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ABSTRACT

Dr. Rieuwert Blok, Advisor

This paper will examine first the three spaces of constant curvature: Euclidean, spherical,

and hyperbolic. Next, we consider the definitions and properties associated with Coxeter

groups, reflection groups, and geometric reflection groups. This leads us to an interesting

theorem about polytopes with angles of the form π
mij

for mij ∈ N ∪ {∞} and how they

tessellate these model spaces. These mij give a Coxeter matrix and corresponding Coxeter

group. We list each of these possible polytopes in two dimensional Euclidean space and

two dimensional spherical space. In hyperbolic space, there are infinitely many possibilities

(based on the Gauss Bonnet theorem) and we specifically investigate the right angled case.

From this theorem, we can also investigate regular polygons in H2 with angles of the form

2π
k

and their tessellations. Lastly, we use the upper half plane model to construct a right

angled hexagon centered at i.
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CHAPTER 1

INTRODUCTION TO SPACES OF

CONSTANT CURVATURE

There are three spaces of constant curvature in each dimension n ≥ 2: Sn, En, and Hn. We

consider the spherical case, Sn, to have curvature 1 (positive); the Euclidean case, En, to

have curvature 0 (neutral); and the hyperbolic case Hn to have curvature -1 (negative). Let

Xn represent any of the three spaces of constant curvature listed above. We will consider

each of these spaces as a metric space. A metric space is a set M together with a distance

function d : M ×M → [0,∞) so that d satisfies the following conditions for all x, y, z ∈M :

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and

• d(x, z) ≤ d(x, y) + d(y, z).

The metric for each space will be defined as the model space is described. We can also

define a topological space X together with a family of open sets O. This family of open

sets must satisfy the following properties:

• O contains both the empty set and X,
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• O is closed under taking arbitrary unions, and

• O is closed under taking finite intersections.

A metric space (X, d) can be given a topology by declaring thatBε(x) = {y ∈ X | d(x, y) < ε}

is open for all x ∈ X and all ε > 0 and allowing O to be as large as necessary so that it

contains all of X.

1.1 Standard Model of En

The standard model for Euclidean space is the vector space Rn where x = (x1, x2, . . . , xn) ∈

Rn is a vector. We define the Euclidean inner product between any two vectors x, y ∈ En:

〈x, y〉 =
n∑
i=1

xiyi

With the norm of a single vector x:

||x|| =
√
〈x, x〉

The metric for this space is the standard Euclidean norm between any two vectors x and y

defined by:

d(x, y) = ||x− y||

We consider Euclidean n-space to have the same structure as Rn except there is no

analogous origin point in En. The angle θ between two vectors in Rn can be found using the

metric and inner product defined above:

θ = arccos
(
〈x,y〉
||x||||y||

)
We consider a hyperplane in En to be any translated linear subspace of dimension
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n − 1. Consider the two portions of En formed on either side of a hyperplane, these are

called half-spaces. When we consider half-spaces, we include the bounding hyperplane. In

Euclidean space, we consider a convex polytope to be the compact intersection of a finite

number of such half-spaces. We also define a convex polyhedral cone C as the intersection

of a finite number of linear half spaces in Rn. A convex polyhedral cone in Rn is essential if

the intersection with a sphere centered at the origin does not contain any pair of antipodal

points. Colloquially, for a convex polyhedral cone to be essential, we want to avoid “orange

slices” when intersecting with a sphere.

1.2 Standard Model of Sn

Let Sn be the hypersurface in Rn+1 of vectors x such that ||x|| = 1. For example, we can

consider the unit sphere in R4 . Another example is the unit circle S1 in R2. We apply the

standard inner product and metric from Euclidean space to the vectors in Sn. A convex

polytope in Sn is the intersection of Sn with an essential convex polyhedral cone in Rn+1,

defined above.

1.3 Models of Hn

There are three main models of hyperbolic space. The first is the hyperboloid model in Rn,1,

an (n+ 1)-dimensional vector space. Consider the symmetric bilinear form defined by:

〈x, y〉 = x1y1 + · · ·+ xnyn − xn+1yn+1 (1.1)

for x = (x1, · · · , xn+1) and y = (y1, · · · , yn+1). The space defined by 〈x, x〉 = −1 is a

hyperboloid of two sheets; in this model we consider only one sheet with xn+1 > 0. To define

a hyperplane in Hn, we must consider the hyperplanes in Rn,1 that are positive definite

with respect to the bilinear form (1.1); such vectors v ∈ Rn,1 have 〈v, v〉 > 0. We define a
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hyperplane in Hn to be the intersection of Hn with a positive definite hyperplane in Rn,1.

We also define a negative light cone as the set {x ∈ Rn,1 | 〈x, x〉 ≤ 0, xn+1 ≥ 0}. A

convex polytope in Hn is its intersection with a convex polyhedral cone in Hn so that C−{0}

is contained in the interior of a negative light cone.

