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ABSTRACT

Junfeng Shang, Advisor

Linear mixed models describe the relationship between a response variable and some predic-

tors for data that are grouped according to one or more clustering factors. A linear mixed model

consists of both fixed effects and random effects. Fixed effects are the conventional linear regres-

sion coefficients, and random effects are associated with units which are drawn randomly from

a population. By accommodating such two types of parameters, linear mixed models provide an

effective and flexible way of representing the means as well as the covariance structure of the data,

therefore have been primarily used to model correlated data, and have received much attention in

a variety of disciplines including agriculture, biology, medicine, and sociology.

Due to the complex nature of the linear mixed models, the selection of only important covari-

ates to create an interpretable model becomes challenging as the dimension of fixed or random

effects increases. Thus, determining an appropriate structural form for a model to be used in mak-

ing inferences and predictions is a fundamental problem in the analysis of longitudinal or clustered

data using linear mixed models.

This dissertation focuses on selection and estimation for linear mixed models by integrating the

recent advances in model selection. More specifically, we propose a two-stage penalized procedure

for selecting and estimating important fixed and random effects. Compared with the traditional

subset selection approaches, penalized methods can enhance the predictive power of a model, and

can significantly reduce computational cost when the number of variables is large (Fan and Li,

2001). Our proposed procedure is different from the existing ones in the literature mainly in two

aspects. First, the proposed method is composed of two stages to separately choose the parameters

of interests, therefore can respect and accommodate the distinct properties between the random and

fixed effects. Second, the usage of the profile log-likelihoods in the selection process can make the

computation more efficient and stable due to a smaller number of dimensions involved.

In the first stage, we choose the random effects by maximizing the penalized restricted profile

log-likelihood, and the maximization is completed by the Newton-Raphson algorithm. Observe
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that if a random effect is a noise variable, then the corresponding variance components should be

all zero. Thus, we first estimate the covariance matrix of random effects using the adaptive LASSO

penalized method and then identify the vital ones based on the estimated covariance matrix. In the

view of such a selection procedure, the selected random effects are invariant to the selection of the

fixed effects. When a proper model for the covariance is adopted, the correct covariance structure

will be obtained and valid inferences for the fixed effects can then be achieved in the next stage.

We further study the theoretical properties of the proposed procedure for random effects selection.

We prove that, with probability tending to one, the proposed procedure surely identifies all true

random effects.

After the completion of the random effects selection, in the second stage, we select the fixed

effects through the maximization of the penalized profile log-likelihood, which only involves the

regression coefficients. The optimization of the penalized profile log-likelihood can be solved

by the Newton-Raphson algorithm. We then investigate the sampling properties of the resulting

estimate of fixed effects. We show that the resulting estimate enjoys model selection oracle prop-

erties, indicating that asymptotically the proposed approach can discover the subset of significant

predictors. After finishing the two-stage penalized procedure, the best linear mixed model can

subsequently be determined and be applied to handle correlated data in a number of fields.

To illustrate the performance of the proposed method, numerous simulation studies have been

conducted. The simulation results demonstrate that the proposed technique is quite efficient in

selecting the best covariates and random covariance structure in linear mixed models and outper-

forms the existing selection methodologies in general. We finally apply the method to two real

data applications for further examining its effectiveness in mixed model selection.
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CHAPTER 1 INTRODUCTION

1.1 Motivation of Dissertation

Conceptually, data are generated from a particular process or system. For an observed data,

it contains a certain amount of information about such process or system, and we wish to use a

statistical model to express this information in a realistic, yet also interpretable and concise form.

Burnham and Anderson (2002) considered modeling of information in data as a change in coding

like a change in language. A perfect translation for a poem or an article expressed in one language

(e.g., Chinese) to another language (e.g., English) should maintain all the exactness. Similarly, the

ultimate objective of model selection is to obtain a transfer such that no information is lost from

the data to a model.

Unfortunately, the idealized goal is unachievable since reality cannot be described or predicted

with complete accuracy. However, we can try to select a model of the data that is optimal in the

sense that the model misses as little information as possible. Box (1976) stated that “all models

are wrong, but some are useful”. While no model can reflect all of reality, models could be ordered

from useful to useless. Therefore, in practice, the task of model selection is to choose the best

model from a candidate set, and the ranking of these models depends on the method or the criterion

that is utilized.

Guyon and Elisseeff (2003) discussed three targets of model selection. The first target is to

improve performance of inferences and predictions. Any statistical inference relies on assump-

tions. A model is a set of assumptions regarding the generation of the observed data. Given an

appropriate model, then methods exist that are objective and optimal for model parameter estima-

tion. Furthermore, models are widely used to predict future outcomes. For example, in survival

analysis, statistical models are often utilized to predict the probability that a patient with a set of

characteristics will experience a health outcome. Precise perditions based these models can help

in clinical decision making of patients’ treatment. On the other hand, inappropriate model spec-
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ification may significantly impact both the estimators of the model parameters and the predicted

values of the response. There are two types of model misspecification, underfitting and overfitting.

Underfitting refers to a scenario that the model is too simplistic with the key components are ex-

cluded. Underfitting a model may induce severely biased results. Overfitting relates to a situation

that extraneous variables are involved in the model. In addition to the unnecessarily complicate

form, overfitting a model might lead to high variability. To avoid model misspecification, the de-

termination of a suitable model structure is crucial. The following example best demonstrates the

necessity of model selection in terms of inferences and predictions.

The body fat data (Kutner et al., 2004) is obtained from 20 healthy females 25-34 years old,

and is utilized to examine the relation of amount of body fat (Y) to three possible predictors.

The possible predictors are triceps skinfold thickness (X1), thigh circumference (X2), and midarm

circumference (X3). It would be helpful if a regression model with some or all of the predictors

could yield reliable estimates and accurate predictions.

Table 1.1: Regression coefficients under different models for the body fat data.

Model Predictor Intercept 𝑏1 𝑏2 𝑏3

Model 1 X1 -1.496 0.857 – –
Model 2 X1, X2 -19.174 0.222 0.659 –
Model 3 X1, X2, X3 117.085 4.334 -2.857 -2.186

Table 1.1 lists the regression coefficients for X1, X2, and X3 under three possible models. We

can see that the value of 𝑏1, the estimated regression coefficient for X1, varies significantly under

different modes. Indeed, 𝑏2, the estimated regression coefficient for X2, even flips the sign under

different models. In terms of prediction, if a new observation with X1 = 20, X2 = 50 and X3 = 30 is

sampled, the predicted values of amount of body fat under the three models are 15.644, 18.216, and

-4.665, respectively. For the measurement of body fat, such three values are completely dissimilar,

especially, a negative prediction value is unreasonable.

From the body fat data, the conclusion we can draw is that model choices may markedly affect

regression coefficients and consequently may provide quite different predicted values. Thus, this
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example illustrates that in order to have reliable estimation and accurate prediction, selecting an

appropriate model is of importance.

The second target of model selection is to provide faster and more cost-effective models. As

one of the integral parts of the statistical methodology application, model selection should always

be driven by the consideration of cost, looking for the subset of predictors resulting in the best

compromise between the performance of the model and cost of the analysis. More specifically,

in the presence of a group of useful but highly correlated predictors, only one predictor should

be retained in the model. With large data sets, computation time for model selection should also

be taken into account. Computational efficiency is another indicator for a good model selection

approach. A desirable model can trade off a small decrease in performance for a large reduction in

cost or time. Focusing on the cost, many new approaches, such as the LASSO (Tibshirani, 1996)

and LARS (Efron et al., 2004), are proposed to select an econometric model from a large candidate

set. These novel strategies can simultaneously select and estimate the significant predictors to

construct a model that is not only good at prediction but also cost efficient.

The third target of model selection is to build interpretable models that can present easy and

clear results for describing the data. On one hand, if many unimportant variables are selected,

the model will lose its predictive power and the results will be difficult to interpret. On the other

hand, parsimonious and compact representations of the data allow a better understanding of the

underlying process that generated the data. For example, in the genome sequencing initiative,

the number of genes in the raw microarray data ranges from 6000 to 60000, which challenges

data analysis and interpretation tasks. The interpretation of these data and the structuring in form

of compact models are vital to access these data in an effective manner (e.g., Lee et al., 2003;

Baragatti, 2011). In practice, an advantageous model selection procedure should select variables

consistently and result in a succinct structure.

Over the last two decades, model selection has received increasing attention, motivated by the

desire to understand structure in massive data sets that are now frequently confronted across many

applications. For example, insurance companies have gathered a vast amount of data in their data
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warehouses. When actuaries build a predictive model, they are encountered datasets involving

thousands of variables. With many variables of interest, there is a high potential that the model

efficiency is reduced. First of all, we could easily overfit the data when a lot of predictors are highly

correlated, then the capability of parameter estimation of the model is lessened. Furthermore, it is

harder to have an explainable model when there are many redundant predictors. A simpler selected

model is much easier understood and interpreted than a complex one. Finally, creating models with

all possible predictors is exhausted, it even would take indefinite time when there are thousands of

predictors. There exists a substantial literature devoted to model selection problems for big data,

and a comprehensive overview can be found in Fan and Lv (2010).

With the advances in high speed computers and computing technologies, it is becoming more

and more feasible to apply model selection methods for larger datasets and richer classes of models.

For example, the bootstrap is a resampling statistical technique which is widely applicable and

allows the treatment of more realistic models. It involves a relatively simple procedure, but it

repeated so many times that bootstrap method is intensively dependent on computer calculation.

The idea of applying the bootstrap to improve the performance of model selection was introduced

by Efron (1983, 1986), and was exhaustively discussed by Efron and Tibshirani (1993, pp. 237-

253). Shang and Cavanaugh (2008) advocated two bootstrap-corrected variants of the Akaike

information criterion for the purpose of small-sample mixed model selection. Pan and Le (2001)

proposed a bootstrap approach to estimating the predictive mean squared error (PMSE) and then

used the PMSE for model selection in generalized linear models. Markov chain Monte Carlo

(MCMC) is another computing statistical technique that has been widely used in modern statistics.

Since the presence of Green (1995), there has been great effort to use MCMC for model selection

problems. For instance, Carlin and Chib (1995) proposed an approach to Bayesian model selection

based on the use of conventional Markov chains. A summary of the theories and examples of model

selection by MCMC computation can be found in Andrieu et al. (2001).

There is an extensive development on model selection in a wide range of data sets over the

years. One popular area of investigation is concerned with model selection that incorporates cor-
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related data which occurs frequently in the fields of agriculture, biology, economics, medicine,

and sociology. For correlated data, the correlation may arise from clustering of subjects. For

example, in social surveys, respondents are often clustered under blocks, neighborhoods or other

geographical regions. Individuals in the same cluster tend to be more similar than those in different

clusters. Members of the same block tend to have similar political views; residents of the same

county tend to have similar opinions of the quality of medical care. Therefore, it is reasonable to

assume that observations within the same cluster are correlated. The correlation may also be due

to repeated measurements on the same subject over time or space. For instance, in clinical research

we are often able to take several measurements on the same patient, and the repeated observations

are usually (positively) correlated. To choose the best model for correctly analyzing the data, the

correlation needs to be acknowledged and taken into account.

A linear mixed model (Laird and Ware, 1982) provides a general and flexible tool for the

analysis of correlated data. The term of mixed model refers to the use of both fixed and random

effects in the same analysis. Fixed effects have levels that are of primary interest and are defined

by differences from the population mean. For example, if a pharmaceutical company focused on

the effectiveness of two brands of a medicine, brand would be a fixed effect if the experimenter’s

concern did not go beyond the two medicine brands. Random effects, on the other hand, are

utilized to account for the correlation in the data. The levels of random effects are assumed to

be chosen from a population with a distribution having a certain variance. As a consequence,

the outputs for random effects are estimates of the variances and rather than differences from a

mean. Examples of random effects include regions in a multi-site experiment, and classrooms

in an educational research. By allowing the correlation, or the variance-covariance structure to be

explicitly modeled, linear mixed models are well suited for modeling data with correlated structure,

such as longitudinal data and clustered data.

To illustrate that a mixed model captures the nature of correlated data, we can consider a study

of exploring the relationship between price (x) and sales (y). In this study, a sample of observations

was collected on price and sales for several commodities (Demidenko, 2013). Assuming that the
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Figure 1.1: Linear regression model (left) and mixed model (right) lead to reverse conclusions.

observations are independent, the left hand panel in Figure 1.1 reveals a negative relationship by

the classical simple linear regression, and the straight line shows simple regression estimated by

ordinary least squares. However, one may argue that each commodity represents a cluster, thus

the data has a clustered structure. Using a linear mixed model, observations for each commodity

are connected and a positive relationship between prices and sales is obtained, as shown in the

right hand panel in Figure 1.1. The straight line shows that the mixed model with population

averaged slope and commodity specific intercept. As we can see, the linear regression model and

the linear mixed model lead to completely reverse conclusions about the regression relationship

between price and sales of the commodities. Apparently, the results obtained from the linear mixed

model are more trustworthy, since it is reasonable to assume that the sales of each commodity are

correlated.

This example demonstrates that ignoring dependent structure of correlated data may result in

false analysis. By including subject-specific random effects in the regression model to account

for within-subject dependency, the linear mixed model provides an effective and flexible way of
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describing the means as well as the covariance structure of data, therefore has been applied in a

variety of disciplines including health research and political science.

With the comprehensive applicability of linear mixed models in practice, determining an ap-

propriate structural form for a model to be used in making inferences and predictions has been a

fundamental problem in the analysis of longitudinal or clustered data. However, the selection of

mixed model is challenging due to the complex nature of the model. In mixed model selection, not

only the proper mean structure but also the correct covariance structure should be identified, yet

both have distinct properties and different relative importance. Particularly, selection on the covari-

ance structure is not straightforward due to computational issues and boundary problems arising

from positive semidefinite constraints on covariance matrices (Müller et al., 2013). In addition,

the selection of only important covariates to create an interpretable model become challenging as

the dimension of fixed or random effects increases. To choose the most proper model for corre-

lated data, this dissertation focuses on the selection and estimation of the fixed and random effects

in linear mixed models. We believe that investigating mixed model selection techniques not only

serves as an appealing exploration in statistical modeling, but also is a very applicative subject that

can be utilized to a broad range of data in real life.

1.2 Objectives of Dissertation

To facilitate the mixed model selection, the traditional information criteria such as Akaike in-

formation criterion (AIC, Akaike, 1973, 1974), Bayesian information criterion (BIC, Schwarz,

1978), Generalized information criterion (GIC, Rao and Wu, 1989), and Mallows’ Cp (Mallows,

1973, 1995) have been utilized. In general, they are applied by finding the model which has the

minimum score among the fitted candidate models. However, the estimators based on these selec-

tion procedures suffer from lack of stability because of the inherited discreteness (Breiman, 1996).

Meanwhile, these selection procedures have to select the most appropriate model from a candi-

date family where all the reasonable models are considered, yet the number of candidate models

increases exponentially with the number of predictors, hence it is computationally infeasible when

the number of candidate predictors is large. Some other criteria, such as the extended GIC (EGIC,
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Pu and Niu, 2006) and the restricted information criterion (RIC, Wolfinger, 1993), have been pro-

posed to reduce computation cost. By first selecting on either fixed effects or random effects while

fixing the other at full model, the number of possible models is considerably reduced, but may

still be large. Instead of trying to find an optimal model that minimizes a criterion function, Jiang

et al. (2008) proposed a fence method by constructing a statistical fence, or barrier, to carefully

eliminate incorrect models. Although the fence algorithm does not search over all the candidate

models, it is computationally very demanding.

The penalized methods (also known as shrinkage methods) have been introduced for model

selection. Along with the LASSO method, brought into the field of selection literature by Tibshi-

rani in 1996, the SCAD (Fan and Li, 2001) and the adaptive LASSO (Zou, 2006) developed as the

seeds of growing and maturing the new idea in model selection. Through continuously shrinking

the coefficients of certain predictors in the model toward zero, and also because of computational

feasibility and statistical precision, the penalized methods hold both selection and estimation in

one procedure and usually with the sacrifice of the estimation accuracy to improve the estimation

precision, they are therefore turning out to be of more interests for statisticians.

Starting from the linear regression setting, further development has been rapidly extended to

linear mixed models. Some papers have applied the penalized methods for selecting the fixed

effects (e.g., Foster et al., 2007, Ni et al., 2010, Schelldorfer et al., 2011). Some papers have

discussed the random effects selection (e.g., Ahn et al., 2012, Pan and Huang, 2014). Meanwhile,

using the penalized methods to jointly select and estimate both fixed and random effects has also

received much attention. Bondell et al. (2010) and Ibrahim et al. (2011) respectively proposed

a joint selection procedure, although the differences existed in incorporating tuning parameters,

both methods utilized the penalized maximum likelihood (ML) and applied EM algorithm to es-

timate the parameters. Lin et al. (2013) employed a two-step penalized method based upon the

restricted maximized likelihood (REML) and pathwise coordinate optimization for the random and

fixed effects selection. Peng and Lu (2012) adopted an iterative method without the restriction of

distributions to perform model selection.
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The main objective of this dissertation is to develop methodologies for effectively selecting the

proper predictors and the correct covariance structure by integrating the recent advances in mixed

model selection. More specifically, we propose to use the penalized approach to select and estimate

fixed and random effects. Compared with the traditional selection procedures, the novel penalized

methods can enhance the predictive power of a model, and can significantly reduce computational

cost when the number of fixed or random effects increases. We wish our proposed procedure can

further improve the behavior of the existing ones in mixed model selection from both theoretical

and practical perspectives.

First of all, we aim to introduce a selection method that can reflect and accommodate the dis-

tinct properties between the random effects and fixed effects. Here, fixed effects refer to those with

coefficients that affect the population mean, and random effects refer to those whose coefficients

vary among subjects. The natures of these parameters are quite dissimilar, jointly selecting both

the fixed and random effects would seem unnatural. Therefore, we propose a two-stage procedure

for separately choosing the two types of effects. In the first stage, we choose the random effects by

excluding all the fixed effects. After the completion of the random effects selection, in the second

stage, our procedure for selecting the fixed effects only involves the regression coefficients. By

discretely selecting the parameters of interests in the two stages, the proposed method can suc-

cessfully respect the different features between the random effects and fixed effects, and therefore

is effective in identifying the important covariates. Moreover, the dimension in each of the two

stages is lower than the combined dimension of both fixed and random effects, and this makes the

computation more effective and steady. Notice that we choose the random effects first, then select

the fixed effects, that is because the ultimate object of linear mixed models is to describe the rela-

tionship between a response and the fixed effects. When an appropriate model for the covariance is

adopted, the correct covariance structure will be obtained and valid inferences for the fixed effects

can then be made.

Our second objective is to improve selection accuracy and computational efficiency. We ad-

dress this goal by using the penalized profile log-likelihoods to choose both random and fixed
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effects. In the first stage, the penalized restricted profile log-likelihood is utilized to choose the

random effects; in the second stage, after the random effects are determined, the penalized pro-

file log-likelihood is applied to select the fixed effects. Compared with other log-likelihood-based

approaches, the profile log-likelihoods not only possess the theoretical advantages including ro-

bustness and unbiasedness, but also possess the more efficient and stable computation due to a

smaller number of parameters involved.

In linear mixed models, a challenging problem is that both fixed and random effects are in-

cluded in the estimation so that there is no closed form for the solutions of either parts. Accord-

ingly, choosing a suitable numerical method to maximize the targeted quantity is of importance. In

each stage, we apply the Newton-Raphson algorithm to implement parameter estimation. While

comparing with the Expectation-Maximization and the other well-known optimization algorithms,

the Newton-Raphson algorithm we adopt converges steadfast and speedy with a good initial value.

To assist the mixed model selection, we employ the adaptive LASSO penalized term to in-

dividually penalize the restricted profile log-likelihood and profile log-likelihood. The adaptive

LASSO is computationally appealing due to its concave form, that is, the absolute maximizer can

be efficiently solved without suffering from the multiple local maximal issue.

To evaluate the effectiveness of the proposed selection procedure, we conduct various simu-

lation studies, and we compare the results with those for the existing selection approaches. We

measure the performance of model selection with regard to correct selection frequencies, compu-

tation times, and three model accuracy measurements including the Kullback-Leibler discrepancy,

the mean square error, and the quadratic loss error. We further illustrate the proposed procedures

via two real data examples.

Our third goal is to provide a theoretical foundation for the proposed selection approach. We

systematically study the sampling properties of the resulting estimate of both random and fixed

effects. We establish conditions on the asymptotic analysis and show that the resulting estimate

enjoys estimation consistency and model selection oracle properties, indicating that asymptotically

the right covariance structure and predictors are surely selected. The proofs theoretically solidify



11
the promising performance of the proposed method and establish theoretical contribution in model

selection.

1.3 Outline of Dissertation

The rest of this paper is organized as follows. Chapter 2 gives background materials that serve

as a foundation for the remainder of the dissertation. It includes a discussion of two major classes

of model selection approaches in linear regression models, along with an overview of selection

criteria that are used to choose the optimal model. To further improve the existing selection pro-

cedures, we propose an adaptive penalty procedure with weighted ridge estimator at the end of

this chapter, and we conduct two simulation studies to examine the performance of the proposed

procedure.

Chapter 3 describes of the model selection framework in linear mixed models. We define

the notations of linear mixed models, which are consistently used in the remaining parts of the

dissertation. Some existing mixed model selection methods are introduced, including likelihood

based approaches and distribution free procedures.

In Chapter 4, we employ the adaptive LASSO penalized term to propose a two-stage model

selection procedure for the purpose of selecting both the random and fixed effects. In the first

stage, we utilize the penalized restricted profile log-likelihood to choose the random effects; in the

second stage, after the random effects are determined, we apply the penalized profile log-likelihood

to select the fixed effects. In each stage, the Newton-Raphson algorithm is performed to complete

the parameter estimation. We prove that the proposed procedure is consistent and possesses the

oracle properties, indicating that asymptotically the proposed procedure surely selects the true

model. Since the performance of penalized methods highly relies on the tuning parameters, we

propose three tuning parameter candidates to be used for balancing between model fitting and

model complicity.

Numerical experiments are conducted in Chapter 5 and 6. In Chapter 5, we illustrate the

effectiveness of the proposed procedure via numerous simulation studies, and we compare the

results with those for the existing selection approaches. In Chapter 6, two real applications are
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presented to further investigate the performance of the proposed method.

We conclude in Chapter 7 with an overall discussion of our proposed model selection procedure

in the mixed model. Some future research plans are provided in this chapter as well.

Selected R programs of the simulation studies are attached in the Appendix.
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CHAPTER 2 MODEL SELECTION IN LINEAR REGRESSION MODELS

Linear regression is one of the most common data analysis techniques for modeling the rela-

tionship between a response variable and a set of predictors. A key part in the regression analysis of

data is model selection. Over the years quite a number of selection techniques have been proposed

in the setting of linear regression models. Linear regression models can be viewed as special cases

of linear mixed models, so methods proposed for selecting linear regression models are helpful to

exploit approaches in mixed model selection, and actually some model selection methodologies in

linear mixed models are initiated from linear regression models.

In this chapter, we will review model selection methods and criteria in linear regression mod-

els. These reviews give the background knowledge that serves as a foundation for the remaining

chapters of the dissertation. Additionally, to further improve the behavior of the existing selection

procedures, we will propose a two-stage adaptive penalty approach with weighted ridge estimator

in the last section.

Given the dataset of 𝑁 observations, a linear regression model takes the form of

𝑦𝑖 = 𝛽1𝑥𝑖1 + . . .+ 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖, 𝑖 = 1, 2, . . . , 𝑁, (2.1)

where 𝑦𝑖 is the response in the 𝑖th trial, 𝑥𝑖1, . . . , 𝑥𝑖𝑝 are the predictors, and 𝜖𝑖 is the error term.

Typically, we assume the error terms are independent of the predictors, and are normally distributed

with zero mean and constant variance 𝜎2. 𝛽1, . . . , 𝛽𝑝 are the regression coefficients, and statistical

estimation and inference in linear regression focuses on these coefficients.

Alternatively, in matrix form, model (2.1) can be written as

y = X𝜷 + 𝝐, (2.2)
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where

y =

⎛⎜⎝ 𝑦1....
𝑦𝑁

⎞⎟⎠ , 𝜷 =

⎛⎜⎝ 𝛽1...
𝛽𝑝

⎞⎟⎠ , 𝝐 =

⎛⎜⎝ 𝜖1....
𝜖𝑁

⎞⎟⎠ ,

X =

⎛⎜⎝X1...
X𝑁

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥11 𝑥12 . . . 𝑥1𝑝

𝑥21 𝑥22 . . . 𝑥2𝑝

...
...

...

𝑥𝑁1 𝑥𝑁2 . . . 𝑥𝑁𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For simplicity, we assume the variance 𝜎2 is known, then for model (2.2), the log-likelihood

function, ignoring constant terms, is given by

ℓ (𝜷) = −(y − X𝜷)𝑇 (y − X𝜷). (2.3)

In general, the methods of maximum likelihood (ML) and least squares (LS) are utilized to es-

timate the regression coefficients. By maximizing the log-likelihood function in (2.3) with respect

to 𝜷, the former method of estimation defines a maximum likelihood estimator (MLE) as

�̂�MLE = (X𝑇X)−1X𝑇y. (2.4)

For the method of least squares, we define the residual sum of squares

𝑅𝑆𝑆 = (y − X𝜷)𝑇 (y − X𝜷). (2.5)

The method chooses �̂� to minimize the 𝑅𝑆𝑆. Note that maximizing ℓ (𝜷) in function (2.3) is

equivalent to minimizing the 𝑅𝑆𝑆 in (2.5), thus, under the typical normal error assumption, the

maximum likelihood estimator �̂�MLE and the least squares estimator (LSE) �̂�LSE are the same.

In the practice of model fitting, the ML and LS techniques are widely used due to their ease

of implementation. However, both the MLE and LSE suffer from large variance, then resulting

in poor predictions on future observations. Moreover, they are not able to discover an important
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subset from a large number of predictors in the model, while including all the predictors leads to

model selection unachievable. As a result, alternative procedures have been proposed to improve

prediction accuracy and to accomplish the purpose of model selection. Two major classes of model

selection methods: subset selection and penalized selection, will be introduced in Section 2.1 and

2.2.

2.1 Subset Selection

Generally, subset selection is the process of selecting a subset of relevant predictors for use in

model construction. In this section, we will go over the procedures that are in common use.

Best Subset Selection

The idea of best subset selection is to fit a separate least squares regression for each possible

combination of the 𝑝 predictors. That is, we fit all models that contain one predictor, all models

that contain two predictors, and so forth. We then compare all candidate models, and choose the

best model by using one of the model selection criteria, which will be described in Section 2.3.

While best subset selection is a simple and useful approach, it suffers from computational

burden. There exist 2𝑝 candidate models if we have 𝑝 predictors. As 𝑝 increases, the number

of possible models grows rapidly. In general, best subset selection becomes infeasible when the

number of predictors is greater than 30. Furthermore, it tends to overfit a model with redundant

variables, and the final model would be very unstable. We present three computationally efficient

surrogates to best subset selection next.

2.1.1 Forward Selection

Forward selection begins with no predictors in the model, then predictors are added to the

model one at a time. At each step, each predictor that is not already in the model is tested for inclu-

sion in the model. The most significant of these predictors is added to the model. The procedure is

continued until no predictor is significant at a pre-set level.

Unlike best subset selection which includes fitting 2𝑝 models, forward selection contains 1+𝑝(𝑝+1)
2

models and therefore owns computational advantage over best subset selection. For instance, when
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𝑝 = 10, best subset selection requires fitting 1024 models, whereas forward selection searches

through only 56 models.

2.1.2 Backward Elimination

As a reverse process of forward selection, backward elimination starts with all predictors in the

model, then iteratively removes the least useful predictor one at a time, and continues until every

remaining variable is significant at a cut-off level.

Like forward selection, backward elimination requires fitting only 1+𝑝(𝑝+1)
2

models, so it pro-

vides another efficient alternative to best subset selection. However, there is no guarantee that

backward elimination and forward selection will arrive at the same final model.

2.1.3 Stepwise Selection

The stepwise selection can be considered as a hybrid approach of forward selection and back-

ward elimination. Analogous to forward selection, predictors are added to the model sequentially

in stepwise selection. However, after adding each new predictor, the method may also remove

any predictors that no longer significant at some level. Such an approach intends to imitate best

subset selection while holding the computational advantages of forward selection and backward

elimination.

