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ABSTRACT

Hanfeng Chen, Advisor

The performances of penalized least squares approaches profoundly depend on the selection of

the tuning parameter; however, statisticians did not reach consensus on the criterion for choosing the

tuning parameter. Moreover, the penalized least squares estimation that based on a single value of the

tuning parameter suffers from several drawbacks. The tuning parameter selected by the traditional

selection criteria such as AIC, BIC, CV tends to pick excessive variables, which results in an over-

fitting model. On the contrary, many other criteria, such as the extended BIC that favors an over-

sparse model, may run the risk of dropping some relevant variables in the model.

In the dissertation, a novel approach for the feature selection based on the whole solution paths

is proposed, which significantly improves the selection accuracy. The key idea is to partition the

variables into the relevant set and the irrelevant set at each tuning parameter, and then select the

variables which have been classified as relevant for at least one tuning parameter. The approach is

named as Selection by Partitioning the Solution Paths (SPSP). Compared with other existing feature

selection approaches, the proposed SPSP algorithm allows feature selection by using a wide class of

penalty functions, including Lasso, ridge and other strictly convex penalties.

Based on the proposed SPSP procedure, a new type of scores are presented to rank the impor-

tance of the variables in the model. The scores, noted as Area-out-of-zero-region Importance Scores

(AIS), are defined by the areas between the solution paths and the boundary of the partitions over the

whole solution paths. By applying the proposed scores in the stepwise selection, the false positive

error of the selection is remarkably reduced.

The asymptotic properties for the proposed SPSP estimator have been well established. It is

showed that the SPSP estimator is selection consistent when the original estimator is either estima-

tion consistent or selection consistent. Specially, the SPSP approach on the Lasso has been proved

to be consistent over the whole solution paths under the irrepresentable condition.

Additionally, a number of simulation studies have been conducted to illustrate the performance
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of the proposed approachs. The comparison between the SPSP algorithm and the existing selection

criteria on the Lasso, the adaptive Lasso, the SCAD and the MCP were provided. The results showed

the proposed method outperformed the existing variable selection methods in general.

Finally, two real data examples of identifying the informative variables in the Boston housing

data and the glioblastoma gene expression data are given. Compared with the models selected

by other existing approaches, the models selected by the SPSP procedure are much simpler with

relatively smaller model errors.
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CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

Variable selection, also known as feature selection, is a procedure where a subset of relevant

features are selected for constructing models. In the past two decades, feature selection has been one

of the focuses of the statistical and machine learning research, mainly because data with hundreds

of thousands of variables have largely occurred in application domains. Two typical examples are

the gene selection of microarray data and text classification. In the gene selection problems, the

variables are usually mRNA expressions from only a small number of patients. In a typical study,

there are only fewer than 100 patients, while the number of variables, mRNA expressions, could

range from several thousands to hundreds of thousands. For instance, the sample sizes of the two

data sets in the glioblastoma microarray gene expression study of Horvath et al. (2006, [31]) are 55

and 65 respectively, while the number of the genes in both datasets is 3600. As a result, some initial

screening procedures are often applied before the gene selection. In the text classification problems,

the variables are the frequencies of hundreds of thousands of words. An initial pruning could reduce

the number of words to around 15,000 ([28]).

There are many potential benefits of feature selection. First, it helps to defy the curse of di-

mensionality by greatly reducing the time of training models. Moreover, it also facilitates data

visualization and understanding, since it provides an estimate of the important features. Apparently,

it also avoids over fitting problems to improve the sample prediction accuracy.

In practice, many traditional variable selection approaches such as stepwise selection and best

subset selection have been widely applied. Stepwise selection, although simple and straightforward,

suffers from the fact that the order a certain variable enters or leaves the model heavily influences

the final results. Meanwhile, the best subset selection always requires exhaustive search. The com-

putational cost can be huge if the number of the variables is large.

Due to the limitations of the traditional approaches, the penalized likelihood approach has been
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a common approach for variable selection problems in the past two decades. The general idea of the

approach is to penalize the model fitting with some regularization terms to produce a sparse model.

Consider the following linear regression model,

y = Xβ∗ + ε; ε ∼ N (0, σ2I), (1.1)

where y = (y1, · · · , yn)T is an n-dimensional response vector, β∗ = (β∗
1 , · · · , β∗

p)
T is a p-dimensional

vector of regression coefficients, X = (x1, · · · ,xp) is an n×p design matrix, and ε = (ǫ1, · · · , ǫn)T

is an n-dimensional vector of i.i.d. random errors. Without loss of generality, we can assume in

model (1.1), xj, j = 1, · · · , p are standardized and the response y are centered, i.e.,

n
∑

i=1

xij = 0,

n
∑

i=1

x2
ij = 1, j = 1, · · · , p,

n
∑

i=1

yi = 0.

For linear regression problems described in (1.1), the penalized likelihood approach is equivalent

to the penalized least squares (PLS) regression, where the coefficients are estimated by minimizing

the following objective function:

1

n
‖y −Xβ‖22 + λ

p
∑

j=1

J(|βj|), (1.2)

where J(·) is a penalty function that controls the number of nonzero coefficients, and λ > 0 is a tun-

ing parameter. Unlike traditional variable selection procedures, the penalized least squares approach

is computationally efficient since it can carry out variable selection and estimation simultaneously.

This is because the objective function 1.2 automatically shrinks estimates of some coefficients to

zeros.

Furthermore, theoretical properties of the penalized least squares estimators are established when

the tuning parameter is appropriately chosen (Fan and Li, 2001, [16]; Fan and Peng, 2004, [20]; Zhao

and Yu, 2006, [64]; Zou, 2006, [65]; Zhang, 2010, [61]; Bühlmann and Van De Geer, 2001, [8]).
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Apparently, the estimator of β, denoted by β̂(λ) = {β̂1(λ), . . . , β̂p(λ)}T , is a function of the

tuning parameter λ once the penalty function J(·) is specified. We name the function β̂j(λ), j =

1, · · · , p as the solution path of the coefficient βj . In practice, one can compute β̂(λ) for a number

of different values of λ to obtain the solution paths of all the coefficients and then choose a tuning

parameter λ using some type of criterion. The purpose of the tuning criterion is to find a λ that

balances the fit and the complexity of the model. Therefore, one need to specify both a penalty

function and a criterion to select the tuning parameter λ in order to carry out variable selection with

the penalized regression approach.

Much research has been devoted to the development of the penalty function. In general, there

are two classes of penalty functions, convex penalties and non-convex penalties. The L1 penalty,

referred as the Lasso (Least absolute shrinkage and selection operator, Tibshirani, 1996, [52]), is

probably the most commonly used convex penalty. Zou (2006, [65]) proposed the adaptive Lasso

approach which corrects the bias of the Lasso for nonzero regression coefficients by adding a weight

to the L1 penalty. As for the non-convex penalties, Fan and Li (2001, [16]) proposed the smoothly

clipped absolute deviation (SCAD) penalty by using a quadratic spline function with knots at λ and

aλ, where a > 2 is a constant; Zhang (2010, [63]) proposed the minimax concave penalty (MCP) by

minimizing the maximum concavity of the model for variable selection and unbiasedness; Shen et

al. (2012, [48]) also proposed the truncated L1 penalty (TLP) as a surrogate of the L0 penalty. These

non-convex penalties all enjoy the oracle property in the sense that estimators obtained by applying

these penalties are as efficient as if the nonzero coefficients are already known.

Another aspect of the feature selection involves the selection of the tuning parameter. Some

general selection criteria include cross validation ([50]), generalized cross validation ([13]), AIC

([2]), BIC([47]), GIC ([63]). Chen and Chen (2008, [11]) pointed out that these criteria usually

identify too many irrelevant features when the number of variables is large. Such phenomenon has

also been described in Broman and Speed (2002, [7]), Siegmund (2004, [49]) and Bogdan et al.

(2004, [6]) in their studies of quantitative loci mapping. Chen and Chen (2008, [11]) proposed the

extended BIC (EBIC), which promotes model sparsity by adjusting BIC with an additional penalty
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term for the growing number of parameters in the model. Recently, Sun et al. (2012, [51]) also

proposed a new technique via variable selection stability, which directly focuses on the selection of

the informative variables.

Although the above criteria have been well studied for more than a decade, there has been no

concurrence of opinion on which criterion to employ for the choice of the tuning parameter. See,

for examples, Table 1.1 for a list of publications on major statistics and machine learning journals

and the different criteria they use. In fact, the currently used feature selection procedure, using only

one chosen value for the tuning parameter, may suffer from inevitable drawbacks that it is often

impossible to correctly identify all the features, no matter which criterion we use. In the following,

we demonstrate these drawbacks with both a simulated example and a real data example.

Table 1.1: The general selection criteria in statistics and machine learning literature.

Criteria References

cv Adaptive Lasso Zou (2006) [65], JASA

Wong et al. (2013) [58], ICML

Fused Lasso Tibshirani et al. (2005) [54], JRSSB

TLP Shen et al. (2012) [48], JASA

gcv Lasso Tibshirani (1996) [52], JRSSB

SCAD Fan and Li (2001) [16], JASA

AIC Hurvich and Tsai (1989) [33], Biometrika

BIC Wang et al. (2007) [56], JRSSB

Yuan and Lin (2007) [60], Biometrika

EBIC Tilting Cho and Fryzlewicz (2012) [12], JRSSB

Group lasso Huang et al. (2010) [32], AOS

We would use the following simulated example to illustrate the aforementioned problem. Sup-

pose there are 10 nonzero (relevant) variables and 30 zero (irrelevant) ones in the model (1.1), where

the coefficients of these 10 nonzero variables are β∗
1 = · · · = β∗

5 = 3, β∗
6 = · · · = β∗

10 = −2 The

entries of the variables xj, j = 1, · · · , p are generated from the standard normal distribution. The

pairwise correlation between the first 10 variables is 0.9. The remaining 30 variables are independent

with each other, and are also independent with the first 10 variables. Furthermore, we generate the

error from the normal distribution N(0, 32) and we set the sample size to be n = 50. This example
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is proposed by Wang et al. (2011, [57]), which is designed to study the performance of the existing

variable selection methods for the data with complicated correlation structure.

We apply the R package lassoshooting to obtain a set of parameter estimators β̂(λ) at each value

of λ and plot the Lasso solution paths in Figure 1.1. We pick the grid of the tuning parameters

on the log scale, therefore we use the log values of the tuning parameter as the x-axis in the plot.

The dashed lines in Figure 1.1 represent the solution paths for nonzero variables and the solid lines

represent those for the zero ones. The tuning parameters chosen by the 2-fold CV, GCV, AIC, BIC

and the extended BIC (EBIC) are shown by the vertical lines. We report the total number of the

selected variables, the number of false positives (FP, the number of selected zero variables) and the

number of false negatives (FN, the number of missed nonzero variables) by these criteria in Table

1.2. Here the true model is known, therefore we also record the result of the “oracle” selection in

a sense that we select the best possible tuning parameter which minimizes the number of incorrect

selections (i.e., the number of selected zero variables + the number of missed nonzero variables).

We observe that CV, GCV, AIC, and BIC tend to select too many spurious variables and the

extended BIC tends to drop most of the nonzero variables. Even for the “oracle” selection, many

nonzero variables are excluded in the model. The problem looks more evident when we focus on

three lines in the lower panel of Figure 1.1. Here the two dotted lines (1 and 3) are the solution paths

of two nonzero coefficients, while the solid line 2 is the solution path for an zero one. Apparently

selecting a small λ, as AIC BIC and GCV do, misleads us to identifying all the three coefficients

as nonzero. On the other hand, a large λ, as CV, EBIC and Oracle select, incorrectly shrinks both

coefficients of the nonzero variables to zero. As a matter of fact, it is impossible to correctly identify

all the three features regardless of the value of the tuning parameter we choose, although one can

even tell the differences between the three features by simply observing the solution paths.

To better illustrate the limitations of selecting just one tuning parameter, we would use the

glioblastoma gene expression data by McLendon et al. (2008, [38]) as a motivating example. In

the dataset, by using all the censor subjects in the data and taking the logarithm of the survival time

as the response variable, we obtain a dataset with n = 185 subjects and p = 930 genes. To iden-
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Figure 1.1: Top: The Lasso solution paths of the simulated example. The dashed lines are the paths

of the 10 nonzero variables while the black lines are the paths of the 30 zero variables. The vertical

lines represent the choices of the tuning parameter by the criteria: CV, GCV, AIC, BIC, EBIC,

ORACLE. Bottom: The Lasso solution paths of the nonzero variables “1”, “2” and the zero variable

“3”. The bold line represents the zero line.
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Table 1.2: The number of the selected variables, the number of false positives (FP), the number of

false negatives (FN) of the criteria: CV, GCV, AIC, BIC, EBIC, Oracle. Note that the true model

contains 10 nonzero variables and 30 zero variables

CV GCV AIC BIC EBIC Oracle

Total number 16 35 37 35 4 4
FP 12 27 30 27 0 0
FN 6 2 3 2 6 6

tify the highly informative genes to explain the glioblastoma tumor behavior, we consider the linear

model (1.1) and apply the Lasso approach for selecting the relevant genes.

The solution paths of the Lasso on the glioblastoma gene expression data are shown in Fig-

ure 1.2. To better describe the problem, we focus on the solution paths of two genes: the gene

“IGF1” (insulin-like growth factor-1) and the gene “FRAT1” (frequently rearranged in advanced T

cell lymphomas-1). Previous studies have demonstrated that these two genes play important roles

in the glioblastoma behavior (See [35] and [27]). However, as shown in the second panel of Figure

1.2, selecting a small tuning parameter would ignore “FRAT1” while choosing a larger value of the

tuning parameters would miss the gene “IGF1”. We also observe that the none of CV, GCV, AIC,

BIC, or EBIC is able to identify both genes.

The above restriction of utilizing just one tuning parameter could seriously reduce the accuracy

of the feature selection in general, since solution paths like those in Figure 1.1 and Figure 1.2 happen

quite often no matter which penalty we employ. This is especially true when there exist large cor-

relations among the variables or the dimensions of the features are extremely high ([18], [19]). To

overcome this restriction, we develop an innovative and intuitive approach, which utilizes the whole

solution paths to improve the selection accuracy. Our approach can correctly identify the relevance

of the features like those 3 ones (the labeled lines 1, 2, and 3) in Figure 1.1.

We achieve the objective by developing a partitioning rule that cuts the whole solution paths into

two regions, namely “zero region” and “nonzero region”. First, we develop a new clustering method

which divides all the variables into two clusters, the relevant set and the irrelevant set, for each value
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Figure 1.2: Top: The Lasso solution paths of the glioblastoma gene expression data. There are 930
lines in the plot. Bottom: The Lasso solution paths of the genes “IGF1” and “FRAT1”. The vertical

lines represent the choices of the tuning parameter by the criteria: CV, GCV, AIC, BIC, EBIC.
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of the tuning parameter λ. Then the whole plot of the solution paths can be partitioned into two

regions by the red curves as shown in Figure 1.3 (the detailed partitioning rule will be introduced in

Chapter 2). We name the region inside the two red curves as the zero region, and that outside as the

nonzero region. Finally, we choose all the variables, which have been identified as a relevant variable

for at least one value of λ, as the important features. We consider a feature unimportant if its solution

path never goes out of the zero region. We name the above procedure selection by partitioning the

solution paths (SPSP). It can be well observed from Figure 1.3 that this SPSP procedure correctly

selects 9 out of the 10 relevant variables and drops all irrelevant ones, outperforming the result from

any single value of λ in terms of selection accuracy. Another advantage of the SPSP is that it does

not require the coefficients of the unimportant variables shrunk to zero and it allows us to carry out

feature selection with just a ridge regression.

We consider a feature important even if its solution path enters the nonzero region just once.

The strategy may seem aggressive in identifying relevant variables. This is because, we start the

SPSP process rather conservative, in the sense that for the smallest value of λ, we consider every

variable “unimportant”. We initiate the partitioning process with the smallest λ. Then the clustering

at a larger value of λ depends on the results from the previous λ. Therefore, the SPSP procedure

combines a conservative starting point with an aggressive selection strategy to optimize the selection

accuracy.

The SPSP procedure is connected with the stability selection approach, proposed in a discussion

paper by Meinshausen and Bühhmann (2010, [41]). Their approach is based on the probabilities

of the variables being selected, and these probabilities are obtained from generic sub-sampling ap-

proach. Therefore the stability selection does not require the selection of the tuning parameter and

also utilizes the information of the whole solution paths. However, the SPSP procedure would work

on any shrinkage penalty function, while with stability selection, one would still need to employ

a penalty that can shrink coefficients to zero. Moreover, the computational cost of the SPSP pro-

cedure is much smaller as no sub-sampling is involved and we only need to compute the solution

paths once. In addition, the cut off probability in stability selection is arbitrary, while for SPSP, the
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Figure 1.3: Top: Partitions on the Lasso solution paths of the same simulated example. The red lines

are the partitioning curves. Bottom: Partitions on the Lasso solution paths of nonzero variables “1”,

“3” and zero variable “2”.
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constant playing the similar role is data-adaptive. Finally, we find from simulation studies that the

stability selection tends to select too few variables, therefore produces a higher false negative rate

compared to the SPSP.

