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ABSTRACT

Arjun K. Gupta, Advisor

The classical work horse in finance and insurance for modeling asset returns is the Gaus-

sian model. However, when modeling complex random phenomena, more flexible distribu-

tions are needed which are beyond the normal distribution. This is because most of the

financial and economic data are skewed and have “fat tails” due to the presence of outliers.

Hence symmetric distributions like normal or others may not be good choices while modeling

these kinds of data. Flexible distributions like skew normal distribution allow robust model-

ing of high-dimensional multimodal and asymmetric data. In this dissertation, we consider

a very flexible financial model to construct robust comonotonic lower convex order bounds

in approximating the distribution of the sums of dependent log skew normal random vari-

ables. The dependence structure of these random variables is based on a recently developed

multivariate skew normal distribution, called unified skew normal distribution. In order to

accommodate the distribution to the model so considered, we first study inherent properties

of this class of skew normal distribution. These properties along with the convex order and

comonotonicity of random variables are then used to approximate the distribution function

of terminal wealth. By calculating lower bounds in the convex order sense, we consider

approximations that reduce the multivariate randomness to univariate randomness. The

approximations are used to calculate the risk measure related to the distribution of terminal

wealth. The accurateness of the approximation is investigated numerically. Results obtained

from our methods are competitive with a more time consuming method called, Monte Carlo

method. The dissertation also includes the study of quadratic forms and their distributions

in the unified skew normal setting. Regarding the inferential issue of the distribution, we

propose an estimation procedure based on the weighted moments approach. Results of our

simulations provide an indication of the accuracy of the proposed method.
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CHAPTER 1

INTRODUCTION

1.1 Notations

In this dissertation, matrices will be denoted by capital letters and vectors by small bold

letters. Unless otherwise stated all the vectors are column vectors. The following notation

is used throughout the dissertation:

<d : d-dimensional real space

Ad×m : d×m-dimensional matrix A

(A)i,j : (i, j) element of the matrix A

(A)i. : ith row of the matrix A

(A).j : jth column of the matrix A

AT : transpose of the matrix A

|A| or det(A) : determinant of the square matrix A

A−1 : inverse of the matrix A when |A| 6= 0

tr(A) : trace of a square matrix A

Id : d-dimensional identity matrix

1d : d-dimensional column vector of ones

0d : d-dimensional column vector of zeros
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0d×m : d×m-dimensional matrix of zeros

Nd(µ,Σ) : d-dimensional normal density with mean µ and variance covariance matrix Σ

φd(y − µ; Σ) (or φd(y;µ,Σ) : density of a Nd(µ,Σ) random variable evaluated at y

φd(y) : density of a Nd(0, Id) random variable evaluated at y

Φd(y−µ; Σ) (or Φd(y;µ,Σ) : distribution of a Nd(µ,Σ) random variable evaluated at y

Φd(y) : distribution of a Nd(0, Id) random variable evaluated at y

φ(y − µ;σ2)(or φ(y;µ, σ2) : density of a N(µ, σ2) random variable evaluated at y

Φ(y − µ;σ2)(or φ(y;µ, σ2) : distribution of a N(µ, σ2) random variable evaluated at y

φ(y) : density of a N(0, 1) random variable evaluated at y

Φ(y) : distribution of a N(0, 1) random variable evaluated at y

pdf : Probability density function

cdf : Cumulative distribution function

m.g.f : Moment generating function

jmgf : Joint moment generating function

1.2 Preleminaries

1.2.1 Vectors, Matrices and their Properties

A d-dimensional real vector a is an ordered array of real numbers ai, i = 1, 2, ..., d,

organized in a single column, written as a = (ai).

A real matrix A of dimension d×m is an ordered rectangular array of real numbers aij

arranged in rows i = 1, 2, ..., d and columns j = 1, 2, ...,m, written as A = (aij).

For two d ×m matrices A and B, the addition and subtraction are defined as A ± B =

(aij ± bij). Product of two matrices A of dimension d × m and B of dimension m × n is

defined as AB = (cij) where cij =
∑d

l=1 ailblj.

