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ABSTRACT

Juan P. Bès, Advisor

An operator T on a Fréchet space X is said to be hypercyclic if it has a dense orbit. In that

case, the set HC(T ) of hypercyclic vectors for T is a dense Gδ subset of X . In most cases the set

HC(T )∪{0} is not a vector space. However, Herrero and Bourdon showed that if T is hypercyclic

then HC(T ) contains a hypercyclic manifold, that is a dense linear subspace of X except for the

origin. In a different direction, a great amount of research has been carried out in the search

of hypercyclic subspaces, that is infinite dimensional closed subspaces contained (excluding the

origin) in HC(T ). It is not always the case that a hypercyclic operator has a hypercyclic subspace.

For instance, Rolewicz’s operator on `2 does not have a hypercyclic subspace, but on the other

hand all hypercyclic convolution operators on the space H(C) of entire functions have hypercyclic

subspaces.

If the space X is a Fréchet algebra, continuing the search for structure in HC(T ) one may ask

whether HC(T ) ∪ {0} contains an algebra. In that direction, Aron, Conejero, Peris and Seoane-

Sepúlveda showed that the translation operators on H(C) do not support a hypercyclic algebra.

On the other hand, Shkarin and independently Bayart and Matheron showed that the complex

differentiation operator D on H(C) has a hypercyclic algebra.

In the present dissertation we first continue the search for hypercyclic algebras in the setting

of convolution operators on H(C). Following Bayart and Matheron’s techniques, we extend their

above mentioned result with Shkarin, by establishing that P (D) supports a hypercyclic algebra

whenever P is a non-constant polynomial vanishing at 0.

With a different approach we provide a geometric condition on the set {z : |Φ(z)| ≤ 1}

which ensures the existence of hypercyclic algebras for Φ(D) with Φ ∈ H(C) of exponential type.

This new approach not only recovers the result of Shkarin-Bayart and Matheron but also gives

hypercyclic algebras for convolution operators Φ(D) which do not satisfy the conditions Φ(0) = 0

or that Φ be a polynomial, such as I +D,DeD, eD − 1, or cos(D).
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Answering a question of Seoanne-Sepúlveda, we show that the operatorD supports hypercyclic

algebras that are not singly generated. We next consider hypercyclic algebras beyond the setting

of convolution operators. For instance, we provide abstract criteria for the existence of hypercyclic

algebras, which in a sense generalize familiar results from Linear Dynamics. We also show that

every hypercyclic weighted backward shift operator on `2 supports a hypercyclic algebra.

Finally, on a completely different direction we study the dynamic behavior of affine maps, that

is, maps of the form A = T + a where T is a linear map and a is a vector of the underlying space.

We prove that in many cases the dynamic behavior of A is identical to that of its linear part T . We

also show that if A is hypercyclic then T has to be hypercyclic as well. The converse is not true

however by an example due to Shkarin, who provided a hypercyclic operator T on `2 and a specific

a ∈ `2 such that A = T + a is not hypercyclic. Furthermore, we generalize several results from

linear dynamics to the affine setting, as well as discuss some open questions and provide partial

answers to those.
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PREFACE

Chapter 1 lists basic definitions, standard notation and some fundamental results from topolog-

ical dynamics and linear dynamics that are used in this dissertation. The reader familiar with linear

dynamics is prompted to skip Chapter 1 and refer to it on his/her own will.

Chapter 2 is completely devoted to the search of hypercyclic algebras for convolution operators.

In the first part we prove that convolution operators induced by polynomials vanishing at the origin

support hypercyclic algebras. In the second part we provide a sufficient condition for a convolution

operator (not necessarily induced by a polynomial) to support a hypercyclic algebra, and then we

apply it to several examples of both polynomial and transcedental convolution operators.

Chapter 3 deals with more examples of hypercyclic algebras, like two generated hypercyclic

algebras for the differentiation operator, and hypercyclic algebras for weighted shifts. We also

provide general criteria for the existence of hypercyclic algebras which resemble classical criteria

from the main theory of Linear Dynamics.

Finally, in Chapter 4 we consider the dynamics of affine maps. We relate some results from the

theory of Linear Dynamics to this new setting, seeking to understand the interplay of the dynamics

of an affine map and that of its linear part.
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CHAPTER 1 PRELIMINARIES

1.1 Topological Dynamics.

IfX is a metric space, and T : X → X is a continuous map, then we can consider the sequence

of iterates {I, T, T 2, T 3, . . .) of T acting on X . Our aim is to study the dynamical properties of

this sequence, which is essentially to understand its asymptotic behavior. We will sometimes refer

to the pair (X,T ) as a “dynamical system”.

In many cases, the less interesting for us, we have a regular behavior of the sequence of iterates.

We are mostly interested in cases were the sequence behaves “wildly”, incorporating a notion of

chaos.

In the following definition we let the sequence of iterates act on a specific point of the space.

Definition. 1.1. Let X be a metric space, and T : X → X a continuous map. For an element

x ∈ X we define its orbit under T to be the set

Orb(x, T ) = {x, Tx, T 2x, . . .}.

It is obvious from the definition, that Orb(x, T ) is the smallest T -invariant subset of X con-

taining x.

The next definition will turn out to be of great importance for what follows. It provides a way

to compare dynamical systems, and therefore, to transfer results from a known dynamical system

to an unknown one.

Definition. 1.2. Let X and Y be metric spaces, and T : X → X , S : Y → Y be continuous maps.

Then we say that T is quasiconjugate to S, if there exists a continuous map φ : Y → X with dense

range, such that

T ◦ φ = φ ◦ S

In addition, if φ happens to be a homeomorphism, then we say that T and S are conjugate.
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As we will see, conjugate maps, have identical dynamical behavior.

Definition. 1.3. Let X be a metric space and T : X → X continuous. Then T is said to be

topologically transitive, if for any pair U, V of nonempty open sets, there exists n ∈ Z+, such that

T n(U) ∩ V 6= ∅.

The following result relates topological transitivity of a dynamical system, to the property of

having a dense orbit.

Theorem 1.4 (Birkhoff Transitivity Theorem [15]). Let T be a continuous map on the separable,

complete metric space X without isolated points. Then the following are equivalent:

1. T is topologically transitive,

2. T has a dense orbit.

If one of the above holds, then the set of all points x ∈ X for which Orb(x, T ) is dense, is a dense

Gδ-set.

The final part of Birkhoff’s theorem is indicative of a “0-1” behavior. Either there will be no

point x ∈ X with dense orbit, or there are going to be plenty of them.

On the other extreme of a point with dense orbit is a periodic point. The orbit of a periodic

point behaves very smoothly and except for trivial cases it is nowhere dense in the space.

Definition. 1.5. Let X be a metric space, and T : X → X a continuous map. A point x ∈ X is

called a periodic point of T , if there exists n ∈ Z+ such that T nx = x.

There are several nonequivalent definitions of chaos. One of the most widely used is due to

Devaney and it is stated as follows.

Definition. 1.6. A continuous self-map T on a metric space X is called chaotic, if it is topologi-

cally transitive and it has a dense set of periodic points.
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In fact, Devaney’s original definition of chaos included a third condition, the so called “sen-

sitive dependence on initial conditions”, which provides the dynamical system with a “butterfly

effect” behavior. However, it was proved by Banks-Brooks-Cairns-Davis-Stacey [6], that sensitive

dependence on initial conditions was implied by topological transitivity together with the existence

of a dense set of periodic points. Thus, the definition above is equivalent to Devaney’s.

We also notice, that if X is complete and has no isolated points, the map T is chaotic if it has

a dense set of points having dense orbit, and a dense set of periodic points.

The following property is a strong form of topological transitivity. It demands that the orbit of

a nonempty open set U under T , to eventually intersect every open set V .

Definition. 1.7. If X is a metric space and T : X → X is continuous, then T is said to be mixing,

if for any pair U, V of nonempty open sets, there is an N ∈ Z+ such that T n(U) ∩ V 6= ∅ for all

n ≥ N .

Definition. 1.8. Let X, Y be metric spaces and T : X → X , S : Y → Y be continuous maps. We

define the map T × S on X × Y endowed with the product topology, by

(T × S)(x, y) = (Tx, Sy).

Proposition. 1.9. If T is a continuous map on a metric space X , then if T × T is topologically

transitive, T is also topologically transitive. T is mixing if and only if T × T is mixing.

Definition. 1.10. If T is a continuous map on the metric space X , it is called weakly mixing if

T × T is topologically transitive.

By Proposition 10, the property of weak mixing is stronger than topological transitivity, but

weaker than the mixing property. Weak mixing is equivalent to the condition that for any 4-tuple

U1, U2, V1, V2 of nonempty open sets, there exists an n ∈ N such that T n(U1) ∩ V1 6= ∅, and

T n(U2) ∩ V2 6= ∅.

We close this first section with the observation that conjugate dynamical systems share the

same dynamical properties.
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Proposition. 1.11. The properties of topological transitivity, weak mixing, mixing and chaoticity

are preserved under quasi conjugacy. This means that if the map S has any of the above properties,

and T is quasi conjugate to S, then T satisfies also the same property.

1.2 Linear Dynamics.

1.2.1 Introduction.

From now on, we will restrict our interest to the case were X is a vector space with some suit-

able metric, and T : X → X is a continuous linear operator. Let us begin with some preliminary

definitions.

Definition. 1.12. Let X be a vector space over K. A functional p : X → R+ is called a seminorm

if

1. p(x+ y) ≤ p(x) + p(y), and

2. p(λx) = |λ|p(x),

for all x, y ∈ X and λ ∈ K.

On a vector space X if a sequence of seminorms {pn}n∈N is defined, then we can consider the

family of sets {y ∈ X : pn(x− y) < ε}, for x ∈ X,n ∈ N and ε > 0, as a subbase for a topology

on X . This is called the topology induced by the sequence of seminorms {pn}∞n=1. If moreover,

{pn}∞n=1 is separating, which means ∩∞n=1p
−1
n {0} = {0}, then the formula

∞∑
n=1

1

2n
min(1, pn(x− y)) (1.2.1)

defines a metric on X . This metric is also translation invariant, which means that

d(x+ z, y + z) = d(x, y),

for all x, y, z ∈ X .
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Definition. 1.13. A Fréchet space is a vector space X , endowed with a separating sequence of

seminorms {pn}∞n=1, which is complete in the metric given by (1).

Definition. 1.14. Let X and Y be Fréchet spaces. Then a continuous linear map T : X → Y is

called an operator. The set of all operators from X to Y is denoted by L(X, Y ), and the set of all

operators from X to X by L(X).

If X and Y are Fréchet spaces whose topologies are induced by the sequences of seminorms

{pn}∞n=1 and {qn}∞n=1, then we define X ⊕ Y to be the vector space X × Y endowed with the

sequence of seminorms rn(x, y) = pn(x) + qn(y), for n ∈ N, x ∈ X, y ∈ Y . The sequence

{rn}∞n=1 induces the product topology on X × Y .

Definition. 1.15. Let X and Y be Fréchet spaces and T ∈ L(X), S ∈ L(Y ). Then we define the

operator T ⊕ S ∈ L(X ⊕ Y ) by,

T ⊕ S(x, y) = (T × S)(x, y) = (Tx, Sy),

for (x, y) ∈ X ⊕ Y .

1.2.2 Basic Definitions and Results.

Now we are ready to transfer the theory developed in the first section, to this new linear setting.

Definition. 1.16. Let X be a Fréchet space, and T ∈ L(X). Then T is called hypercyclic if there

exists x ∈ X such that orb(x, T ) is dense in X . In that case x is called a hypercyclic vector for T ,

and the set of all hypercyclic vectors of T is denoted by HC(T ).

Birkhoff’s Transitivity Theorem 1.4 can be restated using the new terminology.

Theorem 1.17 (Birkhoff Transitivity Theorem). Let T be an operator on the Fréchet space X .

Then T is hypercyclic if and only if it is topologically transitive. In this case, the set HC(T ), is a

dense Gδ-set.



6
Therefore, for a hypercyclic operator T , the set HC(T ) of hypercyclic vectors of T is a dense

Gδ-set. Concerning its algebraic structure, we have the following simple application of Baire’s

Category Theorem.

Theorem 1.18. If T is a hypercyclic operator on the Fréchet space X , then

X = HC(T ) +HC(T )

which means that every vector x ∈ X can be written as the sum of two hypercyclic vectors.

Kitai [27] noticed that when T is hypercyclic on a complex Banach space its adjoint T ∗ cannot

have eigenvalues. More generally, we have the following.

Theorem 1.19 (Herrero[26], Bourdon[16], Bès[10], Wengenroth[38]). If T is a hypercyclic oper-

ator on a real or complex Fréchet space X and x ∈ X is a hypercyclic vector for T , then

{p(T )x : p is a polynomial } \ {0}

is a dense set of hypercyclic vectors. In particular, every hypercyclic operator admits a dense

linear subspace consisting, except for 0, of hypercyclic vectors.

As an immediate corollary of Theorem 1.19 we get that HC(T ) is connected. However, as

Bayart and Matherón noticed [7, Theorem 1.33] one can say much more about the topological

structure of HC(T ).

Theorem 1.20. Let X be a separable Fréchet space and T ∈ L(X) be hypercyclic. Then HC(T )

is homeomorphic to X .

Therefore, we can conclude that the set HC(T ), for a hypercyclic operator T , is a connected,

dense Gδ-set, containing a dense linear subspace consisting except from 0, from hypercyclic vec-

tors, and satisfying that every x ∈ X can be written as the sum of two hypercyclic vectors.