The work in this dissertation is also remotely related to Bayesian variable selection approaches,

where the tuning parameters or candidate models are assigned a prior distribution, and the posterior

distributions of the models are evaluated. A related idea of applying a collection of models for vari-

able selection is the Bayesian model averaging approach, which calculates the posterior probability

that a variable enters the model by averaging over all of the models (See [30], [46], [44]). An-

other similar idea is from Barbieri and Berger (2004, [4]), which constructs the posterior inclusion

probabilities for all the features using Bayesian model averaging technique. The final model would

include all the variables whose posterior probabilities of being in the model are 0.5 or higher. The

so-called probability median model also has the flavor of utilizing the results from different tuning

parameters, rather than just choosing one of them.

Furthermore, we also develop an original type of scores to rank the importance of the variables

based on the partitions of the solution paths. These scores provide precise directions on which

variables to keep, in case one would like to monitor the complexity of the model. Specifically,

we consider a feature more important if its solution path is farther out of the zero region, and less

important if it is farther inside the zero region. Hereafter, we refer these scores as area-out-of-zero-

region importance scores (AIS).

1.2 Literature Review

In this section, we provide a brief introduction of the previous research in the penalized least

squares estimation. The first part presents several penalty functions which are widely applied for

variable selection. The second part provides the general selection criteria for selecting the tuning

parameter.
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1.2.1 Penalty Functions

Extensive research has been devoted to the development of the penalty functions. In general,

two classes of penalty functions are presented, convex penalties and non-convex penalties. In this

section, we will introduce four penalty functions: the Lasso, the adaptive Lasso, the SCAD and the

MCP in details and apply these penalty functions in the simulation part of this dissertation. Note

that the former two functions are convex penalties while the latter two functions are non-convex

penalties. Furthermore, some other popular penalty functions are also listed in the last part of this

section.

Lasso

Tibshirani(1996, [52]) proposed the L1 norm as the penalty to shrink the variables into zero,

which is famously known as Lasso, an acronym for Least Absolute Shrinkage and Selection Oper-

ator. In variable selection, the Lasso has become very popular for its computational feasibility with

relatively high selection and prediction accuracy.

Specially, the Lasso estimator can be solved by the following optimization problem,

β̂
(Lasso)

= argmin
β

1

n
||y−Xβ||22 + λ||β||1,

where ||β||1 =
∑p

j=1 |βj| is the L1 norm of the parameters and λ is the tuning parameter. The

optimization problem is convex and has an equivalent form as

β̂
(Lasso)

= argmin
β

1

n
||y−Xβ||22 , subject to ||β||1 ≤ t,

where t is a constant which has a data-dependent one-to-one relation with λ.

The Lasso can perform variable selection and estimation simultaneously in the sense that some

coefficients can be shrunk into exactly zero. Under the orthonormal design, i.e.,
1

n
XTX = Ip, the
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Lasso estimator equals the soft-thresholding estimator,

β̂
(Lasso)
j = sign(Zj)(|Zj| − λ/2)+,

where Zj = (XTY)j/n, j = 1 · · · , p is the ordinary least squares estimator and “+” means the

positive part. Clearly, the Lasso estimator shrinks the coefficient whose OLS estimator is less than

λ/2 into zero.

Many theoretical results have been established on the prediction and selection consistency of

the Lasso estimator. One main result is that the Lasso is selection consistent if and only if the

neighborhood stability (Meinshausen and Bühlmann, 2006, [40]) or the irrepresentable condition

(Zhao and Yu, 2006, [64]) holds.

A number of algorithms for the computation of the Lasso estimators have been proposed. For

instance, the coordinate descent algorithm is very efficient for solving the Lasso estimators, espe-

cially for high dimensional problems. It updates the estimator fast in a coordinate-wise way until

numerical convergence. More details about the algorithm can be found in Friedman et al. (2007,

[23]). In addition, the shooting algorithm, proposed by Fu (1998, [26]), is also a special case of the

coordinate descent algorithm. We will employ this shooting algorithm for the computation of the

Lasso in this dissertation.

Adaptive Lasso

The selection consistency of the Lasso requires strong conditions, which can be easily violated

in practice. To reduce the bias of the Lasso estimator, Zou (2006, [65]) proposed the adaptive Lasso,

which adds a weight on the L1 norm to adjust the penalties. It is defined as

β̂
(ALasso)

= argmin
β

1

n
||y −Xβ||22 + λ

p
∑

j=1

ŵjβj,
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where ŵ = (ŵ1, · · · , ŵp) is a weight vector. Usually, if β̂ is a root-n-consistent estimator such as

the ordinary least squares (OLS) estimator, one can define the weight as

ŵ =
1

|β̂|γ
, for some γ > 0.

Note that if β̂j = 0, β̂
(ALasso)
j = 0; and if β̂j is large, the weight will be small, which means we

apply a small penalty (shrinkage) on this coefficient. In high-dimensional problems, we can pick the

Lasso or the ridge estimator with a small shrinkage parameter as the initial estimator.

Theoretically, if p is fixed in the model, the adaptive Lasso can achieve the selection consistency

under weak conditions while the Lasso requires stronger conditions (See [65]). In other words, the

adaptive Lasso can be consistent for cases where the Lasso is inconsistent.

The computation of the adaptive Lasso is the same as the Lasso after applying the following

transformation:

X(w) = X ·W,

where W is a p × p diagonal matrix with diagonal elements ŵ1, · · · , ŵp. Then we can solve the

following Lasso-type problem

β̂
(w)

= argmin
β

1

n
||y−X(w)β||22 + λ||β||1,

and the solution for the adaptive Lasso is β̂
(ALasso)

= W · β̂(w)
.

It is worth mentioning that the adaptive Lasso does not always outperform the Lasso since the

result of the adaptive Lasso heavily depends on the initial weight. When the OLS estimation (or the

ridge estimation) is not highly accurate, the adaptive Lasso can have a worse result than the result of

the Lasso.
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SCAD

Fan and Li (2001, [16]) advocated that a good penalty function should satisfy the following three

properties:

1. Unbiasedness: The resulting estimator is nearly unbiased especially for the large coefficients

to reduce the modeling bias.

2. Sparsity: The resulting estimator should set small estimated coefficients to zero automatically

on the purpose of variable selection.

3. Continuity: The resulting estimator should be continuous in the data to avoid instability in

prediction.

It is shown that the Lq penalty with 0 ≤ q < 1 does not satisfy the continuous condition, the L1

penalty (Lasso) does not satisfy the unbiasedness condition, and the Lq penalty with q > 1 does

not satisfy the sparsity condition. Hence, none of the Lq penalties can satisfy these three conditions

simultaneously.

According to these three properties, Fan and Li (2001, [16]) proposed the smoothly clipped

absolute deviation (SCAD) penalty, which is a non-convex function corresponding to the quadratic

spline with knots at λ and aλ. The first derivative of the SCAD penalty can be given as

J ′
S(|z|) = I(|z| < λ) +

(a− |z|/λ)+
a− 1

I(|z| > λ),

where a > 2 is a constant which can be chosen by the cross validation. Fan and Li (2001, [16]) also

suggested to set a as 3.7 for most problems.

The SCAD penalty satisfies the above three properties and theoretical results show that there

exist some local SCAD minimizers which are selection consistent under some strong conditions on

the design matrix (See [34] for more details).
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Generally, the SCAD estimator can be computed by the local linear approximation (LLA, [67])

or the local quadratic approximation (LQA, [16]).

MCP

Zhang (2010, [61]) proposed a MC+ method, which contains two parts: a minimax concave

penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the

minimum non-convexity of the penalized loss given the level of bias, which can remedy the bias

problem of the Lasso. Mathematically, the MCP is defined as

JM(|z|) =
∫ |z|

0

(1− x

γλ
)dx,

where γ > 0 is a regularization parameter. It minimizes the maximum concavity of the model

subject to some unbiasedness conditions.

Zhang (2010, [61]) established the selection consistency of the MCP estimator under a strictly

global convexity condition and the estimator can be efficiently computed by the PLUS algorithm.

Other Popular Penalties

In addition to those mentioned above, we also simply list some other popular ones as follows.

1. L0 penalty (Classical Variable Selection):

β̂
(L0)

= argmin
β

1

n
||y−Xβ||22 + λ

p
∑

j=1

I(βj 6= 0).

Note that the L0 penalty is equivalent to the traditional feature selection method: the best

subset. Most classical model selection criteria can be casted into this framework, such as the

Akaike information criterion (AIC) with λ = 2σ2/n, the Bayesian information criterion (BIC)

with λ = log(n)σ2/n, the risk inflation criterion (RIC) with λ = 2 log(p)σ2/n; however, the

estimation is computationally infeasible since the L0 penalty is non-convex and discontinuous

at 0. Normally we have to apply the exhaustive search in practice.
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2. Truncated L1 penalty (TLP, [48]):

β̂
(TLP )

= argmin
β

1

n
||y−Xβ||22 + λ

p
∑

j=1

min(
|βj|
τ

, 1),

where τ > 0 is a threshold parameter. The TLP penalty actually is a surrogate of the L0

penalty. It provides a good approximation of the L0 penalty especially when τ → 0+ with

significant computational advantages due to its piecewise linearity.

3. Lq penalty:

β̂
(Lq)

= argmin
β

1

n
||y−Xβ||22 + λ

p
∑

j=1

|βj|q.

The general Lq penalty with 0 < q < 2 leads to a bridge regression ([22], [26]). Whereas, the

estimator does not produce sparse solutions for q > 1.

4. Elastic net penalty ([66]):

β̂
(Elastic)

= argmin
β

1

n
||y−Xβ||22 + λ1

p
∑

j=1

|βj |+ λ2

p
∑

j=1

|βj|2,

where λ1 and λ2 are two tuning parameters. The elastic net actually is a linear combination of

the L1 and the L2 penalties, which is proposed to overcome the limitations of the L1 penalty.

1.2.2 Selection of the Tuning Parameter

Another aspect of the penalized least squares approach involves the selection of the tuning pa-

rameter. In this subsection, we begin with the introduction of the traditional selection criteria such

as cross validation, generalized cross validation, AIC and BIC. We further present the extended BIC

([11]), which adjusts BIC to produce a sparse model. Finally we introduce the stability selection,

proposed by Meinshausen and Bühhmann (2010, [41]), which bases on the subsampling technique

to avoid the problem of choosing the tuning parameter in the penalized least squares estimation.
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Cross Validation

The cross validation (CV, [50]) is a useful technique to access the accuracy of a statistical model.

Given a dataset, we can divide the dataset into a training set and a test set. We model the training

data only to obtain the estimator, and then apply the estimator to predict the values in the test set.

The best model chosen by the cross validation should have the best prediction performance among

the candidate models.

In practice, the k-fold cross validation is widely used for model selection. In the k-fold cross

validation, the dataset is split into k equal size sets. In these k sets, we will leave one set as the test

set and use the remaining k−1 as the training set. By taking each of these k sets exactly once as the

test set, we repeat the process k times and evaluate the average prediction error in these k results.

In the penalized least squares estimation, we denote the whole dataset as T . In the k-fold cross

validation, we need repeat the process k times. Using the same notations as in Fan and Li (2001,

[16]), we express the process as follows. At each time, we denote the training sets and test sets

as T − T i and T i respectively, where i = 1, · · · , k. Given a number of tuning parameters, we

compute the penalized least squares estimator as β̂
(i)
(λ) using the training set T −T i at each tuning

parameter. Therefore, the tuning parameter selected by the k-fold cross validation will be the one

with the smallest average prediction error, i.e.,

λCV = argmin
λ

1

k

k
∑

i=1

||yTi −XTi
β̂

(i)
(λ)||2,

where yTi and XTi
are the corresponding observations in the test set T i.

It is worth mentioning that since the computation of the cross validation is much more expensive

compared with the computation of the other criteria, we will apply the 2-fold cross validation in the

dissertation.
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Generalized Cross Validation

The generalized cross validation (GCV), firstly introduced by Craven et al. (1978,[13]), is con-

sidered as a weighted version of the n-fold cross validation but with significantly reduced computa-

tional burden.

In the penalized least squares estimation, given a number of tuning parameters, we can compute

the penalized least squares estimator as β̂(λ) at each tuning parameter. Then the tuning parameter

selected by the GCV can be expressed as ([16])

λGCV = argmin
λ

||y−Xβ̂(λ)||2
n(1−∑p

j=1 I(β̂j(λ) 6= 0)/n)2
.

Akaike Information Criterion

The Akaike Information Criterion (AIC), proposed by Akaike (1974, [2]), is one of the most

widely used variable selection criteria. Generally, given a statistical model of some data, we can

compute the maximized value of the likelihood function, denoted as L̂ and the number of the pa-

rameters in the model, denoted as ŝ. Thus the AIC value of this model is defined as

AIC = −2 log L̂+ 2ŝ.

The model chosen from a collection of candidate models is the one with the minimum AIC value.

In the linear regression (1.1), we can compute the likelihood of (β∗, σ) and derive the AIC value

as

AIC = n(log(2π) + log(||y −Xβ̂||2)− log(n)) + 2(n+ ŝ+ 1),

where β̂ is the estimator of β∗ in the model.



20

In the penalized least squares estimation, the tuning parameter selected by the AIC is

λAIC = argmin
λ

(n log(||y−Xβ̂(λ)||2) + 2

p
∑

j=1

I(β̂j(λ) 6= 0).

Bayesian Information Criterion

The Bayesian Information Criterion (BIC), another widely applied information criterion, was

proposed by Schwarz (1978,[47]). The BIC is also based on the likelihood function of a model and

is related with the AIC. Using the same notations, we can define the BIC value of a model as

BIC = −2 log L̂+ log(p)ŝ.

Obviously, the BIC penalizes the number of parameters in the model stronger than the AIC.

In the linear regression (1.1), under the assumption that the errors are generated from the normal

distribution, the BIC value can be derived as

BIC = n(log(||y−Xβ̂||2)− log(n)) + log(p)ŝ.

Similarly, in the penalized least squares estimation, the tuning parameter selected by the BIC is

λBIC = argmin
λ

(n log(||y−Xβ̂(λ)||2) + log(p)

p
∑

j=1

I(β̂j(λ) 6= 0).

Extended Bayesian Information Criterion

Since the BIC is too conservative for handling variable selection problems in high dimensional

data analysis, Chen and Chen (2008, [11]) proposed the extended Bayesian Information Criterion

(EBIC), which emphasizes the model sparsity by adding an additional penalty term on the BIC for

the growing number of parameters in the model. In general, the extended BIC can produce a sparser

model than the ordinary BIC criterion.
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In the penalized least squares estimation, the tuning parameter selected by the EBIC is

λEBIC = argmin
λ

(n log(||y−Xβ̂(λ)||2) + (2 log(p) + log(n))

p
∑

j=1

I(β̂j(λ) 6= 0).

Stability Selection

The stability selection, proposed by Meinshausen and Bühhmann (2010, [41]), applies the sub-

sampling technique on the general variable selection methods. It can enhance and improve the

selection accuracy of existing penalized likelihood approaches.

Under the framework of the penalized least squares estimation, the algorithm can be simply

described as follows. At each tuning parameter λk, we draw a random subsampling of size n/2

without replacing many times. Then the probability of each variable xj being selected in all the

subsamples can be computed as Π̂
(λk)
j , j = 1, · · · , p. Given a cutoff value πthr with 0 < πthr < 1,

the relevant set selected by the stable selection is defined as

Ŝ0
(stable)

= {j : max
k

Π̂
(λk)
j ≥ πthr}.

Here the variables with higher selection probabilities can be kept in the model while those with

lower probabilities will be dropped. It is suggested that the cutoff value πthr can take a value in

(0.6, 0.9). The algorithm is easy to understand and can be combined with all the penalty functions

which produce sparse solutions. Furthermore, the random subsampling method can alleviate the

correlation effect among the original data set. Note that the stability selection algorithm does not

require selecting the tuning parameter, we identify a variable as relevant if its selection probability

at any tuning parameter exceeds the threshold. Hereafter, the algorithm avoids the selection issue of

the tuning parameter.

1.3 Outline

The dissertation is organized as follows.
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Chapter 1 mainly introduces the background and the motivation of the proposed method in the

penalized linear regression. The related work by other statisticians on the penalty functions and the

selection criteria are provided in the literature review section.

Chapter 2 presents the major contribution of the dissertation: selection by partitioning the whole

solution paths (SPSP). An example is employed to demonstrate the general process of the algorithm.

Some further discussions on the penalized likelihood estimation are provided in the following sec-

tions.

Chapter 3 develops an original type of scores to rank the importance of the variables based on

the results of the SPSP algorithm. We define the scores of the variables by the areas between their

solution paths and the boundaries of the partitions. Hereafter, we refer these scores as the area-out-

of-zero-region importance scores (AIS).