As we can see, the subset selection methods described in this section are conceptually appealing

and easy to perform. Nevertheless, subset selection suffers from unstable selection results and

highly variable due to the innate discreetness (Breiman, 1996; Fan and Li, 2001); that is, predictors

are either retained or discarded from the model. Slight changes in the data may result in completely

different models and it inhibits prediction accuracy. When we have correlated predictors or a large

number of predictors (or both), the instability of subset selection could be even more problematic

(Harrell, 2001). In the next section, we will review penalized selection methods which are proposed

to address the weaknesses of subset selection.
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2.2 Penalized Selection

In contrast to subset selection methods, penalized approaches do not explicitly select the predic-

tors, instead they maximize the likelihood function by using a penalty on the size of the regression

coefficients. The penalty shrinks the coefficient estimates towards zero, and some small coeffi-

cients will become exactly zero, to reach the purpose of model selection, and that is why penalized

approaches are also known as shrinkage methods. Indeed, penalized selection allows us to achieve

the same objective as subset selection, but in a more stable, continuous, and computationally effi-

cient fashion. In general, the penalized likelihood function takes the form of

argmax
𝜷

{ℓ (𝜷)− 𝜆 * 𝑃𝑒𝑛 (𝜷)} , (2.6)

where ℓ (𝜷) is the log-likelihood function in (2.3), 𝑃𝑒𝑛 (𝜷) is a penalty function which determines

the type of shrinkage, and 𝜆 ≥ 0 is a tuning parameter which controls the amount of shrinkage:

the larger the value of 𝜆, the greater the amount of shrinkage. We can select the proper value of 𝜆

through the model selection criteria, which will be described in Section 2.3. In the following, we

will introduce some renowned penalized methods.

2.2.1 Ridge Regression

The ridge regression (Hoerl and Kennard, 1970) estimate is defined by

�̂�ridge = argmax
𝜷

{︃
ℓ (𝜷)− 𝜆

𝑝∑︁
𝑗=1

𝛽2
𝑗

}︃
. (2.7)

The solution to the ridge regression problem is given by

�̂�ridge = (X𝑇X + 𝜆I)−1X𝑇y, (2.8)

where I is the 𝑝× 𝑝 identity matrix.

The benefits of ridge regression are most striking in the presence of collinearity. The maximum
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likelihood estimates are asymptotically unbiased estimators, but they may be far from the true

values in small and moderate samples when the predictors are correlated. By trading off a small

increase in bias for a large decrease in variance, ridge regression shrinks the estimates toward zero

and provides a power tool to address the problem of collinearity in the data.

Even though the ridge regression shrinks coefficients continuously to zero and hence is a stable

procedure, however, it is not proper for model selection because it does not set any coefficients

exact zero. In the recent two decades, many other penalized approaches have been proposed to

retain the good features of ridge regression but be able to produce parsimonious models.

2.2.2 LASSO

The LASSO, for “least absolute shrinkage and selection operator”, was proposed by Tibshirani

in 1996, which later on turned out to be the root of the growing tree of penalized model selection.

The LASSO estimate is defined by

�̂�LASSO = argmax
𝜷

{︃
ℓ (𝜷)− 𝜆

𝑝∑︁
𝑗=1

|𝛽𝑗|

}︃
. (2.9)

We can also write the LASSO problem (2.9) in the equivalent form

�̂�LASSO = argmax
𝜷

ℓ (𝜷) , subject to

𝑝∑︁
𝑗=1

|𝛽𝑗| ≤ 𝑡,

where 𝑡 ≥ 0 is a tuning parameter.

Unlike ridge regression which involves a ℓ2 penalty
∑︀𝑝

𝑗=1 𝛽
2
𝑗 , by adding a ℓ1 penalty

∑︀𝑝
𝑗=1 |𝛽𝑗|

to the log-likelihood function, the LASSO forces some predictors to have zero as coefficients,

inherently performing model selection. Figure 2.1 illustrates the difference between the LASSO

and ridge regression when there are only two predictors in the model. The likelihood function has

elliptical contours, centered at the maximum likelihood estimate. The constraint region for ridge

regression is the disk 𝛽2
1 + 𝛽2

2 ≤ 𝑡, while that for the LASSO is the diamond |𝛽1|+ |𝛽2| ≤ 𝑡. Both

methods find the first point where the elliptical contours hit the constraint region. The diamond
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Figure 2.1: Estimation picture for the LASSO (left) and ridge regression (right).

has corners, so the LASSO will shrink the coefficient to zero if the solution occurs at a corner.

While there are no corners for the contours to hit the disk, so ridge regression can never shrink the

coefficient to zero.

While the LASSO and its variants are very useful for model selection, the LASSO solution does

not usually have a closed form expression. Various algorithms for the computation of the LASSO

estimators have been studied. Fu (1998) proposed a shooting algorithm, which is straightforward

and fast to solve the LASSO problems, but often proves to be too greedy in solution search. The

least angle regression (LARS, Efron et al., 2004) is another efficient algorithm and is crucial to

the rapid spread of the LASSO within the statistics community. More recently, the coordinate

descent algorithm (Friedman et al., 2007; Wu and Lange, 2008) which updates the estimator in

a coordinate-wise way until convergence is reached, has been proposed for rapidly solving the

LASSO problems.

The LASSO has attracted a lot of attention because of its ability to yield sparse models. How-

ever, with high dimensional data, the LASSO is not satisfactory either, since it can not choose

more predictors than the number of observations. Further, the LASSO fails to do group selection.
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It inclines to select one predictor from a group and ignore the others. The other disadvantage of

the LASSO is that it tends to shrink coefficients more than expected when predictors are highly

correlated.

2.2.3 SCAD

Fan and Li (2001) argued that a good selection procedure 𝛿 should have the oracle properties,

namely, the estimator �̂�(𝛿) satisfies the following conditions,

1. Identifies the right subset model, {𝑗 : 𝛽(𝛿)𝑗 ̸= 0} = {𝑗 : 𝛽𝑗 ̸= 0}.

2. Has the optimal estimation rate,
√
𝑛 (�̂�(𝛿)− 𝜷) →𝑑 N(0, Σ), where Σ is the covariance matrix

knowing the true subset model.

In other words, for an oracle procedure, the covariates with nonzero coefficients will be iden-

tified with probability tending to one, and the estimates of nonzero coefficients have the same

asymptotic distribution as the true model.

It has been shown that the LASSO suffers from some drawbacks, due to the lack of oracle

properties. To improve the performance of the LASSO, Fan and Li (2001) proposed an oracle

selection method referred to as the “smoothly clipped absolute deviation” (SCAD). The idea of

the SCAD is to penalize small coefficients heavily and large coefficients lightly, and its penalty

function 𝑝SCAD(𝜷) is defined by

𝑝SCAD(𝜷) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜆|𝜷| if|𝜷| ≤ 𝜆;

− |𝜷|2−2𝑎𝜆|𝜷|+𝜆2

2(𝑎−1)
if𝜆 < |𝜷| ≤ 𝑎𝜆;

(𝑎+1)𝜆2

2
if|𝜷| > 𝑎𝜆,

where 𝑎 > 2 and 𝜆 > 0.

For the SCAD penalty, despite its good asymptotic properties, the corresponding optimization

problem is non-concave, and as a result much harder to solve since there is no guarantee that the

local maximum of the penalized likelihood is the global maximum. Additionally, the SCAD is

computationally difficult due to its complex form.
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2.2.4 Elastic Net

Zou and Hastie (2005) introduced an elastic net penalty which linearly combines the LASSO

and ridge regression penalties. The elastic net estimate is given by

�̂�elastic = argmax
𝜷

{︃
ℓ (𝜷)− 𝜆1

𝑝∑︁
𝑗=1

|𝛽𝑗| − 𝜆2

𝑝∑︁
𝑗=1

𝛽2
𝑗

}︃
.

By bridging the LASSO and ridge regression, the elastic net tries to maintain the good features

of both methods. The LASSO penalty generates a parsimonious model, while the ridge regression

penalty removes the limitation on the number of selected predictors, encourages group selection,

and stabilizes the selection process. As a consequence, the elastic is particularly useful when there

are more parameters than observations or there is a group of predictors that have high pairwise

correlations.

2.2.5 Adaptive LASSO

Zou (2006) showed that the LASSO could be inconsistent in model selection and studied a

necessary condition for the consistency. He also proposed the “adaptive LASSO”, which is a

development of the LASSO. The adaptive LASSO estimate is defined by

�̂�ALASSO = argmax
𝜷

{︃
ℓ (𝜷)− 𝜆

𝑝∑︁
𝑗=1

𝑤𝑗|𝛽𝑗|

}︃
, (2.10)

where w = (𝑤1, . . . , 𝑤𝑝) is a known weight vector chosen adaptively by the data. For the adaptive

LASSO, the choice of the weights is very important, and it is often suggested that w = 1/|�̂�|,

where �̂� is the maximum likelihood estimate of 𝜷. By incorporating relatively larger penalties

for insignificant predictors and smaller penalties for significant predictors, the adaptive LASSO

attempts to reduce the estimation bias and improve model selection accuracy.

One advantage of the adaptive LASSO relies on its a concave optimization property, thus the

absolute maximizer can be efficiently solved without suffering from the multiple local maximal

issue. Further, if the weights are cleverly chosen, Zou (2006) showed that the method is selection
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consistent and processes the oracle properties. Compared to other oracle procedures such as the

SCAD, the adaptive LASSO is computationally more attractive, since its entire solution path can

be obtained effectively.

Considering all the optimal properties of the adaptive LASSO in linear regression models, we

employ it as the penalty term in our proposed procedure later in Chapter 4, and we wish it is also

efficient in mixed model selection.

2.3 Selection Criteria

Just as the subset selection approaches considered in Section 2.1 require a criterion to deter-

mine which of the models under consideration is the best, implementing penalized procedures in

Section 2.2 desires a rule for properly selecting a value for the tuning parameter in function (2.6)

among the candidate values. A model selection criterion can be used to assign scores to each of the

fitted candidate models in order to assist the analyst in choosing the best model. We give a brief

review on those widely used criteria in the following.

2.3.1 AIC

The Akaike information criterion (AIC, Akaike, 1973, 1974) is generally accepted as the first

model selection criterion, and remains the most popular tool for model selection. It is derived as

an estimator of the expected Kullback discrepancy between the fitted model and the truth. Along

with BIC, which will be described right after, AIC belongs to the family of information criteria

which are likelihood-based measures of model fit including a penalty for complexity. In general,

the AIC is defined as

AIC = −2ℓ
(︁
�̂�
)︁
+ 2 * 𝑝,

where ℓ
(︁
�̂�
)︁

is the log-likelihood function in (2.3) evaluated at the estimate �̂�, and 𝑝 is the number

of estimated parameters. In a model selection application, the optimal fitted model is identified by

the minimum value of AIC.

Originally justified in asymptotic situations, AIC is applicable in a broad array of modeling

frameworks. However, in settings where the sample size is small, AIC may favor the overfitted
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models, which reduces its effectiveness as a model selection criterion. To address the deficiency

of AIC, the “corrected’ AIC, AICc, has been proposed as

AICc = AIC +
2𝑝(𝑝+ 1)

𝑁 − 𝑝− 1
.

Initially suggested for linear regression by Sugiura (1978), AICc has been extended to a number

of additional modeling frameworks (e.g., Hurvich et al., 1990; Hurvich and Tsai, 1993; Azari et al.,

2006). Hurvich and Tsai (1989) demonstrated that AICc outperforms AIC as a selection criterion

in small sample applications. However, because the derivation of AICc depends upon the form of

the candidate model class, AICc is less generally applicable than AIC.

2.3.2 BIC

BIC, the Bayesian information criterion, was introduced by Schwarz (1978) as a competitor

to AIC. BIC serves as an asymptotic approximation to a transformation of the Bayesian posterior

probability of a candidate model. By choosing the fitted candidate model corresponding to the

minimum value of BIC, the candidate model has the highest Bayesian posterior probability is

selected. BIC is formally defined as

BIC = −2ℓ
(︁
�̂�
)︁
+ 𝑝 * log(𝑁).

Note that for 𝑁 ≥ 8, 𝑝 * log(𝑁) exceeds 2 * 𝑝, so in general BIC has a more stringent penalty

term than AIC. Consequently, BIC tends to choose smaller models than AIC, and such difference

in selected models might be especially noticeable in large sample applications. Theoretically, BIC

is a consistent criterion for model selection, that is, asymptotically BIC selects the fitted candidate

model having the correct structure with probability one.

Nevertheless, BIC is not without drawbacks. For example, BIC is not asymptotically efficient,

namely, it will not asymptotically select the fitted candidate model which minimizes the mean

squared error of prediction. Therefore, BIC may not be advocated if the primary goal of the
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modeling application is predictive. Chen and Chen (1999) showed that BIC may perform poorly

with a moderate sample size but a huge number of covariates. For other criticisms for BIC, see

Weakliem (1999).

2.3.3 Mallows’ Cp

The statistic Cp (Mallows, 1973, 1995) is designed to estimate the Gauss discrepancy between

the true model and the candidate model. Similar to other discrepancy-based model selection criteria

such as AIC, Cp consists of a goodness-of-fit term and a penalty, and it is given by

Cp =
𝑅𝑆𝑆

𝜎2
−𝑁 + 2𝑝,

where 𝑅𝑆𝑆 is the residual sum of squares of the given model, 𝑝 is the number of predictors in the

model. For this criterion, we desire models with Cp close to or smaller than 𝑝.

Mallows (1973) noted that one advantage of using Cp is that it can be clearly plot, and therefore

a simple plot of Cp versus 𝑝 can be used to choose among models. One limitation with the Cp

criterion is that we need to decide an estimate of 𝜎2 since it is usually unknown. Typically, the

estimate is from the full model, but it may not be an appropriate estimation of 𝜎2 for all the fitted

models. Moreover, the CP statistic can be affected by outliers, that may lead to deterioration of the

quality of this criterion. Fujikoshi and Satoh (1997) proposed a modified variant of Mallows’ Cp,

which improves of Cp on selecting the correct models from the pool.

2.3.4 Cross-Validation

Cross-validation (CV) is a widespread strategy for evaluating and selecting models by ran-

domly dividing data into 𝐾 groups, or folds, of approximately equal size. For 𝑘 = 1, 2, . . . , 𝐾, we

let the validation set be the 𝑘th fold of the data , and let the training set be the remaining 𝐾 − 1

folds. We fit the model to the training set, and compute the prediction error of the fitted model

with the validation set. For each model, the process is repeated 𝐾 times so that each fold is used

once to be the validation set. As a result, each model results in 𝐾 estimates of the prediction error,

and the CV is computed by averaging these values. Under this criterion, the best model is the one
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with the smallest value of CV. For the purpose of balancing between variance and bias, 5 or 10 fold

cross-validation are recommended (Breiman and Spector, 1992; Kohavi, 1995).

An apparent shortcoming of cross-validation is that we must have a large enough sample to

enable it to be divided into 𝐾 groups. If the sample size is small, cross-validation may yield

quite unstable results. The computational cost is usually mentioned as the other drawback of

CV. For a 𝐾 fold cross-validation, each candidate model will have 𝐾 estimates of the prediction

error, such process is quite time consuming. To obviate the need for the extensive computations,

Tibshirani and Tibshirani (2009) proposed a bias correction for the minimum error rate in cross-

validation. Bernau et al. (2013) suggested another bias correction cross-validation method to lower

the computational price.

2.3.5 Generalized Cross Validation

The generalized cross validation (GCV, Craven and Wahba, 1979) provides a modified form

and computational shortcut for cross-validation. The GCV statistic is defined by

GCV =
1

𝑁

𝑅𝑆𝑆

[1− 𝑝/𝑁 ]2
.

Just as the other criteria, we choose the optimal model by minimizing the GCV value.

Equivalently, in linear regression models, the GCV can be also given as

GCV = − 1

𝑁

ℓ
(︁
�̂�
)︁

[1− 𝑝/𝑁 ]2
.

GCV alleviates the computational burden of CV and thus is more popular to be used as a model

selection tool. However, Wang et al. (2007) indicated that GCV performs similar to AIC, and the

resulting model selected by GCV tends to overfit. Consequently, it has been argued that choice

between GCV and CV should be based upon statistical rather than computational grounds.
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2.4 Adaptive Penalty with Weighted Ridge Estimator

In Section 2.2, we have introduced the adaptive LASSO in (2.10) as a reliable penalized

methodology for simultaneous parameter estimation and model selection. For guaranteeing the

optimality of the solution, the chosen values for the weight 𝑤𝑗’s are important. In general, w =

1/|�̂�ML| is utilized as the weight vector, where �̂�ML is the maximum likelihood estimator of 𝜷

defined in (2.4). It is known that �̂�ML are consistent estimators, so their values well reflect the

relative importance of the covariates.

When collinearity occurs, the variances of maximum likelihood estimates are large so they

may be far from the truth. The ridge solution in (2.8), on the other hand, is often suggested as

a remedy for estimator variance, therefore may be more appropriate for weights in the adaptive

LASSO penalty.

To improve the performance of the adaptive LASSO in linear regression models, we propose a

two-stage adaptive LASSO model selection procedure with weighted ridge estimator. In the first

stage, we find the optimal ridge solution �̂�ridge in (2.8) via one of the model selection criteria

discussed in Section 2.3. In the second stage, we select the best model via the adaptive LASSO

procedure in (2.10) using the ridge solution obtained in the first stage as weights.

In what follows, we examine the performance of the proposed procedure under two simulation

settings, and compare the simulated results with those for the LASSO and the adaptive LASSO

with weighted maximum likelihood estimator. All of the simulated data are generated from model

(2.2), and BIC is used as the turning parameter. The R code for the simulation studies are available

in the appendix.

Example 2.1. In this example, we inspect the performance of the proposed method in a low-

dimensional model with a few large effects. For the true model, we let 𝜷 = (3, 1.5, 0, 0, 2, 0, 0, 0)𝑇 ,

and let the predictors X𝑖 (𝑖 = 1, . . . , 𝑁 ) be i.i.d normal vectors. The pairwise correlation between

𝑥𝑖𝑗 and 𝑥𝑖𝑘 is 0.5, 𝑗, 𝑘 = 1, . . . , 𝑝. The datasets are generated under different scenarios: 𝑁 =

20, 60, and 𝜎 = 1, 3.

Example 2.2. In this example, we investigate the performance of the proposed method in a
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higher-dimensional model. For the true model, let 𝜷 = (0, . . . , 0, 2, . . . , 2) with 20 repeats in each

block, and let 𝑥𝑖𝑗 = 𝑧𝑖𝑗 + 𝑧𝑖, where 𝑧𝑖𝑗 and 𝑧𝑖 are independent standard normal variates. The

datasets are generated under different cases: 𝑁 = 60, 100, and 𝜎 = 1, 3.

Table 2.1: Simulation results for Example 2.1.

Case 𝜎 = 1 𝜎 = 3

MRPE MCS MIS MRPE MCS MIS

𝑁 = 20
LASSO 0.34 4.82 1.82 0.31 5.02 2.32

ALASSOM 0.28 3.50 0.54 0.32 4.04 1.70
ALASSOR 0.27 3.42 0.44 0.29 3.98 1.56

𝑁 = 60
LASSO 0.11 4.70 1.70 0.11 4.84 1.88

ALASSOM 0.07 3.22 0.22 0.11 3.86 0.92
ALASSOR 0.06 3.18 0.18 0.10 3.70 0.80

Table 2.2: Simulation results for Example 2.2.

Case 𝜎 = 1 𝜎 = 3

MRPE MCS MIS MRPE MCS MIS

𝑁 = 60
LASSO 0.61 29.46 9.46 0.61 30.20 10.22

ALASSOM 0.40 21.10 1.10 0.51 24.34 4.34
ALASSOR 0.39 20.86 0.86 0.51 23.62 3.64

𝑁 = 100
LASSO 0.40 28.05 8.05 0.33 31.26 11.26

ALASSOM 0.23 20.35 0.35 0.25 22.84 2.84
ALASSOR 0.22 20.35 0.35 0.25 22.76 2.76

For each example, we generate 100 datasets for each combination of (𝑁, 𝜎), and measure

the performance in terms of model prediction and selection accuracy using the proposed method

(ALASSOR). For prediction accuracy, we calculate the relative prediction error (RPE) which takes

the form of

RPE = E[(ŷ − X𝜷)2]/𝜎2.
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Figure 2.2: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (20, 1) in Example 2.1.

Figure 2.3: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (20, 3) in Example 2.1.

Small values of the RPE indicate that the fitted model is more accurate in predicting future data. For

model selection accuracy, we calculate number of selected nonzero components (CS) and number

of zero components incorrectly selected into model (IS). We expect the estimates of IS be close to

0, the estimates of CS be close to 3 and 20 in Example 2.1 and Example 2.2, respectively. Based on
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Figure 2.4: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (60, 1) in Example 2.1.

Figure 2.5: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (60, 3) in Example 2.1.

the 100 replications, we compute the mean of each of the three quantities and name them MRPE,

MCS, and MIS, then we compare them with those for the LASSO and the adaptive LASSO with
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Figure 2.6: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (60, 1) in Example 2.2.

weighted maximum likelihood estimator (ALASSOM).

Table 2.1 and Table 2.2 individually summarize the simulation results of Example 2.1 and

Example 2.2. Although the two tables present the simulation results for the simulated data which

are generated from different structures, three similar observations can be observed. First, all the

three methods tend to perform better when the variance decreases. For example, when 𝑁 = 20

in Table 2.1, as 𝜎 decreases from 3 to 1, the MRPE obtained from our method drops from 0.29

to 0.27, illustrating that the model prediction accuracy raises with less noise. Meanwhile, the

MCS and MIS decline from 3.98 and 1.56 to 3.42 and 0.44, respectively, meaning that the model

structure can be identified more accurately with smaller variance.

Second, as the sample size increases, each of all the methods can better identify the true model.

For instance, when 𝜎 = 3 in Table 2.2, as sample size grows from 60 to 100, the MRPE, MCS,

and MIS obtained from our method drop from 0.51, 23.62, and 3.64 to 0.25, 22.76, and 2.76,

individually. It is reasonable that the behaviors of model selection methods are improved in larger
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Figure 2.7: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (60, 3) in Example 2.2.

Figure 2.8: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (100, 1) in Example 2.2.
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Figure 2.9: Boxplots of RPE, CS and IS for (𝑁, 𝜎) = (100, 3) in Example 2.2.

data sets, since increasing sample size produces more information about the true model.

Finally, the proposed method ALASSOR yields smaller MRPE, MCS and MIS values than the

other two methods almost across all cases, ALASSOM is the follower, and the LASSO performs

worst in general. In contract to the LASSO, both ALASSOR and ALASSOM are the adaptive

LASSO procedures. By involving the weight vector in the penalty function, the adaptive LASSO

imposes more penalties on insignificant predictors and less penalties on significant ones, yet the

LASSO gives them the same amount of penalization, therefore it is not surprising that the adaptive

LASSO procedures have better performance than the LASSO. While for the comparison of the

two adaptive LASSO methods, our ALASSOR is superior than ALASSOM, since the values of

ridge regression estimates better reflect the relative importance of the predictors than those of the

maximum likelihood estimates as the predictors are correlated in both examples.

In addition to measuring the mean, we also graphically report the median, another middle

value. Figure 2.2 - 2.9 are the box plots of the RPE, CS and IS values of all the three methods for

different combinations of (𝑁, 𝜎) in Example 2.1 and 2.2, and the black horizontal line in each box
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is the median. It is observed that ALASSOR produces smaller median values of RPE, CS and IS

than the other two methods almost across all scenarios, demonstrating that the proposed approach

has the smallest errors among the three procedures.

In conclusion, the proposed method improves the penalized methods especially the adaptive

LASSO with regard to prediction and selection accuracy. By employing the ridge regression esti-

mate in the process, the proposed adaptive LASSO procedure has a more proper weight vector and

is therefore exceptionally effective in identifying the correct model when high correlations among

the predictors are presented.
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CHAPTER 3 MODEL SELECTION IN LINEAR MIXED MODELS

In Chapter 2, we have reviewed a variety of model selection methods and criteria in linear

regression models, where the responses are assumed independent. Starting from the linear regres-

sion setting, we will extend model selection to linear mixed models, where the observations are

dependent.

Typically, a linear mixed model contains both fixed effects and random effects. Fixed effects

are the traditional linear regression coefficients, and random effects are associated with units which

are chosen randomly from a population. By involving such two types of parameters, linear mixed

models are primarily used to describe the regression relationship between a response variable and

some possibly related covariates in the data that are grouped, and therefore have been extensively

applied in a variety of disciplines including social sciences, medicine and biology (Demidenko,

2013; Jiang, 2007).

Because of the extensive applicability of linear mixed models, selecting the most appropriate

model is of importance. As extensions of linear regression models, methods for mixed model

selection can be recognized as expansions of methods developed for linear regression models.

Nevertheless, model selection in linear mixed models is much more complicated than it in linear

regression models, because both the fixed effects and the random effects need to be correctly iden-

tified, and the selection of informative covariates to construct an interpretable model is challenging

as the number of fixed or random effects grows.

In this chapter, we will provide basic notations for a linear mixed model, which will be con-

sistently used in the rest of the chapters. Furthermore, we will introduce some cutting-edge mixed

model selection methodologies. In Chapter 4, we will propose a novel selection approach for linear

mixed models by integrating the recent advances.
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3.1 Model Setting and Notations

If we have 𝑁 =
∑︀𝑛

𝑖=1 𝑛𝑖 number of observations with 𝑛 clusters, each of which has 𝑛𝑖 mea-

surements, where 𝑖 refers to the 𝑖th cluster, a separate linear mixed model can be fitted to each

cluster as

y𝑖 = X𝑖𝜷 + Z𝑖b𝑖 + 𝝐𝑖, 𝑖 = 1, 2, . . . , 𝑛, (3.1)

where y𝑖 is an 𝑛𝑖 × 1 vector of responses for cluster 𝑖, 𝜷 is a 𝑝 × 1 vector for fixed effects, the

𝑛𝑖 × 𝑝 matrix X𝑖 is its associated design matrix and is assumed to be of full rank. The 𝑛𝑖 × 𝑞

design matrix Z𝑖 is related with the 𝑞 × 1 vector of random effects b𝑖 ∼ N(0, 𝜎2D), and the matrix

D is positive definite. The error term 𝝐𝑖 ∼ N (0, 𝜎2I𝑛𝑖
), and 𝝐𝑖 is independent with b𝑖. Thus, y𝑖

is distributed as N (X𝑖𝜷, 𝜎
2V𝑖(𝜽)), and the matrix V𝑖(𝜽) = I𝑛𝑖

+ Z𝑖DZ𝑇
𝑖 , where 𝜽 denotes the

vector consisting of 𝑘 = 𝑞(𝑞+1)
2

unique covariance parameters in D. We use the notation V𝑖(𝜽) to

emphasize the dependence of V𝑖 on 𝜽. For the sake of brevity, we will often write V𝑖 in short. In

particular, a linear mixed model with no random effects reduces to the linear regression model in

(2.2).

In linear mixed models, the magnitudes of the coefficients are concerned for the fixed effects.

Conversely, for the random effects, researchers are interested in the distribution rather than the

actual sizes of coefficients. Therefore, the aim of mixed model selection is to select and estimate

the parameter vector 𝝋 = (𝜷𝑇 ,𝜽𝑇 )𝑇 , which consists of the fixed effects and variance components

of the random effects.

For parameter estimation in linear mixed models, maximum likelihood (ML, Hartley and Rao,

1967) and restricted maximum likelihood (REML, Thompson, 1962; Patterson and Thompson,

1971) are the two most commonly used techniques. For model (3.1), the log-likelihood function,

ignoring constant terms, is given by

ℓ𝐹 (𝜷,𝜽, 𝜎) = −1

2

𝑛∑︁
𝑖=1

log
⃒⃒
𝜎2V𝑖

⃒⃒
− 1

2
𝜎−2

𝑛∑︁
𝑖=1

r𝑇𝑖 V−1
𝑖 r𝑖, (3.2)

where r𝑖 = y𝑖 − X𝑖𝜷.
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Maximization of ℓ𝐹 (𝜷,𝜽, 𝜎) yields the ML estimators (MLE) of unknown parameters. When

𝜽 is known, the MLE of 𝜷 is given by

�̃� =

(︃
𝑛∑︁

𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖

)︃−1(︃ 𝑛∑︁
𝑖=1

X𝑇
𝑖 V−1

𝑖 y𝑖

)︃
. (3.3)

In practice when 𝜽 is unknown, V𝑖 is simply replaced with its estimate, V̂𝑖. However, both

fixed effects and variance components are involved in ML estimation so that there is no closed

form solution of either part, and this causes computational challenges. In order to obtain the MLE,

numerical methods such as Expectation-Maximization algorithm and Newton-Raphson algorithm

are often desired. Moreover, ML method treats 𝜷 as fixed but unknown parameters when 𝜽 is

estimated, but does not take into account the degrees of freedom lost by estimating the fixed effects,

hence the MLE of the variance components 𝜽 is biased.

REML estimation, on the other hand, is preferred when interest lies in accurate estimates of the

variance components. Harville (1974) showed that the restricted log-likelihood function, dropping

constant terms, is given by

ℓ𝑅 (𝜽, 𝜎) = ℓ𝐹

(︁
�̃�,𝜽, 𝜎

)︁
− 1

2
log

⃒⃒⃒⃒
⃒𝜎−2

𝑛∑︁
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖

⃒⃒⃒⃒
⃒ , (3.4)

where �̃� is of the form given in (3.3).

Maximizing ℓ𝑅 (𝜽, 𝜎) produces the restricted maximum likelihood estimates of the variance

components 𝜽. Then we can obtain the REML estimator of V𝑖, denoted as V̂𝑅𝑖, and the REML

estimator of 𝜷 as

�̃�𝑅 =

(︃
𝑛∑︁

𝑖=1

X𝑇
𝑖 V̂

−1

𝑅𝑖 X𝑖

)︃−1(︃ 𝑛∑︁
𝑖=1

X𝑇
𝑖 V̂

−1

𝑅𝑖 y𝑖

)︃
.

