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ABSTRACT

Alexander J. Izzo, Advisor

Suppose A is a uniform algebra on a compact Hausdorff space X . In 1957, Andrew Gleason

conjectured that if (i) the maximal ideal space of A is X , and (ii) each point of X is a one-point

Gleason part for A, then A must be C(X), the collection of all complex-valued continuous func-

tions on X . Subsequently, a weaker conjecture, known as Peak Point Conjecture, was considered

in which condition (ii) was replaced by the stronger condition that “each point of X is a peak point

for A”. In fact, one can consider a stronger conjecture, referred as Isolated Point Conjecture, by

considering a weaker condition “each point ofX is isolated in the Gleason metric forA” in place of

condition (ii). However, all of these three conjectures fail by a counterexample produced by Brian

Cole in 1968. In 2001, John Anderson and Alexander Izzo proved that the Peak Point Conjecture is

true for uniform algebras generated by collections of C1 functions on a compact two-dimensional

real manifold-with-boundary of class C1. In the same year, Anderson, Izzo and John Wermer

together proved that the same conjecture is true for uniform algebras generated by polynomials

on compact subsets of real-analytic three-dimensional submanifolds of complex Euclidean spaces.

In this dissertation, we will prove Gleason’s conjecture, and the Isolated Point Conjecture for the

earlier mentioned classes of uniform algebras considered by Anderson, Izzo and Wermer. In view

of the relations of isolated point (in the Gleason metric) with Gleason part and peak point, it is

sufficient to consider the Isolated Point Conjecture, the strongest of all the three conjectures. More

explicitly, we will prove that the Isolated Point Conjecture is true for uniform algebras generated

by collections ofC1 functions on a compact two-dimensional real manifold-with-boundary of class

C1, as well as for uniform algebras generated by polynomials on compact subsets of real-analytic

three-dimensional submanifolds of complex Euclidean spaces. Hence, in particular, these results

will generalize the corresponding results proved by Anderson, Izzo and Wermer.
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CHAPTER 1: INTRODUCTION

A uniform algebra on a compact Hausdorff spaceX is a uniformly closed subalgebra of C(X), the

algebra of all complex-valued continuous functions on X , that contains all the constant functions

on X and separates the points of X . In this dissertation, we consider some questions related

to certain conjectures regarding the structure of uniform algebras. The conjectures that we will

consider here involve five important notions of the theory of uniform algebras, namely, maximal

ideal spaces, peak points, point derivations, Gleason parts and isolated points (in the Gleason

metric). These notions will be defined in the next chapter. First, we will discuss the relations

between these notions.

Throughout this dissertation, if not specified otherwise, A will denote an arbitrary uniform

algebra on a compact Hausdorff space X . We assume, for the rest of this chapter, that the maximal

ideal space of A is X . This condition is a necessary condition for A to be C(X). For an arbitrary

point p in X , consider the following four statements:

(a) p is a peak point for A;

(b) there is no non-zero point derivation on A at p;

(c) p is a one-point Gleason part for A;

(d) p is an isolated point in the Gleason metric for A.

It can be shown that (a)⇒ (b)⇒ (d) (see [8, Corollary 1.6.7] and [8, Theorem 1.6.2] respec-

tively), and (a)⇒ (c)⇒ (d) (the first implication is easy and the second one is obvious). Moreover,

it easily follows that if A = C(X), then each of the statements (b), (c) and (d) holds for all points
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p in X . In addition, if X is metrizable, then A = C(X) implies that the statement (a) holds for

all points p in X . In 1957, Andrew Gleason [13] conjectured that if the statement (c) holds for all

points p in X , then A must be C(X). Explicitly, the following conjecture was made.

Conjecture 1.1 (Gleason’s Conjecture). If the maximal ideal space of A is X and every point of

X is a one-point Gleason part for A, then A = C(X).

Subsequently, the following two conjectures were considered.

Conjecture 1.2 (Peak Point Conjecture). If the maximal ideal space of A is X and every point of

X is a peak point for A, then A = C(X).

Conjecture 1.3 (Point Derivation Conjecture). If the maximal ideal space of A is X and there is

no non-zero point derivation for A, then A = C(X).

In fact, one can also consider the following stronger conjecture that will be referred to as the

Isolated Point Conjecture.

Conjecture 1.4 (Isolated Point Conjecture). If the maximal ideal space of A is X and every point

of X is isolated in the Gleason metric for A, then A = C(X).

In 1959, Errett Bishop [6] showed that if X is a compact subset of the complex plane C, the

Peak Point Conjecture is true for the uniform algebra R(X), the uniform closure of the collection

of all rational functions with no poles on X . More generally, an equivalent statement of his result

is the following:

Theorem 1.5 ([8], Theorem 3.3.3). Suppose X is a compact subset of C. Then R(X) = C(X) if

and only if almost all (with respect to the two-dimensional Lebesgue measure on C) points of X

are peak points for R(X).

In 1968, the first three conjectures, namely, Gleason’s Conjecture, the Peak Point Conjec-

ture and the Point Derivation Conjecture were disproved by Brian Cole in his Ph.D. dissertation
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[9]. Although Cole did not consider the Isolated Point Conjecture, it still fails by the same coun-

terexample he used for disproving the other three conjectures. However, the failure of all these

conjectures gave rise to an interesting question: Are there classes of uniform algebras for which

these conjectures are still true? In the case of the Peak Point Conjecture, affirmative answers to

the above question have been given by John Anderson, Alexander Izzo and John Wermer. In 2001,

Anderson and Izzo first proved that the Peak Point Conjecture is true for uniform algebras gener-

ated by collections of C1 functions on a compact two-dimensional real manifold-with-boundary

of class C1 [2, Theorem 4.1]. In the same year, Anderson, Izzo and Wermer together proved that

the same conjecture is true for uniform algebras generated by polynomials on compact subsets of

real-analytic three-dimensional submanifolds of Cn [4, Theorem 1.1].

In this dissertation, our goal is to prove each of the other three conjectures, namely, Gleason’s

Conjecture, the Point Derivation Conjecture and the Isolated Point Conjecture for the earlier men-

tioned classes of uniform algebras considered by Anderson, Izzo and Wermer. In view of the rela-

tions of isolated point (in the Gleason metric) with Gleason part, point derivation and peak point,

it is sufficient to consider the Isolated Point Conjecture, the strongest of all the four conjectures.

In Chapter 2, we will provide, for reader’s convenience, various important notions which will

be used in the later chapters.

In Chapter 3, we will prove that the Isolated Point Conjecture is true for uniform algebras gen-

erated by collections of C1 functions on a compact two-dimensional real manifold-with-boundary

of class C1. Our proof uses Bishop’s peak point theorem for rational approximation, that is, Theo-

rem 1.5 mentioned earlier.