Chapter 4 provides the theoretical results on the selection consistency of the proposed SPSP

algorithm. It is shown that the proposed SPSP estimators can achieve the selection consistency

as long as the original estimator is estimation consistent. Furthermore, under the irrepresentable

condition (Zhao and Yu, 2006, [64]), we prove that the SPSP procedure on the Lasso is selection

consistent over the whole solution paths. Moreover, since the irrepresentable condition is difficult

to satisfy in practice, we establish the selection consistencies under weaker conditions on both the

Lasso and the general penalties at the end of this chapter.

In Chapter 5, we conduct extensive numerical studies to illustrate the advantage of the SPSP pro-

cedure and the AIS. Six simulation examples are presented, covering different scenarios in feature

selection practices. Moreover, we also carry out a simulation study to illustrate the application of

SPSP on Gaussian graphical modeling. The results show the proposed SPSP algorithm significantly

outperforms the other methods in general.

In Chapter 6, two real applications (Boston housing data and glioblastomas gene expression data)

are presented to further investigate the performance of the proposed method. Compared with other

approaches, the models constructed by the proposed SPSP procedure are simpler with relatively

smaller model errors.
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Chapter 7 summarizes the main results in the dissertation. Some prospective future research and

discussion are provided in the chapter as well.
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CHAPTER 2 SELECTION BY PARTITIONING THE SOLUTION PATHS

In this chapter, we propose an approach which utilizes the whole solution paths to select the

informative features in the model. Firstly, we develop a partition rule to divide the variables into two

groups: relevant and irrelevant, at each tuning parameter. Based on the partitioning rule, we propose

the main algorithm of the dissertation: the selection by partitioning the whole solution paths (SPSP)

algorithm. The algorithm allows us to improve the selection accuracy by efficiently combining all

the information across the whole solution paths, especially in cases when strong correlations among

the variables are presented. Furthermore, we extend the SPSP procedure to the penalized likelihood

estimation.

2.1 The SPSP Algorithm

2.1.1 Notations and the Partitioning Rule

Considering the penalized least squares problem:

β̂ = argmin
β

1

n
||y−Xβ||2 + λ

p
∑

j=1

J(|βj|), (2.1)

where y = (y1, · · · , yn)T is the response and X = (x1, · · · ,xp) is the design matrix in model (1.1).

Here we also assume that xj , j = 1, · · · , p are standardized and the response y is centered. Further

denote the vector of the true regression coefficients in model (1.1) as

β∗ = (β∗
1 , · · · , β∗

p),

such that Ey = Xβ∗. Suppose the index set for the true relevant (nonzero) variables is S = {j :

β∗
j 6= 0} with s = |S|, and the index set for irrelevant variables is Sc = {j : β∗

j = 0}. The goal in

the variable selection is to correctly recover this sparsity pattern from the noisy observations in the

model, and correctly estimate S.
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Once we specify the penalty function J(·) in (2.1), a grid of the tuning parameters is required to

compute the solution paths. Typically, we would pick the grid to be equi-distant on the log scale as

follows:

λmin = λ1 < · · · < λK = λmax,

where λmin = 1/n, λmax is the smallest λ yielding β̂ = 0. Hence we have

λk+1 = λk exp

(

log(λmax)− log(λmin)

K − 1

)

, k = 1, · · · , K − 1.

Bühlmann and Van De Geer (2011,[8]), Shen et al. (2012, [48]) also suggested the same way

to build the grid of the tuning parameters. Note that since the solution paths are usually continuous

with respect to the tuning parameter, they vary little for the choice of the grid as long as enough

tuning parameters are selected. In practice, we can pick almost K = 100 grid points, as suggested

in Shen et al. (2012, [48]) and Sun et al. (2012, [51]).

For each λk, we obtain a vector of the penalized least squares estimators as

β̂k = (β̂k,1, · · · , β̂k,p)
T .

A variable is more likely to be identified as relevant if its estimator is farther away from 0, regardless

of the sign of the estimator. Therefore we take the absolute values of the estimators as

β̂k

(abs)
= (|β̂k,1|, · · · , |β̂k,p|)T .

In general, variables with a larger |β̂k,p| are more likely to be important. Therefore, we are

interested in finding a proper cutoff point Tk = T (λk), such that the estimated relevant set Ŝk and

irrelevant set Ŝc
k at λ = λk are derived as

Ŝk = {j : |β̂k,j| > Tk} (2.2)
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and

Ŝc
k = {j : |β̂k,j| ≤ Tk}. (2.3)

To obtain (Tk, Ŝk, Ŝ
c
k) for each λk, we sort the absolute values |β̂k,1|, · · · , |β̂k,p| in ascending order

to obtain

β̂
(abs)
k,(1) ≤ · · · ≤ β̂

(abs)
k,(p) ,

where β̂
(abs)
k,(j) is the jth order statistics of |β̂k,1|, · · · , |β̂k,p|. Then we define the adjacent distances

between these ordered values as

Dk,j = β̂
(abs)
k,(j) − β̂

(abs)
k,(j−1), j = 1, · · · , p.

Note that Dk,1 is the adjacent distance between β̂
(abs)
k,(1) and 0 as we define β̂

(abs)
k,(0) = 0 for convenience.

Let ŝk = |Ŝk| be the number of variables in the estimated relevant set Ŝk, then there are p − ŝk

variables in the estimated irrelevant set Ŝc
k. Hereafter, by (2.2) and (2.3), the selected variables in Ŝk

are those variables whose estimated coefficients correspond to the ŝk largest values:

β̂
(abs)
k,(p−ŝk+1), · · · , β̂

(abs)
k,(p)

while the variables in Ŝc
k are those whose estimated coefficients correspond to the smallest p − ŝk

ordered values:

β̂
(abs)
k,(1) , · · · , β̂

(abs)
k,(p−ŝk)

.

We simply define the gap between Ŝk and Ŝc
k as the adjacent distance between β̂

(abs)
k,(p−ŝk)

and β̂
(abs)
k,(p−ŝk+1),

i.e.,

D(Ŝk, Ŝ
c
k) = Dk,p−ŝk+1 = β̂

(abs)
k,(p−ŝk+1) − β̂

(abs)
k,(p−ŝk)

.

Note that it suggests given the number of the variables in Ŝk, one can compute the adjacent distance

which separates Ŝk and Ŝc
k as Dk,p−ŝk+1.
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In principle, D(Ŝk, Ŝ
c
k), the gap between Ŝk and Ŝc

k should be sufficiently large to separate the

irrelevant features from the important ones. We consider D(Ŝk, Ŝ
c
k) large enough if it meets the

following two criteria,

Dmax(Ŝk)

D(Ŝk, Ŝc
k)

< C, (2.4)

D(Ŝk, Ŝ
c
k)

Dmax(Ŝc
k)

> C, (2.5)

where Dmax(Ŝk) = max{Dk,j : j > p− ŝk + 1} is the largest adjacent distance in Ŝk, Dmax(Ŝ
c
k) =

max{Dk,j : j < p − ŝk + 1} is the largest adjacent distance in Ŝc
k and C is a certain constant.

The criterion (2.4) ensures that the gap between the relevant set and irrelevant set should have the

same order as the distances between the estimated nonzero coefficients, while (2.5) guarantees that

D(Ŝk, Ŝ
c
k) has a higher order than the distances between the estimators of the zero coefficients. The

constant C is used to control the differences of the magnitudes between the estimators of the zero

coefficients and those of the nonzero coefficients. The principles (2.4) and (2.5) here are equivalent

to saying that the order of the estimators for the nonzero coefficients should be higher than those

of the zero coefficients. Instead of comparing every pair of the estimators, we just use adjacent

distances for simplicity of the calculation. Therefore, finding the proper Tk now transforms to find-

ing an adjacent distance that is large enough—satisfies (2.4) and (2.5)—to be the gap between the

estimators for the zero coefficients and those for the nonzero ones.

In order to introduce our proposed algorithm for partitioning the solution paths, we further define

the largest adjacent distance under where Dmax(Ŝ
c
k) happens in Ŝc

k as

Dmax 2(Ŝ
c
k) = max{Dk,j : j < j′, Dk,j′ = Dmax(Ŝ

c
k)}.

Then following the aforementioned principles, we develop the algorithm for partitioning the solution

paths as follows.
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Selection by Partitioning the Solution Paths (SPSP) Algorithm

1 Set the initial values as T0 = ∞, Ŝ0 = ∅, Ŝc
0 = {1, . . . , p}, and proceed to λ1.

2 At each λk, we estimate Tk, Ŝk, Ŝ
c
k from Tk−1, Ŝk−1, Ŝ

c
k−1 and β̂k

(abs)
.

2.1 Update Tk = max
j∈Ŝc

k−1

|β̂k,j|, Ŝk = {j : |β̂k,j| > Tk}, Ŝc
k = {j : |β̂k,j| ≤ Tk};

2.2 Calculate Dk,1, . . . , Dk,p. Further obtain Dmax(Ŝ
c
k), Dmax2(Ŝ

c
k) and D(Ŝk, Ŝ

c
k).

2.3 If D(Ŝk, Ŝ
c
k) < C ×Dmax(Ŝ

c
k) and Dmax(Ŝ

c
k) > C ×Dmax 2(Ŝ

c
k), we update

Tk = β̂
(abs)
k,(j′−1), Ŝk = {j : |β̂k,j| > Tk}, Ŝc

k = {j : |β̂k,j| ≤ Tk}.

Otherwise Tk, Ŝk, Ŝ
c
k remain unchanged as in Step 2.1.

3 Proceed to λk+1 and repeat Step 2 until k = K.

4 Identify the union of all Ŝk as the index set for our selected relevant variables, i.e., Ŝ =
K
⋃

k=1

Ŝk.

At each λk, we find in Step 2 the cutoff point Tk, the location of the gap that distinguishes

the relevant and irrelevant variables, based on the results from λk−1. This not only simplifies the

computation process, but also makes the boundary line Tk = T (λk) relatively more smooth to avoid

unstable selection results. Specifically, in Step 2.1, we first use the largest estimated coefficients

among those identified as “zero-coefficients” for λk−1 as the current boundary. This could take care

of the case where some coefficients in Ŝk−1 becomes small and enters into the zero region at λk. At

Step 2.2 and Step 2.3, we decided on whether any adjacent distances within Ŝc
k is large enough to

be considered as the new gap between the zero and nonzero coefficients. This manages the scenario

that there are too few variables in Ŝk so that a “large” gap still exists.

For λ1, we use the initial values set in Step 1, where all the variables are considered “irrelevant”,

which means we are conservative in identifying the relevant variables at the start of this process.

This is because we implement an aggressive selection strategy at Step 4 to use the union of all Ŝk’s
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as our estimated index set for the relevant variables, allowing us to minimize the false positive rate

at each λk. Another reason is that the estimation at the small λk’s are usually unstable, because the

design matrix corresponding to nonzero coefficients is usually ill-conditioned. Therefore it is better

to select fewer relevant variables, rather than taking the high risks of committing false positive

errors.

Here the choice of the constant C for the partitioning rule is data-adaptive. In practice, we first

obtain the estimator with a small value of λ, then take the absolute value and compute the adjacent

distances of the sorted values. We then choose the constant C as the ratio of the maximal adjacent

distance to the second maximal adjacent distance. Simulation studies confirm that the strategy is

practically effective. In fact, both the simulations and our theoretical results show that our final

results are not sensitive to the choice of C.

Once we identify the index set of all the relevant variables Ŝ, we estimate the regression param-

eters β̂Ŝ a model that only includes the features that has been selected,

y = XŜβŜ + ε,

where XŜ = (xj)j∈Ŝ, βŜ = (βj)
T
j∈Ŝ

. In most cases, the number of features in Ŝ is smaller than the

sample size, we just use the least squares estimator as β̂Ŝ . If the number of selected variables are

larger than the sample size, we could use a ridge regression with a small shrinkage factor.

To gain more insights for the approach, we demonstrate the general process of the SPSP algo-

rithm by the following example.

Suppose Figure 2.1 is the plot of the solution paths of the penalized least squares estimators over

4 tuning parameters. There are also 4 lines in the plot, where each one represents a variable in the

model. To better describe the process, we name these variables as “1”, “2”, “3” and “4” based on

the β values from top to bottom at λ1.

In the SPSP approach, the threshold value, the estimated relevant set and irrelevant set are ini-
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Figure 2.1: Demonstration of the SPSP approach on a simple example: Partitions at λ1.

tialized as

T0 = ∞, Ŝ0 = ∅, Ŝc
0 = {1, 2, 3, 4}.

At the first tuning parameter λ1, we firstly update the threshold value as the largest value of the

irrelevant variables in the previous step. Since the initial estimated irrelevant set contains all the

variables, we have

T1 = 3, Ŝ1 = ∅, Ŝc
1 = {1, 2, 3, 4}.

We recommend the constant C can be chosen as the ratio of the largest adjacent distance and the

second adjacent distance at a small tuning parameter (λ = 0.01). For instance, suppose we pick

C = 2 for this example. Note that currently the estimated relevant set is an empty set, therefore the

adjacent distance in Ŝ1 is defined to be 0. According to the partitioning rule, we update the adjacent
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distance 2 as the new gap between the relevant set and irrelevant set, i.e.,

T1 = 1, Ŝ1 = {1}, Ŝc
1 = {2, 3, 4}.

Similarly, we follow the same steps for the remaining tuning parameters. Figure (2.2), (2.3)

demonstrate the partitioning processes at the tuning parameters λ2 and λ3. In particular, at λ2, the

maximal adjacent distance 0.45 in the irrelevant set is large enough to satisfy the partitioning rule

0.3 < C × 0.45 and 0.45 > C × 0.1.

Therefore we update the adjacent distance 0.45 as the new gap, then we have

T2 = 0.25, Ŝ2 = {1, 2}, Ŝc
2 = {3, 4}.

At λ3, the maximal adjacent distance 0.10 in the irrelevant set does not satisfy the second partitioning

rule, where 0.10 ≤ C × 0.05, thus the estimated relevant and irrelevant sets remain unchanged as

T3 = 0.15, Ŝ3 = {1, 2}, Ŝc
3 = {3, 4}.

Obviously, we can easily perform the SPSP algorithm for all the remaining tuning parameters

and finally union all the relevant sets as our final result. In this example, based on the first 3 tuning

parameters, the final relevant set is

Ŝ = Ŝ1

⋃

Ŝ2

⋃

Ŝ3 = {1, 2},

which is reasonable based on the solution paths of these variables since the estimators of the vari-

ables “1” and “2” are remarkably larger than the remaining two variables.
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Figure 2.2: Demonstration of the SPSP approach on a simple example: Partitions at λ2.
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c
3) = 0.05

0.10 ≤ C × 0.05
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Figure 2.3: Demonstration of the SPSP approach on a simple example: Partitions at λ3.
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2.1.2 The SPSP Algorithm on the Ridge

One advantage of the proposed SPSP procedure is that it can not only be applied to the penalties

like the Lasso, the adaptive Lasso, the SCAD, the MCP, but also it can be applied for the penalties

which cannot produce sparse solutions, such as the ridge penalty. As a result, the SPSP algorithm on

the ridge can greatly reduce the computation complexity for feature selection problems since strictly

convex penalties like ridge are easier to solve.

Particularly, the ridge estimator in the linear regression model (1.1), which refers to the L2

penalized least squares estimator, is defined as

β̂
(ridge)

= argmin
β

1

n
||y−Xβ||22 + λ||β||22,

where ||β||22 =
∑p

j=1 β
2
j is the L2 norm of the parameters.

Compared with other penalties, the advantage of the ridge estimator is that it has a closed solu-

tion:

β̂
(ridge)

= (XTX+ nλI)−1XTy,

which simplifies the computation compared with the other penalized least squares estimators. Nonethe-

less, it is well known the ridge estimator can not perform the variable selection since it does not

automatically shrink the estimates of the regression coefficients to zero. To remedy the problem,

we can apply the proposed SPSP algorithm on the ridge estimator for the variable selection. The

simulation studies in Chapter 5 show the selection accuracy is quite satisfactory.

Additionally, for some special problems, the SPSP algorithm on the ridge has a remarkably good

performance. Take Example 5 in Wang et al. (2011, [57]) for instance, there are 120 variables and

50 observations in the example. The first 60 coefficients are generated from N(3, 0.5) while the

remaining 60 coefficients are zero. The design matrix X is generated from a multivariate normal
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distribution with zero mean and the covariance matrix
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where Σ0 is a 30× 30 matrix with diagonal elements 1 and off-diagonal elements 0.7, J is a 30× 30

matrix with all elements 1 and the error εi ∼ N(0, 1), i = 1, · · · , n.
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Figure 2.4: The solution paths for the Lasso, the adaptive Lasso, the ridge and the SCAD of a

simulated example.

Figure 2.4 shows the solution paths of the Lasso, the adaptive Lasso, the ridge and the SCAD for

the same simulated example. The dashed lines represent those 60 nonzero variables and the black
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lines represent the remaining 60 zero variables. We implement the Lasso and the adaptive Lasso by

the R package lassoshooting and the SCAD by the R package plus. It is observed that for this high

dimensional problem, the solution paths of the Lasso, the adaptive Lasso and the SCAD are chaotic,

which hardly distinguish the relevant coefficients from the irrelevant ones. Whereas, the solution

paths of the ridge regression can perfectly divide the relevant and irrelevant coefficients into two

clusters. The gap between the relevant set and the irrelevant set at each tuning parameter is so large

that one can identify the nonzero variables intuitively. Obviously, the SPSP algorithm on the ridge

can be perfectly applied on this example. For more details, we evaluate the average performance of

the SPSP algorithm on these penalties over 100 replicates. It turns out the solution paths of the ridge

are similar and the SPSP approach on the ridge has the best performance.

