
THE ENERGY GOODNESS-OF-FIT TEST FOR UNIVARIATE STABLE
DISTRIBUTIONS

Guangyuan Yang

A Dissertation

Submitted to the Graduate College of Bowling Green
State University in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012

Committee:

Maria L. Rizzo, Advisor

Kenneth J. Ryan,
Graduate Faculty Representative

James H. Albert

Craig L. Zirbel



ii

ABSTRACT

Maria L. Rizzo, Advisor

The family of stable distributions is an important class of four-parameter continuous

distributions. It has appealing properties such as being the only possible limit distribution

of a suitably normalized sum of independent and identically distributed random variables.

Therefore, it has wide applications in modeling distributions with heavy tails, such as the

return of financial assets. However, there are also critics against using stable distribution in

modeling financial assets such as stock and futures. It is very important to check the validity

of the model assumption before making inferences based on the model.

Previous work has been done in the goodness-of-fit test for several special cases in-

cluding normal distributions, Cauchy distributions and more generally, symmetric stable

distributions. Classical goodness-of-fit methods such as the Kolmogorov-Smirnov test and

the Anderson-Darling test are not able to handle the stable distributions directly because

of the lack of closed-form probability density functions (PDF) and cumulative distribution

functions (CDF). Since stable distributions can be fully characterized by their characteristic

functions, goodness-of-fit tests based on the empirical characteristic function (ECF) have

also been studied in recent years.

In this dissertation, a new goodness-of-fit test is proposed for general stable distributions

based on the energy statistic, which is invariant under rigid motions. The test statistic is

essentially a weighted L2-norm of the distance between the empirical characteristic function

and the hypothetical characteristic function of the null distribution, and it can also be

expressed as a V -statistic with degenerate kernel. By asymptotic theory of degenerate kernel

V -statistics, the test statistic converges in distribution to an infinite sum of weighted χ2

random variables if the null hypothesis of stability is true. It can be proved that the test

is consistent against a large class of alternatives. A relatively simple computation formula

is derived for the test statistic, which involves numerical integration in general. Bootstrap
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method and critical values based on the asymptotic distribution of the test statistic can be

applied to implement the test.

The dissertation is organized as follows. In Chapter 1, the class of stable distributions

and its properties are reviewed. In Chapter 2, existing methods of goodness-of-fit test for

stable distributions will be discussed. In Chapter 3, theoretical properties of the test statis-

tic, including the definition, computation issues and asymptotic results, are developed. In

Chapter 4, simulation studies are presented to illustrate the empirical type I error and power

of testing stable distributions against alternative distributions including stable distributions

with different parameters and other interesting light-tailed and heavy-tailed distributions.

Simulation results show that our test is sensitive in detecting the difference either in the cen-

ter or extreme values in the tail. In Chapter 5, some basic work has been finished to study

the asymptotic distribution of the energy statistic for testing Cauchy when parameters are

estimated by maximum likelihood estimators (MLE).
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CHAPTER 1

INTRODUCTION

The stable distribution family is a parametric distribution family with four parameters, which

has wide applications in modeling data from economics, physics, biology and other areas. An

inevitable question after a statistical model is proposed is how well it fits the observed data

set, and the question is generally addressed by a goodness-of-fit test. Although the term

“goodness-of-fit” is also used in regression analysis, in this dissertation, we will focus on the

fit of a distribution to a random sample, and to be more specific, the goodness-of-fit of stable

distributions. The aim of a goodness-of-fit test is to measure the conformity of a sample

of observations to a hypothesized distribution, or in other words, the discrepancy between

them. For various types of goodness-of-fit tests proposed in the past, see [8, 9, 25, 52, 10].

A collection of goodness-of-fit tests applicable to stable distributions will be reviewed in

Chapter 2.

The name “energy” was coined by G. J. Székely [53], by analogy with Newton’s grav-

itational potential energy, who introduced the notion of energy statistics in the 1980s in

several colloquium lectures given in Budapest, Hungary, in the Soviet Union, Germany (U.

Dortmund and Technische U. of Munich), France (U. Pierre et Marie Curie), and in USA

at MIT, Yale, and Columbia. A class of goodness-of-fit tests was proposed by Rizzo [44],

based on the energy statistic, or E-statistic. Applications of energy statistics include test-
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ing multivariate normality [44, 55], testing for Pareto distribution [45], testing multivariate

independence [58, 57], testing for equality of distributions [54], nonparametric extension of

ANOVA [46], and cluster analysis [56]. The energy distance is essentially a weighted L2-norm

of the difference between the two characteristic functions, with a suitable weight function.

Proof of the following fundamental inequality was published in [53, 44] for case s = 1 and in

[56] for 0 < s < 1.

Theorem 1.0.1 Energy Inequality. Suppose that X and Y are independent random vec-

tors of the same dimension, X ′ denotes an independent copy of X, and Y ′ denotes an

independent copy of Y . Then for all 0 < s < 2,

2E|X − Y |s − E|X −X ′|s − E|Y − Y ′|s ≥ 0, (1.1)

with equality if and only if X
d
= Y .

The result shows that it is possible to represent the distance between two distributions in

terms of expected values of powers of Euclidean distances.

In this dissertation, a goodness-of-fit test is developed based on a generalized version

of an energy statistic for stable distributions. The test statistic is a weighted L2-norm of

the distance between the empirical characteristic function and the characteristic function

of the null distribution. It can also be expressed as a V -statistic with a kernel of degree

two and with degeneracy of order one. The asymptotic distribution of the test statistic is

developed, and consistency of the test is proved for the simple hypothesis testing problem.

Power performance of the energy test against various alternatives is evaluated by simulation

studies and compared to existing tests. An asymptotic result is proved for a special case,

the Cauchy distribution, for the composite hypothesis testing problem.
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1.1 Characterizations and parameterizations of stable

distributions

Mathematicians and probabilists have a very long history of interest in the limiting distribu-

tion of sums of independent and identically distributed (iid) random variables. The classical

central limit theorem (CLT) [59, p.32][9, p.7] states that such a distribution can only be

normal if the variances of those variables are finite. If the condition of the theorem is re-

laxed by allowing the variances to be infinite, the limiting distribution then becomes a stable

distribution [59, p.33]. The stable distribution was first studied by French mathematician

Paul Lévy, who studied a type of stable distribution (Lévy distribution) in his 1925 book

Calcul des probabilités [63, p.vii]. However, the fact that most members in the stable family

do not have a distribution function that can be expressed in elementary functions, except

for a few special cases, brings not only difficulties to the development of theories, but more

importantly, more computational troubles to the application. Nevertheless, a series of papers

by Mandelbrot [27, 29] and his successors [14, 47] suggested both theoretical and empirical

evidence supporting non-normal stable distributions in certain economic models, such as

financial asset returns, portfolio management and risk management. Stable distributions are

also widely applied in other areas such as physics and biology. See [63, p.48, p.54] for more

examples.

There are many different ways of defining the family of stable distributions, and any one

of them can be used as the original definition; that is, by starting from any form of definition,

other forms of definition can be obtained as a result. Actually, different forms of definition

can be very helpful for us in understanding the motivation of stable laws. Six equivalent

definitions are given below.

Generalized central limit theorem The central limit theorems (CLT), as described

in many textbooks [59, p.32][9, p.7], state that the sum of independent and identically
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distributed random variables converges weakly to a normal distribution, when the sum is

centered and scaled appropriately and the number of terms in the sum goes to infinity.

This theorem is widely used, but it is restricted to random variables with finite variance.

For random variables with infinite variance, the iid sum may also converge, but to a stable

distribution, not a normal distribution in general.

Definition 1.1.1 [63, p.6] A distribution function G is said to be stable if it is the weak

limit of the distribution functions Fn as n → ∞, where Fn(x) = P (Zn < x) is the cumula-

tive distribution function (CDF) of a linear normalized sum of independent and identically

distributed random variables

Zn = (X1 + · · ·+Xn)B−1
n − An, n = 1, 2, . . . , (1.2)

where Bn > 0 and Bn →∞ as n→∞.

The set of all such functions G is called the family of stable laws.

Closure under summation An interesting property of the class of stable distributions

is that it is closed under summations.

Definition 1.1.2 [63, p.6] A distribution function G is said to be stable if and only if for

all positive numbers b1 and b2, there exist a positive number b and a real number a such that

G

(
x

b1

)
∗G

(
x

b2

)
= G

(
x− a
b

)
. (1.3)

If a = 0, G is said to be strictly stable.

The above definition can also be formulated as follows.

Definition 1.1.3 [63, p.13] The distribution of a random variable X1 belongs to the family

of stable laws if and only if for all positive number b1 and b2, there exist a positive number b
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and a real number a, such that

b1X1 + b2X2
d
= bX1 + a, (1.4)

where X2 is an independent copy of X1, and
d
= denotes equality in distribution. If a = 0,

then X1 is said to be strictly stable.

Definition 1.1.4 [63, p.14] The distribution of independent non-degenerate random vari-

ables X1
d
=X2

d
= · · · d=Xn

d
= · · · belongs to the stable family if and only if for all n ≥ 2 there

exits a positive number bn and a real number an such that

X1 +X2 + · · ·+Xn
d
= bnX1 + an. (1.5)

Compared with Definition 1.1.3, Definition 1.1.4 requires closure under finite sum with possi-

ble scaling and shifting, instead of all linear combinations. Both conditions are sufficient and

necessary conditions for X1 to be stable, hence either one can be used as a characterization

of stability.

Definition 1.1.5 [63, p.6] The distribution of the random variables X1
d
=X2

d
=X3

d

6= constant

belongs to the stable family if and only if there exist positive numbers b2 and b3, and real num-

bers a2 and a3, such that

X1 +X2
d
= b2X1 + a2, (1.6)

X1 +X2 +X3
d
= b3X1 + a3. (1.7)

This definition reduces the sufficient condition in (1.1.4) to n = 2 and n = 3.

Characteristic function definition In general, a stable distribution does not have a

probability density function or cumulative distribution function which can be expressed
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in terms of elementary functions, but it can be completely characterized by a closed-form

characteristic function of four parameters.

Definition 1.1.6 A random variable X is stable if and only if X
d
= aZ+b, where 0 < α ≤ 2,

−1 ≤ β ≤ 1, a > 0, b ∈ R and Z is a random variable with characteristic function

ϕX(t) = E(eitZ) =

 exp(−|t|α[1− iβ tan πα
2

sign(t)]) if α 6= 1,

exp(−|t|[1 + iβ 2
π
sign(t) log |t|]) if α = 1.

(1.8)

In this dissertation, unified notation will be used for these parameters as suggested by Nolan

[39]. Stable distributions are denoted as S(α, β, γ, δ), where the parameters are interpreted

as follows:

α, the tail index or characteristic exponent, describes the power rate at which the tail(s) of

the density function decay;

β, the skewness index, describes how skewed the distribution is;

γ, the “scale” parameter;

δ, the “location” parameter.

The parameters a and b in the above definition are associated with parameters β, γ and

δ in different ways in different parameterizations. One of the most important references

for studying stable distributions, Zolotarev’s book [63], uses different notation, denoting

the scale parameter as λ and the location parameter as γ. To avoid confusion, in this

dissertation, results and theorems cited from Zolotarev’s book will be rewritten by using

the unified notation as stated above by denoting the scale parameter as γ and the location

parameter as δ.

Different parameterizations are used in the literature to accommodate different needs

of solving specific problems. While one parameterization may be better for studying the

analytic properties of the distribution, another may simplify the numerical computations
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or parameter estimation. There is no single parameterization that is best for all different

purposes, and it is important to notice what type of parameterization is used. Several

common parameterizations are described below and the pairwise conversions between them

are also provided. Nolan [39] suggested two parameterizations: S0 and S1, both of which

are defined as location and scale transformation of a random variable Z with characteristic

function [39, p.8].

In the remaining part of the dissertation, sgn denotes the sign function, also known as

signum function, which is defined as

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(1.9)

Definition 1.1.7 Nolan’s S0 parameterization [39, p.8]. A random variable X is

S(α, β, γ, δ; 0) if

X
d
=

 γ(Z − β tan πα
2

) + δ α 6= 1,

γZ + δ α = 1,

where Z = Z(α, β) has characteristic function (1.8). In this case, X has characteristic

function

EeitX =

 exp
(
−γα|t|α[1 + iβ tan(πα

2
)sgn(t) (|γt|1−α − 1)] + iδt

)
α 6= 1,

exp
(
−γ|t|

[
1 + iβ 2

π
sgn(t) log(γ|t|)

]
+ iδt

)
α = 1.

(1.10)

Nolan [39] suggested using S0 parametrization for numerical purposes and statistical in-

ference. The S0 parameterization admits a location-scale family in the sense that if Z ∼

S(α, β, γ, δ; 0), then for any a 6= 0, b ∈ R, aZ + b ∼ S(α, sgn(a)β, |a|γ, aδ + b; 0).

Definition 1.1.8 Nolan’s S1 parameterization [39, p.8]. A random variable X is
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S(α, β, γ, δ; 1) if

X
d
=

 γZ + δ α 6= 1,

γZ + (δ + β 2
π
γ log γ) α = 1,

where Z = Z(α, β) has characteristic function (1.8). In this case, X has characteristic

function

EeitX =

 exp
(
−γα|t|α

[
1− iβsgn(t) tan(πα

2
)
]

+ iδt
)

α 6= 1,

exp
(
−γ|t|

[
1 + iβ 2

π
sgn(t) log |t|

]
+ iδt

)
α = 1.

(1.11)

Definition 1.1.9 Zolotarev’s (A) parameterization [63, p.9]. A random variable X

is S(α, β, γ, δ;A) if its characteristic function can be represented in the form

EeitX =

 exp(γ[itδ − |t|α + it|t|α−1β tan πα
2

]) if α 6= 1,

exp(γ[itδ − |t|α − iβ 2
π
t log |t|]) if α = 1.

(A)

The characteristic functions of stable laws in form (A) are not continuous in the param-

eters determining them. They have discontinuities at all points of the form α = 1, β 6= 0.

Taking the limits α? → 1 (α? 6= 1), β? → β 6= 0, γ? → γ, and δ? → δ not only does not

yield the stable law with the parameters α = 1, β, γ and δ, but does not even yield a proper

distribution in the limit. The whole measure goes to infinity [63, p.11]. The discontinuity

can be removed by adding shift −β tan(πα/2) to the location parameter, which yields the

following parameterization.

Definition 1.1.10 Zolotarev’s (M) parameterization [63, p.11]. A random variable

X is S(α, β, γ, δ;M) if its characteristic function can be represented in the form

EeitX =

 exp(γ[itδ − |t|α + it(|t|α−1 − 1)β tan πα
2

]) if α 6= 1,

exp(γ[itδ − |t|α − iβ 2
π
t log |t|]) if α = 1.