The next two models of hyperbolic space are specific to two dimensions, but they can be

generalized to higher dimensions. First, the Poincaré disk which is the unit disk: {x ∈ R2 |

〈x, x〉 < 1}. Lines in the Poincaré unit disk are chords or circular arcs meeting the boundary

at a perpendicular. The boundary itself is not included in the Poincaré disk model. Bridson

and Haefliger [3] define the distance between any two points x, y on the Poincaré disk by:

d(x, y) = arccosh

(
1 + 2

||x− y||2

(1− ||x||2) (1− ||y||2)

)

We can also describe the maps from the hyperboloid model to the Poincaré disk model.

Consider the points x = (x1, x2, x3) and y = (y1, y2, 0) with x, y ∈ R3 so that x is on the

hyperboloid with 〈x, x〉 = −1 and y is on the Poincaré disk. Then we have the following

conversion from Poincaré disk to the hyperboloid [1]:

yi =
xi

1 + x3

We also have the following conversions from the hyperboloid to the Poincaré disk:

xi =


2yi

1−y1−y2 for i = 1, 2

1+y1+y2
1−y1−y2 for i = 3

This particular map projects the hyperboloid in 3-space onto the Poincaré disk by taking the

line through (0, 0,−1) and projecting the point from the hyperboloid onto the corresponding

point on the Poincarè disk.

The model of hyperbolic 2-space focused on in this paper is the upper half plane model. In
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two dimensions this model consists of all x+ iy ∈ C with y > 0, that is {x+ iy ∈ C | y > 0}.

In this model, we consider lines to be semi-circles centered on the real axis of the form

{x + iy ∈ C|(x − c)2 + y2 = r2} for c, r ∈ R. Additionally, we consider vertical lines of the

form x = k. To find the distance between any two points A = x1 + iy1 and B = x2 + iy2, we

must consider the line that contains these two points. Let E1 and E2 be the endpoints on

the real axis of this line so that E1 ≤ x1 ≤ x2 ≤ E2. Then we define the cross ratio between

A and B as:

(E1, A;B,E2) =
(B − E1)(A− E2)

(B − E2)(A− E1)
(1.2)

Then the hyperbolic distance between A and B is dhyp(A,B) = log(E1, A;B,E2). In this

model, angles are still considered in the Euclidean sense, but clearly distance is distorted

and increases quickly near the real axis.

1.4 Angle Sum

Within these model spaces, there are strict implications for the angle sum of any convex

polygon. First, let E1 and E2 be half spaces in Xn so that E1 ∩E2 6= ∅ and these half spaces

have bounding hyperplanes H1 and H2, respectively. Let x ∈ H1 ∩ H2. Let u1 ∈ E1 be

the unit normal vector at x with respect to H1 and let u2 ∈ E2 be the unit normal vector

at x with respect to H2. We define θ = cos−1 〈u1, u2〉 to be the exterior dihedral angle

along H1 ∩H2. We call π − θ the dihedral angle. In two dimensions, the dihedral is also

referred to as an interior angle. We must also define the area of a polygon. In E2 and

S2 we consider the area of a polygon as defined by the integral over the polygon with the

standard Euclidean measure. In the upper half plane model H2, Anderson [2] defines the

hyperbolic area as the integral:

areaH(P 2) =

∫
P 2

1

Im(z)2
dxdy =

∫
P 2

1

y2
dxdy
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Then we can consider the following version of the Gauss-Bonnet theorem.

Theorem 1. The Gauss-Bonnet Theorem [5] Let P 2 ⊆ X2 be a polygon with interior

angles α1, α2, · · · , αm, then

EArea(P 2) +
∑

(π − αi) = 2π (1.3)

Where E ∈ {−1, 0, 1} and is equal to the curvature of the space.

This implies, in particular, that the angle sum for any m-gon will be strictly greater than

(m− 2)π in S2, strictly less than (m− 2)π in H2, and exactly (m− 2)π in E2.

1.5 Isometries of Xn

Ultimately, we want to consider not only the polytopes within these spaces, but also the

isometries that can act on polytopes each space. In general, an isometry φ from a metric

space (X, d1) to another metric space (Y, d2) is a distance preserving map. That is,

d1(x1, x2) = d2(φ(x1), φ(x2))

for all x1, x2 ∈ X. The set of isometries for a metric space is a group under composition.

Translations, reflections, and rotations are examples of isometries in Euclidean space. We

can consider the group of isometries for each of the three model spaces, described in Bridson

and Haefliger.

Theorem 2. [3, Theorem 2.24] The following groups are isomorphic.

