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ABSTRACT 

 

Nancy Boudreau, Advisor 

 

 This paper examines hazardous algae blooms in Lake Erie, focusing on previously 

created predictive statistical models, and creating different predictive models based on two proxy 

measurements for hazardous algae bloom occurrences – dissolved oxygen and chlorophyll-a. 

While prior models have used different proxies for hazardous algae blooms, including remote 

sensing and boat tows, the study presented here examines whether different proxies, a larger 

dataset, and different independent variables create valid hazardous algae bloom predictive 

models and/or improve upon prior forecasting methods. More specifically, since there is no 

single definition for hazardous algae blooms, and no one agreed upon metric to measure them, 

this study examines whether the chosen proxies are suitable proxies for hazardous algae blooms 

in Lake Erie, using linear regression and ANOVA analyses to create a number of different 

models. The results from these models indicate that both dissolved oxygen and chlorophyll-a are 

suitable proxies for hazardous algae bloom occurrences. Further, the modeling results confirmed 

the Lake indicators that are the greatest contributors to hazardous algae blooms, and confirmed 

prior research that the Lake had changed in terms of hazardous algae bloom growth and 

occurrence after the mid-1990s. Following these results, the paper examines the public policy 

response to recent blooms. Combining the results from this and prior studies, the public policy 

response was scrutinized, and the paper concludes that more will likely need to be done in the 

future to mitigate bloom occurrences and severity. 
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CHAPTER I: INTRODUCTION 

 In 2014, nearly 400,000 people in and around Toledo, Ohio were warned not to drink 

their tap water or shower after high levels of a dangerous toxin were discovered in the water 

supply.1 This toxin was caused by a large hazardous algae bloom (“HAB”) caused by the blue-

green algae Microcystis, a type of cyanobacteria. HABs have been occurring in lakes around the 

world for centuries, but human activities have caused these nuisance and sometimes toxic events 

to increase. Eutrophication, or the enrichment of a water system with chemical nutrients, 

typically nitrogen, phosphorus or both, of freshwater lakes resulting from increased human 

nutrient loading has become a global problem.2 Eutrophic lakes that have severe toxic 

cyanobacteria blooms are present throughout the world including in China (Lake Taihu), Canada 

(Lake Winnipeg), the Netherlands (Lake Nieuwe Meer), and the United States (Lake Erie).3 

Though controlled in Lake Erie after the 1980s, HABs have become a persistent nuisance and 

costly drain to the economy of Northwest Ohio and Southeast Michigan. While not the largest of 

the Great Lakes, Lake Erie and its health are extremely important. Lake Superior, the largest 

Great Lake contains 50% of all water in the Great Lake system, but only 2% of the fish. On the 

other hand, Lake Erie contains only 2% of the water, but the Lake has 50% of the fish in the 

Great Lakes.4 Additionally, Lake Erie creates $10.7 billion in economic activity, supports more 

                                                            
1 Atkin, Emily. “7 Things You Need to Know About the Toxin That’s Poisoned Ohio’s Drinking Water.” Climate 
Progress, August 3, 2014. Available at http://thinkprogress.org/climate/2014/08/03/3467068/toledo-ohio-water-
crisis/. 
2 Michalak, Anna M., et. al. “Record-setting algal bloom in Lake Erie caused by agricultural and meteorological 
trends consistent with expected future conditions.” PNAS, March 4, 2013. Available at 
http://graham.umich.edu/scavia/wp-content/uploads/2013/04/PNAS.pdf. 
3 Id. 
4 LaBarge, Greg, & Hoorman, Jim. “Lake Erie and Phosphorus: What has happened since 1995?” Ohio State 
University, 2012. Available at http://www.oardc.ohio-state.edu/ocamm/images/MTW2012_Hoorman.pdf. 

http://thinkprogress.org/climate/2014/08/03/3467068/toledo-ohio-water-crisis/
http://thinkprogress.org/climate/2014/08/03/3467068/toledo-ohio-water-crisis/
http://graham.umich.edu/scavia/wp-content/uploads/2013/04/PNAS.pdf
http://www.oardc.ohio-state.edu/ocamm/images/MTW2012_Hoorman.pdf
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than 11,000 jobs for Ohio residents, and generates more than $750 million in tax dollars for the 

state of Ohio.5 

 Harmful algal blooms are episodes where large quantities of harmful forms of algae 

appear in parts of the lake. In freshwater ecosystems they are caused by seven species of algae of 

a group called cyanobacteria, also referred to as blue-green algae.6 Although small numbers of 

these algae are present at all times, cyanobacteria normally require warmer temperatures 

(maximum growth rate occur in the 25-30 degree C range) and high levels of nutrients to 

stimulate growth.7 Thus, blooms of cyanobacteria are most likely to occur in the summer and 

early fall.8 

HABs can be a nuisance to human enjoyment of freshwater systems, can cause health 

problems in humans and wildlife, and can greatly affect the ecosystem where they are present. 

Cyanobacteria affect the growth of other, harmless algae, which grow rapidly, but are heavy and 

sink when the water is calm.9 However, when water has excessive nutrients, the cyanobacteria 

grow at an increased rate, and when blooms form, they can block light from other algae, growing 

as thick as the nutrient load will allow.10 In terms of human health, HABs can be toxic to ingest 

and can cause skin irritation. Public water suppliers that get water that is affected by lakes with 

HABs can manage their water intake to limit the effects of HABs. This includes filtering cells 

before water treatment starts, and using activated charcoal and other treatments that reduce the 

                                                            
5 Id. 
6 Reutter, Jeffery, et. al. “Lake Erie Nutrient Loading and Harmful Algal Blooms: Research Findings and 
Management Implications.” Ohio Sea Gant College Program, The Ohio State University, June 14, 2011. Available 
at http://worldcat.org/arcviewer/1/OHI/2011/11/08/H1320770105057/viewer/file2.pdf. 
7 Id. 
8 Id. 
9 Stumpf, Richard P., “Satellite Monitoring of Toxic Cyanobacteria for Public Health.” Earthzine, March 26, 2014. 
Available at, http://earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/. 
10 Id. 

http://worldcat.org/arcviewer/1/OHI/2011/11/08/H1320770105057/viewer/file2.pdf
http://earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/
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toxins.11 These procedures are highly effective, but also expensive. In addition to HABs potential 

toxic threat, cyanobacteria blooms can form surface scums that reduce the aesthetics of 

recreational waters and produce chemical compounds that cause odor issues. This issue is further 

exacerbated by the tendency of HABs to be blown and concentrated by wind towards harbors, 

shorelines, docks, and other near shore areas that are likely to be frequented by the public.12 

Eliminating cyanobacteria blooms can be difficult. Reducing HABs means reducing nutrient 

loading, most importantly phosphorus, to the affected water system.13 

 Being able to identify and quantify the drivers behind HABs in Lake Erie has important 

implications for water research management, and has been a continued area of research.14 

Working together, the National Oceanic and Atmospheric Administration (“NOAA”) and local 

academics have researched and created models to predict the likelihood and severity of future 

HABs. This research is not only used to predict future HAB events, but has also been used by 

policy makers to help create phosphorus loading target reduction goals.15 Separately, NOAA and 

the University of Michigan Water Center have created independent HAB experimental models.16 

The NOAA model comes from Stumpf, et. al., and uses spring total phosphorus load to predict 

bloom magnitude.17 The University of Michigan Water Center model is based on Obenour, et. 

                                                            
11 Id. 
12 Wynee, Timothy T., Stumpf, Richard P, Tomlinson, Michelle C., et. al. “Evolutoin of a cyanobacterial bloom 
forecast system in western Lake Erie: Development and initial evaluation.” Journal of Great Lakes Research, 2013. 
Available at, http://www.glerl.noaa.gov/pubs/fulltext/2013/20130007.pdf. 
13 Stumpf, 2014. 
14 Obenour, Daniel R., Gronewold, Andrew D., Stow, Craig A., Scavia, Donald. “Using a Bayesian hierarchical 
model to improve Lake Erie cyanobacteria bloom forecasts.” Accepted Article, doi: 10.1002/2014WR015616, 2014. 
Available at http://graham.umich.edu/scavia/wp-content/uploads/2014/09/Obenour-et-al-2014.pdf. 
15 NOAA. “NOAA, partners predict significant harmful algal blooms in western Lake Erie this summer.” 2014. 
Available at http://www.noaanews.noaa.gov/stories2014/20140710_erie_hab.html. 
16 Id. 
17 Stumpf, Richard P., Wynne, Timothy T., Baker, David B., Fahnenstiel, Gary L. “Interannual Variability of 
Cyanobacterial Blooms in Lake Erie.” 2012. Available at 
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042444#s3. 

http://www.glerl.noaa.gov/pubs/fulltext/2013/20130007.pdf
http://graham.umich.edu/scavia/wp-content/uploads/2014/09/Obenour-et-al-2014.pdf
http://www.noaanews.noaa.gov/stories2014/20140710_erie_hab.html
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042444#s3
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al., and uses a Bayesian modeling framework using a gamma error distribution, along with an 

untransformed response, to create a model with relatively high predictive skill compared to 

models based on more common statistical formulations.18 Both models, as well as the article by 

Michalek et. al., found that phosphorus loads must be reduced to prevent future HAB outbreaks, 

but also that other variables, such as water temperature, likely play a role in the creation of 

HABs. Climate change models are predicting that Lake Erie temperatures are likely to increase, 

and increased water temperatures in Lake Erie may mean that phosphorus-loading goals created 

recently will not be low enough to prevent future HABs.19 

 Both of these prior models, and indeed much of the research done on Lake Erie 

cyanobacteria blooms, suffer from a low amount of consistent data. Additionally, a single 

definition of HAB, both occurrence and size, has not been agreed upon. Further, the 

predictive/outcome variables and other lake indicators that have formed these models have been 

plagued by inconsistent collection and different gathering techniques. For example, the Stumpf 

model uses remote sensing from satellite imagery to quantify cyanobacterial blooms from 2002 

to 2011, while the Obenour model uses quantitative cyanobacteria bloom estimates for the years 

2002-2013. Further uncertainty in these models comes from the techniques for making these 

quantitative estimates, either using satellite imagery which can only examine the surface of the 

Lake, and phytoplankton tows, which do sample the entire water column, but have relatively 

limited spatial and temporal resolution.20 

 In order to further study HAB modeling in Lake Erie, and in an attempt to improve the 

models presented by Stumpf and Obenour, I was interested in using two proxy measurements, 

                                                            
18 Obenour, 2014. 
19 Id. 
20 Id. 
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dissolved oxygen and chlorophyll-a, to model HABs in order to increase the number of 

dependent variable observations. Dissolved oxygen, and the phenomenon of oxygen depletion is 

one related effect of HABs, such that when the large algal blooms die, they sink to the bottom, 

decompose, and create hypoxic zones with limited dissolved oxygen. Chlorophyll-a can be used 

to measure the overall presence of algae, including cyanobacteria. By using data that dates before 

2002, we may be able to observe changes in variable interactions from the late 1980s to the 

present. From my literary review, no Lake Erie HAB modeling has been done using plankton 

population (chlorophyll-a) or dissolved oxygen levels as proxies for HABs. I first ran ANOVA 

analyses over all of my dependent and independent variables with the categorical HAB variable 

as the factor (either no bloom or bloom). I then ran a number of multiple linear regression 

analyses using oxygen depletion and chlorophyll-a as proxies for the dependent variable 

representing cyanobacteria blooms, using independent variables including phosphorus, dissolved 

reactive phosphorus and nitrogen loads from two tributaries to Western Lake Erie (Maumee and 

Sandusky Rivers), and water temperature.  After creating my models, I compared their strength 

against each other, and against the Stumpf and Obenour models. 

 This paper will begin with a background discussion on cyanobacteria blooms and their 

occurrences over time in Lake Erie. Next the paper discusses public policy responses to these 

HABs in Lake Erie, including governmental responses and best management practices adopted 

by the agricultural economy. Following this background discussion, the paper will examine prior 

research into predicting and modeling HABs. This section will focus on possible predictor 

variables, will also discuss in detail both the Stumpf and Obenour models, and will examine the 

limitations of these models due to the data issues mentioned above. Next will be a discussion of 

my models and results, including comparing my models to the Stumpf and Obenour papers. 
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Finally, this paper will examine the results of the predictive models and how they have been 

incorporated or ignored in the formation of current public policy towards reducing HABs in Lake 

Erie. 
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CHAPTER II: BACKGROUND 

2.1 Dangers of HABs 

 HABs in general, as well as in Lake Erie, can have disastrous effects on the health of the 

water system, humans and animals, and can negatively affect near shore economies. These 

blooms cloud the water and reduce oxygen levels, which threaten fish and other aquatic life.21 

Cyanobacteria are not a valuable food for zooplankton and other animals, and many consider 

these algae to be weeds.22 One way they hurt the health of the water systems where they are 

present is by outcompeting other algae that are food for zooplankton and other animals. 

Cyanobacteria are not eaten by organisms that support fish production, and instead compete with 

those organisms for energy.23 Additionally, when the cyanobacteria in HABs die, they sink to the 

bottom, are decomposed by bacteria, and the decomposition process uses up oxygen supplies and 

contributes to “dead zones” where other organisms cannot live.24  

 In regards to human health, the threats posed by cyanobacteria, specifically the release of 

the toxin microcystis, are vast and the toxicity of this bacteria should not be underestimated. 

Microcystin is a liver toxin, and the consequence of ingesting a toxic dose for people or animals 

is liver and kidney failure. In 1996, for example, more than 50 patients at a dialysis center in 

Brazil died as a result of microcystin getting into the water supply.25 26 Animals are also greatly 

affected by the microcystin bacteria. Over the last several decades, hundreds of dogs have died 

                                                            
21 National Center for Water Quality Research. “Dissolved Phosphorus From Crop Runoff: Why it is a Big 
Problem!” Water Quality News and Notes. Heidelberg University. August 1, 2011, available at 
http://www.heidelberg.edu/sites/default/files/jfuller/images/1%20Dissolved%20P-
a%20Big%20Problem%2C%2008-01-2011.pdf. 
22 Reutter, 2011. 
23 Id. 
24 Id. 
25 Stumpf, 2014. 
26 Atkin, 2014. 

http://www.heidelberg.edu/sites/default/files/jfuller/images/1%20Dissolved%20P-a%20Big%20Problem%2C%2008-01-2011.pdf
http://www.heidelberg.edu/sites/default/files/jfuller/images/1%20Dissolved%20P-a%20Big%20Problem%2C%2008-01-2011.pdf
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after exposure to cyanobacteria toxins.27 Additionally, microcystis has been known to kill 

livestock.28 Concentrations of microcystin in western Lake Erie during summer blooms have 

been found to exceed the 1-μg/L safety limit for drinking water established by the World Health 

Organization, and municipalities that use the lake as a source of drinking water may spend over 

$100,000 per month in additional treatment costs to ensure that the water supply is safe.29 Along 

with the dangers of ingesting the toxin from cyanobacteria blooms, the algae also causes skin 

rashes and burns when touched.30 Additionally, contact with the water can have even more 

drastic effects on people with prior liver problems. During the 2014 Toledo water crisis, people 

with liver problems were told not to take showers or even wash their hands with affected tap 

water.31  

Due to the dangers of toxins produced by HABs, their occurrence leads to negative 

economic effects such as beach closures. Algal blooms can threaten other income from tourism, 

including boating, which is important to the economies of many cities and towns in Northern 

Ohio.32 Fish die offs from too little oxygen or from the toxins themselves can have harmful 

effects on the tourism and commercial fishing industries. 

2.2 History of HABs in Lake Erie 

Cyanobacteria blooms have always been present in Lake Erie, though before human 

activity, these blooms were much smaller in size and less frequent in occurrence. By the 1960s 

and 70s increases in phosphorus and nitrogen caused by wastewater treatment plants and 

                                                            
27 Stumpf, 2014. 
28 Atkin, 2014. 
29 Carrick, Hunter J., Moon Jessica B., Gaylord, Barrett F. “Phytoplankton Dynamics and Hypoxia in Lake Erie: A 
Hypothesis Concerning Benthic-pelagic Coupling in the Central Basin.” Journal of Great Lakes Research, 2005. 
Available at http://www.sciencedirect.com/science/article/pii/S0380133005703087#. 
30 Atkin, 2014. 
31 Atkin, 2014. 
32 National Center for Water Quality Research, 2011. 

http://www.sciencedirect.com/science/article/pii/S0380133005703087
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industry (point sources) and agricultural runoff (non-point sources) had caused frequent and 

large HABs to form in Lake Erie. In 1969, the estimated total phosphorus loading to Lake Erie 

was approximately 29,000 metric tons.33 Research indicated that phosphorus loadings would 

have to be reduced to 11,000 metric tons per year in order to reduce HABs.34 Efforts to control 

these HABs focused on controlling phosphorus loading into the Lake. The original management 

actions that were implemented were based on the relationship between total phosphorus loading 

and chlorophyll-a counts.35 Work to control point sources of phosphorus to Lake Erie began in 

1972 with the signing of the Great Lakes Water Quality Agreement (“GLWQA”) by the United 

States and Canada. Roughly two-thirds of the total phosphorus loading was coming from sewage 

treatment plants, thus improving sewage treatment became the primary focus of reduction 

efforts.36 The major controls that were implemented were the monthly average effluent limit of 1 

mg/T total phosphorus on all major sewage treatment plants (plants discharging in excess of 

3,800 m3/day)37 and the ban of phosphorus in detergents.38 Over $8 billion (adjusted to 1990) has 

been spent on building and updating sewage treatment plants, and millions more has been spent 

on research, outreach, and implementation of new technologies to reduce external phosphorus 

loading to Lake Erie.39 By 1989, 95% of the largest municipal sewage treatment plants in the 

Lake Erie Basin complied with the GLQWA requirements.40 Throughout the 1980s and early 

                                                            
33 Reutter, 2011. 
34 Id. 
35 Kane, Douglas D., et. al. “Re-eutrophication of Lake Erie: Correlations between tributary nutrient loads and 
phytoplankton biomass.” Journal of Great Lakes Research, September, 2014. Available at 
http://www.sciencedirect.com/science/article/pii/S0380133014000768. 
36 Reutter, 2011. 
37 Dolan, David M., & McGunagle, Kevin P. “Lake Erie Total Phosphorus Loading Analysis and Update: 1996-
2002.” J. Great Lakes Res. 31 (Suppl. 2): 11-22. Internat. Assoc. Great Lakes Res., 2005. Available at 
http://www.cee.mtu.edu/~nurban/classes/ce5508/2007/Readings/dolan05.pdf. 
38 Id. 
39 Conroy, Joseph D., et. al. “Temporal Trends in Lake Erie Plankton Biomass: Roles of External Phosphorus 
Loading and Dreissenid Mussels.” Journal of Great Lakes Research, 2005. Available at 
http://www.sciencedirect.com/science/article/pii/S0380133005703075. 
40 Dolan, 2005. 
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1990s, the conservation policy shifted towards limiting non-point sources of phosphorus. Goals 

were established for reducing sediment runoff, especially from agricultural fields, and the 

phosphorus attached to these sediments.41 Thus, most conservation efforts focused on erosion 

control and reduction. 

