess to reasonableness of an asymmetric Laplace

model. The results of the procedure are shown in Table 5.3. We find that the energy statistic is too

large to justify the use of an A L 2 model for this data. Figures 5.4 and 5.5 compare the contours

of a bivariate kernel density estimator and the bivariate A L 2 parametric fit, respectively.

Comparing the non-parametric density estimator with the parametric one, we find the parameter

estimate for the dispersion matrix Σ may be under-estimated — a large portion of observations

fall outside of the outermost A L 2 contour line. The contour lines of the non-parametric density

estimator reveal a slight “S” shape in the scatter-plot, a pattern that the asymmetric Laplace

distribution will fail to model with any combination of parameter estimates.

Ticker Symbol Sample Size Energy GoF Statistic p-value
VASGX and BA 1999 2.86 < 0.01

Table 5.3 VASGX and BA Goodness-of-fit statistics
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Figure 5.4 Scatter plot of VASGX and BA with kernel density estimator contours (20 contour
lines).
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Figure 5.5 Scatter plot of VASGX and BA with A L 2 contour plot overlay (estimated parameters,
20 contour lines)
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CHAPTER 6 SUMMARY

In this dissertation, a variety of new results are shown in connection to the asymmetric

Laplace distribution and its extensions — the multivariate asymmetric Laplace distribution and

the generalized asymmetric Laplace distribution. A test for the univariate asymmetric Laplace

distribution and its extension the variance gamma distribution are detailed in Chapter 3. These

tests are among the most powerful tests that one may use to investigate the goodness-of-fit of

these distributions. Another energy statistic, distance standard deviation, is computed for the

A L distribution in Chapter 3 for use by researchers that are inclined to measure dispersion in

this manner.

We found that the classical ML parameter estimates often fail to be admissible, and a new

application of the E-M algorithm is derived in Chapter 4 to address the short-comings of ML

estimation. The advantage of our E-M algorithm is that it provides admissible maximum

likelihood estimates in the univariate case, and bests the MM estimates in the multivariate case in

terms of bias and standard error. Using this multivariate E-M estimator, we approximate the

energy statistics required to assess the multivariate A L d hypothesis through numerical

integration.

An application of our testing and estimation procedures is given in Chapter 5 to show how we

can effectively characterize the distribution of logarithmic returns of financial instruments. We

show in this application that one can use the E-M algorithm to estimate the parameters of the joint

distribution of logarithmic returns of multiple stocks. Furthermore, the energy goodness-of-fit test

can quickly assess the univariate asymmetric Laplace hypothesis for the logarithmic returns of

individual stocks.

Further research is required to complete the work on the multivariate energy test for the

asymmetric Laplace distribution. In this dissertation, we have found that one can use numerical

integration to compute the test statistics in the multivariate case, but the use of numerical

integration is slow and potentially fraught with numerical demons. There is potential for a fast
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multivariate energy test if analytically useful approximations for the Bessel function of the second

kind are found. If such an approximation is presented, progress could also be made on the energy

test for generalized asymmetric Laplace distribution with real valued shape parameter τ .
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Kotz, S., T. J. Kozubowski, and K. Podgórski (2002). Ml estimation of asymmetric Laplace

parameters. Annals of the Institute of Statistical Mathematics 54(4), 816–826.



134
Kozubowski, T. and A. Panorska (1999). Multivariate geometric stable distributions in financial

applications. Mathematical and Computer Modelling 29(10-12), 83–92.

Kozubowski, T. J. (1997). Characterization of multivariate geometric stable distributions.

Statistics & Risk Modeling 15(4), 397–416.
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APPENDIX A EXPECTED DISTANCE FUNCTIONS

These functions are used in the expression of E|Y −Y ′| for a G A L ∗ random variable. The

expressions are referenced in Proposition 3.5.40. We make use of the variables λ , β , and A j as

defined in equation (3.5.22) and equation (3.5.20).