The following theorem says that hypercyclicity is a purely infinite dimensional property.
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Theorem 1.21 (Rolewicz [33]). There are no hypercyclic operators on a finite dimensional Fréchet

space.

In the remaining part of this subsection, we present some necessary conditions for an operator

to be hypercyclic.

We recall that for a Fréchet space X its dual space X∗ is defined to be the vector space of

all continuous linear functionals on X . If T : X → X is an operator, then its dual operator

T ∗ : X∗ → X∗, is defined by

T ∗(f)(x) = f(Tx), f ∈ X∗, x ∈ X.

Theorem 1.22. If T is a hypercyclic operator on the Fréchet space X , then its adjoint T ∗ : X∗ →

X∗ has no eigenvalues.

We recall the following definition.

Definition. 1.23. Let T be an operator on the Banach space X . Then T is called power bounded

if

sup
n≥0
||T n|| <∞.

Since every orbit of a power bounded operator is bounded we get the following.

Theorem 1.24. If T is a power bounded operator on the Banach space X , then T fails to be

hypercyclic.

Compact operators play a central role in Banach space theory. Their dynamic properties

though, are rather poor.

Definition. 1.25. If X is a Banach space, the operator T on X is compact, if the image of the

closed unit ball of X , has compact closure.

Theorem 1.26. No hypercyclic compact operator exists on a Banach space.
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1.2.3 Criteria for Hypercyclicity.

Besides the definition, the only tool we mentioned to prove hypercyclicity until now is Birkhoff’s

Transitivity Theorem. In this subsection we provide several sufficient conditions that ensure hy-

percyclicity. Most of them, are refinements of the following criterion due to Kitai.

Theorem 1.27 (Kitai’s Criterion [27]). Let T be an operator on the Fréchet space X . If there exist

dense subsets X0 and Y0 of X and a map S : Y0 → Y0 such that

1. T nx→ 0,∀x ∈ X0,

2. Sny → 0,∀y ∈ Y0, and

3. TSy = y,∀y ∈ Y0.

Then T is mixing.

It turns out that we can substitute the full sequence (n) for the exponents of iterates of T and S

in Kitai’s criterion by some subsequence (nk). In this case though, we no longer have the mixing

property as a result.

Theorem 1.28 (Gethner-Shapiro [21]). Let X be a Fréchet space and T an operator onX . Suppose

there exist dense subsets X0, Y0 of X a subsequence (nk) of (n), and a map S : Y0 → Y0 such that,

1. T nkx→ 0,∀x ∈ X0,

2. Snky → 0,∀y ∈ Y0, and

3. TSy = y,∀y ∈ Y0.

Then T is weakly mixing.

A slight modification of the Gethner-Shapiro criterion due to J. Bès [9] is the following.

Theorem 1.29 (Hypercyclicity Criterion). Let T be an operator on the Fréchet space X . If there

exist dense subsets X0, Y0 of X , a subsequence (nk) of (n), and a sequence of maps Snk : Y0 → X

satisfying the following,
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1. T nkx→ 0,∀x ∈ X0,

2. Snky → 0,∀y ∈ Y0, and

3. TSnky → y,∀y ∈ Y0.

Then T is weakly mixing.

The next result says that the Hypercyclicity Criterion in fact characterizes weak mixing.

Theorem 1.30 (Bès-Peris [13]). Let T be an operator on the Fréchet space X . Then T satisfies

the Hypercyclicity Criterion if and only if T is weakly mixing.

1.2.4 Examples.

After having presented all the fundamental notions and results, we give several examples of

hypercyclic operators. It turns out that hypercyclicity occurs quite often, and that many familiar

operators are hypercyclic.

If we consider the space H(C) of all entire functions, endowed with the increasing sequence

of seminorms

pn(f) = supz∈B(0,n)|f(z)|,

then H(C) is turned into a Fréchet space. The topology induced by the above sequence of semi-

norms is the topology of uniform convergence on compact subsets. The following example is due

to Birkhoff and it is an application of Birkhoff’s Transitivity Theorem.

Example. 1.31 (Birkhoff [14]). On the space H(C), we consider the translation operator,

τaf(z) = f(z + a), a 6= 0.

Then τa is hypercyclic.

Example. 1.32 (MacLane [29]). The differentiation operator

D : f → f ′
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on H(C), is hypercyclic.

Example. 1.33 (Rolewicz [33]). On the space X = lp, p ∈ [1,∞) or X = c0, we consider the

operator

T = λB, (x1, x2, x3, . . .) 7→ λ(x2, x3, x4, . . .)

where B is the backward shift. Then T is hypercyclic precisely when |λ| > 1.

It turns out that Birkhoff’s, MacLane’s and Rolewicz’s operators are both mixing and chaotic.

The following class of operators extends Example 1.33.

Example. 1.34 (Unilateral Weighted Backward Shifts, Salas [34]).

On the sequence space X = lp, p ∈ [1,∞), or X = c0, we consider the weighted (unilateral)

backward shift,

Bw(x1, x2, . . .) = (w2x2, w3x3, . . .)

where the sequence w = (wn) is a bounded sequence of non zero scalars. Then the following hold,

1. Bw is hypercyclic if and only if supn≥1

∏n
k=1 |wk| =∞,

2. Bw is mixing if and only if limn→∞
∏n

k=1 |wk| =∞.

3. Bw is chaotic if and only if
∑∞

n=1
1∏n

k=1 |wk|p
<∞.

Example. 1.35 (Perturbation of the identity by a weighted backward shift, Salas [34]). Let X be

the space lp, 1 ≤ p < ∞ or c0, and Bw be the weighted backward shift with weight sequence

w = (wn)n∈N, such that supn≥0 |wn| <∞. Then the operator I +Bw is mixing.

We note that Example 1.35 provides compact perturbations of the identity operator that are mixing,

what may seem counterintuitive given that the identity operator is far from being hypercyclic!

We recall that an entire function Φ(z) =
∑∞

n=0 anz
n is of exponential type provided that there

exist constants A,C ∈ C such that |Φ(z)| ≤ C eA|z|, for all z ∈ C. In that case the operator

Φ(D) : H(C)→ H(C), f 7→
∞∑
n=0

anD
nf
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is well defined and continuous.The following result extends Example 1.31 and Example 1.32.

Theorem 1.36 (Godefroy and Shapiro [22]). The following conditions are equivalent for an oper-

ator L : H(C)→ H(C).

1. LD = DL, where D is the differentiation operator,

2. Lτa = τaL for each a ∈ C, where τa is the translation by a,

3. There is a complex Borel measure µ on C with compact support such that

Lf(z) =

∫
f(z + w)dµ(w), z ∈ C.

4. L = Φ(D), for some Φ ∈ H(C) of exponential type.

Furthermore, if Φ ∈ H(C) is non-constant and of exponential type, then the operator Φ(D) is

mixing and chaotic. In particular Φ(D) is hypercyclic.

The above theorem justifies the name “Convolution Operators” for the operators on H(C)

which commute with the differentiation operator D.

We already mentioned in Theorem 1.19 that every hypercyclic operator has a hypercyclic man-

ifold, that is, a dense linear manifold consisting entirely (except the origin) of hypercyclic vectors.

A different situation happens with the existence of so-called hypercyclic subspaces, that is, of

closed and infinite dimensional subspaces consisting entirely (but the origin) of hypercyclic vec-

tors. For instance, each closed subspace (except the origin) of the hypercyclic vectors for the

Rolewicz operator 2B on l2 is finite dimensional (see Montes [31]). Moreover, a weakly mixing

operator on a complex, separable, infinite dimensional Banach space has a hypercyclic subspace

if and only if its essential spectrum intersects the closed unit disc (see León Gonzales and Montes

[23], see also Chan[18], Chan and Taylor [19]). On the other hand, all hypercyclic convolution

operators on H(C) support a hypercyclic subspace, thanks to the collective works of Bernal and

Montes [8], Petersson [32], Shkarin [36], and Menet [30].
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1.2.5 Three major results.

In this final section we state three central results in the field of Linear Dynamics.

For an operator T , if some power T p is hypercyclic, we automatically get that T is also hyper-

cyclic. The following result due to Ansari, says that also the converse is true.

Theorem 1.37 (Ansari [1]). Let T be an operator on the Fréchet space X . Then for every p ∈ N,

HC(T ) = HC(T p). In particular, T p is hypercyclic for every p ∈ N, if T is hypercyclic.

We recall that a subspace of a metric space is somewhere dense, if the interior of its closure is

nonempty. In other words, if its closure contains a nonempty open set.

Theorem 1.38 (Bourdon-Feldman [17]). Let T be an operator on the Fréchet space X . If there

exists x ∈ X such that orb(x, T ) is somewhere dense in X , then it is dense in X .

Let us notice, that the Bourdon-Feldman theorem is another example of a “0-1” behavior. An

orbit of an operator T is going to be either nowhere dense, or (everywhere) dense.

Theorem 1.39 (León-Saavedra and Muller [28]). Let T be an operator on the Fréchet space X .

Then for any λ ∈ K such that |λ| = 1, the operators T and λT have the same hypercyclic vectors

(possibly none).
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CHAPTER 2 CONVOLUTION OPERATORS SUPPORTING HYPERCYCLIC ALGEBRAS

A special task in linear dynamics is to understand the algebraic and topological properties of

the set

HC(T ) = {f ∈ X : {f, Tf, T 2f, . . . } is dense in X}

of hypercyclic vectors for a given operator T on a topological vector spaceX . It is well known that

in generalHC(T ) is always connected and is either empty or contains a dense infinite-dimensional

linear subspace (but the origin), see [38]. Moreover, when HC(T ) is non-empty it sometimes

contains (but zero) a closed and infinite dimensional linear subspace, but not always [8, 23]; see

also [7, Ch. 8] and [25, Ch. 10].

When X is a topological algebra it is natural to ask whether HC(T ) can contain, or must

always contain, a subalgebra (but the origin) whenever it is non-empty. Both questions have been

answered by considering convolution operators on the space X = H(C) of entire functions on

the complex plane C, endowed with the compact-open topology; that convolution operators (other

than scalar multiples of the identity) are hypercyclic was established by Godefroy and Shapiro

[22], see also [14, 29, 5], together with the fact that convolution operators on H(C) are precisely

those of the form

f
Φ(D)7→

∞∑
n=0

anD
nf (f ∈ H(C)

where Φ(z) =
∑∞

n=0 anz
n ∈ H(C) is of (growth order one and finite) exponential type (i.e.,

|an| ≤ M Rn

n!
(n = 0, 1, . . . ), for some M,R > 0) and where D is the operator of complex

differentiation. Aron et al [3, 4] showed that no translation operator τa

τa(f)(z) = f(z + a) f ∈ H(C), z ∈ C

can support a hypercyclic algebra, in a very strong way:
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Theorem 2.1. (Aron, Conejero, Peris, Seoane) For any positive integer p and any f ∈ H(C),

the non-constant elements of the orbit of fp under τa are those entire functions for which the

multiplicities of their zeros are integer multiples of p.

In stark contrast with the translations operators, Aron et al showed that the collection of entire

functions f for which every power fn (n = 1, 2, . . . ) is hypercyclic for D is residual in H(C).

Later, Shkarin [36, Th. 4.1] and with a different approach Bayart and Matheron [7, Th. 8.26]

showed that D supports a hypercyclic algebra:

Theorem 2.2 (Shkarin, Bayart and Matheron). The set of entire functions that generate an algebra

consisting entirely (but the origin) of hypercyclic vectors for D is residual in H(C).

Motivated by the work of Aron et al, Bayart and Matheron, and Shkarin, we consider the

following problem:

Problem. 2.3. Which convolution operators

Φ(D) : H(C)→ H(C)

support a hypercyclic algebra?

In Section 2.1 we use the techniques of Bayart and Matheron and extend Theorem 2.2 to op-

erators of the form P (D), with P polynomial vanishing at the origin. In section 2.2 we use a new

approach, and establish a geometric condition for a convolution operator to support a hypercyclic

algebra. As applications, we get hypercyclic algebras for convolution operators induced by poly-

nomials not vanishing at the origin, as well as of convolution operators induced by transcedental

functions.
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2.1 The Bayart-Matheron approach

The main result of this section is the following:

Theorem 2.4. Let Ω be a simply connected planar domain and H(Ω) the space of holomorphic

functions on Ω endowed with the compact open topology. Let Φ be a non-constant polynomial with

Φ(0) = 0. Then the set of functions f ∈ H(Ω) that generate a hypercyclic algebra for Φ(D) is

residual in H(Ω).

The proof of Theorem 2.4 follows that of [7, Th. 8.26]. We postpone the proof of Proposi-

tion 2.5 for later.

Proposition. 2.5. Let Φ be a polynomial with Φ(0) = 0. Then for each pair (U, V ) of non-empty

open subsets of H(Ω) and each m ∈ N there exists P ∈ U and q ∈ N so that


Φ(D)q(P j) = 0 for 0 ≤ j < m,

Φ(D)q(Pm) ∈ V.
(2.1.1)

Proof of Theorem 2.4. For any g ∈ H(Ω) and α ∈ Cm, we let gα := α1g+ · · ·+αmg
m. Let (Vk)k

be a countable local basis of open sets of H(Ω). For each (k, s,m) ∈ N3 we let A(k, s,m) denote

the set of f ∈ H(Ω) that satisfy the following property

∀α ∈ Cmwith αm = 1 and ‖α‖∞ ≤ s, ∃q ∈ N : Φ(D)q(fα) ∈ Vk. (2.1.2)

Each suchA(k, s,m) is open and dense in H(Ω), thanks to Proposition 2.14. By Baire’s Theorem,

A = ∩k,s,m∈NA(k, s,m)

is residual in H(Ω). Let f ∈ A, and let g be in the algebra generated by f . Since a vector

is hypercyclic if and only if any non-zero scalar multiple of it is hypercyclic, we may assume

g = fα = α1f + α2f
2 + · · ·+ αm−1f

m−1 + fm. Then g is clearly hypercyclic for Φ(D). Indeed,
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given any non-empty open set U of H(Ω), let k ∈ N so that Vk ⊂ U . Pick s > ‖α‖∞. Then since

f ∈ A(k, s,m) we know that there exists q satisfying (2.1.2). Hence

Φ(D)qg = Φ(D)q(α1f + α2f
2 + · · ·+ αm−1f

m−1 + fm) ∈ Vk ⊂ U.