A matrix A is called square matrix of order d if the number of columns and rows of A

are equal to d.
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The transpose of a matrix A is obtained by interchanging the rows and columns of A and

represented by AT . When A = AT , we say A is symmetric. A d× d symmetric matrix A for

which aij = 0, i 6= j for i, j = 1, 2, ..., d is called diagonal matrix of order d, and represented

by A = diag(a11, a22, ..., add); in this case if aii = 1 for all i, then we denote this by Id and

call it identity matrix.

A square matrix A of order d is called a lower triangular matrix if aij = 0, i < j and upper

triangular if aij = 0, i > j. A square matrix A of order d is called a lower unit triangular

matrix if aij = 1, i ≤ j and upper unit triangular if aij = 1, i ≥ j

A symmetric matrix A of order d is positive definite if aTAa > 0 for all nonzero vectors

a. A symmetric matrix A of order d is positive semi-definite if aTAa ≥ 0 for all nonzero

vectors a.

Let A be a d × d matrix. Then the roots of the equation det(A − λId) = 0 are called

charateristic roots or eigenvalues of the matrix A. The determinant of a square matrix A

is defined as the product of eigenvalues of the matrix. If det(A) 6= 0, then A is called non-

singular matrix and there exists a unique matrix B such that AB = BA = Id or B = A−1,

B is called the inverse of A. The trace of a square matrix A of order d is defined as the sum

of its eigenvalues and written as tr(A).

The number of nonzero eigenvalues of a square matrix is the rank of A and written as

rank(A). If the rank of a d ×m matrix is rank(A)= min(d, m) then A is called a full rank

matrix.

Let A = (aij) be a d×m matrix. Then a 2× 2 partition of A is defined as

A =


r m− r

A11 A12

A21 A22

 k

d− k
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where A11, A12, A21 and A22 are

A11 = (aij), i = 1, 2, . . . , k, j = 1, 2, . . . , r

A12 = (aij), i = 1, 2, . . . , k, j = r + 1, 2, . . . ,m

A21 = (aij), i = k + 1, 2, . . . , d, j = 1, 2, . . . , r

and

A22 = (aij), i = k + 1, 2, . . . , d, j = r + 1, 2, . . . ,m

The Kronecker product for any two matrices Am×n = (aij) and Bp×q = (bij) denoted by

A⊗B results an mp× nq matrix defined by

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB

...am1B am2B . . . amnB

 = (aijB)

For the properties of the Kronecker matrix product we refer to Gupta and Nagar (2000).

The direct sum operator of two matrices Am×n = (aij) and Bp×q = (bij) denoted by A⊕B

results an (m+ p)× (n+ q) matrix defined by

A 0

0 B


That is matrix direct sum operator gives a block diagonal matrix.

Note: It is easy to see that ⊕ni=1A = In ⊗ A. For other properties of matrix direct sum

operator we refer to Horn and Johnson (1991).
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1.2.2 Multivariate Random Variable and Its Distribution

A multivariate random variable is represented by a d dimensional column vector y where

d random variables y1, y2, . . . yd are observed on a sampling unit. In the univariate case,

the distribution of a random variable y can be characterized by its cumulative distribution

function (cdf) FY (.), which is defined as FY (y) = P (Y ≤ y). We say that the random

variable y with the cdf FY (.) has the probability density function (pdf) f(y) if dF (y) = f(y).