1. Isom(En) ∼= Rn oO(n).

2. Isom(Sn) ∼= O(n+ 1).

3. Isom(Hn) ∼= O(n, 1)+.
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Where O(n) is the orthogonal group of n× n matrices with the property AAT = I. The

subgroup O(n, 1) ⊂ GL(n+ 1,R) are those (n+ 1)× (n+ 1) matrices that leave the metric

(1.1) on the hyperboloid invariant. That is, A ∈ O(n, 1) if and only if

AAT =

In 0

0 −1


Because we only consider the sheet with xn+1 > 0, we want to avoid those matrices that

interchange the two sheets, thus we take O(n, 1)+ ⊂ O(n, 1) to be the set of isometries that

preserve the upper half sheet. The matrices in O(n, 1)+ are those in O(n, 1) that have a

positive entry in the lower right corner.

In general, let Xn represent Sn, En, or Hn. We want to consider the group of isometries

on Xn, denoted Isom(Xn). Let H be a linear hyperplane in En defined by a unit normal

vector u. Then the following map is a reflection in H: rH(x) = x − 2〈x, u〉u for x ∈ En.

The reflection rH will fix all x ∈ H and rH(u) = −u. This will determine rH for all other

vectors in En. If H is not a linear hyperplane, then it is of the form H+v so that the vectors

in this hyperplane all look like h + v for some h ∈ H. Then translate everything by −v,

apply rH(x) as before and then translate everything back by +v. This will give a reflection

in the hyperplane H + v. This definition of reflection will preserve distances and therefore

preserve Sn−1. A reflection can be defined in the hyperboloid model in a similar way, except

using the symmetric bilinear form (1.1) instead of the standard inner product 〈·, ·〉. One can

verify the following lemma.

Lemma 3. Every element in Isom (Xn) can be written as a product of reflections.

Thus, the isometry group can be generated by a set of reflections each of which clearly

has order two. This does not imply that every isometry is a reflection or that every isometry

has order two. It simply says that any isometry can be written as the product of reflections.
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CHAPTER 2

THE DEFINITION OF COXETER

GROUPS

2.1 The Dihedral Groups

A dihedral group is a group generated by two involutions: elements that have order two.

Consider the finite dihedral groups, denoted Dn, defined in the following way. Given a line L

in R2 and a line L′ so that the angle between L and L′ is π
n

for n ≥ 2. Let ρ1 be the reflection

across L and ρ2 be the reflection across L′. Then τ = ρ1 ◦ ρ2 is a rotation through 2π
n

. Thus,

τ has order n. We now define Dn to be the group generated by ρ1 and ρ2. Alternatively,

but equivalently, we can define the dihedral group Dn to be the group of symmetries of a

regular n-gon so that |Dn| = 2n. The finite dihedral groups can be presented in terms of a

reflection and rotation, namely, Dn = 〈τ, ρ | τn = ρ2 = 1, ρτ−1 = τρ〉 but we wish to consider

groups generated by elements of order two so we will use the presentation generated by two

reflections.
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2.2 Coxeter Groups

The dihedral groups defined above are groups generated by two elements of order two. We

want to consider a larger class of groups that are also generated by elements of order two,

but these groups may have more than two generators. First, consider the Coxeter Matrix

M = (mst) on a set S. The Coxeter matrix is an S × S symmetric matrix with entries from

N ∪ {∞} so that

mst =

 1 if s = t

≥ 2 otherwise
(2.1)

From a Coxeter Matrix, we can encode the information into a Coxeter Diagram in the

following way. Each element in the set S will be represented by one vertex or node.

• If mst = 2 then the two vertices are not connected in the Coxeter Diagram.

• If mst = 3 then the nodes are connected by an unlabeled edge.

• If mst ≥ 4, then the vertices are connected by an edge and that edge is labeled with

the entry mst.

Coxeter [4] had a third notation used for classifying symmetry groups. It is a bracket notation

that is used to concisely describe the information encoded in the edges of a Coxeter diagram.

Consider the dihedral group presented above with S = {ρ1, ρ2} ⊂ Dn for n ≥ 3. Then

the Coxeter Matrix corresponding to the set S is:

M =

1 n

n 1


for any n ∈ N so that n ≥ 2. The corresponding Coxeter diagram would contain two vertices,

with an edge connecting them labeled if n ≥ 4 and corresponding bracket notation [n].

If W is a group and S ⊂ W is a set of elements of order 2 which generate W , then we call

(W,S) a pre-Coxeter system. We can construct a Coxeter matrix and Coxeter diagram
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r rn

Figure 2.1: Coxeter diagram for Dn

for these pre-Coxeter systems in the following way: for each pair of generators s, t ∈ S,

let mst = |st|, that is mst is the smallest integer such that (st)mst = 1 . This gives an

S×S symmetric matrix with entries corresponding to the relations of S. When the Coxeter

matrix gives the only relations necessary to define the group, we call W a Coxeter Group.