(M)

As one may notice, Nolan’s S0 parameterization is very similar to Zolotarev’s M parameter-

ization, with only modifications to make γ and δ more compliant with the classical sense of
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scale and location parameter. The same relationship applies to Nolan’s S1 and Zolotarev’s A

parameterization. For some parameterizations, γ is the scale parameter in the classical defi-

nition; that is, the CDF satisfies F (x; γ) = F (x/γ; 1). The scale parameter γ in both Nolan’s

S0 and S1 belong to this category. However, some parameterizations, such as Zolotarev’s

form (A), only mimic the scale parameter in the sense that it is a mixture of scale parameters

and some other parameter(s). Besides the above parameterizations, Zolotarev also discussed

another parameterization justified by its analytical nature.

Definition 1.1.11 Zolotarev’s (B) parameterization [63, p.12]. A random variable X

is S(α, β, γ, δ;B) if its characteristic function can be represented in the form

EeitX =

 exp(γ[itδ − |t|α exp(−iπ
2
βK(α)sgn(t))]) if α 6= 1,

exp(γ[itδ − |t|α (π
2

+ iβ log |t| sgn(t))]) if α = 1,
(B)

where K(α) = α− 1 + sgn(1−α), and the parameters have the same domain of variation as

in the form (A).

In the form (B), as in (A), stable laws are not continuous at points of the form α = 1.

However, with (B) parameterization, the limit distribution exists and is a stable distribution,

as α? → 1+, β? → β, γ? → γ, and δ? → δ. Here → 1+ denotes converging to 1 from above.

It is worthwhile to notice that γ and δ do not necessarily coincide with the scale or

location parameter in the distribution functions of normal, Cauchy and Lévy distributions

which are special cases of stable distributions explained on Page 13. It depends on the

type of parameterizations used. It is important to determine the parameterization before

the parameter estimation, random variable generation and hypothesis testing for the stable

distributions. The conversions between different parameterizations are listed as follows. Note

that the characteristic exponent α remains the same among all parameterizations mentioned

in this dissertation.
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S1 → S0

β0 = β1, γ0 = γ1, δ0 =

 δ1 + βγ tan πα
2

if α 6= 1,

δ1 + β 2
π
γ ln γ if α = 1.

S0 → S1

β1 = β0, γ1 = γ0, δ1 =

 δ0 − βγ tan πα
2

if α 6= 1,

δ0 − β 2
π
γ ln γ if α = 1.

(B)→ (A)

βA = βB, δA =
2

π
δB, γA =

π

2
γB, If α = 1,

βA = cot(π
2
α) tan(π

2
βBK(α)),

δA = δB
cos(π

2
βBK(α))

,

γA = γB cos(π
2
βBK(α)),

If α 6= 1.

(A)→ (B)

βB = βA, δB =
π

2
δA, γB =

2

π
γA, If α = 1,

βB = 2
πK(α)

arctan
(

βA
cos π

2
α

)
,

δB = δA

(
cos2 π

2
α

β2
A+cos2 π

2
α

)1/2

,

γB = γA

(
cos2 π

2
α

β2
A+cos2 π

2
α

)−1/2

,

If α 6= 1.

(A)→ (M)

βM = βA, δM = δA, γM = γA, If α = 1,

βM = βA, δM = δA + βA tan
πα

2
, γM = γA, If α 6= 1.
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(M)→ (A)

βA = βM , δA = δM , γA = γM , If α = 1,

βA = βM , δA = δM − βM tan
πα

2
, γA = γM , If α 6= 1.

(A)→ S1

β1 = βA, δ1 = γAδA, γ
α
1 = γA.

S1 → (A)

βA = β1, γA = γα1 , δA =
δ1

γα1
.

For all parameterizations, the notation S(α, β) = S(α, β, 1, 0) will be used. For example,

it is assumed that S(α, β; 1) = S(α, β, 1, 0; 1) for parameterization S1.

1.2 Analytical properties of stable distributions

Except for several special cases, stable distributions, in general, do not have closed form

probability density functions (PDF) or cumulative distribution functions (CDF). Zolotarev

[63] stated in detail the integral form of the density functions of stable distributions, and

Nolan [36] discussed the numerical method of computing the densities. Although there are

other expressions of the density functions, few of them seem practical in computing the

densities. The integral formula is quite complicated, which is one of the obstacles for the

applications of stable distributions. Thanks to the location-scale property of distribution

functions, only the density functions of standard stable distributions need to be considered.
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To state Zolotarev’s integral formula in the (M) parameterization [36], define

ζ = ζ(α, β) =

 −β tan πα
2

α 6= 1

0 α = 1

θ0 = θ0(α, β) =


1
α

arctan(β tan πα
2

) α 6= 1

π
2

α = 1

c1(α, β) =


1
π
(π

2
− θ0) α < 1

0 α = 1

1 α > 1

V (θ;α, β) =

 (cosαθ0)
1

α−1

(
cos θ

sinα(θ0+θ)

) α
α−1 cos(αθ0+(α−1)θ)

cos θ
α 6= 1

2
π

(
π/2+βθ

cos θ

)
exp

(
1
β

(
π
2

+ βθ
)

tan θ
)

α = 1, β 6= 0.

Theorem 1.2.1 Let X ∼ S(α, β; 0). The density f and distribution function F of X are

given by

1. When α 6= 1 and x > ζ,

f(x;α, β) =
α(x− ζ)

1
α−1

π |α− 1|

∫ π
2

−θ0
V (θ;α, β) exp(−(x− ζ)

α
α−1V (θ;α, β))dθ, (1.12)

and

F (x;α, β) = c1(α, β) +
sgn(1− α)

π

∫ π
2

−θ0
exp(−(x− ζ)

α
α−1V (θ;α, β))dθ. (1.13)
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2. When α 6= 1 and x = ζ,

f(ζ;α, β) =
Γ(1 + 1

α
) cos θ0

π(1 + ζ2)
1
2α

, (1.14)

and

F (ζ;α, β) =
1

π

(π
2
− θ0

)
. (1.15)

3. When α 6= 1 and x < ζ,

f(x;α, β) = f(−x;α,−β), (1.16)

and

F (x;α, β) = 1− F (−x;α,−β). (1.17)

4. When α = 1,

f(x; 1, β) =


1

2|β|e
−πx

2β
∫ π

2

−π
2
V (θ; 1, β) exp(−e−

πx
2β V (θ; 1, β))dθ β 6= 0,

1
π(1+x2)

β = 0,
(1.18)

and

F (x; 1β) =


1
π

∫ π
2

−π
2

exp(−e−
πx
2β V (θ; 1, β))dθ β > 0,

1
2

+ 1
π

arctanx β = 0,

1− F (x;α,−β) β < 0.

(1.19)

In certain special cases, the density functions or distribution functions of stable distribu-

tions can be expressed explicitly by simple functions. When α = 2, the stable distribution

S(2, β, γ, δ; 0) is a normal (Gaussian) distribution, with mean µ = δ and variance σ2 = 2γ2;



14

that is

S(2, β, γ, δ; 0) = S(2, β, γ, δ; 1) = N(δ, 2γ2),

where the normal distribution N(µ, σ2) has density function

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

When α = 1 and β = 0, the stable distribution S(1, 0, γ, δ; 0) is a Cauchy distribution, with

location parameter δ and scale parameter γ; that is

S(1, 0, γ, δ; 0) = S(1, 0, γ, δ; 1) = Cauchy(γ, δ),

where the Cauchy(γ, δ) distribution has density function

f(x) =
1

πγ
[
1 + (x−δ

γ
)2
] .

When α = 1
2

and β = 1, the stable distribution S(1
2
, 1, γ, δ; 0) is a Lévy distribution with

location parameter δ and scale parameter γ; that is

S

(
1

2
, 1, γ, δ; 1

)
= S

(
1

2
, 1, γ, δ + γ; 0

)
= Lévy(γ, δ),

where the Lévy distribution Lévy(γ, δ), has density function

f(x; δ, γ) =

√
γ

2π

e−
γ

2(x−δ)

(x− δ)3/2
, if x > δ.

The normal distribution is widely applied in every field of statistics partly because of its

nice analytical properties, many of which are also shared by other members of the stable

distribution family.
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Property 1.2.2 Let X ∼ S(α, β, γ, δ), and f(x) and F (x) be its probability density function

and cumulative distribution function, respectively.

1. Paretian tail density [39, p.14]. Both tail probabilities and densities of non-normal

stable distributions are asymptotically power laws. If 0 < α < 2 and −1 < β ≤ 1, then

as x→∞,

1− F (x)

γαcα(1 + β)x−α
→ 1,

f(x)

αγαcα(1 + β)x−(α+1)
→ 1, (1.20)

where cα = sin(πα
2

)Γ(α)/π. Using Property 1.2.6 below (the reflection property), the

lower tail properties are similar: for −1 ≤ β < 1, as x→∞

F (−x)

γαcα(1− β)x−α
→ 1,

f(−x)

αγαcα(1− β)x−(α+1)
→ 1. (1.21)

2. Unimodality [63, p.134]. Each stable distribution is unimodal.

3. Stable laws have densities with uniformly bounded derivatives of every order.

Property 1.2.3 [63, p.61] Every admissible parameter quadruples (α, βk, γk, δk) and every

real numbers h and ck, k = 1, . . . , n, uniquely determine a parameter quadruple (α, β, γ, δ)

such that

S(α, β, γ, δ)
d
=
∑
k

ckS(α, βk, γk, δk) + h.

With parameterization form (A), the dependence of the quadruple (α, β, γ, δ) on the chosen
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parameters and numbers is as follows:

δ =
∑
k

δk|ck|α,

δβ =
∑
k

δkβk|ck|αsgnck,

δγ =
∑
k

δkγkck + h0,

where h0 = h if α 6= 1, and h0 = h− 2
π

∑
k δkβkck log |ck| if α = 1.

Property 1.2.4 [63, p.60] Any two admissible parameter quadruples (α, β, γ, δ) and (α, β, γ′, δ′)

uniquely determine real numbers a > 0 and b such that

S(α, β, γ, δ)
d
= aS(α, β, γ′, δ′) + λb.

In the form (A) the dependence of a and b on the parameters is expressed as follows:

a = (γ/γ′)1/α, (1.22)

b =

 δ − δ′(γ/γ′)1/α−1 if α 6= 1,

δ − δ′ + 2
π
β log(γ/γ′) if α = 1.

(1.23)

This property can be used to standardize any stable distribution by letting δ = 0 and γ = 1.

Property 1.2.5 An arbitrary admissible parameter quadruple (α, β, γ, δ) and any β′ and β′′

with −1 ≤ β′ ≤ β ≤ β′′ ≤ 1 determine unique positive numbers c′ and c′′ and a real number

l such that

Y (α, β, γ, δ)
d
= c′Y (α, β′) + c′′Y (α, β′′) + l.
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In the form (A) the dependence of the parameters and the numbers is expressed as follows:

c′ =

(
δ
β′′ − β
β′′ − β′

)1/α

, c′′ =

(
δ
β − β′

β′′ − β′

)1/α

,

l =

 δγ if α 6= 1,

δγ + 2
π
(β′c′ log c′ + β′′c′′ log c′′) if α = 1.

Property 1.2.6 [63, p.60] If X and X ′ are independent and identically distributed with

S(α, β, γ, δ), then −X ∼ S(α,−β,−γ, δ), and subsequently, X −X ′ ∼ S(α, 0, 0, 2δ).

1.3 Simulating stable distributions

In general, because of lack of closed-form expressions of the cumulative distribution functions,

it is not possible to use common random variable generation methods such as inverse trans-

formation method. The Chambers-Mallows-Stuck method [7, 61, 39, 59] provides a general

solution to generating independent and identically distributed random variables from stable

distribution S(α, β, γ, δ) for a given parameter set. With Property 1.2.4, one only needs to

consider generating sequence of random variables with distribution S(α, β) = S(α, β, 1, 0).

Let Θ and W be independent with Θ uniformly distributed on the interval (−π
2
, π

2
) and

W exponentially distributed with mean 1; that is, Θ ∼ Unif(−π
2
, π

2
) and W ∼ Exp(1). For

0 < α ≤ 2 and −1 ≤ β ≤ 1, define θ0 = 1
α

arctan(β tan πα
2

). Then

Z =


sinα(θ0+Θ)

(cosαθ0 cos Θ)1/α

[
cos(αθ0+(α−1)Θ)

W

] 1−α
α

if α 6= 1

2
π

[
(π

2
+ βΘ) tan Θ− β log

(
π
2
W cos Θ
π
2

+βΘ

)]
if α = 1

(1.24)

has a S(α, β, 1, 0; 1) distribution [39].
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1.4 Series representation of stable density functions

Let g(x, α, β) be the density function of stable law S(α, β). If α > 1, then for all admissible

β and all real x, [63, p.89]

g(x, α, β) =
1

π

∞∑
n=1

(−1)n−1 Γ(nα′ + 1)

Γ(n+ 1)
sin(πnρ)xn−1, (1.25)

where α′ = 1/α.

If α < 1, then for any admissible β and any real x,

g(x, α, β) =
1

π

∞∑
n=1

(−1)n−1 Γ(nα + 1)

Γ(n+ 1)
sin(πnρ)x−nα−1. (1.26)

If α = 1 and β > 0, then for any real x,

g(x, 1, β) =
1

π

∞∑
n=1

(−1)n−1nbnx
n−1, (1.27)

where

bn =
1

Γ(n+ 1)

∫ ∞
0

exp(−βu log u)un−1 sin
[
(1 + β)u

π

2

]
du. (1.28)

1.5 Estimation of parameters

Unlike normal distributions, there are no simple estimators for stable distribution parame-

ters which possess nice properties such as unbiasedness and minimum variance, due to the

unavailability of an explicit form of the density function. Methods of estimating stable distri-

bution parameters have been proposed to bypass this obstacle [16, 1, 41, 35, 3, 22, 42, 38, 26].

Fama and Roll [15, 16] proposed using sample fractiles to estimate α, γ and δ for sym-

metric stable distributions with α > 1. This method was then improved by McCulloch [35]

who generalized the method to estimate all four parameters when α ≥ 0.5. Koutrouvelis
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[23, 22] proposed a regression-type estimator. A comparative study was done by Akgiray

and Lamoureux [1], who compared the performance of the iterative regression method and

the fractile method using both simulated and actual data, and concluded by recommending

the regression-type estimator.

DuMouchel [12] discussed the approximate maximum-likelihood estimators for stable

distributions, and pointed out that if both α and δ are unknown, then the likelihood function

will have no maximum within 0 < α ≤ 2, −∞ < δ < ∞. Maximum likelihood estimators

for general stable distribution were studied by Nolan [38] to estimate all four parameters.