 During most years since the 1980s the measures discussed above have worked to bring 

external phosphorus loading to Lake Erie below the target load established by the GLQWA.42 

The controls did not show immediate results, but by the mid-1980s, declines in Lake Erie 

phosphorus loadings were having an obvious effect. As annual phosphorus loads decreased, total 

phytoplankton biomass and decreased low oxygen events suggested that Lake Erie water quality 

was indeed improving.43 The restoration of Lake Erie by the early 1990s is well documented.44 

After achieving phosphorus reduction goals from point sources, and reducing non-point loads, 

yearly concentrations of total phosphorus and dissolved oxygen depletion rates declined 

significantly.45 Animal species that had been reduced in size returned, such as burrowing 

mayflies, and reductions in algal biomass, especially nuisance cyanobacteria, was observed.46 

 Despite the early success from these management actions in the 1980s, hypolimnetic 

oxygen depletion rates, hypoxia extent, and algal biomass have increased systematically since 

the mid-1990s.47 Large blooms of cyanobacteria have returned to Lake Erie and dissolved 

                                                            
41 Daloglu, Irem, Cho, Hyung Hwa, & Scavia, Donald. “Evaluating Causes of Trends in Long-Term Dissolved 
Reactive Phosphorus Loads to Lake Erie.” Environmental Science & Technology, American Chemical Society. 
September 10, 2012. Available at http://graham.umich.edu/scavia/wp-content/uploads/2012/10/Daloglu-et-al-
2012.pdf. 
42 Conroy, 2005. 
43 Id. 
44 Dolan, 2005. 
45 Id. 
46 Id. 
47 Michalak, 2013. 
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oxygen depletion continues to be problematic.48 There has been a slight increase in overall 

phosphorus loadings, much of which has been attributed to non-point sources.49 This is a change 

from the 1970s when point sources made up the majority of phosphorus loading to the Lake, and 

research has shown that point sources of phosphorus declined in importance as controls were 

implemented until 1991, when nonpoint sources exceeded point sources in their contribution of 

phosphorus to Lake Erie.50 However, even though non-point sources have increased in 

importance in terms of phosphorus loading, total phosphorus levels in the Lake have remained 

stable.51 A separate hypothesis for increased HABs in the 1990s centers on the introduction of 

invasive mussel species (referred to as Dreissenids).52 However, Dreissenid populations, as well 

as total phosphorus levels in Lake Erie have stabilized, and it is hypothesized that neither of 

these factors is significantly contributing to recent increases in HABs.53 

 In 2011, Lake Erie experienced the largest HAB in its recorded history, with a peak 

intensity over three times greater than any previously observed HAB.54 Land use, agricultural 

practices, and meteorological conditions are all hypothesized to have contributed to stimulating 

and exacerbating the bloom.55 An important component of the total phosphorus load is the 

bioavailable dissolved reactive phosphorus. This component of phosphorus has been increasing 

in Lake Erie even as total phosphorus levels remain relatively stable. (A discussion on the 

importance of dissolved reactive phosphorus is below.) Regardless, it is important to note that 

                                                            
48 Kane, 2014. 
49 Dolan, D.M., & Richards, R.P. “Analysis of Late 90s Phosphorus Loading Pulse to Lake Erie.” Ecovision World 
Monograph Series, 2008. Available at 
http://www.uwgb.edu/doland/GLGrants/analysis_of_late_90s_phosphorus_loading_pulse_to_lake_erie.pdf. 
50 Id. 
51 Michalak, 2013. 
52 Id. 
53 Id. 
54 Id. 
55 Id. 
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Lake Erie is a different lake today than it was when phosphorus controls first began. Climate and 

meteorological changes, the introduction of invasive species, and the increased proportion of 

dissolved reactive phosphorus could mean that current phosphorus loading goals are no longer 

sufficient.56 

 Historically, point sources of phosphorus were dominated by highly bioavailable 

dissolved reactive phosphorus, and non-point sources were dominated by particulate phosphorus 

that had low bioavailability.57 However, as mentioned above, the proportion of dissolved reactive 

phosphorus in total phosphorus loads from non-point sources has been increasing since the 

1990s. One reason for this is the focus on erosion control, and the implementation of best 

agricultural management practices that may today be exacerbating the problem by increasing the 

amount of bioavailable dissolved reactive phosphorus that is getting into the Lake. Three 

management practices, Fall fertilizer application, fertilizer being placed on the surface rather 

than injected into the soil, and conservation tillage, can create conditions for enhanced dissolved 

reactive phosphorus runoff.58 These agricultural practices have increased in the Lake Erie region 

over the last ten years, and consistent with these trends is the observed 218% increase in 

dissolved reactive phosphorus loadings between 1995 and 2011.59 This increase occurred even 

though runoff only increased by 42% over the same time period.60 Planting practices by farmers 

may also be exacerbating the issue of increased dissolved reactive phosphorus. Farmers are 
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growing more corn today than ever, and corn is a fertilizer-intensive crop, meaning more 

fertilizer is used on fields growing corn.61 

 The GLWQA was updated in 2012 and included calls for minimizing the extent of low 

oxygen dead zones in Lake Erie associated with excessive phosphorus loading and maintaining 

cyanobacteria biomass at levels that do not produce concentrations of toxins that are a threat to 

humans or the ecosystem.62 As a key strategy, the agreement calls for review and update of prior 

phosphorus loading targets. However, research has found that even though these new targets may 

help prevent some cyanobacteria blooms, they will not be sufficient for reducing low oxygen 

events.63 These loading targets were based on the relationship between HAB size and total 

phosphorus loads from the Maumee River that were established by the Stumpf Model (to be 

discussed below).64 
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CHAPTER III: PREDICTING HABS 

3.1 Important Variables 

 This section will discuss the different predictor and outcome variables that are 

hypothesized to contribute to HAB formation in Lake Erie. 

3.1.1 Tributaries (Maumee and Sandusky Rivers) 

 The Maumee River is the largest tributary to Lake Erie, and also has the largest annual 

discharges and phosphorus loads.65 Excluding contributions from the upper Great Lakes, the 

Maumee River watershed is the single largest external source of phosphorus to Lake Erie, 

contributing about 35% of the total phosphorus load in 1994 for example.66 The River’s 

discharge is hypothesized to contribute greatly to the supply of needed nutrients to fuel the 

cyanobacteria blooms.67 Over 80% of the land within the Maumee River watershed is used for 

agriculture, and it discharges into the shallowest portion of Lake Erie.68 The proximity of HABs 

to the inflow of the Maumee River suggests that nutrients loaded from the river may influence 

the development of algal blooms in western Lake Erie.69 From 1975 through the 1990s, annual 

phosphorus loads from the Maumee River declined, but from about 1995 onward, annual 

phosphorus loads increased as dissolved reactive phosphorus loads increased.70 Dissolved 

reactive phosphorus loads in 2007 and 2008 were higher than any year since measurements 

began in 1975.71 

                                                            
65 Dolan, 2008. 
66 Bridgeman, Thomas, et. al. “From River to Lake: Phosphorus partitioning and algal community compositional 
changes in Western Lake Erie.” Journal of Great Lakes Research, March, 2012. Available at 
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67 Stumpf, 2012. 
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 The Sandusky River watershed is also located in northwest Ohio and drains into Lake 

Erie’s Western basin. Roughly 77% of the land within the Sandusky River watershed is used for 

agriculture.72 The Sandusky River’s discharge and phosphorus loads are smaller than the 

Maumee’s, though it is the second largest river in terms of discharge and phosphorus loads into 

the Western basin. Though the Sandusky River is smaller in terms of total nutrient loading, the 

proportion of nutrients, follow the pattern of the Maumee River. 

3.1.2 Phosphorus 

 As mentioned above, phosphorus is considered a pollutant in surface waters because 

when its concentrations grow too large, it causes excessive growth of algae.73 The analytical 

method most commonly used to describe phosphorus coming from both point and non-point 

sources is a standardized procedure that yields what is known as “total phosphorus”.74 Total 

phosphorus is comprised of two major portions, dissolved reactive phosphorus and particulate 

phosphorus. Since most particulate phosphorus settles out of the water column when it enters 

lakes, particulate phosphorus can also become “positionally” unavailable to algae, and indeed 

most phosphorus that enters lakes and oceans eventually becomes buried in sediment.75 

Phosphorus loads to Lake Erie are not distributed evenly across the basin, and this is why many 

researchers focus on the Maumee and Sandusky Rivers’ nutrient loads. The Western basin 

receives approximately 60% of the average total phosphorus loads, while the Central and Eastern 

basins received about 30% and 10% respectively.76 Thus, researchers have reported that 
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phosphorus loads to the Western basin are a very important determinant of the Western basin and 

Central basin eutrophication response.77 

3.1.3 Dissolved Reactive Phosphorus 

 Dissolved reactive phosphorus can be measured as the phosphorus that remains in the 

water after that water has been filtered to remove particulate matter.78 Dissolved reactive 

phosphorus is of particular concern in terms of HABs because it is highly bioavailable to algae, 

meaning that it supports rapid algal growth and reproduction, and dissolved reactive phosphorus 

remains in the water while particulate phosphorus settles to lake bottoms where it is no longer 

available to algae.79 Roughly 95% of dissolved reactive phosphorus is bioavailable to algae, 

while only 30% of particulate phosphorus is bioavailable, and even though particulate 

phosphorus dominates total phosphorus loading to Lake Erie from the Maumee and other 

Northwest Ohio rivers, dissolved reactive phosphorus contributes more bioavailable 

phosphorus.80  Additionally, dissolved reactive phosphorus has become a recent focus of HAB 

research because the loads of dissolved reactive phosphorus entering Lake Erie have been 

increasing dramatically in recent years.81 Examining data on dissolved reactive phosphorus loads 

over the course of the available data shows that from the 1970s through the early 1990s, 

dissolved reactive phosphorus declined, but then increased since the mid-1990s.82 This trend of 

increased dissolved reactive phosphorus has been shown to be particularly significant in 

agricultural tributaries, specifically the Maumee and Sandusky watersheds.83 In addition to its 
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relationship to HABs, the rate of oxygen depletion in Lake Erie has been strongly correlated with 

dissolved reactive phosphorus since the mid-1990s.84 Research has also found that while 

dissolved reactive phosphorus trends are affected by river flow; similar trends are reported for 

dissolved reactive phosphorus concentrations in rivers, indicating that changes in the loads of 

dissolved reactive phosphorus are not solely a function of changes in hydrology.85  

At the same time that dissolved reactive phosphorus loads were increasing, total 

phosphorus loading has not increased significantly in the last 15 years.86 This discrepancy has 

caused researchers to ask what has caused the increasing dissolved reactive phosphorus problem. 

As mentioned above, agriculture and supposed best agricultural management practices may be 

contributing to the problem. Only 7% of the total phosphorus load from the Maumee River to 

Lake Erie is attributed to point sources, and therefore, the increases in dissolved reactive 

phosphorus are hypothesized to be coming from non-point sources, particularly farm fields.87 

The following changes in agricultural practices and weather have been identified as contributing 

to the upward trends in dissolved reactive phosphorus loads. (1) Increased broadcasting of 

fertilizer onto the soil surface especially in winter; (2) build-up of phosphorus concentrations due 

to broadcast fertilizer application, crop residue breakdown on the soil surface, and the decline of 

mold board plowing inverts the soil; (3) fertilizer applications even when excessive phosphorus 

is already available in the soil; (4) soil compaction, or packing caused by equipment traffic that 

increases runoff; (5) excessive phosphorus concentrations on some fields receiving animal 

manures; (6) increased tile drainage intensity coupled with the development of channels through 

the soil that convey surface water directly to drainage tile, which empty into streams thereby 

                                                            
84 Id. 
85 Id. 
86 Scavia, 2014. 
87 National Center for Water Quality Research, 2011. 



18 
 

bypassing stream side filter strips; and (7) more frequent storm events with large amounts of rain 

over a short period, giving rise to more surface run off.88 

3.1.4 Nitrogen 

 Nitrogen, like phosphorus, is another nutrient that can be washed into watersheds from 

fertilizer runoff. However, unlike phosphorus, the role of nitrogen in the occurrence and size of 

HABs is less well understood. Reducing nitrogen might also be an effective remedy to HAB’s 

but more research is needed.89 Some research suggests that nitrogen fixing cyanobacteria could 

offset the effects of any nitrogen load reductions.90 Further, as phosphorus fertilizer runs out of 

favor, there is a greater need for farmers to apply nitrogen fertilizer to meet crop plant 

requirements. Surprisingly, when controlling HABs in near shore ocean water systems, nitrogen 

is most frequently the limiting nutrient, and in watersheds draining directly to the ocean, nitrogen 

load reductions are recommended.91 Some research has suggested that in freshwater systems, 

nitrogen may be potentially capable of limiting growth of freshwater cyanobacteria blooms. 

Evidence has shown that for Lake Erie, at times, nitrogen can limit cyanobacteria growth and 

thus, the role that nitrogen loading has on Lake Erie’s HABs needs to be explored further.92 

3.1.5 Temperature 

 Temperature is an important driver of cyanobacteria growth and the creation of HABs. 

Cyanobacteria require warmer temperatures to grow. Water warmer than 15 degrees Celsius is 

required for cyanobacteria growth, and maximum growth rates occur in the 25-30 degree Celsius 
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range.93 These temperature requirements mean that cyanobacteria grows rapidly in the early 

summer, and blooms usually end in the early fall as water temperature declines and 

cyanobacteria colonies sink and settle on the lake floor.94 

3.1.6 Chlorophyll-a 

 Total phytoplankton biomass, which includes cyanobacteria, is often measured by 

chlorophyll-a concentrations. Most studies of Lake Erie phytoplankton use chlorophyll-a as a 

surrogate for total algal abundance because chlorophyll-a concentration is easier to determine 

than phytoplankton biomass.95 Like cyanobacteria and other algae, the relationship between 

within-lake total phosphorus concentration and chlorophyll-a concentration is well established 

for a variety of lakes.96 The predicted reduction in chlorophyll-a concentration, total 

phytoplankton biomass, and cyanobacteria biomass with reduction in phosphorus load is also 

well established.97 Further studies in Lake Erie have shown that chlorophyll-a estimates of 

phytoplankton biomass does correlate with phosphorus loading, but that both the form of 

phosphorus (total vs. dissolved reactive) and the amount of the load are important.98 The link 

between dissolved reactive phosphorus and chlorophyll-a concentrations is important because in 

recent years (2007 onward) Lake Erie has seen some of the largest dissolved reactive phosphorus 

loads since data collection began in the Maumee and Sandusky Rivers, as well as some of the 

largest HABs in the Lake’s history.99 
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 Recent studies have conversely shown that in recent years (1996 onward) chlorophyll-a 

concentrations did not predict total phytoplankton biomass well.100 However, the use of 

chlorophyll-a as a surrogate for total phytoplankton biomass has been argued against for some 

time. Studies have found that chlorophyll-a concentration was a poor predictor of total 

phytoplankton biomass for many different lakes.101 In these cases, the poor fit is commonly 

attributed to the overestimation of chlorophyll content, underestimation of total phytoplankton 

biomass, or both.102 Further, converting from cell volume to biomass is problematic due to the 

inclusion of vacuoles, which do not contribute much to the functional biomass of cells, especially 

in diatoms.103 Despite the possible downsides of using chlorophyll-a as a measure of HABs, it is 

still used by researchers because the data are easy and cheap to collect, and there is a large 

amount of historic data available. 

3.1.7 Dissolved Oxygen 

 The issue of low oxygen regions at the bottom of Lake Erie is not a new phenomenon, 

and has been occurring in the Lake naturally for thousands of years.104 While some hypoxia 

(near-absence of dissolved oxygen) is likely natural, human activities in the second half of the 

20th century exacerbated the rate and extent of dissolved oxygen depletion.105  However, too 

many nutrients, especially phosphorus, can make the issue much worse.106 In the summer, the 

water in Lake Erie separates into two layers. The top layer is warmer than the bottom one, it 
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receives sunlight, and this warm water mixes with oxygen from the air. The cooler water on the 

bottom layer is darker, and is cut off from the air so it cannot re-supply its oxygen.107 If there is 

excess phosphorus in the water, the nutrient acts as a fertilizer, and more algae grow in the warm, 

sunlit top layer. When the algae stop growing and die, bacteria and fungi then decompose the 

plant organic matter. The bacteria and fungi also need oxygen to live, and as they decompose the 

dead algae, they consume what oxygen is available at the bottom of the water column.108 

Because the bottom layer is cut off from the air, over the summer months, less and less oxygen 

remains in the water. If there is a small volume of water and a lot of algae decomposition, like 

what occurs in Lake Erie, the oxygen will be used up faster, leading to oxygen depleted areas.109 

Research has shown that the concentration of total phosphorus has likely been influencing the 

rate of oxygen depletion in recent years.110 Based on a simple dissolved oxygen model, Rucinski 

et al. showed that change in dissolved oxygen depletion rates reflected changes in total 

phosphorus loads as opposed to climate changes between 1987 and 2005.111 Similarly, Burns et 

al. demonstrated that dissolved oxygen depletion rate is more closely related to the previous 

year’s annual total phosphorus load.112 The findings for the relationship between hypoxic zone 
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area and phosphorus loading is being examined in order to create new phosphorus loading targets 

that would minimize the hypoxic zone coverage to the greatest extent possible.113 

3.2 Prior Models 

3.2.1 Stumpf Model 

 One of two well-known predictive models for Lake Erie HABs, the model created by Dr. 

Richard Stumpf (referred to as the “Stumpf Model” in this paper) examined the relationship 

between the Cyanobacteria Index (“CI”), a proxy for HABs used by Stumpf, and a number of the 

predicative variables discussed above.  

One of the major issues in HAB modeling for Lake Erie is the lack of a precise definition 

of an HAB (see below for discussion), and differing metrics to measure their occurrence and 

size. The Stumpf model uses a proxy for HABs, the CI, which is based on remote sensing. 

Satellite imagery is able to provide data on the areal extent of cyanobacteria blooms, and one of 

the most powerful instruments is the Medium-spectral resolution imaging spectrometer 

(“MERIS”), which permitted quantification of blooms even in water with suspended sediments, 

including Lake Erie.114 MERIS data were available since 2002, allowing the Stumpf model to 

compare the bloom intensity with Maumee River loads for ten years (2002-2011). Using several 

bands in the red and the “red edge” portion of the near-infrared, MERIS data allowed for spectral 

shape algorithms that targeted severe blooms.115 Spectral shape methods use a computational 

equivalent to the second derivative, allowing the creation of a number of indexes, such as the 

florescent line height, maximum chlorophyll index (“MCI”) and the CI. The MCI have been 
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shown to be effective in coastal ocean algae blooms with data that have not been atmospherically 

corrected, while the CI has been effective at identifying cyanobacteria blooms in Lake Erie.116 

The CI is an estimate of surface concentration, which includes bloom biomass during calm 

winds, but can underestimate bloom biomass under high winds.117 Stumpf used the CI as 

opposed to measurements of the area of HABs, finding the CI to be a more robust statistic since 

it estimates the total biomass of the bloom.118 

 Stumpf’s methods for creating predictive models were fairly straightforward. CI was 

compared with Maumee River water flow, total phosphorus, and dissolved reactive phosphorus 

using standard least squares regression, including determinations of p-values and residual 

standard error (“RSE”) in order to determine the significance of the created models. 