I1 =
n−1

∑
j=0

A jλ
j−n

Γ(n− j) (A.0.1)
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APPENDIX B SOURCE CODE FOR PROGRAMS

Source code for the numerical computation of equation 4.8.2 and equation 4.8.2 for the

bivariate asymmetric Laplace distribution. Source is written in C++ for the Rcpp interface to R.

// [[Rcpp::depends(RcppEigen)]]

// [[Rcpp::depends(RcppNumerical)]]

// [[Rcpp::depends(RcppGSL)]]

#include <RcppNumerical.h>

#include <RcppGSL.h>

#include <math.h>

#include <gsl/gsl_sf_bessel.h>

/*

The following need to be loaded in the R session:

library(Rcpp)

library(RcppEigen)

library(RcppNumerical)

library(RcppGSL)

*/

using namespace Numer;

class BiLaplace: public MFunc

{

private:

const double theta1;

const double theta2;

const double rho;

const double m1;

const double m2;

const double sigma1;

const double sigma2;

double const1;

double b;

public:

BiLaplace(const double& theta1_,

const double& theta2_,

const double& m1_,

const double& m2_,

const double& sigma1_,

const double& sigma2_,

const double& rho_) : rho(rho_), sigma1(sigma1_),
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sigma2(sigma2_), m1(m1_), m2(m2_),

theta1(theta1_), theta2(theta2_)

{

const1 = std::sqrt(2*sigma1*sigma2*(1-rho*rho)

+ m1*m1*sigma2/sigma1 - 2*m1*m2*rho

+ m2*m2*sigma1/sigma2)/(sigma1*sigma2*(1-rho*rho));

b = -log(M_PI*sigma1*sigma2*std::sqrt(1-rho*rho));

}

// PDF of bivariate AL

double operator()(Constvec& x)

{

double s = (x[0] - theta1) / (1 - std::pow(x[0] - theta1, 2));

double t = (x[1] - theta2) / (1 - std::pow(x[1] - theta2, 2));

double c =((m1*sigma2/sigma1 -m2*rho)*s +

(m2*sigma1/sigma2 - m1*rho)*t) /

(sigma1*sigma2*(1-rho*rho));

double d = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(s, 2)*sigma2/sigma1

-

2 * rho * s * t +

std::pow(t, 2)*sigma1/sigma2)));

double e = log((1 + std::pow(x[0] - theta1, 2)) / std::pow(1 - std::pow(x[0]

- theta1, 2), 2));

double f = log((1 + std::pow(x[1] - theta2, 2)) / std::pow(1 - std::pow(x[1]

- theta2, 2), 2));

return std::exp(b + c + d + e + f);

}

};

// [[Rcpp::export]]

Rcpp::List pBiLaplace(double theta1 = 0,

double theta2 =0,

double m1 =0,

double m2=0,

double sigma1 =1,

double sigma2=1,

double rho=0,

int evaluations = 500000)

{

BiLaplace f(theta1, theta2, m1, m2, sigma1, sigma2,rho);

Eigen::VectorXd lowerI(2);

lowerI << theta1, theta2;

Eigen::VectorXd upperI(2);

upperI << theta1 + 1, theta2 + 1;

Eigen::VectorXd lowerII(2);

lowerII << theta1 - 1, theta2;



141
Eigen::VectorXd upperII(2);

upperII << theta1, theta2 + 1;

Eigen::VectorXd lowerIII(2);

lowerIII << theta1 - 1, theta2 - 1;

Eigen::VectorXd upperIII(2);

upperIII << theta1, theta2;

Eigen::VectorXd lowerIV(2);

lowerIV << theta1, theta2 - 1;