Methods have also been proposed for estimating parameters of special interest, espe-

cially the characteristic exponent α. Fan [17] developed an unbiased estimator for α with

the structure of a U -statistic. Fan [18] constructed a minimum distance estimator for α by

minimizing the Kolmogorov distance or the Cramér von-Mises distance between the empir-

ical distribution function and a class of distributions defined based on the sum-preserving

property of stable random variables.
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CHAPTER 2

EXISTING GOODNESS-OF-FIT

TESTS FOR STABLE

DISTRIBUTIONS

There has been a long-standing debate on whether it is proper and necessary to fit models

using stable distributions, especially for financial asset returns. While normality is the

core assumption of modern portfolio theory, it is often observed that the distribution of

financial asset returns, such as stock returns, possesses characteristics such as heavy tail

and skewness, which cannot be justified by the normality assumption. Stable distributions

are proposed to be a better model for financial returns for both theoretical and empirical

reasons; see [28, 14, 47]. However, there are also voices against the correctness of modeling

the return of financial assets by a stable distribution. Blattberg and Gonedes [5] found

evidence that weekly and monthly returns have significantly higher characteristic exponent

estimates than daily returns do, which contradicts the “closure under summation” properties

of stable distributions. They proposed to use Student’s t distribution instead. Lau et

al. [24] investigated the behavior of higher moments of stock data, and argued that stock

returns, when taken as a group, should not be assumed from non-normal stable distributions.
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DuMouchel [13] criticized that if the true distribution is not stable, then the measure of tail

behavior (thickness) is biased when assuming a stable model. In this case, he suggested

fitting the tail data separately using a generalized Pareto model. Nevertheless, Uchaikin and

Zolotarev [59, p.482] responded to the empirical objection to stable distribution in financial

areas, and tried to justify the inconformity of theoretical properties of stable distributions

with empirical findings.

In a formal framework, the goodness-of-fit problem for stable distributions will be formu-

lated as follows: let x1, . . . , xn be independent and identically distributed observations from

distribution F . Two types of null hypotheses to be tested are

H0 : F = Sθ,

where the parameter vector θ = (α, β, γ, δ) is fully specified; and

H0 : F = Sθ ∈ SΘ,

where SΘ = {Sθ : θ ∈ Θ} is a family of stable distributions and Θ is the parameter space. The

second null hypothesis corresponds to the case when the parameters are partly unknown,

or all unknown. A goodness-of-fit test for the first null hypothesis is a test for a simple

hypothesis, and that for the second null hypothesis is a test for a composite hypothesis.

Analogous to the distance between two points on the real line, the statistical “distance”

between the sample and the hypothesized distribution can be defined. For a random sample

x1, . . . , xn, the empirical distribution function (EDF) is defined as

Fn(t) =
1

n

n∑
j=1

I(xj ≤ t),



22

where I is the indicator function. The empirical characteristic function (ECF) is defined as

ϕn(t) =
1

n

n∑
j=1

eitxj ,

where i is the imaginary unit. Since the empirical distribution function and the empirical

characteristic function converge almost surely to the cumulative distribution function and

characteristic function, respectively, it is natural to measure the goodness-of-fit by measuring

the discrepancy between the empirical functions and their counterparts. Many powerful tests

have been proposed for testing normality, but few can be extended to the general stable

family. Therefore, the focus of the dissertation will be on testing the goodness-of-fit for

stable distributions, or “stability”.

2.1 Tests based on empirical distribution function

Tests based on the empirical distribution function test the goodness-of-fit by measuring the

difference between the empirical distribution function of the test sample and the null distri-

bution. Some well-known tests based on empirical distribution function (EDF) include the

Kolmogorov-Smirnov (K-S) test, the Cramer-von Mises (C-M) test and the Anderson-Darling

(A-D) test [9, p.421]. Since most stable distributions do not have a closed-form distribu-

tion function, few results are found in the literature that use an EDF-based method to test

goodness-of-fit for stable distributions, except for some special cases such as normal distribu-

tions and Cauchy distributions. These tests are usually implemented in a “distribution-free”

way such that the random sample is first transformed by the CDF of the null distribution

and then tested for uniformity. Let x1, . . . , xn be an independent and identically distributed

sample, and x(1), . . . , x(n) be the order statistics of the sample. Let U(j) = F0(x(j)). The
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Kolmogorov-Smirnov test statistic is

Dn = max
1≤j≤n

max

{
j

n
− U(j), U(j) −

j − 1

n

}
,

the Cramer-von-Mises statistic is

Cn =
1

12n
+

n∑
j=1

(
U(j) −

2j − 1

n

)2

,

and the Anderson-Darling statistic is

An = −n− 1

n

[
n∑
j=1

(2j − 1)
(
logU(j) + log(1− U(n−j+1))

)]
.

The above goodness-of-fit test statistics measure how close the transformed order statistics

of the sample are to uniform order statistics.

2.2 Tests based on empirical characteristic function

Stable distributions have characteristic functions that can be expressed in a relatively simple

form, so the goodness-of-fit problem can be considered by measuring the discrepancy between

the empirical characteristic function and the characteristic function of the null distribution.

A goodness-of-fit test for Cauchy distributions based on the empirical characteristic func-

tion was proposed by Gürtler and Henze (G-H) [19] for the composite hypothesis, with the

location parameter estimated by the sample median and the scale parameter estimated by

the half-interquartile range. The same form of the test statistic was then adopted by Matsui

and Takemura (M-T) [33, 34] in testing Cauchy distributions and symmetric stable distribu-

tions, with parameters estimated by maximum likelihood estimators, as well as equivariant

integrated squared error estimator (EISE). The test statistic Dn,λ computes the weighted

L2 distance between the empirical characteristic function of the “standardized” data and
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the hypothetical characteristic function of the standard distribution, with a weight function

w(t) = e−κ|t|. Let x1, . . . , xn be a random sample, and α̂, γ̂ and δ̂ be affine equivariant

estimators of α, γ and δ, and ϕn(t) := 1
n

∑n
j=1 exp(ityj) be the empirical characteristic func-

tion of the standardized data yj = (xj − δ̂)/γ̂. The statistic for testing symmetric stable

distributions is

Dn,κ :=n

∫ ∞
−∞
‖ϕn(t)− exp(−|t|α̂)‖2e−κ|t|dt

=
1

n

∑
j,k

2κ

κ2 + (yj − yk)2
− 4

∑
j

∫ ∞
0

cos(tyj) exp(−tα̂ − κt)dt

+ 2n

∫ ∞
0

exp(−2tα̂ − κt)dt.

When the characteristic exponent α is known and equal to one; that is, when the null

distributions for testing are Cauchy distributions, the test statistic can be simplified as

Dn,κ =
2

n

n∑
j,k=1

κ

κ2 + (yj − yk)2
− 4

n∑
j=1

1 + κ

(1 + κ)2 + y2
j

+
2n

2 + κ
.

It is noted that no result in the literature is found to extend a G-H type of test to asymmetric

stable distributions.

2.3 Other types of goodness-of-fit tests

Graphical methods such as a Quantile-Quantile (Q-Q) plot or a Probability-Probability (P-

P) plot can be useful in comparing a sample of data to the hypothesized distribution in a

visual, intuitive way. A Q-Q plot displays the sample quantiles plotted against the theo-

retical quantiles of the hypothesized distribution, while a P-P plot displays the empirical

distribution function plotted against the theoretical cumulative distribution function. Nolan

[37] recommended a “variance stabilized” P-P plot in diagnosing the fit of a stable model.

Although these methods have great value in showing the goodness-of-fit of the model, espe-
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cially useful in determining the difference of the tail weight between data and model, it still

depends on subjective judgment and is not reliable against all alternatives.

Saniga and Hayya [48] discussed a simple goodness-of-fit test using sample kurtosis b2

to distinguish among symmetric stable distributions with different tail index α. Saniga and

Miles [49] then examined the power of several standard goodness-of-fit tests of normality

against asymmetric stable alternatives and concluded that a test based on kurtosis statistic

b2 performs generally better for large sample size (n ≥ 50) and less skewed cases (|β| ≤ .75).

Some research has been done by taking advantage of the unique properties of stable

distributions. Brcich et al. [6] developed a goodness-of-fit test based on one of the char-

acterizations of a symmetric stable distribution, that it can be fully characterized by the

condition: X1 +X2
d
=C2X and X1 +X2 +X3

d
=C3X, but this test is powerful only when the

sample size is large.
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CHAPTER 3

THE ENERGY GOODNESS-OF-FIT

TEST FOR STABLE

DISTRIBUTIONS

In this chapter, a new goodness-of-fit test for stable distributions is presented based on the

energy distance between the empirical characteristic function (ECF) and the characteristic

function of the hypothesized stable distribution.

3.1 Preliminaries

Let ϕF (t) and ϕG(t) be characteristic functions corresponding to distributions F and G,

respectively. The difference between two distributions can be measured by

Q(F,G) =

∫ ∞
−∞
|ϕF (t)− ϕG(t)|2w(t)dt, (3.1)

where w(t) is a proper weight function. By letting F = Fn be the empirical distribution

of independent and identically distributed x1, . . . , xn, and G = F0 be the distribution to

be tested, one can get a family of goodness-of-fit tests based on empirical characteristic
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functions. For example, when w(t) = e−κ|t|, one has the goodness-of-fit test statistic studied

by Gürtler and Henze [19], and Matsui and Takemura [33, 34]. The original energy statistic

discussed by Rizzo [44] corresponds to a weight function w(t) = 1
πt2

for the goodness-of-fit

test, which has an alternative expression

Qn =n

∫ ∞
−∞
|ϕFn(t)− ϕF0(t)|2

1

πt2
dt

=n

{
2

n

n∑
j=1

E|xj −X| − E|X −X ′| −
1

n2

n∑
j,k=1

|xj − xk|

}
, (3.2)

where X is a random variable with distribution F0, and X ′ is an independent copy of X.

This expression is useful in both evaluating the test statistic and deriving its asymptotic

distribution. It follows from (3.2) that the original energy statistic is applicable only if

E|xj−X| <∞, and this condition is not necessarily satisfied for arbitrary F0. For example,

when X follows stable distribution with tail index α < 2, E|xj − X| is not finite. The

following theorem [56] generalizes the original energy inequality, based on which a modified

energy statistic can be applied to test goodness-of-fit for stable distributions.

Theorem 3.1.1 If the d-dimensional random variables X and Y are independent, and there

exists 0 < s < 2 such that E‖X‖s + E‖Y ‖s < ∞, and ϕX and ϕY denote their respective

characteristic functions, then

1

C(d, s)

∫
Rd

|ϕX(t)− ϕY (t)|2

‖t‖d+s
dt = 2E‖X − Y ‖s − E‖X −X ′‖s − E‖Y − Y ′‖s ≥ 0, (3.3)

with equality if and only if X
d
=Y . Here

C(d, s) =
2πd/2Γ(1− s/2)

s2sΓ((d+ s)/2)
. (3.4)

For a proof, see [53, 56]. The above theorem applies to multivariate distributions. In this

chapter, only the univariate goodness-of-fit test problem is considered. For simplicity, we
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denote

C(s) = C(1, s) =
2π1/2Γ(1− s/2)

s2sΓ((1 + s)/2)
. (3.5)

In the special case, when s = 1, C(1, 1) = π, we get the original energy statistic (3.2).

As pointed out in Chapter 1, stable distributions with tail index α < 2 do not have

finite variance (second moment), and those with α ≤ 1 do not have finite mean (first mo-

ment). However, some of the non-integer moments and absolute moments exist for stable

distributions, depending on α.

Proposition 3.1.2 If X ∼ S(α, β, γ, δ) and s > 0, then E|X|s <∞ if and only if s < α.

Proof Suppose f(x) = f(x;α, β, γ, δ) is the density function of X. Then

E|X|s =

∫ ∞
0

xsf(x)dx+

∫ 0

−∞
(−x)sf(x)dx =

∫ ∞
0

xsf(x)dx+

∫ ∞
0

xsf(−x)dx.

By (1.20), there exists some constant C, such that f(x)

Cx−(α+1) → 1, as x → ∞. Therefore, for

all 0 < ε < 1, there exists M > 0 such that for all x > M , 1 − ε < f(x)

Cx−(α+1) < 1 + ε. When

0 < s < α,

0 <

∫ ∞
0

xsf(x)dx ≤
∫ M

0

xsf(x)dx+

∫ ∞
M

xs(1 + ε)Cx−(α+1)dx

=

∫ M

0

xsf(x)dx+ (1 + ε)C
M−α+s

α− s
<∞.

Similarly, we can get 0 <
∫∞

0
xsf(−x)dx <∞, and thus E|X|s <∞.
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When s ≥ α,

∫ ∞
0

xsf(x)dx ≥
∫ M

0

xsf(x)dx+

∫ ∞
M

xs(1− ε)Cx−(α+1)dx

=

∫ M

0

xsf(x)dx+ (1− ε)C
∫ ∞
M

xs−α−1dx

≥
∫ M

0

xsf(x)dx+ (1− ε)C
∫ ∞
M

x−1dx

Notice that
∫M

0
xsf(x)dx ≥ 0 and 1

x
is not integrable over the interval (M,∞), hence xsf(x)

is not integrable on (0,∞). By the same argument, xsf(−x) is not integrable on (0,∞),

either. Therefore, E|X|s is not finite.

Let X ′ be an independent copy of x. By Property 1.2.6, X −X ′ is also stable with tail

index α, so E|X −X ′|s <∞, for all 0 < s < α.

3.2 Energy statistic for testing stable distributions

Let x1, . . . , xn be a random sample. Let X and X ′ be independent and identically distributed

with F = S(α, β, γ, δ; 1). Nolan’s S1 parameterization is adopted because the family of stable

distributions is a location-scale family under such parameterization.

The proposed energy goodness-of-fit test statistic is defined as follows:

Qn,s = n

{
2

n

n∑
j=1

E|xj −X|s − E|X −X ′|s −
1

n2

n∑
j,k=1

|xj − xk|s
}
, (3.6)

where s is a test parameter chosen to be less than α. The statistic Qn,s/n is an estimate of

the energy distance Es(X, Y ) ≡ 2E|X − Y |s − E|X −X ′|s − E|Y − Y ′|s. The test statistic

Qn,s is affine invariant (location-scale invariant), and since stable distributions consist of a

location-scale family, the test problem can be simplified by only considering the case when

γ = 1 and δ = 0. Therefore, in the following sections of this chapter, it will be assumed that
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γ = 1 and δ = 0, and the corresponding characteristic function of X is

ϕX(t) =

 exp
(
−|t|α

[
1− iβ(sgnt) tan πα

2

])
α 6= 1,

exp
(
−|t|

[
1 + iβ 2

π
(sgnt) log |t|

])
α = 1.