 Stumpf found that CI is correlated with Maumee River water flow and total phosphorus 

for the months of March through May, but only for March and May for dissolved reactive 

phosphorus.119 Examining a linear model of the cumulative load for sequential months gave 

more evidence for the role of flow and loads during the spring months. Stumpf found that the 

relationships were strongest between CI and total phosphorus load or water flow when looking at 

the months from March to June, which explained 89% and 97% of the variance respectively.120 

Thus, Stumpf concluded that spring months (March-June) are needed to fully explain bloom 

severity and variability.121 This makes sense since cyanobacteria favor warm temperatures. The 

warmest water occurs in Lake Erie from July to September, meaning that the “lag” months 
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between nutrient loads and blooms are the warmest in the lake, which favors the development of 

Microcystis blooms.122 However, Stumpf also found that interannual differences in summer 

temperatures do not explain variations of bloom intensity within his data set.123 Additionally, 

Stumpf found that nitrogen loads from the Maumee River do not show a significant influence on 

bloom intensity, showing that the relationship between nitrogen and CI is much poorer than the 

relationship between phosphorus and CI.124 

 Focusing only on bloom years, Stumpf created a number of models attempting to predict 

CI occurrence and intensity. Using his data set, for the six years with major blooms, spring 

Maumee River flow produced a stronger relationship to bloom intensity than total phosphorus or 

dissolved reactive phosphorus loads from the Maumee.125 Examining the relationship for spring 

total phosphorus and CI, Stumpf found a strong correlation between total phosphorus (r2=.89), 

but a large uncertainty (RSE of 1.8 CI).126 Contrasting this, Stumpf found that CI against the 

average spring Maumee flow had an RSE of .96 CI, with a much stronger correlation (r2=.97). 

Stumpf further fit an exponential model of CI against Maumee water flow (log CI vs. log flow), 

which had the same r2 value, but an improved RSE of .58 CI. 

 From this examination, Stumpf focused on two different models to predict the occurrence 

and intensity of HABs (using the CI measurement as a proxy). Stumpf found that spring Maumee 

River flow and nutrient loads explain the severity of cyanobacteria blooms in Lake Erie. The lag 

of up to two months between the spring nutrient loads and peak HAB biomass allows for 

sufficient time for recycling of total phosphorus and dispersion in the basin to support HAB 
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growth under optimal temperature and light conditions.127 Stumpf’s two models are a CI from 

Maumee River flow (“Q”) in an exponential model and a linear model using total spring 

phosphorus loads (“TPJune”). (see Figure 1) 

Model 1 Model 2 

  

Figure 1: The Stumpf models (Note: Q=spring Maumee River flow; TP=total spring phosphorus load) 

Stumpf found that the exponential model using spring Maumee River flow captures the 

reasonable nonlinear response at low nutrient loads.128 Further, answering the question as to why 

Maumee River flow was the more effective predictor variable, Stumpf hypothesized that 

dissolved reactive phosphorus loads may only promote spring algal blooms near the River’s 

mouth, and TP, which is not immediately usable, may settle, and then be recycled to useable 

forms by bacteria and then be dispersed in later spring river discharge.129 It has also been argued 

that the Maumee River may itself be a source of cyanobacteria, which would further explain why 

river flow was the most significant predictor variable, though cyanobacteria seeding in the 

Maumee River is debated.130 Stumpf identified several issues with his predictive models. Most 

importantly was the fact that there was a relatively short period of study (10 years), which raise 

other questions of environmental variability, such as Lake Erie freezing over or lack of ice in 

certain years.131 
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3.2.2 Obenour Model 

 The second popular model for predicting HABs in Lake Erie is the model created by Dr. 

Daniel R. Obenour (referred to as the “Obenour Model” in this paper). This model examines the 

same dependent and independent variables as the Stumpf model, but uses a Bayesian approach. 

 Obenour found that while the relationships between spring Maumee River flow and total 

spring phosphorus loads capture the general positive correlation, they do not address the 

uncertainty in these relationships explicitly. Obenour assumes that this uncertainty is expected to 

be substantial due to multiple other factors that affect the inter-annual variability in observed 

bloom size, including summer wind patterns, temperature, nitrogen co-limitation, and 

cyanobacteria bloom measurement error.132 Due to the small sample size of the data for 

quantitative cyanobacteria estimates for western Lake Erie, Obenour argued that attempting to 

explicitly represent all factors affecting bloom size within an empirical model would likely result 

in over-parameterization and poor predicative performance.133 Due to the small sample size, 

Obenour noted that in cases where historical data are limited, a parsimonious approach with an 

explicit representation of uncertainty is more warranted.134 Therefore, Obenour continued to use 

phosphorus load as the primary bloom predictor, but re-developed the load-bloom relationship 

within a statistical framework where uncertainty is represented quantitatively.135 Obenour 

created three formulations of the phosphorus-bloom relationship using normal, log-normal, and 

gamma error distributions, and evaluated these based on their predictive skill.136 
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 Because Obenour used complex model formulation in his study, he used the more 

flexible Bayesian approach.137 Obenour noted that the Bayesian approach has been demonstrated 

as useful in previous studies in models used to predict algal blooms and hypoxia in other 

lakes.138 Obenour also used a hierarchical approach to simultaneously calibrate the model to two 

different HAB estimates, noting that hierarchical modeling is an effective tool for assessing 

multiple sources of uncertainty allowing him to account for variability due to measurement error, 

prediction error, and parameter uncertainty.139 One estimate was based on the same CI used in 

the Stumpf model, and the other estimate was based on in situ phytoplankton tows. The 

observations developed from western basin phytoplankton tows are reported in units of summer 

bio-volume production. Obenour explains that since there was considerable uncertainty in how to 

integrate the two estimates over space and time, he treated them as measurements of relative 

bloom intensity, and the tow data was scaled directly to the CI estimates so that the means of the 

two datasets matched.140 While the scaled tow estimates did not provide Obenour with any new 

information regarding bloom size, they did provide an independent assessment of the year-to-

year variability in relative bloom size.141 

 The three regression models created by Obenour all have the same basic form:  

, 

where (for a given year I and observation set j) zi,j is a bloom observation, 𝑧̂𝑖 is a deterministic 

bloom prediction based on nutrient loads, 𝛾𝑖 is a year-specific stochastic error term, and 𝜖𝑖,𝑗 is an 
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observation-specific stochastic error term.142 Because there are multiple bloom observations for 

each annual bloom and the true bloom size is unknown, the distinction between year-specific 

errors and observation-specific errors is important. In terms of hierarchical modeling, 𝛾𝑖 is a 

yearly “random effect” that represents deterministic model error in predicting true bloom size. 

Obenour noted that this approach is important because it addresses interclass correlation that 

exists in the Stumpf Model because Stumpf’s observations for a given year are not 

independent.143 The three models are that Obenour created are differentiated by their 

deterministic form and by the probability distributions used to represent the stochastic error 

terms, and it is these differences that cause different predictions and predictive uncertainties.144 

 Obenour’s first model, the normal model, used the common assumption of normally 

distributed measurement errors and random effects. The model took the following form: 

, 

where the deterministic prediction, 𝑧̂𝑖, is a function of the beta parameters and the weighted total 

phosphorus load 𝑊𝑖.145 During years with small amounts of nutrient loads, such that 𝛽0 +

𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖 < 0, the bloom size is determined to be at background level 𝛽𝑏, in order to prevent 

negative bloom predictions. The parameter 𝛽𝑤 refers to the rate of change in bloom size per unit 

of phosphorus load, and 𝛽0 is the y-intercept that varies with time, T. 
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 Obenour’s second model, the gamma model, is similar to the normal model in form and 

structure, but it assumes measurement errors and random effects are distributed according to 

gamma distributions. The gamma model has the following form: 

, 

where 𝑧𝑖,𝑗 is modeled as a gamma distribution with shape (𝑔𝛼) and rate (𝑔𝛽) parameters such that 

the mean and variance are 𝑔𝛼/𝑔𝛽 and 𝑔𝛼/𝑔𝛽
2 respectively.146 The random effects are modeled 

as a gamma distribution that is centered at zero by subtracting 𝑧̂𝑖, which makes the gamma model 

formulation more comparable to the normal model formulation, with the deterministic 

component clearly distinguished from the random effect.147 

 Obenour’s third model, the log-normal model, assumes measurement errors and random 

effects are normally distributed, while predicting a log-transformed response. The log-normal 

model takes the following form: 

, 
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where 𝑧̂𝑖,𝐿 is the deterministic bloom prediction on the log scale that can be back-transformed to 

the original scale using 𝑧̂𝑖 = 𝑒 𝑧̂𝑖,𝐿.148 Since there the log transformation disallows negative 

predictions, there is no background bloom predictor as in the other models. 

 Obenour also probabilistically assessed the optimal loading period for predicting bloom 

size by having his models use a weighted total phosphorus load 𝑊𝑖. The weighted phosphorus 

load was determined by the following: 

, 

where 𝑤𝑖,𝑚 is the total phosphorus load corresponding to month (m) and year (i), 𝜑𝑚 is the 

weighting value for month, which is determined by 𝛽𝜑, which is the weighting parameter.149 

Unlike the Stumpf Model, Obenour uses the months January-June in his models, though he 

weighted this parameter such that later months (April, May, June) are more heavily weighted. 

 Further distinguishing his models from the Stumpf model, Obenour used Bayesian 

calibration. Obenour’s model parameters were estimated using a Markov Chain Monte Carlo 

(“MCMC”) implementation of Bayes Theorem. The MCMC sampling was performed in three 

parallel “chains” of up to 200,000 samples each, and the first half of each chain was removed as 

a “burn-in period”, while the remaining chain portions were thinned to 1000 samples each (to 
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reduce autocorrelation), and then checked to ensure that they had converged on equivalent 

posterior parameter distributions.150 

 Obenour concluded that the gamma model was the preferred model of the three. Of the 

three models the normal and gamma models had similar R2 values (.93 and .91 respectively), 

while the log-normal performed less well in terms of R2 (.68).151 To differentiate between the 

normal and gamma models a cross validation was run, and Obenour found that the difference in 

skill between the full model and cross validated model results was smallest for the gamma 

model, suggesting that it was more robust.152 Using gamma models to explain water quality 

sampling data has been used in the past, however, this may be the first study to apply the gamma 

distribution in order to characterize predictive uncertainty in a water quality forecasting 

model.153 Based on the gamma model, Obenour found that there is a linkage between total 

phosphorus load and HAB size. The study also created forecasting models using dissolved 

reactive phosphorus and nitrogen, though these were not as strong at predicting bloom size as the 

total phosphorus variable. This suggests, and is consistent with the Stumpf model, that total 

phosphorus is the most effective predictor of HABs.154 Perhaps more interesting than these 

findings were Obenour’s findings that based on his modeling, the threshold loading rate of 

phosphorus necessary for a bloom to exceed background levels has dropped between 2002 and 

2013.155 This finding is consistent with other research (particularly Michalak et al.), suggesting 

that large HABs may be increasingly common in the future due to changing meteorological 

                                                            
150 Id. 
151 Id. 
152 Id. 
153 Id. 
154 Id. 
155 Id. 



32 
 

conditions that promote cyanobacteria growth. Finally, Obenour’s results were largely consistent 

with the Stumpf model. 

3.3 Limitations 

 A number of issues make statistical analysis of HABs difficult. First, the data sets 

available to quantify Microcystis booms and environmental factors that may predict HABs have 

not been collected long term. The Stumpf model uses ten years of data, while the Obenour model 

uses twelve. Additionally, even defining an HAB or quantifying Microcystis blooms can be 

difficult. There are currently five common methods of quantifying HABs in Lake Erie: 

microcystin concentration, chlorophyll-a concentration, cell counts, quantitative real-time PCR 

(“qPCR”), and remote sensing.156 Each method has advantages and disadvantages. In terms of 

microcystin concentration, toxin concentration may vary with the percentage of toxic vs. non-

toxic Microcystis strains, making it not well correlated with cell counts, which means that it is 

not always a reliable surrogate for Microcystis abundance.157 Chlorophyll-a concentration is 

often used as a proxy for total phytoplankton mass, but as discussed above, it cannot differentiate 

between the different types of taxonomic groups.158 Cell counts are a direct measurement of 

abundance, but the methods to obtain cell counts are time-consuming, which limits the number 

of measurements that can be obtained.159 The method referred to as qPCR has advantages in 

being able to distinguish between toxic and non-toxic species, but this technique requires 

substantial investment in analytical equipment and training.160 Finally, remote sensing, 
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particularly via satellite-based sensors, is useful in being able to delineate broad areas of surface 

blooms over time, however, the results from satellite images are highly dependent on the 

concentration of gas vacuoles within the cells of the cyanobacteria, and may also vary with the 

presence of other algal species that have the same pigments.161 In Lake Erie, all of these methods 

have been used. 

 Beyond the issues of how to quantify microcystis, is perhaps the more important question 

of how to define what exactly an HAB is. This includes identifying a bloom and whether or not it 

is harmful; how to define the occurrence of an HAB; how to define the size of an HAB; and how 

to determine the lifetime (start, peak, decline) of an HAB. Generally, an HAB is defined by its 

potential harm to humans and/or the ecosystem.162 Some work has explored what criteria algal 

species need to meet to be categorized as harmful, the abundance threshold that define an HAB, 

and the diversity of pathways that can lead to the occurrence of an HAB of a particular 

species.163 Further, some groups have made a distinction between harmful booms as those HABs 

that can adverse health effects, and nuisance blooms as those linked to a more general class of 

harm.164 

 The many different measurements, metrics, and definitions suggest that what constitutes 

an HAB is not straightforward. As a result, conclusions between different studies using different 

metrics may not be immediately comparable.165 We can see, therefore, that the simple question 

of what is an HAB, continues to be one that is subjective, even for a system like Lake Erie where 
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the primary species of interest is known.166 Some groups have selected subsets of harms and 

metrics, as well as specified thresholds, to define HABs from an operational standpoint. For 

example the International Joint Commission (“IJC”- formed as part of the GLWQA) and the 

Ohio Environmental Protection Agency (“Ohio EPA”) have both defined HABs based on 

thresholds for microcystin, chlorophyll-a, and cell concentrations.167  

 Though thresholds have been created for certain groups, diversity among definitions still 

exists, and highlight that the creation of a single definition remain elusive.168 The diversity of 

definitions and metrics can be problematic, especially in terms of creating predictive models. For 

instance, if inferences based on measurements of microcystis bio-volume differ from those based 

on cyanobacteria biomass, then mechanistic models validated against one of the other metric 

could yield substantively different results.169 Answers to questions about HAB occurrence, size, 

and timing are found to strongly depend on the types of measurements used to support the 

analysis, and this dependence occurs due to variations in sampling frequency, temporal coverage, 

and thresholds for harm.170 
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CHAPTER IV: METHODS & RESULTS 

4.1 Rationale For Study 

In order to further study HAB modeling in Lake Erie, I was interested in using two proxy 

measurements, oxygen depletion and chlorophyll-a counts, for HABs in order to increase the 

number of dependent variable observations. Both the Stumpf and Obenour models suffer from 

relatively small data sets (2002-2011, 2002-2013 respectively), which may fail to adequately 

model what has occurred in Lake Erie over the last 25 years. Generally, I am interested in seeing 

if different proxies for HABs, a larger data set, and different independent variables (neither 

Stumpf nor Obenour included temperature or Sandusky River variables) create valid HAB 

predictive models and/or improve upon the prior forecasting methods. More specifically, since 

there is no single definition of an HAB, and no one agreed upon metric to measure them, my 

study examines whether my proxies, oxygen depletion and chlorophyll-a, are suitable proxies for 

HABs in Lake Erie. Oxygen depletion is one related effect of HABs, such that when the large 

algal blooms die, they sink to the bottom, decompose, and create hypoxic zones with limited 

dissolved oxygen. Chlorophyll-a can be used to measure the overall presence of algae, including 

cyanobacteria. By using data that dates beyond 2002, we may be able to observe changes in 

variable interactions from the late 1980s to the present. From my literary review, no Lake Erie 

HAB modeling has been done using plankton population (chlorophyll-a) or oxygen depletion 

levels as proxies for HABs. I ran a number of multiple linear regression analyses using oxygen 

depletion and chlorophyll-a as proxies for the dependent variable representing cyanobacteria 

blooms, using independent variables including phosphorus, dissolved reactive phosphorus and 

nitrogen loads from two tributaries to Western Lake Erie (Maumee and Sandusky Rivers), and 

water temperature. I also ran ANOVA analyses using categorical data from the Ho & Michalak 
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paper, “Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie,” 

as a dependent variable. 

4.2 Data Collection 

For my models I used seven independent variables and two dependent variables. My 

independent variables were total phosphorus, dissolved reactive phosphorus, and nitrogen loads 

from the Maumee and Sandusky Rivers, and water temperature. My dependent variables were 

chlorophyll-a and oxygen depletion, and were studied individually through multiple linear 

regression models. 

The data for the two tributaries to Lake Erie were taken from the National Center for 

Water Quality Research at Heidelberg University.171 Beginning in 1974, the Water Quality 

Laboratory began collecting and analyzing data for a set of Lake Erie Tributaries.172 Data 

including total phosphorus, total dissolved reactive phosphorus, and total nitrogen concentrations 

have been collected in the Maumee and Sandusky Rivers since the late 1970s. A refrigerated 

auto sampler was used to collect samples in these two tributaries, with samples taken three times 

per day.173 Total phosphorus and dissolved reactive phosphorus are analyzed using EPA Method 

365.1 and nitrogen is analyzed using EPA Method 300.1.174 Using the template of prior research, 

including both Stumpf and Obenour, I converted these concentrations into total loads from 

March-June during the years 1987-2011 using the following method recommended by the 
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Heidelberg program and also used in prior research. I used the following equation to both 

convert the data from concentration to load and to convert from standard to metric: 

𝑡𝑖𝑚𝑒 ∗
𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒
∗

𝑎𝑚𝑜𝑢𝑛𝑡

𝑣𝑜𝑙𝑢𝑚𝑒
∗ 𝑐𝑜𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑙𝑜𝑎𝑑 

This conversion from concentration to load and the conversion from standard to metric units was 

done for each of the three independent river variables, for both tributaries that I examined. There 

were missing values for the Sandusky River variables for one year, and these missing data points 

were estimated using the iterative regression approach, which is discussed below. 

For the independent variable water temperature, I used average annual summer (May-

August) temperatures of Lake Erie collected and published by NOAA.175 The water temperatures 

are collected from a water treatment plant at a depth of 30 feet. 