If (W,S) is a pre-Coxeter system then W is the homomorphic image of a Coxeter Group

G. When these two groups are isomorphic, then we say W is a Coxeter group and S is

the fundamental set of generators. A Coxeter group is generated by elements of order two

according to the relations prescribed in the corresponding Coxeter matrix (or diagram). If

mst = 2, then the two elements s, t ∈ W actually commute. The dihedral groups described

above are Coxeter groups with two generators.
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CHAPTER 3

REFLECTION GROUPS AND

MIRROR STRUCTURE

3.1 Reflection Systems

First, a definition. A graph is a pair Γ = (V,E) where V is a set of vertices and E is a set

of edges, equipped with an incidence relation ∗ ⊆ V × E such that any edge is incident to

two (not necessarily distinct) vertices. We then say that the vertex lies on the edge and the

edge has the vertex as an endpoint. A path of length n from x to y is a sequence of edges

and vertices x = x0, e1, x1, . . . , xn−1, en, y = xn such that the edge ei has endpoints xi−1 and

xi for i = 1, . . . , n− 1. We can put a metric d on the graph Γ by declaring each edge to be

isometric to the real unit interval. In this way a path of length n in the definition above also

has length n with respect to metric d. We call the graph Γ equipped with such a metric a

simplicial graph.

Let W be a group with subset R ⊂ W so that each element in R has order two and

〈R〉 = W . Consider an action of W by left multiplication on the vertices of a connected

simplicial graph Ω with base point v0 ∈ V ert(Ω). This means that W is realized as a group

of isometries of Ω that preserve the sets of vertices and edges. We consider cases in which R
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is closed under conjugation, and for each edge in Ω there is a unique element in R which flips

that edge; that is, if r ∈ R is applied to the edge {w1, w2} then r ·w1 = w2 and r ·w2 = w1.

Conversely, we also want each r ∈ R to flip at least one edge in Ω. Let S be the set of

reflections that flip the base point v0. A system (W,R) which satisfies all of these conditions

is called a pre-reflection system. We consider Ωr to be the set of midpoints of the edges

flipped by r. If for every r ∈ R, Ω−Ωr has two distinct connected components, then we call

(W,R) a reflection system. This implies that for each r ∈ R, the action of multiplication

on the left by r interchanges the connected components of Ω− Ωr.

r

r

r
r r

r
�
�
�
��

@
@
@

@@

@
@

@
@@�

�
�

��

v0 = 1

(12)

(123)

(13)

(132)

(23)

Figure 3.1: Reflection system Ω1 for S3 with S1 = {(12), (23)}

For example, consider the group of permutations S3 with S1 = {(12), (23)} in Figure 3.1

and S2 = {(12), (13), (23)} in Figure 3.2. Conjugation of the elements in S3 by both S1 and

S2 will result in the same set of reflections R = {(12), (23), (13)}. For Ω1, the element (23)

flips the edge {v0, (23)} and the edge {(13), (123)}; the element (12) flips the edge {v0, (12)}

and the edge {(13), (132)}; and the element (13) flips the edge {(23), (132)} and the edge

{(12), (123)}. So each element in the set R flips at least one edge and every edge is flipped by

an element in R. For each of these reflections, Ω−Ωr is made up of two distinct components,

thus (S3,S1) is a reflection system.

Ω2 gives a pre-reflection system but does not satisfy the conditions for a reflection system.

For example, the element (1, 3) interchanges both {v0, (13)} and {(12), (132)}. Figure 3.2

shows that this reflection will not give two distinct components for Ω− Ωr.
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Figure 3.2: Pre-reflection system Ω2 for S3 with S2 = {(12), (13), (23)}

3.2 Deletion and Exchange Conditions

Consider a pre-reflection system (W,R) with graph Ω having v0 as a base point. As before,

let S be the set of reflections that flip the edges on the base point v0. Define a word in S

to be s = (s1, . . . , sk) where si ∈ S. We will show that the word s defines an edge path in Ω

that starts at the base point v0. We consider w(s) = s1 · · · sk to be the value of the word in

W . We call s a reduced expression if it is a word of minimum length for w(s), that is, if

l(w(s)) = k.

Proposition 4. There is a one to one correspondence between the set of words in S and the

set of edge paths starting at v0

Proof: First, note that the set R of reflections is the set of elements in W which are

conjugate to an element in S. Suppose s = (s1, . . . , sk) is a word in S. Then for 0 ≤ i ≤ k,

define wi ∈ W so that w0 = 1 and wi = s1 · · · si for i ≥ 1. Then we can define ri =

wi−1siw
−1
i−1 ∈ R. It follows that ri · · · r1 = wi. As defined above, s = (s1, · · · , sk) defines an

edge path in Ω starting at v0. One verifies easily that the action of wi−1 ∈ W sends the edge

{v0, siv0} to {vi−1, vi} so that vi−1 is, in fact, adjacent to vi. As defined, ri is the reflection
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that flips the edge {vi−1, vi} in the following way:

rivi = wi−1siw
−1
i−1vi

= wi−1siw
−1
i−1wiv0

= wi−1siw
−1
i−1wi−1siv0

= vi−1

So given a word in S we can construct an edge path in Ω starting at the base point v0.