(3.7)

The statistic Qn,s/n = 1
n2

∑n
i,j=1 h(Xi, Xj) is a V -statistic with kernel of degree two given

by

h(x, y) = E|x−X|s + E|y −X|s − E|X −X ′|s − |x− y|s, (3.8)

where 0 < s < 2. The kernel h(x, y) is degenerate; that is, Eh(x,X) = Eh(X, y) = 0, for

all x and y. By the asymptotic theory of V -statistics [60, 20], if h(x, y) is degenerate and

Eh2(X,X ′) <∞, then Qn,s converges weakly to a weighted sum of independent chi-squared

distributions with one degree of freedom.

Property 3.2.1 If x1, . . . , xn are independent and identically distributed as Y , then

EQn,s = E|Y − Y ′|s + n[2E|Y −X|s − E|X −X ′|s − E|Y − Y ′|s]. (3.9)

Under H0, X and Y are identically distributed, hence EQn,s = E|X −X ′|s.

Proof Notice that in the notation E|xi−X|s, the expected value is taken on the probability

space of X.

EQn,s =n

[
2

n

n∑
j=1

E|Y −X|s − E|X −X ′|s − 1

n

n∑
j 6=k

E|Y − Y ′|s
]

=n

[
2E|Y −X|s − E|X −X ′|s − (n− 1)n

n2
E|Y − Y ′|s

]
=E|Y − Y ′|s + n [2E|Y −X|s − E|X −X ′|s − E|Y − Y ′|s] .
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The expression of the energy statistic as in (3.6) has a simple form, but the expectations

need to be further evaluated for computational purposes. First, a very useful expression

of |x|s is derived. Let Rex and Imx denote the real part and imaginary part of a complex

number x, respectively.

Theorem 3.2.2 When 0 < s < 1,

|x|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

(1− cos tx)t−s−1dt. (3.10)

Proof We first establish following equality for 0 < s < 1:

∫ ∞
0

(1− e−pt)t−s−1dt = psΓ(1− s)s−1. (3.11)

Let −pt = −x, hence t = x
p
. We have

∫ ∞
0

(1− e−pt)t−s−1dt =

∫ ∞
0

(1− e−x)(x/p)−s−1d(x/p)

= ps
∫ ∞

0

(1− e−x)x−s−1dx

= ps
∫ ∞

0

(1− e−x)d
(
x−s

−s

)
=

ps

−s

[
(1− e−x)x−s|∞x=0−

∫ ∞
0

x−se−sdx

]
=
ps

s
Γ(1− s).

The result (1− e−x)x−s|∞x=0= 0 follows from the fact that

lim
x→0

1− e−x

xs
= lim

x→0

e−x

sxs−1
= 0.

The right hand side of equation (3.11) shows that it is a continuous function of p on the

half-plane Rep > 0 and we can use the continuity of the expression on the imaginary axis.
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By letting p = −ix, we can evaluate the real part of (3.11),

Re

∫ ∞
0

(1− e−itx)t−s−1dt =

∫ ∞
0

Re(1− e−itx)t−s−1dt =

∫ ∞
0

(1− cos tx)t−s−1dt. (3.12)

Meanwhile

Re
[
(−ix)sΓ(1− s)s−1

]
= Γ(1− s)s−1Re(−ix)s

=

 Γ(1− s)s−1Re
[
|x|s eiπ2 s

]
if x ≥ 0

Γ(1− s)s−1Re
[
|x|s e−iπ2 s

]
if x < 0

= Γ(1− s)s−1 |x|s cos(πs/2).

Using the facts that Γ(1− z) = π
Γ(z) sin(πz)

and Γ(1 + z) = zΓ(z), we obtain

Γ(1− s)s−1 |x|s cos(πs/2) = |x|s πs

Γ(1 + s) sin(πs)
s−1 cos(πs/2) =

π |x|s

2Γ(1 + s) sin(πs
2

)
. (3.13)

Applying (3.12) together with (3.13), we get

|x|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

(1− cos tx)t−s−1dt.

With this expression of |x|s, we immediately obtain that, if 0 < s < 1 and s < α, then

E|X|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

(1− ReϕX(t))t−s−1dt, (3.14)

where ReϕX(t) is the real part of ϕX(t), the characteristic function of X. Notice this a



33

general result for X with any distribution. By Property (1.2.6), X−X ′ is S(α, 0, 0, 2), hence

E |X −X ′|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

(1− exp(−2tα))t−s−1dt (3.15)

=
2

π
2s/αΓ(1− s/α)Γ(s) sin

πs

2
. (3.16)

The integral (3.15) can be easily computed with integration by parts.

The expectation E|xj −X|s can be computed by definition

E|X − xj|s =

∫ ∞
−∞
|x− xj|sf(x)dx,

only for very few special cases when f(x) has a closed-form expression, while the numerical

approximation of f(x) may be slow and inaccurate due to the fact that it is obtained by

numerical integration. Generally, the following formula is used, instead; from (3.14)

E|xj −X|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

(1− Reϕ(t))t−s−1dt, (3.17)

where ϕj(t) = Eeit(X−xj) = e−itxjϕX(t) is the characteristic function of X − xi.

By (3.7) and (3.14), when α 6= 1,

E|X − xj|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

1− e−tα cos
(
βtα tan πα

2
− xjt

)
ts+1

dt. (3.18)

When α = 1,

E|X − xj|s =
2

π
Γ(1 + s) sin

πs

2

∫ ∞
0

1− e−t cos(β 2
π
t log t+ xjt)

ts+1
dt. (3.19)

In the standard Cauchy case when α = 1 and β = 0,

E|X − xi|s = (1 + x2
i )
s/2 cos(s arctanxi)

cos πs
2

. (3.20)
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However, if xi is too large, which is very common in samples of heavy-tail distributions, the

numerical method for evaluating (3.18) and (3.19) based on quadrature may fail due to the

reason that the integrand oscillates too frequently and therefore requires too many subin-

tervals for interpolating the integrand. One solution is to split (0,∞) into two subintervals

and evaluate the integrals separately:

∫ ∞
0

(1− e−tα cos(ω(t)))t−s−1dt

=

∫ t0

0

(1− e−tα cos(ω(t)))t−s−1dt+

∫ ∞
t0

(1− e−tα cos(ω(t)))t−s−1dt,

where

ω(t) =

 βtα tan πα
2
− xit α 6= 1,

β 2
π
t log t+ xit α = 1.

(3.21)

When t0 is large enough,

∫ ∞
t0

(1− e−tα cos(ω(t)))t−s−1dt ≈
∫ ∞
t0

t−s−1dt =
1

st0
s
,

and the error of this approximation is

∣∣∣∣∫ ∞
t0

e−t
α

cos(ω(t))t−s−1dt

∣∣∣∣ ≤ ∫ ∞
t0

∣∣e−tα cos(ω(t))t−s−1
∣∣ dt < 1

αts+α0 et
α
0
.

In practice, E|xi −X|s can be approximated by

∫ t0

0

(1− e−tα cos(ω(t)))t−s−1dt+
1

st0
s
.

The integral on a finite interval can be numerically computed, and t0 can be determined by

controlling the approximation error of the second part.

Even with the help of the above procedure, the numerical integration of E|xi−X|s may
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converge very slowly or may not reach the given tolerance for xi with extremely large absolute

value, for example, when |xi| ≥ 104. The following theorem enables us to approximate

E|xi −X|s with |xi|s, when |xi|s is extremely large.

Theorem 3.2.3 If E|x−X|s <∞ for all x ∈ R, then as x→∞,

E|x−X|s

|x|s
→ 1. (3.22)

Proof If ϕ(t;x) is the characteristic function of 1−X/x, then

lim
x→∞

E

∣∣∣∣1− X

x

∣∣∣∣s = lim
x→∞

2

π
Γ(1 + s) sin

π

2
s

∫ ∞
0

(1− Reϕ(t;x))t−s−1dt

=
2

π
Γ(1 + s) sin

π

2
s

∫ ∞
0

(1− Re lim
x→∞

ϕ(t;x))t−s−1dt.

Notice that

lim
x→∞

ϕ(t;x) = lim
x→∞

Eeit(1−X/x) = eit lim
x→∞

Eei(−
t
x)X = eit.

Hence,

lim
x→∞

E

∣∣∣∣1− X

x

∣∣∣∣s =
2

π
Γ(1 + s) sin

π

2
s

∫ ∞
0

(1− cos t)t−s−1dt =1

A special case of Theorem 3.2.3 can be easily validated on equation (3.20) for the standard

Cauchy distribution. Notice that Theorem 3.2.3 does not give the speed of convergence,

which actually depends on the distribution of X and the choice of s. In simulations, it was

found that the relative approximation error is less than 10−5 when xi > 2000 for most of the
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situations. In this dissertation, the computational formula for E|xi −X|s is as follows:

E|xi −X|s =


2
π
Γ(1 + s) sin πs

2

∫∞
0

1−e−tα cos(βtα tan πα
2
−xit)

ts+1 dt if x < 2000 and α 6= 1,

2
π
Γ(1 + s) sin πs

2

∫∞
0

1−e−t cos(β 2
π
t log t+xit)

ts+1 dt if x < 2000 and α = 1,

|x|s if x ≥ 2000.

(3.23)

Since the exact value of E|xi − X|s can be obtained for the standard Cauchy case,

the accuracy of the computational formula can be measured, as shown in Figure 3.1. The

absolute error and relative error of calculating E|xi −X|s are plotted against xi, where the

relative error is defined as true value - calculated value
true value

.

To summarize the above topics in this section, a computational formula was derived for

the energy test statistic for testing the simple hypothesis of stability. When α 6= 1,

Qn,s =
4

π
Γ(1 + s) sin

πs

2

n∑
j=1

∫ ∞
0

1− e−tα cos
(
βtα tan πα

2
− xit

)
ts+1

dt (3.24)

− n21+ s
α

π
Γ
(

1− s

α

)
Γ(s) sin

πs

2
− 1

n

n∑
j,k=1

|xj − xk|s.

When α = 1,

Qn,s =
4

π
Γ(1 + s) sin

πs

2

n∑
j=1

∫ ∞
0

1− e−t cos
(
β 2
π
t log t+ xit

)
ts+1

dt (3.25)

− n21+s

π
Γ (1− s) Γ(s) sin

πs

2
− 1

n

n∑
j,k=1

|xj − xk|s.

3.3 Limiting distribution of Qn,s under H0

The implications of obtaining the asymptotic distribution of the test statistic are twofold.

Theoretically, it is important to know that the test statistic converges weakly to some non-

degenerate distribution before studying the consistency of the test. Computationally, as the
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Figure 3.1: Accuracy of the computational formula (3.23) for E|x − X|s in the case X is
standard Cauchy.
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number of observations in the test sample increases, the computational cost of simulating

the finite-sample distribution of the test statistic will increase dramatically, which may not

be acceptable when making real-time decisions, or doing large scale simulations. Therefore,

Monte Carlo methods can be adopted for relatively small sample size, and switch to using

asymptotic critical values when the sample size is large, provided that the Type I error is

controlled.

It has been shown that the statistic Qn,s/n (3.6) is a V -statistic with kernel of degree two

and first order degeneracy. With known results in the theory of U -statistics and V -statistics

[20, 60], one can obtain the asymptotic distribution of Qn,s and consequently, approximate

the critical values for hypothesis testing.

Definition 3.3.1 Let h(x1, . . . , xm) be a real-valued symmetric measurable kernel, and X1,

. . . , Xn, where n ≥ m, be independent and identically distributed with distribution function

F . A V -statistic is defined as

Vnm =
1

nm

n∑
i1=1

· · ·
n∑

im=1

h(Xi1 , . . . , Xim). (3.26)

The asymptotic distribution of a V -statistic depends on its kernel and the distribution

function F , which are summarized and rewritten as follows. The original statement of the

theorem and the proof can be found in [50, p.225]. The kernel considered here is symmetric

with degree two.

For the kernel h(x1, x2), an operator A is defined on L2(R, F ) by

Ag(x) =

∫ ∞
−∞

h(x, y)g(y)dF (y), x ∈ R, g ∈ L2,

and the associated eigenvalues {λi} are the real numbers satisfying the equation

Agi(x) = λigi(x), (3.27)
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where the corresponding gi ∈ L2 are called eigenfunctions. The following theorem charac-

terizes the connection between the asymptotic distribution of Vn and its kernel through the

eigenvalues of the kernel. Denote h1(x1) = Eh(x1, X2).

Theorem 3.3.2 [50, p.225] Let {Xi} be independent and identically distributed as F , and

h(x, y) a kernel function for which

1. h(x, y) = h(y, x);

2. V arFh1(X1) = 0, and V arFh(X1, X2) > 0;

3. EFh
2(X1, X2) <∞ and EF |h(X1, X1)| <∞;

4. EFh(x,X1) is a constant in x.

Put µ(F ) = EFh(X1, X2). If Vn is a V -statistic with kernel h̃(x, y) = h(x, y)− µ(F ), then

nVn
d→
∞∑
k=1

λkχ
2
1k, (3.28)

where χ2
1k(k = 1, 2, . . . ) are independent chi-square random variables with one degree of

freedom, and λk’s are the eigenvalues of the operator A defined on L2(R, F ) by

Ag(x) =

∫ ∞
−∞

[h(x, y;F )− µ(F )]g(y)dF (y), (3.29)

for x ∈ R and g ∈ L2(R,F ).

As an application of the above theorem, the asymptotic distribution of energy statistic Qn,s

is obtained.

Theorem 3.3.3 If s < α
2

, then under H0, Qn,s converges weakly to a weighted sum of iid

chi-squared random variables with one degree of freedom; that is,

Qn,s
d→
∞∑
k=1

λkχ
2
1k, (3.30)
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where λ1 ≥ λ2 ≥ · · · > 0 are solutions to the eigenvalue problem (3.27).

Proof Since s < α
2
, by Proposition 3.1.2, the kernel h(x, y) = E|x−X|s+E|y−X|s−E|X−

X ′|s− |x− y|s exists for all real-valued x and y. Under H0, X1 and X2 are independent and

identical copies of X, hence E[h(X1, X2)] = 2E|X1−X|s−E|X1−X2|s−E|X −X ′|s = 0;.

Therefore, we just need to check that the conditions in Theorem 3.3.2 are satisfied for the

kernel h(x, y). The kernel h(x, y) has following properties under H0, which are easy to check:

1. It is obvious that h(x, y) = h(y, x);

2. h1(x1) = Eh(x1, X2) ≡ 0, hence V ar(h1(X1)) = 0; V ar(h(X1, X2)) = V ar(|X1 −

X2|s) > 0;

3. E{h(X1, X1)} = E|X1 −X|s <∞;

4. When s < α
2
, Eh2(X1, X2) = V ar[h(X1, X2)] = V ar(|X1 − X2|s) = E|X1 − X2|2s −

(E|X1 −X2|s)2 <∞ by Proposition 3.1.2.