In general, the SPSP algorithm on the ridge can have wide applications in practice due to its

computational feasibility. We now have the power to replace the L1 penalties and all the non-convex

penalties with a strictly convex penalty function like the L2 penalties. More simulation studies can

be found in Chapter 5 of the dissertation.

2.2 The SPSP Algorithm in the Penalized Likelihood Estimation

The penalized least squares estimation can be easily extended to handle feature selection prob-

lems in many other models such as graphical modeling, generalized linear models, Cox’s propor-

tional hazards models. In these models, we usually apply the penalized likelihood approach, which

obtains a sparse estimate by solving an objective function consisting of likelihood and a penalty

function. It is well known that the penalized least squares estimation in the general linear regression

model is equivalent to a transformation of the penalized likelihood estimation. As a result, we can

apply the SPSP algorithm on penalized likelihood estimators with a similar fashion.

Let f(V,β) be the likelihood for a random vector V = (V1, · · · , Vn), then the penalized likeli-

hood estimator can be obtained by maximizing the following function:

β̂ = argmax
β

{

1

n

n
∑

i=1

log f(Vi,β)− λ

p
∑

j=1

J(|βj |)
}

,
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where J(·) is a penalty function, and λ > 0 is the tuning parameter. Obviously, the problem has an

equivalent form as

β̂ = argmin
β

{

−1

n

n
∑

i=1

log f(Vi,β) + λ

p
∑

j=1

J(|βj|)
}

,

which is similar to the penalized least squares estimation in (1.2).

Fan and Li (2004, [20]) established the theoretical results for the non-concave penalized like-

lihood estimators under the infinite parameter setting. It is shown that under several regularity

conditions, the penalized likelihood estimators enjoy the oracle properties that the estimation is as

accurate as if we knew nonzero coefficients and applying MLE on the submodes which contains the

true nonzero coefficients only. See [16] ,[20] for more asymptotic results of the penalized likelihood

estimators.

The computation of the penalized likelihood estimation often requires some numerical algo-

rithms. The coordinate descent algorithm along with the shooting algorithm can be applied for the

computation of convex penalties (See [26]). For the computation of nonconcave penalties, Fan and

Li (2001, [16]) proposed an effective local quadratic approximation (LQA) algorithm.

Using the same notations, we select a sequence of the tuning parameters λ1 < · · · < λK . At

each tuning parameter, the penalized likelihood estimator is denoted as β̂k = (β̂k,1, · · · , β̂k,p)
T .

Therefore, the same SPSP approach can be applied on these estimators.

Note that the choice of the constant C in the SPSP algorithm for the penalized likelihood esti-

mation is similar as mentioned above. We can obtain an initial estimator as the MLE firstly:

β̂
(MLE)

= argmax
β

1

n

n
∑

i=1

log f(Vi,β),

and then compute the adjacent distances of the sorted absolute values. The constant C can also

be chosen as the ratio of the maximal adjacent distance to the second maximal adjacent distance in

practice. In case MLE does not exist due to the high dimensionality of β, we can apply the penalized
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likelihood estimator with a small shrinkage parameter as the initial estimator.

After we obtain the relevant index set Ŝ, we perform the estimation as

β̂
(SPSP )

= argmax
β

1

n

n
∑

i=1

log f(Vi,βŜ,Ŝc),

where βŜ,Ŝc = (βŜ, 0Ŝc)T .

2.2.1 Graphical Modeling

Graphical models use graphs to represent the conditional dependencies between random vari-

ables. In Gaussian graphical models, suppose there are n multivariate normal observations of di-

mension d, with mean µ and covariance matrix Σ. We are interested in inferring the conditional

dependencies between these d variables (x1, · · · ,xd). Denote the precision matrix as the inverse

of the covariance matrix Θ = Σ−1. Note that two variables xj and xk are conditionally depen-

dent given all the other variables if and only if Θjk 6= 0. Therefore the problem is equivalent to

the estimation of the precision matrix Θ. To discover the sparsity pattern of the precision matrix,

the graphical Lasso, proposed by Friedman et al. (2008, [25]), has been a popular approach in the

graphical models. Generally, the graphical Lasso is a penalized likelihood approach which can be

defined as follows,

Θ̂ = argmin
Θ

{

− log(det(Θ)) + tr(SΘ) + λ
∑

j<k

|Θjk|
}

over all the non-negative definite matrices, where det(A) denotes the determinant of A, tr(A) de-

notes the trace of A and λ > 0 is the tuning parameter. A simple and fast algorithm to compute the

graphical Lasso is also proposed in Friedman et al. (2008, [25]).

If Θjk 6= 0 which indicates the conditional dependency between xj and xk, we draw an edge

between nodes j and k in a corresponding graph (Lauritzen, 1996, [36]). Therefore, the number of

the parameters is p =
(

d
2

)

and the SPSP algorithm can be applied to select the nonzero values in this

Gaussian graphical model.
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2.2.2 Generalized Linear Models

In the generalized linear models, we simply assume that conditioning on x(i), the density of yi is

fβ(yi|g−1(x(i))), where g−1 is a real-valued, known inverse link function. For instance, in logistic

regression, the conditional distribution of yi|x(i) is Binomial(1, π(x(i))) and the link function is

g(π) = log

(

π

1− π

)

. That is,

log

(

π(x(i))

1− π(x(i))

)

= x(i)
Tβ.

Generally, we can compute the penalized likelihood estimators in generalized linear models as

β̂ = argmin
β

{

−1

n

n
∑

i=1

log fβ(yi|g−1(x(i))) + λ

p
∑

j=1

J(|βj|)
}

.

Several fast algorithms have been developed for the estimation of the generalized linear models with

convex penalties, such as the path following algorithm (Park and Hastie, 2007, [43]) and the cyclical

coordinate descent algorithm (Friedman et al., 2010, [24]). We can commonly pick the Lasso and

the adaptive Lasso as the penalty functions and then apply the proposed SPSP algorithm for the

variable selection.

2.2.3 Proportional Hazards Models

Tibshirani (1997, [53]) firstly proposed the Lasso for variable selection in the Cox’s proportional

hazards model. Fan and Li (2002, [17]) then proposed the penalized partial likelihood approach for

the Cox’s proportional hazards models. Using the same notations in their paper, we denote T , C and

x be the survival time, the censoring time and the associated variables respectively. Additionally,

let Z = min(T, C) be the observed time and δ = I(T ≤ C) be the censoring indicator. Assume

the observed data (xi, Zi, δi), i = 1 · · · , n is an independently and identically distributed random

sample from a certain population. The hazard function of T given x in the model is h(t|x) =

h0(t)exp(x
Tβ), where h0(t) is an baseline hazard function and β is the vector of the parameters in
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the model.

More notations are needed for the likelihood in the model. The observed failure times can be

sorted as t01 < · · · < t0N and the variables with the corresponding N failures are x(1), · · · ,x(N). Let

Rj be the risk set right before the time t0j , that is Rj = {i : Zi ≥ t0j}. Then the penalized partial

likelihood estimator can be defined as

β̂ = argmin
β







−1

n

N
∑

i=1



xT
(j)β − log

∑

i∈Rj

exp(xT
i β)



+ λ

p
∑

j=1

J(|βj |)







.

More details can be found in Fan and Li (2002, [17]). Note that we have to use the partial likelihood

in the model due to the censoring issue in the survival data. Based on the partial penalized likelihood

estimation, we can easily perform the variable selection by the proposed SPSP algorithm. Since the

estimators are computed from the incomplete likelihood, one can expect the selection based on the

whole solution paths should be more stable than the selection by a single tuning parameter.
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CHAPTER 3 AREA-OUT-OF-ZERO-REGION IMPORTANCE SCORES

The SPSP procedure automatically identifies the important variables. However, it is possible

that one may want to keep the flexibility for tuning the model complexities in actual applications.

Traditional approaches such as forward/backward selection ranks the variables by their order of

entering/leaving the model. While typical lasso type of approaches rank the variables by the order

of the tuning parameters at which the estimates of their coefficients are shrunk to zero. In other

words, if the estimate for the coefficient of variable A hits zero at a smaller value of the tuning

parameter compared to variable B, then it is impossible to include A in the model without B, even

if A is more important than B.

We propose to assess the importance of each variable using their solution paths. Here we develop

an original type of scores, noted as area-out-of-zero-region importance scores (AIS), to rank the

importance of the features. The scores we define also incorporate the information of the whole

solution paths, and is based on the SPSP procedure described in Chapter 2.

Specifically, we rank the importance of the variables by the areas between their solution paths

and the boundary of the partitions, which can be computed as the integral of the difference of the

variable curve and the boundary, i.e.

A(j) =

∫ log(λK)

log(λ1)

[fj(log(λ))− c(log(λ))]d log(λ),

where fj(log(λ)) represents the curve of solution path for βj , and c(log(λ)) represents the boundary

of the partitions. Here we use the log transformation of the tuning parameter as the independent

parameter because we commonly pick the tuning parameters equidistant on the log scale. In this

sense, the variable with the solution path which mostly stays in nonzero region is more likely to be

chosen in the model.
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We use the trapezoid rule to approximate the integral. Since we choose λ in the log scale, let

∆k = log(λk+1)− log(λk), k = 1, · · · , K − 1,

and we summarize how to calculate A(j) and rank the importance of the variables as follows.

Area-out-zero-region (AIS) Algorithm

1. Input the absolute values of the estimators β̂k

(abs)
, the cutoff points Tk, k = 1, · · · , K, the

final relevant set Ŝ obtained from the SPSP algorithm.

2. For each j = 1, · · · , p, compute

A(j) =
1

2

K−1
∑

k=1

[(|β̂k,j| − Tk) + (|β̂k+1,j| − Tk+1)](∆k).

3. Sort the index set Ŝ by A(j), j ∈ Ŝ decreasingly and also the index set Ŝc by A(j), j ∈ Ŝc

decreasingly.

The general idea of the aforementioned algorithm is that if a variable is more important, the

estimate of its coefficients tends to be larger. The AIS is a measurement of the average magnitude

of these estimates across the whole solution paths. Compared to the other existing approaches, the

AIS directly targets on the importance of the variables, minimizing the possibilities of less important

variables coming into the model before more important ones. Therefore, models yielded from AIS

tend to have a lower false positive rate, as evidenced by our simulation studies.
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CHAPTER 4 LARGE SAMPLE THEORIES

This chapter derives the large sample theories of the proposed SPSP estimator on the general

penalized least squares estimators. Basically, there are two types of consistencies in the variable

selection. An estimator β̂ is called estimation consistent if

P (β̂ = β∗) → 1 as n → ∞,

and called selection consistent if

P (Ŝ(β̂) = S) → 1 as n → ∞,

where Ŝ(β̂) = {j : β̂j 6= 0}.

For most penalties, the estimators can satisfy either selection consistency or estimation consis-

tency or even both when the tuning parameter λn is appropriately chosen. In particular, the Lasso

penalty is selection consistent under some conditions when
√
nλn → ∞ and λn → 0 ([64]); the

ridge penalty is estimation consistent when λn → 0; the adaptive Lasso penalty is selection con-

sistent when
√
nλn → ∞ and

√
nλ → 0 ([65]); the SCAD penalty is selection consistent when

√
nλn → ∞ and λn → 0 ([16]).

As mentioned in Chapter 2, the estimation of the SPSP algorithm is the OLS estimation based on

the selected relevant variables while the OLS estimators are estimation consistent under the general

assumptions in (1.1). Hence, the estimation consistency of the SPSP estimator can be obtained

directly if the selection consistency is satisfied. Hereafter, we will focus on the selection consistency

of the SPSP estimator in the chapter.

We firstly show the SPSP estimator can possess the selection consistency built on the solution

paths over the interval where the original estimator is either selection consistent or estimation consis-

tent. In the sense, although the ridge estimator cannot produce sparse solutions, the SPSP estimator
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on the ridge can still be selection consistent. Then we establish the selection consistency of the

SPSP estimator on the Lasso over the whole solution paths. We mainly apply the irrepresentable

condition, proposed by Zhao and Yu (2006, [64]), to control the estimation behavior of the Lasso

and then discuss the consistency under some weaker conditions. Finally we extend the consistency

properties of the SPSP estimator to the general penalized least squares estimation.

4.1 Selection Consistency

The SPSP algorithm bases on the idea that the gap between the estimated relevant and irrelevant

coefficients should be significantly large, which actually means that the distances of the relevant es-

timators are one or several orders of magnitude larger than the distances of the irrelevant estimators.

According to this partitioning rule, the selection consistency of the proposed SPSP estimator can be

established as follows.

Let Ŝ(λn) be the estimated relevant set at the tuning parameter λn, then the relevant set of the

SPSP algorithm built on the solution paths over the interval I should be

Ŝ =
⋃

λn∈I

Ŝ(λn).

We establish the following property as our first result for the SPSP estimator.

Theorem 1. For any penalized least squares estimator which is either selection consistent or es-

timation consistent when λn ∈ (λn,min, λn,max), where λn,min → 0 as n → ∞, then the SPSP

estimator built on the solution path over (λn,min, λn,max) is selection consistent. That is

P(Ŝ = S) → 0 as n → ∞.

Proof. Suppose the penalized least squares estimator β̂ is estimation consistent when λn ∈ (λn,min, λn,max),

that is β̂
p−→ β∗, thus we have

|β̂j| p−→ |β∗
j |, j ∈ S and |β̂j| p−→ 0, j ∈ Sc.
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Hence with probability 1, we have for any j1, j2 ∈ Sc, j3, j4 ∈ S,

∣

∣

∣|β̂j3| − |β̂j4|
∣

∣

∣

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

→
∣

∣|β∗
j3| − |β∗

j4|
∣

∣

∣

∣|β∗
j2
| − |β∗

j3
|
∣

∣

=

∣

∣|β∗
j3| − |β∗

j4|
∣

∣

|β∗
j3
| ≤ C∗,

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

∣

∣

∣
|β̂j1| − |β̂j2|

∣

∣

∣

→
∣

∣|β∗
j2
| − |β∗

j3
|
∣

∣

∣

∣|β∗
j1
| − |β∗

j2
|
∣

∣

=
|β∗

j2
| − 0

0− 0
= ∞,

where C∗ =
max
j∈S

|β∗
j | −min

j∈S
|β∗

j |
min
j∈S

|β∗
j |

is a constant. Therefore the partitioning rule for the true relevant

and irrelevant sets has been verified at λn ∈ (λn,min, λn,max), that is, with probability 1,

Dmax(Ŝ)

D(Ŝ, Ŝc)
≤ C∗,

D(Ŝ, Ŝc)

Dmax(Ŝc)
→ ∞.

In the SPSP algorithm, we begin with all the variables unimportant, i.e., Ŝ0 = ∅. Since the true

relevant set and irrelevant set satisfies the partitioning rule over (λn,min, λn,max), there exists at least

one λn ∈ (λn,min, λn,max) such that Ŝ(λn) = S for a large enough constant C in the SPSP algorithm.

Then we have

Ŝ =
⋃

λn

Ŝ(λn)
p−→ S.

The proof is similar for the selection consistent case since the selection consistency of the penalized

least squares estimation requires stronger conditions than the estimation consistency, then we still

have with probability 1

|β̂j| > Ĉ > 0, j ∈ S and |β̂j| = 0, j ∈ Sc,

where Ĉ is a positive constant.

It is well known that the existing penalized least squares estimators all enjoy either estimation

consistent or selection consistent as λn → 0. For instance, the Lasso, the adaptive Lasso, the SCAD,
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the MCP all enjoy the selection consistency under some strong conditions while the ridge holds the

estimation consistency. Hence, Theorem 1 can establish the selection consistency of the SPSP esti-

mator on a wide class of the penalty functions. Since the selection consistency of the penalized least

squares estimator is usually more difficult to obtain, applying the SPSP algorithm on the estimators

which possess the estimation consistency is adequate to obtain the selection consistency. Moreover,

Theorem 1 can be easily extended to other applications. Take the penalized likelihood estimation as

an example, Fan and Peng (2004, [20]) established the asymptotic properties of the penalized likeli-

hood estimators with diverging number of the parameters. One important conclusion in their paper

is that under several regularity conditions on the penalty functions and the likelihood functions, in a

certain range of λn, there exists a local penalized likelihood estimator β̂ such that

||β̂ − β∗||1 = Op(
√
p(n−1/2 + an)),

where an = maxj∈S λnJ(|β∗
j |). In other words, the general penalized likelihood estimators can

enjoy a root-(n/p)-estimation-consistent property in a certain range of λn. Therefore the SPSP algo-

rithm on the penalized likelihood estimators can possess the selection consistency over the solution

paths on this range.