The dependent variable and possible HAB proxy chlorophyll-a was collected from data 

published by the US EPA.176 The US EPA began collecting annual indicators in the Great Lakes 

in 1983 as a way to assess the overall health of each Lake. The sampling method is to collect 

water and biota samples at specific water depths from a limited number of locations in each lake 

two times every year. Chlorophyll-a concentrations are measured as ug/L. There were three 

missing years for the EPA chlorophyll-a data, 1989, 1994, and 1995, and the method of means 

approach was used to estimate these missing variables, which will be discussed below.  

                                                            
175 NOAA. “National Weather Service Forecast Office.” 2015. Available at 
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 The dependent variable and possible HAB proxy dissolved oxygen was collected from 

data published by Scavia et al.177 The data published by Scavia et al. was compiled from the 

Great Lakes National Program Office and Environment Canada, and covered the years 1987 to 

2011. Annual mean dissolved oxygen concentrations, measured as mg/L, was collected at fixed 

water stations in Lake Erie from August to September of each year. 

 Finally, for the ANOVA analysis and attempted logistic regression models I used a 

categorical dependent variable that represented HAB occurrence. These data came from the Ho 

& Michalak paper, “Challenges in tracking harmful algal blooms: A synthesis of evidence from 

Lake Erie,” and the authors compiled evidence as to whether there was no bloom, an ambiguous 

bloom, or a widespread bloom for the years 1995 to 2011.178 The evidence for these categorical 

data was gathered from a literature review of prior Lake Erie HAB studies, with the authors 

cautiously noting that not all of the studies were done at the same time of year, and that the 

studies were looking at a variety of issues with regards to HABs. 

 Briefly, there were a number of issues with my original full dataset, most notably the 

missing values for dependent variable chlorophyll-a and independent variables Sandusky River 

total phosphorus, Sandusky River total dissolved reactive phosphorus, and Sandusky River total 

nitrogen. Two commonly used methods for estimating missing values, called imputation, are the 

method of means and iterative regression.179 The method of means approach is straightforward – 

the mean of the variable is substituted for the missing value.180 The iterative regression approach 

is more complicated. In the iterative regression method, one variable with missing values is 
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179 Rencher, Alvin C., & Christensen, William F. “Methods of Multivariate Analysis.” John Wiley & Sons, Inc, 
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estimated by regressing it on the other independent variables to obtain a prediction equation.181 

The missing observations are then estimated from this prediction equation. Then a second 

variable with missing values is selected and regressed on the other independent variables to 

obtain a prediction equation. This prediction equation is then used to predict the missing values 

for the second variable. This process is repeated for all variables with missing values. Once all 

the missing values are estimated, the entire process is repeated and the new prediction equations 

are used to re-estimate the missing values. This process is continued until the estimated values 

for the missing variables stabilize.182 The iterative regression approach has been found to yield 

better results than the method of means if the variables are somewhat related to each other. 

However, if the other variables are not highly correlated with the variable containing missing 

values, the regression technique is essentially the same as the methods of means approach.183 The 

downside of having to estimate values for missing variables is the loss in degrees of freedom. 

This is problematic for my dataset due to the small number of observations. 

 As mentioned above, I used both the method of means approach and the regression 

approach to estimate different missing values in my dataset. Initially, I examined the correlations 

among the variables of the full dataset with missing values. Based on the correlations, I chose to 

use the method of means approach to estimate missing values of the variable chlorophyll-a, since 

this variable had low correlations with other variables, and because I did not want to use the 

independent variables from the model to estimate the missing values of the dependent variable. I 

chose to use the regression approach to estimate missing values for the Sandusky River 

variables. Using the method of means approach, the mean for the chlorophyll-a variable was 
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calculated to be 6.0590909, and this value was then substituted in for years 1989, 1994, and 

1995. I next ran regression models to create predictive estimates for the 3 variables with missing 

values. Each regression model had as the dependent variable, one of the variables with missing 

observations, and included the rest of the independent variables as predictor variables. Using the 

predicted values from the regression models resulted in the following estimates: 106.1636 for 

Sandusky River total phosphorus; 16.5619 for Sandusky River total dissolved reactive 

phosphorus; and 3235.28 for Sandusky River total nitrogen.   

4.3 Model Choices 

I chose to use these data for the years 1987 through 2011 in order to expand the sample 

size beyond the 10 or 12 years used by Stumpf and Obenour. As mentioned in the “Limitations” 

section above, there is no one definition or metric for HABs, and similarly, there is no one metric 

nor is there one consistent data collection method used for any of my variables except for the 

river loading data. Data from a number of different sources were considered, but eventually 

discarded mostly because of inconsistent collection years or small sample sizes. For example, 

dry weight biomass of crustacean zooplankton in Western Lake Erie was considered as a proxy 

for HAB, but the data collected were inconsistent (covering the years 1970, 1974-75, 1984-87, 

1995-2000). Similarly, I considered using spatial average phytoplankton wet weight biomass (all 

taxa combined) as a proxy for HAB, but again, the data collected were inconsistent (1970, 1978, 

1984-87, 1991, 95-97). Several different data sets concerning dissolved oxygen were considered, 

however many of these data sets focused on repeated measures over a small time period, and 

were not appropriate for my study. Finally, a number of solid data sets with good historic data 

were considered for phytoplankton population estimates, dissolved oxygen, and cyanobacteria 
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concentrations, but many of these did not extend beyond the late 1990s or early 2000s, and thus I 

would not have been able to model recent changes in Lake Erie. 

 In order to explore whether chlorophyll-a concentrations or dissolved oxygen were 

suitable proxies for HABs, I created a number of models to test their relationships to the 

independent variables described above. Additionally, I manipulated my dataset in two different 

ways, both to improve the predictive power of my models, as well as to better understand the 

system. The first set of models that I created used the entire timespan of my dataset (1987-2011) 

to create two predictive models, one for each dependent variable. The second set of models that I 

created used a 16-year dataset (1996-2011), which not only allowed me to create another set of 

predictive models for each dependent variable, but also allowed me to examine the hypothesis 

that Lake Erie had changed during the mid-1990s in terms of HAB creation and occurrences. 

Additionally, but running models over the 16-year dataset, I avoided using any estimates for 

missing values for the dependent variable chlorophyll-a. 

I began by running ANOVA analyses for each of my variables, exploring the mean 

values of each variable as they relate to the categorical dataset. Next, I ran a simple linear 

regression analysis, examining both of my dependent variables against only Maumee total 

phosphorus using both the full and 16-year datasets. These models allowed me to directly 

compare my dependent variables to the Strumpf and Obenour models, which similarly used only 

Maumee River total phosphorus as an independent variable. Next, I used all of the independent 

variables discussed above to create regression models for each of my dependent variables using 

both datasets. This regression analysis followed the following procedure: 1. Initial examination 

of variable scatter plots; 2. Create the first-order full model; 3. Use the Selection function in SAS 

to determine the variable combination that produces the model with the largest adjusted R2 value; 
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4. Run diagnostics and analyze linear regression assumptions; 5. Make variable transformations 

as necessary to satisfy model assumptions; 6. Drop insignificant independent variables from 

model. Following this, I used the information from the one-way ANOVA analyses for each of 

my variables, using the information obtained to check the validity of the models created through 

the linear regression analysis. All of my analyses were done using the SAS 9.3 and Minitab 

software. The next sections will describe each of the models I created or attempted to create, as 

well as further analysis, in some detail. 

4.4 ANOVA Analysis 

 In order to gain a better understanding of how my chosen dependent and independent 

variables relate to the categorical HAB variable from the Ho and Michalak paper, I began my 

analysis by examining one-way ANOVAs for each of my variables, using my variables as the 

dependent variables and the categorical data as the factor. In the ANOVA analysis, I ignored 

years where Ho and Michalak found bloom presence to be ambiguous and focused only on years 

where there was no bloom or a bloom presence. The ANOVA analysis can tell us the means of 

each variable associated with each level of the categorical dataset. Thus, we can find the mean 

value for each variable that is associated with the categorical no bloom or bloom presence data. 

These means can show us trends associated with each variable, specifically telling us if higher or 

lower values of a particular variable are associated with the absence or presence of blooms. 
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Variable Mean No Bloom Mean Bloom 

Presence 

F-value p-value 

Chlorophyll-a.23 1.416 1.5678 1.09 0.327 

Dissolved Oxygen 4.28 3.3 0.91 0.368 

MauTP 1031 1398 1.49 0.257 

MauTSRP 145.9 270.6 4.91 0.057 

MauTN 23015 18559 1.26 0.294 

SanTP 252.6 316.2 0.30 0.599 

SanTSRP 22.69 53.6 2.25 0.172 

SanTN 4249 3674 0.57 0.472 

Temp 62.656 64.203 2.39 0.161 

Table 1: One-way ANOVA Analyses for individual variables 

Table 1 contains the results for each individual variable’s one-way ANOVA. Unfortunately none 

of the ANOVA tests indicated a statistically significant difference between the means at the .05 

level. However, we can still learn something by looking at the trends of the means. For variables 

chlorophyll-a, Maumee total phosphorus, Maumee total dissolved reactive phosphorus, Sandusky 

total phosphorus, Sandusky total dissolved reactive phosphorus, and temperature, higher values 

correspond with a higher chance of an HAB presence. On the other hand, for variables dissolved 

oxygen, Maumee total nitrogen, and Sandusky total nitrogen, lower values correspond with a 

higher chance of an HAB presence. These results are consistent with what we would expect 

based on prior research. See tables 15-23 for more detail. 

4.5 Simple Linear Regression Analysis 

 So that I could directly compare my two dependent variables, chlorophyll-a and dissolved 

oxygen, with the other HAB proxies used in the prior models, I decided to run my dependent 
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variables in a linear regression analysis using only Maumee River total phosphorous as the 

independent variable. The results for each dependent variable in each of my two datasets are 

below. 

4.5.1 Full dataset – dependent variable, Chlorophyll-a 

The simple linear regression model with dependent variable chlorophyll-a and 

independent variable Maumee total phosphorus using the full dataset had an F-value of 1.85 and 

a p-value of .187. The R2 value was .0746 and the adjusted R2 value was .0343. I used the normal 

probability plot to check the assumption of normally distributed residuals, and found that the 

residuals were not normal as the residuals on the normal probability plot did not form a straight 

line (see Figure 2). Further, looking at the plot of residuals versus fitted values, I found that the 

equal variance assumption was not satisfied as the residuals were not evenly spaced above and 

below the zero line (see Figure 2).  

In an attempt to achieve the model assumptions I tried a variable transformation on the 

dependent variable. I chose to transform the variable to normality to see if doing so would 

achieve the model assumptions. Using the Box-Cox procedure to find an appropriate 

transformation suggested taking the dependent variable to the power of 0.23. Using the normally 

transformed dependent variable and running a new regression analysis against independent 

variable Maumee total phosphorus had an F-value of 1.29 and a p-value of .268. The model had 

an R2 value of .053 and an adjusted R2 value of .0119. Checking the normal probability plot and 

the residual plot showed that the model assumptions of normality and equal variance were 

satisfied using the transformed dependent variable (see Figure 3). Briefly, the high p-value 

indicates there is not a significant linear relationship between Maumee total phosphorus and 
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chlorophyll-a, and therefore this model is not appropriate to predict chlorophyll-a. This is 

confirmed by the low R2 and adjusted R2 values. 

Model F-value p-value R2 adj. R2 

Chol.23=1.323+0.000129*MauTP 1.29 0.268 0.053 0.0119 

Table 2: Chlorophyll-a.23 vs. MauTP; full dataset 

4.5.2 Full dataset – dependent variable, Dissolved Oxygen 

The simple linear regression model with dependent variable dissolved oxygen and 

independent variable Maumee total phosphorus using the full dataset had an F-value of 1.21 and 

a p-value of .283. The R2 value was .0499 and the adjusted R2 value was .0086. I used the normal 

probability plot to check the assumption of normally distributed residuals, and found that the 

residuals were slightly off normal (see Figure 4). Further, looking at the plot of the residuals 

versus the fitted values, I found that the equal variance assumption was satisfied (see Figure 4). I 

attempted a number of transformations, but they were not able to better satisfy the assumptions, 

so we use the untransformed dependent variable. Again, the high p-value indicates that there is 

not a significant linear relationship between dissolved oxygen and Maumee total phosphorus, 

and therefore this model is not appropriate to predict our dependent variable, dissolved oxygen. 

This is confirmed by the low R2 and adjusted R2 values. 

Model F-value p-value R2 adj. R2 

HypDO=2.786+.000661*MauTP 1.21 0.283 0.0499 0.0086 

Table 3: HypDO vs. MauTP; full dataset 
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4.5.3 16-Year dataset – dependent variable, Chlorophyll-a 

The next two simple linear regression analyses use the 16-year dataset. This simple linear 

regression model with dependent variable chlorophyll-a and independent variable Maumee total 

phosphorus had an F-value of 0.66 and a p-value of .43. The R2 value was .0451 and the adjusted 

R2 value was 0. I used the normal probability plot to check the assumption of normally 

distributed residuals, and found that the residuals were not normal (see Figure 5). Further, 

looking at the plot of the residuals versus the fitted values, I found that the equal variance 

assumption was satisfied (see Figure 5).  

In an attempt to achieve the model assumptions I tried a variable transformation on the 

dependent variable. I again chose to transform the dependent variable to normality to see if doing 

so would achieve the model assumptions. I used the same transformation as in the full dataset, 

and transformed chlorophyll-a by taking it the power of .23. Using the normally transformed 

dependent variable and running a new regression analysis against independent variable Maumee 

total phosphorus had an F-value of 0.75 and a p-value of .401. The model had an R2 value of 

.0509 and an adjusted R2 value of 0. Checking the normal probability plot and the residual plot 

showed that the model assumptions were satisfied using the transformed dependent variable (see 

Figure 6). We see that this model has a high p-value, indicating that there is not a significant 

linear relationship between chlorophyll-a and Maumee River total phosphorus using the 16-year 

dataset. The extremely low R2 and adjusted R2 values confirm that this model is not appropriate 

to predict chlorophyll-a.  

Model F-value p-value R2 adj. R2 

Chol.23=1.331+.000138*MauTP 0.75 0.401 0.0509 0 

Table 4: Chol.23 vs. MauTP; 16-year dataset 
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4.5.4 16 Year dataset – dependent variable, Dissolved Oxygen 

The simple linear regression model with dependent variable dissolved oxygen and 

independent variable Maumee total phosphorus using the 17-year dataset had an F-value of 014 

and a p-value of .710. The R2 value was .0102 and the adjusted R2 value was 0. I used the normal 

probability plot to check the assumption of normally distributed residuals, and found that the 

residuals were slightly off normal (see Figure 7). Further, looking at the plot of the residuals 

versus the fitted values, I found that the equal variance assumption was possibly violated (see 

Figure 7). I attempted a number of transformations, but they were not able to better satisfy the 

assumptions, so we use the untransformed dependent variable. Again, the high p-value indicates 

that there is not a significant linear relationship between dissolved oxygen and Maumee River 

total phosphorus, and therefore this model is not appropriate to predict our dependent variable, 

dissolved oxygen. This is confirmed by the extremely low R2 and adjusted R2 values. 

Model F-value p-value R2 adj. R2 

HypDO=3.244+.000276*MauTP 0.14 0.710 0.0102 0 

Table 5: HypDO vs. MauTP, 16-year dataset 

4.6 Multiple Linear Regression Analysis 

4.6.1 Full dataset – dependent variable, Chlorophyll-a 

 Prior to running the multiple linear regression analysis I took a number of preparatory 

steps to ensure my data were appropriate for the regression model. My first step was to 

reexamine the correlations among the independent variables, as highly correlated independent 

variables may lead to multicollinearity issues later. For this data set, there were a number of 

highly correlated variables, specifically, the total phosphorus measurements within each river, 

and the variable shared between the two rivers. This would likely lead to multicollinearity issues, 
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but I examined this after I created my initial and reduced models. I next performed an initial 

examination, plotting my dependent variable against my independent variables (see Figure 8). 

Based on these plots, it did not appear that there was a strong linear relationship between 

chlorophyll-a concentrations and any of my predictor variables. However, the plots did not 

indicate that a second order or higher model was appropriate either. I fit a model with all seven 

independent variables which resulted in F = 3.07 and p = .028.  This indicated that at least one of 

the independent variables was significant. I did a quick check of the parameter estimates’ 

variance inflation factor (“VIF”) as a check for multicollinearity. At this stage in the analysis, a 

number of the variables had large enough VIFs (>10) to indicate that multicollinearity was 

present.  

 My next step utilized the Selection function in SAS, which is a tool for model selection. I 

used the selection function in SAS to find the subset of independent variables that creates the 

best model for predicting the dependent variable based on the models’ adjusted R2 value. The R2 

value measures the proportion of the variance in the dependent variable that is explained by the 

relationship between the dependent and independent variables, and the adjusted R2 value adjusts 

R2 such that it penalizes the addition of extraneous predictors to the model. The selection 

function in SAS fits all one variable models, all two variables models, and continues in this 

fashion until all combinations of variables have been tested, with the output showing which 

combination resulted in the highest adjusted R2 value. Using this function, I found that a model 

with the variables Sandusky total dissolved reactive phosphorus, Sandusky total nitrogen, and 

temperature would result in the model with the largest possible adjusted R2 value. I next created 

a reduced model using these variables, which had an F value of 6.47, a p-value of .004 after 

adjusting for the estimated missing values, an R2 value of .5332, and an adjusted R2 value of 
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.4665. Examining the parameter estimates, Sandusky total phosphorus and Sandusky total 

nitrogen were found to be significant variables at the .05 alpha level, but temperature was not 

significant. 

After creating the reduced model I checked the model assumptions, namely the 

assumptions that the residuals are normally distributed, that there is equal error variance, that 

there is no multicollinearity, and that there are no outliers. Using the normal probability plot to 

check for normality, I found that the residuals were not normally distributed (see Figure 11). 

Examining the plot of the residuals versus the predicted values showed that there may be an issue 

with the equal variance assumption (see Figure 11). Based on VIF values there were no issues of 

multicollinearity in the reduced model. 

In an attempt to achieve the model assumptions a number of transformations on the 

dependent variable chlorophyll-a were attempted. Previously I had found that the dependent 

variable was not normally distributed, and to normalize this variable I took it to the power of .23. 

Taking this transformation normalized the dependent variable, and when the model was rerun, 

the residual normality assumption was satisfied. Also, the residual plot showed much better 

scattering (see Figure 12).  

After making the transformation and analyzing their results, the final model I chose for 

this dataset was the model with the dependent variable chlorophyll-a transformed to normality by 

taking the dependent variable to the power of .23, with independent variables Sandusky total 

dissolved reactive phosphorus and Sandusky total nitrogen. Even though the Selection function 

found the model with the highest adjusted R2include the variable temperature, temperature was 

found to be insignificant and was dropped from the final model. The final model had an F-value 

of 5.42, a model p-value of .016 after adjusting for the estimating the missing values, an R2 value 
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of .3678, and an adjusted R2 value of .3103. Both independent variables were found to be 

significant. 