Similarly, the distribution of a random variable y in <d can be characterized by its joint

cumulative distribution function (jcdf) Fy(.). For c in <d, it is defined as Fy(c) = P (y1 ≤

c1, y2 ≤ c2, . . . , yd ≤ cd). We say that the random variable y with jcdf Fy(.) has joint

probability density function (pdf) f(y) if dF (y) = f(y). The joint moment generating

function (jmgf) of the random variable y is defined as My(t) = E(exp(tTy)), if it exists for

all t in some neighborhood of 0 in <d. To say that a random vector has a certain distribution

the notation y ∼ F (y),y ∼ f(y) or y ∼My(t) is equivalently used. If the joint distribution

of d random variables y1, ..., yd is known, then the marginal distribution of any subset k of

the d random variables y1, ..., yd can be derived from this joint distribution by integrating

over all possible values of the other d−k variables. Similarly the conditional distribution can

be derived. Suppose that the random vector y = (y1, ..., yd)
T is divided into two subvectors

x and z, where x is a k-dimensional random vector comprising k of the d random variables

in y, and z is an (d − k)-dimensional random vector comprising the other d − k random

variables. Suppose also that the pdf of y is f1 and that the marginal pdf of z is f2. Then

for every given point z = ξ ∈ <d−k such that f2(ξ) > 0, the conditional k-dimensional pdf

g1 of x when z = ξ is defined as:

f(x|z) =
f(x, z)

f2(z)
,x ∈ <k.
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1.3 Literature Review, Problem and Organization

In recent years, there has been considerable interest in the construction of the general

class of skewed distributions which include the standard symmetric distributions such as the

normal, t, logistic and Cauchy distributions. The key is to introduce additional parameters

or parametric functions in the distributional form that accounts for the skewness of the

distribution. The first of this kind of model was studied by Roberts (1966). The idea

became institutionalized when Azzalini (1985) defined a class of distributions (which he

referred to as skew normal (SN)) by introducing an additional skewness parameter that

included the normal distribution as a special case. The name suggests that this distribution,

unlike the normal distribution, is asymmetric in general and allows both positively and

negatively skewed distributions. Subsequently, Azzalini and Dalla Valle (1996) came up

with the multivariate version of the skew-normal distribution. A statistical application of

the multivariate skew-normal distribution was considered by Azzalini and Capitanio (1999).

This paper popularized the application of such distributions and led the way for others to

define similar families of distributions based on other symmetric distributions.

Because of the popularity several other versions of the multivariate skew normal model

are proposed, for example, Sahu et al (2003), Liseo and Loperfido (2003), Gupta, Gonzalez-

Farias, Dominguez-Molina (2004), Gonzalez-Farias, Dominguez-Molina, and Gupta (2004),

Arellano-Valle and Genton (2005), to name a few among many. Arellano-valle and Azzalini

(2006) developed a skew normal model which includes or is at least equivalent to the earlier

versions of the skew normal models. They called it unified skew normal model with the

acronym SUN. The purpose of this dissertation is to study the properties and inferential

issues related to SUN model which is motivated by the realization of the importance of

this model. The unique feature of this study is that the methodologies and tools that are

developed for SUN model, remain true for all the earlier versions of skew normal models.

The rest of the dissertation is organized as follows. In chapter 2, an overview of skew

normal distribution is provided and properties of unified multivariate skew normal random
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vector are discussed that will be used in later chapters. In particular, it is shown that SUN

density is closed under:

• linear transformations of full column (or row) rank

• marginalization

• conditional distribution

• joint distributions of independent SUN random variables, and

• sums of independent SUN random variables

Chapter 3 is devoted to study the quadratic forms under the unified skew normal setting.

Quadratic forms and their distributions are important for statistical inference. They have

their applications in economics and time series as well. The study in this chapter includes:

• Distribution of quadratic forms

• Expected value of quadratic forms and their functions

• Independence of quadratic forms, and independence between a linear form and a

quadratic form

In chapter 4, an estimation technique, called method of weighted moments (MOWM) is

developed to estimate parameters of a SUN model. It paved the way to apply the model

to real data. In chapter 5, two applications of the SUN density are presented in context

of finance and actuarial science. In general, the sum of log-normal and log-skew normal

distribution does not have an exact distribution or follow the parent distribution. In this

chapter, the concept of convex order of random variables is used to construct a lower bound

in order to approximate the sum of dependent log unified skew normal random variables.