Conversely, consider the edge path (v0, . . . , vk) which begins at v0. Then let ri be the

reflection that flips {vi−1, vi} and let wi = ri · · · r1. Then define si = w−1i−1riwi−1. To show

si ∈ S, we must show that si interchanges v0 and a vertex adjacent to v0

siv0 = w−1i−1riwi−1v0

= r1 . . . ri−1riri−1 . . . r1v0

= r1 . . . ri−1riri−1 . . . r2v1

. . .

= r1v2

= v1

Thus, si interchanges v0 and v1 so that si ∈ S. This allows us to determine the word

s=(s1, . . . , sk). Thus, there is a one to one correspondence between the set of words in S

and the set of edge paths starting at the base point in v0 ∈ Ω �

We now discuss two equivalent conditions pertaining to length of a word s ∈ S when

(W,S) is a pre-Coxeter system.

Theorem 5. Deletion & Exchange Conditions [5, Theorem 3.2.16]. If (W,S) is a

pre-Coxeter system, then the following are equivalent:

(D) Deletion: If s = (s1, . . . , sk) is a word in S such that k > l(w(s))), then there are
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indices i < j so that the sub word

s′ = (s1, . . . , ŝi, . . . , ŝj, . . . , sk)

is also an expression for w(s).

(E) Exchange: Given a reduced expression for s = (s1, . . . , sk) for w ∈ W and an element

s ∈ S, then either l(sw) = l(w) + 1 = k + 1 or there is is an index i such that

w = ss1 · · · ŝi · · · sk

The exchange conditions implies that there are two possibilities for sw. First, l(sw) =

l(w) + 1 so that a reduced expression for sw can be found by multiplying w on the left by s.

Second, if l(sw) = l(w) − 1, then the reduced expression for w started with s and thus has

been reduced in length.

Consider the graph Ω in figure 3.1 with S = {s1, s2} so that s1 = (12) and s2 = (23).

Then the element (132) = s1s2s1s2 is an expression for the element (132), but l(s1s2s1s2) =

4; we can delete the first and last elements in this expression so that (132) = s2s1 and

l(s2s1) = 2 = l(132)

For an example of the exchange condition, consider the Cayley graph of the dihedral

group D4. Then Ω is an octagon so that S = {ρ1, ρ2} as in section 2.1. Consider the element

w = ρ1ρ2, then l(ρ1ρ2)=2. If we multiply w by ρ2 ∈ S, then:

ρ2w = ρ2ρ1ρ2

and this is a reduced expression and l(ρ2w) = 3 = l(w) + 1. We can also multiply w by

ρ1 ∈ S, then:

ρ1w = ρ1ρ1ρ2 = ρ2.
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Clearly, l(ρ1w) 6= l(w) + 1. but w = ρ1ρ̂1ρ2 so that the exchange condition is satisfied.

3.3 Mirror Structure

A mirror structure on a topological space X consists of an index set S and a set of closed

subspaces (Xs)s∈S. We call the subspaces Xs the mirrors of X. The space X together

with a mirror structure is a mirrored space over S. Consider the following example: let

each vertex of an equilateral triangle represent and element of the set S = {1, 2, 3}. We can

consider the actions of S3 acting on the space X in figure 3.3. Then each permutation of S3

takes the space X and reflects it to another portion of the triangle, resulting in the following

reflections of figure 3.4. The mirrored space X in figure 3.3 is a strict fundamental domain

for the action of S3 resulting in the equilateral triangle, Y .

Figure 3.3: X with a mirror structure over {1,2,3}

We say that a closed subspace X of a space Y is a strict fundamental domain for a

G-action if for each point y ∈ Y , there exists an element in σ ∈ G so that σ maps a point

x ∈ X to y, that is σ · x = y. If the point x is in the interior of X, then this σ is unique.

We can also consider an example of the group Z2 acting on E2 in the following way.



17

Figure 3.4: The actions of S3 on X

Define a rule Z2×E2 → E2 as follows: let (z1, z2) · (x1, x2) = (x1 + z1, x2 + z2). The action is

a translation horizontally by z1 units and a translation vertically by z2 units. Clearly, this is

an isometry of E2 for each (z1, z2) ∈ Z2 and one can verify easily that this defines an action

of Z2 on E2. The one by one square in figure 3.5 is a strict fundamental domain for this

action on E2.

Figure 3.5: A strict fundamental domain for the action of Z2 on E2.
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CHAPTER 4

GEOMETRIC REFLECTION

GROUPS

We want to again consider the spaces of constant curvature denoted by Xn. In this section,

we will draw connections between the geometry of these spaces and the Coxeter groups and

reflection systems defined previously.