In Chapter 4, we will prove that the Isolated Point Conjecture is true for uniform algebras

generated by polynomials on compact subsets of real-analytic three-dimensional submanifolds of

Cn. Our proof uses the two-dimensional result from Chapter 3.

In Chapter 5, we state, again for reader’s convenience, some important results that will be used

throughout this dissertation.
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CHAPTER 2: PRELIMINARIES

For the reader’s convenience, in this chapter, we provide a list of examples, define various impor-

tant notions and state few results. These will be used throughout this dissertation.

EXAMPLES

We discuss some important examples of uniform algebras on compact subsets of complex Eu-

clidean spaces. Consider the following four subalgebras of C(X), where X is a compact subset of

Cn.

(a) The uniform closure of the collection of all polynomials on X , denoted by P (X).

(b) The uniform closure of the collection of all rational functions with no poles on X , denoted

by R(X).

(c) The collection of all continuous functions that are holomorphic in the interior of X , denoted

by A(X).

(d) The uniform closure of the collection of all continuous functions that are holomorphic in a

neighborhood (dependent on the function) of X , denoted by O(X).

It is easy to see that each of these subalgebras is a uniform algebra on X , and that P (X) ⊆

R(X) ⊆ O(X) ⊆ A(X) ⊆ C(X). Each of these inclusions may be proper. In the case of X = D,

the closed unit disc in C, it can be shown that P (D) = R(D) = O(D) = A(D). This uniform

algebra is known as the disc algebra on disc. In the case of X = Γ, the unit circle in C, the

uniform algebra P (Γ) is known as the disc algebra on circle.
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MAXIMAL IDEAL SPACE

A multiplicative linear functional onA is a non-zero linear functional φ onA that is multiplicative,

that is, φ(fg) = φ(f)φ(g) for f, g in A. Each x in X gives rise to a multiplicative linear functional

φx defined by φx(f) = f(x) (for all f in A), known as the point evaluation functional on A at

x. The maximal ideal space MA of A consists of all maximal ideals of A. By the well-known

one-to-one correspondence between maximal ideals and multiplicative linear functionals, MA can

be thought of as the collection of all multiplicative linear functionals on A. In view of this, MA

can be topologized with the relative weak∗-topology that it inherits as a subset of the dual space

A∗ of A. By identifying each point x of X with the corresponding point evaluation functional φx

in MA, we can regard X as a closed subset of MA. A necessary condition for A to be C(X) is that

the maximal ideal space of A is X , that is, MA = X .

GELFAND TRANSFORM

The Gelfand transform of a function f in A is the function f̂ :MA −→ C defined by f̂(φ) = φ(f).

In particular, when φ = φx, the point evaluation functional at a point x in X , we obtain f̂(φx) =

φx(f) = f(x). So, regarding X as a subset of MA, for each f in A, we can view f̂ as a continuous

extension of f from X to MA.

PEAK POINT

A point x in X is called a peak point for A if there exists f in A such that f(x) = 1 and |f(y)| < 1

for all y in X \ {x}.

POINT DERIVATION

A point derivation at a point x in X is a linear functional ψ:A −→ C that satisfies the Leibniz

rule: for f, g in A,

ψ(fg) = ψ(f)g(x) + f(x)ψ(g).
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GLEASON PART

Let φ, ψ be in MA. Then the formula

‖φ− ψ‖A = sup{|φ(f)− ψ(f)| : f ∈ A, ‖f‖∞ ≤ 1}

defines a metric on MA, called the Gleason metric on MA. This metric is nothing but the restric-

tion of the dual metric on A∗ to MA. Using this metric, Gleason [13] introduced a non-trivial

equivalence relation ∼ on MA defined by φ ∼ ψ if and only if ‖φ − ψ‖A < 2. For a proof of the

fact that ∼ is an equivalence relation on MA, see [8, Theorem 2.6.3]. The equivalence classes of

MA under this equivalence relation are called the Gleason parts (or, simply parts) for A.

BOUNDARY

A subset Y of X is called a boundary for A if each function in A attains its maximum modulus on

Y , that is, for each f inA, there exists y in Y such that ‖f‖∞ = |f(y)|. An obvious trivial example

of a boundary for A is X itself. It can be established that the intersection of all boundaries for A

that are closed is again a boundary for A (see [17, Theorem 7.4]). This unique minimal closed

boundary is known as the Shilov boundary.

ESSENTIAL SET

The essential set for A, a notion first introduced by Herbert Bear, is the unique minimal closed

subset E of X with the property that A contains every continuous function on X which vanishes

on E ([5, Corollary 1] or see [8, Theorem 2.8.1]). Bear proved that the restriction of a uniform

algebra to its essential set is uniformly closed [5, Theorem 2] (and hence forms a uniform algebra).

Moreover, if the original uniform algebra is defined on its maximal ideal space, then the restricted

uniform algebra is also defined on its maximal ideal space. More precisely, the statement of Bear’s

result is the following:
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Theorem 2.1 ([5], Theorem 4). Suppose E is the essential set for a uniform algebraA onX . Then

the maximal ideal space of A|E is E if and only if the maximal ideal space of A is X .

REAL-ANALYTIC SUBVARIETY

Let U be an open subset of Cn. A closed subset V of U is said to be a real-analytic subvariety of U

if for each point p in V , there exists a neighborhood W ⊆ U of p in Cn and real-valued functions

fj (j = 1, . . . ,m) which are real-analytic in W , so that

V ∩W = {q ∈ W : fj(q) = 0, j = 1, . . . ,m}.

A point p in V is called a regular point of V if there is a neighborhood O of p in Cn such that

V ∩ O is a real-analytic submanifold of O. A point of V that is not a regular point is called a

singular point of V . The set of all regular points of V will be denoted as Vreg, whereas the set of all

singular points of V will be denoted as Vsing. As a manifold, the dimension of V in a neighborhood

of a regular point is constant on connected components of Vreg. The maximum of these dimensions

over all connected components of Vreg is defined to be the dimension of V . The following result is

regarding the Hausdorff measure of the singular set of a real-analytic subvariety of the real-analytic

manifold Cn.

Lemma 2.2 ([10], Section 3.4.10). Suppose V is an m-dimensional real-analytic subvariety of an

open subset U of Cn. ThenHm−1(Vsing∩C) is finite for each compact subset C of U , whereHm−1

denotes the (m− 1)-dimensional Hausdorff measure.

ANALYTIC DISC

Let D denote the open unit disc in C. An analytic disc is a non-constant one-to-one continuous map

A:D −→ Cn which is holomorphic in D. By the boundary of the analytic disc A, we will mean

the restricted map A|∂D, that is, the restriction of A to the unit circle ∂D. Often in the literature,

the analytic disc and its boundary are identified with their images in Cn.
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CHAPTER 3: TWO DIMENSIONAL ISOLATED POINT THEOREM

In this chapter, we establish an isolated point theorem for uniform algebras generated by smooth

functions on a compact two-dimensional real manifold-with-boundary. More precisely, we prove

the following result that will be referred to as the Two-dimensional Isolated Point Theorem.