Model F-value p-value R2 adj. R2 

DV: Chol.23 final reduced 5.42 0.016 0.3678 0.3103 

Table 6: Chol.23; full dataset; final reduced model 

The final reduced model had the following form: 

𝐶ℎ𝑜𝑙.23  = 1.55829 + .00672 ∗ 𝑆𝑎𝑛𝑇𝑆𝑅𝑃 − .00009713 ∗ 𝑆𝑎𝑛𝑇𝑁 

Based on the normal probability plot the normality assumption was satisfied by this model. 

Similarly, based on the residual plot, the equal variance assumption was also satisfied. 

Examining VIF values indicated no issues of multicollinearity. 

 Next I briefly interpret the chosen model, which used the dependent variable chlorophyll-

a transformed to normality, with independent variables Sandusky River total dissolved reactive 

phosphorus and Sandusky River total nitrogen. To begin with, prior research indicates that 

higher values of the dependent variable chlorophyll-a reflect higher chances of a HAB. This is 

confirmed previously in the ANOVA analysis. We can look at the chosen model to determine 

what causes the chlorophyll-a to increase. To begin with, we interpret the independent variable 

coefficients. These coefficients represent the mean change in the dependent variable for one unit 

change in the independent variable while holding other independent variables in the model 

constant. The positive coefficient for Sandusky total dissolved reactive phosphorus indicates that 

as this variable increases, the dependent variable also increases. Similarly, the negative 

coefficients for Sandusky total nitrogen indicate that as this variable increases, the dependent 

variable decreases. From prior research we would expect that increases in dissolved reactive 
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phosphorus and decreases in nitrogen would lead to HAB growth since phosphorus acts as a 

growth stimulant for the cyanobacteria algae, while nitrogen decelerates growth. 

4.6.2 Full dataset – dependent variable, Dissolved Oxygen 

 I followed a similar procedure for my second model, which examined the predictor 

variables against the dependent variable, dissolved oxygen, using the full dataset. To begin, 

when I ran my initial examination and plotted the dependent variable against the predictor 

variables, none of the plots showed a strong linear trend, though the plots did not suggest using a 

different model (see Figure 9). I first ran the full model with all independent variables included 

which resulted in F = 3.20 and p = .024.  This indicated that at least one independent variable 

was significant. Multicollinearity was checked, showing three variables with VIF values greater 

than 10, which indicated issues of multicollinearity. 

I used the Selection function in SAS to find the best model for predicting the dependent 

variable based on adjusted R2. Using this function I found that a model with the variables 

Maumee total phosphorus, Sandusky total phosphorus, and Sandusky total dissolved reactive 

phosphorus would result in the largest adjusted R2 value. Using these variables to create a 

reduced model resulted in an F value 8.39, model p-value .001, an R2 value of .5451, and 

adjusted R2 value of .4801. Looking at the parameter estimates, variables Sandusky total 

dissolved reactive phosphorus, and Sandusky total phosphorus, were found to be significant, but 

Maumee total phosphorus was not significant. 

After creating the reduced model I checked the model assumptions that the residuals are 

normally distributed, there is equal error variance, there is no multicollinearity, and that there are 

no outliers. Examining the normal probability plot indicated that the residuals were close to 

being normally distributed, and the residual plot indicated that the equal variance assumption 
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was also satisfied (see Figure 15). Based on the VIF values for the variables, multicollinearity 

was not present. 

 Independent variable Maumee River total phosphorus was found to be insignificant in the 

reduced model, so the final reduced model was created using untransformed dependent variable 

dissolved oxygen with independent variables Sandusky River total phosphorus and Sandusky 

River total dissolved reactive phosphorus. This model had an F-value of 9.50, a model p-value of 

.001 after adjusting for the estimated missing values, an R2 value of .4749, and an adjusted R2 

value of .4272. Both independent variables were found to be significant. 

Model F-value p-value R2 adj. R2 

DV HypDO final reduced 9.50 0.001 0.4749 0.4272 

Table 7: HypDO; full dataset; final reduced model 

 The final reduced model had the following form: 

𝐻𝑦𝑝𝐷𝑂 = 2.241 + .01266 ∗ 𝑆𝑎𝑛𝑇𝑃 − .0525 ∗ 𝑆𝑎𝑛𝑇𝑆𝑅𝑃 

Based on the normal probability plot and the residual plot, both the normality and equal variance 

assumptions appeared satisfied (see Figure 16). Examining the VIF values showed no issues of 

multicollinearity.  

Again, we can interpret the chosen reduced model for the dependent variable dissolved 

oxygen. Prior research indicated that lower levels of dissolved oxygen would be present during 

seasons with HAB occurrences. This is confirmed by the previous ANOVA analysis. Looking at 

the independent variable coefficients we see that the coefficient for Sandusky total dissolved 

reactive phosphorus is negative, while the coefficient for Sandusky total phosphorus is positive. 

This would indicate that as Sandusky total dissolved reactive phosphorus increases, the 
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dependent variable decreases. On the other hand, the model indicates that as Sandusky total 

phosphorus increases, dissolved oxygen also increases. Some of these results make sense, while 

others are more troubling. What is concerning are the coefficients for the river variables. From 

the literary review, we would expect dissolved oxygen values to decrease as phosphorus (both 

total phosphorus and dissolved reactive phosphorus) loads increase. However, the model 

indicates that increases in the dissolved reactive phosphorus load from the Sandusky decreases 

dissolved oxygen levels, but as total phosphorus from the Sandusky increases dissolved oxygen 

also increases. This discrepancy could be due to a number of factors. First, it may be that total 

phosphorus from the Sandusky River includes more phosphorus that is not soluble or usable by 

algae, or that more of this total phosphorus load sinks to the bottom also making it not usable by 

the algae. Additionally, because there is such a high correlation between the river variables, this 

discrepancy could be due to multicollinearity issues, even though none of the model’s VIF 

values were greater than ten. This is also evidenced by the fact that the independent variable 

Sandusky total dissolved reactive phosphorus has a different sign than the correlation coefficient 

between this variable and the dependent variable. 

4.6.3 16 Year dataset – dependent variable, Chlorophyll-a 

Prior research had indicated that Lake Erie has changed dramatically over the last 30 

years. One way that the Lake has changed is due to the introduction of invasive Dreissenids 

mussel species. Prior research has shown that by the mid-1990s the effects of these mussels in 

Lake Erie had changed the Lake, and I was interested in seeing if using a dataset for the years 

1996-2011 could improve my modeling, since the process of HAB formations likely changed as 

well after this year.184 Further, by looking at a dataset starting in 1996, models using this dataset 

                                                            
184 Michalak, 2013. 
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should more closely resemble the Stumpf and Obenour models if my choices for dependent 

variables are appropriate proxies for HABs. The downside of using this dataset is the obvious 

reduction in observations, from 25 in my full dataset, to 16 in this dataset. 

First, I examined the plots between dependent and independent variables. Similar to my 

models using the full dataset, these plots did not show any strong linear relationships, but did not 

indicate that other, higher order models would be appropriate (see Figure 17).  

I began again by running a linear regression on dependent variable chlorophyll-a against 

all of my other independent variables which resulted in F = 7.23 and p = .006 indicating at least 

one of the independent variables was significant. Then, using the Selection function of SAS to 

find the combination of independent variables that would produce the highest adjusted R2 

indicated that using Maumee total phosphorus, Maumee total dissolved reactive phosphorus, 

Maumee total nitrogen, Sandusky total phosphorus, Sandusky total nitrogen, and temperature 

would result in the largest adjusted R2 value. Using these variables to create my reduced model 

resulted in a model with an F-value of 8.34 and a p-value of .0043, after adjusting for the 

estimated missing values, and an R2 value of .8622, and an adjusted R2 value of .7704. 

Examining the parameter estimates indicated that all variables used in the reduced model, except 

for Maumee River total nitrogen and temperature, were statistically significant. 

Following the creation of this reduced model, I next checked the model assumptions. 

Based on the normal probability plot, the residuals did not appear to be normally distributed (see 

Figure 20). Also, examining the residual plot showed that the equal variance assumption was not 

satisfied (see Figure 20). Looking at the VIF values, multicollinearity did not appear to be an 

issue. 
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Trying to solve the model assumption issues I tried transformations on the dependent 

variable chlorophyll-a. I first used the same transformation that I used on the full dataset with 

dependent variable chlorophyll-a, taking the variable to the power of .23. This transformation 

normalized the residuals and the residual plot looked much better (see Figure 21). 

The next reduced model that I ran used the dependent variable chlorophyll-a transformed 

to normal with independent variables Maumee total phosphorus, Maumee total dissolved reactive 

phosphorus, Maumee total nitrogen, Sandusky total phosphorus, Sandusky total nitrogen, and 

temperature. This model had an F-value of 6.83 and a p-value of .0081 after adjusting for the 

estimated missing values. The R2 value was .8368 and the adjusted R2 value was .7279. All of 

the independent variables were significant at the .05 level except for Maumee total nitrogen and 

temperature. 

Since independent variables Maumee total nitrogen and temperature were insignificant in 

the above reduced model, the final reduced model dropped these variables and has transformed 

dependent variable chlorophyll-a with independent variables Maumee total phosphorus, Maumee 

total dissolved reactive phosphorus, Sandusky total phosphorus, and Sandusky total nitrogen. 

This model had an F-value of 5.42, a p-value of .0138, after adjusting for the estimated missing 

values, an R2 value of .6844, and an adjusted R2 value of .5696. All of the independent variables 

were significant at the .05 level. 

Model F-value p-value R2 adj. R2 

DV Chol.23 final reduced 5.42 0.0138 0.6844 0.5696 

Table 8: Chol.23; 16-year dataset; final reduced model 
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The final reduced model with transformed dependent variable and dropped insignificant 

independent variable had the following form: 

𝐶ℎ𝑜𝑙.23  = 1.791 − .000448 ∗ 𝑀𝑎𝑢𝑇𝑃 + .002506 ∗ 𝑀𝑎𝑢𝑇𝑆𝑅𝑃 +  .001356 ∗ 𝑆𝑎𝑛𝑇𝑃

− .000189 ∗ 𝑆𝑎𝑛𝑇𝑁 

The normal probability and residual plot showed no issues with the normal and equal variance 

assumptions (see Figure 22). The VIF values indicated no issues with multicollinearity. 

Interpreting the chosen reduced model gives us some insight into the system we are 

modeling. Again, prior research and the ANOVA analysis above indicate that large values of 

chlorophyll-a reflect higher chances of an HAB. The independent variable coefficients for 

Maumee River total phosphorus and Sandusky River total nitrogen, are negative, while Maumee 

River total dissolved reactive phosphorus and Sandusky River total phosphorus have positive 

coefficients. The negative coefficients indicate that as the variables Maumee River total 

phosphorus and Sandusky River total nitrogen increase, the dependent variable chlorophyll-a 

decreases. The positive coefficients indicate that as the variables Maumee River total dissolved 

reactive phosphorus and Sandusky total phosphorus increase, chlorophyll-a will also increase. 

This interpretation provides some interesting and also confusing results. The results for 

Sandusky total nitrogen align with prior research since nitrogen is not a nutrient that promotes 

HAB growth and may in fact inhibit HAB growth. Like the full dataset with the dissolved 

oxygen dependent variable, we have conflicting results for the river variables. The reduced 

model indicates that increases Maumee River total phosphorus decrease chlorophyll-a values, 

while increases in Sandusky River total phosphorus loads increase chlorophyll-a values. Again, 

these results could be due to a number of factors. First, for the Maumee River, since both total 

phosphorus and total dissolved reactive phosphorus are included, the model may be indicating 
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that total dissolved reactive phosphorus is a greater contributor to algae growth than total 

phosphorus from the Maumee. This could be due to dissolved reactive phosphorus being 

available immediately to the algae, while total phosphorus includes non-soluble forms of 

phosphorus that may sink or otherwise become unavailable to fuel algae growth. The other 

explanation for this discrepancy is that there are multicollinearity issues even though no 

variables in the model had VIF values greater than 10. The river variables are highly correlated, 

and further evidence for this is that the variable Maumee total phosphorus has a negative sign in 

the model, but have a positive correlation coefficient against the dependent variable. 

4.6.4 16 Year dataset – dependent variable, Dissolved Oxygen 

I repeated the modeling process using the 16-year dataset with dependent variable 

dissolved oxygen. Examining the plots between independent and the dependent variables again 

showed no overtly strong linear relationships (see Figure 18). The correlation between 

independent variables was the same as before, so issues of multicollinearity were examined. 

After starting with the full model, I used the Selection Feature of SAS to find the 

combination of independent variables that would produce the highest adjusted R2 which 

indicated that using Maumee total phosphorus, Sandusky total dissolved reactive phosphorus, 

and Sandusky total phosphorus would result in the largest adjusted R2 value. Using these 

variables to create the reduced model resulted in a model with an F-value of 11.02, a p-value of 

.007 adjusted for estimating the missing values, an R2 value of .7504, and an adjusted R2 value of 

.6880. Examining the parameter estimates indicated that all independent variables were 

statistically significant. 

 



58 
 

Model F-value p-value R2 adj. R2 

DV HypDO final reduced 11.02 0.007 0.7504 0.6880 

Table 9: HypDO; 16-year dataset; final reduced model 

The reduced model had the following form: 

𝐻𝑦𝑝𝐷𝑂 = 3.58 − .001801 ∗ 𝑀𝑎𝑢𝑇𝑃 + .01766 ∗ 𝑆𝑎𝑛𝑇𝑃 − .0632 ∗ 𝑆𝑎𝑛𝑇𝑆𝑅𝑃 

Since all of the independent variables were significant, this became the final reduced model. 

Following the creation of this model, I next checked the model assumptions. Based on the 

normal probability plot, the residuals were very questionably normally distributed. Also, the 

residual plot showed some issues with scattering (see Figure 24). Six transformations were 

attempted on the dependent variable, but none improved upon the two assumptions. Therefore, 

the untransformed model was used. The VIF values indicated no issues with multicollinearity. 

Next we interpret the reduced model for the dependent variable dissolved oxygen. Prior 

research and the previous ANOVA analysis indicate that lower levels of dissolved oxygen would 

be present during seasons with HAB occurrences, and therefore, we can look at the reduced 

model to determine which independent variables cause dissolved oxygen to decrease. Examining 

the independent variable coefficients we see that the coefficients for Maumee River total 

phosphorus and Sandusky River total dissolved reactive phosphorus are negative, while the 

coefficient for Sandusky total phosphorus is positive. These coefficient signs indicate that as 

Maumee River total phosphorus and Sandusky River total dissolved reactive phosphorus 

increase, the dependent variable dissolved oxygen would decrease. Similarly, as Sandusky River 

total phosphorus increases, dissolved oxygen would also increase. From prior research we would 

expect dissolved oxygen levels to decrease as nutrient loads are increased. However, we again 
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see a discrepancy, in this model between Sandusky total phosphorus and Sandusky total 

dissolved reactive phosphorus. This could be due to the dissolved reactive phosphorus being 

more readily available for algae, while total phosphorus includes phosphorus that is not soluble 

or usable by the cyanobacteria. There is also a discrepancy between the sign for the coefficient of 

Maumee total phosphorus in the model and the sign of the correlation coefficient between 

Maumee total phosphorus and the dependent variable, which as mentioned supra, may be an 

indication of a multicollinearity issue, even though no variables in the model had a VIF greater 

than 10.  

4.7 Model Validation 

After running all of the regression models using the proxy dependent variables 

chlorophyll-a and dissolved oxygen, I attempted to run logistic regression models using the 

categorical HAB variable. However, because there were only 16 observations, the resulting 

models did not add anything to the study and the results are omitted. Even though the logistic 

models weren’t able to tell us much, we can still use the categorical dataset to check the 

predictive power of the four created models. To do this, I examined the one-way ANOVAs for 

each of my variables, using my variables as the dependent variable and the ordinal data as the 

factor. The ANOVA analysis tells us the means of each variable associated with each level of the 

categorical data set. Thus, we can have a mean value for each variable that is associated with the 

categorical no bloom and bloom presence. After finding these means, I used the means of the 

independent variables found from the ANOVA analysis, putting them in the models created from 

the multiple linear regression analysis, and if the created models are suitable, they should predict 

a value of the dependent variable close to the mean value predicted from the ANOVAs. 
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 After we used the ANOVA analyses to find the predicted means for each variable at the 

different levels of the ordinal dataset, we can use these means in the four multiple linear 

regression models to check their accuracy. We insert the predicted means of the independent 

variables for the bloom presence level into the four equations, and if the equations are valid, then 

we should see a result that is close to the predicted mean for the dependent variable. Since none 

of the variables showed a statistically significant difference between the two levels, the models 

may not result in exactly the predicted mean, but the value should still be close. 

 For the first equation, using the full dataset with normally transformed dependent 

variable chlorophyll-a, independent variables Sandusky total dissolved reactive phosphorus and 

Sandusky total nitrogen were included. Sandusky total dissolved reactive phosphorus had a 

predicted mean of 56.6 and Sandusky total nitrogen had a predicted mean of 3674 for the bloom 

presence level. The transformed dependent variable chlorophyll-a had a predicted mean of 

1.5678 for the bloom presence level. Inserting the independent variable means into the final 

reduced model resulted in a prediction of 1.58071 for the transformed dependent variable. This is 

very close to the predicted mean for chlorophyll-a, which indicates that this model is appropriate. 

 The next model used the full dataset with untransformed dependent variable dissolved 

oxygen. Independent variables Sandusky total phosphorus and Sandusky total dissolved reactive 

phosphorus were included as independent variables in the model. Sandusky total phosphorus had 

a predicted mean of 316.2 and Sandusky total dissolved reactive phosphorus had a predicted 

mean of 56.6 at the bloom presence level. The dependent variable dissolved oxygen had a 

predicted mean of 3.3 at the bloom presence level. Inserting the independent variable means into 

the final reduced model resulted in a prediction of 3.272592 for the untransformed dependent 
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variable. Again, this value is very close to the predicted mean for dissolved oxygen, indicating 

that this model is appropriate. 

 The third equation used the 16-year dataset with normally transformed dependent 

variable chlorophyll-a. Independent variables Maumee total phosphorus, Maumee total dissolved 

reactive phosphorus, Sandusky total phosphorus, and Sandusky total nitrogen were included in 

the model. Maumee total phosphorus had a predicted mean of 1398, Maumee total dissolved 

reactive phosphorus had a predicted mean of 270.6, Sandusky total phosphorus had a predicted 

mean of 316.2, and Sandusky total nitrogen had a predicted mean of 3674 at the bloom presence 

level. The transformed dependent variable chlorophyll-a had a predicted mean value of 1.5678 at 

the bloom presence level. Inserting the independent variable means into the final reduced model 

resulted in a prediction of 1.5772008 for the transformed dependent variable. This value is very 

close to the predicted mean for the transformed dependent variable, which suggests that this 

model is appropriate. 