4.2 Lasso

Generally, the Lasso estimator is defined as

β̂
(Lasso)

= argmin
β

1

n
||y−Xβ||2 + λn||β||1, (4.1)

where λn is the tuning parameter.

Lots of work has been done on the selection consistency of the Lasso estimator. It was shown the

selection consistency requires a strong condition on the design matrix, called neighborhood stability

([40]) or irrepresentable condition ([64]). In this section, we will focus on the selection consistency

of the SPSP estimator on the Lasso under the irrepresentable condition firstly and then discuss the
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consistency under a weaker condition - the restricted eigenvalue condition ([5]).

4.2.1 Irrepresentable Condition

Theorem 1 established the consistency over the solution paths on (λn,min, λn,max). But actually

we anticipate the proposed SPSP estimator should be selection consistent over the whole solution

paths. In other words, even if we select the correct model over a part of the solution paths, we still

need to ensure that the irrelevant features won’t be selected over the remaining solution paths. On

this purpose, we introduce the following property of the Lasso estimator firstly.

Lemma 2. Let β̂ = (β̂1, 0) be the solution of the Lasso at the tuning parameter λ. Let X1 be the

sub matrix of X that consists of the columns corresponding to β̂1 and X2 be the sub matrix with the

remaining columns. If |( 1
n
XT

2 X1)(
1
n
XT

1 X1)
−1| < 1 where 1 is a vector of 1’s, then there exists a

vector ∆ > 0 of the same dimension as β̂1, such that (β̂1 − SIGN(β̂1)∆, 0) is a solution for the

Lasso with a larger tuning parameter λ+ l, where SIGN(β̂1) is a diagonal matrix with the diagonal

vector sign(β̂1) and l > 0 is any positive number.

Proof. By the KKT condition, the sufficient and necessary condition for β̂ to be the solution of the

Lasso at λ is

1

n
XT

1 ε+
1

n
XT

1 X(β∗ − β̂) = λ sign(β̂1)
∣

∣

∣

∣

1

n
XT

2 ε+
1

n
XT

1 X(β∗ − β̂)

∣

∣

∣

∣

≤ λ1.

Same equations can be derived for β̂
′
= (β̂1 − SIGN(β̂1)∆, 0). That is, if β̂

′
is the solution at

λ+ l, then we need to make sure

1

n
XT

1 ε+
1

n
XT

1 X(β∗ − β̂
′
) = (λ+ l) sign(β̂1)

∣

∣

∣

∣

1

n
XT

2 ε+
1

n
XT

1 X(β∗ − β̂
′
)

∣

∣

∣

∣

≤ (λ+ l)1.

Taking the differences of the above two sets of equations, we only need the following to be true
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in order for β̂
′
to be the solution at λ+ l,

1

n
XT

1 X1SIGN(β̂1)∆ = l sign(β̂1)
∣

∣

∣

∣

1

n
XT

2 X1SIGN(β̂1)∆

∣

∣

∣

∣

≤ l1.

It follows from the condition |( 1
n
XT

2 X1)(
1
n
XT

1 X1)
−1| < 1 immediately that ∆ = l( 1

n
XT

1 X1)
−11

satisfies both the above equation and inequality.

The lemma actually suggests that once the coefficient of a certain feature has been shrunk to

zero, it will not jump back to a non-zero value for a larger tuning parameter. The lemma is quite

useful to control the behavior of the irrelevant variables in the model.

Before we establish the selection consistency of the SPSP algorithm on the Lasso over the whole

solution paths, it is natural to assume some regularity conditions on the design matrix. Zhao and Yu

(2006, [64]) proposed some regularity conditions as follows.

There exist 0 ≤ c1 < c2 ≤ 1 and M1,M2 > 0 such that

αTCn
11α ≥ M1, for ∀||α||22 = 1, (4.2)

p = O(nc1), (4.3)

s = O(en
c3 ), 0 ≤ c3 < c2 − c1, (4.4)

n
1−c2

2 min
j∈S

|β∗
j | ≥ M2, (4.5)

where s is the number of the relevant variables in the model, Cn
11 = 1

n
(X∗

1 )
TX∗

1 and X∗
1 is the

sub matrix of X that consists of columns corresponding to the relevant features. Note that these

conditions are commonly assumed in the theoretical studies of the penalized least squares estimation.

See [64] and [39] for more details on the conditions.

Now we can establish the following result:

Theorem 3. Under the regularity conditions (4.2)-(4.5), there exists λn,min where λn,min → 0 as
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n → ∞, such that the SPSP estimator on the Lasso built on the solution paths over (λn,min,∞) is

selection consistent under the following irrepresentable condition ([64])

|Cn
21(C11)

−1| ≤ 1− η,

where η is a positive constant, Cn
11 = 1

n
(X∗

1 )
TX∗

1 , Cn
21 = 1

n
(X∗

2 )
TX∗

1 , and X∗
1 is the sub matrix

of X that consists of columns corresponding to the relevant features, X∗
2 is the sub matrix with the

irrelevant columns.

Proof. For λn ∝ n
c4−1

2 with 0 ≤ c4 < 1 , the Lasso estimator is selection consistent based on the

Theorem 4 in [64], therefore the selection consistency of the SPSP estimator over (λn,min, λn,max)

can be obtained directly from the previous Theorem 1, where λn,min, λn,max ∝ n
c4−1

2 . That is, for

λn ∈ (λn,min, λn,max),

Ŝ(λn)
p−→ S as n → ∞.

As λn > λn,max, according to Lemma 2, under the strong irrepresentable condition, the estimated

zero coefficients in (λn,min, λn,max) remain to be zero, which indicates that these variables will be

identified as relevant at λn > λn,max. Thus we have for λn > λn,max,

Ŝ(λn) ⊆ S.

Especially, when λn → ∞, we have |β̂j| p−→ 0, j = 1, · · · , p, which also suggests Ŝ(λn) ⊆ S with

probability 1. Since the final relevant set of the SPSP approach is
⋃

λn

Ŝ(λn)
p−→ S, the selection

consistency of the SPSP estimator on the Lasso built on the solution paths over the (λn,min,∞) has

been proved.
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4.2.2 Restricted Eigenvalue Condition

We established the selection consistency of the SPSP estimator on the Lasso over the whole

solution paths in Theorem 3; however, one issue on the concern of the conditions in Theorem 3 is

that the irrepresentable condition is too strong to fulfill. Much work has shown that if the condition

is violated, the Lasso may perform poorly in selecting the correct model ([42]). Hence, it will be

better if we can seek some weak assumptions for the SPSP algorithm on the Lasso.

For controlling the prediction error of the Lasso in high dimensional cases, Bickel et al. (2009,

[5]) proposed the following restricted eigenvalue condition.

Assumption 1. Restricted Eigenvalue Condition RE(s0, c0) ([5]) For some integer s0 such that

1 ≤ s0 ≤ p, and a positive number c0, the following condition holds:

κ(s0, c0) = min
S⊆{1,··· ,p},

|S|≤s0

min
δ 6=0,

||δSc ||1≤c0||δS ||1

||Xδ||2√
n||δS||2

> 0. (4.6)

The number c0 indicates that this condition is valid only for the vectors satisfying

||δSc||1 ≤ c0||δS||1,

and the integer s0 plays the role of an upper bound on the sparsity of the vector. The general idea is

that the minimum eigenvalue of the Gram matrix 1
n
XTX should be greater than 0 over a restricted

subset of the vectors instead of all the vectors. While for the Lasso residuals δ = β̂
(Lasso) − β∗, we

have with probability close to 1,

||δSc||1 ≤ 3||δS||1,

hence we only require c0 = 3 for the Lasso in the assumption (See [5]).

It is known that the restricted eigenvalue condition (REC) is weaker than the irrepresentable

condition ([8]). Note that there are some other related assumptions with the restricted eigenvalue

condition such as the compatibility condition ([55]), the restricted isometry condition ([10]), and the
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coherence condition ([9]).

Under the REC assumption, we can control the prediction error of the Lasso in a non-asymptotic

form and then we have the following result:

Theorem 4. Suppose that RE(s, c0) is satisfied with c0 = 3 and κ. Consider the Lasso estimator

β̂ = (β̂1, · · · , β̂p)
T defined in (4.1) with λn = Aσ

√

log p
n

, where A is a constant and A > 4
√
2.

Suppose min
j∈S

|β∗
j | −

8Aσ

κ2
s
√

log p
n

≥ C1 > 0, where C1 is a constant. If s
√
log p ≤ √

n, then

P







min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

max
j1,j2∈Sc

∣

∣

∣
|β̂j1| − |β̂j2|

∣

∣

∣

→ ∞






= 1 as n → ∞, (4.7)

P







max
j3,j4∈S

∣

∣

∣
|β̂j3| − |β̂j4|

∣

∣

∣

min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

≤ C∗






→ 1 as n → ∞, (4.8)

where C∗ =
max
j∈S

|β∗
j | −min

j∈S
|β∗

j |
min
j∈S

|β∗
j |

.

Proof. Under the Restricted Eigenvalue Condition RE(s0, 3), if λn = Aσ
√

log p
n

, then with proba-

bility at least 1− p1−A2/32 (See [5]),

||δS||1 ≤
2Aσ

κ2
s

√

log p

n
, ||δSc||1 ≤

6Aσ

κ2
s

√

log p

n
.

To prove (4.7), it suffices to see that

max
j1,j2∈Sc

∣

∣

∣
|β̂j1| − |β̂j2|

∣

∣

∣
≤ max

j∈Sc
|βj| ≤ ||δSc||1,



51

and for any j2 ∈ Sc, j3 ∈ S,

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣
≥ |β∗

j3
| −

∣

∣

∣
|β̂j3| − |β∗

j3
|
∣

∣

∣
− |β̂j2|

≥ min
j∈S

|β∗
j | − |δj3| − |δj2|

≥ min
j∈S

|β∗
j | − ||δ||1.

Then with probability at least 1− p1−A2/32,

min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

max
j1,j2∈Sc

∣

∣

∣
|β̂j1| − |β̂j2|

∣

∣

∣

≥
min
j∈S

|β∗
j | − ||δ||1

||δSc||1
≥ C1κ

2

6Aσ

√
n

s
√
log p

,

→ ∞ as n → ∞.

The proof of (4.8) is analogous. We can see for any j3, j4 ∈ S

∣

∣

∣
|β̂j3 | − |β̂j4|

∣

∣

∣
≤

∣

∣|β∗
j3| − |β∗

j4|
∣

∣+
∣

∣

∣
|β̂j3| − |β∗

j3|
∣

∣

∣
+
∣

∣

∣
|β̂j4| − |β∗

j4|
∣

∣

∣

≤ max
j∈S

|β∗
j | −min

j∈S
|β∗

j |+ ||δS||1.

Then with probability at least 1− p1−A2/32,

max
j3,j4∈S

∣

∣

∣
|β̂j3| − |β̂j4|

∣

∣

∣

min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3 |

∣

∣

∣

≤
max
j∈S

|β∗
j | −min

j∈S
|β∗

j |+ ||δS||1
min
j∈S

|β∗
j | − ||δ||1

,

→ C∗ as n → ∞.

The beta-min condition here is a common condition in the selection consistency which requires

the true nonzero coefficients to be sufficiently large. Theorem 4 states that in a certain range of

the tuning parameters, the distances between the irrelevant coefficients of the Lasso estimator are

much smaller than the distance between the relevant coefficient and the irrelevant coefficient while
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the distances between the relevant coefficients and the irrelevant coefficients should be at least the

same order of magnitude as the distances between the relevant coefficients. Consequently, we can

apply this property in the SPSP algorithm to distinguish the relevant variables from the irrelevant

variables.

Note that Theorem 4 only shows the selection consistency of the SPSP estimator on the Lasso

over part of the solution paths. For the consistency over the whole solution paths especially at small

tuning parameters, we still need to add some stability conditions to control the estimation behavior.

4.3 General Case

In this section, we will generalize the theoretical results of the Lasso to the general penalty

functions using a similar restricted eigenvalue condition. Firstly, We define the general penalized

least squares estimator as

β̂ = argmin
β

1

n
||y −Xβ||2 + λn

p
∑

j=1

J(|βj|), (4.9)

where J(·) is a general penalty function.

Due to the high dimensionality of the data, we must impose some uniform conditions on the

penalty function. Under the framework of the least squares (L2) loss, we have to control the penalty

terms on the purpose of the estimation accuracy. A higher-order derivative restriction on the penalty

function is a simple way to bound the penalty terms.

Assumption 2. There is a large enough open subset Ω of Rp which contains the true parameter

β∗ and all the possible penalized least squares estimators in (4.9), such that for almost all β̄ in

Ω, all J ′′(β̄j), j = 1, · · · , p exist. Furthermore the supremum of the absolute values of the second

derivatives exists, denoted as

D = sup{|J ′′(β̄j)|, j = 1, · · · , p, β̄ ∈ Ω}.
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Under the assumption, the second derivative of the penalty function is bounded, which is nec-

essary for controlling the error bounds in the estimation. Clearly, the Lasso and the adaptive Lasso

penalties both satisfy this assumption with D = 0. For the ridge penalty, we have D = 2. Moreover,

for the SCAD penalty,

J ′
SCAD(θ) = I(θ ≤ λn) +

(aλn − θ)+
(a− 1)λn

I(θ > λn)

for some a > 2 and θ > 0 and the hard thresholding penalty function

JHT (θ) = λn −
(|θ| − λn)

2

λn

I(|θ| < λn),

the second derivatives are bounded as long as we restrict the range of the tuning parameter λn.

Define the general residual as δ = β̂ − β∗ and the maximal value of the first derivative of the

true nonzero coefficients as fn = maxj∈S J
′(|β∗

j |), we present a basic inequality for the general

penalized least squares estimator as follows.

Lemma 5. Consider the linear model (1.1), let β̂ be the estimator in (4.9) with λn = Aσ
√

log p
n

,

where A is a constant and A > 4
√
2, under Assumption 2, then with probability at least 1−p1−A2/32

, we have

1

n
||Xδ||22 + λn

∑

j∈Sc

J(|δ̂j|) ≤
λn

2
||δ||1 + λn(fn||δS||1 +

D

2
||δS||22).

Proof. The first part of proof is similar with the proof of Lemma B.1 in [5]. For the completeness,

we begin from the following basic inequality

1

n
||y−Xβ̂||22 + λn

p
∑

j=1

J(|β̂j|) ≤
1

n
||y−Xβ∗||22 + λn

p
∑

j=1

J(|β∗
j |),
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which is equivalent to

1

n
||Xδ||22 + λn

∑

j∈Sc

J(|β̂j|) ≤ λn(
∑

j∈S

J(|β∗
j |)−

∑

j∈S

J(|β̂j |)) + 2

p
∑

j=1

(β̂j − β∗
j )(

∑n
i=1 xijǫi
n

).

Define Vj =

∑n
i=1 xijǫi
n

, 1 ≤ j ≤ p, then Vj ∼ N (0,
σ2

n
) and consider the event

A =

p
⋂

j=1

{

|Vj| ≤
λ

4

}

,

thus

P(A c) ≤ p · P
(√

n

σ
|Vj| >

√
nλn

4σ

)

≤ p exp

(

− nλ2
n

32σ2

)

= p1−A2/32.

Hence on event A ,

1

n
||Xδ||22 + λn

∑

j∈Sc

J(|β̂j|) ≤
λn

2
||δ||1 − λn(

∑

j∈S

J(|β̂j|)−
∑

j∈S

J(|β∗
j |)). (4.10)

Consider J(|β̂j|)− J(|β∗
j |), j ∈ S, by Taylor Expansion,

J(|β̂j|)− J(|β∗
j |) = J ′(|β∗

j |)δjsign(β∗
j ) +

J ′′(|β̄j|)
2

δ2j ,

where |β̄j | lies between |β∗
j | and |β̂j |. Thus

|J(|β̂j|)− J(|β∗
j |)| ≤ fn|δj |+

D

2
δ2j ,

∑

j∈S

|J(|β̂j|)− J(|β∗
j |)| ≤ fn||δS||1 +

D

2
||δS||22

Then the result can be derived from (4.10) directly.

This lemma suggests one interesting property on the general residual, that is, with probability
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close to 1, the general residual must satisfy

∑

j∈Sc

J(|δj|)−
1

2
||δSc||1 ≤

1

2
||δS||1 + fn||δS||1 +

D

2
||δS||22.

Similarly, in the general high-dimensional scenario, we impose some conditions on the design

matrix in order to obtain the error bounds for the general penalized least squares estimator.

Assumption 3. (Generalized Restricted Eigenvalue Condition RE(s0,Ψ)) For some integer s0 such

that 1 ≤ s0 ≤ p, and a function Ψ, the following condition holds:

κ(s0,Ψ) = min
S⊆{1,··· ,p},

|S|≤s0

min
δ 6=0,

δ∈Ψ(S)

||Xδ||2√
n||δ||1

> 0,

where Ψ(S) =

{

δ ∈ R
p :

∑

j∈Sc J(|δj|)− 1
2
||δSc||1 ≤ 1

2
||δS||1 + fn||δS||1 +

D

2
||δS||22

}

.