The derived bounds are then used to approximate the distribution of terminal wealth and

calculate the portfolio risk, called value at risk (VaR). Performance of the derived bounds is

also compared with time consuming Monte Carlo method.
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CHAPTER 2

PROPERTIES OF UNIFIED SKEW

NORMAL RANDOM VECTOR

2.1 Introduction

Unified skew normal (SUN) density has many interesting and appealing properties and

it also preserves some important properties of the multivariate normal distribution. In this

chapter, we explore some of these properties. We start with a brief background description

of the multivariate normal distribution, and univariate and multivariate skew normal dis-

tributions. We then describe the basic properties of the unified skew normal distribution,

starting with the moment generating function that allows us to establish other important

properties of interest. We show that similar to the multivariate normal distribution, the

unified skew normal distribution is also closed under linear transformations, marginalization

and conditioning. To be more precise, we show that for a random vector with a the uni-

fied skew normal distribution all row (column) full rank linear transformations are in the

same family of distributions, marginal and conditional distribution of unified skew normal

distribution belong to the same family, the joint distribution and sum of independent unified

skew normal random vectors is again unified skew normal distributed random vector. Since
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the unified skew normal density includes most of the skew normal models developed earlier,

these properties remain true for all those skew normal models.

2.2 Multivariate Normal Distribution (MND)

Definition 2.2.1. A d-dimensional random vector y is said to have a d-dimensional normal

distribution with parameters µ ∈ <d and d × d positive definite covariance matrix Σ if the

density is given by

f(y) =
1

(2π)d/2 |Σ|1/2
e−

1
2
yT Σ−1y. (2.1)

We say that y is distributed as Nd(µ,Σ), and write y ∼ Nd(µ,Σ).

Some Properties of Multivariate Normal Distribution

Some of the important properties of the multivariate normal distribution are stated here

without proof. The proofs could be found from any multivariate book.

• The m.g.f of (2.1) is given by

My(t) = exp(µT t+
1

2
tTΣt),

where t ∈ <d.

• The parameters of Nd(µ,Σ) have the direct interpretation as the mean vector and the

variance covariance matrix of y that is E(y) = µ and E(y − µ)(y − µ)T = Σ.

• If y ∼ Nd(µ,Σ), then z = Σ−1/2(y − µ) has the distribution Nd(0, Id). The m.g.f in

this case becomes E(et
T z) = exp(−1

2
tT t) and x = zTz has chi-square distribution with

d degrees of freedom and is denoted by χ2
d.

• If y ∼ Nd(µ,Σ), then (y − µ)TΣ−1(y − µ) ∼ χ2
d.

• The family of the normal distributions is closed under the linear transformations,

marginalization and conditioning.
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• Let the d× 1 random vector y ∼ Nd(µ,Σ), a be a d× 1 vector of constants and A be

any n× d matrix of constants with rank of A is n ≤ d. Then

(i) z = aTy ∼ N(aTµ,aTΣa).

(ii) z = Ay ∼ Nn(Aµ, AΣAT ).

• If y and x are multivariate normal random vectors with Σyx 6= 0, then the conditional

distribution of y|x is multivariate normal with the mean vector

E(y|x) = µy + ΣyxΣ−1
xx(x− µx),

and the covariance matrix

Cov(y|x) = Σyy − ΣyxΣ−1
xxΣxy.

2.3 Skew Normal Distributions

The normal distribution is the most popular distribution because of its many appealing

properties. Two main reasons for its popularity are: first, the effect of the central limit

theorem, in most cases the distribution observations is at least approximately normal; sec-

ond, normal distribution and its sampling distribution are easily tractable. However, the

same family of distribution is not used frequently in modeling financial and insurance data

because they do not behave in the normal sense. Most of the economic and finance data

usually have outliers that produce “fat tail” distributions and in this case normal distribu-

tion is not a good model to use. Researchers have been looking for an alternative model

than the normal to cope with the skewness property of the distribution of these kinds of

data. The first of this kind of the models was originated from a paper by Roberts (1966).