Theorem 3.1 (Two-dimensional Isolated Point Theorem). SupposeM is a compact two-dimensional

real manifold-with-boundary of class C1. Let A be a uniform algebra on M generated by a col-

lection of C1 functions. If

(i) the maximal ideal space of A is M , and

(ii) every point of M is isolated in the Gleason metric for A,

then A = C(M).

In 2001, Anderson and Izzo proved a similar result [2, Theorem 4.1]. In their result, the

condition (ii) is replaced by the stronger condition that “every point of M is a peak point for A”.

The proof of Theorem 3.1 that is presented here is very similar to their proof of [2, Theorem 4.1]

and only differs in those places where peak point has been used by Anderson and Izzo. However,

first we will prove some useful lemmas.

Lemma 3.2. Suppose A is a uniform algebra on X and Y is a closed subset of X . Let B = A|Y ,

the uniform closure in C(Y ) of the algebra A|Y = {f |Y ∈ C(Y ) : f ∈ A}. If a point in Y is

isolated in the Gleason metric for A, then it is also isolated in the Gleason metric for B.

Proof. First, we define a map T :A −→ B by T (f) = f |Y . Clearly, T is a multiplicative linear

operator between Banach spaces. In fact, T is bounded with ‖T‖ = 1 since ‖T (f)‖∞ = ‖f |Y ‖∞ ≤
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‖f‖∞ for all f in A and T (1X) = 1Y . So, ‖T ∗‖ = ‖T‖ = 1, where T ∗:B∗ −→ A∗, the adjoint

of T , is given by T ∗(φ) = φ ◦ T . Next, note that T is a bounded linear operator with range A|Y

that is dense in B. So, by applying duality, we see that T ∗ is injective. Hence, for φ, ψ in B∗ with

φ 6= ψ, we obtain

0 < ‖φ ◦ T − ψ ◦ T‖ = ‖T ∗(φ− ψ)‖ ≤ ‖φ− ψ‖.

Fix a point p in Y . Note that, at p, if φp is the point evaluation functional on B, then φp ◦ T is the

point evaluation functional on A. Also, if φ is in MB, then φ ◦ T is in MA. Hence, by taking φ in

MB and ψ = φp, we see from the preceding inequality that if p is isolated in the Gleason metric

for A, then p is also isolated in the Gleason metric for B.

Lemma 3.3. Suppose A is a uniform algebra on X , and Y is a closed subset of X . Let B̃ be a

uniform algebra on Y containing A|Y and with maximal ideal space Y , that is, MB̃ = Y . If a

point in Y is isolated in the Gleason metric for A, then it is also isolated in the Gleason metric for

B̃.

Proof. Suppose that p ∈ Y is isolated in the Gleason metric for A. Now if B = A|Y , then clearly

B ⊆ B̃. Hence, p is isolated in the Gleason metric for B, by Lemma 3.2. So, there exists δ > 0

such that ‖φ − φp‖B ≥ δ for all φ in MB with φ 6= φp, where φp denotes the point evaluation

functional on B at p.

Fix q in Y \ {p}. Then, clearly φp 6= φq as A separates the points of X . Consequently, we

obtain
‖p− q‖B̃ = sup{|g(p)− g(q)| : g ∈ B̃, ‖g‖∞ ≤ 1}

≥ sup{|f(p)− f(q)| : f ∈ B, ‖f‖∞ ≤ 1}

= ‖φp − φq‖B ≥ δ.

Since q in Y is arbitrary and the maximal ideal space of B̃ is Y , the above inequality shows

that p is isolated in Gleason metric for B̃.



10
Now we provide a partial converse of the Lemma 3.2.

Lemma 3.4. Suppose Y is compact Hausdorff spaces, and X is a closed subset of Y . Let A be

a uniform algebra on X with maximal ideal space X . Then, B = {f ∈ C(Y ) : f |X ∈ A} is

a uniform algebra on Y with maximal ideal space Y . If a point in X is isolated in the Gleason

metric for A, then it is also isolated in the Gleason metric for B. Moreover, each point in Y \X is

a one-point Gleason part for B.

Proof. It easily follows that B is a uniform algebra on Y from the fact that A is a uniform algebra

on X . To see that the maximal ideal space of B is Y , first note that both A and B have same

essential set, say E, and also B|E = A|E . Then, from the hypothesis that the maximal ideal space

of A is X , we obtain that the maximal ideal space of B is Y , by applying Theorem 2.1.

To verify the second assertion, let p ∈ X be isolated in the Gleason metric for A. Then, there

exists δ > 0 such that ‖p− q‖A ≥ δ for all q in X \ {p}. Note that ‖r− s‖A = ‖r− s‖B, for r, s in

X . So, in particular, ‖p− q‖B ≥ δ for all q in X \ {p}. Next, for q in Y \X , by Urysohn’s lemma

(Theorem 5.1), there exists h in C(Y ) with 0 ≤ h ≤ 1 such that h(X) = {0} and h(q) = 1. Then,

h is inB and ‖p−q‖B ≥ |h(p)−h(q)| = 1, for q in Y \X . Hence, ‖p−q‖B ≥ δ0 = min(δ, 1) > 0

for all q in Y \ {p}. Therefore, p is isolated in the Gleason metric for B.

To prove the last assertion, let a be a point in Y \X . Consider a point b in Y \ {a}. Then, by

Urysohn’s lemma (Theorem 5.1), there exists k in C(Y ) with−1 ≤ k ≤ 1 such that k(X ∪{b}) =

{−1} and k(a) = 1. Clearly k is in B, and 2 = |k(a) − k(b)| ≤ ‖a − b‖B(≤ 2). Therefore,

‖a− b‖B = 2, and consequently, a is a one-point Gleason part.

Lemma 3.5. Suppose X and Y are compact Hausdorff spaces and f :X −→ Y is a homeomor-

phism. If A is a uniform algebra on X with maximal ideal space MA, then the following hold:

(a) B = {g ◦ f−1 : g ∈ A} is a uniform algebra on Y ,

(b) F :A −→ B defined by F (g) = g ◦ f−1 is an isomorphism, and
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(c) if ϕ is in MB, the maximal ideal space of B, then ϕ̃:A −→ C defined by ϕ̃ = ϕ ◦ F is in

MA. Also, for φ, ψ in MB, ‖φ̃− ψ̃‖A = ‖φ− ψ‖B.

Proof.

(a) The proof of the fact that B is a uniform algebra follows from the fact that A is a uniform

algebra and f is a bijection.

(b) Since f is a bijection, it follows that f̃ is an isometric isomorphism between uniform alge-

bras.