Eigen::VectorXd upperIV(2);

upperIV << theta1 + 1, theta2;

double err_est;

int err_code;

int maxeval = evaluations;

const double resI = integrate(f, lowerI, upperI, err_est, err_code, maxeval);

const double resII = integrate(f, lowerII, upperII, err_est, err_code,

maxeval);

const double resIII = integrate(f, lowerIII, upperIII, err_est, err_code,

maxeval);

const double resIV = integrate(f, lowerIV, upperIV, err_est, err_code,

maxeval);

return Rcpp::List::create(

Rcpp::Named("approximate") = resI + resII + resIII + resIV,

Rcpp::Named("error_estimate") = err_est,

Rcpp::Named("error_code") = err_code

);

}

// Distance to a fixed point integrand

class BiLaplaceDistIntegrand: public MFunc

{

private:

const double theta1;

const double theta2;

const double rho;

const double m1;

const double m2;

const double sigma1;

const double sigma2;

const double a1;

const double a2;

double const1;

double b;

public:

BiLaplaceDistIntegrand(const double& theta1_,

const double& theta2_,

const double& m1_,

const double& m2_,
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const double& a1_,

const double& a2_,

const double& sigma1_,

const double& sigma2_,

const double& rho_) : theta1(theta1_), theta2(theta2_),

rho(rho_), sigma1(sigma1_), sigma2(sigma2_),

m1(m1_), m2(m2_), a1(a1_), a2(a2_)

{

const1 = std::sqrt(2*sigma1*sigma2*(1-rho*rho)

+ m1*m1*sigma2/sigma1 - 2*m1*m2*rho

+ m2*m2*sigma1/sigma2)/(sigma1*sigma2*(1-rho*rho));

b = -log(M_PI*sigma1*sigma2*std::sqrt(1-rho*rho));

}

// PDF of bivariate AL

double operator()(Constvec& x)

{

double s = (x[0] - theta1) / (1 - std::pow(x[0] - theta1, 2));

double t = (x[1] - theta2) / (1 - std::pow(x[1] - theta2, 2));

double p1 = (a1) / (1 - std::pow(a1, 2));

double p2 = (a2) / (1 - std::pow(a2, 2));

double c =((m1*sigma2/sigma1 -m2*rho)*s +

(m2*sigma1/sigma2 - m1*rho)*t) /

(sigma1*sigma2*(1-rho*rho));

double d = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(s, 2)*sigma2/sigma1

-

2*rho* s * t +

std::pow(t, 2)*sigma1/sigma2)));

double e = log((1 + std::pow(x[0] - theta1, 2)) / std::pow(1 - std::pow(x[0]

- theta1, 2), 2));

double f = log((1 + std::pow(x[1] - theta2, 2)) / std::pow(1 - std::pow(x[1]

- theta2, 2), 2));

double g = log(std::sqrt(std::pow(s - a1 + theta1, 2) + std::pow(t - a2 +

theta2, 2)));

return std::exp(b + c + d + e + f + g);

}

};

// [[Rcpp::export]]

Rcpp::List BiLaplaceExY(double theta1 = 0,

double theta2 =0,

double m1 = 0,

double m2 = 0,

double a1 = 0,

double a2 = 0,

double sigma1 = 1,

double sigma2 = 1,
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double rho = 0,

int evaluations = 500000)

{

BiLaplaceDistIntegrand f(theta1, theta2, m1, m2, a1, a2, sigma1, sigma2, rho);

Eigen::VectorXd lowerI(2);

lowerI << theta1, theta2;

Eigen::VectorXd upperI(2);

upperI << theta1 + 1, theta2 + 1;

Eigen::VectorXd lowerII(2);

lowerII << theta1 - 1, theta2;

Eigen::VectorXd upperII(2);

upperII << theta1, theta2 + 1;

Eigen::VectorXd lowerIII(2);

lowerIII << theta1 - 1, theta2 - 1;

Eigen::VectorXd upperIII(2);

upperIII << theta1, theta2;

Eigen::VectorXd lowerIV(2);

lowerIV << theta1, theta2 - 1;