Compared with ML method, REML is recommended to estimate the variance components in

linear mixed models for several reasons. First, it accounts for the degrees of freedom lost by

estimating the fixed effects, and makes a less biased estimation of variance components (Jiang,
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2007). Second, REML estimators of 𝜽 are invariant to the value of 𝜷 and are more robust to

outliers (Verbyla, 1993; McCulloch et al., 2008). Third, the dimension involved in REML is lower

than ML, so the computational costs are cheaper. However, one advantage of ML over REML is

that it is able to compare two models with different fixed and random effects terms, while REML

estimates only allow us to compare two models with identical fixed effects and are nested in their

random effects terms.

To make full use of the log-likelihood functions’ strength in estimation, quite a few mixed

model selection procedures rely on either ML or REML, assuming the random effects and the

error term follow normal distribution. Meanwhile, there exist some robust methods for non-normal

data. We categorize the different methods into three broad classes and discuss each class in its own

section.

3.2 Mixed Model Selection by ML

AIC is the most widely used model selection criterion, so no surprise that it is developed in

the framework of linear mixed models. Sugiura (1978) proposed a marginal AIC (mAIC) which

is derived by the marginal form of linear mixed models. By taking the covariance structure into

account, it is defined as

mAIC = −2ℓ
(︁
�̂�, �̂�, �̂�

)︁
+ 2𝑎𝑁 (𝑝+ 𝑞) ,

where 𝑝 is the number of estimated fixed effects, 𝑞 is the number of estimated random effects,

𝑎𝑁 = 1 or 𝑎𝑁 = 𝑁
𝑁−𝑝−𝑞−1

. However, Greven and Kneib (2010) showed that mAIC is positively

biased for the marginal Akaike information.

Vaida and Blanchard (2005) showed that the general AIC is not appropriate for the linear

mixed model, and they proposed instead the conditional AIC (cAIC) based on the conditional

log-likelihood ℓ
(︁
�̂�, �̂�, �̂�|b̂

)︁
. In general, cAIC is expressed as

cAIC = −2ℓ
(︁
�̂�, �̂�, �̂�|b̂

)︁
+ 𝑎𝑁

(︁
�̂�, �̂�, �̂�

)︁
,
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where b̂ is often estimated by the best linear unbiased predictor (BLUP, Henderson, 1950)

b̂ = DZ𝑇V−1(y − X�̂�). (3.5)

There are several versions of cAIC with different proposed penalty terms 𝑎𝑁
(︁
�̂�, �̂�, �̂�

)︁
. For exam-

ple, Vaida and Blanchard (2005) suggested using 𝑎𝑁,𝑉 𝐵

(︁
�̂�, �̂�, �̂�

)︁
= 2

(︁
𝜌(�̂�) + 1

)︁
, while Burn-

ham and White (2002) proposed using 𝑎𝑁,𝐵𝑊

(︁
�̂�, �̂�, �̂�

)︁
= 2

(︁
𝜌(�̂�) + 𝑞

)︁
. Here, 𝜌(�̂�) is the effec-

tive degrees of freedom used in estimating 𝜷 and b (Hodges and Sargent, 2001).

As another most commonly used criterion, BIC in linear mixed models is obtained by taking

mAIC and replacing 2𝑎𝑁 by log(𝑁), so we have

mBIC = −2ℓ
(︁
�̂�, �̂�, �̂�

)︁
+ log(𝑁) (𝑝+ 𝑞) .

Compared with mAIC, the increased weight in the penalty term should encourage mBIC to

favor more parsimonious models. Jones (2011) proposed a variant of mBIC, which considers the

effect of dependent structure and has an alternative measure of the effective sample size.

The generalized information criterion (GIC, Rao and Wu, 1989), is a generalization of AIC and

BIC. Pu and Niu (2006) extended GIC to select linear mixed models with the form of

EGIC = −2ℓ
(︁
�̂�, �̂�, �̂�

)︁
+ 𝜆𝑁 (𝑝+ 𝑞) .

This criterion allows for greater flexibility in choosing 𝜆𝑁 . Different choices of 𝜆𝑁 include

𝜆𝑁 = 2 for mAIC, 𝜆𝑁 = log(𝑁) for mBIC, 𝜆𝑁 = 2 log log(𝑁) for Hannan and Quinn (1979)

penalty, and 𝜆𝑁 = log(𝑁)+1 for Bozdogan (1987) penalty. Pu and Niu (2006) proved that, under

mild conditions, the EGIC is consistency and asymptotic loss efficiency. They also suggested

implementing EGIC into two stages, in the first stage, the fixed effects 𝜷 are selected by fixing the

random effects 𝜽, then in the second stage, the random effects can be chosen after the fixed effects

are selected.
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We now review penalized methods in mixed models. While there is an extensive literature

focusing on fixed effects or random effects selection, few references discuss about jointly selec-

tion on both fixed and random effects. Only recently, Bondell et al. (2010) and Ibrahim et al.

(2011) respectively proposed a joint selection procedure, both of which used penalized maximum

likelihood and Cholesky parameterizations.

Ibrahim et al. (2011) proposed to maximize the penalized maximum likelihood

ℓ (𝜷,𝜽, 𝜎)− 𝑛

𝑝∑︁
𝑗=1

𝜑𝜆𝑗
(|𝛽𝑗|)− 𝑛

𝑞∑︁
𝑘=1

𝜑𝜆𝑝+𝑘
(||𝛾𝑘||),

where 𝛾𝑘 contains of all nonzero of the 𝑘th row of Γ, and Γ is the Cholesky factor of D. The authors

considered both the SCAD and the adaptive LASSO for the penalty functions. For instance, the

adaptive LASSO penalties for fixed and random effects are individually defined as

𝜑𝜆𝑗
(|𝛽𝑗|) = 𝜆𝑗

|𝛽𝑗|
|𝛽𝑗|

𝑗 = 1, 2, . . . , 𝑝,

𝜑𝜆𝑝+𝑘
(||𝛾𝑘||) = 𝜆𝑝+𝑘

||𝛾𝑘||
||𝛾𝑘||

𝑘 = 1, 2, . . . , 𝑞,

where �̂� and �̂� are unpenalized maximum likelihood estimators.

Bondell et al. (2010) adopted a modified Cholesky decomposition by factorizing the covariance

matrix of the random effects D as D*ΓΓ𝑇D*, where D* = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑞) is a diagonal matrix,

and Γ is a 𝑞 × 𝑞 lower triangular matrix. Then the vector 𝜽* = (𝜷𝑇 ,d𝑇 ,𝜸𝑇 )𝑇 was defined, where

d = (𝑑1, . . . , 𝑑𝑞)
𝑇 , and 𝜸 is the vector consists the 𝑞(𝑞−1)

2
elements of Γ. Thereafter the authors

proposed to maximize the penalized maximum likelihood with the adaptive LASSO penalty terms.

The penalized maximum likelihood is given by

ℓ (𝜷,d,𝜸)− 𝜆𝑛

(︃
𝑝∑︁

𝑗=1

|𝛽𝑗|
|𝛽𝑗|

+

𝑞∑︁
𝑗=1

|𝑑𝑗|
|𝑑𝑗|

)︃
,

where 𝜆𝑛 is a tuning parameter, �̂� is the generalized least squares estimate of 𝜷, and d̂ can be
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obtained by decomposing the estimated covariance matrix D̂.

Although the approaches of Bondell et al. (2010) and Ibrahim et al. (2011) have some contents

in common, such as relying on the maximum likelihood function, using Cholesky decomposition,

and adapting the EM algorithm to carry out parameter estimation, they are different in incorporat-

ing tuning parameters. Bondell et al. (2010) employed the same 𝜆 to penalize both the fixed and

random effects, while Ibrahim et al. (2011) applied two sets of tuning parameters in the objective

function. The use of the same 𝜆 in the scale of two kinds of parameters decreases computational

burden in searching solutions, but compromises the proficiency of the method in identifying the

true model. In the next section, we will go through REML based selection methods.

3.3 Mixed Model Selection by REML

The REML function in (3.4) is not a function of 𝜷, so it seems to indicate that REML is not

useful to select the fixed effects. However, selections of X in (3.4) associate with choices of 𝜷,

meaning that REML could be used in mixed model selection.

Vaida and Blanchard (2005) considered conditional AIC using REML. The criterion is of the

form

cAIC𝑅 = −2ℓ𝑅

(︁
�̂�, �̂�|b̂

)︁
+ 𝑎𝑁

(︁
�̂�, �̂�

)︁
,

where b̂ the best linear unbiased predictor of b defined in (3.5), and the penalty term is defined as

𝑎𝑁

(︁
�̂�, �̂�

)︁
=

2(𝑁 − 𝑃 − 1)

𝑁 − 𝑝− 2
{𝜌(�̂�) + 1 +

𝑝+ 1

𝑁 − 𝑝− 1
},

where 𝜌(�̂�) is the effective degrees of freedom used in estimating 𝜷 and b.

Marginal AIC also has a version based on the REML which is given by

mAIC𝑅 = −2ℓ𝑅

(︁
�̂�, �̂�

)︁
+ 2𝑎𝑁 * 𝑞,

where 𝑎𝑁 = 𝑁−𝑝
𝑁−𝑝−𝑞−1

.

With regard to the penalized methods, Lin et al. (2013) proposed a two-stage mixed model
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selection procedure based upon REML. In the first stage, the penalized restricted log-likelihood is

employed to select the important random effects, and it is carried out by a Newton-type algorithm.

Next, in the second stage, the penalized log-likelihood is utilized to select the proper fixed effects,

the selection and estimation is accomplished by the pathwise coordinate optimization (Friedman

et al., 2007).

Compared to the maximum likelihood based approaches, the method in Lin et al. (2013) tries

to make full use of REML’s strength in variance component parameters estimation, and therefore

is particularly more efficient in random effects selection. After the appropriate random effects

are chosen in the first stage, selecting the fixed effects only involves the regression coefficients.

The usage of two-stage selection respects the different natures of the fixed and random effects and

improves the computational efficiency.

Note that all the above procedures require the normality for the random effects and the error

terms, thus the efficacy of their inferences are limited if the distribution is not normal. To adjust

for this weakness, some robust approaches without distribution assumption have been studied, and

we will review them in the next section.

3.4 Robust Mixed Model Selection Methods

To select and estimate both fixed and random effects, Peng and Lu (2010) proposed a two-step

distribution free penalized procedure.

In the first step, the covariance matrix D is estimated by minimizing the following penalized

least squares
1

2
(y𝑖 − X𝑖𝜷 − b𝑖Z𝑖)

𝑇 (y𝑖 − X𝑖𝜷 − b𝑖Z𝑖) +𝑁

𝑞∑︁
𝑘=1

𝑝(
√︀

|D𝑘𝑘|),

where 𝑝(· ) is the SCAD penalty function, and D𝑘𝑘 is the 𝑘th diagonal element of D̂. The solution

of the above function b̂𝑖 can be updated based on ridge regression, and an estimate of D can be

updated as

D̂ =

∑︀𝑛
𝑖=1 b̂𝑖b̂

𝑇

𝑖

𝑛�̂�2
−
∑︀𝑛

𝑖=1 Ẑ𝑖Ẑ
𝑇

𝑖

𝑛
.

After D̂ is obtained, in the second step, the selection of fixed effects is achieved by minimizing
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the following penalized least squares

1

2
(y𝑖 − X𝑖𝜷)

𝑇 (I𝑛𝑖
+ Z𝑖D̂Z𝑇

𝑖 )(y𝑖 − X𝑖𝜷) +𝑁

𝑝∑︁
𝑘=1

𝑝(|𝛽𝑘|).

The �̂� is updated based on ridge regression, and the process is continued iterating between step

one and two until convergence.

As a robust selection method, the method does not rely on normality assumption, so it is ex-

pected to have promising performance against non-normality of the data. Another advantage of

this method is its computational stability since the complex constrained optimization problem of

the covariance matrix is prevented. However, the method needs sufficient number of observations

within each cluster. When the cluster size is small, it performs worse than the likelihood based pro-

cedures (Peng and Lu, 2012, page 119-120). Moreover, when the errors are known to be normally

distributed, the procedure is shown to be less efficient.

Ahn et al. (2012) suggested to use a second-order moment loss function for estimating the

covariance matrix of the random effects, then the random effects selection can be achieved by

minimizing the penalized loss function. Two types of shrinkage penalties including a hard thresh-

olding operator and a sandwich-type soft thresholding penalty are proposed for random effects

selection. Furthermore, the procedure is extended to the selection of fixed effects. In the view of

such moment-based method, the estimators of this procedure do not need normality assumption of

the error terms, and hence are more robust for non-normal correlated data.
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CHAPTER 4 ADAPTIVE LASSO FOR MIXED MODEL SELECTION VIA PROFILE

LOG-LIKELIHOOD

Though some good strategies were identified for mixed model selection as we have introduced

in Chapter 3, there is still much room for further improvement of selection accuracy and compu-

tation efficiency. To further improve the performance of the existing methodologies, we propose

a two-stage selection procedure for linear mixed models in this chapter. In the two stages, the

random effects and fixed effects are selected employing the adaptive LASSO penalized term via

the restricted profile log-likelihood and the profile log-likelihood function, respectively.

Our proposal is different from the existing ones in the literature mainly in two aspects. First, the

proposed method is composed of two stages to separately choose the parameters of interests, there-

fore can respect and accommodate the distinct properties between the random and fixed effects.

Second, the usage of the profile log-likelihoods in the selection process can make the computation

more efficient and stable due to a smaller number of dimensions involved.

Further, we study the theoretical properties of the proposed procedure including estimation

consistency and the oracle properties (Fan and Li, 2001). We prove that, with probability tending

to one, the proposed procedure surely selects the true mixed model.

Now, recall the linear mixed model defined in (3.1) takes the form of

y𝑖 = X𝑖𝜷 + Z𝑖b𝑖 + 𝝐𝑖, 𝑖 = 1, 2, . . . , 𝑛.

For this model, the log-likelihood function in (3.2) is

ℓ𝐹 (𝜷,𝜽, 𝜎) = −1

2

𝑛∑︁
𝑖=1

log
⃒⃒
𝜎2V𝑖

⃒⃒
− 1

2
𝜎−2

𝑛∑︁
𝑖=1

r𝑇𝑖 V−1
𝑖 r𝑖,

where r𝑖 = y𝑖 − X𝑖𝜷.
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The restricted log-likelihood function in (3.4) is

ℓ𝑅 (𝜽, 𝜎) = ℓ𝐹

(︁
�̃�,𝜽, 𝜎

)︁
− 1

2
log

⃒⃒⃒⃒
⃒𝜎−2

𝑛∑︁
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖

⃒⃒⃒⃒
⃒ ,

where �̃� is the MLE of 𝜷 defined in (3.3).

Note that the model variance parameter 𝜎 is involved in both the log-likelihood function in

(3.2) and the restricted log-likelihood function in (3.4), while it is neither a fixed effect nor a ran-

dom effect. In other words, with regard to the fixed and random effects selection, we can consider

𝜎 as a nuisance parameter. Therefore, on one hand, profiling out 𝜎 can still catch enough and

primary information for the model in (3.1) (e.g., see Fan and Li, 2012). On the other hand, remov-

ing 𝜎 from the selection procedure makes the computation more effective and steady, since the

dimension involved in the profiled log-likelihood is lower than the log-likelihood and the restricted

log-likelihood.

Considering the points discussed above, we substitute the maximum likelihood (ML) of 𝜎2

�̂�2
ML = 1

𝑁

∑︀𝑛
𝑖=1 r𝑇𝑖 V−1

𝑖 r𝑖, and restricted maximum likelihood (REML) estimators of 𝜎2 �̂�2
REML =

1
𝑁−𝑝

∑︀𝑛
𝑖=1 r𝑇𝑖 V−1

𝑖 r𝑖 into equations (3.2) and (3.4), respectively, and then the profile log-likelihood

and restricted profile log-likelihood (Lindstrom and Bates, 1988) can be obtained as

𝑝𝐹 (𝜷,𝜽) = −1

2

𝑛∑︁
𝑖=1

log |V𝑖| −
𝑁

2
log

(︃
𝑛∑︁

𝑖=1

r𝑇𝑖 V−1
𝑖 r𝑖

)︃
, (4.1)

and

𝑝𝑅 (𝜽) = −1

2
log

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖

⃒⃒⃒⃒
⃒

−1

2

𝑛∑︁
𝑖=1

log |V𝑖|

−1

2
(𝑁 − 𝑝) log

[︃
𝑛∑︁

𝑖=1

(︁
y𝑖 − X𝑖�̃�

)︁𝑇
V−1

𝑖

(︁
y𝑖 − X𝑖�̃�

)︁]︃
. (4.2)

By explicitly profiling 𝜷 and 𝜎 out of the log-likelihood, the restricted profile log-likelihood
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function in equation (4.2) depends only on the variance components 𝜽, we then will have the

penalized restricted profile log-likelihood function to select important random effects in the next

section. Then accordingly, the penalized method will be established.

4.1 Selection of Random Effects via the Penalized Restricted Profile Log-Likelihood

The selection of the random effects in model (3.1) plays an important role in model estimation

and inference. Lange and Laird (1989) argued that overfitting random effects could result in a

near singular covariance matrix and then could make the fitting process more difficult. They also

argued that underfitting random effects would lead to bias in the variance estimates of the fixed

effects. From this perspective, the correct selection of the random effects will undoubtedly increase

efficiency or precision with which the fixed effects can be estimated (e.g., see Fitzmaurice et al.,

2011, p.165), eventually improve prediction accuracy for future data.

A challenge in using a penalized approach for random effects selection is that an entire row

and column of D must be removed to eliminate a random effect. This leads to difficulties in how

to conduct the penalization suitably.

In the first stage, we aim to choose the proper random covariance structure by maximizing the

penalized restricted profile log-likelihood in the first step. Observe that if a random effect is a noise

variable, then the corresponding variance components should be all zero. Thus, we first estimate

the covariance matrix of random effects using the adaptive LASSO penalized method and then

identify the vital ones based on the estimated covariance matrix.

To facilitate the random effects selection, we factorize the vector 𝜽 as (d, 𝜸), where d =

(𝑑1, 𝑑2, ..., 𝑑𝑞) is a vector consisting of the diagonal elements of D and 𝜸 is the vector of free

parameters. Now, we have the penalized restricted profile log-likelihood function as

𝑄𝑅(𝜽) = 𝑝𝑅(𝜽)− 𝜆1𝑛

𝑞∑︁
𝑗=1

𝑤1𝑗 |𝑑𝑗| , (4.3)

where 𝑝𝑅(𝜽) is the restricted profile log-likelihood defined in function (4.2), 𝜆1𝑛 is the tuning

parameter that controls the model complexity, 𝑑𝑗 is 𝑗th element of the vector d, and the positive
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weights vector w1 = (𝑤11, ..., 𝑤1𝑞)

𝑇 is chosen adaptively by data. The chosen values for 𝑤1𝑗’s are

important for guaranteeing the optimality of the solution. We propose to use w1 = 1/|d̃| , where

d̃ =
(︁
𝑑1, ..., 𝑑𝑞

)︁𝑇
is a root-𝑛 consistent estimator of d, since the values of consistent estimators

well reflect the relative importance of the covariates.

With the penalized restricted profile log-likelihood in equation (4.3), penalizing any 𝑑𝑗 to be

zero is equivalent to setting the entire 𝑗th row and 𝑗th column of D to zero, and generating a new

submatrix without the corresponding row and column.

To maximize 𝑄𝑅(𝜽) in equation (4.3), we apply the Newton-Raphson algorithm, which is well

known for fast convergence properties with a proper starting value and takes the iterative updating

form of

𝜽𝑏+1 = 𝜽𝑏 − M−1
𝜃𝜃 sc𝜃, 𝑏 = 0, 1, . . . , (4.4)

where 𝜽𝑏 is the current step value, and sc𝜃 is a 𝑘 × 1 vector of the first derivative, and M𝜃𝜃 is a 𝑘 ×

𝑘 matrix of the second derivative. Both are derived with respect to the penalized restricted profile

log-likelihood in equation (4.3). We then have 𝜽𝑏+1 in equation (4.4) updated for the next step.

The first and second derivatives of 𝑝𝑅(𝜽) in equation (4.3) can be calculated from Lindstrom

and Bates (1988), then we have

𝜕𝑝𝑅(𝜽)

𝜕𝜃𝑗
=

1

2

𝑛∑︁
𝑖=1

tr
(︀
H−1X𝑇

𝑖 A𝑖𝑗X𝑖

)︀
−1

2

𝑛∑︁
𝑖=1

tr

(︂
V−1

𝑖

𝜕V𝑖

𝜕𝜃𝑗

)︂
+
1

2
(𝑁 − 𝑝)

∑︀𝑛
𝑖=1 r𝑇𝑖 A𝑖𝑗r𝑖∑︀𝑛
𝑖=1 r𝑇𝑖 V−1

𝑖 r𝑖
,
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and

𝜕2𝑝𝑅(𝜽)

𝜕𝜃𝑙𝜕𝜃𝑗
=

1

2
tr

[︃
H−1

𝑛∑︁
𝑖=1

(︀
X𝑇

𝑖 A𝑖𝑙X𝑖

)︀
* H−1

𝑛∑︁
𝑖=1

(︀
X𝑇

𝑖 A𝑖𝑗X𝑖

)︀]︃

+
1

2
tr

[︃
H−1

𝑛∑︁
𝑖=1

(︂
X𝑇

𝑖

𝜕A𝑖𝑗

𝜕𝜃𝑙
X𝑖

)︂]︃

−1

2

𝑛∑︁
𝑖=1

tr

[︂
−A𝑇

𝑖𝑙

𝜕V𝑖

𝜕𝜃𝑗
+ V−1

𝑖

𝜕2V𝑖

𝜕𝜃𝑙𝜕𝜃𝑗

]︂

+
1

2
(𝑁 − 𝑝)

∑︀𝑛
𝑖=1 r𝑇𝑖

𝜕A𝑖𝑗

𝜕𝜃𝑙
r𝑖 *

∑︀𝑛
𝑖=1 r𝑇𝑖 V−1

𝑖 r𝑖 +
(︁∑︀𝑛

𝑖=1 −r𝑇𝑖 A𝑖𝑗r𝑖∑︀𝑛
𝑖=1 r𝑇𝑖 V−1

𝑖 r𝑖

)︁2
(︀∑︀𝑛

𝑖=1 r𝑇𝑖 V−1
𝑖 r𝑖

)︀2 ,

respectively, where

A𝑖𝑗 = V−1
𝑖

𝜕V𝑖

𝜕𝜃𝑗
V−1

𝑖 ,

𝜕A𝑖𝑗

𝜕𝜃𝑙
= −V−1

𝑖

(︂
𝜕V𝑖

𝜕𝜃𝑙
V−1

𝑖

𝜕V𝑖

𝜕𝜃𝑗
− 𝜕2V𝑖

𝜕𝜃𝑙𝜕𝜃𝑗
+

𝜕V𝑖

𝜕𝜃𝑗
V−1

𝑖

𝜕V𝑖

𝜕𝜃𝑙

)︂
V−1

𝑖 ,

and

H =
𝑛∑︁

𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖.

Note that the Newton-Raphson algorithm can not be directly applied because the penalty term

in function (4.3) is non-differentiable at the origin. Motivated by Li and Liang (2008), we can

approximate the penalty in (4.3) by a local quadratic approximation at every iteration step as

|𝑑𝑗| ≈
1

2

⃒⃒⃒
𝑑
(0)
𝑗

⃒⃒⃒
+

1

2

𝑑2𝑗⃒⃒⃒
𝑑
(0)
𝑗

⃒⃒⃒ , for 𝑑𝑗 ≈ 𝑑
(0)
𝑗 , (4.5)

where d0 is an initial value close to the maximizer of function (4.3). With the aid of the local

quadratic approximation in (4.5), we can find the derivatives of the penalized restricted profile log-

likelihood function in (4.3). The Newton-Raphson algorithm then can be utilized to search for the

solution of maximizing the penalized restricted profile likelihood function in (4.3), and the process

is repeated until the convergence is reached. The converged �̂� is the penalized restricted profile
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likelihood estimator in (4.3), and then the covariance matrix of random effects V can be estimated

by V̂ based on �̂�.

4.2 Selection of Fixed Effects via the Penalized Profile Log-Likelihood

Using the proper estimation of covariance matrix of the random effects from the previous sec-

tion can help us investigate on the selection and estimation of important fixed effects. We will

select the fixed effects with the utility of the penalized profile log-likelihood, and then determine

the final model.

After the covariance matrix of random effects V is estimated by V̂, dropping constant terms,

the profile likelihood function in (4.1) is given by

𝑝𝐹 (𝜷) = −𝑁

2
log

(︃
𝑛∑︁

𝑖=1

r𝑇𝑖 V̂
−1

𝑖 r𝑖

)︃
. (4.6)

From Lindstrom and Bates (1988), we can have the first and second derivatives of 𝑝𝐹 (𝛽) in (4.6)

as
𝜕𝑝𝐹 (𝜷)

𝜕𝜷
= 𝑁

∑︀𝑛
𝑖=1 X𝑇

𝑖 V̂
−1

𝑖 r𝑖∑︀𝑛
𝑖=1 r𝑇𝑖 V̂

−1

𝑖 r𝑖
,

and

𝜕2𝑝𝐹 (𝜷)

𝜕𝜷𝑇𝜕𝜷
= −𝑁

2

∑︀𝑛
𝑖=1 2X𝑇

𝑖 V̂
−1

𝑖 X𝑖 *
∑︀𝑛

𝑖=1 r𝑇𝑖 V̂
−1

𝑖 r𝑖 −
(︂∑︀𝑛

𝑖=1 −2X𝑇
𝑖 V̂−1

𝑖 r𝑖∑︀𝑛
𝑖=1 r𝑇𝑖 V̂−1

𝑖 r𝑖

)︂2

(︁∑︀𝑛
𝑖=1 r𝑇𝑖 V̂

−1

𝑖 r𝑖
)︁2 .

To determine the set of covariates for fixed effects, we can maximize the penalized profile

log-likelihood, which has the form of

𝑄𝐹 (𝜷) = 𝑝𝐹 (𝜷)− 𝜆2𝑛

𝑝∑︁
𝑗=1

𝑤2𝑗 |𝛽𝑗| , (4.7)

where 𝑝𝐹 (𝜷) is the profile log-likelihood defined in (4.6), 𝜆2𝑛 is the tuning parameter for the

fixed effects selection, and the positive weights vector w2 is data dependent. We suggest to use

w2 = 1/|�̃�|, where �̃� is the MLE of 𝜷 in (3.3) using the estimated covariance matrix V̂. Since �̃�
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is consistent estimator, its values well reflect the relative importance of the covariates.

To maximize 𝑄𝐹 (𝜷) in equation (4.7), we again apply the Newton-Raphson algorithm as

𝜷𝑏+1 = 𝜷𝑏 − M−1
𝛽𝛽 sc𝛽, 𝑏 = 0, 1, . . . , (4.8)

where 𝜷𝑏 is the current step value, and sc𝛽 is a 𝑝 × 1 vector of the first derivative, and M𝛽𝛽 is

a 𝑝 × 𝑝 matrix of the second derivative. Both are derived with respect to the penalized profile

log-likelihood in (4.7). We then have 𝜷𝑏+1 in equation (4.8) updated for the next step.

By the same argument in equation (4.5), we can approximate the penalty term in (4.7) by a

local quadratic approximation at every iteration step as

|𝛽𝑗| ≈
1

2

⃒⃒⃒
𝛽
(0)
𝑗

⃒⃒⃒
+

1

2

𝛽2
𝑗⃒⃒⃒

𝛽
(0)
𝑗

⃒⃒⃒ , for 𝛽𝑗 ≈ 𝛽
(0)
𝑗 , (4.9)

where 𝜷0 is an initial value close to the maximizer of (4.7). The Newton-Raphson algorithm then

is utilized to find the maximizer of the penalized profile likelihood in (4.7), and the iteration is

continued until the convergence is achieved. The converged �̂� is the penalized profile likelihood

estimator in (4.7).

After finishing the two-stage penalized procedure, with the proper choice of the tuning param-

eters, the appropriate linear mixed model can finally be identified.

4.3 Selection of Tuning Parameters

The performance of penalized methods highly relies on the tuning parameters that balance

the trade-off between model fitting and model sparsity (Sun et al., 2013). To implement the model

selection procedure, the tuning parameter 𝜆 has to be properly selected among the candidate values.

The selection of 𝜆 can be carried out by minimizing one of the commonly used selection criteria,

such as AIC, BIC, Mallows’ Cp, CV, and GCV, which were all discussed in Section 2.3. In this

dissertation, we propose three criteria for mixed model selection.
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First, we employ the BIC-type criteria given by

BICR = −2 * 𝑝𝑅
(︁
�̂�
)︁
+ log (𝑁) * 𝑑𝑓𝑅, (4.10)

and

BICF = −2 * 𝑝𝐹 (�̂�) + log(𝑁) * 𝑑𝑓𝐹 , (4.11)

for the random and fixed effects, respectively.