The assumption is similar as the restricted eigenvalue condition (4.6). We also require that the

minimum restricted eigenvalue of the design matrix over a subset of the vectors is positive. Note that

we use the L1 norm in the denominator to facilitate the derivation in the general case. In particular,

we can specify the subset once we choose the penalty function.

Theorem 6. Let the conditions of Lemma 5 be satisfied, then under the condition RE(s,Ψ) with κ,

if A <
2κ2

Dσ

√

n

log p
, with probability at least 1− p1−A2/32 , we have

||δ||1 ≤
(1 + 2fn)Aσ

√
log p

2
√
nκ2 −ADσ

√
log p

.

Proof. Under Assumption 3, the general penalized least squares residual satisfies

||Xδ||2 >
√
nκ||δ||1.
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And in Lemma 5, we have

1

n
||Xδ||22 ≤

λn

2
||δ||1 + λn(fn||δS||1 +

D

2
||δS||22),

≤ (
1

2
+ fn)λn||δ||1 +

D

2
λn||δ||22,

≤ (
1

2
+ fn)λn||δ||1 +

D

2
λn||δ||21,

(4.11)

Hence

κ2||δ||21 ≤ (
1

2
+ fn)λn||δ||1 +

D

2
λn||δ||21,

(κ2 − D

2
λn)||δ||21 ≤ (

1

2
+ fn)λn||δ||1,

||δ||1 ≤
(1 + 2fn)Aσ

√
p log p

2
√
nκ2 − ADσ

√
log p

.

Thus the inequality in Theorem 6 holds.

Theorem 6 provides the bound of the estimation error for the general penalized least squares

estimator. Moreover, the prediction error 1
n
||Xδ||22 can also be derived from (4.11). The upper

bound on the constant A controls the range of the tuning parameter λn. Particularly, the upper

bound is infinity for the case D = 0 such as the Lasso and the adaptive Lasso. In general, in the

asymptotic sense, assuming
√
log p <

√
n, the upper bound can be sufficiently large.

Now we can summarize the following result for the SPSP algorithm on the general least squares

estimator.

Theorem 7. Consider the general penalized least squares estimator β̂ = (β̂1, · · · , β̂p)
T defined

in (4.9) with λn = Aσ
√

log p
n

, where A is a constant and A > 4
√
2. Under the same conditions

in Theorem 6, suppose min
j∈S

|β∗
j | −

(1 + 2fn)Aσ
√
log p

2
√
nκ2 − ADσ

√
log p

≥ C2 > 0, where C2 is a constant. If
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n, then

P







min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

max
j1,j2∈Sc

∣

∣

∣
|β̂j1| − |β̂j2|

∣

∣

∣

→ ∞






= 1 as n → ∞,

P







max
j3,j4∈S

∣

∣

∣
|β̂j3| − |β̂j4|

∣

∣

∣

min
j2∈Sc,j3∈S

∣

∣

∣
|β̂j2| − |β̂j3|

∣

∣

∣

≤ C∗






→ 1 as n → ∞,

where C∗ =
max
j∈S

|β∗
j | −min

j∈S
|β∗

j |
min
j∈S

|β∗
j |

.

Proof. The proof is analogous to the proof of Theorem 4.

Here Theorem 7 provides the similar results as Theorem 4. It proves the partitioning rule for the

SPSP algorithm on the general penalty functions over a certain range of the tuning parameters. It

is worth mentioning that the conditions in Theorem 7 can be relaxed once we specify the penalty

function in (4.9). The further theoretical properties of the SPSP estimators over the whole solution

paths will be left as the future work.
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CHAPTER 5 SIMULATION STUDIES

This chapter examines the selection accuracy of the SPSP algorithm through six simulated ex-

amples. Specifically, we apply four popular penalty functions in the simulation studies: the Lasso,

the adaptive Lasso, the SCAD and the MCP. For each penalty, we compare the performance of the

proposed algorithm with the criteria for selecting the tuning parameter including the CV, the GCV,

the AIC, the BIC and the EBIC. Moreover, we also present the comparison between the AIS algo-

rithm and two other stepwise selection approaches: the forward selection and the LARS algorithm.

Finally, we provide a simple example of the SPSP algorithm in the graphical modeling. All of the

simulation studies in the chapter are implemented in the R environment.

5.1 SPSP for variable selection

We carry out extensive simulation studies to compare the SPSP procedure and the AIS algorithm

with the current existing approaches. For the examples either with small number of the variables or

with simple correlation structures (such as Example 1 and 2 in [52]), the simulation studies show

that both the proposed SPSP algorithm and some of the existing approaches have good performance

in selecting the correct model. The results of these examples are available upon request.

5.1.1 Simulation Settings

We mainly propose the SPSP algorithm for the variable selection problems with high correla-

tions in the data sets, especially for the high dimensional data problems. Therefore, we present six

simulation examples with relatively complicated correlation structures here. The first simulation

illustrates one low dimensional case, where the relevant variables are highly correlated. The other

five simulation settings all have high dimensional features (p > n). In the second simulation, the

relevant variables are highly correlated with different signs. To examine the performances of the

proposed SPSP algorithm over different noise levels, we increase the noise level of the second sim-

ulation for the third simulation setting. For the following two simulation examples, the true models
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both contain 3 relevant variables, while the number of irrelevant variables are 97 and 997 respec-

tively. We can evaluate the performance of the proposed algorithm for sparse models through these

two examples. The last simulation is also from a high dimensional linear regression, but the true

model is not contained in the model space. The simulation is used to examine the performance of

the proposed algorithm in the misspecified models.

All the following simulations are generated from model (1.1) with

xij ∼ N(0, 1), i = 1, · · · , n, j = 1, · · · , p

and ǫi ∼ N(0, σ2). The details of the simulations are described as follows.

(1) Let

β∗ = (3, 3, 3, 3, 3,−2,−2,−2,−2,−2, 0, · · · , 0),

where the first 10 coefficients are nonzero and the remaining 30 coefficients are zero. The

pairwise correlation between the first 10 variables is 0.9. The remaining 30 variables are

independent with each other, and are also independent with the first 10 variables. We set

σ = 3 and n = 50.

(2) Let β∗ = (3, 3,−2, 3, 3,−2, 0, · · · , 0), where the first 6 coefficients are nonzero and the re-

maining 94 coefficients are zero. The pairwise correlation between the first 3 variables is

0.9, the pairwise correlation between the second 3 variables is also 0.9 and the remaining 94

variables are independent with each other. Furthermore, the first 3 variables, the second 3

variables, and the remaining 94 variables are independent with each other. We set σ = 1 and

n = 50.

(3) The same as Model (2) except that we set σ = 3.

(4) There are 100 variables in the model. Let β∗
1 = 3, β∗

2 = 1.5, β∗
5 = 2, and the remaining 97

coefficients are zero. The correlation between xj1 and xj2 is 0.5|j1−j2|. We set σ = 2 and
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n = 50.

(5) The same as Model (4) except that we set 1000 variables in the model.

(6) The true coefficients in the model is

β∗ = (1,−1.25, 0.75,−0.95, 1.5, 0, · · · , 0),

where among these 100 coefficients, the first 10 are nonzero and the remaining 95 are zero.

All the variables are independent of each other, i.e, the rows of X is generated from N(0, Ip).

We consider n = 50 and σ = 0.25 in the model. Here the response y is obtained from

y = Xβ∗ + xp+1 + ε,

where xp+1 = x1 ◦ x2 is an interaction term which is the product of the first two variables.

However, we still apply the model (1.1): y = Xβ∗+ε to estimate the coefficients. Therefore,

the true model cannot be correctly specified in this simulation study.

The first three examples are similar with the examples in the random lasso paper by Wang et

al. (2011, [57]), which are designed to investigate the performance of the existing methods for the

data with complicated correlation structures. The following two examples are selected from the

truncated L1 penalty paper by Shen et al. (2012, [48]). The last misspecified model is taken from

Lv and Liu (2014, [37]). We aim at examining the performance of the proposed methods through

these six examples with different correlation structures.

To compute the solution paths for Lasso and adaptive Lasso, we utilized the R package las-

soshooting ([1]), and while the initial weight of the adaptive Lasso is obtained by the ridge estimator

with a small shrinkage factor (λ = 0.01). For SCAD and MCP, R package plus ([62]) is imple-

mented to obtain the solution paths.

For computing the solution paths of the penalized least squares estimators, we need to initially
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select a grid of tuning parameters λ. For the Lasso and the adaptive Lasso, as discussed before, we

select the grid to be equi-distant on the log scale as follows:

λmin = λ1 < · · · < λK = λmax,

where λmin = 1/n, λmax is the smallest λ yielding β̂ = 0. That is,

λk+1 = λk exp

(

log(λmax)− log(λmin)

K − 1

)

, k = 1, · · · , K − 1.

We apply K = 100 in all the simulations. For the ridge, we apply the same grid as the Lasso. For the

SCAD and the MCP, the grid of tuning parameters are generated automatically by the plus function.

In the SPSP algorithm, the selection of the constant C is data-adaptive. Generally, for each

penalty, we obtain an estimator with a small shrinkage factor (λ = 0.01), and then compute the

adjacent distances of the sorted absolute values of the coefficients. Thus, the constant C can be

computed as

C =
Maximal adjacent distance

Second maximal adjacent distance
. (5.1)

Considering the criteria for selecting the tuning parameter λ, we apply the two-fold CV to reduce

the computational cost. And for the GCV, the AIC, the BIC, the EBIC, as introduced in Chapter 1,

the formulas are given as follows,

λGCV = argmin
λk

(

SSE(λk)

n(1− ŝk/n)2

)

,

λAIC = argmin
λk

(n log(SSE(λk)) + 2ŝk),

λBIC = argmin
λk

(n log(SSE(λk)) + ŝk log n),

λEBIC = argmin
λk

(n log(SSE(λk)) + ŝk(2logp+ log n)),

where SSE(λk) = ||y −Xβ̂k||22, ŝk is the number of the nonzero variables at the tuning parameter
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λk, i.e.,

ŝk =

p
∑

j=1

I(β̂k,j 6= 0).

For each simulation, we record the following measures: FP (False Positive, the number of zero

variables incorrectly identified as nonzero), FN (False Negative, the number of nonzero variables

incorrectly identified as zero), PS (FP+FN, the total number of the incorrect selections), and ME

(Model Error=(β̂ − β∗)T Σ̂(β̂ − β∗)/σ2). Note that in each simulation, the true model is known,

therefore we also record the result of the “oracle” selection in a sense that we select the “best” tuning

parameter which minimizes the number of the incorrect selections (i.e., the smallest “PS” value).

We report the mean and the standard error (standard deviation/
√
B) of all these values over

B = 100 replicates for these six examples. We also tried B = 200 and the results are similar.

5.1.2 The Main Results

The results for these six examples are summarized in Table 5.1-5.6.

From Table 5.1, we can observe that the CV, the GCV, the AIC and the BIC on all the penalties

tend to select too many variables in the model, which lead to large FP values. For the EBIC, the

FP value is almost 0 but the FN value is large. It indicates that this criterion excludes most of the

informative variables for producing an over-sparse model. It is also seen that the SPSP on the Lasso,

the adaptive Lasso, the SCAD and the MCP all perform well in excluding the irrelevant variables in

the model (small FP values). Meanwhile, the SPSP on all the penalties exclude almost half of the

relevant variables in the model, which is better than the results of the EBIC. Finally, we also notice

that the model errors of the SPSP are smaller than the other selection criteria for all the penalties.

Table 5.2-5.6 show the results for high dimensional examples. In Table 5.2, we can see that the

FN values of all the approaches are close on the same penalty; however, the SPSP algorithm on the

penalty has much smaller FP values than the other selection criteria. It indicates that the proposed

algorithm can remarkably reduce the number of the irrelevant variables for this high dimensional

example. Even when the noise level increases in Example 3, the SPSP Algorithm still performs well

in reducing the FP values compared with the other criteria.
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Table 5.1: Simulation Results of Example 1 (low-dimension) over 100 replicates for the Lasso, the

ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.63 8.31 10.42 26.12 5.03 0.77 0.82
(0.24) (1.61) (1.28) (0.77) (1.32) (0.13) (0.13)

FN 5.11 5.58 5.79 1.69 6.27 7.03 6.95
(0.28) (0.39) (0.32) (0.27) (0.33) (0.13) (0.12)

PS 5.74 13.89 16.21 27.81 11.30 7.80 7.77
(0.33) (1.27) (1.03) (0.60) (1.05) (0.20) (0.19)

ME 0.44 0.59 0.53 0.72 0.59 0.57 0.57
(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

ALasso FP 0.65 5.63 10.62 22.59 4.12 0.19 0.37
(0.20) (1.44) (0.91) (1.01) (0.97) (0.07) (0.09)

FN 4.03 6.57 4.55 1.40 6.73 8.09 7.19
(0.29) (0.43) (0.38) (0.24) (0.33) (0.11) (0.18)

PS 4.68 11.93 15.17 23.99 10.85 8.28 7.56
(0.30) (1.05) (0.69) (0.84) (0.71) (0.13) (0.15)

ME 0.40 0.80 0.51 0.69 0.55 0.63 0.55
(0.02) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02)

SCAD FP 1.09 0.86 12.21 15.03 5.07 0.00 0.24
(0.37) (0.28) (0.68) (0.61) (0.88) (0.00) (0.08)

FN 5.86 8.34 6.25 5.84 7.10 8.94 6.90
(0.17) (0.13) (0.16) (0.18) (0.20) (0.05) (0.16)

PS 6.95 9.20 18.46 20.87 12.17 8.94 7.14
(0.40) (0.27) (0.72) (0.68) (0.82) (0.05) (0.14)

ME 0.47 0.61 0.66 0.71 0.57 0.61 0.66
(0.02) (0.03) (0.03) (0.03) (0.03) (0.02) (0.04)

MCP FP 0.96 0.61 12.04 15.38 6.92 0.00 0.97
(0.35) (0.24) (0.63) (0.66) (0.82) (0.00) (0.17)

FN 5.31 8.86 5.79 5.39 6.47 8.94 6.88
(0.20) (0.07) (0.18) (0.17) (0.21) (0.05) (0.22)

PS 6.27 9.47 17.83 20.77 13.39 8.94 7.85
(0.39) (0.23) (0.67) (0.68) (0.74) (0.05) (0.17)

ME 0.45 0.61 0.68 0.73 0.61 0.60 0.48
(0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.02)
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Table 5.2: Simulation Results of Example 2 (high-dimension) over 100 replicates for the Lasso, the

ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.04 24.60 49.74 49.48 49.27 8.89 0.01
(0.03) (1.66) (0.29) (0.28) (0.28) (2.58) (0.01)

FN 2.11 1.97 1.68 1.68 1.68 2.00 2.01
(0.06) (0.02) (0.08) (0.08) (0.08) (0.03) (0.01)

PS 2.15 26.57 51.42 51.16 50.95 10.89 2.02
(0.07) (1.66) (0.30) (0.29) (0.30) (2.57) (0.02)

ME 1.54 1.21 1.35 1.35 1.35 2.09 2.54
(0.07) (0.07) (0.05) (0.05) (0.05) (0.15) (0.17)

ALasso FP 0.02 9.20 40.47 42.95 42.86 0.1 0.08
(0.02) (1.18) (0.44) (0.19) (0.20) (0.05) (0.04)

FN 1.05 1.05 0.24 0.22 0.22 2.1 1.92
(0.13) (0.12) (0.06) (0.06) (0.06) (0.06) (0.05)

PS 1.07 10.25 40.71 43.17 43.08 2.2 2.00
(0.14) (1.13) (0.46) (0.22) (0.23) (0.07) (0.03)

ME 1.00 1.14 1.31 1.33 1.33 1.8 1.82
(0.09) (0.07) (0.05) (0.05) (0.05) (0.12) (0.11)

SCAD FP 0.02 1.52 39.08 40.03 39.69 20.02 0.01
(0.02) (0.43) (1.06) (0.98) (1.03) (3.28) (0.01)

FN 3.42 3.89 3.68 3.68 3.68 3.81 2.46
(0.11) (0.05) (0.09) (0.09) (0.09) (0.08) (0.09)

PS 3.44 5.41 42.76 43.71 43.37 23.83 2.47
(0.11) (0.42) (1.08) (1.01) (1.05) (3.27) (0.09)

ME 2.27 2.48 1.36 1.36 1.36 2.07 6.40
(0.09) (0.11) (0.05) (0.05) (0.05) (0.13) (0.38)

MCP FP 0.01 0.85 46.47 46.54 46.48 42.74 0.03
(0.01) (0.24) (0.67) (0.54) (0.55) (2.03) (0.02)

FN 3.59 3.96 3.68 3.76 3.78 3.80 3.68
(0.10) (0.03) (0.10) (0.09) (0.08) (0.08) (0.08)

PS 3.60 4.81 50.15 50.30 50.26 46.54 3.71
(0.10) (0.25) (0.68) (0.56) (0.58) (2.03) (0.08)