Proof of Proposition 2.5. Let Φ(z) = zr
∑k

j=0 ajz
j , with a0 6= 0 and r ∈ N, and let (A,B) ∈

U × V be polynomials. Enlarging the degree of B if necessary, we may assume that degree(B) =

p ∈ rN and p > m. It suffices to show the following.

Claim. 2.6. For any large n ∈ rN there exist (c0, . . . , cp) = (c0(n), . . . , cp(n)) ∈ Cp+1 so that


R := Rn = zn

∑p
j=0 cjz

j and

q := qn = m
r
n+ (m− 1)p

r

satisfy the following:

(i) Φ(D)q((A+R)j) = 0 for 0 ≤ j < m,

(ii) Φ(D)q((A+R)m) = Φ(D)q(Rm) = B,

(iii) Rn →
n→∞

0 in H(Ω).

To show the claim, notice that for each 0 ≤ ` ≤ m− 1 and each s ∈ N we have the inequality

degree(AsR`) ≤ constant + (m− 1)n < (m− 1)p+mn = rq

for all large n. Hence, since Φ(D)q = (
∑k

`=0 a`D
`)q Drq, it follows that for large n we have

Φ(D)q ((A+R)j) = 0 for 0 ≤ j < m, and

Φ(D)q((A+R)m) = Φ(D)q(Rm).
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So (i) holds, as well as the first equality in (ii), regardless of the selection c = (c0, . . . , cp). Next,

for each s ∈ N and multi-index γ = (γ0, . . . , γs) ∈ Ns+1
0 we let

|γ| =
s∑
j=0

γj and γ̂ =
s∑
j=0

jγj =
s∑
j=1

jγj.

Also, for c = (c0, . . . , cs) ∈ (C \ {0})s+1 and |γ| = m, we let

cγ =
s∏
j=0

c
γj
j and

(
m

γ

)
=

m!

γ0!γ1! . . . γs!
.

With this notation we have

Φ(D)q(Rm) =

 ∑
β∈Nk+1

0 :|β|=q

(
q

β

)
aβ Drq+β̂

  ∑
α∈Np+1: |α|=m

(
m

α

)
cα znm+α̂


=

∑
(α,β)∈A

(
m

α

)
cα
(
q

β

)
aβ Drq+β̂znm+α̂

=
∑

(α,β)∈A

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

(α̂− β̂ − (m− 1)p)!
zα̂−β̂−(m−1)p

where

A =
{

(α, β) ∈ Np+1
0 ×Nk+1

0 : |α| = m, |β| = q, and rq + β̂ ≤ nm+ α̂
}

=
{

(α, β) ∈ Np+1
0 ×Nk+1

0 : |α| = m, |β| = q, and mp− p ≤ α̂− β̂
}
.

Thus

Φ(D)q(Rm) =

p∑
i=0

∑
(α,β)∈Ai

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

i!
zi

where for each i = 0, . . . p

Ai = {(α, β) ∈ A : α̂− β̂ = i+ (m− 1)p}.
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In particular, B =

∑p
i=0 biz

i = Φ(D)q(Rm) if and only if c = (c0, . . . , cp) is a solution of the

system

bi =
∑

(α,β)∈Ai

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

i!
(0 ≤ i ≤ p). (2.1.3)

We finish the proof of the claim using the following remark.

Remark. 2.7. For each fixed 0 ≤ ` ≤ p, the following occurs:

(a) Each (α, β) ∈ A` must satisfy α0 = · · · = α`−1 = 0. Otherwise, if αs > 0 with 0 ≤ s ≤ `−1

we’d have since |α| = m that pm−(p−`) = `+(m−1)p ≤ α̂−β̂ ≤ α̂ ≤ sαs+p(m−αs) =

pm− (p− s)αs ≤ pm− (p− s), a contradiction.

(b) If (α, β) ∈ A` satisfies that α` > 0, then β = (q, 0, . . . , 0) and α` = 1, αp = m − 1, and

αj = 0 for j 6= `, p. This is forced from (a) and the inequalities pm − (p − `) = α̂ − β̂ ≤

α̂ =
∑p

j=` jαj ≤ `α` + p(m− α`) = pm− (p− `)α`.

(c) Let A′` := A` \ {((0, . . . , 0, 1︸︷︷︸
`th

, 0, . . . , 0,m − 1), (q, 0, . . . , 0))}. Then from (a) and (b)

each (α, β) ∈ A′` satisfies that α0 = · · · = α` = 0.

(d) If β ∈ Nk+1
0 satisfies |β| = q and β̂ ∈ {0, . . . , `}, then

(
q
β

)
≤ q` and |aβ| ≤ (max{|a0|, . . . , |ak|})`.

Now, thanks to Remark 2.7 the system (2.1.3) is upper triangular and thus solvable, and any

solution to (2.1.3) satisfies (ii) for sufficiently large n. To see (iii), it suffices to show that there

exists w > 1 so that for each ` = 0, 1, . . . , p we have

cp−` = O

(
wn

[(mn+mp)!]
1
m

)
as n→∞. (2.1.4)

Condition (2.1.4) ensures that Rn →
n→∞

0 in H(Ω) as for each M > 0 we have Mn+i|ci| →
n→∞

0.
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Indeed, by (2.1.4) and Stirling’s formula

(
Mn+i|ci|

)m ≤ M (n+i)mwmn

(mn+mp)!

= o

(
(Mw)mn+mp

(mn+mp
e

)mn+mp

)
= O

(
eMw

mn+mp

)mn+mp

→
n→∞

0.

So we finish by proving (2.1.4) by induction on `. Taking i = p in (2.1.3) we get -since in this case

(α, β) ∈ Ap ⇔ α = (0, . . . , 0,m) and β = (q, 0, . . . , 0)- that

p!bp =
∑

(α,β)∈Ap

(
m

α

)(
q

β

)
aαcβ(nm+ α̂)!

=

(
m

(0, . . . , 0,m)

) (
q

(q, 0, . . . , 0)

)
aq0 c

m
p (nm+mp)!

Thus

cmp =
p!bp

aq0 (nm+mp)!
(2.1.5)

and (2.1.4) holds for ` = 0. Inductively, suppose there exists w`−1 > 1 so that

cp−j = O

(
wn`−1

[(mn+mp)!]
1
m

)
(n→∞)

for each j = 0, . . . , `− 1. We want to show that for some w > 1

cp−` = O

(
wn

[(mn+mp)!]
1
m

)
(n→∞). (2.1.6)

Now, taking i = p− ` in (2.1.3) we have by Remark 2.7(b) and (c) that

(p− `)! bp−` =
∑

(α,β)∈Ap−`

(
m

α

)(
q

β

)
aβcα(nm+ α̂)!

= mcp−`c
m−1
p (nm+mp− `)! aq0 +Kn,

(2.1.7)
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where Kn =

∑
(α,β)∈A′p−`

(
m
α

)(
q
β

)
aβcα(nm+ α̂)!. Also, thanks to (2.1.5) we have that

cm−1
p (nm+mp− `)! =

(p!bp)
1− 1

m [(nm+mp)!]
1
m

(a
1− 1

m
0 )q

∏`−1
j=0(nm+mp− j)

∼ [(nm+mp)!]
1
m

(a
1− 1

m
0 )q n`

(n→∞).

(2.1.8)

Now, let (α, β) ∈ A′p−` be fixed. Notice that (α̂, β̂) ∈ {(mp − j, j) : j = 0, . . . , `}, and thus

by Remark 2.7(d) that
(
q
β

)
≤ q` and |aβ| ≤ ‖a‖`∞. Moreover, thanks to Remark 2.7(c) and our

inductive hypothesis we also have

|cα| = |cαp−`+1

p−`+1 · · · c
αp
p | = O

((
wn`−1

[(nm+mp)!]
1
m

)αp−`+1+···+αp)

= O
(

wnm`−1

(nm+mp)!

)
.

Hence ∣∣∣∣∣∣
∑

(α,β)∈A′p−`

(
m

α

)(
q

β

)
aβcα(nm+ α̂)!

∣∣∣∣∣∣ = O
(
n`wmn`−1

)
(n→∞). (2.1.9)

So by (2.1.7), (2.1.8) and (2.1.9) we have

cp−` = O

(
n2`wmn`−1

[(nm+mp)!]
1
ma

q
m
0

)
(n→∞)

Thus any w > wm`−1a
− 1
r

0 satisfies (2.1.6), and Claim 2.6 holds. The proof of Proposition 2.5 is now

complete.
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2.2 A new approach

Theorem 2.1,Theorem 2.2, and Theorem2.4 motivate the following question.

Question. 2.8. Let Φ ∈ H(C) be of exponential type so that the convolution operator Φ(D)

supports a hypercyclic algebra. Must Φ be a polynomial? Must Φ(0) = 0?

We answer the above questions in the negative, by establishing for example that Φ(D) supports

a hypercyclic algebra when Φ(z) = cos(z) and when Φ(z) = zez (Example 2.16 and Exam-

ple 2.17), as well as when Φ(z) = (a0 + a1z
n)k with |a0| ≤ 1 and 0 6= a1 and when Φ(z) = ez − a

with 0 < a ≤ 1 (Corollary 2.15 and Example 2.18). All such examples satisfy a geometric condi-

tion on the level set {z : |Φ(z)| = 1} that ensures Φ(D) to have a hypercyclic algebra:

Theorem 2.9. Let Φ ∈ H(C) be of finite exponential type so that the level set {z : |Φ(z)| = 1}

contains a non-trivial, strictly convex compact arc Γ1 satisfying

conv(Γ1 ∪ {0}) \ (Γ1 ∪ {0}) ⊆ Φ−1(D). (2.2.1)

Then the set of entire functions that generate a hypercyclic algebra for the convolution operator

Φ(D) is residual in H(C).

Here for any A ⊂ C the symbol conv(A) denotes its convex hull. We also recall that for

a planar smooth curve C with parametrization γ : [0, 1] → C, γ(t) = x(t) + iy(t), its signed

curvature at a point P = γ(t0) ∈ C is given by

κ(P ) :=
x′(t0)y′′(t0)− y′(t0)x′′(t0)

|γ′(t0)|3
.

and its unsigned curvature at P is given by |κ(P )|. It is well-known that |κ(P )| does not depend

on the parametrization chosen, and that the signed curvature κ(P ) depends only on the choice of

orientation seleted for C. It is simple to see that any straight line segment has zero curvature. We

say that C is strictly convex provided it contains no straight segment. In particular, any planar
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smooth curve with zero-free curvature is stricty convex. Notice also that for the particular case

when C is given by the graph of a function y = f(x), a ≤ x ≤ b, (and oriented from left to right),

its signed curvature at a point P = (x0, f(x0)) is given by

κ(P ) =
y′′(x0)

(1 + (y′(x0))2)
3
2

.

In particular, κ < 0 on C if and only if y = f(x) is concave down (i.e., (1 − s)f(a) + sf(b) <

f((1− s)a+ sb) for any s ∈ (0, 1)).

We first note the following invariant for composition operators with homothecy symbol

Lemma. 2.10. Let Φ ∈ H(C) be of exponential type, and let ϕ : C → C, ϕ(z) = az be a

homothecy on the plane, where 0 6= a ∈ C. Then Φa := Cϕ(Φ) is of exponential type and

Cϕ(HC(Φa(D))) = HC(Φ(D)).

In particular, the algebra isomorphism Cϕ : H(C)→ H(C) maps hypercyclic algebras of Φa(D)

onto hypercyclic algebras of Φ(D).

Proof. For each f ∈ H(C) we have Cϕ(f)(z) = f(az) (z ∈ C), and thus

DkCϕ(f) = akCϕD
k(f) (k = 0, 1, 2, . . . ).

Hence given Φ(z) =
∑∞

k=0 ckz
k of exponential type Φa := Cϕ(Φ) is clearly of exponential type

and

Φ(D)Cϕ(f) =
∞∑
k=0

ckD
kCϕ(f) =

∞∑
k=0

cka
kCϕD

k(f)

= Cϕ

(
∞∑
k=0

cka
kDk

)
(f)

= CϕΦa(D)(f). (f ∈ H(C)).

So Φa(D) is conjugate to Φ(D) via the algebra isomorphism Cϕ.



23
Remark. 2.11.

1. Lemma 2.10 is a particular case of the following Comparison Principle for Hypercyclic

Algebras. Any operator T : X → X on a Fréchet Algebra X that is quasi-conjugate via a

multiplicative operator Q : Y → X to an operator S : Y → Y supporting a hypercyclic

algebra must support a hypercyclic algebra. Indeed, if A is a hypercyclic algebra for S then

Q(A) = {Qy : y ∈ A} is a hypecyclic algebra for T .

2. If Φ ∈ H(C) satisfies the assumptions of Theorem 2.9, then so will Φa := Cϕ(Φ) for any

non-trivial homothecy ϕ(z) = az. Indeed, notice that for any r > 0 we have

aΦ−1
a (r∂D) = Φ−1(r∂D).