(c) The first assertion can be easily verified. For the proof of the second assertion, first note that

F ∗(ϕ) = ϕ̃ for all ϕ in MB, where F ∗:B∗ −→ A∗ denotes the adjoint of F . Since the operator F

is a surjective isometry, it follows that F ∗ is also an isometry. Moreover, the restriction of F ∗ to

MB is again an isometry. So, for φ, ψ in MB, we get

‖φ̃− ψ̃‖A = ‖F ∗(φ)− F ∗(ψ)‖A = ‖F ∗(φ− ψ)‖A = ‖φ− ψ‖B.

An annihilating measure for A is a regular complex Borel measure µ on X so that
∫
f dµ = 0

for each f in A. The collection of all annihilating measures for A is denoted by A⊥.

Given a regular complex Borel measure µ onX and f in C(X), we define a new measure f∗(µ)

on C by f∗(µ)(K) = µ(f−1(K)) for each Borel subset K of C. The measure f∗(µ) is often called

the push-forward measure of µ. If g is an f∗(µ)-integrable function, then it follows that

∫
C
g d(f∗(µ)) =

∫
X

g ◦ f dµ.

The following sufficient condition for a uniform algebra to be the collection of all continuous

functions is due to Anderson and Izzo.

Lemma 3.6 ([2], Lemma 2.1). Let A0 be a dense subset of A. If f∗(µ) = 0 for each f in A0 and

each measure µ in A⊥, then A = C(X).
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Let µ be a complex Borel measure on C with compact support. Then, the Cauchy transform µ̂

of µ is defined by

µ̂(z) =

∫
dµ(w)

w − z

for all z in C such that the integral converges absolutely.

Let M be a compact n-dimensional real manifold-with-boundary of class C1, and F be a

collection of complex-valued C1 functions onM . Then, the setE = {p ∈M : df1∧ . . .∧dfn(p) =

0 for each n-tuple f1, . . . , fn in F} is called the exceptional set of F . Here we state a result of

Michael Freeman that plays a crucial role in proving the main result in this chapter.

Theorem 3.7 ([11], Theorem 3.2). Let M be a compact two-dimensional real manifold-with-

boundary of class C1, and A be a uniform algebra on M generated by a collection F of C1

functions with exceptional set E. Suppose that the maximal ideal space of A is M . If f is in

A ∩ C1(M), and µ is in A⊥, then f̂∗(µ) = 0 almost everywhere on C \ f(E) with respect to the

Lebesgue measure.

Finally, we present a proof of the Two-dimensional Isolated Point Theorem, that is, Theo-

rem 3.1.

Proof of Theorem 3.1. Let A0 denote the collection of all C1 functions in A, and E be the ex-

ceptional set of A0. Note that A0 is dense in A. Then, by Lemma 3.6, it is sufficient to show

that f∗(µ) = 0 for each f in A0 and each measure µ in A⊥. So, fix a function f in A0, and a

measure µ in A⊥. Then, by Theorem 3.7, f̂∗(µ) = 0 almost everywhere on C \ f(E). Conse-

quently, f∗(µ) is supported on f(E) and f∗(µ) ⊥ R(f(E)). It, therefore, suffices to show that

R(f(E)) = C(f(E)).

Next, let S be the set of all critical values of f . Note that S is compact. By Sard’s theorem,

m(S) = 0, where m denotes the two-dimensional Lebesgue measure on C. Also, m(f(∂M)) = 0

and, hence, m(S ∪ f(∂M)) = 0 where ∂M denotes the boundary of M . In particular, m(f(E) ∩
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(S ∪ f(∂M))) = 0. So, by the Hartogs-Rosenthal theorem (Theorem 5.2), we obtain

R(f(E) ∩ (S ∪ f(∂M))) = C(f(E) ∩ (S ∪ f(∂M))).

Now, we claim the following:

For each z0 in f(E)\ (S ∪ f(∂M)), there exists a closed disc D centered at z0 such that R(f(E)∩

D) = C(f(E) ∩D).

If the preceding claim holds, we easily obtain a countable collection {Dn}∞n=1 of closed discs

with

R(f(E) ∩Dn) = C(f(E) ∩Dn)

and

f(E) \ (S ∪ f(∂M)) =
∞⋃
n=1

Dn.

Then, {f(E) ∩Dn : n ∈ N} ∪ {f(E) ∩ (S ∪ f(∂M))} is a countable collection of compact sets

with union f(E) which is compact. Hence, by a theorem of Herbert Alexander (Theorem 5.3), we

conclude that R(f(E)) = C(f(E)).

To prove the claim, fix z0 in f(E) \ (S ∪ f(∂M)). Then, by a corollary of the Inverse Function

Theorem, there exists a closed disc D, centered at z0, such that f−1(D) is a disjoint union of

finitely many compact subsets U1, U2, . . . , Ut of M , such that f maps each Uj (j = 1, 2, . . . , t)

diffeomorphically onto D.

Denote A|Uj , the uniform closure of the subalgebra A|Uj of C(Uj), by Aj for j = 1, 2, . . . , t.

Since f |Uj is a diffeomorphism of Uj onto D, by part (a) of Lemma 3.5, Bj = {h ◦ (f |Uj)−1 : h ∈

Aj} is a uniform algebra on D. Moreover, by part (b) of Lemma 3.5, f |Uj induces an isomorphism

from Aj onto Bj , given by h 7−→ h ◦ (f |Uj)−1.

Let Ej = E ∩Uj for j = 1, 2, . . . , t. Note that for each j = 1, 2, . . . , t, the uniform algebra Bj

is generated by the collectionFj = {h◦(f |Uj)−1 : h ∈ A0} ofC1 functions. Since f◦(f |Uj)−1 = z

on D, it follows that f(Ej) = {w ∈ D : ∂g
∂z

(w) = 0 for all g ∈ Fj}. Therefore, by Theorem 5.6,

k|f(Ej) is in R(f(Ej)) for k in Bj (j = 1, 2, . . . , t). Since every point of M is isolated in the
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Gleason metric for A, by Lemma 3.2, we obtain that every point of Uj is also isolated in the

Gleason metric for Aj (j = 1, 2, . . . , t). So, by part (c) of Lemma 3.5, every point of D is

isolated in the Gleason metric for Bj (j = 1, 2, . . . , t). Since f(Ej) is the maximal ideal space

of R(f(Ej)), applying Lemma 3.3, we obtain that every point of f(Ej) is isolated in the Gleason

metric for R(f(Ej)) (j = 1, 2, . . . , t). Consequently, for all j = 1, 2, . . . , t, each point of f(Ej) is

a peak point for R(f(Ej)) because the peak points for R(f(Ej)) are precisely the isolated points

(in the Gleason metric) for R(f(Ej)) by Theorem 5.7. Therefore, R(f(Ej)) = C(f(Ej)) for

all j = 1, 2, . . . , t, by Bishop’s peak point theorem for rational approximation (Theorem 1.5).