Eigen::VectorXd upperIV(2);

upperIV << theta1 + 1, theta2;

double err_est;

int err_code;

int maxeval = evaluations;

const double resI = integrate(f, lowerI, upperI, err_est, err_code, maxeval);

const double resII = integrate(f, lowerII, upperII, err_est, err_code,

maxeval);

const double resIII = integrate(f, lowerIII, upperIII, err_est, err_code,

maxeval);

const double resIV = integrate(f, lowerIV, upperIV, err_est, err_code,

maxeval);

return Rcpp::List::create(

Rcpp::Named("approximate") = resI + resII + resIII + resIV,

Rcpp::Named("error_estimate") = err_est,

Rcpp::Named("error_code") = err_code

);

}

class BiLaplaceDistIntegrandYY: public MFunc

{

private:

const double theta1;

const double theta2;

const double rho;

const double m1;

const double m2;
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const double sigma1;

const double sigma2;

double const1;

double b1;

double b2;

public:

BiLaplaceDistIntegrandYY(const double& theta1_,

const double& theta2_,

const double& m1_,

const double& m2_,

const double& sigma1_,

const double& sigma2_,

const double& rho_) : theta1(theta1_), theta2(theta2_),

m1(m1_), m2(m2_), sigma1(sigma1_),

sigma2(sigma2_), rho(rho_)

{

const1 = std::sqrt(2*sigma1*sigma2*(1-rho*rho) +

m1*m1*sigma2/sigma1 - 2*m1*m2*rho +

m2*m2*sigma1/sigma2) /

(sigma1*sigma2*(1-rho*rho));

b1 = -log(M_PI*sigma1*sigma2*std::sqrt(1-rho*rho));

b2 = b1;

}

double operator()(Constvec& x)

{

double s = (x[0] - theta1) / (1 - std::pow(x[0] - theta1, 2));

double t = (x[1] - theta2) / (1 - std::pow(x[1] - theta2, 2));

double u = (x[2] - theta1) / (1 - std::pow(x[2] - theta1, 2));

double v = (x[3] - theta2) / (1 - std::pow(x[3] - theta2, 2));

double c1 =((m1*sigma2/sigma1 -m2*rho)*(s) +

(m2*sigma1/sigma2 - m1*rho)*(t)) /

(sigma1*sigma2*(1-rho*rho));

double d1 = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(s,

2)*sigma2/sigma1 -

2*rho*s * t +

std::pow(t, 2)*sigma1/sigma2)));

double c2 =((m1*sigma2/sigma1 -m2*rho)*(u) +

(m2*sigma1/sigma2 - m1*rho)*(v)) /

(sigma1*sigma2*(1-rho*rho));

double d2 = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(u,

2)*sigma2/sigma1 -

2*rho*u*v +

std::pow(v, 2)*sigma1/sigma2)));
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double e1 = log((1 + std::pow(x[0] - theta1, 2)) / std::pow(1 - std::pow(x[0]

- theta1, 2), 2));

double f1 = log((1 + std::pow(x[1] - theta2, 2)) / std::pow(1 - std::pow(x[1]

- theta2, 2), 2));

double e2 = log((1 + std::pow(x[2] - theta1, 2)) / std::pow(1 - std::pow(x[2]

- theta1, 2), 2));

double f2 = log((1 + std::pow(x[3] - theta2, 2)) / std::pow(1 - std::pow(x[3]

- theta2, 2), 2));

double g = log(std::sqrt((s - u)*(s - u) + (t - v)*(t - v)));

return std::exp(b1 + c1 + d1 + b2 + c2 + d2 + e1 + e2 + f1 + f2 + g);

}

};

// Compute the Expected Distance between two bivariate ALs

// [[Rcpp::export]]

Rcpp::List BiLaplaceEYY(double theta1 = 0,

double theta2 =0,

double m1 = 0,

double m2 = 0,

double sigma1 = 1,

double sigma2 = 1,

double rho = 0,

int evaluations = 500000)

{

BiLaplaceDistIntegrandYY f(theta1, theta2, m1, m2, sigma1, sigma2, rho);