To obtain the critical values of Qn,s, the distribution of
∑∞

k=1 λkχ
2
1k, an infinite sum,

is approximated with
∑N

k=1 λ̃kχ
2
1k, a finite sum, by first numerically solving the eigenvalue

problem (3.27). Let x = u/(1− u2) and y = v/(1− v2), so that the equation(3.27) becomes

∫ 1

−1

h(x, y)f(y)g(y)
1 + v2

(1− v2)2
dv = λg(x),

where f(y) is the density function of the null distribution. The discretized version of the

problem is

N∑
j=1

h(xi, xj)f(xj)g(xj)
1 + v2

j

(1− v2
j )

2
wj = λ̃g(xi).

Here v1, . . . , vN are equally spaced points on interval [−1, 1], and xi = vi/(1 − v2
i ). The

wj’s are corresponding coefficients of certain quadrature method. This type of treatment for
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integral equation is called Nyström method [51]. Since both endpoints −1 and 1 are singular

points, midpoint quadrature rule can be used.

Note that when the null hypothesis is true, EQn,s = E|X − X ′|s =
∑∞

k=1 λi, thus one

can check the convergence of the approximation by comparing E|X −X ′|s and
∑N

k=1 λ̃kχ
2
1k.

After the approximate eigenvalues are obtained, one can find the approximate p-value by

Imhof’s method [21]. The R [43] package CompQuadForm [11] provides implementation

of this method.

3.4 Consistency of the energy test for simple hypothe-

ses

For a goodness-of-fit test of fitting a stable distribution model, consistency should be one of

the desirable properties. It is desired that the goodness-of-fit test can eventually reject all

alternative hypotheses as more data are collected to increase the power of the goodness-of-

test, which is the case when the test is consistent.

Theorem 3.4.1 Let F0 = S(α, β, γ, δ), and let qn,ξ = inf{x : P (Qn,s > x) ≤ ξ} under

H0 : F = F0, for fixed 0 < ξ < 1. The energy test for simple hypothesis of stability is

consistent for all alternatives such that E|X|s <∞ for some s > 0; that is, as n→∞,

PF (Qn,s > qn,ξ)→ 1. (3.31)

Proof Since Qn,s is continuous, the condition qn,ξ = inf{x : P (Qn,s > x) ≤ ξ} is equivalent

to P (Qn,s > qn,ξ) = ξ. First, we need to show that for fixed α and s, the set {qn,ξ} is
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bounded. Notice that under H0,

E(Qn,s) =E

{
2

n∑
j=1

E|Xj −X|s − nE|X −X ′|s −
1

n

n∑
j=1

n∑
k=1

|Xj −Xk|s
}

=2nE|X −X ′|s − nE|X −X ′|s − n2 − n
n

E|X −X ′|s

=E|X −X ′|s <∞.

Because Qn,s ≥ 0 for all values of x1, . . . , xn,

E(Qn,s) =

∫ ∞
0

P (Qn,s > x)dx >

∫ qn,ξ

0

P (Qn,s > x)dx

>

∫ qn,ξ

0

P (Qn,s > qn,ξ)dx = ξqn,ξ,

therefore,

qn,ξ <
E|X −X ′|s

ξ
, for all n.

On the other hand, let f̂(t) and ĝ(t) be the characteristic functions of the alternative

distribution and null distribution, respectively. If f̂n(t) is the empirical characteristic function

of a random sample X1, . . . , Xn, then f̂n(t) converges to f̂(t) almost surely.

Suppose the alternative distribution from which X1, . . . , Xn are sampled is different from

the null distribution. Then there exists at least one t0 such that f̂(t0) 6= ĝ(t0). Obviously,

t0 6= 0. Because characteristic functions are uniformly continuous, we can find a neighbor-

hood (a, b)of t0, such that t0 ∈ (a, b), 0 /∈ (a, b) and for all t ∈ (a, b), f̂(t) 6= ĝ(t).

Because

|f̂n(t)− ĝ(t)|2

|t|s+1
≤ (|f̂n(t)|+ |ĝ(t)|)2

|t|s+1
≤ 4

|t|s+1
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and

∫ b

a

4

|t|s+1
dt =


4
s
(a−s − b−s) if a > 0

4
s
((−b)−s − (−a)−s) if b < 0

 <∞,

by The Dominated Convergence Theorem, we have,

lim
n→∞

Qn,s

n
= lim inf

n→∞

1

C(s)

∫ ∞
−∞

|f̂n(t)− ĝ(t)|2

|t|s+1
dt

≥ lim inf
n→∞

1

C(s)

∫ b

a

|f̂n(t)− ĝ(t)|2

|t|s+1
dt

=
1

C(s)

∫ b

a

| lim infn→∞ f̂n(t)− ĝ(t)|2

|t|s+1
dt,

where

C(s) =
2π

1
2 Γ(1− s

2
)

s2sΓ(1+s
2

)
.

Because f̂n(t) converges to f̂(t) almost surely, we have, almost surely,

lim
n→∞

Qn,s

n
≥ 1

C(s)

∫ b

a

|f̂(t)− ĝ(t)|2

|t|s+1
dt > 0.

Therefore, PF (Qn,s > qn,ξ) > PF (Qn,s >
E|X−X′|s

ξ
)→ 1, as n→∞.

3.5 Implementation of energy test

To the author’s knowledge, there are no existing general methods for deriving the exact

distribution of the finite-sample test statistic Qn,s. This situation is similar to other EDF-

based or ECF-based goodness-of-fit tests reviewed in Chapter 2. Usually, tables of critical

values are provided based on simulation. However, with the advance of modern computer

technology, fast computation enables us to take advantage of bootstrap methods to simulate

the distribution of the test statistic on the fly. Compared with using a table of critical values,
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bootstrap methods are not restricted by the parameters of the test, such as the sample size

n and exponent s for energy test. More importantly, simulation methods can provide a

good approximation to the p-value, which is not feasible using tables of critical values. The

computational cost of bootstrap methods are acceptable when the sample size is relatively

small. On the other hand, when the sample size becomes relatively large, it is questionable

to what extent the effort of creating an accurate table of critical values will be compensated

by the advantage of an exact level test. If it can be shown that the achieved Type I error rate

is close to the nominal significance level, then it is reasonable to use the results in Section

3.3 to either create a table of critical values or compute the approximate p-value directly.

Therefore, we propose to adopt two different schemes to implement the energy test.

For small samples (n < 100), the test is implemented by parametric bootstrap. For large

samples (n > 300), the test is implemented by numerical approximation to the asymptotic

distributions. For sample sizes between 100 and 300, the choice of method may depend on

the trade-off between the computational resources, the control of Type I error and other

advantages of each scheme.

An energy test for stable distributions can be implemented with parametric bootstrap as

follows:

1. For the test sample x1, . . . , xn, fix s < α
2
, and calculate the test statistic Qn,s;

2. Generate m replications of random samples of size n from S(α, β; 1), denoted as

{xi1, . . . , xin}, for i = 1, . . . ,m;

3. Compute the test statistic Q
(i)
n,s for each sample;

4. The empirical p-value is calculated as the proportion of Q
(i)
n,s which are greater than

Qn,s.

An energy test by the asymptotic distribution method can be implemented as follows:

1. For the test sample x1, . . . , xn, fix s < α
2
, and calculate the test statistic Qn,s;
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2. Approximate the eigenvalues of the kernel function h(x, y) by Nyström’s method (see

page 48);

3. Apply Imhof’s method [21] to get the approximate p-value.

In each simulation, the number of rejections (the empirical/approximate p-value is less

than the nominal significance level ξ) were counted. It should be expected that the proportion

of rejections are very close to the nominal level ξ, if the random sample in each replication

is generated from the null distribution.
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CHAPTER 4

SIMULATION STUDY

In this chapter, results of extensive simulation studies are reported to investigate the em-

pirical type I error and power of the energy test. Two examples will be discussed: Cauchy

and symmetric stable distribution S(1.5, 0). All the simulation studies are implemented in R

environment [43]. It is noted that numbers in tables of empirical Type I error and empirical

power are percentages.

4.1 Test of Cauchy distribution

In this section, the simulation study results of the energy test are presented when the null dis-

tribution is the standard Cauchy distribution. Let X1, . . . , Xn be independent and identically

distributed random variables, and x1, . . . , xn be a sample of observations correspondingly.

Without loss of generality, one can consider testing standard Cauchy distribution. Then the

energy goodness-of-fit test statistic (3.6) for the standard Cauchy distribution is

Qn,s = 2
n∑
j=1

(1 + x2
j)
s/2 cos(s arctanxj)

cos πs
2

− n2s

cos πs
2

− 1

n

n∑
j,k=1

|xj − xk|s. (4.1)
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The test statistic Qn,s/n = Vn is a V -statistic whose kernel is

h(x1, x2) =E|x1 −X|s + E|x2 −X|s − E|X −X ′|s − |x1 − x2|s

=
(1 + x2

1)s/2 cos(s arctanx1)

cos πs
2

+
(1 + x2

2)s/2 cos(s arctanx2)

cos πs
2

− 2s

cos πs
2

− |x1 − x2|s.

The asymptotic distribution of Qn,s then can be described as follows,

Qn,s
d→
∞∑
j=1

λjχ
2
1j,

where {λj} are eigenvalues of the operator A,

Ag(x) =

∫ ∞
−∞

h(x, y)g(y)f(y)dy,

and f(y) = 1/(π(1 + y2)) is the density function of standard Cauchy distribution. The

eigenvalue problem

∫ ∞
−∞

h(x, y)g(y)f(y)dy = λg(x),

by transformation y = u/(1− u2), can be rewritten as

∫ 1

−1

h(x, y)f(y)g(y)
1 + u2

(1− u2)2
du = λg(x).

By numerically approximating the integral, we get an equation in g(x)

q∑
j=1

h(x, yj)f(yj)g(yj)
1 + u2

j

(1− u2
j)

2
ωj = λ̃g(x),

where yj = uj/(1 − u2
j), and u1, . . . , uq are so-called collocation points on interval [−1, 1].

ω1, . . . , ωq are the weights of specific quadrature rule. The equation, when evaluating at
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Table 4.1: Asymptotic critical values for testing standard Cauchy, at significance level ξ =
0.10. N denotes the number of collocation points used in Nyström’s method, and s denotes
the exponent in energy statistic 3.6.

s N = 500 N = 1000 N = 2000
0.1 1.263888 1.253216 1.247987
0.2 1.526356 1.521186 1.518994
0.3 1.853511 1.851547 1.851242
0.4 2.275369 2.277855 2.280661
0.5 2.841562 2.853597 2.863627

x = y1, . . . , yq, can be approximated by the linear equation system

q∑
j=1

h(yi, yj)f(yj)g(yj)
1 + u2

j

(1− u2
j)

2
ωj = λ̃g(yi), for i = 1, . . . , q.

Since we are only interested in the eigenvalue λ̃, rather than the unknown function g, the

problem is reduced to finding the eigenvalues of matrix Ã = (ãij), where

ãij = h(yi, yj)f(yj)
1 + u2

j

(1− u2
j)

2
ωj.

This method of solving integral equations is a type of Nyström’s method [51]. Since both

−1 and 1 are integrable singular points, midpoint rule will be used to determine uj’s and

the weights ωj’s. The critical values for significance level ξ = 0.10 are shown in Table 4.1.

More collocation points are recommended when making a table of critical values, where

high accuracy is preferred. Less points may be used when lower accuracy is required for

approximating critical values and fast decisions need to be made. In the table, we used N =

500, 1000, and 2000 collocation points in Nyström’s method to approximate the asymptotic

distribution of the energy statistic under the null hypothesis.

4.1.1 Alternative distributions

Various alternatives to the standard Cauchy distribution are considered, including those

that are often proposed to model financial asset returns. They are all standard with location
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parameter 0 and scale parameter 1.

Mixtures We consider the mixtures of normal and Cauchy distributions in the form pN(0, 1)+

(1 − p)C(0, 1), for p ∈ {0.1, 0.3, 0.7, 0.9}. In a table of empirical power, for example,

N10C90 is used to denote when p = 0.10.

Student’s t The standard Student’s t distribution density function with n degrees of free-

dom is given by

f(x;n) =
n−

1
2

B(n
2
, 1

2
)

(
1 +

x2

n

)−n+1
2

. (4.2)

where B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx is the beta function. We consider Student’s t

distribution with degree of freedom n ∈ {2, 3, 4, 5, 6, 7, 10}.

Stable We consider standard symmetric stable distributions under S1 parameterization,

with varying values of α.

Laplace The Laplace distribution is a symmetric continuous probability distribution with

exponential tails. The density function of standard Laplace distribution is given by

f(x) =
1

2
e−|x|. (4.3)

Gumbel The Gumbel distribution is used in extreme value theory to predict the chance of

rare events. We consider the standard Gumbel distribution, whose density function is

given by

f(x) = e−xe−e
−x
, x > 0. (4.4)
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4.1.2 Other goodness-of-fit tests for the standard Cauchy distri-

bution used for comparison

The simulation study results of three other tests, including the Kolmogorov-Smirnov (K-S)

test, the Anderson-Darling (A-D) test and the Gürtler-Henze (G-H) test, are reported and

their performances are compared with energy test. Let x1, . . . , xn be a random sample of

size n to be tested for standard Cauchy distribution, and x(1), . . . , x(n) be the order statistic

of the sample. Let u(i) = 1
π

arctan(x(i)) + 1
2

be the sample transformed with the cumulative

distribution function of standard Cauchy distribution.

In the simulation study, the Kolmogorov-Smirnov test statistic is computed as

Dn = max
1≤j≤n

max

{
j

n
− u(j), u(j) −

j − 1

n

}
.

An exact p-value is computed if the sample size is less than 100, as described in [31]. Other-

wise, the asymptotic distribution is used to compute the p-value. The asymptotic distribution

function of K-S statistic Dn under null hypothesis [31] is

lim
n→∞

Pr(
√
nDn ≤ x) = 1− 2

∞∑
j=1

(−1)j−1e−2j2x2 =

√
2π

x

∞∑
j=1

e−(2j−1)2π2/(8x2).

The K-S tests are implemented using the ks.test function in the stats [43] package in R.

The Anderson-Darling test statistic is computed as

An = −n− 1

n

[
n∑
j=1

(2j − 1)(log u(j) + log(1− u(n−j+1)))

]
.

The p-values of the A-D test are obtained based on asymptotic distribution of the test

statistic. As with the energy statistic, the A-D test statistic converges weakly to a weighted

sum of independent squared standard normal random variables. More efficient methods were

developed for computing the tail probability of its asymptotic distribution [30]. Marsaglia’s
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method [30] is adopted in the simulation study to compute the p-value of the A-D test, and

implemented using the ad.test function in the ADGofTest [4] package in R.