Second, the AIC-type criteria are given by

AICR = −2 * 𝑝𝑅
(︁
�̂�
)︁
+ 2 * 𝑑𝑓𝑅, (4.12)

and

AICF = −2 * 𝑝𝐹 (�̂�) + 2 * 𝑑𝑓𝐹 , (4.13)

for the random and fixed effects, respectively.

We also suggest the GCV criteria expressed as

GCVR = − 1

𝑁

𝑝𝑅

(︁
�̂�
)︁

[1− 𝑑𝑓𝑅/𝑁 ]2
. (4.14)

and

GCVF = − 1

𝑁

𝑝𝐹 (�̂�)

[1− 𝑑𝑓𝐹/𝑁 ]2
. (4.15)

for the random and fixed effects, respectively.

Note that 𝑝𝑅(�̂�) is the restricted profile log-likelihood in (4.2) evaluated at �̂�, and 𝑝𝐹 (�̂�) is the

profile log-likelihood in (4.6) evaluated at �̂�, 𝑑𝑓𝑅 and 𝑑𝑓𝐹 are the dimensions of nonzero parts of

�̂� and �̂�, respectively. The 𝜆 minimizes the value of criterion (BIC, AIC, or GCV) is chosen as

the optimal tuning parameter, as shown in Figure (4.1) using BIC selector. We will compare the

performance of the three groups of criteria in Chapter 5.

.
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Figure 4.1: Choosing optimal tuning parameter 𝜆 by minimizing BIC.

4.4 Theoretical Properties

It has been argued that a good selection procedure should have the oracle properties (Fan and

Li, 2001), namely, asymptotically the procedure will choose the true model with probability one.

In this section, we show that with a proper choice of the tuning parameter, the proposed estimator

is consistent and owns the oracle properties.

Let the true value of 𝜽 as 𝜽0 = (𝜽𝑇
10,𝜽

𝑇
20)

𝑇 , where 𝜽10 = (d𝑇
10,𝜸

𝑇
10)

𝑇 is an 𝑠 × 1 vector

whose components are nonzero and 𝜽20 is the (𝑘 − 𝑠) remaining zero components. Denote the

true value of 𝜷 as 𝜷0 = (𝜷𝑇
10,𝜷

𝑇
20)

𝑇 , where 𝜷10 is a 𝑣 × 1 vector whose components are nonzero

and 𝜷20 is the (𝑝 − 𝑣) remaining zero components. Correspondingly, we write the maximizer

of 𝑄𝑅(𝜽) in equation (4.3) as �̂� = (�̂�
𝑇

1 , �̂�
𝑇

2 )
𝑇 and the maximizer of 𝑄𝐹 (𝜷) in equation (4.7) as

�̂� = (�̂�
𝑇

1 , �̂�
𝑇

2 )
𝑇 . Also, let 𝐈𝑅(𝜽0) be the Fisher information matrix based on the restricted profile

log-likelihood in equation (4.2) and let 𝐈𝑅(𝜽10) = 𝐈𝑅(𝜽10, 0) be the Fisher information knowing

𝜽20 = 0. Similarly, define 𝐈𝐹 (𝜷0) be the Fisher information matrix based on the profile log-

likelihood in equation (4.6) and 𝐈𝐹 (𝜷10) = 𝐈𝐹 (𝜷10, 0) be the Fisher information knowing 𝜷20 = 0.
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We assume 𝐈𝑅(𝜽0), 𝐈𝑅(𝜽10), 𝐈𝐹 (𝜷0), and 𝐈𝐹 (𝜷10) are all finite and positive definite.

Moreover, assume that there exists a subset Θ of 𝑅𝑘, containing the true parameter 𝜃0 such

that 𝑝𝑅 (𝜽𝟎) in equation (4.2) admits all second order derivatives. Let ▽𝑝𝑅 (𝜽𝟎) = 𝜕𝑝𝑅(𝜽𝟎)
𝜕𝜽𝟎

and

▽2𝑝𝑅 (𝜽𝟎) = 𝜕▽𝑝𝑅(𝜽𝟎)

𝜕𝜽𝟎
𝑇 be the vector and matrix of the first and second order partial derivatives

of 𝑝𝑅(𝜽0), respectively. Assume that there exists a subset Ω of 𝑅𝑝, containing the true parameter

𝛽0 such that 𝑝𝐹 (𝜷𝟎) in equation (4.6) admits all second order derivatives. Denote ▽𝑝𝐹 (𝜷𝟎) =

𝜕𝑝𝐹 (𝜷𝟎)
𝜕𝜷𝟎

and ▽2𝑝𝐹 (𝜷𝟎) =
𝜕▽𝑝𝐹 (𝜷𝟎)

𝜕𝜷𝟎
𝑇 to be the vector and matrix of the first and second order partial

derivatives of 𝑝𝐹 (𝜷0), respectively.

Theorem 1. (Consistency for random effects estimation). If 𝜆1𝑛

𝑛
= 𝑂𝑝 (1), then there exists a local

maximizer �̂� of 𝑄𝑅(𝜽) in equation (4.3) such that ‖�̂� − 𝜽0‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
.

Proof of Theorem 1:

To show �̂� is a
√
𝑛−consistent estimator of 𝜽0, it suffices to show that for any given 𝜖 > 0,

there exists a large constant C such that

𝑃

{︃
sup

‖𝐮‖=𝐶

𝑄𝑅

(︁
𝜽0 + 𝑛− 1

2𝐮
)︁
< 𝑄𝑅 (𝜽0)

}︃
≥ 1− 𝜖. (4.16)

This implies with probability 1− 𝜖, there exists a local maximizer of 𝑄𝑅 (𝜽) in the ball{︁
𝜽 : 𝜽 = 𝜽0 + 𝑛− 1

2𝐮, ‖𝐮‖ ≤ C
}︁

. Hence, the maximizer �̂� must satisfy ‖�̂� − 𝜽0‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
.

For 𝑝𝑅 (𝜽𝟎), E [▽𝑝𝑅 (𝜽𝟎)] = 0 and E [−▽2 𝑝𝑅 (𝜽𝟎)] = 𝐈𝑅(𝜽0), then ▽𝑝𝑅(𝜽𝟎)√
𝑛

= 𝑂𝑝 (1) and

−▽2𝑝𝑅(𝜽𝟎)
𝑛

= 𝐈𝑅(𝜽0) + 𝑜𝑝 (1), by the second order Taylor expansion, we have

𝑝𝑅

(︁
𝜽0 + 𝑛− 1

2𝐮
)︁
− 𝑝𝑅 (𝜽0) = [▽𝑝𝑅 (𝜽0)]

𝑇 𝑛− 1
2𝐮+

1

2
𝐮𝑇 ▽2𝑝𝑅 (𝜽𝟎)

𝑛
𝐮+ 𝐮𝑇𝑜𝑝 (1)𝐮

=− 1

2
𝐮𝑇 [𝐈𝑅(𝜽0) + 𝑜𝑝 (1)]𝐮+𝑂𝑝 (1)𝐮.

Now we define 𝐷𝑛(𝐮) ≡ 1
𝑛

[︁
𝑄𝑅(𝜽0 + 𝑛− 1

2𝐮)−𝑄𝑅(𝜽0)
]︁
, where 𝐮 = (𝑢1, . . . , 𝑢𝑞)

𝑇 , then we
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have

𝐷𝑛(𝐮) =
1

𝑛

⎡⎣𝑝𝑅 (︁𝜽0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝑅 (𝜽0)− 𝜆1𝑛

𝑞∑︁
𝑗=1

⎛⎝
⃒⃒⃒
𝑑𝑗0 + 𝑛− 1

2𝑢𝑗

⃒⃒⃒
⃒⃒⃒
𝑑𝑗

⃒⃒⃒ − |𝑑𝑗0|⃒⃒⃒
𝑑𝑗

⃒⃒⃒
⎞⎠⎤⎦

≤ 1

𝑛

⎡⎣𝑝𝑅 (︁𝜽0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝑅 (𝜽0)− 𝜆1𝑛

𝑞1∑︁
𝑗=1

⎛⎝
⃒⃒⃒
𝑑𝑗0 + 𝑛− 1

2𝑢𝑗

⃒⃒⃒
⃒⃒⃒
𝑑𝑗

⃒⃒⃒ − |𝑑𝑗0|⃒⃒⃒
𝑑𝑗

⃒⃒⃒
⎞⎠⎤⎦

≤ 1

𝑛

⎡⎣𝑝𝑅 (︁𝜽0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝑅 (𝜽0) +

𝜆1𝑛√
𝑛

𝑞1∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝑑𝑗

⃒⃒⃒
⎤⎦

=− 1

2𝑛
𝐮𝑇 [𝐈𝑅(𝜽0) + 𝑜𝑝 (1)]𝐮+

1

𝑛
𝑂𝑝 (1)𝐮+

𝜆1𝑛

𝑛
√
𝑛

𝑞1∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝑑𝑗

⃒⃒⃒ ,

(4.17)

where 𝑞1 is the dimension of 𝐝10.

Since d̃ is root-𝑛 consistent estimator of d, ‖d̃ − d‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
, then for 1 ≤ 𝑗 ≤ 𝑞1, by the

first order Taylor expansion, we have

1

|𝑑𝑗|
=

1

|𝑑𝑗0|
− sign(𝑑𝑗0)⃒⃒

𝑑2𝑗0
⃒⃒ (︁

𝑑𝑗 − 𝑑𝑗0

)︁
+ 𝑜𝑝

(︁⃒⃒⃒
𝑑𝑗 − 𝑑𝑗0

⃒⃒⃒)︁
=

1

|𝑑𝑗0|
+

𝑂𝑝 (1)√
𝑛

.

In addition, since 𝜆1𝑛

𝑛
= 𝑂𝑝 (1), we have

𝜆1𝑛

𝑛
√
𝑛

𝑞1∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝑑𝑗

⃒⃒⃒ = 𝜆1𝑛

𝑛
√
𝑛

𝑞1∑︁
𝑗=1

(︂
|𝑢𝑗|
|𝑑𝑗0|

+
|𝑢𝑗|√
𝑛
𝑂𝑝 (1)

)︂

≤ C𝑛−1
(︀
𝑛−1𝜆1𝑛

)︀
𝑂𝑝 (1) = C𝑛−1𝑂𝑝 (1) .

Since 𝐈𝑅(𝜽0) is finite and positive definite, therefore in (4.17), if we choose a sufficient large

C, the first term is of the order C2𝑛−1 the second and third terms are of the order of C𝑛−1, which

are dominated by the first term. Thus (4.16) holds and it completes the proof.

Theorem 2. (Oracle properties for random effects selection). If 𝜆1𝑛 → ∞ and 𝜆1𝑛√
𝑛

→ 0 as n

→ ∞, then with probability tending to 1, the root-n consistent local maximizer �̂� in Theorem 1

must satisfy
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1. Sparsity: �̂�2 = 0.

2. Asymptotic normality:
√
𝑛
(︁
�̂�1 − 𝜽10

)︁
𝑑→ 𝑁

(︀
0, 𝐈−1

𝑅 (𝜽10)
)︀
.

Proof of Theorem 2:

(1). Here we show that �̂�2 = 0. It is sufficient to show that with probability tending to 1 as

𝑛 → ∞, for any 𝜽1 satisfying ‖𝜽1 − 𝜽10‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
, and for some small 𝜖𝑛 = C𝑛−1/2 and for

𝑗 = 𝑠+ 1, . . . , 𝑘,
𝜕

𝜕𝜃𝑗
𝑄𝑅(𝜽) < 0 for 0 < 𝜃𝑗 < 𝜖𝑛,

𝜕

𝜕𝜃𝑗
𝑄𝑅(𝜽) > 0 for − 𝜖𝑛 < 𝜃𝑗 < 0.

For 𝑗 = 𝑠+ 1, . . . , 𝑘, we have

𝜕

𝜕𝜃𝑗
𝑄𝑅(𝜽) =

𝜕

𝜕𝜃𝑗
𝑝𝑅(𝜽)− 𝜆1𝑛

sign(𝜃𝑗)
|𝜃𝑗|

𝐼(𝜃𝑗 ∈ 𝐝)

=𝑂𝑝

(︁
𝑛

1
2

)︁
− 𝜆1𝑛𝑛

1
2

sign(𝜃𝑗)⃒⃒⃒
𝑛

1
2 𝜃𝑗

⃒⃒⃒ 𝐼(𝜃𝑗 ∈ 𝐝).

Note that for 𝑗 = 𝑠+ 1, . . . , 𝑘, 𝑛
1
2

(︁
𝜃𝑗 − 0

)︁
= 𝑂𝑝 (1), so that we have

𝜕

𝜕𝜃𝑗
𝑄𝑅(𝜽) = 𝑛

1
2

[︂
𝑂𝑝 (1)− 𝜆1𝑛

sign(𝜃𝑗)
|𝑂𝑝 (1)|

𝐼(𝜃𝑗 ∈ 𝐝)

]︂
.

Since 𝜆1𝑛 → ∞, the sign of 𝜕
𝜕𝜃𝑗

𝑄𝑅(𝜽) is completely determined by the sign of 𝜃𝑗 when 𝑛 is

large. This completes the proof.

(2). Here we show the asymptotic normality of �̂�1. From the proof of Theorem 1, we have that

there exists a root-𝑛 local maximizer �̂�1 of 𝑄𝑅

⎧⎪⎨⎪⎩
⎛⎜⎝ 𝜽1

0

⎞⎟⎠
⎫⎪⎬⎪⎭, i.e.

𝜕

𝜕𝜃𝑗
𝑄𝑅(𝜽)

⃒⃒⃒⃒
𝜽=(�̂�1,𝟎)𝑇

=
𝜕

𝜕𝜃𝑗
𝑝𝑅(𝜽)

⃒⃒⃒⃒
𝜽=(�̂�1,𝟎)𝑇

− 𝜆1𝑛
sign(𝜃𝑗)
|𝜃𝑗|

𝐼(𝜃𝑗 ∈ 𝐝) = 0.
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By the Taylor series expansion, we have

𝟎 =▽ 𝑝𝑅(𝜽10)− �̂�𝑅(𝜽*)(�̂�1 − 𝜽10)

− 𝜆1𝑛

⎛⎝sign(𝜃1)⃒⃒⃒
𝜃1

⃒⃒⃒ 𝐼(𝜃1 ∈ 𝐝), . . . ,
sign(𝜃𝑡)⃒⃒⃒

𝜃𝑡

⃒⃒⃒ 𝐼(𝜃𝑡 ∈ 𝐝)

⎞⎠𝑇

= ▽𝑝𝑅(𝜽10)− �̂�𝑅(𝜽*)(�̂�1 − 𝜽10)

− 𝜆1𝑛

⎛⎝sign(𝜃10)⃒⃒⃒
𝜃1

⃒⃒⃒ 𝐼(𝜃1 ∈ 𝐝), . . . ,
sign(𝜃𝑡0)⃒⃒⃒

𝜃𝑡

⃒⃒⃒ 𝐼(𝜃𝑡 ∈ 𝐝)

⎞⎠𝑇

,

where 𝜽* is between �̂� and 𝜽0, 𝑡 = 𝑞1(𝑞1+1)/2, and �̂�𝑅(𝜽) is the first 𝑡×𝑡 sub-matrix of ▽2𝑝𝑅 (𝜽).

The last equation is implied by sign(𝜃𝑗𝑛) = sign(𝜃𝑗0) when 𝑛 is large, since 𝜃 is a root-𝑛 consistent

estimator of 𝜽0.

By the the multivariate central limit theorem and the law of large numbers, we can prove that

▽𝑝𝑅(𝜽10)√
𝑛

𝑑→ 𝑁 (0, 𝐈𝑅(𝜽10)) , and
�̂�𝑅(𝜽*)

𝑛

𝑝→ 𝐈𝑅(𝜽10).

If 𝜆1𝑛√
𝑛
→ 𝜆0, a nonnegative constant, by Slutsky’s theorem, we have

√
𝑛(�̂�1 − 𝜽10)

𝑑→ 𝑁
(︀
−𝜆0𝐈

−1
𝑅 (𝜽10)𝑏1, 𝐈

−1
𝑅 (𝜽10)

)︀
,

where 𝑏1 =

(︂
sign(𝜃10)

|𝜃1| 𝐼(𝜃1 ∈ 𝐝), . . . ,
sign(𝜃𝑡0)

|𝜃𝑡| 𝐼(𝜃𝑡 ∈ 𝐝)

)︂𝑇

.

In particular, if 𝜆1𝑛√
𝑛
→ 0, we have

√
𝑛(�̂�1 − 𝜽10)

𝑑→ 𝑁
(︀
𝟎, 𝐈−1

𝑅 (𝜽10)
)︀
.

This completes the proof.

Remark 1. Theorem 1 and 2 state the asymptotic properties of the proposed procedure for random

effects selection and estimation. From Theorem 1 we see that our penalized restricted profile
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likelihood estimator �̂� is root-𝑛 consistent of 𝜽, and Theorem 2 shows that this estimator possesses

the oracle properties, including selection consistency and asymptotic normality.

Theorem 3. (Consistency for fixed effects estimation). If 𝜆2𝑛

𝑛
= 𝑂𝑝 (1), then there exists a local

maximizer �̂� of 𝑄𝐹 (𝜷) in equation (4.7) such that ‖�̂� − 𝜷0‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
.

Proof of Theorem 3:

To show �̂� is a
√
𝑛−consistent estimator of 𝜷0, it suffices to show that for any given 𝜖 > 0,

there exists a large constant C such that

𝑃

{︃
sup

‖𝐮‖=𝐶

𝑄𝐹

(︁
𝜷0 + 𝑛− 1

2𝐮
)︁
< 𝑄𝐹 (𝜷0)

}︃
≥ 1− 𝜖. (4.18)

This implies with probability 1− 𝜖, there exists a local maximizer of 𝑄𝐹 (𝜷) in the ball{︁
𝜷 : 𝜷 = 𝜷0 + 𝑛− 1

2𝐮, ‖𝐮‖ ≤ C
}︁

. Hence, the maximizer �̂� must satisfy ‖�̂� − 𝜷0‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
.

For 𝑝𝐹 (𝜷0), E [▽𝑝𝐹 (𝜷𝟎)] = 0 and E [−▽2 𝑝𝐹 (𝜷𝟎)] = 𝐈𝐹 (𝜷0), then ▽𝑝𝐹 (𝜷𝟎)√
𝑛

= 𝑂𝑝 (1) and

−▽2𝑝𝐹 (𝜷𝟎)
𝑛

= 𝐈𝐹 (𝜷0) + 𝑜𝑝 (1), by the second order Taylor expansion, we have

𝑝𝐹

(︁
𝜷0 + 𝑛− 1

2𝐮
)︁
− 𝑝𝐹 (𝜷0) = [▽𝑝𝐹 (𝜷0)]

𝑇 𝑛− 1
2𝐮+

1

2
𝐮𝑇 ▽2𝑝𝐹 (𝜷𝟎)

𝑛
𝐮+ 𝐮𝑇𝑜𝑝 (1)𝐮

=− 1

2
𝐮𝑇 [𝐈𝐹 (𝜷0) + 𝑜𝑝 (1)]𝐮+𝑂𝑝 (1)𝐮.

Now we define 𝑀𝑛(𝐮) ≡ 1
𝑛

[︁
𝑄𝐹 (𝜷0 + 𝑛− 1

2𝐮)−𝑄𝐹 (𝜷0)
]︁
, where 𝐮 = (𝑢1, . . . , 𝑢𝑝)

𝑇 , then we
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have

𝑀𝑛(𝐮) =
1

𝑛

⎡⎣𝑝𝐹 (︁𝜷0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝐹 (𝜷0)− 𝜆2𝑛

𝑝∑︁
𝑗=1

⎛⎝
⃒⃒⃒
𝛽𝑗0 + 𝑛− 1

2𝑢𝑗

⃒⃒⃒
⃒⃒⃒
𝛽𝑗

⃒⃒⃒ − |𝛽𝑗0|⃒⃒⃒
𝛽𝑗

⃒⃒⃒
⎞⎠⎤⎦

≤ 1

𝑛

⎡⎣𝑝𝐹 (︁𝜷0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝐹 (𝜷0)− 𝜆2𝑛

𝑣∑︁
𝑗=1

⎛⎝
⃒⃒⃒
𝛽𝑗0 + 𝑛− 1

2𝑢𝑗

⃒⃒⃒
⃒⃒⃒
𝛽𝑗

⃒⃒⃒ − |𝛽𝑗0|⃒⃒⃒
𝛽𝑗

⃒⃒⃒
⎞⎠⎤⎦

≤ 1

𝑛

⎡⎣𝑝𝐹 (︁𝜷0 + 𝑛− 1
2𝐮
)︁
− 𝑝𝐹 (𝜷0) +

𝜆2𝑛√
𝑛

𝑣∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝛽𝑗

⃒⃒⃒
⎤⎦

=− 1

2𝑛
𝐮𝑇 [𝐈𝐹 (𝜷0) + 𝑜𝑝 (1)]𝐮+

1

𝑛
𝑂𝑝 (1)𝐮+

𝜆2𝑛

𝑛
√
𝑛

𝑣∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝛽𝑗

⃒⃒⃒ ,

(4.19)

where 𝑣 is the dimension of 𝜷10.

Since �̃� is root-𝑛 consistent estimator of 𝜷, ‖�̃� − 𝜷‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
, then for 1 ≤ 𝑗 ≤ 𝑣, by the

first order Taylor expansion, we have

1

|𝛽𝑗|
=

1

|𝛽𝑗0|
− sign(𝛽𝑗0)⃒⃒

𝛽2
𝑗0

⃒⃒ (︁
𝛽𝑗 − 𝛽𝑗0

)︁
+ 𝑜𝑝

(︁⃒⃒⃒
𝛽𝑗 − 𝛽𝑗0

⃒⃒⃒)︁
=

1

|𝛽𝑗0|
+

𝑂𝑝 (1)√
𝑛

.

In addition, since 𝜆2𝑛

𝑛
= 𝑂𝑝 (1), we have

𝜆2𝑛

𝑛
√
𝑛

𝑣∑︁
𝑗=1

|𝑢𝑗|⃒⃒⃒
𝛽𝑗

⃒⃒⃒ = 𝜆2𝑛

𝑛
√
𝑛

𝑣∑︁
𝑗=1

(︂
|𝑢𝑗|
|𝛽𝑗0|

+
|𝑢𝑗|√
𝑛
𝑂𝑝 (1)

)︂

≤ C𝑛−1
(︀
𝑛−1𝜆2𝑛

)︀
𝑂𝑝 (1) = C𝑛−1𝑂𝑝 (1) .

Since 𝐈𝐹 (𝜷0) is finite and positive definite, therefore in (4.19), if we choose a sufficient large

C, the first term is of the order C2𝑛−1 the second and third terms are of the order of C𝑛−1, which

are dominated by the first term. Thus (4.18) holds and it completes the proof.

Theorem 4. (Oracle properties for fixed effects selection). If 𝜆2𝑛 → ∞ and 𝜆2𝑛√
𝑛
→ 0 as n → ∞,

then with probability tending to 1, the root-n consistent local maximizer �̂� in Theorem 3 must

satisfy
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1. Sparsity: �̂�2 = 0.

2. Asymptotic normality:
√
𝑛
(︁
�̂�1 − 𝜷10

)︁
𝑑→ 𝑁

(︀
0, 𝐈−1

𝐹 (𝜷10)
)︀
.

Proof of Theorem 4:

(1). Here we show that �̂�2 = 0. It is sufficient to show that with probability tending to 1 as

𝑛 → ∞, for any 𝜷1 satisfying ‖𝜷1 − 𝜷10‖ = 𝑂𝑝

(︁
𝑛− 1

2

)︁
, and for some small 𝜖𝑛 = C𝑛−1/2 and for

𝑗 = 𝑣 + 1, . . . , 𝑝,
𝜕

𝜕𝛽𝑗

𝑄𝐹 (𝜷) < 0 for 0 < 𝛽𝑗 < 𝜖𝑛,

𝜕

𝜕𝛽𝑗

𝑄𝐹 (𝜷) > 0 for − 𝜖𝑛 < 𝛽𝑗 < 0.

For 𝑗 = 𝑣 + 1, . . . , 𝑝, we have

𝜕

𝜕𝛽𝑗

𝑄𝐹 (𝜷) =
𝜕

𝜕𝛽𝑗

𝑝𝐹 (𝜷)− 𝜆2𝑛
sign(𝛽𝑗)

|𝛽𝑗|

=𝑂𝑝

(︁
𝑛

1
2

)︁
− 𝜆2𝑛𝑛

1
2

sign(𝛽𝑗)⃒⃒⃒
𝑛

1
2𝛽𝑗

⃒⃒⃒ .
Note that for 𝑗 = 𝑣 + 1, . . . , 𝑝, 𝑛

1
2

(︁
𝛽𝑗 − 0

)︁
= 𝑂𝑝 (1), so that we have

𝜕

𝜕𝛽𝑗

𝑄𝐹 (𝜷) = 𝑛
1
2

[︂
𝑂𝑝 (1)− 𝜆2𝑛

sign(𝛽𝑗)

|𝑂𝑝 (1)|

]︂
.

Since 𝜆2𝑛 → ∞, the sign of 𝜕
𝜕𝛽𝑗

𝑄𝐹 (𝜷) is completely determined by the sign of 𝛽𝑗 when 𝑛 is

large. This completes the proof.

(2). Here we show the asymptotic normality of �̂�1. From the proof of Theorem 3, we have that

there exists a root-𝑛 local maximizer �̂�1 of 𝑄𝐹

⎧⎪⎨⎪⎩
⎛⎜⎝ 𝜷1

0

⎞⎟⎠
⎫⎪⎬⎪⎭, i.e.

𝜕

𝜕𝛽𝑗

𝑄𝐹 (𝜷)

⃒⃒⃒⃒
𝜷=(�̂�1,𝟎)

𝑇

=
𝜕

𝜕𝛽𝑗

𝑝𝐹 (𝜷)

⃒⃒⃒⃒
𝜷=(�̂�1,𝟎)

𝑇

− 𝜆2𝑛
sign(𝛽𝑗)

|𝛽𝑗|
= 0.
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By the Taylor series expansion, we have

𝟎 =▽ 𝑝𝐹 (𝜷10)− �̂�𝐹 (𝜷*)(�̂�1 − 𝜷10)− 𝜆2𝑛

⎛⎝sign(𝛽1)⃒⃒⃒
𝛽1

⃒⃒⃒ , . . . ,
sign(𝜃𝑣)⃒⃒⃒

𝛽𝑣

⃒⃒⃒
⎞⎠𝑇

= ▽𝑝𝐹 (𝜷10)− �̂�𝐹 (𝜷*)(�̂�1 − 𝜷10)− 𝜆2𝑛

⎛⎝sign(𝛽10)⃒⃒⃒
𝛽1

⃒⃒⃒ , . . . ,
sign(𝛽𝑣0)⃒⃒⃒

𝜃𝑣

⃒⃒⃒
⎞⎠𝑇

,

where 𝜷* is between �̂� and 𝜷0, and �̂�𝐹 (𝜷) is the first 𝑣 × 𝑣 sub-matrix of ▽2𝑝𝐹 (𝜷). The last

equation is implied by sign(𝛽𝑗𝑛) = sign(𝛽𝑗0) when 𝑛 is large, since 𝛽 is a root-𝑛 consistent estimator

of 𝜷0.

By the the multivariate central limit theorem and the law of large numbers, we can prove that

▽𝑝𝐹 (𝜷10)√
𝑛

𝑑→ 𝑁 (0, 𝐈𝐹 (𝜷10)) , and
�̂�𝐹 (𝜷*)

𝑛

𝑝→ 𝐈𝐹 (𝜷10).

If 𝜆2𝑛√
𝑛
→ 𝜆0, a nonnegative constant, by Slutsky’s theorem, we have

√
𝑛(�̂�1 − 𝜷10)

𝑑→ 𝑁
(︀
−𝜆0𝐈

−1
𝐹 (𝜷10)𝑏1, 𝐈

−1
𝐹 (𝜷10)

)︀
,

where 𝑏1 =

(︂
sign(𝛽10)

|𝛽1| , . . . ,
sign(𝛽𝑣0)

|𝛽𝑣|

)︂𝑇

.

In particular, if 𝜆2𝑛√
𝑛
→ 0, we have

√
𝑛(�̂�1 − 𝜷10)

𝑑→ 𝑁
(︀
𝟎, 𝐈−1

𝐹 (𝜷10)
)︀
.

This completes the proof.

Remark 2. Theorem 3 and 4 present the asymptotic properties of the proposed procedure for

fixed effects selection and estimation, given the estimation of 𝜽 in the first step. By appropriately

choosing the tuning parameter 𝜆, our penalized profile likelihood estimator �̂� is root-𝑛 consistent,

asymptotically normal and holds the sparsity property, that is, it performs as well as the oracle

estimators, knowing 𝜷2 = 0.
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CHAPTER 5 SIMULATION STUDIES

After proposing the two-stage procedure for mixed model selection and deriving its large sam-

ple theories in Chapter 4, we examine the performance of the proposed procedure under three sim-

ulation studies, and compare the simulated results with those for the existing selection approaches.

All of the simulated data are generated from model (3.1). The R code for the simulation studies

are available in the appendix.

5.1 Simulation 1

This simulation study follows the setting in Ahn (2010). We are particularly interested in

model performance in the following aspects: first, the performance of the proposed method under

different design structures of the input covariates and the error term distributions; second, the

behavior of the proposed method using different tuning parameters; third, the comparison of the

simulation results with those for some existing selection approaches, in terms of correct selection

frequencies and computation times. For this model setting, we do not include fixed intercept and

random intercept in the model.