Eigen::VectorXd lower1(4);

lower1 << theta1, theta2, theta1, theta2;

Eigen::VectorXd upper1(4);

upper1 << theta1 + 1, theta2 + 1, theta1 + 1, theta2 + 1;

Eigen::VectorXd lower2(4);

lower2 << theta1, theta2, theta1, theta2-1;

Eigen::VectorXd upper2(4);

upper2 << theta1+1, theta2+1, theta1+1, theta2;

Eigen::VectorXd lower3(4);

lower3 << theta1, theta2, theta1-1, theta2;

Eigen::VectorXd upper3(4);

upper3 << theta1+1, theta2+1, theta1, theta2+1;

Eigen::VectorXd lower4(4);

lower4 << theta1, theta2, theta1-1, theta2-1;

Eigen::VectorXd upper4(4);

upper4 << theta1+1, theta2+1, theta1, theta2;

Eigen::VectorXd lower5(4);

lower5 << theta1, theta2-1, theta1, theta2;

Eigen::VectorXd upper5(4);

upper5 << theta1+1, theta2, theta1+1, theta2+1;

Eigen::VectorXd lower6(4);

lower6 << theta1, theta2-1, theta1, theta2-1;
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Eigen::VectorXd upper6(4);

upper6 << theta1+1, theta2, theta1+1, theta2;

Eigen::VectorXd lower7(4);

lower7 << theta1, theta2-1, theta1-1, theta2;

Eigen::VectorXd upper7(4);

upper7 << theta1+1, theta2, theta1, theta2+1;

Eigen::VectorXd lower8(4);

lower8 << theta1, theta2-1, theta1-1, theta2-1;

Eigen::VectorXd upper8(4);

upper8 << theta1+1, theta2, theta1, theta2;

Eigen::VectorXd lower9(4);

lower9 << theta1-1, theta2, theta1, theta2;

Eigen::VectorXd upper9(4);

upper9 << theta1, theta2+1, theta1+1, theta2+1;

Eigen::VectorXd lower10(4);

lower10 << theta1-1, theta2, theta1, theta2-1;

Eigen::VectorXd upper10(4);

upper10 << theta1, theta2+1, theta1+1, theta2;

Eigen::VectorXd lower11(4);

lower11 << theta1-1, theta2, theta1-1, theta2;

Eigen::VectorXd upper11(4);

upper11 << theta1, theta2+1, theta1, theta2+1;

Eigen::VectorXd lower12(4);

lower12 << theta1-1, theta2, theta1-1, theta2-1;

Eigen::VectorXd upper12(4);

upper12 << theta1, theta2+1, theta1, theta2;

Eigen::VectorXd lower13(4);

lower13 << theta1-1, theta2-1, theta1, theta2;

Eigen::VectorXd upper13(4);

upper13 << theta1, theta2, theta1+1, theta2+1;

Eigen::VectorXd lower14(4);

lower14 << theta1-1, theta2-1, theta1, theta2-1;

Eigen::VectorXd upper14(4);

upper14 << theta1, theta2, theta1+1, theta2;

Eigen::VectorXd lower15(4);

lower15 << theta1-1, theta2-1, theta1-1, theta2;

Eigen::VectorXd upper15(4);

upper15 << theta1, theta2, theta1, theta2+1;

Eigen::VectorXd lower16(4);

lower16 << theta1-1, theta2-1, theta1-1, theta2-1;