The Gürtler-Henze test statistic is computed as

Dn,κ =
2

n

n∑
j,k=1

κ

κ2 + (xj − xk)2
− 4

n∑
j=1

1 + κ

(1 + κ)2 + x2
j

+
2n

2 + κ
.

In testing the simple hypothesis of the standard Cauchy distribution, we use κ = 5 in the

G-H test, because it was found in [19, 33] that the test had the best overall performance

when κ = 5 . The critical values for significance level ξ = 0.10 were generated by simulation

with 105 replications, and are provided in Table 4.2.

Table 4.2: Critical values for the Gürtler-Henze test generated by simulation with 105 repli-
cations, significance level ξ = 0.10, κ = 5.

20 50 100 200

κ = 5 0.212449 0.211303 0.209615 0.210239

4.1.3 Results of implementation with asymptotic critical values

Simulation studies are carried out to evaluate the performance of the energy goodness-of-fit

test. For each combination of the alternative distribution, sample size n and exponent s,

105 replicates of the test statistic are generated, and compared with the asymptotic critical

value calculated by Nyström’s method with 2000 collocation point (see Table 4.1, significance

level ξ = 0.10). The percentages of rejections are reported as the empirical power of the test

against corresponding alternative distribution in Table 4.3 to Table 4.7.

We can see that for most values of s, the actual type I error rate is very close to the

nominal significance level (ξ = 0.10) when the sample size is > 50. Surprisingly, the actual

type I error rate is also well controlled when s is small, even when the sample size is as

small as 20. However, when s gets larger, the test is no longer consistent with the nominal

level, though the error rate is very close to the nominal level. The special case here is when
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s = α
2

= 1
2
, the condition for convergence to asymptotic distribution is not satisfied, and

Nyström’s method may fail to produce the correct asymptotic distribution. Therefore, s = α
2

is not recommended when choosing exponent in energy statistic.

Table 4.4: Empirical power of testing standard Cauchy. Energy tests use asymptotic critical
values. n = 20.

Alternative s = 0.1 a s = 0.2 s = 0.3 s = 0.4 s = 0.5 G-H A-D K-S

Cauchy 11 11 13 13 13 10 10 10
N10C90 9 10 10 10 11 8 9 9
N30C70 8 9 9 8 8 6 8 9
N50C50 12 12 11 10 8 8 8 9
N70C30 19 19 18 15 12 18 9 11
N90C10 33 33 30 27 21 38 13 11
normal 42 43 41 36 28 57 16 12

t(2) 10 10 9 7 5 9 8 9
t(3) 16 16 14 12 9 16 8 10
t(4) 21 20 18 15 11 23 10 10
t(5) 23 24 22 18 13 27 11 11
t(6) 26 26 25 21 15 33 11 11
t(7) 28 28 27 23 17 34 12 11
t(10) 31 31 29 26 20 40 14 11

stable(0.5,0) 76 81 84 86 88 68 54 20
stable(0.8,0) 22 26 30 34 34 23 17 11
stable(1.2,0) 8 8 7 7 6 6 8 9
stable(1.5,0) 10 9 8 6 5 7 8 10
stable(1.8,0) 13 13 11 9 6 11 8 10

Laplace 21 20 19 16 12 21 10 12
Gumbel 45 47 46 44 38 66 48 43

as = 0.1 through s = 0.5 are energy tests with corresponding exponent s.

4.1.4 Results of implementation with parametric bootstrap

Empirical p-values are calculated as described in Section 3.5, for each simulated sample

of size n from the alternative distribution, with 200 replicates of random sample of size

n generated from the standard Cauchy distribution. This process is repeated 5000 times

for each combination of exponent s and sample size n. The percentage of times when the

empirical p-value is less than the significance level ξ = 0.10 is called the percentage of
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Table 4.5: Empirical power of testing standard Cauchy. Energy tests use asymptotic critical
values. n = 50.

Alternative s = 0.1 a s = 0.2 s = 0.3 s = 0.4 s = 0.5 G-H A-D K-S

Cauchy 10 10 10 12 12 10 10 10
N10C90 9 9 10 10 11 9 9 10
N30C70 16 15 15 15 14 16 10 11
N50C50 32 35 34 32 29 39 18 14
N70C30 65 66 67 66 63 77 37 21
N90C10 94 96 96 96 96 99 74 37
normal 100 100 100 100 100 100 93 48

t(2) 30 32 33 32 28 47 17 12
t(3) 58 62 65 65 63 85 33 18
t(4) 74 79 82 83 82 96 46 21
t(5) 84 88 90 91 90 99 57 25
t(6) 89 92 94 94 95 100 63 28
t(7) 92 95 96 97 97 100 68 30
t(10) 96 98 99 99 99 100 77 34

stable(0.5,0) 97 98 99 99 99 93 84 35
stable(0.8,0) 28 33 39 43 46 32 19 12
stable(1.2,0) 10 10 10 8 8 10 9 10
stable(1.5,0) 23 24 23 22 19 33 12 10
stable(1.8,0) 47 50 51 51 48 72 17 11

Laplace 70 75 77 78 76 94 46 24
Gumbel 100 100 100 100 100 100 99 98

as = 0.1 through s = 0.5 are energy tests with corresponding exponent s.
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Table 4.6: Empirical power of testing standard Cauchy. Energy tests use asymptotic critical
values. n = 100.

Alternative s = 0.1 a s = 0.2 s = 0.3 s = 0.4 s = 0.5 G-H A-D K-S

Cauchy 9 11 11 11 12 10 10 9
N10C90 10 11 11 11 11 10 9 9
N30C70 27 28 28 28 27 31 17 13
N50C50 67 68 71 71 68 76 43 24
N70C30 97 97 98 98 98 99 85 54
N90C10 100 100 100 100 100 100 100 92
normal 100 100 100 100 100 100 100 99

t(2) 68 73 76 78 78 89 44 19
t(3) 96 98 99 99 99 100 85 37
t(4) 100 100 100 100 100 100 97 55
t(5) 100 100 100 100 100 100 99 67
t(6) 100 100 100 100 100 100 100 75
t(7) 100 100 100 100 100 100 100 82
t(10) 100 100 100 100 100 100 100 90

stable(0.5,0) 100 100 100 100 100 99 99 62
stable(0.8,0) 40 47 53 57 61 44 26 12
stable(1.2,0) 14 16 15 14 14 19 11 9
stable(1.5,0) 55 60 63 65 65 74 24 11
stable(1.8,0) 95 97 98 99 99 100 55 14

Laplace 99 100 100 100 100 100 95 50
Gumbel 100 100 100 100 100 100 100 100

as = 0.1 through s = 0.5 are energy tests with corresponding exponent s.
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Table 4.7: Empirical power of testing standard Cauchy. Energy tests use asymptotic critical
values. n = 200.

Alternative s = 0.1 a s = 0.2 s = 0.3 s = 0.4 s = 0.5 G-H A-D K-S

Cauchy 10 10 10 10 12 11 10 9
N10C90 13 13 13 13 13 14 11 10
N30C70 52 55 55 56 54 61 33 21
N50C50 96 97 97 97 96 98 84 59
N70C30 100 100 100 100 100 100 100 97
N90C10 100 100 100 100 100 100 100 100
normal 100 100 100 100 100 100 100 100

t(2) 98 99 99 100 100 100 91 46
t(3) 100 100 100 100 100 100 100 90
t(4) 100 100 100 100 100 100 100 99
t(5) 100 100 100 100 100 100 100 100
t(6) 100 100 100 100 100 100 100 100
t(7) 100 100 100 100 100 100 100 100
t(10) 100 100 100 100 100 100 100 100

stable(0.5,0) 100 100 100 100 100 100 100 95
stable(0.8,0) 61 68 73 77 81 67 38 15
stable(1.2,0) 27 30 31 32 32 40 15 10
stable(1.5,0) 94 97 97 98 99 99 67 21
stable(1.8,0) 100 100 100 100 100 100 100 66

Laplace 100 100 100 100 100 100 100 96
Gumbel 100 100 100 100 100 100 100 100

as = 0.1 through s = 0.5 are energy tests with corresponding exponent s.
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rejections, or empirical power if the alternative distribution is other than standard Cauchy.

The small bootstrap sample was used because of the huge computation time required for

parametric bootstrap. In the mean time, since the empirical p-value is actually an unbiased

estimator of the true p-value, using a large number of simulation replicates, the empirical

power can give a satisfactory estimate of actual test power. In general, when only one test

decision is required, a large bootstrap sample should be used. The standard error of the

empirical power obtained by 5000 replications is
√

p(1−p)
5000

≤ 0.5√
5000

= 0.0071, where p is the

probability that a random test sample generated from alternative distribution is rejected

by energy test implemented with 200-replicate bootstrap. Therefore, the empirical results

are only accurate up to two decimal places, and it is reasonable to display the results as

percentages.

From the tables of empirical power, it is apparent that the power of energy test increases

very fast as the sample size increases. The null distribution, standard Cauchy, can be

regarded as a special case of normal-Cauchy mixture defined on page 49 when p = 1, or a

special case of Student’s t distribution of one degree of freedom, or a special case of stable

distribution with α = 1 and β = 0. The results show a distinct trend that the test power

increases as the alternative distribution becomes “more” different from the null distribution.

It is noted that for testing the standard Cauchy distribution, the energy test and the

Gürtler-Henze test are generally much more powerful than traditional goodness-of-fit tests

such as the Kolmogorov-Smirnov test or the Anderson-Darling test, regardless of the sample

size and the alternative distribution. The power of the energy test and the Gürtler-Henze

test are comparable for most alternatives. While the Gürtler-Henze test is more powerful

in detecting alternatives with lighter tails such as Student’s t and stable distributions with

α > 1, the energy test is more sensitive in identifying alternatives with heavier tails such as

stable distributions with α < 1.
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Table 4.8: Empirical power of energy test for the standard Cauchy distribution, implemented
with bootstrap, n = 20.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4

Cauchy 10 10 10 10
stable(0.5,0) 76 81 83 84
stable(0.8,0) 22 25 27 28
stable(1.2,0) 9 7 6 5
stable(1.5,0) 9 8 7 5
stable(1.8,0) 13 13 9 6
stable(2.0,0) 15 15 12 8

normal 42 38 34 27
t(2) 10 9 7 5
t(3) 16 14 11 9
t(4) 21 17 15 12
t(5) 24 23 18 14

Laplace 21 19 16 12
Gumbel 46 45 43 37

Table 4.9: Empirical power of energy test for the standard Cauchy distribution, implemented
with bootstrap, n = 50.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4

Cauchy 10 9 10 10
stable(0.5,0) 97 98 98 99
stable(0.8,0) 29 32 36 40
stable(1.2,0) 11 10 9 8
stable(1.5,0) 24 25 22 19
stable(1.8,0) 47 50 50 46
stable(2.0,0) 67 71 72 70

normal 100 100 100 100
t(2) 31 31 30 28
t(3) 57 61 61 59
t(4) 75 77 78 77
t(5) 85 87 89 89

Laplace 71 73 74 73
Gumbel 100 100 100 100
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Table 4.10: Empirical power of energy test for the standard Cauchy distribution, imple-
mented with bootstrap, n = 100.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4

Cauchy 10 11 10 10
stable(0.5,0) 100 100 100 100
stable(0.8,0) 40 45 50 53
stable(1.2,0) 16 16 16 13
stable(1.5,0) 57 60 62 61
stable(1.8,0) 95 97 98 98
stable(2.0,0) 100 100 100 100

normal 100 100 100 100
t(2) 66 72 74 76
t(3) 97 98 99 99
t(4) 100 100 100 100
t(5) 100 100 100 100

Laplace 99 100 100 100
Gumbel 100 100 100 100

Table 4.11: Empirical power of energy test for the standard Cauchy distribution, imple-
mented with bootstrap, n = 200.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4

Cauchy 10 10 10 9
stable(0.5,0) 100 100 100 100
stable(0.8,0) 62 67 73 76
stable(1.2,0) 28 30 32 31
stable(1.5,0) 95 97 98 98
stable(1.8,0) 100 100 100 100
stable(2.0,0) 100 100 100 100

normal 100 100 100 100
t(2) 98 99 99 100
t(3) 100 100 100 100
t(4) 100 100 100 100
t(5) 100 100 100 100

Laplace 100 100 100 100
Gumbel 100 100 100 100
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Figure 4.1: Empirical power of testing standard Cauchy against S(α, 0) with varying tail
index α, implemented with bootstrap.
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Figure 4.2: Empirical power of testing standard Cauchy against S(1, β) with varying skew-
ness parameter β, implemented with bootstrap.
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Figure 4.3: Empirical power of testing standard Cauchy against S(1, β) with varying tail
index α and skewness parameter β simultaneously, implemented with bootstrap.
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4.2 Test of Symmetric stable distribution S(1.5, 0)

The test statistic (3.6) when the null hypothesis is symmetric stable distribution has the

following form:

Qn,s = 2
n∑
j=1

∫ ∞
0

1− e−tα cos(xjt)

t1+s
dt− n

π
2
s+α
α Γ(1− s

α
)Γ(s) sin

π

2
s− 1

n

n∑
j=1

n∑
k=1

|xj − xk|s.

4.2.1 Results of implementation with asymptotic critical values

In this section, we will show the simulation results of the energy test implemented with

asymptotic critical values. With the same scheme as in the Cauchy case, we obtained the

asymptotic critical values for significance level ξ = 0.10 and different values of s, as illustrated

by Table 4.12. In the table, N is the number of collocation points in Nyström’s method.

Table 4.12: Asymptotic critical values of energy test for testing S(1.5,0), significance level
ξ = 0.10. N denotes the number of collocation points, and s denotes the exponent in energy
statistic.

s N=100 N=500 N=1000 N=2000

0.1 1.288338 1.212503 1.202177 1.197269
0.2 1.435955 1.392295 1.387822 1.386023
0.3 1.620209 1.591604 1.589238 1.588731
0.4 1.837044 1.815455 1.814061 1.814344
0.5 2.091995 2.073112 2.072245 2.073322
0.6 2.395514 2.376382 2.375914 2.378132
0.7 2.762651 2.740838 2.740881 2.744964

We used N = 100, 500, 1000 and 2000 collocation points, respectively, in Nyström’s

method of computing eigenvalues of the kernel function. For each critical value, a simulation

study was carried out to investigate the type I error rate with 104 replications. The standard

error of each Type I error reported is
√

p(1−p)
104

< 0.5
102

= 0.005, where p is the probability that

the null hypothesis is rejected in each replication.

Results are shown in Tables 4.13 to 4.16. One can see that when asymptotic critical values

calculated with 2000-point Nyström’s method are used, the type I error is well controlled for
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small and medium-sized value of s, even when the sample size is very small. However, it is

not recommended to use combination of large values of s with small sample sizes.