Hence if Γ ⊂ Φ−1(r∂D) is a smooth arc satisfying

conv(Γ ∪ {0}) \ (Γ ∪ {0}) ⊂ Φ−1(rD),

then Γa := 1
a
Γ ⊂ Φ−1

a (r∂D) is a smooth arc satisfying

conv(Γa ∪ {0}) \ (Γa ∪ {0}) ⊂ Φ−1
a (rD).

Moreover, if Γ is a strictly convex, compact, simple and non-closed arc whose convex hull

does not contain the origin, say, then Γa will share each corresponding property as these are

invariant under homothecies. In particular, the angle difference between the endpoints of Γ

is the same as the corresponding quantity in Γa.

We make use of the following three results. The first one ellaborates on the geometric assump-

tion of Theorem 2.9. By D and ∂D we respectively denote the open unit disc centered at 0 and its

boundary, and by Arg(z) the Principal argument of a non-zero scalar z.
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Proposition. 2.12. Let Φ ∈ H(C) and let Γ ⊂ Φ−1(r∂D) be a simple, strictly convex arc with

endpoints z1, z2 satisfying 0 < Arg(z1) < Arg(z2) < π and Re(z1) 6= Re(z2), where r > 0.

Suppose that 0 /∈ conv(Γ) and that

Ω := conv(Γ ∪ {0}) \ (Γ ∪ {0}) ⊂ Φ−1(rD). (2.2.2)

Then S(0, z1, z2) \ Γ consists of two connected components of which Ω is the bounded one, where

S(0, z1, z2) = {0 6= w ∈ C : Arg(z1) ≤ Arg(w) ≤ Arg(z2)}.

Moreover,

Ω = {tz : (t, z) ∈ (0, 1)× Γ} = {tz : (t, z) ∈ (0, 1)× conv(Γ)},

and ∂Ω = [0, z1) ∪ (0, z2) ∪ Γ. In addition,

Γ ∩ ([a, b]× (0,∞)) = Graph(f) ∪ {z1, z2}

for some smooth function f : I → R, where I is the closed interval with endpoints Re(z1) and

Re(z2)} and where f is concave up if Re(z1) < Re(z2) and concave down if Re(z2) < Re(z1).

Proof. Since |Φ| ≤ r on conv(Γ∪ {0}), by (2.2.2) and the Maximum Modulus Principle we have

Γ ∩ int(conv(Γ ∪ {0})) = ∅. (2.2.3)

We claim that

Γ ⊂ {0 6= w ∈ C : Arg(w) ∈ [Arg(z1),Arg(z2)]}. (2.2.4)

To see this, notice that since 0 /∈ conv(Γ) the arc Γ cannot intersect the ray {tei(Arg(z2)+π) : t ≥ 0},

and by (2.2.3) it cannot intersect the interior of the triangle conv{0, z1, z2}, either. Also, notice that
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if H denotes the open half-plane not containing 0 and with boundary

∂H = {z1 + t(z2 − z1) : t ∈ R},

then

∅ = Γ ∩H ∩ {0 6= w ∈ C : Arg(w) < Arg(z1)}, (2.2.5)

as any z ∈ Γ ∩ H with Arg(z) < Arg(z1) would make z1 ∈ int(conv({z, z2, 0}), contradicting

(2.2.3). Finally, since Γ is simple it now follows from (2.2.5) that

∅ = Γ ∩ {0 6= w ∈ C : Arg(w) ∈ [π + Arg(z2), 2π) ∪ [0,Arg(z1))},

and thus any w ∈ Γ satisfies Arg(z1) ≤ Arg(w). By a similar argument, each w ∈ Γ satisfies

Arg(w) ≤ Arg(z2), and (2.2.4) holds. Next, using (2.2.3) and the continuity of the argument on

S(0, z1, z2) it is simple now to see that for each θ ∈ [Arg(z1),Arg(z2)] the ray

{teiθ : t ≥ 0}

intersects Γ at exactly one point, giving the desired description for Γ. For the final statement,

assume Re(z2) < Re(z1) (the case Re(z1) < Re(z2) follows with a similar argument).

Notice that for each x = tRe(z2) + (1 − t)Re(z1) with 0 < t < 1 there exists a unique y ∈ R

so that

(x, y) ∈ Γ with y ∈ [tIm(z2) + (1− t)Im(z1),∞). (2.2.6)

Indeed, the continuous path Γ from z1 to z2 lies in S(0, z1, z2) and only meets the closed triangle

conv({0, z1, z2}) at z1 and z2, so the existence of a y veryfing (2.2.6) follows (it also follows for

the cases t = 0, 1, in which case there may exist up to two values per endpoint, by (2.2.4)). To see
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the uniqueness, if y2 > y1 > tIm(z2) + (1− t)Im(z1) with (x, y1), (x, y2) ∈ Γ, then

(x, y1) ∈ int(conv({z1, z2, x+ iy2}) ∩ Γ ⊂ Ω ∩ Γ = ∅,

a contradiction. Hence (2.2.6) defines a smooth function f : [Re(z1),Re(z2)] → (0,∞) whose

graph Γ0 is a subarc of Γ, provided that if at either endpoint x ∈ {Re(z1),Re(z2)} there are two

values y satisfying x+ iy ∈ Γ we let f(x) be the largest of such two values.

The next lemma is used to apply the forthcoming Proposition 2.14.

Lemma. 2.13. Let Φ ∈ H(C) be of exponential type supporting a a non-trivial, strictly convex

compact arc Γ1 contained in Φ−1(∂D) so that

conv(Γ1 ∪ {0}) \ (Γ1 ∪ {0}) ⊆ Φ−1(D).

Then for each m ∈ N there exist r > 1, a strictly convex smooth arc Γ ⊂ Φ−1(r∂D) and ε > 0 so

that

conv(Γ ∪ {0}) \ Γ) ⊆ Φ−1(rD). (2.2.7)

and

Λ +

j∑
k=1

1

m
Γ ⊂ Ω and

j∑
k=1

1

m
Γ ⊂ Ω for each 1 ≤ j < m, (2.2.8)

where

Ω := conv(Γ1 ∪ {0}) \ (Γ1 ∪ {0})

Λ := Ω ∩D(0, ε) ∩ conv(Γ ∪ {0}).

Proof. Since Γ1 is strictly convex, replacing it by a subarc if necessary we may further assume by

Remark 2.11(2) that Γ1 is simple and with endpoints z1, z2 satisfying 0 < Arg(z1) < Arg(z2) < π

and Re(z2) < Re(z1) and so that 0 /∈ conv(Γ1). By Proposition 2.12,

Ω = {tz : (t, z) ∈ (0, 1)× conv(Γ1)} ⊂ S(0, z1, z2), (2.2.9)
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with ∂Ω = [0, z1) ∪ Γ1 ∪ (0, z2) and we may assume Γ1 is the graph of a concave down function

f : [Re(z2),Re(z1)] → (0,∞) (i.e., replacing zj by z′j = Re(zj) + if(Re(zj)) (j = 1, 2) if

necessary). Now, pick z0 ∈ Γ1 \ {z1, z2} with Φ′(z0) 6= 0, and let w0 := Φ(z0) = eiθ0 , where

θ0 ∈ [0, 2π). Choose ρ > 0 small enough so that the only solution to

Φ(z) = w0

in D(z0, ρ) is at z = z0, and so that D(z0, ρ) ∩ ([0, z1] ∪ [0, z′1]) = ∅. Next, pick

0 < s < min{|Φ(z)− w0| : |z − z0| = ρ}

and let 0 < δ < min{1, s} so that the polar rectangle

Rδ := {z = reiθ : (r, θ) ∈ [1− δ, 1 + δ]× [θ0 − δ, θ0 + δ]}

is contained in D(w0, s). Then

g : Rδ → D(z0, ρ), g(w) =
1

2πi

∫
|z−z0|=ρ

zΦ′(z)

Φ(z)− w
dz

defines a univalent holomorphic function satisfying that

Φ ◦ g = identity on Rδ, (2.2.10)

see e. g. [20, p. 283]. So W := g(Rδ) is a connected compact neighborhood of z0, and Φ maps W

biholomorphically onto Rδ. Hence for each 1− δ ≤ r ≤ 1 + δ

ηr := g(Rδ ∩ r∂D)

is a smooth arc contained in W ∩Φ−1(r∂D). In particular, η1 = W ∩Γ1 is a strictly convex subarc
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of Γ1. Next, notice that since

W ∩ Ω and W ∩ Ext(Ω)

are the two connected components of g(Rδ \ ∂D) = W \ η1 and Ω ⊆ Φ−1(D), by (2.2.10) the

homeomorphism g : Rδ \ ∂D→ W \ η1 must satisfy

g(Rδ ∩ Ext(D)) = W ∩ Ext(Ω)

g(Rδ ∩ D) = W ∩ Ω.

Hence

W ∩ Ext(Ω) = ∪
1≤r≤1+δ

ηr

and g induces a smooth homotopy among the curves {ηr}1≤r≤1+δ. Namely, each ηr (1 ≤ r ≤ 1−δ)

has the Cartesian parametrization

ηr :


X(r, t)

Y (r, t)

θ0 − δ ≤ t ≤ θ0 + δ,

where X, Y : [1− δ, 1 + δ]× [θ0 − δ, θ0 + δ]→ R are given by

X(r, t) := Re(g)(reit)

Y (r, t) := Im(g)(reit).

Recall that given a point P = g(reiθ) in W , the (signed) curvature κηr(P ) of ηr at P is given by

κηr(P ) =
∂X
∂t

(r, θ)∂
2Y
∂2t

(r, θ)− ∂Y
∂t

(r, θ)∂
2X
∂2t

(r, θ)(
(∂X
∂t

(r, θ))2 + (∂Y
∂t

(r, θ))2
) 3

2

,

Hence the mapK : W → R,K(g(reit)) := κηr(P ), is continuous. Now, since η1 is strictly convex

there exists some P = g(eiθ1) in η1 for which each of κη1(P ), ∂X
∂t

(1, θ1) is non-zero. Hence by the
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continuity of K and of ∂X

∂t
we may find some 0 < δ′ < δ so that the polar rectangle

Rδ′ := {z = reiθ : (r, θ) ∈ [1− δ′, 1 + δ′]× [θ1 − δ′, θ1 + δ′]}

is contained in the interior of Rδ and so that K and ∂X
∂t

are bounded away from zero on g(Rδ′) and

on Rδ′ , respectively.

In particular, either ∂X
∂t
> 0 or ∂X

∂t
< 0 on Rδ′ , and either K > 0 or K < 0 on g(Rδ′). So each

ηr ∩ g(Rδ′) (1 ≤ r < 1 + δ′) is the graph of a smooth function

fr : (ar, br)→ (0,∞),

with

(ar, br) =


(X(r, θ1 − δ′), X(r, θ1 + δ′)) if ∂X

∂t
> 0 on Rδ′

(X(r, θ1 + δ′), X(r, θ1 − δ′)) if ∂X
∂t
< 0 on Rδ′ .

Since g(reit) →
r→1

g(eit) uniformly on t ∈ [θ1 − δ, θ1 + δ], there exists 0 < δ′′ < δ′ so that

sup1≤r≤1+δ′′ar = a < b = inf1≤r≤1+δ′′br

and thus each

η′r = {(x, fr(x)); x ∈ [a, b]}

is a subarc of ηr. In particular, f1 = f on [a, b] must be a concave down function, and so must be

each fr with 1 ≤ r ≤ 1 + δ′′. Thus choosing r > 1 close enough to 1 the arc Γ := η′r satisfies

conv(Γ ∪ {0}) \ (Γ ∪ {0}) ⊂ Φ−1(rD)

and
j∑

k=1

1

m
Γ ⊂ Ω for j = 1, . . . ,m− 1.
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By the compactness of Γ we may now get ε > 0 small enough so that the subsector

Λ := Ω ∩D(0, ε) ∩ conv(Γ ∪ {0})

satisfies that

Λ +

j∑
k=1

1

m
Γ ⊂ Ω for j = 1, . . . ,m− 1,

and Lemma 2.13 holds.

Finally, we recall the following key ingredient used to establish Theorem 2.9.

Proposition. 2.14. (Bayart-Matheron [7, Th. 8.26]) Let T be an operator on a (real or complex)

topological vector algebra X that is a Baire space and so that each triple (U, V,W ) of non-empty

open subsets of X with 0 ∈ W and each m ∈ N there exists P ∈ U and q ∈ N so that


T q(P j) ∈ W for 0 ≤ j < m,

T q(Pm) ∈ V.
(2.2.11)

Then T supports a hypercyclic algebra. Indeed, the set of f in X that generate an algebra con-

tained in HC(T ) ∪ {0} is residual in X .

We are ready now to prove the main result of this section.

Proof of Theorem 2.9. Let U, V and W be non-empty open subsets of H(C), with 0 ∈ W , and let

1 < m ∈ N be fixed. By Proposition 2.14, it suffices to find some f ∈ U and q ∈ N so that

Φ(D)q(f j) ∈ W for j = 1, . . . ,m− 1,

Φ(D)q(fm) ∈ V.
(2.2.12)

Now, let r > 1, let Γ ⊂ Φ−1(r∂D) and let Ω and the subsector Λ be given by Lemma 2.13.

Since Γ and Λ have accumulation points in C there exist (ak, bk, λk, γk) ∈ C × C × Λ × Γ (k =



31
1, . . . , p) so that

(A,B) := (

p∑
k=1

ake
λkz

m ,

p∑
k=1

bke
γkz) ∈ U × V.