Eigen::VectorXd upper16(4);

upper16 << theta1, theta2, theta1, theta2;

double err_est;

int err_code;

int maxeval = evaluations;

const double res1 = integrate(f, lower1, upper1, err_est, err_code, maxeval);

const double res2 = integrate(f, lower2, upper2, err_est, err_code, maxeval);
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const double res3 = integrate(f, lower3, upper3, err_est, err_code, maxeval);

const double res4 = integrate(f, lower4, upper4, err_est, err_code, maxeval);

const double res5 = integrate(f, lower5, upper5, err_est, err_code, maxeval);

const double res6 = integrate(f, lower6, upper6, err_est, err_code, maxeval);

const double res7 = integrate(f, lower7, upper7, err_est, err_code, maxeval);

const double res8 = integrate(f, lower8, upper8, err_est, err_code, maxeval);

const double res9 = integrate(f, lower9, upper9, err_est, err_code, maxeval);

const double res10 = integrate(f, lower10, upper10, err_est, err_code,

maxeval);

const double res11 = integrate(f, lower11, upper11, err_est, err_code,

maxeval);

const double res12 = integrate(f, lower12, upper12, err_est, err_code,

maxeval);

const double res13 = integrate(f, lower13, upper13, err_est, err_code,

maxeval);

const double res14 = integrate(f, lower14, upper14, err_est, err_code,

maxeval);

const double res15 = integrate(f, lower15, upper15, err_est, err_code,

maxeval);

const double res16 = integrate(f, lower16, upper16, err_est, err_code,

maxeval);

return Rcpp::List::create(

Rcpp::Named("approximate") = res1 + res2 + res3 + res4

+ res5 + res6 + res7 + res8 + res9 + res10

+ res11 + res12 + res13 + res14 + res15 + res16,

Rcpp::Named("error_estimate") = err_est,

Rcpp::Named("error_code") = err_code

);

}

// Test for convergence

class QuadLaplaceIntegrand: public MFunc

{

private:

const double theta1;

const double theta2;

const double rho;

const double m1;

const double m2;

const double sigma1;

const double sigma2;

double const1;

double b1;

double b2;

public:

QuadLaplaceIntegrand(const double& theta1_,

const double& theta2_,
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const double& m1_,

const double& m2_,

const double& sigma1_,

const double& sigma2_,

const double& rho_) : theta1(theta1_), theta2(theta2_),

m1(m1_), m2(m2_), sigma1(sigma1_),

sigma2(sigma2_), rho(rho_)

{

const1 = std::sqrt(2*sigma1*sigma2*(1-rho*rho)

+ m1*m1*sigma2/sigma1 - 2*m1*m2*rho

+ m2*m2*sigma1/sigma2)

/(sigma1*sigma2*(1-rho*rho));

b1 = -log(M_PI*sigma1*sigma2*std::sqrt(1-rho*rho));

b2 = b1;

}

double operator()(Constvec& x)

{

double s = (x[0] - theta1) / (1 - std::pow(x[0] - theta1, 2));

double t = (x[1] - theta2) / (1 - std::pow(x[1] - theta2, 2));

double u = (x[2] - theta1) / (1 - std::pow(x[2] - theta1, 2));

double v = (x[3] - theta2) / (1 - std::pow(x[3] - theta2, 2));

double c1 =((m1*sigma2/sigma1 -m2*rho)*(s) +

(m2*sigma1/sigma2 - m1*rho)*(t)) /

(sigma1*sigma2*(1-rho*rho));

double d1 = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(s,

2)*sigma2/sigma1 -

2*rho*s * t +

std::pow(t, 2)*sigma1/sigma2)));

double c2 =((m1*sigma2/sigma1 -m2*rho)*(u) +

(m2*sigma1/sigma2 - m1*rho)*(v)) /

(sigma1*sigma2*(1-rho*rho));

double d2 = log(gsl_sf_bessel_K0(const1*std::sqrt(std::pow(u,

2)*sigma2/sigma1 -

2*rho*u*v +

std::pow(v, 2)*sigma1/sigma2)));

double e1 = log((1 + std::pow(x[0] - theta1, 2)) / std::pow(1 - std::pow(x[0]

- theta1, 2), 2));

double f1 = log((1 + std::pow(x[1] - theta2, 2)) / std::pow(1 - std::pow(x[1]

- theta2, 2), 2));

double e2 = log((1 + std::pow(x[2] - theta1, 2)) / std::pow(1 - std::pow(x[2]

- theta1, 2), 2));

double f2 = log((1 + std::pow(x[3] - theta2, 2)) / std::pow(1 - std::pow(x[3]

- theta2, 2), 2));

return std::exp(b1 + c1 + d1 + b2 + c2 + d2 + e1 + e2 + f1 + f2);
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}

};

Source code for multivariate asymmetric Laplace E-M Algorithm (Section 4.4.1). Source is

written in C++ for the Rcpp interface to R.