Consider the true model with 𝑝 = 5 for fixed effects and 𝑞 = 5 for random effects, the true

parameter vector 𝜷 = (1, 2, 2, 0, 0)𝑇 , and the true covariance matrix

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0 0 0

0.5 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For this setting, we consider five cases as follows:

∙ Case 1. Assume the error term 𝝐𝑖 ∼ N (0, 𝜎2I𝑛𝑖
), X𝑖 ∼ N (0, I𝑝), and X𝑖 = Z𝑖.

∙ Case 2. Assume the error term 𝝐𝑖 ∼ N (0, 𝜎2I𝑛𝑖
), X𝑖 ∼ N (0, cov(X𝑖)), cov(X𝑖) is compound
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symmetry with variance 1 and covariance 0.5, and X𝑖 = Z𝑖.

∙ Case 3. Assume the error term 𝝐𝑖 ∼ N (0, 𝜎2I𝑛𝑖
), X𝑖 ∼ N (0, cov(X𝑖)), cov(X𝑖) has autore-

gressive covariance structure with 𝜌 = 0.5 , that is, the covariance between 𝑥𝑗 and 𝑥𝑘 is

0.5|𝑗−𝑘|, and X𝑖 = Z𝑖.

∙ Case 4. Assume the error term 𝝐𝑖 ∼ N (0, 𝜎2I𝑛𝑖
), X𝑖 and Z𝑖 are independently generated

from N (0, I𝑝).

∙ Case 5. We have X𝑖 ∼ N (0, I𝑝), and X𝑖 = Z𝑖, but here we assume 𝝐𝑖 follows a 𝑡 distribution

with 5 degrees of freedom.

In all the cases, we let the error variance 𝜎2 = 1. Regarding the number of subjects, we

consider 𝑛 = 50, 100, and 200, and we set 𝑛𝑖 = 5 observations per subject for all 𝑖. We generate

100 datasets for each case and then report the average performance.

First, we explore the performance of the proposed method using different tuning parameters

defined in Chapter 4. For random effects selection, we consider three criteria: BICR in (4.10),

AICR in (4.12), and GCVR in (4.14). For fixed effects selection, we also consider three criteria:

BICF in (4.11), AICF in (4.13), and GCVF in (4.15). We present some measures for evaluating

the selection performance. Note that “CZR” shows the number of zero random effects correctly

estimated to be zero, “IZR” denotes the number non-zero random effects incorrectly set to zero, and

“CR” provides the frequency that the correct random effects structure is selected. Also note that

“CZF” represents the number of zero fixed effects correctly estimated to be zero, “IZF” signifies

the number non-zero fixed effects incorrectly set to zero, and “CF” denotes the frequency that

the correct fixed effects is selected. For the overall performance, “C” shows the frequency that the

correct true model is selected, indicating that both the random effects and fixed effects are correctly

identified. Since they are three non-zero fixed effects and two non-zero random effects, the true

values of the above measures are CZR = 3, IZR = 0, CR = 100, CZF = 2, IZF = 0, CF = 100, and

C = 100.
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Tables 5.1 - 5.5 individually show the selection results for Case 1- 5 in Simulation 1. For

random effects selection, BICR and GCVR perform identical by having same values of CZR, IZR,

and CR, and they are slightly better than AICR. For fixed effects selection, AICF and GCVF

perform similar by having very close values of CZF, IZF, and CF, but both of them are dominated

by BICF, which has CZF closer to 2 and CF closer to 100. In general, BIC outperforms AIC

and GCV by having the highest values of “C”, which is the frequency that selecting the correct

true model. Therefore, we recommend BIC as the tuning parameter criterion for selecting and

estimating both fixed and random effects. Moreover, we can observe that all three criteria perform

better as sample size grows, for example, in Case 1 using AIC as tuning parameter, when 𝑛 = 50,

the proposed method has CZR = 2.19, IZR = 0, CR = 63, CZF = 1.55, IZF = 0, CZF = 64, and C

= 40; when 𝑛 = 100, the proposed method has CZR = 2.7, IZR = 0, CR = 78, CZF = 1.6, IZF = 0,

CZF = 72, and C = 58, when 𝑛 = 200, the proposed method has CZR = 2.78, IZR = 0, CR = 83,

CZF = 1.69, IZF = 0, CZF = 75, and C = 64, all the values are getting closer to the true values as

the sample size increases. Another interesting observation from the tables is that, no matter which

criterion is employed, the values of IZF and IZR are always zero, meaning the important fixed and

random effects can be always identified using the proposed selection method.

Table 5.1: Simulation results for Simulation 1 Case 1, using different tuning parameters.

𝑛
Random Effects Fixed Effects Model

Criterion CZR IZR CR Criterion CZF IZF CF C

Truth 3 0 100 Truth 2 0 100 100
50 BICR 2.2 0 64 BICF 1.9 0 92 59

AICR 2.19 0 63 AICF 1.55 0 64 40
GCVR 2.2 0 64 GCVF 1.55 0 64 41

100 BICR 2.72 0 80 BICF 1.93 0 94 75
AICR 2.7 0 78 AICF 1.6 0 72 58
GCVR 2.72 0 80 GCVF 1.59 0 72 59

200 BICR 2.8 0 83 BICF 1.98 0 98 83
AICR 2.78 0 81 AICF 1.69 0 75 62
GCVR 2.8 0 83 GCVF 1.69 0 75 64

Tables 5.6 - 5.10 compare the linear mixed model selection in our proposed method (denoted
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Table 5.2: Simulation results for Simulation 1 Case 2, using different tuning parameters.

𝑛
Random Effects Fixed Effects Model

Criterion CZR IZR CR Criterion CZF IZF CF C

Truth 3 0 100 Truth 2 0 100 100
50 BICR 2.21 0 63 BICF 1.91 0 92 59

AICR 2.19 0 62 AICF 1.62 0 64 40
GCVR 2.21 0 63 GCVF 1.61 0 63 40

100 BICR 2.72 0 82 BICF 1.96 0 96 79
AICR 2.7 0 80 AICF 1.62 0 64 50
GCVR 2.72 0 82 GCVF 1.62 0 64 52

200 BICR 2.78 0 79 BICF 1.99 0 99 78
AICR 2.77 0 78 AICF 1.67 0 74 58
GCVR 2.78 0 79 GCVF 1.67 0 74 58

Table 5.3: Simulation results for Simulation 1 Case 3, using different tuning parameters.

𝑛
Random Effects Fixed Effects Model

Criterion CZR IZR CR Criterion CZF IZF CF C

Truth 3 0 100 Truth 2 0 100 100
50 BICR 2.14 0 64 BICF 1.93 0 94 61

AICR 2.13 0 63 AICF 1.66 0 74 47
GCVR 2.14 0 64 GCVF 1.65 0 73 47

100 BICR 2.73 0 81 BICF 1.96 0 96 78
AICR 2.69 0 77 AICF 1.69 0 76 58
GCVR 2.73 0 81 GCVF 1.67 0 74 60

200 BICR 2.78 0 83 BICF 1.96 0 96 80
AICR 2.76 0 82 AICF 1.68 0 74 63
GCVR 2.78 0 83 GCVF 1.68 0 74 64

by OUR) with two existing selection procedures: AHN (Ahn, 2010) which is a distribution free

method, and BKG (Bondell et al., 2010) which is a maximum log-likelihood based approach. Ta-

bles 5.1 - 5.5 show that BIC works well for choosing the best 𝜆 for parameter tuning in linear mixed

model selection, we therefore only report the results using BIC as tuning for all three procedures,

and BIC is used for the proposed method in the rest of the dissertation.

In Cases 1 - 4, in terms of random effects selection, when 𝑛 = 50, the proposed method pro-

vides smaller values of CZR than those for AHN and BKG, yet as the sample size increases to

100 and 200, the method has larger CZR values than those for the other two approaches. Mean-
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Table 5.4: Simulation results for Simulation 1 Case 4, using different tuning parameters.

𝑛
Random Effects Fixed Effects Model

Criterion CZR IZR CR Criterion CZF IZF CF C

Truth 3 0 100 Truth 2 0 100 100
50 BICR 2.26 0 68 BICF 1.96 0 96 66

AICR 2.24 0 66 AICF 1.69 0 72 50
GCVR 2.26 0 68 GCVF 1.68 0 72 51

100 BICR 2.82 0 87 BICF 1.99 0 99 86
AICR 2.79 0 84 AICF 1.73 0 76 67
GCVR 2.82 0 87 GCVF 1.73 0 76 67

200 BICR 2.77 0 80 BICF 2 0 100 80
AICR 2.75 0 78 AICF 1.6 0 69 52
GCVR 2.77 0 80 GCVF 1.6 0 69 53

Table 5.5: Simulation results for Simulation 1 Case 5, using different tuning parameters.

𝑛
Random Effects Fixed Effects Model

Criterion CZR IZR CR Criterion CZF IZF CF C

Truth 3 0 100 Truth 2 0 100 100
50 BICR 1.71 0 35 BICF 1.87 0 88 33

AICR 1.67 0 32 AICF 1.49 0 57 23
GCVR 1.71 0 35 GCVF 1.48 0 57 24

100 BICR 2.12 0 44 BICF 1.94 0 96 44
AICR 2.08 0 40 AICF 1.61 0 70 32
GCVR 2.12 0 44 GCVF 1.6 0 70 34

200 BICR 2.33 0 50 BICF 1.98 0 98 48
AICR 2.28 0 46 AICF 1.6 0 67 31
GCVR 2.33 0 50 GCVF 1.57 0 64 32

while, our method outperforms the other two procedures by showing smaller values of IZR and

large values of CR, meaning that the proposed method performs better in random effects selec-

tion. With regard to fixed effects selection, our method consistently performs better than AHN

and BKG by showing higher values of CZF and CF, and lower values of IZF, illustrating that our

method has a higher frequency of identifying the correct model structure for the fixed effects. For

true model selection, the proposed procedure constantly has higher values of C than those for AHN

and BKG, which means our method is more effective in identifying the correct structure of linear

mixed model under normal assumption. On the other hand, the results for Case 5 is not surprising,
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as both our method and BKG are likelihood based methods which depend on the normal assump-

tion, while AHN is a robust method does not require any distributional assumption on the random

effects and error terms, that is why AHN dominates our method and BKG in this case.

In general, the above results imply that when the error term is normally distributed, our method

is the best choice regarding both random effects and fixed effects selection. However, the proposed

method does not perform effectively if the normality assumption is violated.

Table 5.11 compares one iteration computation times (in minute) for implementing our pro-

posed method and the BKG method for each case. We note that the computation time of our

method is substantially shorter than that of BKG in almost every case, and the difference is even

more significant when 𝑛 is large. The results are reasonable since 𝜎2 is not included in the profile

log-likelihoods, our method therefore involves lower dimension than all the other methods and the

solution search is accordingly faster.

Table 5.6: Simulation results for Simulation 1 Case 1, using different selection methods.

𝑛 Method
Random Effects Fixed Effects Model

CZR IZR CR CZF IZF CF C

Truth 3 0 100 2 0 100 100
50 OUR 2.2 0 64 1.9 0 92 59

AHN 2.55 0.04 63 1.91 0.01 90 57
BKG 2.30 0 40 1.89 0 89 37

100 OUR 2.72 0 80 1.93 0 94 75
AHN 2.66 0 74 1.97 0 97 71
BKG 2.4 0 52 1.86 0 86 49

200 OUR 2.8 0 83 1.98 0 98 83
AHN 2.56 0 73 1.98 0 98 71
BKG 2.59 0 69 1.75 0 75 54

5.2 Simulation 2

To further compare the simulation results with those for the existing selection approaches, we

follow the setting in Bondell et al. (2010).

Consider the true model with 𝑝 = 9 for fixed effects and 𝑞 = 4 for random effects, the true

parameter vector 𝜷 = (1, 1, 0, 0, 0, 0, 0, 0, 0)𝑇 , and the true covariance matrix
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Table 5.7: Simulation results for Simulation 1 Case 2, using different selection methods.

𝑛 Method
Random Effects Fixed Effects Model

CZR IZR CR CZF IZF CF C

Truth 3 0 100 2 0 100 100
50 OUR 2.21 0 63 1.91 0 92 59

AHN 2.48 0.05 56 1.91 0.06 90 52
BKG 2.44 0 51 1.87 0 89 49

100 OUR 2.72 0 82 1.96 0 96 79
AHN 2.57 0 68 1.95 0.03 93 65
BKG 2.55 0 59 1.89 0 89 56

200 OUR 2.78 0 79 1.99 0 99 78
AHN 2.37 0 61 1.98 0 98 59
BKG 2.64 0 70 1.87 0 87 63

Table 5.8: Simulation results for Simulation 1 Case 3, using different selection methods.

𝑛 Method
Random Effects Fixed Effects Model

CZR IZR CR CZF IZF CF C

Truth 3 0 100 2 0 100 100
50 OUR 2.14 0 64 1.93 0 94 61

AHN 2.52 0.04 61 1.91 0.08 88 56
BKG 2.42 0 51 1.87 0 88 47

100 OUR 2.73 0 81 1.96 0 96 78
AHN 2.52 0 66 1.97 0.05 95 64
BKG 2.50 0 57 1.89 0 90 54

200 OUR 2.78 0 83 1.96 0 96 80
AHN 2.48 0 65 1.98 0 98 63
BKG 2.73 0 78 1.81 0 81 63

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

9 4.8 0.6 0

4.8 4 1 0

0.6 1 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For this setting, the first column of Z𝑖 consists of 1′𝑠 for the subject-specific intercept, and X𝑖 and

Z𝑖 except the first column of Z𝑖 are independently generated from a uniform (−2, 2) distribution.
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Table 5.9: Simulation results for Simulation 1 Case 4, using different selection methods.

𝑛 Method
Random Effects Fixed Effects Model

CZR IZR CR CZF IZF CF C

Truth 3 0 100 2 0 100 100
50 OUR 2.26 0 68 1.96 0 96 66

AHN 2.43 0.01 60 1.90 0.08 890 54
BKG 2.38 0 41 1.71 0 74 31

100 OUR 2.82 0 87 1.99 0 99 86
AHN 2.57 0 68 1.96 0.05 96 65
BKG 2.51 0 56 1.72 0 72 36

200 OUR 2.77 0 80 2 0 100 80
AHN 2.59 0 69 1.98 0 98 68
BKG 2.83 0 86 1.83 0 83 71

Table 5.10: Simulation results for Simulation 1 Case 5, using different selection methods.

𝑛 Method
Random Effects Fixed Effects Model

CZR IZR CR CZF IZF CF C

Truth 3 0 100 2 0 100 100
50 OUR 1.71 0 35 1.87 0 88 33

AHN 2.72 0.12 66 1.98 0.08 98 65
BKG 2.18 0.02 35 1.9 0 90 33

100 OUR 2.12 0 44 1.94 0 96 44
AHN 2.7 0.01 74 1.94 0 94 70
BKG 2.47 0 53 1.88 0 89 49

200 OUR 2.33 0 50 1.98 0 98 48
AHN 2.79 0 79 1.98 0 98 77
BKG 2.46 0 55 1.81 0 81 47

We further assume the variance 𝜎2 = 1. Two cases are considered:

∙ Case 1. In this case, we investigate the behavior of the proposed procedure in moderate

samples, here we use 𝑛 = 30 subjects and 𝑛𝑖 = 5 observations per subject.

∙ Case 2. For this case, we examine the performance of the proposed procedure in larger

samples, and therefore increase the sample size to 𝑛 = 60, 𝑛𝑖 = 10.

We generate 100 datasets for each example and calculate the rates in selecting the correct

true model, fixed effects and random effects using the proposed method, denoted by OUR, then we
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Table 5.11: Comparison of computation times (in minute) for each case in Simulation 1.

Case Method 𝑛 = 50 𝑛 = 100 𝑛 = 200

Case 1 OUR 1.5 2.7 4.5
BKG 2.9 9.0 29.4

Case 2 OUR 1.8 3.2 5.4
BKG 4.3 11.9 27.9

Case 3 OUR 1.7 3.7 6.0
BKG 3.7 10.0 27.6

Case 4 OUR 2.0 3.4 4.5
BKG 1.4 3.3 10.4

Case 5 OUR 2.2 4.6 8.3
BKG 3.4 5.6 26.7

Table 5.12: Simulation results for Simulation 2.

Method %C %CF %CR %C %CF %CR
(Case 1) (Case 2)

OUR 73 81 88 92 92 100
LPJ 61 79 79 88 91 97
PL 19 49 35 86 86 100

BKG 71 73 79 83 83 89
EGIC 47 56 52 48 59 53
RIC 59 59 68 77 79 81

compare them with those for the existing selection procedures in Table 5.12: LPJ (Lin et al., 2013),

PL (Peng and Lu, 2012), BKG (Bondell et al., 2010), EGIC (Pu and Niu, 2006), RIC (Wolfinger,

1993). For fairness of comparison, BIC-selector is used for all the methods. The results for LPJ

are obtained by running the R code the authors provided, and the results of PL, BKG, EGIC, and

RIC are copied from Table 2 in Peng and Lu (2012) and Table 1 in Bondell et al. (2010).

Let %C, %CF and %CR be the percentages of times that the correct true model, fixed effects

and random effects are selected. Table 5.12 shows that in Case 1, that is, 𝑛 = 30, 𝑛𝑖 = 5,

our method selects the true model, fixed effects and random effects with 73%, 81% and 88%,

respectively. For most of the other methods, the corresponding rates are much smaller than these

values. For instance, the proportions of correctly choosing the true model, fixed effects and random

effects using PL are respectively only 19%, 49% and 35%. With regard to these small selection
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rates, Peng and Lu (2012) remarked that in small samples, they were caused by large standard

errors of random effects 𝑏𝑖. In the same scenario, the simulation results in Table 5.12 show that our

method performs better than the other ones.

As the sample size grows in Case 2, that is, 𝑛 = 60, 𝑛𝑖 = 10, each of all the methods identifies

the correct model, fixed effects and random effects with increasing rates. Our method selects

the correct random effects with 100%, and selects the correct fixed effects selection with 92%,

indicating that the proposed method outperforms all the other approaches.

5.3 Simulation 3

In addition to calculating the rates of selecting the correct true model, fixed effects and random

effects, we introduce three model accuracy measures to inspect the performance of the proposed

method.

First, the Kullback-Leibler discrepancy (KLD, Kullback and Leibler, 1951) is adopted to mea-

sure the discrepancy between the true model and the candidate model. Small values of the KLD

indicate that the fitted model is close to the data-generating model. The KLD is expressed as

KLD = E
{︁
log 𝑓 (Y,X,Z|𝝋)− log 𝑓(Y,X,Z|�̂�)

}︁
.

Second, the mean square error (MSE) is employed to quantify the difference between the fixed

effects parameters and their estimates. Small values of MSE show that the obtained estimates of

fixed effects are satisfactory. The MSE is given by

MSE = (�̂� − 𝜷)𝑇E(XX𝑇 )(�̂� − 𝜷).

We also consider the quadratic loss error (QLE) to assess the difference between the covariance

matrix and its estimate. Small values of QLE imply that the obtained estimates of random effects
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are effective. The QLE is defined as

QLE = [tr
(︁

D̂ − D
)︁2
]1/2.

For this setting, we set 𝑛𝑖 = 12 observations per subject and have the true model with 𝑝 =

8 for fixed effects and 𝑞 = 5 for random effects. The true parameter vector is set as 𝜷 =

(3, 2, 1.5, 0, 0, 0, 0, 0)𝑇 , and the true covariance matrix

𝐃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.25 0 0

0.5 1 0.5 0 0

0.25 0.5 1 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We consider two cases as follows:

∙ Case 1. The generated data have an autoregressive covariance structure. The pairwise cor-

relation between 𝑥𝑗 and 𝑥𝑘 in the 12 × 8 matrix X𝑖 is 𝜌|𝑗−𝑘|, and the pairwise correlation

between 𝑧𝑙 and 𝑧𝑚 in the 12 × 5 matrix Z𝑖 is 𝜌|𝑙−𝑚|, where 𝜌 is the first order correlation co-

efficient. The data are generated under different scenarios: 𝑛 = 30, 60, 90, 𝜌 = 0.3, 0.5, 0.8,

and 𝜎2 = 1, 2. We further assume X𝑖 and Z𝑖 follow multivariate normal distribution with

mean zero.

∙ Case 2. In this case, the data are generated from a compound symmetry covariance structure.

We set the pairwise correlation between 𝑥𝑗 and 𝑥𝑘 in the 12 × 8 matrix X𝑖, and the pairwise

correlation between 𝑧𝑙 and 𝑧𝑚 in the 12 × 5 matrix Z𝑖 to be 𝜌.

Let KLDp be the KLD of the selected model by the proposed penalized method, and KLDf

be the KLD of the full model obtained by REML. Similarly, we define MSEp, MSEf , QLEp, and

QLEf . We then compute the ratios KLDp

KLDf
, MSEp

MSEf
, and QLEp

QLEf
for each of the 100 simulated datasets,
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and calculate the median of the ratios, denoted as MKLD, MMSE and MQLE. In addition, to

estimate the standard error of MKLD, we generate a 100 bootstrapped sample from the KLDp

KLDf

ratios, then calculate the bootstrapped sample median. We repeat this process 500 times. The

estimated standard error is the standard deviation of the 500 bootstrapped sample medians. The

standard errors of MMSE and MQLE can be obtained in the same way.

Table 5.13: Simulation results for Simulation 3 Case 1.

Case MKLD MMSE MQLE %C %CF %CR
𝜌 = 0.3

𝑛 = 30, 𝜎2 = 1 .815(.059) .407(.040) 1.139(.052) 70 92 73
𝑛 = 30, 𝜎2 = 2 .664(.304) .648(.055) .824(.101) 33 60 34
𝑛 = 60, 𝜎2 = 1 .836(.028) .460(.034) 1.067(.028) 88 97 91
𝑛 = 60, 𝜎2 = 2 .601(.191) .631(.057) .882(.293) 35 76 36
𝑛 = 90, 𝜎2 = 1 .837(.017) .355(.037) 1.076(.051) 88 95 92
𝑛 = 90, 𝜎2 = 2 .501(.125) .511(.059) 1.574(.121) 31 74 31

𝜌 = 0.5
𝑛 = 30, 𝜎2 = 1 .693(.085) .347(.034) 1.114(.073) 72 94 75
𝑛 = 30, 𝜎2 = 2 1.119(.204) .595(.058) .518(.206) 31 62 33
𝑛 = 60, 𝜎2 = 1 .788(.030) .357(.031) 1.044(.031) 86 96 90
𝑛 = 60, 𝜎2 = 2 .372(.093) .620(.056) 1.461(.154) 24 59 27
𝑛 = 90, 𝜎2 = 1 .821(.038) .379(.037) 1.086(.043) 87 98 89
𝑛 = 90, 𝜎2 = 2 .443(.114) .522(.052) 1.769(.078) 24 77 24

𝜌 = 0.8
𝑛 = 30, 𝜎2 = 1 .859(.046) .494(.049) 1.105(.064) 56 83 63
𝑛 = 30, 𝜎2 = 2 1.122(.039) .625(.088) .467(.132) 36 64 39
𝑛 = 60, 𝜎2 = 1 .840(.037) .354(.030) 1.121(.038) 82 94 86
𝑛 = 60, 𝜎2 = 2 1.136(.009) .402(.033) .278(.028) 64 88 68
𝑛 = 90, 𝜎2 = 1 .848(.026) .319(.036) 1.051(.053) 88 97 91
𝑛 = 90, 𝜎2 = 2 1.126(.005) .367(.027) .196(.020) 66 90 68

Tables 5.13 and Table 5.14 individually summarize the simulation results of Case 1 and Case 2

in Simulation 3. Although the two tables feature the simulation results for the simulated data

which are generated from different covariance structures, we observe that the selection rates of

the true model are all very high. We can conclude that our procedure is robust to covariance

structures. For the settings with high correlation, such as 𝜌 = 0.8, the selection rates for the true

model, correct fixed effects and random effects are all quite optimal, and we therefore claim that
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Table 5.14: Simulation results for Simulation 3 Case 2.

Case MKLD MMSE MQLE %C %CF %CR
𝜌 = 0.3

𝑛 = 30, 𝜎2 = 1 .776(.062) .425(.043) 1.128(.078) 65 87 71
𝑛 = 30, 𝜎2 = 2 .477(.323) .656(.122) .881(.168) 28 54 34
𝑛 = 60, 𝜎2 = 1 .784(.037) .356(.044) 1.128(.049) 85 96 88
𝑛 = 60, 𝜎2 = 2 1.123(.058) .596(.065) .288(.039) 48 76 49
𝑛 = 90, 𝜎2 = 1 .867(.026) .371(.029) 1.064(.027) 85 95 90
𝑛 = 90, 𝜎2 = 2 1.117(.004) .507(.044) .189(.014) 64 81 65

𝜌 = 0.5
𝑛 = 30, 𝜎2 = 1 .751(.056) .405(.044) 1.123(.063) 78 92 79
𝑛 = 30, 𝜎2 = 2 1.147(.122) .628(.094) .427(.153) 43 65 44
𝑛 = 60, 𝜎2 = 1 .839(.041) .421(.038) 1.123(.037) 80 96 84
𝑛 = 60, 𝜎2 = 2 1.123(.005) .496(.047) .233(.022) 54 79 57
𝑛 = 90, 𝜎2 = 1 .875(.033) .376(.025) 1.011(.029) 86 99 87
𝑛 = 90, 𝜎2 = 2 1.118(.006) .442(.034) .203(.017) 60 83 63

𝜌 = 0.8
𝑛 = 30, 𝜎2 = 1 .747(.066) .400(.026) 1.272(.080) 57 78 65
𝑛 = 30, 𝜎2 = 2 1.153(.013) .510(.052) .485(.063) 43 66 49
𝑛 = 60, 𝜎2 = 1 .791(.031) .378(.042) 1.074(.047) 79 96 83
𝑛 = 60, 𝜎2 = 2 1.139(.005) .394(.039) .223(.012) 71 91 74
𝑛 = 90, 𝜎2 = 1 .847(.032) .333(.025) 1.079(.057) 89 97 91
𝑛 = 90, 𝜎2 = 2 1.124(.004) .340(.026) .199(.010) 79 97 81

the proposed procedure copes proficiently with the model selection for highly correlated data. We

also observe that our method performs better as the sample size increases, which confirms the

asymptotic properties we present in Chapter 4, that is, when the sample size is large enough, the

method can identify the correct model with probability one.

Regarding model accuracy, we notice that all of the MMSE values are much smaller than one,

meaning the obtained estimates of fixed effects from the proposed method have smaller errors to the

true parameters, compared with the REML estimates from the full model. Moreover, most of the

MKLD are less than one, which shows the fitted model from our approach only has short distance

to the data-generating model. Finally, the MQLE values are less than one in half of the scenarios,

indicating our random effects estimates are also satisfactory. In general, these values illustrate that

our approach significantly reduces the model error, and the fitted model by the proposed method
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is close to the true model. The small numbers of standard errors in the parentheses illustrate the

stability of our estimates.

We also notice that the performance becomes relatively worse when the variance of the error

𝜎2 increases, which we believe is a global problem for all model selection procedures.
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CHAPTER 6 APPLICATIONS

The results from the simulation studies in Chapter 5 have demonstrated that the proposed pro-

cedure is quite efficient in selecting the best covariates and random covariance structure in linear

mixed models and outperforms the existing selection methodologies in general. To further exam-

ine its effectiveness in mixed model selection, the proposed penalized method is utilized in two

applications of the Amsterdam growth and health study data (Kemper,1995) and the colon cancer

data (Fisher et al., 2003) in this chapter.

6.1 The Amsterdam Growth and Health Study Data

6.1.1 Data Description

The data were collected to explore the relationship between lifestyle and health in adolescence

and young adulthood. In growing towards independence, the lifestyle habits of teenagers change

substantially with respect to physical activity, food intake, tobacco smoking, etc. Accordingly,

their health perspective may also change. Individual changes in growth and development can

be studied by observing and measuring the same participant over a long period of time. The

Amsterdam growth and health longitudinal study was designed to monitor the growth and health

of teenagers and to develop future effective interventions for adolescence. A total of 147 subjects

in the Netherlands participated in the study, and they were measured over 6 time points, thus the

total number of observations is 882. The continuous response variable of interest was the total

serum cholesterol expressed in mmol/l. The five predictors used were:

1. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠: fitness level at baseline measured as maximal oxygen uptake on a treadmill.

2. 𝑏𝑜𝑑𝑦𝑓𝑎𝑡: body fat estimated by the sum of the thickness of four skinfolds.

3. 𝑠𝑚𝑜𝑘𝑖𝑛𝑔: whether the subject smokes or not, 0= “no”, 1 =“yes”.

4. 𝑔𝑒𝑛𝑑𝑒𝑟: 0 = “female”, 1= “male”.

5. 𝑡𝑖𝑚𝑒: measurement time, coded as 1, . . ., 6.

Figure 6.1 is the boxplot of the response over subjects, and it shows heterogeneity among the
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147 subjects. The presence of heterogeneity is frequently undertaken by using a mixed model.