Next, set R = Rq =
∑p

k=1 cke
γkz

m , where for each 1 ≤ k ≤ p the scalar ck = ck(q) is some

solution of

zm − bk
(Φ(γk))q

= 0.

Notice that for any k = 1, . . . , p we have |Φ(γk)| = r > 1 and thus |ck|m = |bk|
|Φ(γk)|q →q→∞ 0. So

R = Rq →
q→∞

0. (2.2.13)

For 1 ≤ j ≤ m we have

(A+R)j =
∑

`=(u,v)∈Lj

(
j

`

)
au cv e(u·λ+v·γ

m
)z

where Lj conists of those multiindexes ` = (u, v) ∈ Np
0 × Np

0 satisfying |`| := |u| + |v| =∑p
k=1 uk +

∑p
k=1 vk = j and where for each ` = (u, v) ∈ Lj

au := au11 au22 · · · aupp ,

cv := cv11 cv22 · · · cvpp , and(
j

`

)
=

j!

u1! · · ·up!v1! · · · vp!
.

So for 1 ≤ j ≤ m we have

Φ(D)q((A+R)j) =
∑
`∈Lj

Uj,`,

where

Uj,` =

(
j

`

)
au cv

(
Φ(
u · λ+ v · γ

m
)

)q
e(u·λ+v·γ

m
)z

=

(
j

`

)
au b

v
m

(
Φ(u·λ+v·γ

m
)∏p

k=1 Φ(γk)
vk
m

)q

e(u·λ+v·γ
m

)z.
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Now, notice that if {e1, . . . , ep} denotes the standard basis of Cp, our selections of (c1, . . . , cp)

ensure that

Φq(D)((A+R)m)−B =
∑
`∈L∗m

Um,`, (2.2.14)

where

L∗m = {` = (u, v) ∈ Lm : |u| = 0 and v /∈ {me1, . . . ,mep}}.

Also, for each 1 ≤ j ≤ m and ` = (u, v) ∈ Lj with |v| < m we have

Uj,` →
q→∞

0,

as our selections of Λ and Γ give by (2.2.8) that u·λ+v·γ
m
∈ Ω and thus

|Φ(
u · λ+ v · γ

m
)| < 1 < r = |Φ(γ1)| = · · · = |Φ(γp)|.

Hence since each Lj is finite we have

Φ(D)q((A+Rq)
j) →

q→∞
0 (1 ≤ j < m). (2.2.15)

Finally, recall that by Lemma 2.13 we have

conv(Γr) \ Γr ⊆ Φ−1(rD).

Hence if ` = (u, v) ∈ L∗m with |v| = m (so ‖v‖∞ < m and u = 0) we also have that Um,` →
q→∞

0,

as

|Φ(
u · λ+ v · γ

m
)| = |Φ(

v · γ
m

)| < r = |Φ(γ1)|
v1
m . . . |Φ(γp)|

vp
m .

Thus

Φq(D)((A+Rq)
m) →

q→∞
B,

and (2.2.12) follows by (2.2.13) and (2.2.15).



33
Theorem 2.9 gives another extension of Theorem 2.2 and complements Theorem 2.4

Corollary. 2.15. Let P (z) = (a0 + a1z
k)n with |a0| ≤ 1, a1 6= 0, and k, n ∈ N. Then P (D)

supports a hypercyclic algebra on H(C).

Proof. Notice first that Q1(z) = a0 + zk satisfies the assumptions of Theorem 2.9, and hence so

does Q2(z) = a0 + a1z
k, by Remark 2.11. The conclusion now follows by a result due to Ansari

[1] that the set of hypercyclic vectors for an operator T coincides with the corresponding set of

hypercyclic vectors for any given iterate T n (n ∈ N).

We may also apply Theorem 2.9 to non-polynomials.

Example. 2.16. The operator cos(D) supports a hypercyclic algebra on H(C). Indeed, Φ(z) =

cos(z) is of exponential type, and

1 ≥ |Φ(z)|2 = | cos(z)|2 = cos2(x) + sinh2(y) (z = x+ iy, x, y ∈ R).

So Γ1 = {(x, f(x)) : 0 ≤ x ≤ π} ⊂ Φ−1(∂D) for the smooth function f : [0, π]→ [0,∞), f(x) =

sinh−1(sin(x)), which is concave down since it’s second derivative f ′′(x) = −2 sin(x)

(1+sin2(x))
3
2

is negative

on (0, π). Now

conv(Γ1 ∪ {0}) \ (Γ1 ∪ {0})

is the region bounded by the graph of f and the x − axis, on which |Φ| < 1, and the conclusion

follows by Theorem 2.9.

The next two examples should be contrasted with [3, Corollary 2.4].

Example. 2.17. The operator T = Dτ1 = DeD on H(C), where τ1 is the translation operator

g(z) 7→ g(z + 1), g ∈ H(C) supports a hypercyclic algebra.

Let Φ(z) = zez. Clearly Φ is of exponential type, so we may check the conditions of Theo-

rem 2.9. Writing z = x+ iy we get

|f(z)| = 1⇔ y2 = e−2x − x2 (2.2.16)
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The above equation has solutions provided the function φ(x) = e−2x − x2 satisfies that φ(x) ≥ 0.

By doing some elementary calculus, one shows that φ is strictly decreasing on R and has a unique

solution say r ∈ (0, 1). Thus the graph of the function

h(x) =
√
e−2x − x2, x ∈ (−∞, r]

lies in f−1(∂D). Taking derivatives, we get that h′ < 0 and h′′ < 0 on (0, r), thus h is strictly

decreasing and concave down on [0, r]. Furthermore, it is evident that the sector

S = {z = x+ iy ∈ C : 0 ≤ x < r, 0 ≤ y < h(x)}

lies in f−1(D). Thus, the strictly convex arc

Γ1 = {z = x+ iy ∈ C : 0 ≤ x ≤ r, y = h(x)}

satisfies the conditions of Theorem 2.9, which guarantees the existence of a hypercyclic algebra

for the operator f(D).

Example. 2.18. For each 0 < a ≤ 1, the operator T = τ1− aI = eD − aI supports a hypercyclic

algebra. To see this, we will show that the exponential type function Φ(z) = ez−a, z ∈ C satisfies

the assumptions of Theorem 2.9. If z = x+ iy then an easy calculation shows that

|Φ(z)| ≤ 1⇔ e2x − 2a cos yex + a2 − 1 ≤ 0. (2.2.17)

If we restrict y ∈ [0, π
4
] inequality 2.2.17 has solution x ≤ ln(a cos y +

√
1− a2sin2y). Hence,

setting

Γ1 = {z = x+ iy ∈ C : 0 ≤ y ≤ π

4
, x = ln(a cos y +

√
1− a2sin2y)}
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we get that Γ1 ⊂ Φ−1(∂D), and that

{z = x+ iy ∈ C : 0 ≤ y ≤ π

4
, x < ln(a cos y +

√
1− a2sin2y)} ⊂ Φ−1(D).

Moreover, since 0 < a ≤ 1 and 0 ≤ y ≤ π
4
, it follows that

x = ln(a cos y +
√

1− a2sin2y) > 0

and that

dx

dy
= − a sin y√

1− a2sin2y
< 0,

d2x

dy2
= − a cos y

(1− a2sin2y)3/2
< 0.

Hence, the function x = ln(a cos y+
√

1− a2sin2y), y ∈ [0, π
4
] is positive, decreasing and concave

down. It follows that conv(Γ1) \ Γ1 ⊂ Φ−1(D) and hence, by Theorem 2.9 that Φ(D) has a

hypercyclic algebra as claimed.

Since any quasi-conjugacy induced by a linear and multiplicative map preserves algebras as

well as hypercyclic vectors, we conclude in Corollary 2.20 below the existence of hypercyclic

algebras on spaces of smooth functions on the real line C∞(R,C). We first need the following

remark.

Remark. 2.19. (Godefroy and Shapiro) The restriction operator

R :H(CN)→ C∞(RN ,C)

f =f(z1, . . . , zN) 7→ f(x1, . . . , xN)

is continuous, of dense range, and multiplicative, and for any complex polynomial P = P (z1, . . . , zN)

we have

RP (
∂

∂z1

, . . . ,
∂

∂zN
) = P (

∂

∂x1

, . . . ,
∂

∂xN
)R.
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Theorem 2.9, together with Remark 2.19 and Theorem 2.4 give now the following corollary.

Corollary. 2.20. Let P ∈ H(C) be either a non-constant polynomial vanishing at zero, or so that

the level set {z : |Φ(z)| = 1} contains a non-trivial, strictly convex compact arc Γ1 satisfying

conv(Γ1 ∪ {0}) \ (Γ1 ∪ {0}) ⊆ P−1(D).

Then the operator P ( d
dx

) supports a hypercyclic algebra onC∞(R,C). In particular, T = aI+b d
dx

support a hypercyclic algebra on C∞(R,C) whenever |a| ≤ 1 and 0 6= b.

We don’t know whether 2.4 is fully implied by Theorem 2.9:

Question. 2.21. Let P ∈ H(C) be a non-constant polynomial vanishing at the origin. Must it

support a non-trivial strictly convex compact arc Γ1 ⊂ {z : |P (z)| = 1} so that conv(Γ1 ∪ {0}) \

(Γ1 ∪ {0}) ⊆ P−1(D)?

We conclude the section with the following question for future research.

Question. 2.22. Let Φ(D) : H(C) → H(C) be a convolution operator not supporting a hyper-

cyclic algebra.

(i) (Aron) Can Φ be a (non-constant) polynomial?

(ii) Must Φ ∈ H(C) be either constant or of the form Φ(z) = eaz?
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CHAPTER 3 OTHER TOPICS ON HYPERCYCLIC ALGEBRAS

3.1 Two generated hypercyclic hypercyclic algebras

As we saw earlier the operator D on H(C) supports a hypercyclic algebra. However, all the

proofs of this result provide singly generated hypercyclic algebras for D. Therefore, it becomes

natural to ask whether D supports multigenerated hypercyclic algebras as well. This question has

a trivial positive answer since if A is a hypercyclic algebra for D, the algebra generated by any

finite subset of A \ {0} will also be hypercyclic. However in the case of two generated hypercyclic

algebras Seoane-Sepúlveda posed the following question.

Question. 3.1. (Seoane-Sepúlveda) Does there exist a pair of algebraically independent functions

which altogether generate a hypercyclic algebra for the differentiation operator?

Our first aim is to provide an affirmative answer to the above mentioned question. In what

follows we denote the algebra generated by the entire functions f1, . . . , fn by A(f1, . . . , fn). Also,

for a polynomial P ∈ C[z1, . . . zk], k ≥ 1, by ‖P‖∞ we denote the maximum of the absolute

values of its coefficients.

Theorem 3.2. The set of algebraically dependent pairs of functions is a set of first category in the

space H(C)×H(C). More precisely, the set

{(f, g) ∈ H(C)×H(C) : ∃h ∈ H(C), such that A(f, g) ⊂ A(h)}

is of first category in H(C)×H(C).
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Proof. We first introduce some notation. If P is a nonzero polynomial in H(C), let

supp(P ) = {j ∈ Z+ : P (j)(0) 6= 0},

M(P ) = max{|P
(j)(0)|
j!

: 0 ≤ j ≤ deg(P )} and

m(P ) = min{|P
(j)(0)|
j!

: j ∈ supp(P )}.

Set also

N = (H(C)× {0}) ∪ ({0} ×H(C))

which is a union of two nowhere dense subsets of H(C)2. Now for any m ∈ N we let

Fm = {P ∈ C[z] : P (0) = 0, 1 ≤ deg(P ) ≤ m and
1

m(P )
,M(P ) ≤ m}

and we observe that Fm is a compact subset of H(C). Finally, for m ∈ N we set

Am = {(P (h), Q(h)) ∈ H(C)2 : h ∈ H(C), P,Q ∈ Fm}.

Our aim is to show that each set Am is nowhere dense in H(C)2. To do this we break the argument

in two steps.

Step 1: Here we show that for each m ∈ N, the set Am is closed.

Let {(fn, gn)}∞n=1 in Am such that (fn, gn)→ (f, g) ∈ H(C)2. This means that for each n ∈ N

there exists tuple (Pn, Qn, hn) ∈ Fm × Fm ×H(C) such that fn = Pn(hn) and gn = Qn(hn). By

the compactness of Fm passing to a subsequence if necessary, we may assume that Pn → P and

Qn → Q for some P,Q ∈ Fm. Passing to a further subsequence we may also assume that P (j)
n 6= 0

for each j ∈ supp(P ) and n ∈ N.

We claim that the sequence {hn} is locally uniformly bounded. If not, there is K ⊂ C compact

and sequence {zn}∞n=1 ⊂ K such that |hn(zn)| ≥ n for each n ∈ N. Then, if we set m∗ =
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max(supp(P )) we have

|fn(zn)| = |Pn(hn(zn))| = |
∑

j∈supp(P )

P
(j)
n (0)

j!
hjn| ≥

nm
∗

 1

m
−m

∑
j∈supp(P )\{m∗}

1

nm∗−j

→∞ as n→∞

contradicting that fn → f .

By Montel’s theorem passing to a further subsequence we may assume that there is h ∈ H(C)

such that hn → h. It is an easy exercise now to see that Pn(hn) → P (h) and Qn(hn) → Q(h)

hence, f = P (h) and g = Q(h) and thus Am is closed.

Step 2: Here we show that for each m ∈ N, int(Am) = ∅.

If we assume that there exist nonempty open subsets of H(C) say U, V such that U×V ⊂ Am,

then we may pick (P,Q) ∈ U × V such that deg(P ), deg(Q) > m and so that deg(P ), deg(Q)

are relatively prime. Then P = P1(h) and Q = Q1(h) for some P1, Q1 ∈ Fm, h ∈ H(C).