 The final equation used the 16-year dataset with untransformed dependent variable 

dissolved oxygen. Independent variables Maumee total phosphorus, Sandusky total phosphorus, 

and Sandusky total dissolved phosphorus were included in the model. Maumee total phosphorus 

had a predicted mean of 1398, Sandusky total phosphorus had a predicted mean of 316.2, and 

Sandusky total dissolved reactive phosphorus had a predicted mean of 56.6 at the bloom 

presence level. Dependent variable dissolved oxygen had a predicted mean of 3.3 at the bloom 

presence level. Inserting the independent variable means into the final reduced model resulted in 

a prediction of 3.069174. This value is close to the predicted mean for dissolved oxygen, 

indicating that the model is appropriate. 
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4.8 Results 

 To begin this section, we will compare the four multiple linear regression final reduced 

models that were created. The F-values and associated p-values for each model are used in 

testing the null hypothesis that all of the model coefficients are zero. In other words, at alpha 

level .05, if the model p-value is less than .05, then the null hypothesis is rejected, and we can 

say that we have sufficient evidence to claim that at least one of the coefficients in the model 

differs from zero (i.e. some of the independent variables are statistically significant in predicting 

the dependent variable). On the other hand, if the model p-value is greater than .05, then we can 

say that we have insufficient evidence that at least one of the coefficients in the model is 

different than zero (i.e. none of the independent variables are statistically significant in 

predicting the dependent variable). The R2 measure is the proportion of variance in the 

dependent variable that is explained by the relationship between the dependent variable and the 

independent variables. The R2 value is an overall measurement of the strength of association and 

does not reflect the extent to which any particular independent variable is associated with the 

dependent variable. The adjusted R2 value is an adjustment to the R2 that penalizes the addition 

of extraneous predictors to the model calculated using the formula (1 − 𝑅2)(𝑁 − 1)/(𝑁 − 𝑘 −

1), where k is the number of predictors. Finally, independent variables were determined to be 

significant or not to the model based on their p-values. The p-values for the independent 

variables are the 2-tailed p-values used in testing the null hypothesis that the coefficient 

parameter is zero. Similar to the model p-value this means that at an alpha level of .05, if the 

variable p-value is less than .05, then we reject the null hypothesis, and say that we have 

sufficient evidence that the variable’s coefficient is not zero (i.e. the variable is statistically 

significant to the model). On the other hand, if the variable p-value is greater than .05, then we 
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do not reject the null hypothesis, and say that we have insufficient evidence that the variable’s 

coefficient is significantly different than zero (i.e. the variable is not statistically significant). 

Dataset Full dataset 16-year dataset Full dataset 16-year dataset 

Dependent Var Chlorophyll-a Chlorophyll-a Dissolved Oxygen Dissolved Oxygen 

F-value 5.42 5.42 9.50 11.02 

Model p-value 0.016 0.0138 0.001 0.007 

R2 0.3678 0.6844 0.4749 0.7504 

Adj. R2 0.3103 0.5696 0.4272 0.6880 

Table 10: Final reduced models comparison 

In order to determine the “best” model, defined as the model that has the highest 

predictive performance, we consider the R2 and adjusted R2 values. The reduced models for the 

16-year dataset for both dependent variables produced the strongest predictive models. The 16-

year dataset reduced model for dependent variable chlorophyll-a had an R2 value of .6844, while 

the 16-year dataset reduced model for dependent variable dissolved oxygen had an R2 value of 

.7504. Since the R2 is between 0 and 1, with values closer to 1 having higher predictive power, 

we can see that these are relatively strong prediction models. In terms of the adjusted R2 value, 

the same models have the highest adjusted R2 values among the created models. The 16-year 

dataset reduced models for chlorophyll-a and dissolved oxygen had adjusted R2 values of .5696 

and .6880 respectively. 

Based on these categorizations, the best created models are the reduced models of the 16-

year dataset for both variables. The reduced model of the 16-year dataset for variable dissolved 

oxygen used independent variables Maumee total phosphorus, Sandusky total phosphorus, and 

Sandusky total dissolved reactive phosphorus. The reduced model of the 16-year dataset for 
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variable chlorophyll-a used independent variables Maumee total phosphorus, Maumee total 

dissolved reactive phosphorus, Sandusky total phosphorus, and Sandusky total nitrogen. 

Comparing my best models for each dependent variable with the Stumpf and Obenour 

models, we see a number of interesting results. First, my created models had R2 lower than the 

Stumpf and Obenour models, meaning that my models had less predictive power. Stumpf’s 

exponential model had an R2 of .97, while Obenour’s gamma model had an R2 value of .91, each 

better than my two best models (.7504 for dissolved oxygen; .6844 for chlorophyll-a). Other 

differences exist between our models. First, while the Stumpf and Obenour models exclusively 

used Maumee total phosphorus loads as the only independent variable, my models included two 

Maumee River variables (phosphorus and dissolved reactive phosphorus) as well as all three 

Sandusky River variables (phosphorus, dissolved reactive phosphorus, and nitrogen). 

The results of my models suggest that both chlorophyll-a and dissolved oxygen could be 

used as proxies for HAB occurrence. The dissolved oxygen proxy created stronger predictive 

models than the chlorophyll-a variable, likely due to the overestimation of cyanobacteria by the 

chlorophyll-a count. The ANOVA analyses indicated that larger values of chlorophyll-a 

correspond to an increased likelihood of HAB occurrences, while small values of dissolved 

oxygen correspond to increased HAB occurrences. Using the 16-year dataset created stronger 

predictive models with the relevant predictor variables. While my models indicated that the main 

independent variable in the Stumpf and Obenour models, Maumee River phosphorus load, was 

important, my models also indicated the importance of Maumee River dissolved reactive 

phosphorus. Further, my models suggest that phosphorus, dissolved reactive phosphorus, and 

nitrogen loads from the Sandusky River also play an important role in the formation of HABs in 

Lake Erie. Therefore, in future studies and during the creation of new predictive models, the 
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Sandusky River variables should be included, instead of being discarded simply because the 

Maumee River has higher flow and loading rates. Further, my models confirm the hypothesis 

that Lake Erie has changed over the last 30 years, specifically in terms of the formation of 

HABs. Something changed in the Lake in the mid-1990s, as shown by my improved models 

when only looking at the years 1995-2011. This aligns with prior research that indicated that 

invasive Dreissenid mussel species had changed the hydrology of the Lake enough to change the 

way HABs are formed.  
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CHAPTER V: DISCUSSION 

 This section takes an overarching view of the prior research concerning HABs and their 

modeling, my methods and results, and the public policy response to the bloom threat. To begin, 

why are predictive models for HABs important? First, modeling HABs gives researchers and 

public policy makers a better understanding of how Lake Erie is functioning, and which types of 

policies lead to a more, or sometimes less healthy Lake. Second, by creating predictive HAB 

models, researchers and NOAA have been able to create HAB forecasting. Using the Stumpf 

model as guidance (and the CI proxy for HABs), the NOAA disseminates weekly bulletins 

during the HAB season that predicts, forecasts, and tracks HABs. By making these forecasts and 

making them available to the public, NOAA allows for natural resource and public health 

managers to be better prepared to make the necessary arrangements in order to mitigate the 

detrimental impacts that HABs may cause.185 This includes municipal water managers who can 

use the forecasts and seasonal predictions to prepare for taste and odor issues that are associated 

with cyanobacteria blooms, as well as be prepared for excessively large and toxic blooms that 

can disrupt access to tap water. Additionally, municipalities and Ohio agencies that are 

responsible for managing Lake Erie beaches can use the NOAA forecasts to post warning signs 

near public beaches that may become affected by a bloom. Further, the forecasting system is 

important for the scientific research community who can use the forecasts (and associated 

research), as I did, to help target their own research.186 Finally, HAB modeling, and specifically 

the Stumpf model, has been a useful tool for public policy makers to use in determining the 
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necessary future nutrient load restrictions that should be implemented to support the goal of 

reducing or eliminating HABs. 

 Current public policy is based on HAB modeling, and following the Toledo drinking 

water crisis caused by a large HAB, both the Ohio government and the federal government have 

taken action to address the issue. This section gives a brief overview of these actions, and will be 

followed by a discussion on their likely usefulness based on my research on modeling. 

 By 2015, both the Ohio House of Representatives and the Ohio Senate had passed bills 

aimed at combating HABs in Lake Erie. The Ohio Senate passed Senate Bill 1 in February, and 

the Ohio House of Representatives passed House Bill 61 in March. Amazingly, especially for an 

environmental law in a state legislature dominated by Republicans, both of these bills passed 

their respective chambers unanimously. House Bill 61 prohibits farmers in northwestern Ohio 

from spreading manure and fertilizer on their fields if the ground is frozen, saturated with water, 

or if the weather forecast calls for a greater than 50% chance of precipitation exceeding 1 inch in 

a 12-hour period.187 Like the House Bill, Senate Bill 1 prohibits the spread of manure or fertilizer 

on frozen and saturated soil in the western Lake Erie basin, but would also require water 

treatment plants to begin monthly monitoring of dissolved phosphorus and bans the dumping of 

dredged material in Lake Erie beginning in the summer of 2020. The Senate Bill also designates 

a harmful algae management and response coordinator in the Ohio EPA and prohibits the use of 

pipes and plumbing materials that are not lead free in water systems used to provide drinking 

water.188 Both the House and Senate Bills passed their respective chambers, and the combined 

                                                            
187 The Ohio Legislature. “House Bill 61.” 2015. Available at 
https://www.legislature.ohio.gov/legislation/legislation-status?id=GA131-HB-61. 
188 The Ohio Legislature. “Senate Bill 1.” 2015. Available at https://www.legislature.ohio.gov/legislation/legislation-
summary?id=GA131-SB-1. 
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bills were referred to a conference committee.189 On March 25, 2015 the combined Ohio House 

and Senate legislation, now referred to as Senate Bill 1 was reintroduced and was passed by Ohio 

House 96 to 0, and was passed by the Ohio Senate 33 to 0.190 Ohio Governor John Kasich signed 

the bill at a state park near Lake Erie on April 2, 2015, with the legislation becoming effective 90 

days after the signature.191 

 The legislation from the Ohio House and Senate have had broad support from interested 

groups, mainly environmentalists and farmers. Farmers and the groups that represent their 

interests have concerns about the cost for farmers to conform to the bills, specifically, the cost of 

storing manure in winter, when in the past, the manure would have been applied directly to the 

fields. Speaking on Senate Bill 1, the Ohio Farm Bureau supported the manure and fertilizer 

provisions, but was concerned about the rules taking immediate effect, and would prefer to see 

them phased in, as complying with the law may require engineering plans, geological surveys, or 

buying new equipment among other steps.192 On the other hand, environmental groups call the 

bills only a first step, arguing that they do not go far enough. The Ohio Environmental Council 

has argued that the fertilizer-spreading prohibition contains loopholes that would largely allow 

farmers to continue spreading nutrients and avoid financial penalties.193 Environmental 

advocates were also concerned with provisions in Senate Bill 1, particularly the fact that the 

fertilizer and manure protections end after five years, and that the bill was amended to prohibit 

                                                            
189 Id. 
190 Id. 
191 Blade Staff. “Gov. Kasich signs bill aimed at protecting Lake Erie, Ohio water quality.” Toledo Blade. April 2, 
2015. Available at http://www.toledoblade.com/State/2015/04/02/Gov-Kasich-signs-bill-aimed-at-protecting-Lake-
Erie-Ohio-water-quality.html. 
192 Borchardt, Jackie. “Bill targeting Lake Erie algal blooms passes Ohio Senate.” Cleveland.com. February 18, 
2015. Available at 
http://www.cleveland.com/open/index.ssf/2015/02/bill_targeting_lake_erie_algal_blooms_passes_ohio_senate.html. 
193 Siegel, Jim. “Bill aiming to curb toxic algae in Lake Erie passes Ohio House.” The Columbus Dispatch. March 
11, 2015. Available at http://www.dispatch.com/content/stories/local/2015/03/10/algae-bill.html. 
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spreading only manure, and not fertilizer, when the weather forecast calls for heavy 

precipitation.194 Several lawmakers have acknowledged these shortcomings, reiterating that these 

bills, though moving in the right direction, are only a first step, and additional bills to take the 

next steps at reducing HABs will be coming in the future.195 

 At the federal level, legislation has also been introduced to combat HABs in Lake Erie. 

The Harmful Algal Bloom and Hypoxia Research and Control Act was first passed in 1998, but 

was amended in the summer of 2014. The new amendments add two sections to the original act. 

The first requires NOAA to maintain and enhance a national harmful algal bloom and hypoxia 

program and task force that shall coordinate interagency review of the objectives of the program; 

expedite the interagency review process; support implementation of the Action Strategy; and 

promote the development of new technologies for predicting, monitoring, and mitigating HAB 

and hypoxia conditions.196 The second new section requires the task force to develop a 

comprehensive research plan and action strategy to address marine and freshwater HAB and 

hypoxia.197 These amendments were passed by Congress and signed by President Obama into 

law in June of 2014. 

 Representative Robert Latta, of the 5th Ohio district has twice submitted the Great Lakes 

Algal and Fresh Water Algal Bloom Information Act. First introduced in the House as H.R. 5456 

(with companion Senate Bill S. 2790) in 2014, the bill did not pass out of the House or Senate. 

Trying again in 2015, Representative Latta reintroduced the bill, now H.R. 349, in January of 

2015. The bill is currently assigned to a congressional committee, which considers it before 

                                                            
194 Borchardt, 2015. 
195 Siegel, 2015. 
196 Government Printing Office. “The Harmful Algal Bloom and Hypoxia Research and Control Act” June 9, 2014. 
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sending it on to the House to vote on as a whole. This act, if passed, would require the NOAA to 

create an electronic database of research and information on the causes of, and corrective actions 

being taken with regard to algal blooms in the Great Lakes. The database would include relevant 

chemical, physical, and biological data that have been collected by relevant universities, 

organizations, or state/federal agencies. The NOAA administrator would be required to update 

Congress annually on the database, and the database would be made available to the public. 

However, the act would not grant any authority to the NOAA Administrator, specifically no 

authority to require the submission of data.198 

 Representative Latta also introduced a third federal public policy response to Lake Erie 

HABs. The Safe Water Drinking Act, introduced in January, 2015 and passed through the House 

of Representatives in February, 2015, would direct the EPA to assess the risks posed by toxic 

algal blooms and come up with way to fight the blooms. However, as the bill’s name implies, 

this act focuses the EPA’s resources on protecting drinking water by studying the toxicity of 

HABs and monitoring and treating water intake used for drinking water.199 Currently, this 

legislation is being considered in the Senate under a companion bill introduced to the Senate by 

Senator Rob Portman of Ohio. 

 In a separate action, the Lucas County Board of Commissioners initiated a study by 

University of Toledo environmental and water law professors to examine other avenues that 

Ohio and affected counties and cities could take in response to HABs. The report, authored by 

Jack Tuholske and Ken Kilbert found first and foremost that phosphorus loading into Lake Erie 

                                                            
198 Latta, Robert. “H.R. 349.” August 6, 2014. Available at 
http://latta.house.gov/uploadedfiles/great_lakes_and_freshwater_algal_blooms_information_act.pdf. 
199 Latta, Robert. “H.R. 212 – To amend the Safe Drinking Water Act to provide for the assessment and 
management of the risk of algal toxins in drinking water and for other purposes.” Congress.gov. February 25, 2015. 
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has increased steadily since the 1990s due to increased nutrient pollution from a variety of 

nonpoint sources, including but not limited to agricultural activities.200 The authors argue that the 

lack of regulation over nonpoint sources of nutrient loads is the root of the HAB problem in Lake 

Erie.201 Focusing on the Clean Water Act, the paper finds that while the Act has been successful 

at reducing pollution from point sources, it has been far less successful at regulating nonpoint 

sources, finding that federal law provides no direct regulatory authority over nonpoint source 

nutrient loading.202 With no federal authority to regulate nonpoint sources, state governments 

need to use their regulatory power to do so, but the authors found that states, including Ohio, 

have traditionally shied away from nonpoint source pollution control, not wanting to harm 

agricultural economic interests.203 The report noted that other stakeholders on the Great Lakes, 

including bordering states and provinces must work together to address the sources of nutrient 

pollution. The report makes a number of recommendations but overall the report concludes that 

“there is no simple, single legal solution to the nutrient pollution problem in Lake Erie”.204 

According to the authors, nutrient pollution in Lake Erie can only be abated through legally 

binding requirements that address all sources of nutrient pollution, both point and nonpoint 

sources, throughout the entire western Lake Erie basin, including in parts of Michigan, Ohio, and 

Indiana.205 Finally, the report notes that broad stakeholder participation from all sectors – 

                                                            
200 Tuholske, Jack, & Kilbert, Ken. “Moving Forward: Solutions to Lake Erie’s Harmful Algal Blooms.” Lucas 
County, Ohio Board of County Commissioners. April 15, 2015 available at 
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government, agriculture, municipal treatment plants, the affected public, and the scientific 

community – is critical to the success of any nutrient abatement strategy.206 

 There are a number of interesting takeaways from the public policy response. First, it is 

encouraging that the legislative bills, both federally and at the state level, have received 

bipartisan support, and even more encouraging that a Representative like Robert Latta, who has 

disparaged the EPA in the past, is sponsoring bills aimed at environmental protection. However, 

there are stark differences between the federal and state approaches. The federal action focuses 

mainly on creating taskforces and programs, centered on interagency cooperation, rather than 

focusing on actual regulation of nutrients that are causing HABs. On the other hand, the bills 

passed in the Ohio House and Senate do address nutrient loading, but have created loopholes and 

exemptions. 

 Another interesting aspect of the public policy response, specifically the Ohio bills, is the 

move away from whole-lake targets. While the GLWQA nutrient loading targets remain in place, 

and are targets for the entire lake, the newer Ohio bills focus exclusively on the Western basin. 

Moving away from whole-lake targets may be the appropriate action due to the differences and 

spatial scales of loading on HABs.207 Because the major contributors to the nutrient loading issue 

are in the western basin, management efforts are most cost effective if they are focused on those 

watersheds that deliver the most nutrients. The state is able to identify the most important 

contributing watersheds, and this information should allow for more effective targeting of the 
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issue. Further, more effective best management practices can be encouraged in the area where 

the nutrient issue is the largest.208 

 One aspect missing from the public policy response is the issue of climate change. 