Azzalini (1985) named this class of distributions as the skew normal class. The multivariate

skew normal distribution have been introduced by Azzalini and Dalla Valle (1996) and sub-
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sequently by Azzalini and Capitanio (1999), Gupta, Gonzalez-Farias and Dominguez-Molina

(2004) etc. Gonzalez-Farias, Dominguez- -Molina, and Gupta (2004) defined the multivari-

ate closed skew-normal distribution which has properties similar to the normal distribution

than any other multivariate skew normal distribution. The study of the skew normal dis-

tribution explores an approach for statistical analysis without the symmetry assumption for

the underlying distribution.

2.3.1 Univariate Skew Normal Distribution

Definition 2.3.1. Let Y be a continuous random variable. Let φ and Φ denote the standard

normal density and corresponding distribution function, respectively. Then Y, is said to have

a skew-normal distribution with the parameter α,−∞ ≤ α ≤ ∞ if the density of Y is

f(y) = 2φ(y)Φ(αy), −∞ ≤ y ≤ ∞. (2.2)

and we write Y ∼ SN(α).

The component α is called the shape parameter because it regulates the shape of the den-

sity function. As α increases (in absolute value), the skewness of the distribution increases.

Figure 2.3.1 on the next page shows the density for different values of alpha. In practice, to

fit real data, we work with an affine transformation Z = ξ + σY with ξ ∈ < and σ > 0. The

density of Z is then written as

g(z; ξ, σ, α) =
2

σ
φ
(z − ξ

σ

)
Φ
(
α
z − ξ
σ

)
,

and we write Z ∼ SN(ξ, σ2, α).

Properties of Univariate Skew-normal distribution

The density (2.2) possesses some interesting properties as noted below:

• When α = 0, we re-obtain normal distribution.Thus normal distribution is a special
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Figure 2.3.1: Univariate skew normal distribution for different values of alpha.

case of skew-normal distribution.

• As α tends to ∞, (2.2) becomes f(y) = φ(y), 0 ≤ y ≤ ∞ which is the half-normal (

folded normal) pdf.

• If Y ∼ N(0, 1) and X ∼ SN(α), then |Y | and |X| have the same pdf.

• If Y ∼ SN(α), then Y 2 ∼ χ2
1.

• If Y ∼ SN(α), then −Y is a SN(−α).

Moment Generating function of univariate skew normal distribution

Let Y be a SN(α) random variable. Then the moment generating function of Y is given

by

M(t) = 2 exp (
t2

2
)Φ(δt),
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where δ = α/
√

1 + α2. From the m.g.f the first two moments of the univariate skew normal

density are obtained as

E(Y ) =

√
2

π
δ and V ar(Y ) = 1− (2/π)δ2.

2.3.2 Multivariate Skew Normal Distribution (MSND)

A multivariate version of skew-normal density was introduced by Azzalini and Dalla Valle

(1996) and Azzalini and Capitanio (1999). Like univariate skew normal distribution, these

classes of distributions include normal distribution and have some properties similar to the

normal distribution.

Definition 2.3.2. (Azzalini and Dalla Valle (1996)) A random vector y follows a multi-

variate skew-normal distribution if the density of y is given by

fd(y) = 2φd(y,Σ)Φ(αTy), y,α ∈ <d. (2.3)

and is usually denoted by SNd(α,Σ). As in the univariate case, introducing location and

scale parameters, ξ = (ξ1, ξ2, . . . , ξd)
T and S = diag(σ1, σ1, . . . σd) respectively, the density

usually denoted by SNd(ξ, SΣS,α) can be rewritten as

fd(y) = 2φd(y; ξ, SΣS)Φ(αTS−1(y − ξ)). (2.4)

Properties of Multivariate Skew-normal distribution

Like univariate case the density (2.3) possesses some interesting properties as noted below:

• When α = 0, we re-obtain multivariate normal distribution.Thus multivariate normal

distribution is a special case of multivariate skew-normal distribution.

• If y ∼ SNd(α,Σ) and x ∼ Nd(0,Σ), then yTΣ−1y is equal to xTΣ−1x in distribution.