Now, h is not constant since P is not, and h does not have essential singularity at∞ since in that

case P1(h) = P would also have an essential singularity at ∞, which is not true. Hence, h is a

nonconstant polynomial. Also, we have that

degP = degP1 deg h

degQ = degQ1 deg h.

By the above display we get that deg h = 1 and hence that m < degP = degP1 ≤ m which is a

contradiction.

Having established that the sets Am are nowhere dense for each m ∈ N we conclude the proof
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of the theorem as follows,

{(f, g) ∈ H(C)2 : ∃h ∈ H(C) such that A(f, g) ⊂ A(h)} =

{(P (h), Q(h)) ∈ H(C)2 : h ∈ H(C), P,Q ∈ C[z] with P (0) = Q(0) = 0} =

N ∪
∞⋃
m=1

Am,

and the set N ∪
⋃∞
m=1Am is of first category in H(C)2.

Proposition. 3.3. Let X be a topological F -Algebra and let T be a continuos operator on X .

Suppose that for each non-empty open subsets U1, U2, V of X , and each nonzero polynomial P :

C× C→ C which vanishes at the origin, there exist (f1, f2) ∈ U1 × U2 and q ∈ N so that

T qP (f1, f2) ∈ V. (3.1.1)

Then the set of elements (f, g) of X ×X for which the algebra A(f, g) generated by f and g is a

hypecyclic algebra for T is residual in X ×X .

Proof. Let (Vk)k≥1 be a basis for the topology of X . For any polynomial P ∈ C[z1, z2] of degree

m we use the standard notation P = (P1, . . . , Pm) to denote its decomposition in j- homogeneous

polynomials (j = 1, . . . ,m). This means that P =
∑m

j=1 Pj , where Pj(z1, z2) =
∑j

k ak,j−kz
k
1z

j−k
2 .

Now, for each (k, s,m) ∈ N× N× N let A(k, s,m) consist of those (f1, f2) in X ×X satisfying

that for each P = (P1, . . . , Pm) : C2 → C polynomial with ‖P‖∞ ≤ s and ‖Pm‖∞ = 1, there

exists some q ∈ N so that

T qP (f1, f2) ∈ Vk.

Each A(k, s,m) is open and thanks to the assumption (3.1.1) it is dense in X × X . Since Y =

{(f, g) ∈ X ×X : f = 0 or g = 0} is nowhere dense in X ×X , by Baire the set

A :=
⋂

(k,s,m)∈N3

A(k, s,m) \ Y
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is residual in X ×X . Pick (f1, f2) ∈ A. If 0 6= g ∈ X belongs to the algebra generated by f1 and

f2, then

g = P (f1, f2)

for some P = (P1, . . . , Pm) with each Pj : C2 → C a j-homogeneous polynomial and ‖Pm‖∞ 6=

0. Re-scaling g if necessary, we may assume that ‖Pm‖∞ = 1. Given any k ∈ N, taking an integer

s > ‖P‖∞ we know that since (f1, f2) ∈ A(k, s,m) there exists some q ∈ N for which

T qg = T qP (f1, f2) ∈ Vk.

Thus, A(f1, f2) is a hypercyclic algebra for T which completes the proof.

Theorem 3.4. The set of pairs (f1, f2) ∈ H(C)2 such that A(f, g) is a hypercyclic algebra for the

operator D is residual in H(C)2.

Proof. Let U1, U2, V be non empty open subsets of H(C), and P : C2 → C be a nonzero polyno-

mial with P (0, 0) = 0. If degP = m,m ≥ 1, then P has the form

P (z1, z2) =
m∑

i+j=1

aijz
i
1z
j
2.

Set

g = max{i, j : ai,j 6= 0}.

If there is an i0 such that g = i0, set

s = min{j : agj 6= 0},

otherwise, there will be a j0 such that g = j0 and then we set

s = min{i : aig 6= 0}.
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Define KP := ags if the first case holds or KP := asg if the second one does. Therefore, KP

is uniquely determined by P , 0 < KP ≤ m, and KP is the coefficient aij corresponding to the

highest power that occurs in P accompanied by the smallest one. So if

P (z1, z2) = 2z6
1z

5
2 + 3z7

1z
2
2 + 4z7

1z
3
2 + 5z7

2 + 6z2
1z

7
2 ,

say, then KP = 3, the coefficient of z7
1z

2
2 . Now, let Λ = ( 1

3m
, 1

2m
) ⊂ (0, 1), and notice that

Λ + · · ·+ Λ︸ ︷︷ ︸
m−times

⊂ D. Consider the point r = 1 + 1
4m

and notice that −r + Λ ⊂ D. Take D a disc

around −r such that

D + Λ + · · ·+ Λ︸ ︷︷ ︸
l≤m−times

⊂ D.

Define Γ := {|z| = r}∩D. Since the sets Λ and Γ have accumulation points, we can find A ∈ U1,

B ∈ U2 and C ∈ V such that A =
∑p

i=1 aie
λiz, B =

∑p
i=1 bie

λiz, and C =
∑p

i=1 cie
γiz. For

1 ≤ i ≤ p and n ∈ N let ri = ri(n) be a solution of the equation

rgi =
nsci
KPγni

.

Since Γ ⊂ Dc
, ri → 0 as n→∞. Set

Rn(z) =

p∑
i=1

rie
γi
g
z.

Clearly, Rn → 0 as n→∞. In what follows we are going to use the following classical multino-

mial notation. For each p ∈ N and multi-index γ = (γ0, . . . , γs) ∈ Np+1
0 we let

|γ| =
p∑
j=0

γj.
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Also, for c = (c0, . . . , cp) ∈ (C \ {0})p+1 and |γ| = m, we let

cγ =

p∏
j=0

c
γj
j and

(
m

γ

)
=

m!

γ0!γ1! . . . γp!
.

Finally, if x, y ∈ Cp we denote by x · y the usual inner product of x and y. For n ∈ N we have

P (A+Rn, B +
1

n
) =

m∑
i+j=1

aij(A+Rn)i(B +
1

n
)j =

m∑
i+j=1

∑
(u,v,k,`)∈Ni,j

aij

(
i

u, v

)(
j

k, `

)
aubkc(v/g)

K
(|v|/g)
P n(`−(|v|s/g))γ(nv/g)

e((u+k)·λ+ v·γ
g

)z,

where Ni,j = {(u, v, k, `) ∈ Np
0 × Np

0 × Np
0 × N0 : |u|+ |v| = i, |k|+ ` = j}. Hence,

DnP (A+Rn, B +
1

n
) =

m∑
i+j=1

aij
∑

(u,v,k,`)∈Nij

(
i

u, v

)(
j

k, `

)
aubkc(v/g)

K
(|v|/g)
P n(`−(|v|s/g))(

(u+ k) · λ+ (v · γ)/g

γv/g

)n
e((u+k)λ+(v·γ)/g)z

We will show that DnP (A + Rn, B + 1
n
) → C as n → ∞. If |u| 6= 0 or |k| 6= 0, then by the

definition of the sets Λ and Γ, |(u+ v) · λ+ v·γ
g
| < 1 while |γ(v/g)| = r(|v|/g) ≥ 1, so

(
(u+ k) · λ+ v·γ

g

γ(v/g)

)n

→ 0 as n→∞.

If |u| = 0 = |k|, and |v| < g or if |v| = g but v 6= el, l = 1, . . . , p, where el is the standard basis

vector for Cp, then |(u + k) · λ + v·γ
g
| = |v·γ

g
| < r, and |γ(v/g)| = r(|v|/g) = r, since now |v| > 0.

Hence, we get again that

(
(u+ k) · λ+ v·γ

g

γ(v/g)

)n

→ 0 as n→∞.
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Finally, if |u| = 0 = |k|, v = el for some l ∈ {1, . . . , p}, and ` > s, then

(u+ k) · λ+ v·γ
g

γ(v/g)
=
γi
γi

= 1,

but `− |v|s
g

= `− s > 0 hence
1

n`−
|v|s
g

→ 0 as n→∞.

Thus,

lim
n→∞

1

n(`−(|v|s/g))

(
(u+ k) · λ+ (v · γ)/g

γv/g

)n
= 0

whenever i 6= g, j 6= s, or v 6= gel for any l ∈ {1, . . . , p}. We conclude that

lim
n→∞

DnP (A+Rn, B +
1

n
) = ags

p∑
i=1

ci
KP

eγiz = C

by the definition of KP . Taking n large enough to ensure that A + Rn ∈ U1, B + 1
n
∈ U2, and

DnP (A+Rn, B+ 1
n
) ∈ V , and applying the previous proposition with (f1, f2) = (A+Rn, B+ 1

n
)

we get the result.

Now combining Theorem 3.2 and Theorem 3.4 we get the following corollary which provides

the answer to Question 3.1

Corollary. 3.5. The operator D on H(C) supports a two generated hypercyclic algebra not con-

tained in a singly generated one.

Remark. 3.6. Corollary 3.5 holds for operators Φ(D), where Φ is entire function of exponential

type which satisfies that 0 ∈ Φ−1(D) and that {|Φ(z)| = 1} contains a nontrivial strictly convex

arc Γ such that

conv(Γ ∪ {0}) \ (Γ ∪ {0}) ⊂ Φ−1(D).

As a result we get for example, that D + 1
2
I and DeD contain a two-generated hypercyclic

algebra.

We conclude this section with some questions for future research.
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Questions.

1. Does D+I contain a two generated hypercyclic algebra?

2. Do Theorem 3.2 and Theorem 3.4 extend to any n ∈ N? In other words, is it true that for

each 2 ≤ n ∈ N the operator D supports an n-generated hypercyclic algebra, that is not

contained in an (n− 1)-generated hypercyclic algebra?

3. Does D support an infinitely generated hypercyclic algebra?

3.2 Hypercyclic Algebras for weighted backward shifts

Here we change the setting by considering `p, 1 ≤ p < ∞ the space of p-summable complex

sequences endowed with the pointwise product which gives `p a Banach algebra structure. For a

sequence of complex numbers w = (wn) ∈ `∞ let Bw be the weighted backward shift operator

acting on `p. Salas has proved that Bw is hypercyclic if and only if supn≥1

∏n
ν=1 |wν | =∞. In that

case it is natural to ask whether Bw supports a hypercyclic algebra. We make use of the following

proposition which is a more primitive version of 2.14.

Proposition. 3.7. Let X be an F - algebra with the following property. For each U, V nonempty

open subsets, and each p nonzero polynomial with p(0) = 0, there exist x ∈ U and q ∈ N such

that T qp(x) ∈ V . Then there is a residual set of vectors which generate a hypercyclic algebra for

T .

Proof. Let {Vk}∞k=1 be a basis for the topology of X . For each (k, s,m) ∈ N3 set A(k, s,m) to

be the set of x ∈ X such that for each p nonzero monic polynomial with p(0) = 0, deg p ≤ m,

and ‖p‖∞ ≤ s, there exists q ∈ N such that T qp(x) ∈ Vk. Each set A(k, s,m) is open and, by the

assumption dense. Hence by the Baire Category theorem

⋂
(k,s,m)∈N3

A(k, s,m)

is a dense Gδ-set, and any vector x ∈
⋂

(k,s,m)∈N3 A(k, s,m) is a generator of a hypercyclic algebra

for T .
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Theorem 3.8. If Bw is hypercyclic, then it supports a hypercyclic algebra.

Proof. We prove the theorem by making use of the proposition. Let U, V ⊂ `p open and nonempty,

and let x = (x1, . . . , xk, 0, 0, . . . ) ∈ U and y = (y1, . . . , yk, 0, 0, . . . ) ∈ V , (k ∈ N). Let ε > 0

such that if ‖x − x0‖p < ε then x0 ∈ U . Consider p ∈ C[z] nonzero polynomial with p(0) = 0.

Then there exists δ > 0 such that whenever |z| < δ, there exists z0 with |z0| < ε
2k1/p

and p(z0) = z.

Since supn≥1

∏n
ν=1 |wν | = ∞, and w ∈ `∞, there exists N ∈ N, N > k such that for each

i = 1, . . . , k

| yi
wi+1 . . . wN+i

| < δ.

For every i ∈ {1, . . . , k} choose ri such that

|ri| <
ε

2k1/p
, and p(ri) =

yi
wi+1 . . . wN+i

.

Set r = (0, 0, . . . , r1︸︷︷︸
N

, r2, . . . , rk, 0, 0, . . . ). Now since ‖r‖p = ε
2
, x+ r ∈ U and

BN−1
w p(x+ r) = BN−1

w p(r) = y ∈ V.

By Proposition 3.7, the shift Bw supports a hypercyclic algebra.

Remark. 3.9. Several authors in the definition of the weighted shift operator, demand the weight

sequence w = (wn) to consist of positive (real) numbers. In that case we may let Bw act on the

space of real p-summable sequences `p, 1 ≤ p < ∞. Salas’s condition on hypercyclicity of Bw

remains the same but in the real case Bw can never support a hypercyclic algebra. Indeed, for

any x ∈ `p, its square x2 has only nonnegative entries, and hence by the assumption on the weight

sequence w, the same is true for Bn
wx

2, n ∈ N. This means that x2 fails to be a hypercyclic vector

for Bw for any x ∈ `p. However, the question remains open if we consider the real case but with

weight sequence w ∈ RN.
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3.3 Criteria for the existence of hypercyclic algebras

3.3.1 An eigenvalue criterion for hypercyclic algebras

Theorem 3.10. (Eigenvalue Criterion for Hypercyclic Algebras) Let T be an operator acting on a

separable commutative topological vector algebra X that is a Baire space. Suppose that for each

m ∈ N there exist X0, Y0 subsets of X so that

(i) Each of span(X0) and span{ym : y ∈ Y0} is dense in X ,

(ii) For each (u, v) ∈ Z+ × Z+ with v < m and 1 ≤ u+ v ≤ m

(
u∏
j=1

X0)(
v∏
j=1

Y0) ⊂ ∪|λ|<1Ker(T − λI), and

(iii) For each y1, . . . , ym ∈ Y0

y1 · · · ym ∈


∪|λ|>1Ker(T − λI) if y1 = · · · = ym

∪
|λ|<

∏p
k=1 |λk|

1
m

Ker(T − λI) otherwise,

where λi, the eigenvalue of ymi , is in (| · | > 1).