Because the results of management actions aimed at addressing the nutrient load issue from 

nonpoint sources can take years or decades to take effect, potential impacts of a changing climate 

should be taken into consideration for the action to be effective.209 Most prior research suggest 

that climate change will not only exacerbate existing problems, but also make reducing loads 

more difficult.210 Prior research, especially from Michalak et al., has shown that climate change 

is predicted to lead to temperatures and stratification patterns favorable for cyanobacteria 

growth.211 Because the interaction between recent increases in large spring precipitation that 

flush more nutrients into Lake Erie and increased temperatures that favor cyanobacteria growth 

suggests that unless management actions are taken the HAB events that have re-emerged in Lake 

Erie will continue into the future.212 The Lucas County Board of Commissioners study also noted 

the importance of climate change, finding that as Lake Erie continues to experience the effects of 

phosphorus loading from agricultural and urban runoff, climate change will dramatically 

compound these impacts through higher temperatures, increases in high precipitation events, and 

shifting winds that favor the production of HABs.213 

 Another criticism of the public policy response is that the current farm policy is based on 

volunteer, incentive-based adoptions of best management practices. Farmer adoption of best 
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practices will be paramount in reducing nutrient loading, and environmental groups have 

suggested that farmers be required to take measures against accidental nutrient runoff.214 Farmers 

argue that they are interested in minimizing nutrient loads, but are fearful of mandatory 

regulations on an industry that has been dominated by voluntary self-regulation. Experiences in 

other large regions with nutrient load problems (i.e. Gulf of Mexico/Mississippi River) have 

shown that significantly reducing nonpoint source loads is difficult, as the sources are spatially 

distributed and the methods used to reduce nutrient loading are primarily voluntary and incentive 

based, making them difficult to target and track.215 This is compounded by the fact that the 

response time between action and result can be many years or longer, and the results can only be 

measured cumulatively in space and through time.216 Therefore, it has been suggested that an 

adaptive management approach, that sets interim targets, evaluating the results in loads and lake 

response on time scales (i.e. 5 year averages), and then adjusts management actions or loading 

targets if necessary.217 An approach like this would be appropriate for Lake Erie, and would 

allow for more effective testing and post-audits of the ability of models to project the 

ecosystem’s response and thus improve subsequent assessments and projections.218 

 Overall, the public policy response to the recent rash of HABs in Lake Erie has been 

encouraging. There are a number of important issues, however, that need to be considered as 

Ohio, other Great Lakes states, and the Federal government move forward in battling HABs in 

Lake Erie that have been highlighted by my research.  
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First, consistent and quality data collection should continue, and research should also 

continue to examine the roles of dissolved reactive phosphorus, and the possible future changes 

to the Lake system that may occur due to projected climate change. Representative Latta’s 

efforts to create a NOAA database with all relevant data related to HABs is not as flashy as the 

other public policy responses, but I believe that it is as important as limiting manure application. 

Currently, data that relates to HABs is spread out, located in different academic papers, or held 

onto personally by researchers. By putting this data into a database that is accessible by the 

public and by other academics, research into HABs in Lake Erie will become easier and more 

democratized. A second important issue that must be addressed is a definitive definition of what 

an HAB is. Researchers should define exactly what constitutes a HAB, and consistent methods 

for measuring occurrence, size, and severity of HABs should be developed. Finally, researchers 

should determine a set of proxy measurements to use when modeling, researching, or predicting 

HABs, which was the focus of this paper. Each proxy has advantages and disadvantages that 

should be considered. For example, the remote sensing CI estimate used in prior models seems to 

be a strong proxy for HABs, but it is an expensive method that requires near constant satellite 

imagery of Lake Erie over the summer. Similarly, the boat tow method used by Bridgewater is 

able to measure the more of the water column than the CI proxy, but it too requires man hours 

and money, and the method is not able to examine the entire spatial area of a HAB. While the 

proxies used for this paper did not create as strong predictive models as those using the CI proxy, 

it may be more economical to use stationary buoys to collect information regarding chlorophyll-a 

counts and dissolved oxygen data.  
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CHAPTER VI: CONCLUSION 

 Hazardous algal blooms, or HABs, have been an increasing issue in the western basin of 

Lake Erie. HABs are formed by the blue-green algae Microcystis, which is a type of 

cyanobacteria that has been present in waters around the world for centuries. However, human 

activities, specifically nutrient loading of freshwater lakes, cause the cyanobacteria to grow at a 

rapid rate, and outperform other algae that may be present. When large enough, the algae can 

form into expansive blooms that can release toxins, rob other species of algae of food, and cause 

oxygen levels to drop. HABs in Lake Erie began to cause problems in the late 1970s, however 

through nutrient load reduction programs, by the 1980s HABs in the Lake appeared to be under 

control. Recently, HABs have returned, becoming a persistent nuisance and a costly drain to the 

economy of Northwest Ohio and Southeast Michigan. HABs can be a nuisance to human 

enjoyment of lakes and rivers, can cause health problems in humans and wildlife, and greatly 

affect the ecosystem where they are present. 

 Much research has been put into understanding the drivers of HABs, and most of this 

work has focused on the nutrients phosphorus and nitrogen. Other variables which affect the 

occurrence and size of HABs include water temperature, water clarity, wind speed, and 

precipitation events. A number of models have been created in order to understand and predict 

HAB occurrences. Additionally, these models have been used by policy makers to create nutrient 

reduction goals. Two primary models have been created to predict HABs in Lake Erie, the 

Stumpf model and the Obenour model. The Stumpf model uses spring total phosphorus loads 

from the Maumee River to predict bloom magnitude, while the Obenour model uses a Bayesian 

framework using a gamma error distribution and also uses the predictor variable spring total 

phosphorus load from the Maumee River. A major issue with the two models is a lack of 
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consistent, long term data. A single definition of HAB has not been determined, and the Lake 

indicators that have formed these models has been plagued by inconsistent collection and 

different collection techniques. Further, different proxies for the dependent HAB variable have 

been used to create these models. The Stumpf model uses remote sensing from satellite imagery 

to quantify blooms from 2002 to 2011, while the Obenour model uses other estimates, including 

from boat tows, to quantify blooms from 2002-2013. 

 The purpose of this study was to generally examine if other proxies for HABs, a larger 

dataset, and different independent variables, could create valid HAB predictive models and/or 

improve upon the prior forecasting models. More specifically, since there is no single definition 

of an HAB, and no one agreed upon metric to measure them, my study examines whether my 

proxies, dissolved oxygen and chlorophyll-a, are suitable proxies for HABs in Lake Erie. To 

assess if these variables could be used as proxies a number of different models were created and 

examined. The creation and examination of these models resulted in a number of interesting 

conclusions. Comparing the strongest models from this study to the models of Stumpf and 

Obenour indicated that models using the proxy variables chlorophyll-a and dissolved oxygen 

were not as strong as the prior models. The models in this study and those presented by Stumpf 

and Obenour do differ, especially in terms of independent variables. First, the prior models 

focused exclusively on Maumee River total phosphorus loads, while my models examined three 

Maumee River nutrient variables (phosphorus, dissolved reactive phosphorus, and nitrogen) as 

well as these nutrient loads from the Sandusky River. Additionally, the models for this paper 

examined the use of temperature and water clarity as possible predictor variables. The results of 

this study indicate that both chlorophyll-a and dissolved oxygen could be used as proxies for 

HAB occurrence. Additionally, the results of this paper suggest that nutrient loads other than 
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exclusively Maumee River total phosphorus are important to predicting HAB occurrence, and in 

future studies, researchers should not discount the importance of nutrient loading from the 

Sandusky River. A final result from this study is a confirmation that the chemistry of Lake Erie, 

at least in terms of the occurrence of HABs, has changed since the mid-1990s possibly related to 

invasive Dreissenid mussel species. 

 After a number of severe HAB events in the western basin of Lake Erie between 2011 

and 2014, the public policy response both at the state and national level has been quick and 

bipartisan. The Ohio House and Senate both unanimously passed legislation in 2015 aimed at 

reducing nutrient loads in the western basin of Lake Erie, primarily by restricting the time, 

manner, and storage of manure, as well as restricting the application of other fertilizers. At the 

federal level, legislation has been passed focusing on interagency cooperation in the fight against 

HABs. Unfortunately, legislation regarding the collection of data and requiring NOAA to have a 

public database of relevant data, has not moved out of the House of Representatives. Though not 

as directly important as legislation restricting nutrient loads, the creation of a single database 

would be extremely helpful, allowing researchers broader access to information to study the 

creation and occurrence of HABs in Lake Erie. In regards to the Ohio legislation that attempts to 

limit nutrient loads, both industry and environmental stakeholders are relatively satisfied. The 

agricultural industry is pleased that mandatory fertilizer limits have not been placed on farmers, 

and prefers the adoption of best management practices. On the other hand, environmental groups 

are happy that action is being taken, though they have voiced concerns that the legislation does 

not go far enough and does not have the regulatory bite necessary to solve the problem. Though 

agricultural interests oppose the action, it may become necessary to resort to legally regulated 

farming practices instead of voluntary best practices if the issue of nonpoint nutrient pollution 
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continues to cause harm to Lake Erie through HAB occurrences. Other issues, especially 

possible effects from climate change, are exacerbating the problem, and the fact that different 

states, provinces, and countries share the Great Lakes makes any encompassing solution even 

more difficult. Further action by policy makers must focus on the role of nonpoint source 

nutrient pollution, but also must balance the interests of stakeholders, while at the same time 

protecting the economic and aesthetic benefits that Lake Erie provides. 
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Variable Name Description 
MauTP Maumee River Total Phosphorus 
MauTSRP Maumee River Total Dissolved Reactive Phosphorus 
MauTN Maumee River Total Nitrogen 
SanTP Sandusky River Total Phosphorus 
SanTSRP Sandusky River Total Dissolved Reactive Phosphorus 
SanTN Sandusky River Total Nitrogen 
Temp Temperature 
Chol Chlorphyll-a 
HypDO Dissolved Oxygen 

Table 11: Variable Name & Description 
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Table 12: Full dataset with missing observations 
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Table 13: Correlation of original data 
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Table 14: Full dataset, missing values estimated 
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One-way ANOVA: Chol^.23 versus OrdBloom  

 
 

 

Analysis of Variance 

 

Source    DF   Adj SS   Adj MS  F-Value  P-Value 

OrdBloom   1  0.04829  0.04829     1.09    0.327 

Error      8  0.35399  0.04425 

Total      9  0.40228 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.210354  12.00%      1.00%       0.00% 

 

 

Means 

 

OrdBloom  N    Mean   StDev       95% CI 

0         3   1.416   0.211  ( 1.136,  1.696) 

1         7  1.5678  0.2100  (1.3844, 1.7511) 

 

Pooled StDev = 0.210354 

Table 15: ANOVA Analysis – transformed chlorophyll-a versus ordinal bloom dataset removing 

ambiguous bloom years 

One-way ANOVA: HypDO versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF  Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1   2.031   2.031     0.91    0.368 

Error      8  17.820   2.228 

Total      9  19.851 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.49250  10.23%      0.00%       0.00% 

 

 

Means 

 

OrdBloom  N   Mean  StDev      95% CI 

0         3   4.28   2.33  ( 2.30,  6.27) 

1         7  3.300  1.079  (1.999, 4.601) 

 

Pooled StDev = 1.49250 

Table 16: One-way ANOVA – dissolved oxygen versus ordinal bloom dataset removing 

ambiguous bloom years 
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One-way ANOVA: MauTP versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF   Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1   282659  282659     1.49    0.257 

Error      8  1517192  189649 

Total      9  1799851 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

435.487  15.70%      5.17%       0.00% 

 

 

Means 

 

OrdBloom  N  Mean  StDev     95% CI 

0         3  1031    470  ( 452, 1611) 

1         7  1398    423  (1019, 1778) 

 

Pooled StDev = 435.487 

Table 17: One-way ANOVA – Maumee total phosphorus versus ordinal bloom dataset removing 

ambiguous bloom years 

One-way ANOVA: MauTSRP versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF  Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1   32701   32701     4.91    0.057 

Error      8   53248    6656 

Total      9   85949 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

81.5847  38.05%     30.30%      12.32% 

 

 

Means 

 

OrdBloom  N   Mean  StDev      95% CI 

0         3  145.9   40.3  ( 37.2, 254.5) 

1         7  270.6   91.3  (199.5, 341.8) 

 

Pooled StDev = 81.5847 

Table 18: One-way ANOVA – Maumee total dissolved reactive phosphorus versus ordinal 

bloom dataset removing ambiguous bloom years 
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One-way ANOVA: MauTN versus OrdBloom  

 
Analysis of Variance 

 

Source    DF     Adj SS    Adj MS  F-Value  P-Value 

OrdBloom   1   41695200  41695200     1.26    0.294 

Error      8  264530326  33066291 

Total      9  306225526 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5750.33  13.62%      2.82%       0.00% 

 

 

Means 

 

OrdBloom  N   Mean  StDev      95% CI 

0         3  23015   6017  (15359, 30671) 

1         7  18559   5659  (13547, 23571) 

 

Pooled StDev = 5750.33 

Table 19: One-way ANOVA – Maumee total nitrogen versus ordinal bloom dataset removing 

ambiguous bloom years 

One-way ANOVA: SanTP versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF  Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1    8483    8483     0.30    0.599 

Error      8  227042   28380 

Total      9  235525 

 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

168.464  3.60%      0.00%       0.00% 

 

 

Means 

 

OrdBloom  N   Mean  StDev      95% CI 

0         3  252.6  129.1  ( 28.3, 476.9) 

1         7  316.2  179.7  (169.4, 463.0) 

 

Pooled StDev = 168.464 

Table 20: One-way ANOVA Sandusky total phosphorus versus ordinal bloom dataset removing 

ambiguous bloom years 
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One-way ANOVA: SanTSRP versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF  Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1    2007  2007.0     2.25    0.172 

Error      8    7133   891.7 

Total      9    9140 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

29.8608  21.96%     12.20%       0.00% 

 

 

Means 

 

OrdBloom  N   Mean  StDev       95% CI 

0         3  22.69   7.31  (-17.07, 62.45) 

1         7   53.6   34.2  (  27.6,  79.6) 

 

Pooled StDev = 29.8608 

Table 21: One-way ANOVA Sandusky total dissolved reactive phosphorus versus ordinal bloom 

dataset removing ambiguous bloom years 

One-way ANOVA: SanTN versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF    Adj SS   Adj MS  F-Value  P-Value 

OrdBloom   1    694889   694889     0.57    0.472 

Error      8   9757422  1219678 

Total      9  10452311 

 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

1104.39  6.65%      0.00%       0.00% 

 

 

Means 

 

OrdBloom  N  Mean  StDev     95% CI 

0         3  4249    982  (2778, 5719) 

1         7  3674   1142  (2711, 4636) 

 

Pooled StDev = 1104.39 

Table 22: One-way ANOVA Sandusky total nitrogen versus ordinal bloom dataset removing 

ambiguous bloom years 
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One-way ANOVA: Temp versus OrdBloom  

 
 

Analysis of Variance 

 

Source    DF  Adj SS  Adj MS  F-Value  P-Value 

OrdBloom   1   5.028   5.028     2.39    0.161 

Error      8  16.861   2.108 

Total      9  21.889 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.45178  22.97%     13.34%       0.00% 

 

 

Means 

 

OrdBloom  N    Mean  StDev       95% CI 

0         3  62.656  0.915  (60.723, 64.589) 

1         7  64.203  1.591  (62.938, 65.469) 

 

Pooled StDev = 1.45178 

Table 23: One-way ANOVA temperature versus ordinal bloom dataset removing ambiguous 

bloom years 
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Models: 
Regression Analysis: Chol versus MauTP  

 
Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   1   34.18   34.18     1.85    0.187 

  MauTP      1   34.18   34.18     1.85    0.187 

Error       23  424.07   18.44 

Total       24  458.25 

 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

4.29395  7.46%      3.43%       0.00% 

 

 

Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant     3.48     2.08     1.67    0.108 

MauTP     0.00267  0.00196     1.36    0.187  1.00 

 

 

Regression Equation 

 

Chol = 3.48 + 0.00267 MauTP 

Table 24: Regression Analysis: chlorophyll-a versus Maumee total phosphorus (full dataset) 

 

 
Figure 2: Residual Plots for chlorophyll-a versus Maumee total phosphorus (full dataset) 
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Regression Analysis: Chol^.23 versus MauTP  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   1  0.07934  0.07934     1.29    0.268 

  MauTP      1  0.07934  0.07934     1.29    0.268 

Error       23  1.41674  0.06160 

Total       24  1.49608 

 

 

Model Summary 

 

       S   R-sq  R-sq(adj)  R-sq(pred) 

0.248188  5.30%      1.19%       0.00% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant     1.323     0.120    11.00    0.000 

MauTP     0.000129  0.000114     1.13    0.268  1.00 

 

 

Regression Equation 

 

Chol^.23 = 1.323 + 0.000129 MauTP 

Table 25: Regression Analysis: transformed chlorophyll-a versus Maumee total phosphorus (full 

dataset) 

 
Figure 3: Residual Plots for transformed chlorophyll-a versus Maumee total phosphorus (full 

dataset) 
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Regression Analysis: HypDO versus MauTP  

 
Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   1   2.085   2.085     1.21    0.283 

  MauTP      1   2.085   2.085     1.21    0.283 

Error       23  39.724   1.727 

Total       24  41.810 

 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

1.31421  4.99%      0.86%       0.00% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant     2.786     0.637     4.37    0.000 

MauTP     0.000661  0.000601     1.10    0.283  1.00 

 

 

Regression Equation 

 

HypDO = 2.786 + 0.000661 MauTP 

Table 26: Regression Analysis: dissolved oxygen versus Maumee total phosphorus (full dataset) 

 
Figure 4: Residual Plots for dissolved oxygen versus Maumee total phosphorus (full dataset) 
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Regression Analysis: Chol versus MauTP  

 
Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   1   18.07   18.07     0.66    0.430 

  MauTP      1   18.07   18.07     0.66    0.430 

Error       14  383.06   27.36 

Total       15  401.13 

 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

5.23081  4.51%      0.00%       0.00% 

 

 

Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant     4.35     3.43     1.27    0.225 

MauTP     0.00237  0.00291     0.81    0.430  1.00 

 

 

Regression Equation 

 

Chol = 4.35 + 0.00237 MauTP 

Table 27: Regression Analysis: chlorophyll-a versus Maumee total phosphorus (16-year dataset) 

 

 
Figure 5: Residual Plots for chlorophyll-a versus Maumee total phosphorus (16-year dataset) 
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Regression Analysis: Chol^.23 versus MauTP  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   1  0.06169  0.06169     0.75    0.401 

  MauTP      1  0.06169  0.06169     0.75    0.401 

Error       14  1.14970  0.08212 

Total       15  1.21139 

 

 

Model Summary 

 

       S   R-sq  R-sq(adj)  R-sq(pred) 

0.286568  5.09%      0.00%       0.00% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant     1.331     0.188     7.08    0.000 

MauTP     0.000138  0.000160     0.87    0.401  1.00 

 

 

Regression Equation 

 

Chol^.23 = 1.331 + 0.000138 MauTP 

Table 28: Regression Analysis: transformed chlorophyll-a versus Maumee total phosphorus (16-

year dataset) 

 
Figure 6: Residual Plots for transformed chlorophyll-a versus Maumee total phosphorus (16-year 

dataset) 
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Regression Analysis: HypDO versus MauTP  

 
Analysis of Variance 

 

Source      DF   Adj SS  Adj MS  F-Value  P-Value 

Regression   1   0.2454  0.2454     0.14    0.710 

  MauTP      1   0.2454  0.2454     0.14    0.710 

Error       14  23.7928  1.6995 

Total       15  24.0382 

 