Table 4.13: Type I error of energy test for S(1.5, 0) using asymptotic critical values with 100
collocation points.

s\n 20 50 100 200

0.1 4 7 10 11
0.2 4 9 10 11
0.3 4 9 11 10
0.4 4 9 11 11
0.5 8 9 10 11
0.6 7 10 10 10
0.7 8 10 12 10

Table 4.14: Type I error of energy test for S(1.5, 0) using asymptotic critical values with 500
collocation points.

s\n 20 50 100 200

0.1 8 8 8 8
0.2 10 10 9 10
0.3 10 10 10 10
0.4 11 10 10 10
0.5 11 11 10 10
0.6 12 11 11 11
0.7 12 12 11 11

A simulation study was implemented for the empirical power (percentage of rejections) of

the energy test of stable distributions against a collection of alternative distributions, using

the asymptotic critical value obtained with 2000 collocation point. The simulation results

were summarized in Table 4.17 to Table 4.20. Figure 4.4 to Figure 4.11 better illustrate

the comparison between the performance of the energy test, the Anderson-Darling (A-D)

test and the Matsui-Takemura (M-T) test. Figure 4.4 to Figure 4.7 illustrated the empirical

power of energy test for null distribution S(1.5, 0) against alternatives S(α, 0) with varying

tail index α, implemented with asymptotic critical values. Figure 4.8 to Figure 4.11 also

illustrated the better performance of the energy test and the M-T test when the alternatives
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Table 4.15: Type I error of energy test for S(1.5, 0) using asymptotic critical values with
1000 collocation points.

s\n 20 50 100 200

0.1 9 9 9 9
0.2 10 10 10 9
0.3 10 11 10 10
0.4 11 10 10 10
0.5 11 10 11 10
0.6 12 11 10 10
0.7 11 11 10 11

Table 4.16: Type I error of energy test for S(1.5, 0) using asymptotic critical values with
2000 collocation points.

s\n 20 50 100 200 1000

0.1 10 9 10 10 10
0.2 10 10 10 10 10
0.3 10 10 10 10 10
0.4 10 10 10 10 10
0.5 11 11 11 10 10
0.6 12 11 10 10 10
0.7 12 11 10 11 10
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were Student’s t distribution with different degrees of freedom. It was shown that for all

sample sizes studied, the two tests based on empirical characteristic functions, the energy

test and the M-T test, outperformed the Anderson-Darling test. Similar to what was found

in testing the standard Cauchy distribution, the power of the energy test and the M-T test

are comparable for most alternatives. While the M-T test is more powerful in detecting

alternatives with lighter tails, the energy test is more sensitive in identifying alternatives

with heavier tails such as stable distributions with small tail index α.

Future simulation study need to be done to find the optimal value of s. Based on current

simulation results, it is recommended to choose s to be about α/3.

Table 4.17: Empirical power of energy test for S(1.5, 0), sample size n = 20, implemented
with asymptotic critical values.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7

Cauchy 30 34 38 43 45 49 51
stable(1.1,0) 22 26 28 32 35 38 39
stable(1.2,0) 17 18 21 23 25 27 29
stable(1.3,0) 13 15 15 16 19 20 22
stable(1.4,0) 11 12 12 13 14 15 16
stable(1.5,0) 10 10 10 10 12 11 11
stable(1.6,0) 8 9 9 9 9 10 10
stable(1.7,0) 9 9 9 8 9 9 8
stable(1.8,0) 9 9 9 8 8 7 7
stable(1.9,0) 9 9 9 8 8 8 7

Normal 26 26 26 24 22 19 16
t(2) 11 11 10 11 10 9 9
t(3) 11 11 10 10 10 9 7
t(4) 14 13 13 12 11 10 8
t(5) 15 15 14 14 13 11 9
t(10) 20 20 18 18 16 14 13

Laplace 17 17 15 15 13 11 10

4.2.2 Results of implementation with parametric bootstrap

This section reports the simulation results of the energy test for symmetric stable distribution

S(1.5, 0) implemented with bootstrap. Due to the computational demands of the bootstrap
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Table 4.18: Empirical power of energy test for S(1.5, 0), sample size n = 50, implemented
with asymptotic critical values.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7

Cauchy 47 53 57 62 67 70 73
stable(1.1,0) 30 35 40 44 48 51 56
stable(1.2,0) 20 23 25 28 32 35 37
stable(1.3,0) 14 16 17 19 20 22 24
stable(1.4,0) 11 12 13 14 14 14 16
stable(1.5,0) 9 10 10 11 11 10 11
stable(1.6,0) 9 9 10 9 9 9 9
stable(1.7,0) 10 9 10 10 9 9 8
stable(1.8,0) 10 11 10 10 9 9 8
stable(1.9,0) 11 11 11 11 11 9 9

Normal 73 76 77 78 78 78 75
t(2) 11 11 10 11 10 9 9
t(3) 23 25 25 23 21 20 18
t(4) 32 33 32 31 31 29 26
t(5) 38 39 40 38 39 36 33
t(10) 53 56 58 57 57 55 53

Laplace 39 39 38 36 35 33 29

Table 4.19: Empirical power of energy test for S(1.5, 0), sample size n = 100, implemented
with asymptotic critical values.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7

Cauchy 72 77 82 85 88 89 91
stable(1.1,0) 47 53 57 63 67 71 74
stable(1.2,0) 27 32 36 39 43 46 51
stable(1.3,0) 16 18 21 23 24 28 30
stable(1.4,0) 11 12 13 14 14 16 17
stable(1.5,0) 10 10 10 10 10 10 11
stable(1.6,0) 9 10 10 10 9 10 9
stable(1.7,0) 11 11 11 10 10 10 11
stable(1.8,0) 12 13 12 13 13 12 11
stable(1.9,0) 16 16 16 16 16 15 14

Normal 99 99 100 100 100 100 100
t(2) 11 11 10 11 10 9 9
t(3) 45 46 46 46 44 43 41
t(4) 61 63 63 65 65 63 62
t(5) 72 75 77 77 77 78 76
t(10) 91 93 94 95 95 95 95

Laplace 69 70 69 69 68 66 64
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Figure 4.4: Empirical power of energy test for null distribution S(1.5, 0) against S(α, 0) with
varying tail index α, implemented with asymptotic critical values. Sample size n = 20.
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Figure 4.5: Empirical power of energy test for null distribution S(1.5, 0) against S(α, 0) with
varying tail index α, implemented with asymptotic critical values. Sample size n = 50.
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Figure 4.6: Empirical power of energy test for null distribution S(1.5, 0) against S(α, 0) with
varying tail index α, implemented with asymptotic critical values. Sample size n = 100.
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Figure 4.7: Empirical power of energy test for null distribution S(1.5, 0) against S(α, 0) with
varying tail index α, implemented with asymptotic critical values. Sample size n = 200.
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Figure 4.8: Empirical power of energy test for null distribution S(1.5, 0) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 20.
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Figure 4.9: Empirical power of energy test for null distribution S(1.5, 0) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 50.



74

Figure 4.10: Empirical power of energy test for null distribution S(1.5, 0) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 100.
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Figure 4.11: Empirical power of energy test for null distribution S(1.5, 0) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 200.
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Table 4.20: Empirical power of energy test for S(1.5, 0), sample size n = 200, implemented
with asymptotic critical values.

Alternative s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7

Cauchy 95 97 98 99 99 99 99
stable(1.1,0) 75 80 85 88 90 91 93
stable(1.2,0) 45 50 54 60 64 67 71
stable(1.3,0) 22 25 28 30 32 36 39
stable(1.4,0) 12 14 14 14 16 16 18
stable(1.5,0) 10 10 10 10 11 10 11
stable(1.6,0) 10 11 11 10 10 10 10
stable(1.7,0) 13 14 13 14 14 14 13
stable(1.8,0) 18 21 20 21 21 20 20
stable(1.9,0) 27 30 31 33 34 34 34

Normal 100 100 100 100 100 100 100
t(2) 11 11 10 11 10 9 9
t(3) 77 79 79 79 80 79 77
t(4) 93 94 95 95 95 95 96
t(5) 98 98 99 99 99 99 99
t(10) 100 100 100 100 100 100 100

Laplace 95 96 96 96 96 96 95

implementation, the simulation study is done only for s = 1
8
. Energy test’s performance is

compared with that of the Anderson-Darling (A-D) test.

Figure 4.12 shows the empirical power of the tests when the alternative is Student’s

t distribution with different degree of freedom. The horizontal axis represents degree of

freedom in log scale.

Figure 4.13 shows the empirical power of the tests when the alternative is symmetric

stable distribution with different values of α.

The empirical results suggest that the energy test is more powerful than the Anderson-

Darling test in detecting distributions with lighter and heavier tails than S(1.5, 0).

4.3 Test of asymmetric stable distribution S(1.8, 0.5)

In this section, the simulation study results are presented when the null distribution is

asymmetric stable distribution S(1.8, 0.5). The alternative distributions considered include
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Figure 4.12: Empirical power of testing S(1.5, 0) against Student’s t distribution with varying
degree of freedom, implemented with bootstrap.
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Figure 4.13: Empirical power of testing S(1.5, 0) against symmetric stable distribution with
varying α, implemented with bootstrap.
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stable distribution with varying skewness parameter β and Student’s t distribution with

varying degree of freedom. Simulation study was done only for energy tests implemented by

asymptotic critical values.

The asymptotic critical values were obtained using Nyström’s method with 2000 colloca-

tion points, which are shown in Table 4.21, where s is the exponent in the energy statistic.

Table 4.21: Asymptotic critical values for testing S(1.8, 0.5)

s = 0.3 s = 0.6 s = 0.9

1.531216 2.153583 3.065132

The empirical power results of the energy test for null distribution S(1.8, 0.5) are sum-

marized in Table 4.22. Figure 4.14 to Figure 4.21 better illustrate the comparison between

the performance of the energy test and the Anderson-Darling (A-D) test. Figure 4.14 to

Figure 4.17 illustrated the empirical power of energy test for null distribution S(1.8, 0.5)

against alternatives S(1.8, β) with varying skewness parameter β, implemented with asymp-

totic critical values. It was shown that for all sample sizes studied, the energy test had

higher power than the Anderson-Darling test, and the difference between the two tests may

vary by different alternatives. Figure 4.18 to Figure 4.21 also illustrated that the energy test

outperformed the Anderson-Darling test when the alternatives were Student’s t distribution

with different degrees of freedom. In addition, it is noted that the choosing of exponent s in

the energy test did not affect the test power, when s < α/2 and the alternatives were stable

distribution with the same tail index α as the null distribution but with different skewness

parameter β. However, when the alternatives are Student’s t distribution, the exponent

s = 0.3 lead to better empirical power results than s = 0.6 and s = 0.9. Future simulation

study need to be done to find the optimal value of s. Based on current simulation results, it

is recommended to choose s to be about α/3.
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Table 4.22: Empirical power of energy test for S(1.8, 0.5), implemented with asymptotic
critical values.

s = 0.3 s = 0.6 s = 0.9
Alternative \n 20 50 100 200 20 50 100 200 20 50 100 200

S(1.1, 0.5) 100 100 100 100 100 100 100 100 100 100 100 100
S(1.2, 0.5) 97 100 100 100 98 100 100 100 98 100 100 100
S(1.3, 0.5) 70 96 100 100 74 97 100 100 75 97 100 100
S(1.4, 0.5) 41 70 92 100 45 74 94 100 48 75 95 100
S(1.5, 0.5) 24 39 60 86 27 43 64 89 30 45 66 90
S(1.6, 0.5) 15 20 29 46 18 24 32 49 20 25 33 50
S(1.7, 0.5) 12 13 15 18 13 13 15 17 14 14 15 19
S(1.9, 0.5) 10 11 12 14 10 11 12 14 9 10 11 13
S(2.0, 0.5) 11 13 17 26 10 13 16 25 9 11 14 22

S(1.8,−1.0) 23 39 65 90 23 39 62 89 21 35 58 86
S(1.8,−0.8) 20 33 54 81 19 32 53 79 18 29 47 76
S(1.8,−0.5) 16 24 38 61 16 23 36 59 15 21 33 55
S(1.8,−0.2) 12 17 24 36 12 17 22 36 13 16 21 32

S(1.8, 0) 11 14 17 25 12 13 17 23 12 13 16 21
S(1.8, 0.2) 10 12 13 15 11 11 12 14 12 12 13 14
S(1.8, 0.5) 10 10 10 10 10 10 10 10 11 10 11 10
S(1.8, 0.8) 10 11 13 15 10 12 13 15 12 12 13 14
S(1.8, 1.0) 12 14 17 23 12 13 17 23 12 14 16 22

t(2) 16 27 46 77 16 26 44 74 19 25 39 67
t(3) 15 27 52 82 13 25 45 77 11 18 35 66
t(4) 15 34 62 91 13 29 57 89 10 22 47 84
t(5) 17 38 70 96 13 34 67 95 11 27 58 92
t(6) 18 43 76 97 15 39 74 97 10 31 66 96
t(7) 18 47 80 99 16 43 78 99 11 33 72 98
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Figure 4.14: Empirical power of energy test for null distribution S(1.8, 0.5) against S(1.8, β)
with varying skewness parameter β, implemented with asymptotic critical values. Sample
size n = 20.
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Figure 4.15: Empirical power of energy test for null distribution S(1.8, 0.5) against S(1.8, β)
with varying skewness parameter β, implemented with asymptotic critical values. Sample
size n = 50.
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Figure 4.16: Empirical power of energy test for null distribution S(1.8, 0.5) against S(1.8, β)
with varying skewness parameter β, implemented with asymptotic critical values. Sample
size n = 100.
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Figure 4.17: Empirical power of energy test for null distribution S(1.8, 0.5) against S(1.8, β)
with varying skewness parameter β, implemented with asymptotic critical values. Sample
size n = 200.
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Figure 4.18: Empirical power of energy test for null distribution S(1.8, 0.5) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 20.
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Figure 4.19: Empirical power of energy test for null distribution S(1.8, 0.5) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 50.
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Figure 4.20: Empirical power of energy test for null distribution S(1.8, 0.5) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 100.
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Figure 4.21: Empirical power of energy test for null distribution S(1.8, 0.5) against Student’s
t distribution with varying degree of freedom, implemented with asymptotic critical values.
Sample size n = 200.
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4.4 Application to financial data

Financial returns, such as bonds, stocks, funds, and options, usually exhibit patterns which

stable distributions seem able to capture, such as heavy tails and skewness. Complex meth-

ods have been developed to model the change of financial assets returns. In this chapter,

we will not try to adopt very sophisticated methods to model financial data because it is

not the purpose of this study. Instead, a stable distribution is fitted to the daily logarithmic

returns, and then tested the goodness-of-fit for a simple hypothesis. The historical prices of

these financial assets can be obtained from Yahoo Finance or Google Finance.