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::depends(BH)]]

#include <RcppArmadillo.h>

#include <math.h>

#include <boost/math/special_functions/bessel.hpp>

#include <RcppArmadilloExtensions/sample.h>

/*

The following need to be loaded in the R session:

library(Rcpp)

library(BH)

library(RcppArmadillo)

*/

// do not load the arma namespace. Some users report namespace

// conflicts when using Rcpp.

using namespace Rcpp;

// helper function for computing the modified Bessel Fn of the third

// kind. Also available in GSL. But Boost documentation is much

// easier to read so I’m using the implementation from the Boost

// Library for C++

double compute_bessel(double v, double x) {

return boost::math::cyl_bessel_k(v, x);

}

// Provide the Initial estimate of dispersion (Sigma) matrix in the EM

// algorithm for Skew laplace Data.

arma::mat Sigma1(arma::mat dat,

arma::vec theta,

arma::vec m){

int n = dat.n_rows;

int d = dat.n_cols;

arma::mat Sigma(d,d);

Sigma.zeros();

for(int i = 0; i < n; i++){
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arma::mat update = (dat.row(i) - m.t() - theta.t()).t() * (dat.row(i) - m.t()

- theta.t()) / n;

Sigma = Sigma + update;

}

return Sigma;

}

// Estimate the Generalize inverse Gaussians in the EM algorithm for

// Skew Laplace data A tolerance parameter is used to prevent

// overflow. Overflow occurs due to the unbound likelihood when

// approaching theta. Overflow is guaranteed to occur without a

// stopping rule.

arma::mat get_xi_eta (arma::mat dat,

arma::vec theta,

arma::vec m,

arma::mat Sigma,

double tol){

int d = dat.n_cols;

double d1 = double(d);

int n = dat.n_rows;

arma::mat gamma = m.t() * arma::inv_sympd(Sigma) * m;

double gamma1 = sqrt(gamma(0,0) + 2);

arma::vec qy(n);

arma::vec e(n);

arma::vec f(n);

arma::vec g(n);

arma::vec h(n);

arma::vec xi(n);

arma::vec eta(n);

arma::mat result(n,2);

for(int i = 0; i < n; i++){

arma::mat update = (dat.row(i).t() - theta).t() * inv_sympd(Sigma) *

(dat.row(i).t() - theta);

double updated = update(0,0);

qy(i) = sqrt(updated);

}

arma::vec delta = qy;

arma::vec check = gamma1 * delta;

if(any(check < tol)){

return result.fill(arma::datum::inf);

}

double lambda = 1 - (d1/2);

for (int i = 0; i < n; i++){

e(i) = log(delta(i) / gamma1);

f(i) = log(compute_bessel(lambda - 1, gamma1 * delta(i)));

g(i) = log(compute_bessel(lambda + 1, gamma1 * delta(i)));

h(i) = log(compute_bessel(lambda, gamma1 * delta(i)));
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xi(i) = exp(-e(i) + f(i) - h(i));

eta(i) = exp(e(i) + g(i) - h(i));

}

result.col(0) = xi;

result.col(1) = eta;

return result;

}

// function to update the estimate of dispersion in the EM algorithm

// for Skew Laplace data

arma::mat Sigma_update(arma::mat dat,

arma::vec theta,

arma::vec m,

arma::mat xi_eta){

arma::vec xi = xi_eta.col(0);

arma::vec eta = xi_eta.col(1);

int d = dat.n_cols;

int n = dat.n_rows;

arma::mat Sigma(d,d);