The QQ-plot of the response variable is shown in Figure 6.2, and it can be easily figured that the

normality assumption in model (3.1) in valid, so it is reasonable to use the proposed method for

this data set.

We will conduct mixed model selection on this data set using the proposed method, aiming to

find the most appropriate mixed model for describing how the characteristics of the teenagers and

the possibly existing random effects affect the total serum cholesterol.

6.1.2 Results Analysis

To inspect the relationship between the response and time, we plot the mean response profiles,

mean response profiles by gender, and mean response profiles by smoking status, individually, all

over time in Figure 6.3, 6.4 and 6.5. We can observe that the total serum cholesterol keeps decreas-

ing during the first 4 time periods, and then goes up. In terms of gender effects, the total serum

cholesterol of males are higher than females at the first time point, and after this time period, not

significant different though, the total serum cholesterol of males consistently lower than females

on average. Yet we did not detect any significant serum cholesterol difference between smokers

and non-smokers.

Twisk (2003) studied this data by using various longitudinal data analysis techniques. Ahn et al.

(2012) conducted the linear mixed model selection by two types of penalties, a hard thresholding

operator (HARD) and a sandwich type soft thresholding penalty (SW). It has been shown that both

HARD and SW methods are effective in identifying the correct mixed model structure with regard

to selection accuracy and computation cost. For comparison, we follow this paper and center the

response and then standardize all the predictors, so the fitted model does not allow an intercept

for the fixed effects, but a random intercept is included. We then fit the model with all the five

covariates for both the fixed and random effects by the proposed method (OUR), and compare our

estimates with those for HARD, SW and REML methods. The REML estimates are obtained by

the 𝐥𝐦𝐞𝐫 function from 𝐥𝐦𝐞𝟒 package in 𝐑, and the results of HARD and SW are copied from

Table 5 in Ahn et al. (2012).
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Figure 6.1: Boxplot of a response variable over subjects.

The estimation and selection results are summarized in Table 6.1. For the fixed effects selec-

tion, our method identifies 𝑏𝑜𝑑𝑦𝑓𝑎𝑡 and 𝑡𝑖𝑚𝑒 as significant, along with HARD, SW, and REML

estimation. In the analysis of REML, such two variables have t-statistics of 5.73 and 7.31, which

are the only two significant fixed effects. We can observe that the fitted fixed effects coefficients

of the method are similar to those obtained by the other three methods. For the random effects se-

lection, HARD selects 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 and 𝑔𝑒𝑛𝑑𝑒𝑟, SW chooses the 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 and

𝑔𝑒𝑛𝑑𝑒𝑟, and our approach recognizes 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑔𝑒𝑛𝑑𝑒𝑟 as significant random effects, which

contains the overlaps of HARD and SW estimates. The QQ-plot and histogram of the residuals

for the model selected by the proposed method are plotted in Figure 6.6 and 6.7, the normality

assumption approximately holds in the residuals. From this point, we remark that our method

combines the strengths of such two methods and therefore identifies the most appropriate mixed

model.
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Figure 6.2: QQ plot of the response variable.

Figure 6.3: Plot of mean response profiles over time.
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Figure 6.4: Plot of mean response profiles over time by gender.

Figure 6.5: Plot of mean response profiles over time by smoking.
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Table 6.1: Results for the Amsterdam growth and health study data.

Fixed Effects (𝛽) REML HARD SW OUR
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 -0.039 0 0 0
𝑏𝑜𝑑𝑦𝑓𝑎𝑡 0.194 0.174 0.165 0.170
𝑠𝑚𝑜𝑘𝑖𝑛𝑔 -0.038 0 0 0
𝑔𝑒𝑛𝑑𝑒𝑟 0.083 0 0 0
𝑡𝑖𝑚𝑒 0.165 0.156 0.167 0.165

Random Effects (D) REML HARD SW OUR
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.145 0.405 0.347 0.017
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 0.025 0 0.006 0
𝑏𝑜𝑑𝑦𝑓𝑎𝑡 0.042 0 0 0
𝑠𝑚𝑜𝑘𝑖𝑛𝑔 0.011 0.149 0 0
𝑔𝑒𝑛𝑑𝑒𝑟 0.249 0.668 0.624 0.888
𝑡𝑖𝑚𝑒 0.037 0 0 0

Figure 6.6: QQ-plot of the residuals for the model selected by the proposed method.
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Figure 6.7: Histogram of the residuals for the model selected by the proposed method.

6.2 The Colon Cancer Data

6.2.1 Data Description

Colon cancer is formed in the tissues of the colon, which is the longest part of the large intes-

tine. Most colon cancers are adenocarcinomas (cancers that begin in cells that make and release

mucus and other fluids). By United States Cancer Statistics: 1999-2011 Incidence and Mortality

Web-based Report, colon cancer is the second leading cause of cancer-related deaths and the third

most common cancer in men and in women in the United States. Figure 6.8 shows the distribution
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of colon cancer diagnosis by stage. It can be seen that most of the colon cancer patients (76 %)

are in the first three stages. It has been studied that a Stage I cancer has a survival rate of 80-95

percent. Stage II tumors have survival rates ranging from 55 to 80 percent. A stage III colon cancer

has about a 40 percent chance of cure and a patient in stage IV has only a 10 percent chance of

recovery. Figure 6.8 demonstrates the colon cancer survival rates after initial diagnosis. We can

observe that early detection and effective treatment are feasible and can often reduce mortality.

Figure 6.8: Colon cancer diagnosis by stage.

Figure 6.9: Colon cancer survival rate.
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In recent years, the cost of colon cancer has been the topic of several scientific investigations.

Precisely estimating the medical cost of colon cancer helps administrations policymakers making

new policies for cancer prevention, screening, guidelines, and treatments.

The goal of our analysis is to estimate the cost attributable to colon cancer after initial diag-

nosis by cancer stage, comorbidity, treatment regimen, and other patient characteristics. The data

reported aggregate Medicare spending on a cohort of 10,109 colon cancer patients up to 5 years

after initial hospitalization, and these data are considered as the response for a linear mixed model.

Congruently, the candidate predictors consist of characteristics of the patients, age, gender, race,

stage, charlson comorbidity score, etc., and they were analogously reported. The measurements

of regional medical intensity were also compatibly stated because overall spending on patients is

quite possibly related to it.

In what follows, we will investigate mixed model selection on this data set using the proposed

method, intending to figure out the most appropriate mixed model for describing how the charac-

teristics of the patients and regional intensity of medical services and the possibly existing random

effects affect the spending on colon cancer.

6.2.2 Results Analysis

The total number of the patients is 𝑁 = 10, 109, and for each patient, all the measurements

are measured at 10 time points with a 6 month interval. It is hence easily assumed that a linear

mixed model will fit the data. As shown in Chapter 4, the proposed penalized selection method

will be adopted to choose the best mixed model, which is well-suited to the analysis of the relation

between the response and the predictors and the random effects.

For the exploratory data analysis, we observe that the response data, total expense on colon

cancer, are highly skewed to the right. We therefore use a log transformation to attenuate the

skewness. The QQ-plots for both the total expense and its log transformation are all shown in

Figure 6.10 and 6.11, and it can be easily figured that the natural log of the total expense is more

appropriate for the assumption of normality presumed in model (3.1). Therefore, the response data

for 𝑦𝑖𝑡, 𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ..., 10, are taken as the natural log of total spending rather than the raw
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Figure 6.10: QQ plot of total expense.

Figure 6.11: QQ plot of log total expense.
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total spending.

To fit the linear mixed model, we consider the covariates as follows:

1. Gender: patient’s gender, 1 = “female”, 0 = “male”.

2. Stage I: whether the cancer in the first stage, 1 = “yes”, 0 = “no”.

3. Stage II: whether the cancer in the second stage, 1 = “yes”, 0 = “no”.

4. Stage III: whether the cancer in the third stage, 1 = “yes”, 0 = “no”.

5. Charlson: patient’s charlson comorbidity score.

6. HRR: regional medical intensity.

7. T1: whether the measurements are taken in the first 6 months, 1 = “yes”, 0 = “no”.

8. Time: in which intervals are cut by each 6 months and the measurements are taken.

9. Age: patient’s age.

10. Race: patient’s race, 1 = “African-American”, 0 = “other”.

To inspect the relationship between the spending and time, we plot the mean response profiles,

mean response profiles by gender, and mean response profiles by race, individually, all over time

in Figure 6.12, 6.13 and 6.14. We can observe that a large peak in medical spending during the

first 6 months occurred after initial hospitalization, after that it went down smoothly. In terms of

gender effects, both men and women spent almost the same in the first 6 months, and after this time

period men spent consistently more than women on average. Yet we did not detect any significant

expense difference between African-American and Non-African American.

First, we build a random intercept model to the data, which is a special case of linear mixed

models. The random intercept model does not account for additional variation in spending across

patients, which is expressed by

𝑦𝑖 = 𝛽0 + 𝛽1Gender𝑖𝑡 + 𝛽2StageII𝑖𝑡 + 𝛽3StageIII𝑖𝑡 + 𝛽4Charlson𝑖𝑡 + 𝛽5HRR𝑖𝑡

+𝛽6T1𝑖𝑡 + 𝛽7Time𝑖𝑡 + 𝛽8Age𝑖𝑡 + 𝛽9Race𝑖𝑡 + 𝑏𝑖 + 𝜖𝑖𝑡, (6.1)

where 𝛽’s are the parameters coefficients for the fixed effects and the 𝑏𝑖 is the random intercept.
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Figure 6.12: Plot of mean response profiles over time.

Figure 6.13: Plot of mean response profiles over time by gender.
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Figure 6.14: Plot of mean response profiles over time by race.

We note that none of the interaction term is included in the model because if the interaction term

is significant, then the main effects are important as well. For simplicity, we only choose the

important main effects.

Table 6.2 features both the REML estimates and the penalized profile log-likelihood estimates

with the utility of the proposed method. It can be noticed that using the REML estimates for model

(6.1), we obtain similar results as those in Demidenko and Stukel (2005), and all the predictors are

significant based on the p-value. However, when we check the collinearity between the predictors,

as shown in Table 6.3, we find that the collinearity occurs among the covariates, indicating that the

REML results may not be the best choice for describing the data. On the contrary, the penalized

method can attenuate the existing collinearity between the predictors, so for this colon cancer data,

the proposed method will behave more effectively in settling the collinearity.

From Table 6.2, the results for the penalized method show that the coefficient of covariate

Race is penalized to zero, meaning that race is a minor covariate and thus can be excluded for the

selected model, which is compatible with the features from Figure 6.14. We also do not believe that
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Table 6.2: Parameter estimates for fixed effect coefficients and random effect variance, using
REML and the proposed method for model (6.1).

Method REML OUR
Fixed Effects (𝜷) Coefficient P-value Coefficient
Intercept 6.673 0.000 6.667
Gender -0.085 0.000 -0.073
Stage II 0.257 0.000 0.248
Stage III 0.402 0.000 0.400
Charlson 0.159 0.000 0.152
HRR 0.087 0.000 0.081
T1 2.609 0.000 2.607
Time -0.115 0.000 -0.116
Age -0.007 0.000 -0.006
Race -0.070 0.006 0
Random Effect (D)
Intercept 0.005 0.004

the expense on curing a disease depends on race. From the values in Table 6.2, we can generally

conclude that on average, comparing with Stage I patients, the medical spending is 25% higher for

Stage II patients and is 40% higher for Stage III patients. In addition, the spending is 7% lower

for females compared to that for males. From the coefficient for Time, we can see that the cost

during the first 6 months after colectomy is extremely high; after this, the spending decreases by

about 12% per 6-month interval. Independent of patient illness factors, the spending increases 8%

with per $1,000 increase in the regional medical intensity. In regard to the related coefficients, the

expense on colon cancer increases with severity of comorbidities and decreases with age.

Table 6.3: Correlations among predictors for the colon cancer data.

InterceptGender RaceStageIIStageIII AgeCharlsonHRR T1 Time
Intercept 1.00
Gender -0.22 1.00
Race -0.42 -0.04 1.00

Stage II -0.08 -0.01 0.02 1.00
Stage III -0.08 -0.02 0.03 0.21 1.00

Age -0.62 0.14 -0.04 0.05 0.05 1.00
Charlson -0.04 -0.12 0.02 0.10 0.09 0.02 1.00

HRR -0.36 -0.01 0.09 0.00 0.02 0.00 -0.01 1.00
T1 -0.32 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 1.00

Time -0.50 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.53 1.00
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Based on the penalized profile log-likelihood estimates in the fourth column of Table 6.2, we

can build the model for describing the colon cancer expense as

𝑦𝑖𝑡 = 𝛽0 + 𝛽1Gender𝑖𝑡 + 𝛽2StageII𝑖𝑡 + 𝛽3StageIII𝑖𝑡 + 𝛽4Charlson𝑖𝑡

+𝛽5HRR𝑖𝑡 + 𝛽6T1𝑖𝑡 + 𝛽7Time𝑖𝑡 + 𝛽8Age𝑖𝑡 + 𝑏𝑖 + 𝜖𝑖𝑡. (6.2)

The QQ-plot and histogram of the residuals for model (6.2) are plotted in Figure 6.15 and 6.16,

the normality assumption approximately holds with slight remaining skewness in the residuals.

Figure 6.15: QQ-plot of the residuals for model (6.2).

Second, we try another model by assuming that there are additional variations in spending

across patients accounted for by gender, race, and age, and considering these three covariates of

patient illness factors along with the intercept as the random effects, we have another linear mixed
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Figure 6.16: Histogram of the residuals for model (6.2).

effects model written as

𝑦𝑖𝑡 = 𝛽0 + 𝛽1Gender𝑖𝑡 + 𝛽2StageII𝑖𝑡 + 𝛽3StageIII𝑖𝑡 + 𝛽4Charlson𝑖𝑡

+𝛽5HRR𝑖𝑡 + 𝛽6T1𝑖𝑡 + 𝛽7Time𝑖𝑡 + 𝛽8Age𝑖𝑡 + 𝛽9Race𝑖𝑡

+𝑏𝑖1 + 𝑏𝑖2Gender𝑖𝑡 + 𝑏𝑖3Age𝑖𝑡 + 𝑏𝑖4Race𝑖𝑡 + 𝜖𝑖𝑡, (6.3)

where 𝛽’s are the parameter coefficients for the fixed effects and the 𝑏’s are the random effects.

The parameter estimates are reported in Table 6.4 for both the REML and proposed penalized

methods for model (6.3). Table 6.4 shows that for model (6.3), in the REML method, compared

to the other predictors, Age and Race are less important. So it is quite reasonable that in both the

fixed effects and the random effects, the penalized method shrinks these two predictors or random

slope parameter estimates to zero.

Under the proposed penalized method, it is interesting to compare the estimates with the ran-

dom intercept model in Table 6.2. For the fixed effects, the parameters coefficients estimates are
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rather similar except that the coefficient estimate for variable Age is penalized to zero. For the ran-

dom effects, Race and Age become zero, yet only intercept and Gender remain in the final model.

Note that Gender is selected in both the fixed and random effects, and the estimated coefficient

for the fixed effect Gender and estimated variance for Gender’s random slope indicate that the

difference between gender exists, which is compatible with Figure 6.13.

Table 6.4: Parameter estimates for fixed effect coefficients and random effect variances, using
REML and the proposed method for model (6.3).

Method REML OUR
Fixed Effects (𝜷) Coefficient P-value Coefficient
Intercept 6.652 0.000 6.568
Gender -0.099 0.000 -0.072
Stage II 0.257 0.000 0.254
Stage III 0.401 0.000 0.412
Charlson 0.159 0.000 0.152
HRR 0.087 0.000 0.050
T1 2.477 0.000 2.605
Time -0.110 0.000 -0.116
Age -0.006 0.019 0
Race -0.071 0.006 0
Random Effects (D)
Intercept 0.336 0.336
Gender 0.003 0.004
Age 0.00006 0
Race 0.0002 0

Based upon the penalized profile log-likelihood estimates in the fourth column of Table 6.4,

we can build another model for describing the colon cancer expense as

𝑦𝑖𝑡 = 𝛽0 + 𝛽1Gender𝑖𝑡 + 𝛽2StageII𝑖𝑡 + 𝛽3StageIII𝑖𝑡 + 𝛽4Charlson𝑖𝑡

+𝛽5HRR𝑖𝑡 + 𝛽6T1𝑖𝑡 + 𝛽7Time𝑖𝑡 + 𝑏𝑖1 + 𝑏𝑖2Gender𝑖𝑡 + 𝜖𝑖𝑡. (6.4)

Then we graph the QQ-plot and histogram of the residuals obtained for model (6.4), the plots

demonstrate that the selected model fits the data even better than model (6.2). Thus, we prefer

the model (6.4) as the selected model for describing the colon cancer expense, using the proposed
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penalized mixed model selection approach.

Figure 6.17: QQ-plot of the residuals for model (6.4).

Regarding the selected model (6.4), we find that it is also supported by other research. For

example, Lipska et al. (2006) indicated that comparing with women, men had higher incidence

and prevalence of colorectal diseases, and greater risk of post-surgical anastomotic leakage, thus

it was reasonable to conclude that on average the females spend less than the males for the colon

cancer treatment. Additionally, Weichle et al. (2013) estimated the medical spending on colon

cancer is 37% higher for Stage II patients, and 84% higher for Stage III patients, if Stage I was

treated as reference. Although they had higher estimates than that in our approach for model (6.4)

in Table 6.4, the same conclusion is drawn that the cost increases with the stage at diagnosis. We

believe that with the disease develops to the further stage, more serious treatments will be applied

and therefore causes a higher expense. They also showed that the cost is highly related to the

comorbidity score, which is a method of categorizing the comorbidities of patients, and the higher

this score was, the more likely the predicted outcome would result in mortality or higher resource

use.
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Figure 6.18: Histogram of the residuals for model (6.4).
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CHAPTER 7 CONCLUSION REMARKS AND FUTURE RESEARCH

Linear mixed models involving both fixed effects and random effects are widely utilized to

describe the complicatedly correlated data in a variety of fields. To aid the mixed model selection,

we propose a two-stage model selection procedure by use of the adaptive LASSO penalized term

for discretely selecting the random and fixed effects. To complete such a selection procedure, the

restricted profile log-likelihood and profile log-likelihood functions are compatibly utilized. In this

last chapter, we will provide summary and conclusions of the proposed method, and will discuss

future possible research directions.

7.1 Conclusion Remarks

The proposed method is composed of two stages to separately penalize the parameters of in-

terests, successfully respecting and accommodating the distinct properties between the random

effects and fixed effects. In the first stage, the random effects are solidly selected; in the second

stage, the fixed effects are selected. In the first stage of the proposed penalized method, the parame-

ters estimators are obtained by maximizing the penalized restricted profile log-likelihood function,

and they have the similar properties to those for the REML. The estimators in our approach for

selecting the random effects are consequently more robust to outliers than those based on the ML

methods (e.g., see Verbyla, 1993). Moreover, the equivalent REML method corrects the downward

bias via taking into account the loss in degrees of freedom from the estimation of the fixed effects

(e.g., see Lindstrom and Bates, 1988). When an appropriate model for the covariance is adopted,

the correct covariance structure will be obtained and valid inferences for the fixed effects can then

be made (e.g., see Fitzmaurice et al., 2011, p. 165), and eventually prediction accuracy for future

data is improved.

The profile log-likelihoods are adopted to select both the random effects and fixed effects in the

proposed method. In contrast to the other log-likelihoods, the profile log-likelihood can not only

catch enough and primary information for the model (e.g., see Fan and Li, 2012), but also requires
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fewer iterations, the derivatives are somewhat simpler, and the convergence is more consistent in

the Newton-Raphson optimization, since the variance 𝜎2 is not included in the iteration (e.g., see

Lindstrom and Bates, 1988). Our method therefore involves lower dimension than all the other

methods and thus owns the computation advantage.

We systematically study the theoretical properties of the proposed procedure. We prove that the

procedure possesses the oracle properties in each stage, indicating that in each stage, for the cor-

responding parameter estimation, the parameter estimators asymptotically converge to normality

in distribution with their true parameters as the mean. Moreover, the oracle property includes the

possibility of actually performing model selection by shrinking the minor factors to zero. As the

result of possessing the oracle properties, the right covariance structure and predictors are selected.

The proofs theoretically solidify the optimal performance of the proposed procedure.

In practice, the proposed method improves computational efficiency and the quality of selec-

tion. In the setting of linear mixed model, to maximize the targeted quantity, e.g., the restricted

profile log-likelihood for the random effects and the profile log-likelihood for the fixed effects,

there is no closed form for the parameter estimation, all the methods accordingly use iterative way.

While comparing with the Expectation-Maximization and the other well-known optimization al-

gorithm, the Newton-Raphson algorithm we adopt converges steadfast and speedy. Dissimilar to

the traditional methods, when the dimensions of fixed effects and random effects are quite large,

the convergence in our approach still appears computational feasible and statistically accurate.

We employ the adaptive LASSO for the penalty term, and it is well known useful technique

for simultaneous parameter estimation and variable selection, due to its simpler form and concave

optimization property.

To investigate the behavior of the proposed model selection method, we conduct extensive sim-

ulation studies, and the results demonstrate that the proposed procedure outperforms the existing

selection methodologies in terms of correct selection rates, computation time, the Kullback-Leibler

discrepancy, the mean square error, and the quadratic loss error. It is worth mentioning that the

proposed method performs quite efficaciously in selecting the most appropriate model for highly
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correlated data and for different covariance structures. Further, although the optimality for the

proposed method is derived in the asymptotic view, it still behaves noticeably in small to moderate

sample sizes, as illustrated in the simulation studies.

We finally apply the proposed penalized method to the Amsterdam growth and health study

data and the colon cancer data for further examining its effectiveness. The results illustrate that

the proposed selection method can be employed to proficiently select and estimate the significant

random and fixed effects for linear mixed model in real life.

7.2 Future Research

For the future work, we plan to continue working on topics in model selection. Our proposed

method serves as a two-stage selection procedure to separately choose the important random ef-

fects and fixed effects, in the near future, we aim to develop a one-stage selection procedure for

simultaneously selecting the significant random effects and fixed effects in the linear mixed model.

Recall the profile log-likelihood function in (4.1) is

𝑝𝐹 (𝜷,𝜽) = −1

2

𝑛∑︁
𝑖=1

log |V𝑖| −
𝑁

2
log

(︃
𝑛∑︁

𝑖=1

r𝑇𝑖 V−1
𝑖 r𝑖

)︃
.

Denote the (𝑝+𝑘)×1 parameter vector 𝝋 = (𝜷𝑇 ,𝜽𝑇 )𝑇 , then we can jointly select the fixed ef-

fects and random effects by maximizing the penalized profile log-likelihood. Two adaptive LASSO

penalty terms can be used, one for the fixed effects, and one for the random effects. The penalized

profile log-likelihood then is given by

𝑄𝑐(𝝋) = 𝑝𝐹 (𝝋)− 𝜆

(︃
𝑝∑︁

𝑗=1
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𝑞∑︁

𝑗=1

𝑤2𝑗|𝑑𝑗|

)︃
. (7.1)

To maximize 𝑄𝑐(𝝋) in (7.1), the Newton-Raphson algorithm is applied as

𝝋𝑏+1 = 𝝋𝑏 − M−1
𝝋𝝋sc𝝋, 𝑏 = 0, 1, . . . ,
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where 𝝋𝑏 is the current step value, and 𝝋𝑏+1 is the updated value for the next step. sc𝝋 is (𝑝+ 𝑘)×

1 vector of the first derivative of 𝑄𝑐(𝝋), and it is expressed as

sc𝝋 =

(︂
𝜕𝑄𝑐(𝝋)

𝜕𝜷
,
𝜕𝑄𝑐(𝝋)

𝜕𝜃

)︂
.

M𝝋𝝋 is (𝑝+ 𝑘)× (𝑝+ 𝑘) matrix of the second derivative of 𝑄𝑐(𝝋), and it is given by

M𝝋𝝋 =
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The first derivative of the profile log-likelihood 𝑝𝐹 (𝝋) in equation (7.1) is
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The second derivative of the profile log-likelihood 𝑝𝐹 (𝝋) in equation (7.1) is given by⎛⎜⎝ 𝜕2𝑝𝐹 (𝝋)
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For the penalty terms in function (7.1), we can use the local quadratic approximations discussed

in (4.5) and (4.9), and then find the corresponding first and second derivatives. The Newton-

Raphson algorithm thus can be utilized to search for the solution of maximizing the penalized

profile likelihood function in (7.1). The process is repeated until the convergence is reached. The

converged �̂� is the vector of selected and estimated fixed effects and random effects.

Compared with two-stage selection methods, the one-stage procedure owns at least two ad-

vantages. First, in a two-stage selection method, the incorrectly selected structure from the first

step may affect the selection in the second step, yet such problem can be avoided in the one-stage

procedure. Second, since the fixed and random effects are selected jointly, the computation cost

and time are expected to be reduced.

Moreover, the proposed approach is based on the normality assumption for the data, and it

may not perform effectively if the normality assumption is violated. In the future research, we

might extend the current work to account for robustness to non-normality by using nonparametric

methods.

We also note that missing values are quite common in longitudinal and cluster data, which

leaves space for further research in model selection. Imputation handling will also be considered

in addressing missing data in the future study.

In addition to studying on mixed model selection, we intend to further extend the current work

to other modeling settings containing generalized linear mixed model and Cox proportional haz-

ards model, both of which are widely used in biological and medical research.

Finally, we will develop other techniques to significantly improve model selection. We would
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like to try different penalty terms and optimization algorithms which could increase correct selec-

tion rates and computational efficiency. For example, we look forward to utilizing eigenvalues to

be the penalty term in the penalized method.
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[15] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer, New York.

[16] Burnham, K. and Anderson, D. (2002). Model Selection and Multimodel Inference, 2nd edi-

tion. Springer, New York.

[17] Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo.

Journal of the Royal Statistical Society Series B 57, 473-484.

[18] Chen, J. and Chen, Z. (1999). Extended bayesian information criteria for model selection

with large model spaces. Biometrika 95, 759-771.

[19] Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Bio-

metrics 59, 762-769.

[20] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating

the correct degree of smoothing by the method of generalized cross-validation. Numerische

Mathematik 31, 317-403.

[21] Demidenko, E. (2013). Mixed Models Theory and Applications. Wiley, New York.



101
[22] Demidenko, E. and Stukel, T. A. (2005). Influence analysis for linear mixed-effects models.

Statistics in Medicine 24, 893-909.

[23] Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-

validation. Journal of the American Statistical Association 78, 316-331.

[24] Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the

American Statistical Association 81, 461-470.

[25] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. The

Annals of Statistics 32, 407-451.

[26] Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall,

New York.

[27] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and oracle

properties. Journal of the American Statistical Association 96, 1348-1360.

[28] Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional

feature space. Statistica Sinica 20, 101-148.

[29] Fan, Y. and Li, R. (2012). Variable selection in linear mixed effects models. The Annals of

Statistics 40, 2043-2068.

[30] Fisher, E. S., Wennberg, D. E., Stukel, T. A., Gottlieb, D. J., Lucas, F. L. and Pinder, E. L.

(2003). The implications of regional variations in medicare spending. Part 1: the content,

quality and accessibility of care. Annals of Internal Medicine, 138, 273-287.

[31] Fitzmaurice, G., Laird, N. and Ware, J. (2011). Applied Longitudinal Analysis, 2nd edition.

Wiley, New York.

[32] Foster, S. D., Verbyla, A. P. and Pitchford, W. S. (2007). Incorporating lasso effects into

a mixed model for quantitative trait loci detection. Journal of Agricultural, Biological, and

Environmental Statistics 12, 300-314.



102
[33] Friedman, J., Hastie, T., Hofling, H. and Tibshirani, R. (2007). Pathwise coordinate optimiza-

tion. The Annals of Applied Statistics 1, 302-332.

[34] Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Computational

and Graphical Statistics 7, 397-416.

[35] Green, P. J. (1995). Reversible jump MCMC computation and Bayesian model determination.

Biometrika 82, 711-732.

[36] Greven, S. and Kneib, T. (2010). On the behavior of marginal and conditional AIC in linear

mixed models. Biometrika 97, 773-789.

[37] Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression.

Journal of the Royal Statistical Society Series B 41, 190-195.

[38] Harrell, F. E. (2001). Regression Modeling Strategies. Springer-Verlag, New York.

[39] Hartley, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed anal-

ysis of variance model. Biometrika 54, 93-108.

[40] Harville, D. A. (1974). Bayesian inference for variance components using only error con-

trasts. Biometrika 61, 383-385.

[41] Hastie, T., Tibshirani, R. and Friedman, J. (2008). The Elements of Statistical Learning; Data

mining, Inference and Prediction. Springer, New York.

[42] Henderson, C. R. (1950). Estimation of genetic parameters. The Annals of Mathematical

Statistics 21, 309-310.

[43] Hodges, J. S. and Sargent, D. J. (2001). Counting degrees of freedom in hierarchical and

other richly parameterized models. Biometrika 88, 367-379.

[44] Hoerl, A. and Kennard, R. (1970). Ridge regression: biased estimation for nonorthogonal

problems. Technometrics 12, 55-67.



103
[45] Hoerl, A. and Kennard, R. (1970). Ridge regression: application to nonorthogonal problems.