Then T supports a hypercyclic algebra. Moreover, the set of vectors f in X that generate a

hypercyclc algebra for T is residual in X .

Proof. Let U and V be non-empty open subsets of X . By (i), there exist xj ∈ X0 and yj ∈ Y0 and

non-zero scalars aj, bj (j = 1, . . . , p) so that

x = a1x1 + · · ·+ apxp ∈ U and y = b1y1 + · · ·+ bpyp ∈ V.

For each n ≥ 1 let

rn :=

p∑
k=1

λ
− n
m

k ckyk,
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where for each k = 1, . . . , p, the scalar ck is a solution of zm = bk and λk is the eigenvalue of ymk .

Notice that by (iii) each λk has modulus larger than one, so

rn →
n→∞

0.

Also, for each 1 ≤ j ≤ m we have

(x+ rn)j =
∑

`=(u,v)∈Lj

(
j

`

)
aubv(

p∏
k=1

λ
−nvk

m
k ) xuyv,

where Lj = {` = (u, v) ∈ Np
0 × Np

0 : |u|+ |v| = j} and for each ` = (u, v) ∈ Lj

au =

p∏
k=1

aukk , b
v =

p∏
k=1

bvkk , x
u =

p∏
k=1

xukk , and yv =

p∏
k=1

yvkk .

Now, when j < m we know by (ii) that for each ` = (u, v) ∈ Lj the vector xuyv has eigenvalue

of modulus strictly less than one, so (since |λk| > 1 for each k) we have

T n((x+ rn)j)→ 0 for each j < m.

On the other hand, we have

T n((x+ rn)m)− y =
∑

`=(u,v)∈L∗m

(
m

`

)
aubv (

p∏
k=1

λ
−nvk

m
k ) T n(xuyv),

where L∗m consists of those multiindexes ` = (u, v) ∈ Lm for which 1
m
v is not an element of the

standard basis of Cp. Thus the assumption (iii) ensures that

T n((x+ rn)m) →
n→∞

y.

The conclusion now follows by Proposition 2.14.
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3.3.2 A Gethner-Shapiro type criterion for hypercyclic algebras

Proposition 2.14 by Bayart and Matheron or more generaly Proposition 3.7 are obviously a

stronger version of Birkhoff’s Transitivity Theorem. Similarly, the Eigenvalue Criterion presented

above (Theorem 3.10) is the analogue of the Godefroy-Shapiro Criterion ([22] or see [25, Theorem

3.1]) in the setting of hypercyclic algebras. The next criterion may be viewed as an adaptation of

the Hypercyclicity Criterion to ensure the existence of hypercyclic algebras.

Theorem 3.11. Let X be a commutative, topological F - algebra and T ∈ L(X). Suppose that for

each m ∈ N there exist dense subsets Dm,1 and Dm,2 of X such that each x ∈ Dm,2 has an mth

root in X (i.e. there exists y ∈ X such that ym = x) and with the property that whenever xn → 0

with xn ∈ Dm,2, then x1/m
n → 0 for any selection of mth roots. (This condition holds for any

subset of `p). Assume also that there exist functions Sm = S : Dm,2 → Dm,2 and subsequences

nk(m) = nk such that the following conditions hold:

1. Snky → 0, as k →∞, ∀y ∈ Dm,2,

2. T nk(xi(Snky)j/m) → 0 as k → ∞, for any 0 < i ≤ m, 0 ≤ j < m such that 1 ≤ i + j ≤

m,x ∈ Dm,1, y ∈ Dm,2,

3. T nkSnky → y, as k →∞, ∀y ∈ Dm,2.

Then the set of generators for a hypercyclic algebra for the operator T is residual in X .

Proof. Let m ∈ N and U, V,W nonempty open subsets of X with 0 ∈ W . Take x ∈ U ∩Dm,1 and

y ∈ V ∩Dm,2. For each k ∈ N consider the vector

zk := x+ (Snky)1/m.

By condition 1we have that zk → x.On the other hand, for each 0 < j < m we have,

T nk(zjk) =

j∑
i=0

(
j

i

)
T nkxi(Snky)j/m → 0,
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by condition 2. Finally,

T nk(zmk ) =
m∑
i=0

(
m

i

)
T nkxi(Snky)

m−1
m → 0

by conditions 2 and 3. Proposition 2.14 now yelds the existence of a residual set of generators for

a hypercyclic algebra for the operator T .

We observe that any operator satisfying the assumptions of the Eigenvalue Criterion (Theo-

rem 3.10) also satisfy the assumptions of Theorem 3.11. We note the latter is more general by

providing a second proof of Theorem 3.8.

Example. 3.12. We consider as in the previous section the operator Bw acting on `p (complex

case). For each m ∈ N, set Dm,1 = Dm,2 = c00, and Sm = S = B−1
w on c00,

S(x1, x2, . . . ) = (0, w−1
2 x1, w

−1
3 x2, . . . ), (xn) ∈ c00.

It is not hard to see that since supn≥1

∏n
ν=1 |wν | =∞ and w ∈ `∞, there is subsequence (nk) ⊂ N

such that

Snky → 0, ∀y ∈ c00.

Therefore, Condition 1 of Theorem 7 holds, and Condition 3 is automatic by the choice of S. For

any x, y ∈ c00 and n ∈ N large enough we have xi(Sny)j/m = 0, hence

Bw(xi(Snky)j/m) = 0, for any n large enough,

and condition 2 is also established.

According to the previous example any hypercyclic weighted backward shift satisfies Theo-

rem 3.8 . The next example shows however, that there are hypercyclic weighted backward shifts

which do not satisfy the Eigenvalue Criterion.
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Example. 3.13. Let Bw : `1 → `1 be the weighted backward shift with weight sequence w =

(wn)∞n=1 defined inductively as follows.

Let n1 = 1 and n′1 = 3. Then for each k ≥ 2 integer find nk > n′k−1 such that

2n1−n′1+n2−n′2+···+nk−1−n′k−1+nk ≥ k,

and n′k > nk such that

2n1−n′1+n2−n′2+···+nk−n′k ≤ 1

(nk + k)nk+k
.

Set Nk = nk + k, k ∈ N. Now take

w = (1, 2, 2−3, 2, . . . , 2︸ ︷︷ ︸
n2

, 2−n
′
2︸︷︷︸

wN2+1

, 2, . . . , 2︸ ︷︷ ︸
n3

, 2−n
′
3︸︷︷︸

wN3+1

, . . . ).

Clearly, ‖w‖∞ = 2 and
∏Nk

ν=1wν ≥ k →∞ as k →∞, hence Bw is hypercyclic.

For a λ ∈ C to be an eigenvalue for Bw it is necessary and sufficient to exist x = (xn)∞n=1 ∈ `1

nonzero such that

Bw(x) = λx⇔ xk+1 = λw−1
2 xk = λkw−1

2 . . . w−1
k+1x1, k ≥ 1.

Therefore x = x1(1, λw−1
2 , λ2w−1

2 w−1
3 , . . . ), where x1 ∈ C \ {0} is arbitrary. Now, x ∈ `1 if and

only if
∞∑
n=2

|λ|nw−1
2 . . . w−1

n+1 <∞.

But |λ|Nkw−1
2 . . . w−1

Nk+1 ≥ |λ|NkN
Nk
k →∞ as k →∞, whenever λ 6= 0. We conclude that λ = 0

is the only eigenvalue forBw and the corresponding eigenspace isKer(Bw). The later one though

is a closed proper subspace of `1 and thus Bw can not satisfy the Eigenvalue Criterion. However,

as marked before, Bw being hypercyclic satisfies Theorem 3.8.
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CHAPTER 4 AFFINE DYNAMICS

4.1 Affine Dynamics

As we know from geometry an affine map on a vector space is the composition of a linear

map with a translation. In this section we study the dynamical behavior of affine maps, and try

to relate it with the dynamical behavior of their linear part. Essentially every theorem or question

from linear dynamics, has a corresponding statement in affine dynamics simply by replacing linear

operators by affine maps. Therefore, it becomes natural to see to what extend can one generalize

the results from linear dynamics to the setting of affine maps.

Definition. 4.1. Let X be a Fréchet space and A : X → X a map on X . We will say that A is an

affine map if there exist T ∈ L(X) and a ∈ X such that

A(x) = T (x) + a,∀x ∈ X.

Sometimes we will use the notation Aa for the affine map A = T + a.

It is obvious from the above definition that the affine map Aa is not linear except from the

trivial case when a = 0. For simplicity though, we are going to adopt the notation and terminology

from linear dynamics. For the rest of the section unless otherwise specified, X will be a separable

Fréchet space.

Definition. 4.2. An affine map A on X is said to be hypercyclic provided that there exists a vector

x ∈ X such that its orbit under A

Orb(x,A) = {x,Ax,A2x, . . . },

is dense in X . In such case x is called a hypercyclic vector for A. Also we denote the set of all

hypercyclic vectors for A by HC(A).
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Since the spaceX is separable and has no isolated points, Birkhoff’s Transitivity Theorem says

that the affine map A is hypercyclic if and only if it is topologically transitive. In that case the set

HC(A) will be a dense Gδ subset of X .

Now let as before A = T + a be an affine map on X and take an x ∈ X . For n ∈ Z+ we have

Anx = T nx+
n−1∑
i=0

T ia. (4.1.1)

The above relationship shows that the dynamical behavior of A depends partly on the dynamical

behavior of its linear part T , as well as on the behavior of the sequence of operators {
∑n

i=0 T
i}∞n=0.

Therefore, it seems that the presence of the summation in the right hand side of 4.1.1 could increase

the chaotic behavior of the system, potentially lower it (in the case of cancellations), or play no

role (if the family {
∑n

i=0 T
i}∞n=0 is stable enough). However, the next result by Shkarin [35] shows

that the dynamics of T and {
∑n

i=0 T
i}∞n=0 are closely related.

Proposition. 4.3 (Shkarin). Let X be a Fréchet space and T ∈ L(X). Then T is hypercyclic if

and only if the sequence {
∑n

i=0 T
i}∞n=0 is universal and moreover,

(I − T )HC(T ) ⊂ U({
n∑
i=0

T i}∞n=0) ⊂ HC(T ).

The next proposition, shows that for many a’s the dynamical behavior of Aa is equivalent to

that of its linear part T .

Proposition. 4.4. If a ∈ (I − T )(X) then Aa = T + a and T are conjugate via an affine map.

Specifically, if c ∈ (I − T )−1(a) and φ : X → X is given by φ(x) = x + c, then Aa ◦ φ = φ ◦ T .

In particular,

HC(Aa) = HC(T ) + c.

Proof. If c ∈ X such that c − Tc = a then for x ∈ X we have, A ◦ φ(x) = A(x + c) =

T (x+ c) + a = Tx+ c = T ◦ φ(x).

Therefore, if I-T is onto then Aa is always hypercyclic, provided T is. But even if I − T is



54
not onto, assuming hypercyclicity for T , we get that (I − T )(X) is dense in X , so there is a dense

set of indices a, for which Aa is hypercyclic. Actually we can say much more as the next result

indicates.

Proposition. 4.5. If T ∈ L(X) is hypercyclic, then the set

A = {a ∈ X : Aa = T + a is hypercyclic} (4.1.2)

is a dense Gδ subset of X . Indeed, A is homeomorphic to X .

Proof. If {Uk}k∈N is a basis for the topology of X , we define

Ui,j = {a ∈ X : ∃n ∈ N, Ana(Ui) ∩ Uj 6= ∅}.

Ui,j is open. Indeed, let a ∈ Ui,j , then there exists n ∈ N such that Ana(Ui) ∩ Uj 6= ∅, so, there

is an x ∈ Ui such that Anax ∈ Uj . Since the map

a 7→ Anax = T nx+
n−1∑
i=0

T ia

is continuous, there is a neighbourhood W of a in X , such that for the above n ∈ N and x ∈ X ,

we have Anzx ∈ Uj,∀z ∈ W , which means that W ⊂ Ui,j .

Ui,j is also dense. Since for a ∈ (I − T )(X), Aa is hypercyclic hence topological transitive,

we get that (I − T )(X) ⊂ Ui,j hence Ui,j is dense.

Now Baire category theorem completes the proof since

A =
∞⋂

i,j=1

Ui,j

is a Gδ set containing the dense linear subspace (I − T )(X) (see [7, p. 17]).

By Proposition 4.5, it becomes natural to ask whether the set A defined in 4.1.2 for a hyper-

cyclic operator T is always all ofX . Shkarin [37] constructed a hypercyclic operator T on a Hilbert
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space, such that Aa is not hypercyclic for some choice of a, proving that A could fail to be the full

space.

Example. 4.6 (Shkarin). Let Bw ∈ L(`2) the weighted backward shift with weight sequence

w = (e−2n), and a = ( 1
n+1

) ∈ `2. Then the operator T = I + Bw is hypercyclic, while the affine

map Aa = T + a is not.