Also, note that f(Ej) (j = 1, 2, . . . , t) and f(E) ∩ D are compact subsets of C. Finally, since⋃t
j=1 f(Ej) = f(E)∩D, applying Alexander’s theorem (Theorem 5.3) again, we obtainR(f(E)∩

D) = C(f(E) ∩D). This proves the claim and, hence, the theorem.

The following theorem generalizes Theorem 3.1 to uniform algebras on compact subsets of

smooth two-dimensional manifolds.

Theorem 3.8. Suppose X is a compact subset of M , a two-dimensional real manifold-with-

boundary of class C1, and A is a uniform algebra on X generated by continuous functions that

extend to be C1 on a neighborhood of X . If

(i) the maximal ideal space of A is X , and

(ii) each point of X is isolated in the Gleason metric for A,

then A = C(X).

Proof. First, we choose a compact submanifold-with-boundary N of M containing X . Next,

define B = {f ∈ C(N) : f |X ∈ A}. Then, using condition (i) and by applying the Lemma 3.4,

we see thatB is a uniform algebra onN with maximal ideal spaceN . Also, it easily follows thatB

is generated by C1 functions from the fact that A is generated by continuous functions that extend

to be C1 on a neighborhood of X . Moreover, from condition (ii), each point of X is isolated in the
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Gleason metric for B by Lemma 3.4. Since a one-point Gleason part is, in particular, an isolated

point in the Gleason metric, again from Lemma 3.4, we see that each point inN \X is also isolated

in the Gleason metric for B. Thus, by Theorem 3.1, B = C(N) and consequently, A = C(X).

The hypothesis that “each point is isolated in the Gleason metric” in Theorem 3.1 can be

weakened by assuming “almost every point is isolated in the Gleason metric” (note that the notion

of a set of measure zero is well defined on a manifold of class C1). In fact, the same proof remains

valid in this case too because R(f(Ej)) = C(f(Ej)) even when almost every point of f(Ej) is

isolated in the Gleason metric for R(f(Ej)). Consequently, the hypothesis of Theorem 3.8 can be

weakened by assuming that only almost every point in the space has the corresponding property.
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CHAPTER 4: EMBEDDED THREE DIMENSIONAL ISOLATED POINT THEOREM

In this chapter, we establish an isolated point theorem for uniform algebras generated by polyno-

mials on a compact subset of a three-dimensional real-analytic manifold-with-boundary embedded

in Cn.

Let X be a compact subset of Cn. The polynomial convex hull X̂ (or X )̂ of X is defined as

the set

X̂ = {z ∈ Cn : |p(z)| ≤ sup
x∈X
|p(x)| for all polynomial p}.

Moreover, X is polynomially convex if X̂ = X . In fact, the polynomial convex hull X̂ of X can be

viewed as the maximal ideal space of the uniform algebra P (X) [12, Chapter III, Theorem 1.2].

In the complex plane, that is, for n = 1, polynomial convexity is equivalent to a simple geometric

condition: X ⊆ C is polynomially convex if and only if the complement C \X is connected [12,

Chapter III, Theorem 1.3]. However, in higher dimensional complex Euclidean spaces, this notion

is much more complicated.

Now, we state the main result of this chapter that will be referred to as the Embedded Three-

dimensional Isolated Point Theorem.

Theorem 4.1 (Embedded Three-dimensional Isolated Point Theorem). SupposeM is a real-analytic

three-dimensional submanifold of Cn. Assume that X is a compact subset of M such that the

boundary ∂X of X relative to M is a two-dimensional submanifold of class C1. If

(i) X is polynomially convex, and

(ii) every point of X is an isolated point in the Gleason metric for P (X),
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then P (X) = C(X). [Here ∂X denotes the union of the topological boundary of X relative to M

and the set X ∩ ∂M .]

The proof of this theorem depends heavily on work of Anderson, Izzo and Wermer.

The following lemma [3, Lemma 2.3] plays a crucial role in proving the three-dimensional

peak point theorem ([3, Theorem 1.1]). In fact, this lemma has been repeatedly used in that proof.

Lemma 4.2 ([3], Lemma 2.3). Suppose A is a uniform algebra on a compact Hausdorff space X .

Also, assume that the maximal ideal space of A is X , and every point of X is a peak point for A.

If Y is a closed subset X , then the maximal ideal space of A|Y is Y , and every point of Y is a peak

point for A|Y .

The preceding lemma is not true if we replace “peak point” by “isolated point (in the Gleason

metric)”. To verify this claim, we will give an example. However, for that we first need the notion

of universal root algebra of a uniform algebra, the existence of which was first shown by Cole [9].

Theorem 4.3 ([9], Theorem 2.4). Suppose A is a uniform algebra on X . There exist a compact

Hausdorff space X̃ and a uniform algebra Ã on X̃ with an associated continuous map π̃: X̃ −→ X

such that

(i) π̃∗(h) = h ◦ π̃ defines an embedding of A into Ã;

(ii) every function in Ã has a square root in Ã;

(iii) Ã ∩ π̃∗(C(X)) = π̃∗(A);

(iv) ∂Ã = π̃−1(∂A), where ∂A and ∂Ã are the respective Shilov boundaries of A and Ã;

(v) Ã|π̃−1(x) is dense in C(π̃−1(x) for each x ∈ X;

(vi) if the maximal ideal space of A is X , then the maximal ideal space of Ã is X̃ .

The uniform algebra Ã on X̃ is called the universal root algebra of A.
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In particular, Ã is nontrivial whenever A is nontrivial, and ∂Ã 6= X̃ whenever ∂A 6= X . More-

over, from [9, Lemma 1.1] and condition (ii) of the preceding theorem, it follows that every point

of the maximal ideal space of Ã is one-point Gleason part for Ã, and there is no nonzero point

derivation for Ã.

Example 4.4. Let D denote the closed unit disc in the complex plane. Then, consider the disc

algebra A(D) on the disc D. Let A be the universal root algebra of A(D) on X = D̃. First, note

that A 6= C(X) as A(D) 6= C(D). Since D is the maximal ideal space of A(D), the maximal

ideal space of A is X . Also, every point of X is a one-point Gleason part for A, and there is no

nonzero point derivation forA. So, in particular, every point ofX is isolated in the Gleason metric

for A. Note that the Shilov boundary of the disc algebra A(D) is the unit circle in the complex

plane. Hence, the Shilov boundary, say Y , of A is a proper closed subset of X . Since the Shilov

boundary Y of A is a closed boundary for A, it can be easily shown that the A|Y , the restriction of

the uniform algebra A to Y , is also a uniform algebra on Y and is isometrically isomorphic to A

on X . However, isomorphic uniform algebras have homeomorphic maximal ideal spaces. Hence,

the maximal ideal space of A|Y is X , not Y .