Technometrics 12, 69-82.

[46] Hurvich, C., Shumway. R. and Tsai, C. (1990). Improved estimators of Kullback-Leibler

information for autoregressive model selection in small samples. Biometrika 77, 709-719.

[47] Hurvich, C. and Tsai, C. (1989). Regression and time series model selection in small samples.

Biometrika 76, 297-307.

[48] Hurvich, C. and Tsai, C. (1993). A corrected Akaike information criterion for vector autore-

gressive model selection. Journal of Time Series Analysis 14, 271-279.

[49] Ibrahim, J. G., Zhu, H., Garcia, R. I. and Guo, R. (2011). Fixed and random effects selection

in mixed effects models. Biometrics 67, 495-503.

[50] Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications.

Springer, New York.

[51] Jiang, J., Rao, J. S., Gu, Z. and Nguyen, T. (2008). Fence methods for mixed model selection.

The Annals of Statistics 36, 1669-1692.

[52] Jones, R. H. (2011). Bayesian information criterion for longitudinal and clustered data. Statis-

tics in Medicine 30, 3050-3056.

[53] Kemper, H. (1995). The Amsterdam growth study: a longitudinal analysis of health, fitness

and lifestyle. HK Sport Science Monograph Series 6, Human Kinetics Publishers, Champaign

IL.

[54] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. International Joint Conference on Artificial Intelligence (IJCAI), Morgan

Kaufmann, pp. 1137-1143.

[55] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of Statis-

tics 22, 72-86.



104
[56] Kutner, M., Nachtsheim, C. and Neter, J. (2004). Applied Linear Regression Models, 4th

edition. McGraw-Hill, New York.

[57] Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics 38,

963-974.

[58] Lange, N. and Laird, N. (1989). The effect of covariance structures on variance estimation in

balance-curve models with random parameters. Journal of the American Statistical Associa-

tion 84, 241-247.

[59] Lee, K., Sha, N., Dougherty, E., Vannucci, M. and Mallick, B. (2003). Gene selection: a

Bayesian variable selection approach. Bioinformatics 19, 90-97.

[60] Li, R. and Liang, H. (2008). Variable selection in semiparametric regression modeling. The

Annals of Statistics 36, 261-286.

[61] Lin, B., Pang, Z. and Jiang, J. (2013). Fixed and random effects selection by REML and

pathwise coordinate optimization. Journal of Computational and Graphical Statistics 22,

341-355.

[62] Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear

mixed-effects models for repeated-measure data. Journal of the American Statistical Associ-

ation 83, 1014-1022.

[63] Lipska, M. A., Bisset, I. P., Parry, B. R. and Merrie, A. E. H. (2006). Anastomotic leakage

after lower gastrointestinal anastomosis: men are at a higher risk. ANZJ. Surg 76, 579-585.

[64] Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-675.

[65] Mallows, C. L. (1995). More comments on Cp. Technometrics 37, 362-372.

[66] McCulloch, C. E., Searle, S. R. and Neuhaus, J. M. (2008). Generalized, Linear, and Mixed

Models, 2nd edition. Wiely, New York.



105
[67] Müller, S., Scealy, J. L. and Welsh, A. H. (2013). Model selection in linear mixed models.

Statistical Science 28, 135-167.

[68] Ni, X., Zhang, D. and Zhang, H. H. (2010). Variable selection for semiparametric mixed

models in longitudinal studies. Biometrics 66, 79-88.

[69] Pan, J. and Huang, C. (2014). Random effects selection in generalized linear mixed models

via shrinkage penalty function. Statistics and Computing 24, 725-738.

[70] Pan, W. and Le, C. T. (2001). Bootstrap model selection in generalized linear models. Journal

of Agricultural, Biological and Environmental Statistics 6, 49-61.

[71] Patterson, H. D. and Thompson, R. (1971). Recovery of interblock information when block

sizes are unequal. Biometrika 58, 273-289.

[72] Peng, H. and Lu, Y. (2012). Model selection in linear mixed effect models. Journal of Multi-

variate Analysis 109, 109-129.

[73] Pu, W. and Niu, X. F. (2006). Selecting mixed-effects models based on a generalized infor-

mation criterion. Journal of Multivariate Analysis 97, 733-758.

[74] Rao, C. R. and Wu, Y. (1989). A strongly consistent procedure for model selection in regres-

sion problems. Biometrika 76, 369-374.
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APPENDIX A SELECTED R PROGRAMS

∙ R code for simulation studies in Chapter 2.

l i b r a r y (MASS)

######### r e g u l a r l a s s o ######

l a s s o s h o o t = f u n c t i o n ( x , y , lambda ){

b e t a = l s f i t ( x , y ) $ c o e f [−1]

# c o n v e r g e n c e f l a g

s t a t u s = 0

# c o n v e r g e n c e t o l e r a n c e

t o l = 1e−6;

w h i l e ( s t a t u s == 0 )

{

# save c u r r e n t b e t a

b e t a o l d = b e t a

# o p t i m i z e e l e m e n t s o f b e t a one by one

f o r ( j i n 1 : p ){

# o p t i m i z e e l e m e n t j o f b e t a

# g e t j t h c o l o f X

x j = x [ , j ]

# g e t r e s i d u a l e x c l u d i n g i t h c o l

y j = ( y − x%*%b e t a ) + x j * b e t a [ j ]

# c a l u l a t e xj ’* y j and s e e where i t f a l l s

d e l t a j = t ( y j )%*%x j

i f ( d e l t a j < −lambda ){

b e t a [ j ] = ( d e l t a j + lambda ) / ( t ( x j )%*%x j )

} e l s e i f ( d e l t a j > lambda ){

b e t a [ j ]= ( d e l t a j − lambda ) / ( t ( x j )%*%x j )
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} e l s e { b e t a [ j ] = 0}

}

# check d i f f e r e n c e between b e t a and b e t a o l d

i f ( max ( abs ( b e t a − b e t a o l d ) ) <= t o l )

b r e a k

}

r e t u r n ( b e t a )

}

############### a d a p t i v e l a s s o m o d i f i e d by pan , w i th we ig h t i s o l s #######

p a n a l a s s o o l s = f u n c t i o n ( x , y , lambda ){

###### g e t o l s e s t i m a t e

b e t a o l s = l s f i t ( x , y ) $ c o e f [−1]

# c o n v e r g e n c e t o l e r a n c e

t o l = 1e−6

xx2 = t ( x)%*%x*2

xy2 = t ( x)%*%y*2

s t a t u s = 0

we ig h t =1/ abs ( b e t a o l s )

lams =lambda*we ig h t

b e t a = b e t a o l s

w h i l e ( s t a t u s == 0 )

{

# save c u r r e n t b e t a

b e t a o l d = b e t a

# o p t i m i z e e l e m e n t s o f b e t a one by one

f o r ( j i n 1 : p ){

# o p t i m i z e e l e m e n t j o f b e t a

# g e t j t h c o l o f X

x j = x [ , j ]
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# g e t r e s i d u a l e x c l u d i n g i t h c o l

y j = ( y − x%*%b e t a ) + x j * b e t a [ j ]

# c a l u l a t e xj ’* y j and s e e where i t f a l l s

d e l t a j = t ( y j )%*%x j

i f ( d e l t a j < −lams [ j ] ){

b e t a [ j ] = ( d e l t a j + lams [ j ] ) / ( t ( x j )%*%x j )

} e l s e i f ( d e l t a j > lams [ j ] ){

b e t a [ j ]= ( d e l t a j − lams [ j ] ) / ( t ( x j )%*%x j )

} e l s e { b e t a [ j ] = 0}

}

# check d i f f e r e n c e between b e t a and b e t a o l d

i f ( max ( abs ( b e t a − b e t a o l d ) ) <= t o l )

b r e a k

}

r e t u r n ( b e t a )

}

############### a d a p t i v e l a s s o m o d i f i e d by pan , w i th we ig h t i s r i d g e #######

p a n a l a s s o r i d g e = f u n c t i o n ( x , y , lambda ){

######## choose b e s t l a m b d a i n r i d g e r e g r e s s i o n and g e t t h e e s t i m a t o r

lamb= seq ( 0 , 10 , l e n g t h =101)

gcv= numer ic ( )

f o r ( i i n 1 : l e n g t h ( lamb ) ) {

b e t a . r i d g e = s o l v e ( t ( x)%*%x+lamb [ i ]* d i a g ( p))%*% t ( x)%*%y

gcv [ i ]= t ( y−x%*%b e t a . r i d g e )%*%(y−x%*%b e t a . r i d g e ) /

( n−sum ( d i a g ( s o l v e ( t ( x)%*%x+lamb [ i ]* d i a g ( p))%*% t ( x)%*%x ) ) )ˆ2

}

r i d g e l a m b d a =lamb [ which . min ( gcv ) ]

### r i d g e e s t i m a t e s

r i d g e b e t a = s o l v e ( t ( x)%*%x+ r i d g e l a m b d a * d i a g ( p))%*% t ( x)%*%y
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# c o n v e r g e n c e t o l e r a n c e

t o l = 1e−6

xx2 = t ( x)%*%x*2

xy2 = t ( x)%*%y*2

s t a t u s = 0

we ig h t =1/ abs ( r i d g e b e t a )

lams =lambda*we ig h t

b e t a = r i d g e b e t a

w h i l e ( s t a t u s == 0 )

{

# save c u r r e n t b e t a

b e t a o l d = b e t a

# o p t i m i z e e l e m e n t s o f b e t a one by one

f o r ( j i n 1 : p ){

# o p t i m i z e e l e m e n t j o f b e t a

# g e t j t h c o l o f X

x j = x [ , j ]

# g e t r e s i d u a l e x c l u d i n g i t h c o l

y j = ( y − x%*%b e t a ) + x j * b e t a [ j ]

# c a l u l a t e xj ’* y j and s e e where i t f a l l s

d e l t a j = t ( y j )%*%x j

i f ( d e l t a j < −lams [ j ] ){

b e t a [ j ] = ( d e l t a j + lams [ j ] ) / ( t ( x j )%*%x j )

} e l s e i f ( d e l t a j > lams [ j ] ){

b e t a [ j ]= ( d e l t a j − lams [ j ] ) / ( t ( x j )%*%x j )

} e l s e { b e t a [ j ] = 0}

}

# check d i f f e r e n c e between b e t a and b e t a o l d

i f ( max ( abs ( b e t a − b e t a o l d ) ) <= t o l )
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b r e a k

}

r e t u r n ( b e t a )

}

########## g e n e r a t e d a t a ##############

#### model 1 y=x* b e t a +sigma * e p s i l o n ###

### b e t a ( 3 , 1 . 5 , 0 , 0 , 2 , 0 , 0 , 0 )

l i b r a r y (MASS)

# v a r cov m a t r i x

s igma= m a t r i x ( 0 , 8 , 8 )

f o r ( i i n 1 : 8 ){

f o r ( j i n 1 : 8 ){

i f ( i == j ) s igma [ i , j ]=1

e l s e s igma [ i , j ] = . 5

}

}

# d e f i n e sigma

s i g =3

## obs i n each d a t a s e t

m=60

#### t r u e b e t a

t r u e b e t a <−m a t r i x ( c ( 3 , 1 . 5 , 0 , 0 , 2 , 0 , 0 , 0 ) , n c o l =1)

lambda= exp ( seq ( 0 , 3 , l e n g t h = 3 1 ) )

C l a s s o = I l a s s o = C p a n a l a s s o o l s = I p a n a l a s s o o l s = numer ic ( )

C p a n a l a s s o r i d g e = I p a n a l a s s o r i d g e = numer ic ( )

r p e l a s s o = r p e l a s s o p a n a l a s s o o l s = r p e p a n a l a s s o r i d g e = numer ic ( )

###### s i m u l a t e 100 r e p l i c a t i o n s

f o r ( b i n 1 : 1 0 0 ){

x=mvrnorm ( n=m, numer ic ( 8 ) , s igma )
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e=rnorm (m)

y=x%*%t r u e b e t a + s i g *e

n= l e n g t h ( t ( y ) )

p= n c o l ( x )

l s = l s f i t ( x , y ) $ c o e f f [−1]

b0= l s f i t ( x , y ) $ c o e f f [ 1 ]

h s i g = t ( y−x%*%l s−b0)%*%(y−x%*%l s−b0 ) / ( n−p )

b i c r i d g e = b i c o l s = b i c l a s s o = numer ic ( )

f o r ( j i n 1 : l e n g t h ( lambda ) ) {

######### t h r e e p r o c e d u r e s

b e t a p a n a l a s s o r i d g e = p a n a l a s s o r i d g e ( x , y , lambda [ j ] )

b e t a p a n a l a s s o o l s = p a n a l a s s o o l s ( x , y , lambda [ j ] )

b e t a p a n l a s s o = l a s s o s h o o t ( x , y , lambda [ j ] )

b i c r i d g e [ j ]= t ( y−x%*%b e t a p a n a l a s s o r i d g e −b0)%*%

( y−x%*%b e t a p a n a l a s s o r i d g e −b0 ) / h s i g

+ l o g ( n )* sum ( b e t a p a n a l a s s o r i d g e ! = 0 )

b i c o l s [ j ]= t ( y−x%*%b e t a p a n a l a s s o o l s −b0)%*%

( y−x%*%b e t a p a n a l a s s o o l s −b0 ) / h s i g

+ l o g ( n )* sum ( b e t a p a n a l a s s o o l s ! = 0 )

b i c l a s s o [ j ]= t ( y−x%*%b e t a p a n l a s s o −b0)%*%

( y−x%*%b e t a p a n l a s s o −b0 ) / h s i g

+ l o g ( n )* sum ( b e t a p a n l a s s o ! = 0 )

}

######### g e t be t a−h a t

b e t a p a n a l a s s o r i d g e = p a n a l a s s o r i d g e ( x , y , lambda [ which . min ( b i c r i d g e ) ] )

b e t a p a n a l a s s o o l s = p a n a l a s s o o l s ( x , y , lambda [ which . min ( b i c o l s ) ] )

b e t a l a s s o = l a s s o s h o o t ( x , y , lambda [ which . min ( b i c l a s s o ) ] )

########## g e t r p e f o r each i t e r a t i o n

r p e l a s s o [ b ]= mean ( ( x%*%b e t a l a s s o −x%*%t r u e b e t a )ˆ2 ) / s i g ˆ2
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r p e l a s s o p a n a l a s s o o l s [ b ]= mean ( ( x%*%b e t a p a n a l a s s o o l s −x%*%t r u e b e t a )ˆ2 ) / s i g ˆ2

r p e p a n a l a s s o r i d g e [ b ]= mean ( ( x%*%b e t a p a n a l a s s o r i d g e −x%*%t r u e b e t a )ˆ2 ) / s i g ˆ2

#### non z e r o components by l a s s o

C l a s s o [ b ]= sum ( b e t a l a s s o ! = 0 )

### z e r o components i n c o r r e c t l y s e l e c t e d i n t o t h e model by l a s s o

I l a s s o [ b ]= i f e l s e ( ( b e t a l a s s o [ 3 ] ! = 0 ) , 1 , 0 ) + i f e l s e ( ( b e t a l a s s o [ 4 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a l a s s o [ 6 ] ! = 0 ) , 1 , 0 ) + i f e l s e ( ( b e t a l a s s o [ 7 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a l a s s o [ 8 ] ! = 0 ) , 1 , 0 )

#### non z e r o component by p a n a l a s s o o l s

C p a n a l a s s o o l s [ b ]= sum ( b e t a p a n a l a s s o o l s ! = 0 )

### z e r o components i n c o r r e c t l y s e l e c t e d i n t o t h e model

I p a n a l a s s o o l s [ b ]= i f e l s e ( ( b e t a p a n a l a s s o o l s [ 3 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o o l s [ 4 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o o l s [ 6 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o o l s [ 7 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o o l s [ 8 ] ! = 0 ) , 1 , 0 )

#### non z e r o component by p a n a l a s s o r i d g e

C p a n a l a s s o r i d g e [ b ]= sum ( b e t a p a n a l a s s o r i d g e ! = 0 )

### z e r o components i n c o r r e c t l y s e l e c t e d i n t o t h e model

I p a n a l a s s o r i d g e [ b ]= i f e l s e ( ( b e t a p a n a l a s s o r i d g e [ 3 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o r i d g e [ 4 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o r i d g e [ 6 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o r i d g e [ 7 ] ! = 0 ) , 1 , 0 )

+ i f e l s e ( ( b e t a p a n a l a s s o r i d g e [ 8 ] ! = 0 ) , 1 , 0 )

}

####### mean r p e

mean ( r p e l a s s o )

mean ( r p e l a s s o p a n a l a s s o o l s )

mean ( r p e p a n a l a s s o r i d g e )
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###mean number o f c o r r e c t s e l e c t i o n

mean ( C l a s s o )

mean ( C p a n a l a s s o o l s )

mean ( C p a n a l a s s o r i d g e )

###mean number o f i n c o r r e c t s e l e c t i o n

mean ( I l a s s o )

mean ( I p a n a l a s s o o l s )

mean ( I p a n a l a s s o r i d g e )

∙ R code for simulation studies in Chapter 4.

l i b r a r y ( ” mvtnorm ” )

l i b r a r y ( ”MASS” )

l i b r a r y ( ” lme4 ” )

o p t i o n s ( warn=−1)

# d e f i n e p e n a l i z e d r e s t r i c t e d p r o f i l e l o g l i k e l i h o o d ########

p r p l l <− f u n c t i o n ( DDsig , be t a , z , x , y , DDsig0 , lambda , we igh t ){

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

p <− n c o l ( x [ [ 1 ] ] )

q <− n c o l ( z [ [ 1 ] ] )

k <− q * ( q + 1 ) / 2

n . t o t <− sum ( n i )

De <− m a t r i x ( 0 , nrow=q , n c o l =q )

De [ lower . t r i ( De , d i a g =T ) ] <− DDsig

i f ( n c o l ( De)>1){

De <− De+ t ( De)− d i a g ( d i a g ( De ) )

}

l og1 <− 0
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l og2 <− 0

log3 <− 0

f o r ( i i n 1 : n ){

s i <− z [ [ i ]]%*%De%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

s i i <− g inv ( s i )

e i <− y [ [ i ]]−x [ [ i ]]%*% b e t a

i f ( d e t ( s i )<=0){ r e t u r n (−9 e10 )

} e l s e {de1 <− l o g ( d e t ( s i ) ) }

l og1 <− l og1 +de1

log2 = log2 + t ( e i )%*% s i i%*%e i

log3 = log3 + t ( x [ [ i ]])%*% s i i%*%x [ [ i ] ]

}

de1= log1

i f ( log2 <=0){ r e t u r n (−9 e10 )

} e l s e {de2 <− l o g ( log2 )}

i f ( d e t ( l og3 )<=0){ r e t u r n (−9 e10 )

} e l s e {de3 <− l o g ( d e t ( l og3 ) ) }

r e t u r n (− .5* de1 − .5* ( n . t o t −p )* de2 −.5*de3−lambda*sum ( abs ( DDsig*we ig h t / DDsig0 ) ) )

}

# d e f i n e r e s t r i c t e d p r o f i l e l o g l i k e l i h o o d ########

r p l l <− f u n c t i o n ( DDsig , be t a , z , x , y ){

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

p <− n c o l ( x [ [ 1 ] ] )

q <− n c o l ( z [ [ 1 ] ] )

k <− q * ( q + 1 ) / 2

n . t o t <− sum ( n i )

De <− m a t r i x ( 0 , nrow=q , n c o l =q )

De [ lower . t r i ( De , d i a g =T ) ] <− DDsig
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i f ( n c o l ( De)>1){

De <− De+ t ( De)− d i a g ( d i a g ( De ) )

}

l og1 <− 0

log2 <− 0

log3 <− 0

f o r ( i i n 1 : n ){

s i <− z [ [ i ]]%*%De%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

s i i <− g inv ( s i )

e i <− y [ [ i ]]−x [ [ i ]]%*% b e t a

i f ( d e t ( s i )<=0){ r e t u r n (−9 e10 )

} e l s e {de1 <− l o g ( d e t ( s i ) ) }

l og1 <− l og1 +de1

log2 = log2 + t ( e i )%*% s i i%*%e i

log3 = log3 + t ( x [ [ i ]])%*% s i i%*%x [ [ i ] ]

}

de1= log1

i f ( log2 <=0){ r e t u r n (−9 e10 )

} e l s e {de2 <− l o g ( log2 )}

i f ( d e t ( l og3 )<=0){ r e t u r n (−9 e10 )

} e l s e {de3 <− l o g ( d e t ( l og3 ) ) }

r e t u r n (− .5* de1 − .5* ( n . t o t −p )* de2 −.5* de3 )

}

# d e f i n e p e n a l i z e d p r o f i l e l o g l i k e l i h o o d ########

p p l l <− f u n c t i o n ( x , y , be t a , s i i , lambda , b e t a 0 ){

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

n . t o t <− sum ( n i )

l l <−0
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f o r ( i i n 1 : n ){

e i <− y [ [ i ]]−x [ [ i ]]%*% b e t a

l l = l l + t ( e i )%*% s i i [ [ i ]]%*% e i

}

i f ( l o g ( l l )<=0){ r e t u r n (−9 e10 )

} e l s e { l l l = l o g ( l l )}

r e t u r n (− .5*n . t o t * l l l −lambda*sum ( abs ( b e t a / b e t a 0 ) ) )

}

# d e f i n e p r o f i l e l o g l i k e l i h o o d ########

p l l <− f u n c t i o n ( x , y , be t a , s i i ){

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

n . t o t <− sum ( n i )

l l <−0

f o r ( i i n 1 : n ){

e i <− y [ [ i ]]−x [ [ i ]]%*% b e t a

l l = l l + t ( e i )%*% s i i [ [ i ]]%*% e i

}

i f ( l o g ( l l )<=0){ r e t u r n (−9 e10 )

} e l s e { l l l = l o g ( l l )}

r e t u r n (− .5*n . t o t * l l l )

}

## d e f i n e t r a c e f u n c t i o n ##

t r a c e <− f u n c t i o n (A)

{

sum ( d i a g (A) )

}

## d e r i v a t i v e o f D

FdD= f u n c t i o n ( di , q ){
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i f ( q>1){

k <− q * ( q + 1 ) / 2

dD <− m a t r i x ( 0 , q , q )

DD <− r e p ( 0 , k )

DD[ d i ] <− 1

dD [ lower . t r i ( dD , d i a g =T ) ] <− DD

dD <− dD+ t ( dD)− d i a g ( d i a g ( dD ) )

} e l s e {

dD <− m a t r i x ( 1 )

}

l i s t ( dD )

}

### d e r i v a t i v e o f V V=ZDZ’+ I

FdV <− f u n c t i o n ( r , z , dD , i ){

l i s t ( z [ [ i ]]%*%dD [ [ r ]]%*% t ( z [ [ i ] ] ) )

}

### g e n e r a l i z e d l e a s t s q u a r e e s t i m a t o r o f b e t a

F b e t a <− f u n c t i o n ( x , y , z , De , s i g ){

n <− l e n g t h ( y )

p <− n c o l ( x [ [ 1 ] ] )

n i <− mapply ( l e n g t h , y )

b e t 1 <− r e p ( 0 , p )

H11 <− m a t r i x ( 0 , p , p )

f o r ( i i n 1 : n ){

s i <− z [ [ i ]]%*%De%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

s i i <− g inv ( s i )

t s s <− t ( x [ [ i ]])%*% s i i

H11 <− H11+ t s s%*%x [ [ i ] ]

b e t 1 <− b e t 1 + t s s%*%y [ [ i ] ]
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}

b e t a <− g inv ( H11)%*%b e t 1

b e t a

}

## sum ( t ( x i )* A i j * x i )

FA <− f u n c t i o n ( j , x , dV , s i i , i ){

l i s t ( t ( x [ [ i ]])%*% s i i [ [ i ]]%*%dV [ [ i ] ] [ [ j ]]%*% s i i [ [ i ]]%*%x [ [ i ] ] )

}

## f i r s t d e r i v a t i v e o f l o g | sum (XVˆ( − 1 )X ) |

FD1 <− f u n c t i o n ( j , H00 , p , n , XAijX ){

t 2 <− m a t r i x ( 0 , p , p )

f o r ( i i n 1 : n ){

t 2 <− t 2 +H00%*%XAijX [ [ i ] ] [ [ j ] ]

}

− t r a c e ( t 2 )

}

## second d e r i v a t i v e o f l o g | sum (XVˆ( − 1 )X ) |

SD1 <− f u n c t i o n ( k , j , x , n , H00 , p , dV , s i i , XAijX ){

t 1 <− m a t r i x ( 0 , p , p )

t 2 <− m a t r i x ( 0 , p , p )

t 3 <− m a t r i x ( 0 , p , p )

f o r ( i i n 1 : n ){

d e r i j <− dV [ [ i ] ] [ [ j ] ]

d e r i k <− dV [ [ i ] ] [ [ k ] ]

t 1 <− t 1 +XAijX [ [ i ] ] [ [ k ] ]

t 2 <− t 2 +XAijX [ [ i ] ] [ [ j ] ]

t 3 <− t3−t ( x [ [ i ]])%*% s i i [ [ i ]]%*%( d e r i k%*%s i i [ [ i ]]%*% d e r i j

+ d e r i j%*%s i i [ [ i ]]%*% d e r i k )%*% s i i [ [ i ]]%*%x [ [ i ] ]

}
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− t r a c e ( H00%*%t 1%*%H00%*%t 2 )− t r a c e ( H00%*%t 3 )

}

## f i r s t d e r i v a t i v e o f sum ( l o g | v i | ) # # #

FD2 <− f u n c t i o n ( j , y , n , s i i , dV){

n i <− mapply ( l e n g t h , y )

t 8 = m a t r i x ( 0 , n i , n i )

f o r ( i i n 1 : n ){

d e r i j <− dV [ [ i ] ] [ [ j ] ]

t 8 = t 8 + s i i [ [ i ]]%*% d e r i j

}

t r a c e ( t 8 )

}

## second d e r i v a t i v e o f sum ( l o g | v i | ) # # #

SD2 <− f u n c t i o n ( k , j , y , n , dV , s i i ){

n i <− mapply ( l e n g t h , y )

t 9 = m a t r i x ( 0 , n i , n i )

f o r ( i i n 1 : n ){

d e r i j <− dV [ [ i ] ] [ [ j ] ]

d e r i k <− dV [ [ i ] ] [ [ k ] ]

t 9 = t9−t ( s i i [ [ i ]]%*% d e r i k%*%s i i [ [ i ]])%*% d e r i j

}

t r a c e ( t 9 )

}

## f i r s t d e r i v a t i v e o f l o g ( sum ( rVˆ( − 1 ) r ) ) wr t t h e t a ###

FD3 <− f u n c t i o n ( j , n , dV , e i , s i i ){

t 5 <− m a t r i x ( 0 , 1 , 1 )

t 6 <− m a t r i x ( 0 , 1 , 1 )

f o r ( i i n 1 : n ){

d e r i j <− dV [ [ i ] ] [ [ j ] ]
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t 5 = t5−t ( e i [ [ i ]])%*% s i i [ [ i ]]%*% d e r i j%*%s i i [ [ i ]]%*% e i [ [ i ] ]

t 6 = t 6 + t ( e i [ [ i ]])%*% s i i [ [ i ]]%*% e i [ [ i ] ]

}

t 5 / t 6

}

## second d e r i v a t i v e o f l o g ( sum ( rVˆ( − 1 ) r ) ) wr t t h e t a ###

SD3 <− f u n c t i o n ( k , j , n , dV , e i , s i i ){

t 5 <− m a t r i x ( 0 , 1 , 1 )

t 6 <− m a t r i x ( 0 , 1 , 1 )

t 7 <− m a t r i x ( 0 , 1 , 1 )

f o r ( i i n 1 : n ){

d e r i j <− dV [ [ i ] ] [ [ j ] ]

d e r i k <− dV [ [ i ] ] [ [ k ] ]

t 5 = t5−t ( e i [ [ i ]])%*% s i i [ [ i ]]%*% d e r i j%*%s i i [ [ i ]]%*% e i [ [ i ] ]

t 6 = t 6 + t ( e i [ [ i ]])%*% s i i [ [ i ]]%*% e i [ [ i ] ]

t 7 <− t 7 + t ( e i [ [ i ]])%*% s i i [ [ i ]]%*%( d e r i k%*%s i i [ [ i ]]%*% d e r i j

+ d e r i j%*%s i i [ [ i ]]%*% d e r i k )%*% s i i [ [ i ]]%*% e i [ [ i ] ]

}

( t 7%*%t6 −( t 5 / t 6 )ˆ2 ) / ( t 6 )ˆ2

}

#### f i r s t d e r i v a t i v e o f l o g ( sum ( rVˆ( − 1 ) r ) ) wr t b e t a

FD4 <− f u n c t i o n ( p , n , y , x , be t a , s i i ){

t o <− m a t r i x ( 0 , 1 , 1 )

t f <− m a t r i x ( 0 , p , 1 )

f o r ( i i n 1 : n ){

e i <− y [ [ i ]]−x [ [ i ]]%*% b e t a

t o = t o + t ( e i )%*% s i i [ [ i ]]%*% e i

t f = t f −2* t ( x [ [ i ]])%*% s i i [ [ i ]]%*% e i

}
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t f / a s . numer ic ( t o )