Remark. 4.7. Although Shkarin’s example shows that for a hypercyclic T ∈ L(X) the set A =

{a ∈ X : Aa = T + a is hypercyclic} can fail to be X , Proposition 4.5 still ensures in those cases

the existence of vectors a ∈ A \ (I − T )(X). Whenever I − T is not surjective, (I − T )(X) is a

proper subspace of X and hence of first category in X while A is residual in X .

The next proposition provides a necessary condition for an affine map to be hypercyclic. That

is, the adjoint of its linear part must have empty point spectrum. This generalizes a classical result

from linear dynamics.

Proposition. 4.8. Let T ∈ L(X) such that T ∗ has an eigenvalue. Then for any a ∈ X , the affine

map Aa = T + a is not hypercyclic.

Proof. By the assumption, there is a λ ∈ K, and a y∗ ∈ X∗, y∗ 6= 0, such that

T ∗y∗ = λy∗.

Let a ∈ X , and suppose there is an x ∈ X such that Orb(Aa, x) is dense in X . If λ 6= 1, for each
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n ∈ N we get

< Anax, y
∗ >=< T nx+

n−1∑
i=0

T ia, y∗ >=

=< T nx, y∗ > + <
n−1∑
i=0

T ia, y∗ >=

=< x, (T ∗)ny∗ > +
n−1∑
i=0

< a, (T ∗)iy∗ >=

= λn < x, y∗ > + < a, y∗ >
n−1∑
i=0

λi =

= λn < x, y∗ > + < a, y∗ >
λn − 1

λ− 1
=

λn(< x, y∗ > +
< a, y∗ >

λ− 1
)− < a, y∗ >

λ− 1
.

Therefore, we get that the set {< Anax, y
∗ >: n ∈ N} is not dense in K, contradicting the assump-

tion that Orb(Aa, x) is dense in X .

The case λ = 1 is similar, as in this case

< Anax, y
∗ >=< x, y∗ > +n < a, y∗ > for each n ∈ N.

Therefore, in any case, Aa is not hypercyclic.

Proposition 4.8implies that an affine map cannot be hypercyclic if its linear part is not hyper-

cyclic. We notice that this does not follow immediately from Proposition 4.3 , since two sets may

fail to be dense even if their sum is dense in the space. An instance of this phenomenon is the case

of two proper complemented subspaces.

Theorem 4.9. If Aa is hypercyclic for some a ∈ X , then T is also hypercyclic.

Proof. We observe first that the hypercyclicity of Aa implies that I − T has dense range. If by

means of contradiction we assume that the range of I − T is not dense, then by the Hahn-Banach

theorem one easily gets that T ∗ has a nontrivial fixed point, which is it has λ = 1 as an eigenvalue.
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By the previous proposition, we get that Aa can not be hypercyclic, contradicting the assumption.

Leting now x ∈ X be a hypercyclic vector for Aa and applying the operator I − T to the

equality

Anax = T nx+
n−1∑
i=0

T ia

we get that

(I − T )Anax = T n(x− Tx− a) + a.

Since the operator I − T has dense range, we conclude that the set

{T n(x− Tx− a) : n ∈ N}

is dense in X , thus T is hypercyclic.

Corollary. 4.10. IfX is a Banach space and T ∈ L(X) is a compact or a power bounded operator,

then for any a ∈ X , the affine map Aa is not hypercyclic.

Corollary. 4.11. There exist no hypercyclic affine maps on a finite dimensional space.

In the proof of Theorem 4.9 we established that if Aa is hypercyclic for some a ∈ X then the

range of I − T is dense. The conclusion of the theorem though, provides an immediate general-

ization of this fact.

Corollary. 4.12. If Aa is hypercyclic for some a ∈ X then p(T ) has dense range for each nonzero

polynomial p.

It is also natural to study other notions close to hypercyclicity, like weak mixing, mixing or

chaoticity on affine maps. Since all those properties are preserved under conjugacies, it is clear

that if a ∈ (I − T )(X), the affine map Aa has any given of these properties if and only if its linear

part T has it. Moreover, as with Proposition 4.5 we have the following

Proposition. 4.13. If T is weakly mixing, then the set of all a ∈ X for which Aa = T + a is also

weakly mixing is a dense Gδ-set homeomorphic to X .
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Proof. Let U = {a ∈ X : Aa is weakly mixing}, and {Un}n∈N a basis for the topology of X .

We define

Ui,j,k,l = {a ∈ X : ∃n ∈ N, Ana(Ui) ∩ Uj 6= ∅ and Ana(Uk) ∩ Ul 6= ∅}.

Each Ui,j,k,l is open. Indeed, let a ∈ Ui,j,k,l, then there exist n ∈ N, x ∈ Ui, and y ∈ Uk, such that

Anax ∈ Uj and Anay ∈ Ul. Since the maps

a 7→ Anax and a 7→ Anay

are continuous, we can find a neighbourhood W of a, such that Anzx ∈ Uj , and Anzy ∈ Ul, for all

z ∈ W . This means that W ∈ Ui,j,k,l.

Each Ui,j,k,l is also dense since it contains the dense subspace (I − T )(X). Hence by the Baire

Category Theorem,

U =
⋂
i,j,k,l

Ui,j,k,l

is a dense Gδ subset of X , and it is homeomorphic to X since it contains the dense linear subspace

(I − T )(X).

Proposition. 4.14. If Aa = T + a, and Ab = T + b satisfy that Aa ⊕ Ab is hypercyclic, then T is

weakly mixing. In particular, if Aa is weakly mixing for some a ∈ X , then T is also weakly mixing.

Proof. We have thatAa⊕Ab(x, y) = (Tx+a, Ty+b) = (Tx, Ty)+(a, b) = T ⊕T (x, y)+(a, b).

Thus,

Aa ⊕ Ab = T ⊕ T + (a, b).

So if Aa ⊕ Ab is hypercyclc, then T ⊕ T is hypercyclic, so T is weakly mixing.

The last assertion of Proposition 4.14 also follows from the quasi- conjugacy established in the

following proposition.
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Proposition. 4.15. If an affine mapAa = T +a is chaotic, weakly mixing, or mixing then its linear

part T is also chaotic, weakly mixing, or mixing, respectively.

Proof. We notice that since for x ∈ X , Aax = Tx + a, then (I − T )Aax = T (x − Tx − a) + a

which is

(I − T )Aax− a = T (x− Tx− a). (4.1.3)

Define τ−a : X → X , the affine map τ−a(x) = x− a. Then consider the map ψa = τ−a ◦ (I − T ).

Notice that since Aa is in every case hypercyclic, T is hypercyclic, therefore I − T and hence ψa

have dense range. Now equation 4.1.3 becomes

ψa ◦ Aa = T ◦ ψa.

This means that T is a quasi factor ofAa, and hence inherits the dynamical properties fromAa.

The next example shows that the León-Müller theorem does not hold in full generality for

affine maps.

Example. 4.16. First we notice that if |λ| = 1, a ∈ (λ−1I − T )(X), and φ(x) = x + c for some

c ∈ (λ−1I − T )−1(a), then λAa ◦ φ = φ ◦ λT which means that λAa and λT are conjugate and

furthermore,HC(λAa) = HC(λT )+c = HC(T )+c by the León-Müller theorem. Now, consider

the operator T = I − B on X = `2 where B(xn)∞n=1 = (xn+1)∞n=1 the unilateral backward shift.

We know that T is hypercyclic, and let h = (hn)∞n=1 ∈ HC(T ). For fixed λ 6= 1 with |λ| = 1 we

set

c1 = (
λ

λ− 1
h2,

λ

λ− 1
h3,

λ

λ− 1
h4, . . . ),

c2 = (
λ

λ− 1
h2 − h1,

λ

λ− 1
h3 − h2,

λ

λ− 1
h4 − h3, . . .),

a = (
λ

λ− 1
h3 − h2,

λ

λ− 1
h4 − h3,

λ

λ− 1
h5 − h4, . . . ).

It is straightforward to check that (λ−1I − T )c1 = a = (I − T )c2, and c1 − c2 = h. Thus, since
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0 /∈ HC(T ), we get that HC(T ) + (c1 − c2) 6= HC(T ) which yields that HC(λAa) 6= HC(Aa).

Nevertheless, both λAa and Aa are hypercyclic. In general, if |λ| = 1 and a ∈ (λ−1I−T )−1(X)∩

(I − T )−1(X), then since as noticed before λAa is conjugate to λT , and Aa is conjugate to T , it

holds that λAa is hypercyclic if and only if Aa is hypercyclic.

Example 4.16 shows that even if we cannot hope to get the full León-Müller theorem for affine

maps the following question remains still open.

Question. 4.17. If a ∈ X and |λ| = 1, is it the case that λAa is hypercyclic if and only if Aa is

hypercyclic?

4.2 Open Questions and Remarks

The open questions in Affine Dynamics are numerous since as we noticed before, every theo-

rem from Linear Dynamics has an analogue statement for affine maps. Because of the conjugacy

between T andAa whenever a ∈ (I−T )(X), most of the properties of T pass to those specificAa.

However, since the conjugating map is affine and not linear some results become slightly different

in the affine setting. For instance, HC(T ) contains a dense linear subspace except from the origin,

whenever HC(T ) 6= ∅, yields that HC(Aa) contains a dense affine manifold, except from one

point, whenever a ∈ (I − T )(X) and HC(Aa) 6= ∅.

The fact that if x ∈ HC(T ) then p(T )x ∈ HC(T ) for each nonzero polynomial p is not true

for affine maps. Indeed, if T is hypercyclic consider d ∈ HC(T ). Then d − Td ∈ HC(T ). Set

c = Td, and a = c − Tc so that T and Aa are conjugate via the affine map φ(x) = x + c. Then

d = (d − Td) + c ∈ HC(Aa), but Td /∈ HC(Aa), since Td = (Td − c) + c = 0 + c and

0 /∈ HC(T ). However, it is true that if x ∈ HC(Aa) then p(T )x− p(T )c + c ∈ HC(Aa) for any

nonzero polynomial p.

An interesting question is whetherHC(Aa) is always connected. We notice that when a ∈ (I−

T )(X) the answer is clearly positive since then the set HC(Aa) is just a translation of HC(T ). At

Shkarin’s example though (Example 4.6), HC(Aa) = ∅ while HC(T ) 6= ∅, hence it is not always

the case that HC(Aa) is a translation of HC(T ). If one could establish that HC(Aa) is connected



61
for all a ∈ X then appart from its own interest, using a result by Shkarin [35] it would follow

that Aa is hypercyclic if and only if Ama is hypercyclic, and furthermore, HC(Aa) = HC(Ama ),

m ∈ Z+, a ∈ X . Let’s notice that this generalization of Ansari’s theorem follows immediately in

the case when a = c− Tc, c ∈ X , since in this case Ama is conjugate to Tm,m ∈ Z+ via the affine

map φ(x) = x+ c, x ∈ X , and hence HC(Ama ) = HC(Tm) + c = HC(T ) + c = HC(Aa).

The last theorem whose analogue to the affine setting we discuss here is the Bourdon-Feldman

theorem. The question is, if Aa = T + a has a somewhere dense orbit must this orbit be (ev-

erywhere) dense in X? If there exists λ such that (λI − T )(X) is dense in X which, by the

Hahn-Banach theorem, is equivalent to the statement that T ∗ has an eiganvalue, we know that Aa

does not have a dense orbit for any a ∈ X . In that case, if λ is an eigenvalue for T ∗ with corre-

sponding eigenvector y∗ as we showed in the proof of Proposition 8, for x ∈ X and n ∈ N, we

have

< Anax, y
∗ >=


λn(< x, y∗ > +<a,y∗>

λ−1
)− <a,y∗>

λ−1
, λ 6= 1,

< x, y∗ > +n < a, y∗ >, λ = 1.

Therefore, since any nonzero continuous functional is an open map and hence, it maps somewhere

dense sets to semewhere dense sets, we conclude that Aa does not have a somewhere dense orbit

either. In the case when T ∗ does not have eigenvalues but a ∈ (I − T )(X), since Aa is conjugate

to T , we immediately get that a somewhere dense orbit for Aa must be dense in X . The question

though remains open for those affine maps Aa = T + a with σp(T ∗) = ∅ and a /∈ (I − T )(X).
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[23] M. González, F. León-Saavedra, and A. Montes-Rodrı́guez. Semi-Fredholm theory: hyper-

cyclic and supercyclic subspaces. Proc. London Math. Soc. (3), 81(1):169–189, 2000.

[24] K. G. Grosse-Erdmann. Universal families and hypercyclic operators. Bull. Amer. Math.

Soc. 36, 345-381, 1999.

[25] K.-G. Grosse-Erdmann and A. Peris. Linear chaos. Universitext. Springer, London, 2011.

[26] D. A. Herrero. Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991),

179190.

[27] C. Kitai. Invariant Closed Sets for Linear Operators. Thesis, Univ. of Toronto (1982).

[28] F. León-Saavedra and V. Müller. Rotations of hypercyclic and supercyclic operators. Integral

Equations Operator Theory 50 (2004), 385–391.

[29] G. R. MacLane. Sequences of derivatives and normal families. J. Analyse Math., 2:72–87,

1952.

[30] Q. Menet. Hypercyclic subspaces and weighted shifts. Adv. Math. 255 (2014), 305–337.

[31] A. Montes-Rodrı́guez. Banach spaces of hypercyclic operators. Michigan Math. J. 43

(1996), 419–436.

[32] H. Petersson. Hypercyclic subspaces for Fréchet space operators. J. Math. Anal. Appl. 319
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