ME 2.48 2.76 1.35 1.36 1.36 1.50 2.62
(0.10) (0.11) (0.55) (0.05) (0.05) (0.08) (0.10)
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Table 5.3: Simulation Results of Example 3 (high-dimension with large noise) over 100 replicates

for the Lasso, the ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.87 33.45 51.57 51.39 51.37 38.91 1.75
(0.28) (0.72) (0.31) (0.31) (0.31) (2.81) (0.20)

FN 2.96 2.25 1.96 1.95 1.95 2.13 2.31
(0.13) (0.10) (0.10) (0.10) (0.10) (0.10) (0.09)

PS 3.83 35.70 53.53 53.34 53.32 41.04 4.06
(0.28) (0.73) (0.34) (0.34) (0.34) (2.78) (0.23)

ME 0.39 0.66 1.02 1.02 1.02 0.94 0.51
(0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

ALasso FP 1.36 22.84 43.06 44.42 44.19 0.19 0.30
(0.47) (1.15) (0.31) (0.19) (0.20) (0.07) (0.07)

FN 2.61 1.87 1.21 1.11 1.10 3.02 2.51
(0.15) (0.13) (0.13) (0.12) (0.12) (0.10) (0.10)

PS 3.97 24.71 44.27 45.53 45.29 3.21 2.81
(0.45) (1.15) (0.37) (0.28) (0.28) (0.12) (0.12)

ME 0.39 0.58 1.01 1.02 1.02 0.53 0.44
(0.05) (0.03) (0.03) (0.03) (0.03) (0.05) (0.04)

SCAD FP 1.37 3.36 39.23 40.04 39.74 21.81 0.02
(0.57) (0.54) (1.12) (1.06) (1.09) (3.28) (0.02)

FN 3.66 3.91 3.94 3.94 3.94 3.99 2.76
(0.08) (0.04) (0.04) (0.04) (0.04) (0.04) (0.10)

PS 5.03 7.27 43.17 43.98 43.68 25.80 2.78
(0.58) (0.55) (1.12) (1.06) (1.09) (3.27) (0.10)

ME 0.40 0.42 1.02 1.02 1.02 0.74 0.88
(0.03) (0.03) (0.03) (0.03) (0.03) (0.07) (0.05)

MCP FP 1.69 1.90 45.37 45.93 45.81 39.64 0.02
(0.70) (0.43) (0.90) (0.79) (0.85) (2.56) (0.02)

FN 3.95 4.02 3.93 3.94 3.94 3.96 3.96
(0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)

PS 5.64 5.92 49.30 49.87 49.75 43.60 3.98
(0.70) (0.43) (0.90) (0.80) (0.86) (2.55) (0.02)

ME 0.45 0.46 1.02 1.02 1.02 0.94 0.46
(0.03) (0.04) (0.03) (0.03) (0.03) (0.04) (0.03)
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Table 5.4: Simulation Results of Example 4 (high-dimensional sparse model, p = 100) over 100
replicates for the Lasso, the ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the

parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.23 22.04 49.82 49.87 49.87 11.72 0.37
(0.08) (1.49) (0.29) (0.26) (0.26) (2.88) (0.08)

FN 0.34 0.00 0.02 0.02 0.02 0.01 0.00
(0.09) (0.00) (0.02) (0.02) (0.02) (0.01) (0.00)

PS 0.57 22.04 49.84 49.89 49.89 11.73 0.37
(0.11) (1.49) (0.30) (0.26) (0.26) (2.88) (0.08)

ME 0.57 0.43 1.02 1.02 1.02 0.62 0.50
(0.06) (0.04) (0.03) (0.03) (0.03) (0.05) (0.04)

ALasso FP 0.86 13.28 42.95 45.55 45.46 0.16 0.10
(0.25) (1.28) (0.78) (0.15) (0.15) (0.06) (0.04)

FN 0.21 0.00 0.01 0.00 0.01 0.10 0.00
(0.07) (0.00) (0.01) (0.00) (0.01) (0.04) (0.00)

PS 1.07 13.28 42.96 45.55 45.47 0.26 0.10
(0.25) (1.28) (0.78) (0.15) (0.15) (0.07) (0.04)

ME 0.23 0.31 0.98 1.01 1.01 0.23 0.24
(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

SCAD FP 2.85 2.84 31.98 33.41 32.58 9.68 0.11
(0.79) (0.45) (1.23) (1.14) (1.23) (2.59) (0.04)

FN 0.32 0.24 0.11 0.11 0.11 0.37 0.13
(0.08) (0.06) (0.04) (0.04) (0.04) (0.07) (0.05)

PS 3.17 3.08 32.09 33.52 32.69 10.05 0.24
(0.77) (0.44) (1.22) (1.14) (1.23) (2.56) (0.06)

ME 0.42 0.35 1.00 1.00 1.00 0.53 0.52
(0.06) (0.05) (0.03) (0.03) (0.03) (0.05) (0.06)

MCP FP 1.38 1.47 42.56 43.94 43.84 29.13 0.16
(0.43) (0.41) (0.94) (0.78) (0.80) (3.24) (0.05)

FN 0.37 0.40 0.12 0.12 0.12 0.25 0.13
(0.08) (0.07) (0.05) (0.05) (0.05) (0.06) (0.05)

PS 1.75 1.87 42.68 44.06 43.96 29.38 0.29
(0.42) (0.41) (0.93) (0.77) (0.79) (3.21) (0.07)

ME 0.45 0.46 1.02 1.02 1.02 0.94 0.46
(0.06) (0.06) (0.03) (0.03) (0.03) (0.06) (0.04)
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Table 5.5: Simulation Results of Example 5 (high-dimensional sparse model, p = 1000) over 100
replicates for the Lasso, the ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the

parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.04 41.55 56.85 56.56 56.03 0.11 0.14
(0.03) (2.29) (0.42) (0.41) (0.39) (0.04) (0.05)

FN 0.75 0.00 0.00 0.00 0.00 0.69 0.07
(0.12) (0.00) (0.00) (0.00) (0.00) (0.14) (0.04)

PS 0.79 41.55 56.85 56.56 56.03 0.80 0.21
(0.12) (2.29) (0.42) (0.41) (0.39) (0.13) (0.06)

ME 0.61 0.82 1.05 1.05 1.05 1.50 1.09
(0.09) (0.05) (0.03) (0.03) (0.03) (0.17) (0.08)

ALasso FP 0.13 20.08 41.70 44.78 44.78 0.11 0.09
(0.06) (1.92) (0.87) (0.29) (0.29) (0.04) (0.04)

FN 0.57 0.01 0.00 0.00 0.00 0.51 0.12
(0.11) (0.01) (0.00) (0.00) (0.00) (0.12) (0.05)

PS 0.70 20.09 41.70 44.78 44.78 0.62 0.21
(0.11) (1.92) (0.87) (0.29) (0.29) (0.12) (0.06)

ME 0.49 0.53 0.98 1.02 1.02 0.79 0.61
(0.08) (0.04) (0.04) (0.03) (0.03) (0.13) (0.06)

SCAD FP 1.95 6.20 29.56 31.61 30.70 15.45 0.07
(0.43) (0.77) (0.60) (0.70) (0.69) (2.19) (0.04)

FN 0.50 0.27 0.37 0.37 0.37 0.59 0.13
(0.09) (0.06) (0.07) (0.07) (0.07) (0.12) (0.05)

PS 2.45 6.47 29.93 31.98 31.07 16.04 0.20
(0.42) (0.77) (0.60) (0.70) (0.69) (2.16) (0.06)

ME 0.58 0.57 1.04 1.04 1.04 1.18 0.95
(0.06) (0.07) (0.03) (0.03) (0.03) (0.15) (0.09)

MCP FP 0.66 2.25 46.06 46.07 46.02 44.81 0.03
(0.25) (0.46) (0.54) (0.49) (0.53) (1.31) (0.02)

FN 0.69 0.44 0.30 0.30 0.30 0.30 0.30
(0.10) (0.08) (0.07) (0.07) (0.07) (0.07) (0.07)

PS 1.35 2.69 46.36 46.37 46.32 45.11 0.33
(0.25) (0.46) (0.54) (0.50) (0.53) (1.30) (0.07)

ME 0.58 0.58 1.04 1.04 1.04 1.03 0.48
(0.07) (0.06) (0.03) (0.03) (0.03) (0.03) (0.04)
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Table 5.6: Simulation Results of Example 6 (misspecified model) over 100 replicates for the Lasso,

the ALasso (Adaptive Lasso), the SCAD, the MCP (Standard Error in the parentheses).

SPSP 2-CV GCV AIC BIC EBIC Oracle

Lasso FP 0.39 27.20 44.72 45.47 45.47 23.35 0.66
(0.13) (1.65) (0.34) (0.17) (0.17) (3.14) (0.13)

FN 0.95 0.06 0.03 0.03 0.03 0.83 0.38
(0.16) (0.06) (0.02) (0.02) (0.02) (0.21) (0.09)

PS 1.34 27.76 44.75 45.50 44.50 24.18 1.04
(0.18) (1.64) (0.35) (0.17) (0.17) (3.02) (0.14)

ME 14.66 13.71 18.77 18.88 18.88 27.21 28.91
(1.97) (1.16) (1.04) (1.04) (1.04) (2.75) (1.81)

ALasso FP 0.67 19.09 36.91 42.18 42.15 0.30 0.37
(0.17) (1.59) (1.14) (0.25) (0.25) (0.08) (0.08)

FN 0.77 0.20 0.11 0.08 0.08 1.55 0.36
(0.14) (0.08) (0.04) (0.04) (0.04) (0.26) (0.08)

PS 1.44 19.29 37.02 42.26 42.23 1.85 0.73
(0.19) (1.57) (1.14) (0.26) (0.26) (0.24) (0.12)

ME 12.94 12.86 17.21 18.29 18.29 26.99 16.14
(1.78) (1.32) (1.03) (1.02) (1.02) (3.70) (1.28)

SCAD FP 5.28 4.00 37.86 38.67 38.47 25.71 0.45
(1.17) (0.73) (1.07) (0.97) (1.01) (3.01) (0.10)

FN 0.48 0.44 0.14 0.14 0.14 0.58 0.16
(0.14) (0.15) (0.06) (0.06) (0.06) (0.19) (0.06)

PS 5.76 4.44 38.00 38.81 38.61 26.29 0.61
(1.15) (0.71) (1.08) (0.98) (1.01) (2.94) (0.11)

ME 14.77 18.13 18.82 18.84 18.83 22.65 16.68
(2.13) (2.36) (1.03) (1.03) (1.03) (3.33) (1.70)

MCP FP 2.50 1.96 44.00 44.30 44.11 40.96 0.16
(0.75) (0.46) (0.58) (0.43) (0.56) (1.84) (0.07)

FN 0.57 0.65 0.11 0.11 0.11 0.23 0.15
(0.15) (0.16) (0.05) (0.05) (0.05) (0.11) (0.07)

PS 3.07 2.61 44.11 44.41 44.22 41.19 0.31
(0.74) (0.44) (0.58) (0.44) (0.57) (1.79) (0.09)

ME 13.96 16.97 18.90 18.93 18.90 19.37 10.69
(2.23) (2.46) (1.04) (1.04) (1.04) (1.61) (1.16)
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Table 5.4-5.5 presents the simulation results for Example 4 and Example 5. Note that in these two

examples, the true models are highly sparse and the relevant variables and the irrelevant variables are

all correlated. We observe that the SPSP procedure can remarkably improves the selection accuracy

by selecting fewer irrelevant variables on the existing penalties in general. From these two tables,

we also notice that the adaptive Lasso with the EBIC also has a competitive performance in selection

due to the over-sparsity patterns of the true models but the model errors are much larger than those

of the SPSP approaches especially in Example 5.

The results of Example 6 are shown in Table 5.6. We observe that for this example where models

are misspecified, the SPSP algorithm on all the four penalties all have a good performance in both

selection and estimation accuracy. Note that the adaptive Lasso with the EBIC, the SCAD with CV,

the MCP with CV all perform similarly with SPSP in terms of FP values. It is worth mentioning

that the ME values are all relatively large since we divide σ2 in computing ME and the noise level

σ = 0.25 is quite small in this simulation study.

To show the overall patterns of the results over these 100 replicates, we also report the box plots

of the “PS” values of all the methods for these six examples in Figure 5.1-5.6. It is observed that

the SPSP algorithm yields smaller medians of “PS” values than the other methods almost across

all cases . In addition, we notice that the SPSP algorithm delivers some outliers of “PS” values for

some simulations, especially as shown in Figure 5.3 and 5.4. This is because the SPSP algorithm

may select some irrelevant variables at the beginning of the process in these simulations, which leads

to high “PS” values. As discussed before, we may need a conservative modification to control the

number of the selected irrelevant variables at the beginning of the SPSP algorithm.

In summary, from these simulation examples, we can see that the SPSP approach can improve

the selection accuracy of the penalized least squares estimations in general, especially when high

correlations among the variables are presented. It can well balance the trade-off between the model

fitting and the model sparsity compared with the other criteria. Compared with the other criteria, the

proposed algorithm can select fewer irrelevant variables without excluding more relevant variables

for high dimensional data problems.
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Figure 5.1: The box plots of PS values for Example 1: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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Figure 5.2: The box plots of PS values for Example 2: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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Figure 5.3: The box plots of PS values for Example 3: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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Figure 5.4: The box plots of PS values for Example 4: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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Figure 5.5: The box plots of PS values for Example 5: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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Figure 5.6: The box plots of PS values for Example 6: SPSP(S), 2-CV(C), GCV(G), AIC(A),

BIC(B), EBIC(E), Oracle(O).
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5.1.3 The SPSP Algorithm on the Ridge

One compelling advantage of the proposed SPSP procedure is that it can be applied for the

penalties which cannot produce sparse solutions, such as the ridge penalty. Here we also implement

the SPSP algorithm on the ridge for these examples. The results are presented in Table 5.7. For the

convenience of comparison, we also report the ranking of the performance of the ridge among all

the five penalties (the Lasso, the adaptive Lasso, the SCAD, the MCP and the ridge) with the SPSP

procedure. For instance, if rank equals 3, it means this result of ridge with SPSP is the third smallest

among these five penalties. In two of the examples, the ridge actually returns the best results in

terms of selection accuracy. Although the ME numbers of ridge are generally large compared to

other penalties, the differences between the ME values of ridge and those of other penalties are

relatively small.

Table 5.7: Simulation results of the SPSP approach on the ridge (Standard Error in parentheses),

ranking among all the five penalties in the third row.

Ex(1) Ex(2) Ex(3) Ex(4) Ex(5) Ex(6)

Ridge FP 4.32 0.52 2.33 0.36 0.18 0.37
(0.81) (0.16) (0.61) (0.11) (0.07) (0.11)

5 5 5 2 3 1

FN 3.38 0.48 1.50 0.61 0.96 2.19
(0.32) (0.10) (0.21) (0.10) (0.10) (0.18)

1 1 1 5 5 5

PS 7.70 1.00 3.83 0.97 1.14 2.56
(0.70) (0.19) (0.60) (0.12) (0.11) (0.15)

5 1 1 2 3 3

ME 0.49 0.77 0.53 0.55 0.86 31.33
(0.03) (0.08) (0.08) (0.08) (0.08) (2.77)

5 1 5 4 5 5

5.1.4 The Comparison with the Stability Selection

As introduced in Chapter 1, the stability selection (SS) approach, proposed by Meinshausen

and Bühhmann (2010, [41]), also avoids the selection issue of the tuning parameter by using the

subsampling techniques. Hence, we compare the performance of the SPSP procedure with the SS
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approach for the first four examples and the last example. Here we omit Example 5 because of

the huge computational cost for stability selection. As suggested in Meinshausen and Bühlmann

(2010, [41]), we evaluate the selection probabilities over 100 subsamples and choose the threshold

value as 0.9. The results of the SS algorithm can be found in Table 5.8 and Table 5.9. It can be

seen that generally the SPSP algorithm has better performance than SS in terms od both selection

accuracy and model errors. Particularly, the SS approach tends to exclude many relevant variables.

In addition, we also notice that the computational cost of the SS algorithm is dramatically higher

than that of the SPSP procedure since its process involves resampling and solution paths for all the

100 subsamples to be computed.

Table 5.8: Results of the SS algorithm and the SPSP on the Lasso.

Ex(1) Ex(2) Ex(3) Ex(4) Ex(6)

SS FP 0.35 0.01 0.01 0.10 0.00
(0.64) (0.10) (0.10) (0.32) (0.00)

FN 9.47 2.37 4.79 0.30 2.30
(0.56) (0.54) (0.73) (0.48) (0.82)

PS 9.82 2.38 4.80 0.40 2.30
(0.89) (0.56) (0.74) (0.52) (0.82)

ME 1.93 1.68 1.64 0.26 28.02
(1.31) (0.57) (0.97) (0.34) (9.93)

SPSP FP 0.63 0.87 0.01 0.23 0.39
(0.24) (0.03) (0.28) (0.08) (0.13)

FN 5.11 2.11 2.96 0.34 0.95
(0.28) (0.54) (0.09) (0.48) (0.16)

PS 5.74 2.15 3.83 0.57 1.34
(0.33) (0.07) (0.11) (0.52) (0.18)

ME 0.44 1.54 0.39 0.57 14.66
(0.02) (0.07) (0.04) 0.06 (1.97)

Table 5.9: The average time for computing the SS and the SPSP estimators (in seconds)

Ex(1) Ex(2) Ex(3) Ex(4) Ex(6)

SS 41.23s 88.79s 121.16s 199.29s 162.39s

SPSP 0.44s 1.55s 0.39s 3.89s 2.90s
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5.2 Ranking by the AIS

In this section, we will investigate the performance of the proposed AIS algorithm and compare

the results with the other stepwise selection methods: the forward selection, the Least Angle Re-

gression (LARS) algorithm ([15]) and the stepwise selections by the original penalized least squares

estimators..