Next, we prove the following result that strengthens Bear’s result (Theorem 2.1).

Lemma 4.5. Let L be a closed subset of X containing the essential set E for A. Then, A|L

is uniformly closed in C(L). Moreover, the maximal ideal space of A|L is L if and only if the

maximal ideal space of A is X .

Proof. To show that A|L is uniformly closed in C(L), let f ∈ A|L, the uniform closure of A|L

in C(L). Then, there exists a sequence (fn)∞n=1 ⊆ A such that f = lim
n→∞

fn|L. So, in particular,

f |E = lim
n→∞

fn|E as E ⊆ L. Then, f |E ∈ A|E as fn|E ∈ A|E for all n ∈ N and A|E is uniformly

closed in C(E). Next, note that, by the Tietze Extension Theorem, f can be extended continuously

to f̃ on X , that is, there exists f̃ in C(X) such that f̃ |L = f . Then, clearly f̃ |E = f |E is in A|E .

However, that implies f̃ ∈ A as E is the essential set for A. Hence, f = f̃ |L ∈ A|L. This shows

that A|L ⊆ A|L and consequently, A|L is uniformly closed in C(L).
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To prove the second assertion, note that E is also the essential set for A|L. Then, by Theo-

rem 2.1, the maximal ideal space of A|L is L if and only if the maximal ideal space of A|E is E if

and only if the maximal ideal space of A is X .

Now we define a notion that generalizes the notion of polynomial convexity. Let K be a closed

subset of X . The A-convex hull K̂ of K is defined as the set

K̂ = {φ ∈MA : |φ(f)| ≤ sup
x∈K
|f(x)| for all f in A}.

Moreover, K is A-convex if K̂ = K. In fact, the A-convex hull K̂ of K can be viewed as the

maximal ideal space of the uniform algebra A|K [12, Chapter II, Theorem 6.1].

In the case of a uniform algebra generated by Lipschitz functions on a compact metric space,

the following lemma gives a partial converse to the Lemma 4.5. The proof of this lemma is very

similar to that of [3, Lemma 2.1] by Anderson and Izzo. For the definition and the properties of

Hausdorff measure in a metric space, see [10].

Lemma 4.6. SupposeK is a compact metric space, andA is a uniform algebra onK generated by

a collection of Lipschitz functions. Also, suppose that maximal ideal space ofA isK. IfK = Y ∪S

where Y is a compact, A-convex subset of K and S ⊂ K is a set with two-dimensional Hausdorff

measure zero, then Y contains the essential set E for A.

A subset F of X is called a set of antisymmetry for A if every function in A which is real-

valued on F must be constant on F . For the proof of the above result, we use the antisymmetric

decomposition of a uniform algebra due to Bishop (Theorem 5.4).

Proof of Lemma 4.6. We claim that it is sufficient to show that for every x in S \ Y and every y

in K with x 6= y, there is a real-valued function f in A such that f(x) 6= f(y). To see the claim,

first note each set of antisymmetry for A then either is a singleton or else contained in Y . Now, let

g ∈ C(K) with g|Y = 0. To show that g is in A, let F be a set of antisymmetry. If F is a singleton,
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then clearly g|F ∈ A|F . If F is not a singleton, then F ⊆ Y and hence g|F = 0 ∈ A|F . Then, by

Bishop’s antisymmetric decomposition (Theorem 5.4), g ∈ A and, consequently, E ⊆ Y .

Now, fix x in S \ Y and y in K with x 6= y. Since Y is A-convex, so is Y ∪ {y} by [3,

Lemma 3.1]. Consequently, there exists a function p inAwith |p| ≤ 1
2

on Y ∪{y} and p(x) = 1. In

fact, p can be taken to be Lipschitz asA is generated by Lipschitz functions. Next, consider the sub-

set M = p(K)∩{z ∈ C : |z| ≤ 7
8
} of p(K) and z = 1 /∈M . By Urysohn’s lemma (Theorem 5.1),

there is a real-valued function h ∈ C(p(K)) with h(M) = {0} and h(1) = 1. We claim that h

belongs to R(p(K)) locally. Since the two-dimensional Hausdorff measure of S is zero, it follows

that the two-dimensional Hausdorff measure and hence the two-dimensional Lebesgue measure

of p(S) is zero. Then, by the Hartogs-Rosenthal theorem (Theorem 5.2), R(L) = C(L) for each

compact subset L ⊂ p(S). So, in particular,R(N) = C(N), whereN = p(K)∩{z ∈ C : |z| ≥ 3
4
}

is a compact subset of p(S). Therefore, h belongs to R(N). Also, h belongs to R(M) as h|M = 0.

Hence, h ∈ R(p(K)) by the localization theorem (Theorem 5.5). Since p ∈ A and K is the max-

imal ideal space of A, by the functional calculus, it follows that h ◦ p ∈ A. Thus, h ◦ p ∈ A is a

real-valued function with (h ◦ p)(x) 6= (h ◦ p)(y).

In fact, as a corollary we obtain the following result of Anderson and Izzo.

Corollary 4.7 ([3], Lemma 2.1). SupposeK is a compact metric space, andA is a uniform algebra

on K generated by a collection of Lipschitz functions. Also, suppose that maximal ideal space of

A is K. If K = Y ∪ S where Y is a compact subset of K with A|Y = C(Y ) and S ⊂ K is a set

with two-dimensional Hausdorff measure zero, then A = C(K).

Proof. First, note that Y is A-convex as A|Y = C(Y ). Then, by Lemma 4.6, Y contains the

essential set E for A. To show A = C(K), let f ∈ C(K). Then, f |Y ∈ C(Y ) = A|Y . Since

E is a closed subset of Y , f |E ∈ A|E . However, A|E = A|E as E is the essential set for A. So,

f |E ∈ A|E , and, consequently, f ∈ A. This shows that A = C(K).
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Suppose M is a real submanifold of Cn, of class C1, and p is a point in M . In general, the

real tangent space Tp(M) of M at p is not a complex vector subspace of Tp(Cn) ' Tp(R2n). The

largest complex vector subspace of Tp(M), denoted by Hp(M), is called the holomorphic tangent

space of M at p and the complex dimension of it is called the Cauchy-Riemann rank (in short, CR

rank) of M at p. If Hp(M) is non-trivial, then M is said to have a complex tangent at p. On the

contrary, M is called totally real if it has no complex tangent at any point. The following lemma

characterizes the points where a real submanifold of Cn has a complex tangent. A proof of this

lemma can be found in [4, Lemma 2.5].

Lemma 4.8 ([4], Lemma 2.5). Suppose M is a real m-dimensional submanifold of Cn. Then M

has a complex tangent at p if and only if dzI(p) = 0 as a form on M , for all m-tuples I .