The historical price of Bank of America (BAC) is used as an illustrative example. The

daily closing price of BAC was collected from Yahoo Finance from January 1, 2007 to

December 31, 2010, which includes 1008 trading days. Let Pt be the closing price of BAC

at day t, for t = 1, . . . , n. The logarithmic asset return at day t is defined as log
(

Pt
Pt−1

)
=

log(Pt)− log(Pt−1). After the transformation, there are 1007 data points in the sample. The

histogram is plotted in Figure 4.22.

The stableFit function in R package fBasics [62] and the executable program sta-

ble.exe provided on Nolan’s web page http://academic2.american.edu/~jpnolan/stable/

stable.html can be applied to get the Maximum Likelihood estimates (MLE) of four pa-

rameters. In practice, both give very similar estimates. Nolan’s program is much faster than

the R function stableFit, but cannot be implemented automatically by calling a function.

Nolan’s program was used in this study to get the MLE’s.

For BAC data, the MLE of the parameters, energy test statistic Qn,s and p-value based

on its asymptotic distribution are listed in Table 4.23.

Table 4.23: MLE of BAC historical price data

Ticker Sample size α β γ δ Qn,s p-value

BAC 1007 1.2539 -0.0270 0.0164 -0.0022 1.383098 0.019034

Figure 4.23 illustrates how well the data is fitted. The green curve is the density function

http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html
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Figure 4.22: The distribution of daily logarithmic returns of Bank of America stock
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Figure 4.23: Fitted density function on BAC data

of the stable distribution with parameters equal MLE, the red curve represents the kernel

density estimation at evenly spaced points, and the blue curve represents the density function

of normal distribution with parameters equal MLE. It can be seen that the density fits well

with data near the mode, but the tail is poorly fitted. The data shows a heavier tail than

the stable distribution fitted by MLE.

Due to the problem formulation of testing the simple hypothesis, a conclusion may be

drawn, after the energy test rejects the null hypothesis, that the assumption of random sam-

ple from distribution with specified parameters fails. However, there are multiple reasons

that possibly explain why the null hypothesis gets rejected. First, it may be that the obser-

vations are iid, but are not sampled from a stable distribution family, and hence it may be

worthwhile trying model the data with other type of distributions. Second, the parameters
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may be mis-specified because of incorrect estimation. It could also be due to the fact that the

data points are not independent or identically distributed, as dependence and heterogeneity

are very common in financial returns data. More complicated methods such as generalized

autoregressive conditional heteroscedasticity (GARCH) models can be applied to capture

the dependence and heterogeneity, and model the residuals by stable distributions [40].
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CHAPTER 5

GOODNESS-OF-FIT TESTS FOR

COMPOSITE CAUCHY

HYPOTHESIS

It is often interesting to test whether a random sample is from some family of distributions,

for example, a location-scale family. In this case, the parameters of the distribution F are

not fully specified. A common way of handling this type of goodness-of-fit problem is to

first estimate the unknown parameters with some “nice” estimators, then assume the pa-

rameters are fully specified by substituting the unknown parameters with their estimators,

and then use the same test statistic as in simple hypothesis testing. These types of tests

are called goodness-of-fit tests for a composite hypothesis, or goodness-of-fit tests with es-

timated parameters. Test for composite hypothesis are more complicated than those for

simple hypotheses, because the distribution of the test statistic now depends not only on

the underlying distribution of the random sample, but also the way unknown parameters

are estimated. It is much more difficult to derive the asymptotic distribution of the test

statistic, and the critical value tables of simple hypothesis cannot be used for the composite

cases [8, 10, 9]. Nevertheless, the test can still be implemented by parametric bootstrap
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in general. In this chapter, the asymptotic distribution of the energy statistic for testing

composite Cauchy hypothesis is derived when the parameters are estimated by maximum

likelihood estimators.

5.1 Maximum likelihood estimators of Cauchy distri-

bution

Let x1, . . . , xn be a random sample. The log-likelihood function is given by

L(γ, δ; x) = n log γ −
n∑
j=1

log(γ2 + (xj − δ)2)− n log π. (5.1)

By differentiating L with respect to γ and δ, we get the likelihood equations

n∑
j=1

xj − δ
γ2 + (xj − δ)2

=0, (5.2)

n∑
j=1

γ2

γ2 + (xj − δ)2
=
n

2
. (5.3)

The maximum likelihood estimators (MLE) can be obtained by solving the above equations

numerically.

5.2 Test of composite Cauchy hypothesis

Let yj =
xj−δ̂
γ̂

, where δ̂ and γ̂ are consistent and equivariant estimators of location parameter

δ and scale parameter γ of Cauchy distribution, and suppose X follows standard Cauchy

distribution. The goodness-of-fit test statistic for composite hypothesis that the sampled
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distribution is Cauchy has the form

Qn,s = n

(
2

n

n∑
i=1

E|yi −X|s − E|X −X ′|s −
1

n2

n∑
i,j=1

|yi − yj|s
)

(5.4)

= 2
n∑
j=1

(1 + y2
j )
s/2 cos(s arctan yj)

cos πs
2

− n2s

cos πs
2

− 1

n

n∑
j,k=1

|yj − yk|s. (5.5)

We can get an alternative expression of Qn,s that is very useful for deriving its asymptotic

distribution:

Qn,s =

∫ ∞
−∞

∣∣∣∣∣ 1n∑ exp(it
xj − δ̂
γ̂

)− e−|t|
∣∣∣∣∣
2
|t|−s−1

C
dt

=

∫ ∞
−∞

∣∣∣∣ 1n∑ exp(it(xj − δ̂))− e−|γ̂t|
∣∣∣∣2 |γ̂t|−s−1

C
γ̂dt

=

∫ ∞
−∞
|eitδ̂|2

∣∣∣∣ 1n∑ exp(itxj)− e−|γ̂t|+itδ̂
∣∣∣∣2 |γ̂t|−s−1

C
γ̂dt

=

∫ ∞
−∞
|Ẑn(t)|2 |t|

−s−1

|γ̂|sC
dt, (5.6)

where

Ẑn(t) =
1√
n

n∑
j=1

{
cos(txj) + i sin(txj)− e−|γ̂t|

(
cos(tδ̂) + i sin(tδ̂)

)}
, (5.7)

and

C =
2π

1
2 Γ(1− s

2
)

s2sΓ(1+s
2

)
,

as in (3.5). It is noted that both [19] and [33] gave the wrong expression of Ẑn(t), and [34]

corrected it.

Hence, Ẑn(t) can be rewritten as

Ẑn(t) =

∫
k(x, t)d{

√
n(Fn(x)− F (x; θ̂n))}, (5.8)

where Fn(x) is the empirical distribution function and F (x; θ̂n) is the cumulative distribution



96

function with parameter vector θ substituted by its estimator θ̂n. So Ẑn(t) corresponds to

the empirical characteristic function process, where k(x, t) = cos(tx) + i sin(tx) is the kernel

of the kernel transformed empirical process Ẑn(t). Let θ = (γ, δ) and θ̂ = (γ̂, δ̂) be the

maximum likelihood estimator of θ. Matsui and Takemura [32, 33] have done extensive

work in deriving the asymptotic distribution of the empirical process Ẑn(t) when the Cauchy

distribution parameters are estimated by MLE. Their result, Theorem 2.1 in [33], is stated

as follows:

Theorem 5.2.1 If X1, . . . , Xn are iid standard Cauchy random variables and Ẑn(t) is de-

fined as in (5.7) then Ẑn(t)
d→Z(t) in C(R), where C(R) is the Fréchet space of continuous

functions on real line R, and Z is a zero mean Gaussian process with covariance function

cov(Z(u), Z(v)) = Γ(u, v) = e−|u−v| − {1 + 2(uv + |uv|)}e−|u|−|v|. (5.9)

Matsui and Takemura also studied the case when parameters are estimated by EISE, or

equivariant integrated squared error estimator. However, according to their numerical re-

sults, EISE adds much computational cost to the goodness-of-fit test, but limited value to

power of the test, so this case will not be discussed in this dissertation. Notice that the

kernel Γ(u, v) is symmetric about origin; that is, Γ(−u,−v) = Γ(u, v), and Γ(u, v) = 0

if uv < 0. Hence Z(u) and Z(−u) are independent and identically distributed Gaussian

random variables.

Similar to Theorem 2.2 in [33], we can derive the asymptotic distribution of Qn,s by its

alternative expression (5.6) and the result in Theorem (5.2.1).

Theorem 5.2.2 If X1, . . . , Xn are iid standard Cauchy random variables and Ẑn(t) is de-

fined as (5.7) and Qn,s is defined as (5.6), then

Qn,s =

∫ ∞
−∞
|Ẑn(t)|2 |t|

−s−1

|γ̂|sC
dt

d→Qs :=

∫ ∞
−∞

Z(t)2 |t|−s−1

C
dt. (5.10)
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Proof The proof is similar to that of Theorem 2.2 in [19].

Asymptotic critical values can be obtained after we derive the distribution of Qs with help

from theory of integral equations. Notice Qs =
∫∞

0
Z(t)2 |t|−s−1

C
dt+

∫∞
Z(−t)2 |t|−s−1

C
dt, where

Z(t) and Z(−t) are independent and identically distributed, hence we can only consider the

empirical process z(t) on t ∈ [0,∞). Mercer’s theorem enables us to express a symmetric

positive-definite function as a sum of a convergent sequence of product functions.

Theorem 5.2.3 If K(x, y) is the kernel of a positive self-adjoint operator on L2[0, 1] and

suppose that K(x, y) is continuous in both variables, then

K(x, y) =
∑
j=1

λjφj(x)φj(y), λ1 ≥ λ2 ≥ · · · > 0, (5.11)

where λj is an eigenvalue and φj is the corresponding orthonormal eigenfunction of the

integral equation

∫ 1

0

K(x, y)φ(y)dy = λφ(x). (5.12)

The series (5.11) converge uniformly and absolutely to K(x, y).

Since Mercer’s theorem only applies to kernels defined on compact spaces, we need to trans-

form the kernel to [0, 1]2 while keeping all the eigenvalues invariant. However, after the

transformation, we need to deal with kernels that are not continues at the point (1, 1), the

following version of Mercer’s theorem by Hammerstein is required, as in [2] and [33].

Theorem 5.2.4 Let K(x, y) be continuous in the unit square [0, 1]2 except possibly at the

corners of the square; let ∂K(x, y)/∂x be continuous in the interior of both triangles in which

the square is divided by the line between (0, 0) and (1, 1), and let the partial derivative be

bounded in the domain ε ≤ x ≤ 1− ε and 0 ≤ y ≤ 1 for each ε > 0. The series on the right

of (5.11) converges uniformly to K(x, y) in every domain in the interior of the unit square
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[0, 1]2.

With the above theorem, the following theorem can be stated.

Theorem 5.2.5 If Qs is defined as in (5.10), and x = u
1+u

and y = v
1+v

, then Qs admits a

representation

Qs
d
=

∞∑
j=1

λj(Z
2
2j−1 + Z2

2j), (5.13)

where λj’s are eigenvalues of kernel function defined on [0, 1]2

K(x, y) = Γ(u(x), v(y))
|u(x)v(y)|−s−1

2

C

√
u′(x)v′(y) (5.14)

and Zj, j = 1, 2, . . . are independent standard normal random variables.

Proof Notice Qs =
∫∞

0
Z(t)2 |t|−s−1

C
dt+

∫∞
Z(−t)2 |t|−s−1

C
dt, where Z(t) and Z(−t) are inde-

pendent and identically distributed, hence we can only consider the empirical process z(t)

on t ∈ [0,∞).

∫ ∞
0

Z(u)2 |u|−s−1

C
du =

∫ 1

0

Z(u(x))2 |u(x)|−s−1

C
u′(x)dx. (5.15)

Let Y (x) = Z(u(x))
√
|u(x)|−s−1

C
u′(x) be a zero-mean Gaussian process. Its covariance func-

tion is

K(x, y) = cov (Y (x), Y (y))

= cov

(
(Z(u(x))

√
|u(x)|−s−1

C
u′(x), Z(v(y))

√
|v(y)|−s−1

C
v′(y)

)

=Γ(u(x), v(y))
|u(x)v(y)|−s−1

2

C

√
u′(x)v′(y)

=Γ(u(x), v(y))

(
x

1− x

)−s−1
2
(

y

1− y

)−s−1
2 1

C(1− x)(1− y)
.
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Now K(x, y) is a symmetric kernel function defined on [0, 1]2, and by Theorem 5.2.5,

K(x, y) =
∞∑
j=1

λjφj(x)φj(y).

Let W (x) =
∑∞

j=1

√
λjφj(x)Zj. It is easy to see that W (x) is a Gaussian process with

E(W (x)) = 0 and

cov (W (x),W (y)) = E(W (x)W (y))

=E

(
∞∑
j=1

λjφj(x)φj(y)Z2
j

)
=
∞∑
j=1

λjφj(x)φj(y) = K(x, y),

so W (x) defines the same Gaussian process as Y (x), and therefore

∫ 1

0

Y (x)2dx
d
=

∫ 1

0

W (x)2dx =

∫ 1

0

∞∑
j=1

√
λjφj(x)Zjdx =

∞∑
j=1

λjZ
2
j .
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CHAPTER 6

SUMMARY

In this dissertation, a new goodness-of-fit test for stable distributions is proposed based

on the energy distance. The test statistic is a V -statistic with second degree degenerate

kernel, which can also be expressed as a weighted L2-norm of the difference between the

two characteristic functions, with a suitable weight function. Both theory of V -statistics

and empirical process theory are applied to study the asymptotic distribution of the test

statistic. For testing a simple hypothesis of a stable distribution in the general case, the

computational formula of the energy statistic is provided and consistency of the test is

proved. For testing a composite hypothesis of Cauchy distribution, an asymptotic results

are developed when parameters are estimated by maximum likelihood estimators.

Because of the difficulty deriving the exact distribution of the finite-sample test statistic,

parametric bootstrap is recommended to implement the test for small and medium-sized

samples (sample size less than 200). For large samples, asymptotic critical values can be

used. Simulation results are presented for testing the standard Cauchy distribution and the

standard symmetric stable distribution with α = 1.5. Overall, the empirical power results

presented demonstrate that the new test is more powerful than existing methods including

the Kolmogorov-Smirnov test and the Anderson-Darling test. Compared to tests based on

empirical characteristic functions, such as the Gütler-Henze test and the Matsui-Takemura
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test, the energy test is slightly more powerful when the alternatives have heavier tails than

the null distribution, and slightly less powerful in testing lighter-tailed alternatives.

Some future research directions include developing asymptotic results for testing com-

posite hypothesis of stable distribution in the general case, extending the energy test to

multivariate stable distribution, and more simulation studies on the power of energy test

against broader classes of alternative distributions.
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