In details, the AIS algorithm is based on the results from the SPSP procedure. We will compute

the AIS on the Lasso, the adaptive Lasso, the ridge, the SCAD and the MCP for all these six exam-

ples. The forward selection and the LARS algorithm are implemented by the R package lars ([29]).

The stepwise selections by the original estimators are ranked by the order of the tuning parameters

at which the estimators of their coefficients are shrunk to zeros.

For all the examples, we compare the False Positive Rate (FPR) of the AIS method with the other

two methods at each step. Particularly, in these stepwise selection methods, we select q variables

after q steps, q = 1, · · · , p, then FPR is computed as

FPR =
FP (q)

q
,

where FP (q) =the number of irrelevant variables in these q variables. Clearly, a higher FPR of one

method indicates that the method mistakenly choose more irrelevant variables at this stage.

The average FPRs of all the methods over 100 replicates are shown in the Figure 5.7-5.12.

Figure 5.7 shows that the FPRs of the AIS on all the penalties are smaller than the other methods

for Example 1. Even at the beginning, the FPR curves of the AIS methods are much lower than the

other FPR curves. For Example 2 and Example 3, the AIS approaches and the LARS algorithm are

remarkably better than the Forward Selection. It is also noticed that the AIS on the ridge penalty

have the best performance for most steps in these two examples. Among these three examples,

we also notice that the results of AIS algorithm on each penalty are much better than those of the

original penalty, which suggests that the AIS algorithm can improve the selection accuracy of the
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Figure 5.7: The mean of FPRs over 100 replicates for Example 1: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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Figure 5.8: The mean of FPRs over 100 replicates for Example 2: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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Figure 5.9: The mean of FPRs over 100 replicates for Example 3: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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Figure 5.10: The mean of FPRs over 100 replicates for Example 4: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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Figure 5.11: The mean of FPRs over 100 replicates for Example 5: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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Figure 5.12: The mean of FPRs over 100 replicates for Example 6: the Forward Selection (FW), the

Least Angle Regression (LAR), the original Lasso (L), the original adaptive Lasso (A), the original

SCAD (S), the original MCP (M), the AIS on the Lasso (AISL), the AIS on the adaptive Lasso

(AISA), the AIS on the SCAD (AISS), the AIS on the MCP (AISM), the AIS on the ridge (AISR).
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original approach in these examples. For the remaining three sparse high dimensional examples, we

only report the results over the first 10 steps since all the approaches can select the relevant variables

in the first steps. For Example 4, the AIS methods are a little worse than the other approaches while

in Example 5, the AIS algorithm on the Lasso has the smallest FPRs among all the methods. Figure

5.12 shows the FPRs of the misspecified model for Example 6. It is seen that the AIS on MCP has

the best performance.

5.3 SPSP in Gaussian Graphical Modeling

In this section, we investigate the performance of the SPSP algorithm in the Gaussian graphical

models through a simple simulation study.

The data is simulated from the following sparse scenario, and then we can perform the selection

methods to select the nonzero entries in the inverse covariance matrix. In details, the Gaussian data

is simulated as X ∼ Np(0,Σ), where the inverse of the covariance matrix is set as

(Σ−11)j,j = 1, (Σ−11)j,j+1 = 0.5, (Σ−11)j+1,j = 0.5, j = 1, · · · , p/4,

and zero otherwise. We set p = 100 and n = 50 in the simulation.

This simulation study is similar with the example of the AR(1) model in Yuan and Lin (2007,

[60]), which has also been used by Friedman et al. (2008, [25]) for the numerical study of the

graphical Lasso. Considering all the 100(100 − 1)/2 = 4950 conditional dependencies among the

100 variables, the number of the nonzero dependencies is 100/4 = 25 and the number of the zero

dependencies is 100(100− 1)/2− 25 = 4925.

We will compare the performance of the proposed SPSP algorithm with the graphical models

selected by BIC and the EBIC. Here the details about using BIC and the EBIC to choose the tuning

parameter in the graphical models are described in Foygel and Drton (2010, [21]). We apply the R

package glasso to solve the graphical Lasso estimators and apply the package qgraph to select the

graphical Lasso models by BIC and the EBIC. Note that the grid of the tuning parameters in the
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Table 5.10: The mean of FP, FN values of the SPSP algorithm, BIC, and the EBIC over 100 replicates

(Standard Error in the parentheses). The true model has 25 nonzero dependencies and 4925 zero

dependencies.

SPSP BIC EBIC

FP 19.31 116.56 0
(2.48) (3.2) (0)

FN 2.50 0 25
(0.80) (0.0) (0)

simulation is generated automatically by the function glassopath and all the graphs are drawn by the

function qgraph.

We report the mean and the standard error of the number of the false positives (FP), the number of

the false negatives (FN) of the SPSP algorithm, BIC and the EBIC over 100 replicates in Table 5.10.

It is observed that the BIC tends to include too many zero dependencies (high FP value) while the

EBIC missed all the nonzero dependencies (high FN value) in the model. Compared with the results

of these two criteria, the SPSP algorithm has a much better performance, which selects most of the

nonzero dependencies without adding many zero dependencies in the model.

To infer the nonzero entries in the inverse of the covariance matrix, we draw the graphs of one

replicate in this simulation study. The true model, the model obtained from the SPSP algorithm, the

model selected by BIC, the model selected by the EBIC are shown in Figure 5.13. In all the graphs,

we draw an edge between nodes j and k if the entry in the j-th row and k-th column of the estimated

inverse covariance matrix is nonzero.

As can be seen from Figure 5.13, the SPSP algorithm correctly selects most of the edges where

the corresponding true dependencies are nonzero. Meanwhile, it only includes a small number of

the edges without dependencies in the true model. However, the models selected by BIC contains

too many edges in the graph and the model selected selected by the EBIC does not have any edge in

the graph.
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True Model SPSP

BIC EBIC

Figure 5.13: The graphical models of one replicate. Top left: the graph of the true model. Top right:

the graph of the graphical model from the SPSP algorithm. Bottom left: the graph of the model

selected by BIC. Bottom right: the graph of the model selected by EBIC.
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CHAPTER 6 DATA ANALYSIS

In this chapter, we present two real data variable selection problems to further demonstrate the

performance of the proposed algorithm.

6.1 Boston Housing Data

In this section, we apply the SPSP algorithm with the other selection criteria on the Lasso,

the adaptive Lasso, the ridge to the Boston housing data (available in R package MASS). In the

dataset, we are interested in identifying the informative variables on the housing prices in Boston.

Particularly, we use the median value of owner-occupied homes in Boston as the response. For

the predictors, as suggested in Radchenko and James (2001, [45]), we include all the remaining 13

variables as well as all the interaction terms between the variables in the analysis. Hence we have

p = 91 variables and n = 506 observations in the dataset. Apparently, high correlations among the

variables are presented in the dataset due to the existence of the interaction terms. Note that Cho and

Fryzlewicz (2012, [12]) also used the same setting to compare the performance of different feature

selection methods in their paper.

We randomly divide the dataset into a training set with n1 = 91 observations (= p) and a test

set with n2 = 415 observations 100 times to evaluate the average performance of the selection

approaches. Each time we standardize the data firstly; then we apply the SPSP approach and the

other popular selection criteria including GCV, AIC, BIC, the EBIC on the Lasso, the adaptive Lasso

and the ridge to the training set. We record the number of the selected features (Nm) and the average

prediction error (PE = n−1
2 ||y− ŷ||22) by applying the estimations in the test set.

Table 6.1 shows the results of all the approaches averaged over the 100 training and test data sets.

It is seen that the SPSP algorithm on the Lasso has the minimum prediction error with selecting a

small number of variables in the model. The SPSP algorithm on the adaptive Lasso and ridge also

perform well in the prediction accuracy. The GCV, AIC, BIC, EBIC on both Lasso and adaptive

Lasso all include many more variables than the SPSP algorithm, which also produce large prediction
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errors in the test sets.

Table 6.1: Results of Boston Housing data analysis (Standard Error in the parentheses)

Lasso SPSP GCV AIC BIC EBIC

Nm 14.26 84.97 85.60 72.15 45.44
(6.95) (5.08) (4.90) (10.33) (11.78)

PE 30.43 88.41 93.43 65.69 32.25
(15.42) (62.39) (89.45) (42.83) (16.06)

ALasso SPSP GCV AIC BIC EBIC

Nm 14.47 71.33 72.32 59.20 45.41
(8.76) (7.62) (7.44) (7.02) (9.45)

PE 33.18 82.29 84.86 63.60 46.20
(11.02) (57.78) (61.23) (40.85) (31.78)

Ridge SPSP

Nm 10.24
(7.19)

PE 30.85
(13.00)

6.2 Glioblastoma Gene Expression Data

In this section, we apply the SPSP approach on the glioblastoma gene expression data ([38]),

which aims at identifying the highly informative genes to explain the glioblastoma tumor behavior.

In the analysis, we use all the censor subjects and take the logarithm of the survival time as the

response variable. Finally we obtain a data with n = 185 subjects and p = 930 genes.

Similarly, we randomly divide the dataset into a training set (120 observations) and a test set (65

observations) 100 times to evaluate the average performance of the selection methods. Each time we

standardize the data firstly; then we apply the SPSP approach and the other popular selection criteria

on the Lasso, the adaptive Lasso and the ridge on the training set. We also record the number of the

selected features (Nm) and the average prediction error (PE) by applying the estimations in the test

set.

Table 6.2 shows the results of all the approaches. We can see that the GCV, the AIC, and the BIC

selected many features in the model which makes the model excessively complicated to interpret.
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For the extended BIC, it cannot identify any features and proposes a simple average model. The

SPSP algorithm on the Lasso, the adaptive Lasso and the ridge select a few informative features

with small PE values. Here we notice that although the average simple model yields the smallest

prediction error, the SPSP algorithm can provide some information with regard to identifying the

informative genes in the model.

Table 6.2: Results of glioblastoma gene expression analysis (Standard Error in the parentheses)

Lasso SPSP GCV AIC BIC EBIC

Nm 12.81 139.65 140.92 140.65 0.00
(0.989) (0.433) (0.467) (0.438) (0.000)

PE 1.25 1.62 1.62 1.62 1.00
(0.025) (0.024) (0.024) (0.024) (0.02)

ALasso SPSP GCV AIC BIC EBIC

Nm 8.58 70.88 71.53 44.96 0.04
(0.561) (1.554) (1.538) (3.520) (0.020)

PE 1.22 1.31 1.31 1.22 1.00
(0.023) (0.023) (0.024) (0.025) (0.019)

Ridge SPSP

Nm 3.29
(0.330)

PE 1.08
(0.021)

Specifically, RRAS2, PAK1 and FRAT1 are identified by the SPSP procedure on the Lasso

and the adaptive Lasso for almost all the replicates. Some previous studies have demonstrated

the strong relations between these genes and the glioblastoma tumor behavior. Throughout the

experiments, Aoki et al. (2007, [3]) found out that the presence of phosphorylated PAK1 in the

cytoplasm of glioblastoma cells is associated with shorter survival, which suggests that the PAK1

plays a role in the invasiveness of glioblastoma and it might be a potential target for the management

of glioblastoma. Demuth et al. (2008, [14]) showed the RRAS2 is one of the candidate genes whose

functions are linked to glioblastoma via technical validation. Guo et al. (2010, [27]) detected that

the expression of the FRAT1 in human gliomas by immunohistochemistry, Western blot and RT-

PCR and concluded that FRAT1 may be an important factor in the tumorigenesis and progression of
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gliomas. These studies all confirmed the selection accuracy of the proposed SPSP algorithm.
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CHAPTER 7 DISCUSSION

In the thesis, we mainly propose to carry out feature selection based on the whole solution paths

instead of choosing a single tuning parameter, in the framework of the penalized least squares esti-

mation. Based on the adjacent distances between the estimated coefficients at each tuning parameter,

we partition the variables into two sets: the relevant and the irrelevant. Then we identify the union of

all the relevant index sets as the final relevant index set. We name the algorithm selection by parti-

tioning the solution paths (SPSP). It turns out that this algorithm can efficiently balance the trade-off

between the model fitting and the model complexity. The simulation studies illustrate that the al-

gorithm can significantly improve the selection accuracy especially when complicated correlation

structures exist among the variables in the data. Especially, the SPSP algorithm has a remarkably

good performance in handling the high dimensional problems.

In addition, we present a new type of scores, noted as the Area-out-of-zero-region Importance

Scores (AIS), to rank the importance of the variables. The scores, defined as the areas between

the coefficient curves and the boundary curve, also utilizes the information over the whole solution

paths. The simulation studies show that the AIS algorithm performs well in ranking the variables

for the stepwise selection problems.

Regarding the theoretical properties of the SPSP estimators, we establish several large sample

theories in the dissertation. The main result illustrates that the SPSP estimators are selection con-

sistent over the the solution paths while the original estimators are either estimation consistent or

selection consistent. Specially, the SPSP estimator on the Lasso can possess the selection consis-

tency over the whole solution paths under the irrepresentable conditions, proposed by Zhao and Yu

(2006, [64]). The theoretical results of the SPSP estimators on the general penalized least squares

estimation are also provided under the restricted eigenvalue conditions.

For the future work, we will continue working on the theoretical properties of the proposed

SPSP algorithm for the general penalized least squares estimations over the whole solution paths.
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For the selection consistency of the SPSP algorithm, we only need to guarantee the existence of a

sufficiently large gap between the relevant and the irrelevant estimators. Therefore, compared with

the conditions we applied in the dissertation, we will develop some weaker conditions on the design

matrix to obtain the selection consistency of the proposed SPSP algorithm.

In practice, we look forward to exploring more applications on the proposed algorithms par-

ticularly when the data carries a more complicated structure. For instance, the parameters in high

dimensional problems can have a group structure, which means the variables are partitioned into

disjoint groups, such as the factor variables. Yuan and Lin (2006, [59]) has proposed the group

Lasso to solve the problem and we are interested in modifying the SPSP algorithm for the group

Lasso to analyse the data with such a group sparsity. In addition, we also want to extend the pro-

posed algorithms into a wider family of models such as the non-parametric additive models, the

graphical models. We believe that the fact a strictly convex penalty could be applied based on the

proposed SPSP approach could have a huge potential in areas where computations or optimizations

are a major challenge.
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[28] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. The

Journal of Machine Learning Research, 3:1157–1182, 2003.

[29] Trevor Hastie and Brad Efron. lars: Least Angle Regression, Lasso and Forward Stagewise,

2013.



97

[30] Jennifer A Hoeting, David Madigan, Adrian E Raftery, and Chris T Volinsky. Bayesian model

averaging: a tutorial. Statistical science, 14(4):382–401, 1999.

[31] S Horvath, B Zhang, M Carlson, KV Lu, S Zhu, RM Felciano, MF Laurance, W Zhao, S Qi,

Z Chen, et al. Analysis of oncogenic signaling networks in glioblastoma identifies aspm as

a molecular target. Proceedings of the National Academy of Sciences, 103(46):17402–17407,

2006.

[32] Jian Huang, Joel L Horowitz, and Fengrong Wei. Variable selection in nonparametric additive

models. The Annals of statistics, 38(4):2282–2313, 2010.

[33] Clifford M Hurvich and Chih-Ling Tsai. Regression and time series model selection in small

samples. Biometrika, 76(2):297–307, 1989.

[34] Yongdai Kim, Hosik Choi, and Hee-Seok Oh. Smoothly clipped absolute deviation on high

dimensions. Journal of the American Statistical Association, 103(484):1665–1673, 2008.

[35] Kenneth W Kinzler, Sandra H Bigner, Darell D Bigner, Jeffrey M Trent, Martha L Law,

Stephen J O’Brien, Albert J Wong, and Bert Vogelstein. Identification of an amplified, highly

expressed gene in a human glioma. Science, 236(4797):70–73, 1987.

[36] Steffen L Lauritzen. Graphical models. Oxford University Press, 1996.

[37] Jinchi Lv and Jun S Liu. Model selection principles in misspecified models. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 76(1):141–167, 2014.

[38] Roger McLendon, Allan Friedman, Darrell Bigner, Erwin G Van Meir, Daniel J Brat, Gena M

Mastrogianakis, Jeffrey J Olson, Tom Mikkelsen, Norman Lehman, Ken Aldape, et al. Com-

prehensive genomic characterization defines human glioblastoma genes and core pathways.

Nature, 455(7216):1061–1068, 2008.

[39] Nicolai Meinshausen. Lasso with relaxation. In Seminar für Statistik, Eidgenössische Technis-
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