The following result is due to Anthony O’Farrell, Kenneth Preskenis and David Walsh [15].

Proposition 4.9 ([15], Theorem 2). Suppose K is a holomorphically convex compact set, and K0

is a closed subset of K such that K \K0 is a totally real submanifold of Cn, of class C1. Then, a

continuous function f is in O(K) if and only if there exists g in O(K) with f = g on K0.

Next, we state two corollaries of Proposition 4.9. The first corollary and its proof is in [4,

Corollary 2.4]. The proof of the second one follows from the well known fact that a polynomially

convex set is also holomorphically convex and from the definition of essential set.

Corollary 4.10 ([4], Corollary 2.4). Suppose K is a polynomially convex compact set, and K0

is a closed subset of K such that K \ K0 is a totally real submanifold of Cn, of class C1. If

P (K0) = C(K0), then P (K) = C(K).

Corollary 4.11. Suppose K is a polynomially convex compact set, and K0 is a closed subset of K

such that K \K0 is a totally real submanifold of Cn, of class C1. Then, K0 contains the essential

set E for P (K).

Next, let E be the set of points at which M , a real smooth submanifold of Cn, has a complex

tangent. If K is a compact subset of M , we will prove that under the isolated point hypothesis, the

interior of E ∩K in M is empty. In fact, we will prove the following lemma:
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Lemma 4.12. Suppose M is a real m-dimensional submanifold of Cn, of class C2. Also, assume

that

(i) K is polynomially convex, and

(ii) every point of K is an isolated point in the Gleason metric for P (K).

Then E ∩K has empty interior in M , where E is the set of all points at which M has a complex

tangent.

In fact, in case of class C2 manifold, the preceding lemma generalizes a similar result [4,

Lemma 3.2] proved by Anderson, Izzo and Wermer. They proved that the same conclusion is true

when the condition (ii) is replaced by the stronger condition that “every point of K is a peak point

for P (K)”. To establish [4, Lemma 3.2], Anderson, Izzo and Wermer used Lemma 4.2 repeatedly.

However, Lemma 4.2 fails if we replace “peak point” by “isolated point”, as discussed earlier.

Hence, for proving Lemma 4.12, we take a different approach. We first show that the interior of E

must contain the boundary of an analytic disc if M is of class C2. The proof of this fact is due to

Wermer (obtained via a personal communication).

Lemma 4.13. Suppose M is a real m-dimensional submanifold of Cn, of class C2. Let E be the

set of points at which M has a complex tangent. Assume that U is an open subset of Cn so that

M ∩ U is a non-empty subset of E. Then M ∩ U contains the boundary of an analytic disc.

Proof. Denote the CR rank of M at q by r(q), and put r0 = min{r(q) : q ∈ M ∩ U}. Note that

{q ∈ M ∩ U : r(q) = r0} is a relatively open subset of M ∩ U . Then, there is a non-empty open

subset V ⊆ Cn with V ⊆ U such that M ∩ V is non-empty and r(q) = r0 for all q ∈M ∩ V .

Next, note that 2r0 ≤ m by definition of CR rank. Also, r0 ≥ 1 as M ∩ U ⊆ E. Then,

(by a result in [7, § 12.5]) without loss of generality we can find a generic m-dimensional CR

submanifold M0 of Cm−r0 , of class C2 and a CR map g:M0 −→ Cn−m+r0 so that M ∩ V =

{(ζ, g(ζ)) : ζ ∈M0}. Note that g, being a CR map, can be written as g = (g1, . . . , gn−m+r0), where

each gi:M0 −→ C is a CR function for i = 1, . . . , n−m+r0. Note thatm−r0 < m ≤ 2(m−r0).
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So, by an approximation theorem of M. Salah Baouendi and Francois Treves (Theorem 5.9), there

exists an open subset N0 of M0 such that for each i = 1, . . . , n −m + r0, there is a sequence of

polynomials (pin)∞n=1 on Cm−r0 that converges uniformly to gi on N0. Since M0 is a generic CR

manifold with CR rank r0, by a result of Bishop [1, Theorem 18.7], there exists an analytic disc ∆

in Cm−r0 with boundary ∂∆ contained in N0. So, in particular, for each i ∈ {1, . . . , n−m+ r0},

the sequence (pin)∞n=1 converges uniformly to gi on the boundary ∂∆ of ∆. Also, for each i =

1, . . . , n − m + r0, the Maximum Modulus Principle on ∆ implies that the sequence (pin)∞n=1

converges uniformly on ∆ to a function, say, Gi which is analytic in the interior of ∆ and Gi = gi

on ∂∆. Now, define a map G: ∆ −→ Cn−m+r0 by G = (G1, . . . , Gn−m+r0). Note that G is a

continuous map that is analytic in the interior of ∆ and agrees with g on ∂∆. Then, A: ∆ −→ Cn

given by A(ζ) = (ζ,G(ζ)) is an analytic map with A(∂∆) = {(ζ, g(ζ)) : ζ ∈ ∂∆} ⊆ M ∩ V .

Thus, the image A(∆) of A is an analytic disc in Cn whose boundary lies in M ∩ V ⊆M ∩ U .

Finally, we prove Lemma 4.12.

Proof of Lemma 4.12. We claim that K contains no analytic disc. Suppose that the claim is not

true, that is, there is an analytic disc Φ:D −→ Cn with Φ(D) ⊆ K. Then, for z in D \ {0}, we

obtain
‖z − 0‖A(D) = sup{|g(z)− g(0)| : g ∈ A(D), ‖g‖∞ ≤ 1}

≥ sup{|f(Φ(z))− f(Φ(0))| : f ∈ P (K), ‖f‖∞ ≤ 1}

= ‖Φ(z)− Φ(0)‖P (K).

Since Φ is one-to-one, by condition (ii), there exists δ > 0 such that ‖Φ(z) − Φ(0)‖P (K) ≥ δ for

all z in D \ {0}. Therefore, ‖z − 0‖A(D) ≥ δ, for all z in D \ {0}. Hence, 0 is an isolated point of

D in the Gleason metric for A(D), but this is a contradiction. So, the claim is true, that is, K does

not contain any analytic disc.

Next suppose, on the contrary to our assertion, that E ∩K has non-empty interior in M . Then,

there is a non-empty open subset U of Cn with M ∩U ⊆ E∩K. Therefore, by Lemma 4.13, there

exists an analytic disc Ψ:D −→ Cn whose boundary lies in M ∩ U(⊆ E ∩K) ⊆ K. Moreover,
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by condition (i), the analytic disc Ψ(D) is contained in K. However, this contradicts the fact that

K does not contain any analytic disc. Consequently, E ∩K has empty interior.

We now state a crucial result that is due independently to Alexander and Nessim Sibony. We

thank Edgar Stout for pointing out this result.