}

## second d e r i v a t i v e o f l o g ( sum ( rVˆ( − 1 ) r ) ) wr t b e t a ###

SD4 <− f u n c t i o n ( p , n , y , x , be t a , s i i ){

t o <− m a t r i x ( 0 , 1 , 1 )

t f <− m a t r i x ( 0 , p , 1 )

t s <− m a t r i x ( 0 , p , p )

f o r ( i i n 1 : n ){

e i =y [ [ i ]]−x [ [ i ]]%*% b e t a

t o = t o + t ( e i )%*% s i i [ [ i ]]%*% e i

t f = t f −2* t ( x [ [ i ]])%*% s i i [ [ i ]]%*% e i

t s = t s +2* t ( x [ [ i ]])%*% s i i [ [ i ]]%*%x [ [ i ] ]

}

( t s * as . numer ic ( t o )−( t f / a s . numer ic ( t o ) )

%*%t ( t f / a s . numer ic ( t o ) ) ) / ( a s . numer ic ( t o ) )ˆ2

}

######### s e l e c t o p t i m a l lambda f o r random e f f e c t s based on BIC , AIC , and GCV

p an ra n . lam . s e l<− f u n c t i o n ( x , y , zz ,D. i n i t , eps , lam ){

BICR= numer ic ( )

AICR= numer ic ( )

GCVR= numer ic ( )

f o r (m i n 1 : l e n g t h ( lam ) ) {

lambda=lam [m]

z=zz

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

p <− n c o l ( x [ [ 1 ] ] )

n . t o t <− sum ( n i )

q <− n c o l ( z [ [ 1 ] ] )
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q0 <− q

kk <− q * ( q + 1 ) / 2

De <− D. i n i t

b e t a <− F b e t a ( x , y , z , De )

dD <− s a p p l y ( 1 : kk , FdD , q )

we ig h t <− d i a g ( r e p ( 1 , q ) )

we ig h t <− we ig h t [ lower . t r i ( weight , d i a g =T ) ]

DDsig0 <− D. i n i t [ lower . t r i (D. i n i t , d i a g =T ) ]

DD0 <− DDsig0

DDsignew <− DDsig0

s t e p <− 1

maxstep <− 100

c o n v e r g e <− F

w h i l e ( c o n v e r g e ==F&&s t e p<maxstep&&n c o l ( De)>1){

DDsig <− DDsignew

H0 <− m a t r i x ( 0 , nrow=p , n c o l =p )

sc <− r e p ( 0 , kk )

H <− m a t r i x ( 0 , nrow=kk , n c o l =kk )

XAijX <− l i s t (NA)

l e n g t h ( XAijX ) <− n

s i <− l i s t (NA)

l e n g t h ( s i ) <− n

s i i <− s i

dV <− l i s t (NA)

l e n g t h ( dV ) <− n

e i <− l i s t (NA)

l e n g t h ( e i ) <− n

f o r ( i i n 1 : n ){

dV [ [ i ] ] <− s a p p l y ( 1 : kk , FdV , z , dD , i )
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s i [ [ i ] ] <− z [ [ i ]]%*%De%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

s i i [ [ i ] ] <− g inv ( s i [ [ i ] ] )

e i [ [ i ] ] <− y [ [ i ]]−x [ [ i ]]%*% b e t a

H0 <− H0+ t ( x [ [ i ]])%*% s i i [ [ i ]]%*%x [ [ i ] ]

XAijX [ [ i ] ] <− s a p p l y ( 1 : kk , FA , x , dV , s i i , i )

}

H00 <− g inv ( H0 )

sc1 = s a p p l y ( 1 : kk , FD1 , H00 , p , n , XAijX )

sc2 = s a p p l y ( 1 : kk , FD2 , y , n , s i i , dV )

sc3 = s a p p l y ( 1 : kk , FD3 , n , dV , e i , s i i )

s c =− .5*( sc1 + sc2 +( n . t o t −p )* sc3 )

he1=he2=he3= m a t r i x ( 0 , nrow=kk , n c o l =kk )

f o r ( k i n 1 : kk ){

f o r ( j i n 1 : kk ){

he1 [ k , j ]=SD1 ( k , j , x , n , H00 , p , dV , s i i , XAijX )

he2 [ k , j ]=SD2 ( k , j , y , n , dV , s i i )

he3 [ k , j ]=SD3 ( k , j , n , dV , e i , s i i )

}

}

H=− .5*( he1+he2 +( n . t o t −p )* he3 )

sc =sc−lambda*we ig h t * s i g n ( DDsig ) / abs ( DDsig0 )

H <− H−d i a g ( lambda*we ig h t / abs ( DDsig*DDsig0 ) )

l l o l d <− p r p l l ( DDsig , be t a , z , x , y , DDsig0 , lambda , w e i gh t )

l l n e w <− l l o l d −1

mm <− 1

l a <− 1

gH <− g inv (H)%*%sc

w h i l e ( l lnew<= l l o l d&&mm<15){
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DDsignew <− DDsig−l a *gH

l l n e w <− p r p l l ( DDsignew , be t a , z , x , y , DDsig0 , lambda , w e i gh t )

l a <− 1 / 2ˆmm

mm <− mm+1

}

DDnew <− DDsignew

Dnew <− m a t r i x ( 0 , nrow=q , n c o l =q )

Dnew [ lower . t r i ( Dnew , d i a g =T ) ] <− DDnew

i f ( n c o l ( Dnew)>1)Dnew <− Dnew+ t ( Dnew)− d i a g ( d i a g ( Dnew ) )

ad <− abs ( d i a g ( Dnew))<= eps

Dnew [ ad , ] <− 0

Dnew [ , ad ] <− 0

DDsignew <− Dnew [ lower . t r i ( Dnew , d i a g =T ) ]

f o r ( j i n 1 : n ){

z [ [ j ] ] <− as . m a t r i x ( z [ [ j ] ] [ , ! ad ] )

}

i f ( sum ( ( DDsignew−DDsig )ˆ2 ) < eps ) c o n v e r g e <− TRUE

DDnew <− Dnew [ lower . t r i ( Dnew , d i a g =T ) ]

DD <− DDnew[ abs (DDnew)>0]

DD0 <− DD0[ abs (DDnew)>0]

De <− Dnew [ ! ad , ! ad ]

De <− as . m a t r i x ( De )

DDsig0 <− DD0

b e t a <− F b e t a ( x , y , z , De )

q <− dim ( De ) [ 2 ]

kk <− q * ( q + 1 ) / 2

dD <− s a p p l y ( 1 : kk , FdD , q )

we ig h t <− d i a g ( r e p ( 1 , q ) )

we ig h t <− we ig h t [ lower . t r i ( weight , d i a g =T ) ]
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DDsignew <− De [ lower . t r i ( De , d i a g =T ) ]

s t e p = s t e p +1

}

BICR [m]=−2* r p l l ( DDsig , be t a , z , x , y )+ l o g ( n . t o t )* l e n g t h ( De )

AICR [m]=−2* r p l l ( DDsig , be t a , z , x , y )+2* l e n g t h ( De )

GCVR[m]=− r p l l ( DDsig , be t a , z , x , y ) / ( ( 1 − l e n g t h ( De ) / n . t o t )ˆ2 * n . t o t )

}

f i t <− NULL

f i t $ b i c <− BICR

f i t $ a i c <− AICR

f i t $ g c v <− GCVR

r e t u r n ( f i t )

}

##### s e l e c t random e f f e c t s u s i n g t h e o p t i m a l lambda

p an ra n . s e l<− f u n c t i o n ( lambda , x , y , zz ,D. i n i t , eps ){

z=zz

n <− l e n g t h ( x )

n i <− mapply ( l e n g t h , y )

p <− n c o l ( x [ [ 1 ] ] )

n . t o t <− sum ( n i )

q <− n c o l ( z [ [ 1 ] ] )

q0 <− q

kk <− q * ( q + 1 ) / 2

De <− D. i n i t

b e t a <− F b e t a ( x , y , z , De )

dD <− s a p p l y ( 1 : kk , FdD , q )

we ig h t <− d i a g ( r e p ( 1 , q ) )

we ig h t <− we ig h t [ lower . t r i ( weight , d i a g =T ) ]

DDsig0 <− D. i n i t [ lower . t r i (D. i n i t , d i a g =T ) ]



128

DD0 <− DDsig0

DDsignew <− DDsig0

s t e p <− 1

maxstep <− 100

c o n v e r g e <− F

r e c o r d <− seq ( q )

w h i l e ( c o n v e r g e ==F&&s t e p<maxstep&&n c o l ( De)>1){

DDsig <− DDsignew

H0 <− m a t r i x ( 0 , nrow=p , n c o l =p )

sc <− r e p ( 0 , kk )

H <− m a t r i x ( 0 , nrow=kk , n c o l =kk )

XAijX <− l i s t (NA)

l e n g t h ( XAijX ) <− n

s i <− l i s t (NA)

l e n g t h ( s i ) <− n

s i i <− s i

dV <− l i s t (NA)

l e n g t h ( dV ) <− n

e i <− l i s t (NA)

l e n g t h ( e i ) <− n

f o r ( i i n 1 : n ){

dV [ [ i ] ] <− s a p p l y ( 1 : kk , FdV , z , dD , i )

s i [ [ i ] ] <− z [ [ i ]]%*%De%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

s i i [ [ i ] ] <− g inv ( s i [ [ i ] ] )

e i [ [ i ] ] <− y [ [ i ]]−x [ [ i ]]%*% b e t a

H0 <− H0+ t ( x [ [ i ]])%*% s i i [ [ i ]]%*%x [ [ i ] ]

XAijX [ [ i ] ] <− s a p p l y ( 1 : kk , FA , x , dV , s i i , i )

}

H00 <− g inv ( H0 )
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sc1 = s a p p l y ( 1 : kk , FD1 , H00 , p , n , XAijX )

sc2 = s a p p l y ( 1 : kk , FD2 , y , n , s i i , dV )

sc3 = s a p p l y ( 1 : kk , FD3 , n , dV , e i , s i i )

s c =− .5*( sc1 + sc2 +( n . t o t −p )* sc3 )

he1=he2=he3= m a t r i x ( 0 , nrow=kk , n c o l =kk )

f o r ( k i n 1 : kk ){

f o r ( j i n 1 : kk ){

he1 [ k , j ]=SD1 ( k , j , x , n , H00 , p , dV , s i i , XAijX )

he2 [ k , j ]=SD2 ( k , j , y , n , dV , s i i )

he3 [ k , j ]=SD3 ( k , j , n , dV , e i , s i i )

}

}

H=− .5*( he1+he2 +( n . t o t −p )* he3 )

sc =sc−lambda*we ig h t * s i g n ( DDsig ) / abs ( DDsig0 )

H <− H−d i a g ( lambda*we ig h t / abs ( DDsig*DDsig0 ) )

l l o l d <− p r p l l ( DDsig , be t a , z , x , y , DDsig0 , lambda , w e i gh t )

l l n e w <− l l o l d −1

mm <− 1

l a <− 1

gH <− g inv (H)%*%sc

w h i l e ( l lnew<= l l o l d&&mm<15){

DDsignew <− DDsig−l a *gH

l l n e w <− p r p l l ( DDsignew , be t a , z , x , y , DDsig0 , lambda , w e i gh t )

l a <− 1 / 2ˆmm

mm <− mm+1

}

DDnew <− DDsignew

Dnew <− m a t r i x ( 0 , nrow=q , n c o l =q )
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Dnew [ lower . t r i ( Dnew , d i a g =T ) ] <− DDnew

i f ( n c o l ( Dnew)>1)Dnew <− Dnew+ t ( Dnew)− d i a g ( d i a g ( Dnew ) )

ad <− abs ( d i a g ( Dnew))<= eps

Dnew [ ad , ] <− 0

Dnew [ , ad ] <− 0

DDsignew <− Dnew [ lower . t r i ( Dnew , d i a g =T ) ]

f o r ( j i n 1 : n ){

z [ [ j ] ] <− as . m a t r i x ( z [ [ j ] ] [ , ! ad ] )

}

r e c o r d <− r e c o r d [ ! ad ]

i f ( sum ( ( DDsignew−DDsig )ˆ2 ) < eps ) c o n v e r g e <− TRUE

DDnew <− Dnew [ lower . t r i ( Dnew , d i a g =T ) ]

DD <− DDnew[ abs (DDnew)>0]

DD0 <− DD0[ abs (DDnew)>0]

De <− Dnew [ ! ad , ! ad ]

De <− as . m a t r i x ( De )

DDsig0 <− DD0

b e t a <− F b e t a ( x , y , z , De )

q <− dim ( De ) [ 2 ]

kk <− q * ( q + 1 ) / 2

dD <− s a p p l y ( 1 : kk , FdD , q )

we ig h t <− d i a g ( r e p ( 1 , q ) )

we ig h t <− we ig h t [ lower . t r i ( weight , d i a g =T ) ]

DDsignew <− De [ lower . t r i ( De , d i a g =T ) ]

s t e p = s t e p +1

}

Df <− m a t r i x ( 0 , q0 , q0 )

Df [ r e c o r d , r e c o r d ]=De

f i t <− NULL
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f i t $ b e t a <− b e t a

f i t $ D <− Df

r e t u r n ( f i t )

}

######### s e l e c t o p t i m a l lambda f o r f i x e f f e c t s based on BIC , AIC and GCV

p a n f i x . lam . s e l<− f u n c t i o n ( xx , y , zz , b e t a . i n i t ,D . i n i t , eps , lam ){

BICF= numer ic ( )

AICF= numer ic ( )

GCVF= numer ic ( )

f o r (m i n 1 : l e n g t h ( lam ) ) {

lambda=lam [m]

z=zz

x=xx

D=D. i n i t

b e t a = b e t a . i n i t

b e t a 0 = b e t a . i n i t

p <− n c o l ( x [ [ 1 ] ] )

p0=p

n <− l e n g t h ( y )

n i <− mapply ( l e n g t h , y )

n . t o t <− sum ( n i )

s i <− l i s t (NA)

l e n g t h ( s i ) <− n

s i i <− s i

f o r ( i i n 1 : n ){

#V#

s i [ [ i ] ] <− z [ [ i ]]%*%D%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

#Vˆ( − 1 )

s i i [ [ i ] ] <− g inv ( s i [ [ i ] ] )
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}

c o n v e r g e <− F

s t e p <− 1

maxstep <− 100

w h i l e ( c o n v e r g e ==F&&s t e p<maxstep ){

b e t a . o l d <− b e t a

sc =−.5*n . t o t *FD4 ( p , n , y , x , b e t a . o ld , s i i )

H=−.5*n . t o t *SD4 ( p , n , y , x , b e t a . o ld , s i i )

s c =sc−lambda* s i g n ( b e t a . o l d ) / abs ( b e t a 0 )

H <− H−d i a g ( lambda / a s . v e c t o r ( abs ( b e t a . o l d * b e t a 0 ) ) )

l l o l d <− p p l l ( x , y , b e t a . o ld , s i i , lambda , b e t a 0 )

l l n e w <− l l o l d −1

mm <− 1

l a <− 1

gH <− g inv (H)%*%sc

w h i l e ( l lnew<= l l o l d&&mm<15){

b e t a <− b e t a . o ld−l a *gH

l l n e w <− p p l l ( x , y , be t a , s i i , lambda , b e t a 0 )

l a <− 1 / 2ˆmm

mm <− mm+1

}

ad <− abs ( b e t a )<=1e−3

f o r ( j i n 1 : n ){

x [ [ j ] ] <− as . m a t r i x ( x [ [ j ] ] [ , ! ad ] )

}

i f ( abs ( l lnew− l l o l d )< eps ) c o n v e r g e <− TRUE

p= n c o l ( x [ [ 1 ] ] )

b e t a = b e t a [ ! ad ]

b e t a 0 = b e t a 0 [ ! ad ]
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s t e p = s t e p +1

}

BICF [m]=−2* p l l ( x , y , be t a , s i i )+ l o g ( n . t o t )* l e n g t h ( b e t a )

AICF [m]=−2* p l l ( x , y , be t a , s i i )+2* l e n g t h ( b e t a )

GCVF[m]=− p l l ( x , y , be t a , s i i ) / ( ( 1 − l e n g t h ( b e t a ) / n . t o t )ˆ2 * n . t o t )

}

f i t <− NULL

f i t $ b i c <− BICF

f i t $ a i c <− AICF

f i t $ g c v <− GCVF

r e t u r n ( f i t )

}

##### s e l e c t f i x e f f e c t s u s i n g t h e o p t i m a l lambda ###########

p a n f i x . s e l = f u n c t i o n ( xx , y , zz , b e t a . i n i t ,D . i n i t , lambda , eps ){

x=xx

z=zz

D=D. i n i t

b e t a = b e t a . i n i t

b e t a 0 = b e t a . i n i t

p <− n c o l ( x [ [ 1 ] ] )

p0=p

n <− l e n g t h ( y )

n i <− mapply ( l e n g t h , y )

n . t o t <− sum ( n i )

s i <− l i s t (NA)

l e n g t h ( s i ) <− n

s i i <− s i

f o r ( i i n 1 : n ){

#V#
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s i [ [ i ] ] <− z [ [ i ]]%*%D%*%t ( z [ [ i ] ] ) + d i a g ( 1 , n i [ i ] )

#Vˆ( − 1 )

s i i [ [ i ] ] <− g inv ( s i [ [ i ] ] )

}

c o n v e r g e <− F

s t e p <− 1

maxstep <− 100

r e c o r d <− seq ( p )

w h i l e ( c o n v e r g e ==F&&s t e p<maxstep ){

b e t a . o l d <− b e t a

sc =−.5*n . t o t *FD4 ( p , n , y , x , b e t a . o ld , s i i )

H=−.5*n . t o t *SD4 ( p , n , y , x , b e t a . o ld , s i i )

s c =sc−lambda* s i g n ( b e t a . o l d ) / abs ( b e t a 0 )

H <− H−d i a g ( lambda / a s . v e c t o r ( abs ( b e t a . o l d * b e t a 0 ) ) )

l l o l d <− p p l l ( x , y , b e t a . o ld , s i i , lambda , b e t a 0 )

l l n e w <− l l o l d −1

mm <− 1

l a <− 1

gH <− g inv (H)%*%sc

w h i l e ( l lnew<= l l o l d&&mm<15){

b e t a <− b e t a . o ld−l a *gH

l l n e w <− p p l l ( x , y , be t a , s i i , lambda , b e t a 0 )

l a <− 1 / 2ˆmm

mm <− mm+1

}

ad <− abs ( b e t a )<=1e−3

r e c o r d <− r e c o r d [ ! ad ]

f o r ( j i n 1 : n ){

x [ [ j ] ] <− as . m a t r i x ( x [ [ j ] ] [ , ! ad ] )
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}

i f ( abs ( l lnew− l l o l d )< eps ) c o n v e r g e <− TRUE

p= n c o l ( x [ [ 1 ] ] )

b e t a = b e t a [ ! ad ]

b e t a 0 = b e t a 0 [ ! ad ]

s t e p = s t e p +1

}

b e t <− r e p ( 0 , p0 )

b e t [ r e c o r d ]= b e t a

f i t <− NULL

f i t $ b e t a <− b e t

f i t $ D <− D

r e t u r n ( f i t )

}

c o r r x = m a t r i x ( 0 , 5 , 5 )

f o r ( i i n 1 : 5 ){

f o r ( j i n 1 : 5 ){

i f ( i == j ) c o r r x [ i , j ]=1

e l s e c o r r x [ i , j ]=0

}

}

### s e q u e n c e o f lambda

lam=exp ( seq (−2 , 2 , l e n g t h = 2 0 ) )

PANCRBIC=0 ## c o r r e c t number o f random s e l e c t i o n f o r pan b i c

PANCFBIC=0 ## c o r r e c t number o f f i x s e l e c t i o n f o r pan b i c

PANCCBIC=0 ## c o r r e c t number o f random&f i x s e l e c t i o n f o r pan b i c

PANCRAIC=0 ## c o r r e c t number o f random s e l e c t i o n f o r pan a i c

PANCFAIC=0 ## c o r r e c t number o f f i x s e l e c t i o n f o r pan a i c

PANCCAIC=0 ## c o r r e c t number o f random&f i x s e l e c t i o n f o r pan a i c
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PANCRGCV=0 ## c o r r e c t number o f random s e l e c t i o n f o r pan gcv

PANCFGCV=0 ## c o r r e c t number o f f i x s e l e c t i o n f o r pan gcv

PANCCGCV=0 ## c o r r e c t number o f random&f i x s e l e c t i o n f o r pan gcv

CZRBIC=CZFBIC=IZRBIC=IZFBIC=CZRAIC=CZFAIC=IZRAIC=IZFAIC

=CZRGCV=CZFGCV=IZRGCV=IZFGCV= numer ic ( )

######### d a t a i n p u t ########

f o r ( j i n 1 : 1 0 0 ){

s i g <− 1

n i <− 5

n <− 50

y <− NULL

x <− NULL

z <− NULL

s u b j e c t <− k r o n e c k e r ( 1 : n , r e p ( 1 , 5 ) )

t r u e . b e t a <− c ( 1 , 2 , 2 , 0 , 0 )

Dt <− m a t r i x ( c ( 1 , . 5 , 0 , 0 , 0 , . 5 , 1 , r e p ( 0 , 1 8 ) ) , nrow =5 , n c o l =5)

f o r ( i i n 1 : n )

{

x [ [ i ] ] <− mvrnorm ( ni , numer ic ( 5 ) , c o r r x )

z [ [ i ] ] <− x [ [ i ] ]

S <− s i g * ( z [ [ i ]]%*%Dt%*%t ( z [ [ i ] ] ) + d i a g ( n i ) )

y . temp <− t ( rmvnorm ( 1 , x [ [ i ]]%*% t r u e . be t a , S ) )

y [ [ i ] ] <− y . temp

}

n <− l e n g t h ( y )

y1 <− y [ [ 1 ] ]

x1 <− x [ [ 1 ] ]

z1 <− z [ [ 1 ] ]

f o r ( i i n 2 : n ){
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y1 <− r b i n d ( y1 , y [ [ i ] ] )

x1 <− r b i n d ( x1 , x [ [ i ] ] )

z1 <− r b i n d ( z1 , z [ [ i ] ] )

}

ob <− lmer ( y1 ˜ x1−1+(0+ z1 | s u b j e c t ) ,

c o n t r o l = l m e r C o n t r o l ( check . nobs . vs . nRE = ” warn ing ” ) )

hh <− VarCorr ( ob )

D. i n i t <− hh [ [ 1 ] ]

b e t a . h a t = as . m a t r i x ( f i x e f ( ob ) )

s i g . i n i t <− s i g

zz=z

xx=x

### Using BIC

aa= pa n r an . lam . s e l ( x , y , zz ,D. i n i t , eps =1e−5, lam )

b e s t b i c r = a a $ b i c

l ambda1b ic =lam [ which . min ( b e s t b i c r ) ]

e s t r . b i c = p a n r an . s e l ( lambda1bic , x , y , zz ,D. i n i t , eps =1e−5)

bb1= p a n f i x . lam . s e l ( xx , y , zz , e s t r . b i c $ b e t a , e s t r . bic$D , eps =1e−5, lam )

b e s t b i c f = bb1$b ic

l ambda2b ic =lam [ which . min ( b e s t b i c f ) ]

e s t . b i c = p a n f i x . s e l ( xx , y , zz , e s t r . b i c $ b e t a , e s t r . bic$D , lambda2bic , eps =1e−5)

#### Using AIC

b e s t a i c r = a a $ a i c

l a m b d a 1 a i c =lam [ which . min ( b e s t a i c r ) ]

e s t r . a i c = p a n r an . s e l ( l ambda1a ic , x , y , zz ,D. i n i t , eps =1e−5)

bb2= p a n f i x . lam . s e l ( xx , y , zz , e s t r . a i c $ b e t a , e s t r . aic$D , eps =1e−5, lam )

b e s t a i c f = b b 2 $ a i c



138

l a m b d a 2 a i c =lam [ which . min ( b e s t a i c f ) ]

e s t . a i c = p a n f i x . s e l ( xx , y , zz , e s t r . a i c $ b e t a , e s t r . aic$D , lambda2a ic , eps =1e−5)

#### Using GCV

b e s t g c v r = aa$gcv

lambda1gcv=lam [ which . min ( b e s t g c v r ) ]

e s t r . gcv= p a n r an . s e l ( lambda1gcv , x , y , zz ,D. i n i t , eps =1e−5)

bb3= p a n f i x . lam . s e l ( xx , y , zz , e s t r . gcv$be ta , e s t r . gcv$D , eps =1e−5, lam )

b e s t g c v f =bb3$gcv

lambda2gcv=lam [ which . min ( b e s t g c v f ) ]

e s t . gcv= p a n f i x . s e l ( xx , y , zz , e s t r . gcv$be ta , e s t r . gcv$D , lambda2a ic , eps =1e−5)

#####CORRECT SELECTION

i f ( sum ( e s t . bic$D !=0)== sum ( Dt ! = 0 ) )

PANCRBIC=PANCRBIC+1

i f ( sum ( e s t . b i c $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCFBIC=PANCFBIC+1

i f ( sum ( e s t . bic$D !=0)== sum ( Dt ! = 0 ) && sum ( e s t . b i c $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCCBIC=PANCCBIC+1

i f ( sum ( e s t . a ic$D !=0)== sum ( Dt ! = 0 ) )

PANCRAIC=PANCRAIC+1

i f ( sum ( e s t . a i c $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCFAIC=PANCFAIC+1

i f ( sum ( e s t . a ic$D !=0)== sum ( Dt ! = 0 ) && sum ( e s t . a i c $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCCAIC=PANCCAIC+1

i f ( sum ( e s t . gcv$D !=0)== sum ( Dt ! = 0 ) )

PANCRGCV=PANCRGCV+1

i f ( sum ( e s t . g c v $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCFGCV=PANCFGCV+1



139

i f ( sum ( e s t . gcv$D !=0)== sum ( Dt ! = 0 ) && sum ( e s t . g c v $ b e t a !=0)== sum ( t r u e . b e t a ! = 0 ) )

PANCCGCV=PANCCGCV+1

CZFBIC [ j ]= i f e l s e ( ( e s t . b i c $ b e t a [ 4 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . b i c $ b e t a [ 5 ] = = 0 ) , 1 , 0 )

CZRBIC [ j ]= i f e l s e ( ( e s t . bic$D [ 3 , 3 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . bic$D [ 4 , 4 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . bic$D [ 5 , 5 ] = = 0 ) , 1 , 0 )

IZFBIC [ j ]= i f e l s e ( ( e s t . b i c $ b e t a [ 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . b i c $ b e t a [ 2 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . b i c $ b e t a [ 3 ] = = 0 ) , 1 , 0 )

IZRBIC [ j ]= i f e l s e ( ( e s t . bic$D [ 1 , 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . bic$D [ 2 , 2 ] = = 0 ) , 1 , 0 )

CZFAIC [ j ]= i f e l s e ( ( e s t . a i c $ b e t a [ 4 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . a i c $ b e t a [ 5 ] = = 0 ) , 1 , 0 )

CZRAIC[ j ]= i f e l s e ( ( e s t . a ic$D [ 3 , 3 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . a ic$D [ 4 , 4 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . a ic$D [ 5 , 5 ] = = 0 ) , 1 , 0 )

IZFAIC [ j ]= i f e l s e ( ( e s t . a i c $ b e t a [ 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . a i c $ b e t a [ 2 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . a i c $ b e t a [ 3 ] = = 0 ) , 1 , 0 )

IZRAIC [ j ]= i f e l s e ( ( e s t . a ic$D [ 1 , 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . a ic$D [ 2 , 2 ] = = 0 ) , 1 , 0 )

CZFGCV[ j ]= i f e l s e ( ( e s t . g c v $ b e t a [ 4 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . g c v $ b e t a [ 5 ] = = 0 ) , 1 , 0 )

CZRGCV[ j ]= i f e l s e ( ( e s t . gcv$D [ 3 , 3 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . gcv$D [ 4 , 4 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . gcv$D [ 5 , 5 ] = = 0 ) , 1 , 0 )

IZFGCV [ j ]= i f e l s e ( ( e s t . g c v $ b e t a [ 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . g c v $ b e t a [ 2 ] = = 0 ) , 1 , 0 )

+ i f e l s e ( ( e s t . g c v $ b e t a [ 3 ] = = 0 ) , 1 , 0 )

IZRGCV[ j ]= i f e l s e ( ( e s t . gcv$D [ 1 , 1 ] = = 0 ) , 1 , 0 ) + i f e l s e ( ( e s t . gcv$D [ 2 , 2 ] = = 0 ) , 1 , 0 )

}

## number o f c o r r e c t s e l e c t i o n

PANCRBIC

PANCFBIC

PANCCBIC
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PANCRAIC

PANCFAIC

PANCCAIC

PANCRGCV

PANCFGCV

PANCCGCV

mean ( CZRBIC )

mean ( CZFBIC )

mean ( IZRBIC )

mean ( IZFBIC )

mean (CZRAIC)

mean ( CZFAIC )

mean ( IZRAIC )

mean ( IZFAIC )

mean (CZRGCV)

mean (CZFGCV)

mean ( IZRGCV)

mean ( IZFGCV )
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