4.1 Convex Polytopes in Xn

To discuss the geometry in Xn, we must first discuss convex polytopes with dihedral angles,

defined in section 1.4. Furthermore, let {E1, . . . , Ek} be a set of half spaces in Xn so that their

common intersection is non-empty. As before, let H1, . . . , Hk be the bounding hyperplanes

for these half spaces. We say that {E1, . . . , Ek} has non obtuse dihedral angles if for

every pair of indices (i 6= j), either the intersection of the bounding hyperplanes is empty,

that is Hi ∩Hj = ∅; or if the intersection is nonempty, θ ≤ π
2

where θ is the dihedral angle

along the intersection.

We can now extend the definition of non obtuse dihedral angles to a convex polytope

P n ⊂ Xn. Consider the codimension-one faces of the polytope P n. If these codimension-one

faces satisfy the conditions outlined above–that is each pair does not meet or meets at an
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angle θ ≤ π
2
–then we say that the polytope P n has non obtuse dihedral angles. If, in fact,

each pair of hyperplanes meets at a π
2

angle, then we say that P n is right angled. Such a

polytope is simple if exactly n codemension-one faces meet at each vertex. One can show

that any convex polytope in Xn with non obtuse dihedral angles is simple.

4.2 Reflection Groups of Convex Polytopes

The following theorem describes under what conditions a polytope in a space of constant

curvature will tile the space. We consider {F1, F2, . . . , Fk} to be the codimension one faces

of the polytope P n.

Theorem 6. [5, Theorem 6.4.3] Suppose P n is a simple convex polytope in Xn, n ≥ 2, with

dihedral angles of the form π
mij

so that mij ∈ N whenever Fi ∩ Fj 6= ∅. If the intersection

is empty, then let mij = ∞ Let W be the Coxeter group defined by the Coxeter matrix

M = (mij), then P n is a strict fundamental domain for the W -action on Xn.

The conclusion of this theorem implies that Xn will be tiled by congruent copies of the

polytope P n. Because we assume that the polytopes have non obtuse dihedral angles, we

actually do not need the simplicity condition in the statement of the theorem. As stated

above, any convex polytope with non obtuse dihedral angles is simple.

The polytopes in these spaces satisfy the Gauss-Bonnet Theorem (1.3). Because of this,

we can actually list all such polytopes in both S2 and E2. To see this, let P be an m-gon in

X2 with non-obtuse angles αi = π
mi
≤ π

2
for mi ∈ N and i = 1, 2, . . . ,m.

Consider first P ⊂ S2. Then, Σαi > (m − 2)π implies that P must be a triangle, any

other m-gon with non obtuse angles will not satisfy the Gauss-Bonett Theorem. This implies

1

m1

+
1

m2

+
1

m3

> 1.

This quickly gives only four such possibilities for (m1,m2,m3): (2,3,3), (2,3,4), (2,3,5) and
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(2,2,n) for n ≥ 2. The first three symmetry triples correspond to the symmetry groups of

the platonic solids:

• (2,3,3) corresponds to the symmetry group of a tetrahedron S4 of type A3.

• (2,3,4) corresponds to the symmetry group of the cube or, its dual, the octahedron

23 o S3 of type C3.

• (2,3,5) corresponds to the symmetry group of the dodecahedron or, its dual, the icosa-

hedron Alt(5)× C2 of type H3.

While (2, 2, n) corresponds to the direct product of C2 ×Dn.

Next, consider P ⊂ E2 Again, each angle αi ≤ π
2

and Σαi = (m−2)π implies that m ≤ 4.

There is only one possibility for m = 4, namely a rectangle with m1 = m2 = m3 = m4 = 2.

This corresponds to the dihedral group D∞ ×D∞. Moreover, If m = 3, we have:

1

m1

+
1

m2

+
1

m3

= 1

Which gives the following possibilities for (m1,m2,m3): (2,3,6), (2,4,4), and (3,3,3). These

reflections yield the Euclidean triangle groups:

• The (2,3,6) case corresponds to the Coxeter group with diagram G̃2.

• The (2,4,4) case corresponds to the Coxeter group with diagram C̃2.

• The (3,3,3) case corresponds to the Coxeter group with diagram Ã2.

r r r6 G̃2

r r r44 C̃2

r
A
A
A

�
�
�r r Ã2

Figure 4.1: Coxeter diagrams for the Euclidean Triangle Groups
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In the spherical and Euclidean cases, the Gauss Bonnet theorem restricts the the number

of polytopes we can construct to be a strict fundamental domain for the reflection groups

Isom(X2). The hyperbolic case gives an infinite number of possibilities for the strict funda-

mental domain of any such tessellation. For example, in H2 for any m ≥ 5, there exists an

m-gon with right angles only, any such right angled polygon will tessellate hyperbolic two

space.

Figure 4.2: Tessellation of the Poincaré disk with right angled pentagons

4.3 Regular Polygons in H2

The conditions in Theorem 6 can be extended to regular polygons in H2 in the following

corollary.