Theorem 4.14 ([1], Corollary 21.10). Suppose K is a compact subset of Cn with polynomial

convex hull K̂. If L = K̂ \K, then for every z in L and r > 0, the set L ∩ Bn(z; r) has positive

two-dimensional Hausdorff measure. (Here, Bn(z; r) denotes the open ball with center z ∈ Cn

and radius r.)

Finally, we prove the Embedded Three-dimensional Isolated Point Theorem, that is, Theo-

rem 4.1.

Proof of Theorem 4.1. Let E be the set of all points at which M has a complex tangent. Also, let

X0 be the interior of X relative to M , and Ω0 be an open subset of Cn with X0 = X ∩ Ω0. Define

Ẽ = E ∩ X0 and K0 = ∂X ∪ Ẽ. Note that K0 is compact because each limit point of Ẽ, that

is not in Ẽ, belongs to ∂X . Also, note X is polynomially convex by assumption, and X \ K0 is

a totally real submanifold of Ω0. Hence, by Corollary 4.10, to show P (X) = C(X) it suffices to

prove that P (K0) = C(K0). Moreover, by Corollary 4.11, K0 contains the essential set for P (X)

and, hence, by Lemma 4.5, K0 is polynomially convex.

It easily follows from Lemma 4.8 that Ẽ is a real-analytic subvariety of Ω0. Let Ẽc be the set

of all points at which Ẽreg itself has complex tangent, and set Z = ∂X ∪ Ẽsing ∪ Ẽc. It follows

that Z is compact and that K0 \ Z(= Ẽreg \ Ẽc) is a totally real, real-analytic submanifold of Ω0.

So, again by Corollary 4.10, to show P (K0) = C(K0) it suffices to prove that P (Z) = C(Z).

Moreover, by Corollary 4.11, Z contains the essential set for P (K0) and, hence, by Lemma 4.5, Z

is polynomially convex.

Finally, to show P (Z) = C(Z), we apply Corollary 4.7 with Y = ∂X and S = Ẽsing ∪ Ẽc.

First, we verify thatH2(S) = 0, that is,H2(Ẽsing∪Ẽc) = 0. By Lemma 4.12, E∩X and, hence, Ẽ
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has no interior inM . Therefore, the dimension Ẽ is at most two. So,H1(Ẽsing∩C) <∞ for every

compact subset C of Ω0, by Lemma 2.2. Now, covering Ω0 by countably many compact sets, we

obtain H2(Ẽsing) = 0. Note that Ẽc is a real-analytic subvariety of Ω0 follows from Lemma 4.8.

To prove H2(Ẽc) = 0, fix a point p in Ẽreg. Since Ẽreg is open in Ẽ, and Ẽ is open in K0, clearly

Ẽreg is open in K0. Therefore, there is r > 0 such that B(p; r) ∩K0 ⊆ Ẽreg. Denote B(p; r) ∩K0

by Kp. Then, Kp is a compact subset of Ẽreg. Note Kp, being an intersection of two polynomially

convex sets, is polynomially convex. Also, by applying Lemma 3.2 using condition (ii), note that

every point of K0 is an isolated point in the Gleason metric for P (K0). Therefore, Lemma 4.12

implies that Ẽc ∩ Kp has empty interior in Ẽreg. Since the point p ∈ Ẽreg is arbitrary, it follows

that Ẽc is a real-analytic subvariety of Ω0 of dimension at most one. Consequently,H2(Ẽc) = 0.

Next, we verify that P (Y ) = C(Y ), that is, P (∂X) = C(∂X). To do this we will first show

that ∂X is polynomially convex. Because ∂X is a subset of the polynomially convex set Z, the

polynomial convex hull ∂̂X of ∂X is contained in Z. So, ∂̂X \ ∂X ⊆ Z \ ∂X ⊆ Ẽsing ∪ Ẽc.

However, the two-dimensional Hausdorff measure of Ẽsing ∪ Ẽc is zero. Hence, by Theorem 4.14,

∂̂X \ ∂X is empty, that is, ∂X is polynomially convex. Next, by applying Lemma 3.2 using

condition (ii), we see that every point of ∂X is an isolated point in the Gleason metric for P (∂X).

Finally, by applying the Two-dimensional Isolated Point Theorem (Theorem 3.1), we conclude that

P (∂X) = C(∂X).



26

CHAPTER 5: APPENDIX

For the reader’s convenience, in this chapter, we state some important results. These results have

been used throughout this dissertation.

Theorem 5.1 ([14], Theorem 33.1). Let X be a normal space; let A and B be disjoint closed

dubsets of X . Let [a, b] be a closed interval in the real line. Then there exists a continuous map

f :A −→ [a, b] such that f(x) = a for every x in A, and f(x) = b for every x in B.

Theorem 5.2 (Hartogs-Rosenthal Theorem, [8], Theorem 3.2.4). SupposeX is a compact subset

of C. If the two-dimensional Lebesgue measure of X is zero, then R(X) = C(X).

Theorem 5.3 ([17], Theorem 26.4). Let {Xn}∞n=1 be sequence of compact subsets of C with com-

pact union X . If R(Xn) = C(Xn) for all n, then R(X) = C(X).

Theorem 5.4 ([8], Theorem 2.7.5). Let A be a uniform algebra on X . Let {Xα}α∈Λ be the collec-

tion of distinct maximal sets of antisymmetry for A. Then

(i) X = ∪α∈ΛXα, and Xα ∩Xβ is empty for α, β ∈ Λ;

(ii) A|Xα is uniformly closed, and Xα is a set antisymmetry for A (α ∈ Λ);

(iii) A = {f ∈ C(X) : f |Xα ∈ A|Xα for every α ∈ Λ}.

Theorem 5.5 ([12], Section II, Theorem 10.3). Let K be a compact subset C, and f ∈ C(K). If

every point z ∈ K has a neighborhood U(z) such that f ∈ R(K ∩ U(z)), then f ∈ R(K).

Theorem 5.6 ([8], Corollary 3.2.2). Let K be a compact subset of C. Let f ∈ C1(U) for some

neighborhood U of K. If ∂f
∂z

= 0 on K, then f |K ∈ R(K).
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Theorem 5.7 ([8], Corollary 3.3.10). Let K be a compact subset of C. The isolated points for

R(K), in the Gleason metric, are precisely the peak points for R(K).

Theorem 5.8 ([16], Theorem 1.6.2). A compact subset K of Cn with H1(K) = 0 is polynomially

convex and satisfies P (K) = C(K).

Theorem 5.9 ([7], § 13, Theorem 1). Suppose p is a point in a generic CR submanifold M of Cn,

of class C2 with real dimension m, n ≤ m ≤ 2n. Given an open neighborhood U1 of p in M , there

exists another open neighborhood U2 of p in M containing U1 so that each CR function of class

C1 on U1 can be uniformly approximated on U2 by a sequence of entire functions in Cn.
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