Model Summary 

 

      S   R-sq  R-sq(adj)  R-sq(pred) 

1.30364  1.02%      0.00%       0.00% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant     3.244     0.855     3.79    0.002 

MauTP     0.000276  0.000726     0.38    0.710  1.00 

 

 

Regression Equation 

 

HypDO = 3.244 + 0.000276 MauTP 

Table 29: Regression Analysis: dissolved oxygen versus Maumee total phosphorus (16-year 

dataset) 

 
Figure 7: Residual Plots for dissolved oxygen versus Maumee total phosphorus (16-year dataset) 
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Figure 8: Scatterplot of chlorophyll-a versus all independent variables (full dataset) 

 
Figure 9: Scatterplot of dissolved oxygen versus all independent variables (full dataset) 
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Regression Analysis: Chol versus MauTP, MauTSRP, MauTN, SanTP, SanTSRP, 

SanTN, Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS  Adj MS  F-Value  P-Value 

Regression   7  255.844  36.549     3.07    0.028 

  MauTP      1    7.354   7.354     0.62    0.443 

  MauTSRP    1    7.856   7.856     0.66    0.428 

  MauTN      1    1.128   1.128     0.09    0.762 

  SanTP      1    8.500   8.500     0.71    0.410 

  SanTSRP    1    3.382   3.382     0.28    0.601 

  SanTN      1   49.904  49.904     4.19    0.056 

  Temp       1   23.855  23.855     2.00    0.175 

Error       17  202.409  11.906 

Total       24  458.253 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

3.45057  55.83%     37.64%       0.00% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value    VIF 

Constant      49.1      28.8     1.70    0.107 

MauTP     -0.00388   0.00493    -0.79    0.443   9.77 

MauTSRP     0.0204    0.0251     0.81    0.428  12.36 

MauTN     0.000083  0.000270     0.31    0.762   6.03 

SanTP       0.0158    0.0188     0.84    0.410  12.92 

SanTSRP      0.057     0.107     0.53    0.601  14.77 

SanTN     -0.00280   0.00137    -2.05    0.056   5.52 

Temp        -0.624     0.441    -1.42    0.175   1.25 

 

 

Regression Equation 

 

Chol = 49.1 - 0.00388 MauTP + 0.0204 MauTSRP + 0.000083 MauTN + 0.0158 SanTP 

+ 0.057 SanTSRP 

       - 0.00280 SanTN - 0.624 Temp 

Table 30: Regression Analysis: chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (full dataset) 
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Figure 10: Residual Plots for chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (full dataset) 

Regression Analysis: Chol versus SanTSRP, SanTN, Temp  

 
Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   3  244.33   81.44     7.99    0.001 

  SanTSRP    1  231.94  231.94    22.77    0.000 

  SanTN      1  115.15  115.15    11.30    0.003 

  Temp       1   34.86   34.86     3.42    0.078 

Error       21  213.93   10.19 

Total       24  458.25 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

3.19169  53.32%     46.65%      26.76% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant       54.2      25.0     2.17    0.042 

SanTSRP      0.1454    0.0305     4.77    0.000  1.41 

SanTN     -0.002170  0.000645    -3.36    0.003  1.43 

Temp         -0.709     0.383    -1.85    0.078  1.10 

 

 

Regression Equation 

 

Chol = 54.2 + 0.1454 SanTSRP - 0.002170 SanTN - 0.709 Temp 

Table 31: Regression Analysis: chlorophyll-a versus SanTSRP, SanTN, Temp (full dataset) 
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Figure 11: Residual Plots for chlorophyll-a versus SanTSRP, SanTN, Temp (full dataset) 

Regression Analysis: Chol^.23 versus SanTSRP, SanTN, Temp  

 
Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3  0.6727  0.22422     5.72    0.005 

  SanTSRP    1  0.6220  0.62197    15.86    0.001 

  SanTN      1  0.3334  0.33336     8.50    0.008 

  Temp       1  0.1224  0.12244     3.12    0.092 

Error       21  0.8234  0.03921 

Total       24  1.4961 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.198016  44.96%     37.10%      20.74% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant       4.29      1.55     2.77    0.012 

SanTSRP     0.00753   0.00189     3.98    0.001  1.41 

SanTN     -0.000117  0.000040    -2.92    0.008  1.43 

Temp        -0.0420    0.0238    -1.77    0.092  1.10 

 

 

Regression Equation 

 

Chol^.23 = 4.29 + 0.00753 SanTSRP - 0.000117 SanTN - 0.0420 Temp 

Table 32: Regression Analysis: transformed chlorophyll-a versus SanTSRP, SanTN, Temp (full 

dataset) 
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Figure 12: Residual Plots for transformed chlorophyll-a versus SanTSRP, SanTN, Temp (full 

dataset) 

Regression Analysis: Chol^.23 versus SanTSRP, SanTN  

 
Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   2  0.5502  0.27511     6.40    0.006 

  SanTSRP    1  0.5231  0.52310    12.17    0.002 

  SanTN      1  0.2493  0.24927     5.80    0.025 

Error       22  0.9459  0.04299 

Total       24  1.4961 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.207349  36.78%     31.03%      19.11% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant      1.559     0.117    13.33    0.000 

SanTSRP     0.00668   0.00191     3.49    0.002  1.32 

SanTN     -0.000097  0.000040    -2.41    0.025  1.32 

 

 

Regression Equation 

 

Chol^.23 = 1.559 + 0.00668 SanTSRP - 0.000097 SanTN 

Table 33: Regression Analysis: transformed chlorophyll-a verus SanTSRP, SanTN (full dataset) 
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Figure 13: Residual Plots for transformed chlorophyll-a versus SanTSRP, SanTN (full dataset) 
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Regression Analysis: HypDO versus MauTP, MauTSRP, MauTN, SanTP, SanTSRP, 

SanTN, Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   7  23.7569  3.39384     3.20    0.024 

  MauTP      1   1.5310  1.53096     1.44    0.246 

  MauTSRP    1   0.1562  0.15622     0.15    0.706 

  MauTN      1   0.0360  0.03601     0.03    0.856 

  SanTP      1   9.4835  9.48350     8.93    0.008 

  SanTSRP    1   3.7616  3.76157     3.54    0.077 

  SanTN      1   0.0614  0.06138     0.06    0.813 

  Temp       1   0.6377  0.63769     0.60    0.449 

Error       17  18.0531  1.06195 

Total       24  41.8100 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.03051  56.82%     39.04%       0.00% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value    VIF 

Constant       9.33      8.62     1.08    0.294 

MauTP      -0.00177   0.00147    -1.20    0.246   9.77 

MauTSRP     0.00287   0.00749     0.38    0.706  12.36 

MauTN     -0.000015  0.000081    -0.18    0.856   6.03 

SanTP       0.01673   0.00560     2.99    0.008  12.92 

SanTSRP     -0.0599    0.0318    -1.88    0.077  14.77 

SanTN      0.000098  0.000409     0.24    0.813   5.52 

Temp         -0.102     0.132    -0.77    0.449   1.25 

 

 

Regression Equation 

 

HypDO = 9.33 - 0.00177 MauTP + 0.00287 MauTSRP - 0.000015 MauTN + 0.01673 SanTP 

        - 0.0599 SanTSRP + 0.000098 SanTN - 0.102 Temp 

Table 34: Regression Analysis: dissolved oxygen versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (full dataset) 
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Figure 14: Residual Plots for dissolved oxygen versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (full dataset) 

Regression Analysis: HypDO versus MauTP, SanTP, SanTSRP  

 
Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3  22.792   7.5973     8.39    0.001 

  MauTP      1   2.935   2.9353     3.24    0.086 

  SanTP      1  20.454  20.4542    22.59    0.000 

  SanTSRP    1  12.679  12.6793    14.00    0.001 

Error       21  19.018   0.9056 

Total       24  41.810 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.951644  54.51%     48.01%      15.01% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant      2.766     0.469     5.90    0.000 

MauTP     -0.001343  0.000746    -1.80    0.086  2.94 

SanTP       0.01657   0.00349     4.75    0.000  5.87 

SanTSRP     -0.0544    0.0145    -3.74    0.001  3.61 

 

 

Regression Equation 

 

HypDO = 2.766 - 0.001343 MauTP + 0.01657 SanTP - 0.0544 SanTSRP 

Table 35: Regression Analysis: dissolved oxygen versus MauTP, SanTP, SanTSRP (full dataset) 
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Figure 15: Residual Plots for dissolved oxygen versus MauTP, SanTP, SanTSRP (full dataset) 

 

Regression Analysis: HypDO versus SanTP, SanTSRP  

 
Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   2   19.86   9.9283     9.95    0.001 

  SanTP      1   19.51  19.5116    19.55    0.000 

  SanTSRP    1   11.85  11.8545    11.88    0.002 

Error       22   21.95   0.9979 

Total       24   41.81 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.998940  47.49%     42.72%       9.64% 

 

 

Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant    2.241    0.385     5.82    0.000 

SanTP     0.01266  0.00286     4.42    0.000  3.59 

SanTSRP   -0.0525   0.0152    -3.45    0.002  3.59 

 

 

Regression Equation 

 

HypDO = 2.241 + 0.01266 SanTP - 0.0525 SanTSRP 

Table 36: Regression Analysis: dissolved oxygen versus SanTP, SanTSRP (full dataset) 
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Figure 16: Residual Plots for dissolved oxygen versus SanTP, SanTSRP (full dataset) 
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Figure 17: Scatterplot of chlorophyll-a versus all independent variables (16-year dataset) 

 

 
Figure 18: Scatterplot of dissolved oxygen versus all independent variables (16-year dataset) 
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Regression Analysis: Chol versus MauTP, MauTSRP, MauTN, SanTP, SanTSRP, 

SanTN, Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   7  346.368   49.481     7.23    0.006 

  MauTP      1   42.147   42.147     6.16    0.038 

  MauTSRP    1   26.359   26.359     3.85    0.085 

  MauTN      1    8.484    8.484     1.24    0.298 

  SanTP      1   24.334   24.334     3.55    0.096 

  SanTSRP    1    0.502    0.502     0.07    0.793 

  SanTN      1  101.371  101.371    14.81    0.005 

  Temp       1   15.066   15.066     2.20    0.176 

Error        8   54.766    6.846 

Total       15  401.134 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

2.61645  86.35%     74.40%      29.94% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value    VIF 

Constant      71.6      38.2     1.88    0.097 

MauTP     -0.01203   0.00485    -2.48    0.038  11.07 

MauTSRP     0.0447    0.0228     1.96    0.085  10.11 

MauTN     0.000283  0.000254     1.11    0.298   5.48 

SanTP       0.0321    0.0170     1.89    0.096  13.91 

SanTSRP     0.0240    0.0885     0.27    0.793  12.31 

SanTN     -0.00533   0.00138    -3.85    0.005   4.96 

Temp        -0.869     0.585    -1.48    0.176   1.73 

 

 

Regression Equation 

 

Chol = 71.6 - 0.01203 MauTP + 0.0447 MauTSRP + 0.000283 MauTN + 0.0321 SanTP 

+ 0.0240 SanTSRP 

       - 0.00533 SanTN - 0.869 Temp 

Table 37: Regression Analysis: chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (16-year dataset) 
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Figure 19: Residual Plots for chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (16-year dataset) 

  



115 
 

Regression Analysis: Chol versus MauTP, MauTSRP, MauTN, SanTP, SanTN, Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   6  345.866   57.644     9.39    0.002 

  MauTP      1   68.320   68.320    11.13    0.009 

  MauTSRP    1   83.477   83.477    13.59    0.005 

  MauTN      1    8.763    8.763     1.43    0.263 

  SanTP      1   74.863   74.863    12.19    0.007 

  SanTN      1  109.439  109.439    17.82    0.002 

  Temp       1   15.452   15.452     2.52    0.147 

Error        9   55.269    6.141 

Total       15  401.134 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

2.47810  86.22%     77.04%      50.87% 

 

 

Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant      67.6      33.3     2.03    0.073 

MauTP     -0.01276   0.00383    -3.34    0.009  7.68 

MauTSRP     0.0495    0.0134     3.69    0.005  3.92 

MauTN     0.000287  0.000240     1.19    0.263  5.46 

SanTP       0.0356    0.0102     3.49    0.007  5.58 

SanTN     -0.00541   0.00128    -4.22    0.002  4.73 

Temp        -0.804     0.507    -1.59    0.147  1.45 

 

 

Regression Equation 

 

Chol = 67.6 - 0.01276 MauTP + 0.0495 MauTSRP + 0.000287 MauTN + 0.0356 SanTP 

- 0.00541 SanTN 

       - 0.804 Temp 

Table 38: Regression Analysis: chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, 

SanTN, Temp (16-year dataset) 
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Figure 20: Residual Plots for chlorophyll-a versus MauTP, MauTSRP, MauTN, SanTP, SanTN, 

Temp (16-year dataset) 
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Regression Analysis: Chol^.23 versus MauTP, MauTSRP, MauTN, SanTP, SanTN, 

Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   6  1.01364  0.16894     7.69    0.004 

  MauTP      1  0.24713  0.24713    11.25    0.008 

  MauTSRP    1  0.27647  0.27647    12.58    0.006 

  MauTN      1  0.03877  0.03877     1.76    0.217 

  SanTP      1  0.23915  0.23915    10.88    0.009 

  SanTN      1  0.31464  0.31464    14.32    0.004 

  Temp       1  0.06076  0.06076     2.77    0.131 

Error        9  0.19775  0.02197 

Total       15  1.21139 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.148231  83.68%     72.79%      35.65% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant       5.17      1.99     2.60    0.029 

MauTP     -0.000767  0.000229    -3.35    0.008  7.68 

MauTSRP    0.002851  0.000804     3.55    0.006  3.92 

MauTN      0.000019  0.000014     1.33    0.217  5.46 

SanTP      0.002013  0.000610     3.30    0.009  5.58 

SanTN     -0.000290  0.000077    -3.78    0.004  4.73 

Temp        -0.0504    0.0303    -1.66    0.131  1.45 

 

 

Regression Equation 

 

Chol^.23 = 5.17 - 0.000767 MauTP + 0.002851 MauTSRP + 0.000019 MauTN + 0.002013 SanTP 

           - 0.000290 SanTN - 0.0504 Temp 

Table 39: Regression Analysis: transformed chlorophyll-a versus MauTP, MauTSRP, MauTN, 

SanTP, SanTN, Temp (16-year dataset) 
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Figure 21: Residual Plots for transformed chlorophyll-a versus MauTP, MauTSRP, MauTN, 

SanTP, SanTN, Temp (16-year dataset) 

Regression Analysis: Chol^.23 versus MauTP, MauTSRP, SanTP, SanTN  
 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   4  0.8291  0.20726     5.96    0.008 

  MauTP      1  0.1518  0.15179     4.37    0.061 

  MauTSRP    1  0.2195  0.21954     6.32    0.029 

  SanTP      1  0.1640  0.16397     4.72    0.053 

  SanTN      1  0.3998  0.39978    11.50    0.006 

Error       11  0.3823  0.03476 

Total       15  1.2114 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.186435  68.44%     56.96%      30.68% 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant      1.791     0.190     9.42    0.000 

MauTP     -0.000448  0.000215    -2.09    0.061  4.27 

MauTSRP    0.002506  0.000997     2.51    0.029  3.81 

SanTP      0.001356  0.000625     2.17    0.053  3.70 

SanTN     -0.000189  0.000056    -3.39    0.006  1.59 

 

 

Regression Equation 

 

Chol^.23 = 1.791 - 0.000448 MauTP + 0.002506 MauTSRP + 0.001356 SanTP - 0.000189 SanTN 

Table 40: Regression Analysis: transformed chlorophyll-a versus MauTP, MauTSRP, SanTP, 

SanTN (16-year dataset) 



119 
 

 
Figure 22: Residual Plots for transformed chlorophyll-a versus MauTP, MauTSRP, SanTP, 

SanTN (16-year dataset) 
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Regression Analysis: HypDO versus MauTP, MauTSRP, MauTN, SanTP, SanTSRP, 

SanTN, Temp  

 
Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   7  18.6074  2.65820     3.92    0.037 

  MauTP      1   1.1610  1.16102     1.71    0.227 

  MauTSRP    1   0.0585  0.05852     0.09    0.777 

  MauTN      1   0.0841  0.08414     0.12    0.734 

  SanTP      1   8.4099  8.40991    12.39    0.008 

  SanTSRP    1   4.3100  4.31002     6.35    0.036 

  SanTN      1   0.0120  0.01204     0.02    0.897 

  Temp       1   0.1492  0.14915     0.22    0.652 

Error        8   5.4308  0.67885 

Total       15  24.0382 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.823922  77.41%     57.64%       0.00% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value    VIF 

Constant        9.6      12.0     0.80    0.447 

MauTP      -0.00200   0.00153    -1.31    0.227  11.07 

MauTSRP     0.00211   0.00718     0.29    0.777  10.11 

MauTN     -0.000028  0.000080    -0.35    0.734   5.48 

SanTP       0.01884   0.00535     3.52    0.008  13.91 

SanTSRP     -0.0702    0.0279    -2.52    0.036  12.31 

SanTN     -0.000058  0.000436    -0.13    0.897   4.96 

Temp         -0.086     0.184    -0.47    0.652   1.73 

 

 

Regression Equation 

 

HypDO = 9.6 - 0.00200 MauTP + 0.00211 MauTSRP - 0.000028 MauTN + 0.01884 SanTP 

        - 0.0702 SanTSRP - 0.000058 SanTN - 0.086 Temp 

Table 41: Regression Analysis: dissolved oxygen versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (16-year dataset) 
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Figure 23: Residual Plots for dissolved oxygen versus MauTP, MauTSRP, MauTN, SanTP, 

SanTSRP, SanTN, Temp (16-year dataset) 

Regression Analysis: HypDO versus MauTP, SanTP, SanTSRP  
 
Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3  18.038   6.0127    12.03    0.001 

  MauTP      1   3.965   3.9653     7.93    0.016 

  SanTP      1  17.671  17.6711    35.34    0.000 

  SanTSRP    1  11.240  11.2400    22.48    0.000 

Error       12   6.000   0.5000 

Total       15  24.038 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.707104  75.04%     68.80%      34.98% 

 

 

Coefficients 

 

Term           Coef   SE Coef  T-Value  P-Value   VIF 

Constant      3.580     0.468     7.65    0.000 

MauTP     -0.001801  0.000639    -2.82    0.016  2.64 

SanTP       0.01766   0.00297     5.94    0.000  5.82 

SanTSRP     -0.0632    0.0133    -4.74    0.000  3.82 

 

 

Regression Equation 

 

HypDO = 3.580 - 0.001801 MauTP + 0.01766 SanTP - 0.0632 SanTSRP 

Table 42: Regression Analysis: dissolved oxygen versus MauTP, SanTP, SanTSRP (16-year 

dataset) 
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Figure 24: Residual Plots for dissolved oxygen versus MauTP, SanTP, SanTSRP (16-year 

dataset)  
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