Corollary 7. Let Q be a regular m-gon in hyperbolic 2-space with angles αi = 2π
k

. Any such

polygon will tessellate H2 with k copies of Q meeting at each vertex.

Proof: Essentially, we will decompose this regular m-gon into 2m congruent triangles

that each have one right angle. These triangles will satisfy the conditions of Theorem 6. If

k is even, the conditions of Theorem 6 are immediately met, but we can still complete the

construction to reduce the strict fundamental domain to a triangle. Divide the m-gon into

m triangles meeting at the center with angles π
k
, π
k
, and 2π

m
. The sides of these triangles will
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bisect the angles of Q at each vertex. Further divide one of these triangles into two right

triangles by bisecting the 2π
m

angle at the center and one edge of the polygon. Call one of

these triangles P . Now the triangle P has angles π
k
, π

2
, and π

m
. As long as the original m-gon

satisfies the conditions of the Gauss Bonnet Theorem, P will have angle sum strictly less

than π, which is necessary. Now, P satisfies the conditions of Theorem 6 with corresponding

Coxeter diagram 4.3.

r r rm k

r1 r3 r2
Figure 4.3: Coxeter diagram for the triangle P

The triangle P is a strict fundamental domain for the action of the reflection group

W = 〈r1, r2, r3〉 in the notation of Theorem 6. We still must show that this tessellation with

strict fundamental domain P is also a tessellation by our original m-gon Q. Consider the

subgroup W ′ = 〈r1, r3〉, then W ′ is the dihedral group of order 2m defined in section 2.1.

This implies that the original m-gon Q =
⋃
w∈W ′ wP .

Let the set U ⊂ W be a complete set of coset representatives for W ′. Consider the set

T = {uQ | u ∈ U} which is a set of images of Q after the action of the coset representatives

from U . We want to show that the images of this action give a tessellation of H2. First,

suppose that there are two coset representatives u, u′ ∈ U so that uQ ∩ uQ′ is nonempty.

Then this implies that uwP = u′w′P for some w,w′ ∈ W ′. Since P satisfies the conditions

of theorem 6, it is a strict fundamental domain for the action of W on H2. Therefore, either

uQ ∩ uQ′ = ∅ or u and u′ represent the same coset of W ′. This implies that if we select

u ∈ U then the images of Q in T will not overlap.

Next, we must show that the action T covers all of H2. To show this, consider the set

W̃ = {uw | u ∈ U,w ∈ W ′}. Clearly, W̃ ⊆ W . Since U is the set of coset representatives of

W ′, W ⊆ W̃ ; thus, W̃ = W . Then, because P is a strict fundamental domain for the action

by W , every point of H2 belongs to some tile of T . So this action covers all of H2 with no

gaps or overlaps, thus it is a tessellation by the m-gon Q. �
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Figure 4.4: Hyperbolic 2-space tiled with a regular heptagon subdivided into right triangles

For example, consider figure 4.4. This is a tessellation of the Poincaré disk by triangles,

but it is also a tessellation by a regular heptagon with angles αi = π
3
. The shading of the

figure shows the construction of subdividing the heptagon into right triangles.
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CHAPTER 5

CREATING A RIGHT ANGLED

HEXAGON CENTERED AT i

As stated previously, there exists a right angled m-gon in hyperbolic 2-space for all m ≥ 5.

We will construct a right angled hexagon in the upper half plane model centered at i. This

hexagon can be decomposed into six triangles with the π
2

angles being bisected at each vertex.

These triangles will have angles π
4
, π

4
, and π

3
at the center. As in the proof of Corollary 7,

we will again consider the triangle obtained by bisecting the π
3

angle at the center and one

edge of the hexagon. Let β be this line through i that makes a π
6

angle with the imaginary

axis, then one of these triangles is formed by the bisected side of the hexagon, β, and the

imaginary axis. Now, β is of the form (x− γ)2 + y2 = ρ2. To find γ, consider the derivative

of β at (0, i):

y′ = −x+γ
y

y′(0, 1) = γ

Because we want β to meet the imaginary axis at an π
6

angle, we have:

γ =
sin(−π

3
)

cos(−π
3

)
= −
√

3

This implies β is the line 22 = (x+
√

3)2 + y2.
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Let l1 be one of the sides of the hexagon that is bisected by the imaginary axis. Then

l1 is of the form x2 + y2 = r21 with r1 < 1. This will be the first side–or hyperplane–of our

right angled hexagon and the point of intersection between l1 and β will be a vertex of our

hexagon.

Figure 5.1: The line β in red and the line l1 in blue in H2

We want l1 to intersect β at a π
4

angle. Let v1 = (x1, y1) be this point of intersection.