Sigma.fill(0);

for(int i = 0; i < n; i++){

arma::mat A = ((dat.row(i).t() - theta - eta(i) * m) * (dat.row(i).t() -

theta - eta(i) * m).t()) / n;

arma::mat A1 = xi(i) * A;

Sigma = Sigma + A1;

}

return(Sigma);

}

// function to update the estimate of location in the EM algorithm

arma::vec theta_update(arma::mat dat,

arma::mat xi_eta,

arma::vec m){

int n = dat.n_rows;

int d = dat.n_cols;

arma::vec xi = xi_eta.col(0);

arma::vec eta = xi_eta.col(1);

arma::mat xi_dat(n,d);

for (int i = 0; i < n; i++){

xi_dat.row(i) = xi(i) * dat.row(i);

}

arma::vec numerator = (sum(xi_dat, 0)).t() - n * m;

double denominator = sum(xi);

arma::vec result(d);

for (int i = 0; i < d; i++){

result(i) = numerator(i) / denominator;

}
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return result;

}

// function to update the estimate of skewness parameter in EM

// algorithm

arma::vec m_update(arma::mat dat,

arma::vec theta,

arma::mat xi_eta){

int n = dat.n_rows;

int d = dat.n_cols;

arma::vec eta = xi_eta.col(1);

double denominator = sum(eta);

arma::vec result(d);

arma::vec numerator = sum(dat, 0).t() - (n * theta);

for(int i = 0; i < d; i++){

result(i) = numerator(i) / denominator;

}

return result;

}

// function to obtain skew laplace parameter estimates

// This function is exposed to the R session.

// [[Rcpp::export]]

List aml_em(arma::mat dat,

double tol1=0.000000000000001,

double tol2=0.000000000000001){

int n = dat.n_rows;

int d = dat.n_cols;

int N = 1000;

arma::mat store_theta(N,d);

arma::mat store_m(N,d);

arma::vec theta_temp(d);

arma::vec m_temp(d);

arma::mat xi_eta_cur(n,2);

arma::mat Sigma_temp(d,d);

double test2_d = 0;

double test1_d= 0;

NumericVector xx(2);

int iter = 0;

for(int i = 0; i < N; i++){

if(i == 0){

store_theta.row(i) = mean(dat);

store_m.row(i).fill(0);

Sigma_temp = Sigma1(dat, store_theta.row(i).t(), store_m.row(i).t());

}else{

xi_eta_cur = get_xi_eta(dat,
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store_theta.row(i-1).t(),

store_m.row(i-1).t(),

Sigma_temp,

tol2);

if(xi_eta_cur(0,0) == arma::datum::inf){

break;

}

theta_temp = theta_update(dat, xi_eta_cur, m_temp);

store_theta.row(i) = theta_temp.t();

m_temp = m_update(dat, theta_temp, xi_eta_cur);

store_m.row(i) = m_temp.t();

arma::mat test1 = (store_theta.row(i) - store_theta.row(i-1)) *

(store_theta.row(i) - store_theta.row(i-1)).t();

double test1_d = test1(0,0);

arma::mat test2 = (store_m.row(i) - store_m.row(i-1)) * (store_m.row(i) -

store_m.row(i-1)).t();

double test2_d = test2(0,0);

if ((test1_d < tol1) && (test2_d < tol1)){

break;

}

iter = i;

Sigma_temp = Sigma_update(dat, theta_temp, m_temp, xi_eta_cur);

}

}

return Rcpp::List::create(Rcpp::Named("theta") = theta_temp,

Rcpp::Named("m") = m_temp,

Rcpp::Named("Sigma") = Sigma_temp,

Rcpp::Named("iterations") = iter);

//Rcpp::Named("alltheta") = store_theta.rows(1,iter), // sometimes

generates an indices error

//Rcpp::Named("allm") = store_m.rows(1,iter));

}
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