Consider the vectors u1 = 〈1, −x1
y1
〉 and u2 = 〈1, −x1+

√
3

y1
〉 given by the tangent vectors of β

and l1 at v1. We can then solve for v1 with the following system of equations:

cos π
4

= u1·u2
‖u1‖‖u2‖

22 = (x1 +
√

3)2 + y21

The solution to this system gives us the first vertex of the hexagon. Using this vertex we

can find the center c2 of l2 by making the slope of the tangent line at v1 perpendicular to

the tangent line of l1. The value of the radius follows.

Figure 5.2: The lines l1 and l2



26

To find the next vertex, consider the line through (0, i) that makes a π
2

= π
6

+ π
3

with the

imaginary axis. This line must be x2 + y2 = 1. It will intersect the line l2 at a π
4

angle to

gives us v2 = (x2, y2). Again, find the center c3 of l3 by making the slope of the tangent line

at v2 perpendicular to the tangent of l2. l4 will have to be centered at the origin so that its

midpoint is on the imaginary axis. The radius will be 1
r1

, it will intersect l3 at v3 = (x3, y3).

This construction yields v1, v2, v3, and the other 3 vertices can be found by taking v4 =

(−x1, y1), v5 = (−x2, y2), and v6 = (−x3, y3).

Figure 5.3: Right angled hexagon centered at i in the upper half plane model

5.1 Generalizing The Construction

We can construct a right angled m-gon for m ≥ 5 in a similar way. Let β1 be the line

through (0, i) so that β meets the imaginary axis at a π
m

angle. Clearly, β is of the form

(x− γ)2 + y2 = ρ2. We find γ by considering the derivative of β at (0, i).

y′ = −x+γ
y

y′(0, 1) = γ

Because we want β to meet the imaginary axis at a π
m

angle,

γ =
sin
(
3π
2

+ π
m

)
cos
(
3π
2

+ π
m

) =
sin
(
π(3m+2)

2m

)
cos
(
π(3m+2)

2m

)
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As before, let l1 be the line x2 + y2 = r21 for r1 < 1. We want β1 to intersect l1 at a π
4

angle.

Let u1 = 〈1, −x1
y1
〉 and u2 = 〈1, −x1−γ

y1
〉. The first vertex of the m-gon will be the solution to

the following system:

cos π
4

= u1·u2
‖u1‖‖u2‖

1 = (x1 − γ)2 + y21

We then use the slope of the tangent line of l1 at v1 to find the center and radius of l2:

(x − c2)2 + y2 = r22. To determine the next vertex, again consider a line β2 through (0, i),

this time with a π
m

+ 2π
m

= 3π
m

. This line should intersect l2 at a π
4

angle so that it bisects the

angle at the next vertex. Again, consider the tangent vectors at v2 = (x2, y2) on β2 and l2 so

that they satisfy the system of equations above for v2. We can repeat this process, finding

the find the slope of the tangent line at v2 and using the perpendicular slope to determine

the center and radius of l3: (x − c3)
2 + y2 = r23. Continue this process for bm

2
c steps to

find the vertices with xi > 0. To find the vertices with xi < 0, simply take the reflection of

vi = (xi, yi) across the y-axis. If m is even, this will give all of the vertices. If m is odd, the

final vertex will be on the imaginary axis.

The mathematics of this paper was investigated and developed by H.S.M Coxeter, a

mathematician at the University of Toronto. There is another side to this work that lies

in art. The Dutch artist M.C. Escher lived from 1898-1972. He had no formal training in

mathematics but was very curious about tiling the plane with an infinite number of congruent

shapes. Escher and Coxeter established a correspondence to discuss the mathematics of

Escher’s work. While Escher was grateful for Coxeter’s input, he often lamented that he

did not understand much of Coxeter’s writing. After receiving a copy of Escher’s Circle

Limit III, Coxeter responded with three pages of mathematics. Schattschneider [8] recounts

Escher’s response: “Three pages of explanation of what I actually did...It is a pity that I

understood nothing, absolutely nothing of it.”

Escher’s Circle Limit works correspond to tessellations of the Poincaré disk. The asso-

ciated symmetry groups can be written in Coxeter’s bracket notation. For example, Circle
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Limit II corresponds to the symmetry group represented [3+, 8] and Circle Limit IV corre-

sponds to the symmetry group represented by [4+, 6].

As Coxeter continued to develop this mathematical theory, he admired Escher’s work.

Even more than that, Coxeter investigated the mathematics behind Escher’s work. While

Escher did not understand Coxeter’s mathematics, Coxeter vindicated the mathematics be-

hind Escher’s work. Strauss [10] notes: “The result, Prof. Coxeter said with the awe dripping

from every word, is astounding. ‘He got it absolutely right to the millimetre, absolutely to

the millimetre. . .Unfortunately, he didn’t live long enough to see my mathematical vindica-

tion.’” It is quite incredible that Escher achieved this kind of mathematical accuracy with

no mathematical training. It was purely intuition and curiosity that led him to investigate

the isometries and tessellations that produced beautiful works of art.
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