• If y ∼ SNd(α,Σ), then yTΣ−1y ∼ χ2
d.
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• If y ∼ SNd(α,Σ) and B is a positive symmetric semidefinite d × d matrix with rank

k such that BΣBT = B, then yTBy ∼ χ2
k.

• Suppose y ∼ SNd(0,Σ,α). Then the distribution of yyT is Wishart with d.f 1 and

the scale parameter Σ.

Liseo and Loperfido (2003) derived a multivariate skew normal distribution in the Bayesian

context and called it hierarchical skew-normal (HSN) density. Here is the formal definition.

Definition 2.3.3. Let θ|θ0 ∼ Np(θ0,Σ) and θ0 ∼ Np(µ,Ω). Then under the constraints

Cθ0 + d ≤ 0 where C is a full rank k × p matrix and d ∈ <k, the marginal distribution of θ

is given by

1

Φk(0;Cµ+ d)
φp(θ,µ,Σ + Ω)Φk(0;C∆(Σ−1θ + Ω−1µ) + d, C∆CT ), (2.5)

where ∆−1 = Σ−1+Ω−1. The heirarchical skew normal density is denoted by HSNp(µ,d,Σ,Ω, C)

The multivariate skew-normal distributions discussed so far do not cohere with the joint

distribution of a random sample from a univaraite skew-normal distribution which is im-

portant for the sampling distribution theory. To overcome this drawback, Gupta and Chen

(2004) provided a new definition of multivariate skew-normal distribution as given below:

Definition 2.3.4. Let Σ be a k × k positive definite matrix. A k × 1 random vector y is

said to follow a multivariate skew-normal random vector if the density of y is of the form

fd(y,Σ,d) = 2kφk(y,Σ)
k∏
j=1

Φ(λj
Ty), (2.6)

where d = (δ1, δ1, . . . δk)
T for some real numbers δ1, δ2, . . . δk and λ1,λ2, . . .λk are real vectors

satisfying

Λ = Σ−1/2diag(δ1, δ2, . . . δk).
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Besides the multivariate models described so far, several other versions of multivariate

skew normal distribution have been proposed in literature. Gupta et al (2004) defined a

more general version of MSND that has the same property as (2.6). In addition, it takes

care of the hidden truncation problem arises in skew normal distribution. Gonzalez-Farias,

Dominguez-Molina, and Gupta (2004) defined a multivariate skew-normal distribution. Since

this distribution is closed under the linear transformation, conditioning, summation and

joint distribution of random variables from the same family, it is called closed skew normal

distribution. For the details of this density we refer to Chapter 2 of Genton (2004).

2.4 Unified Skew Normal Distribution (SUN)

The study of SN class of distribution has been a resumption of interest because of two

reasons: first, it opened the door for robustness study. Second, it includes the normal density,

and has very similar properties as that of normal density. However, because of the popularity

of this class of distribution there have been intense developments in the theory of this class

of distribution. In fact, the developments are so numerous that sometimes it is confusing

(especially for applied statisticians) which class of skew normal model is to be used. The

other question of interest could be: is there any version which is better than the rest? or is

there any generalized version that represents other models as a special case or that is at least

equivalent to others up to some reparameterization? With this view in mind, Arellano-valle

and Azzalini (2006) developed a skew normal model and named it unified skew normal model

with the acronym SUN. They showed that this multivariate skew normal model includes or

at least is equivalent to the earlier versions of skew normal models.

Definition 2.4.1. Suppose (Uo, U1) is a multivariate normal vector of dimension m+d with
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the density

U =

U0

U1

m

d
∼ Nm+d(0,Ω

∗),Ω∗ =

Γ ∆T

∆ Ω̄

,
where Ω∗ is the correlation matrix, and Ω = ωΩ̄ω is the covariance matrix with ω, a d × d

diagonal matrix. Now, suppose Ω∗ is positive definite and consider the distribution of Z =

(U1|U0 + γ > 0). Then the density of y = µ+ ωZ is

f(y) = φd(y − µ; Ω)
Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆)

Φm(γ; Γ)
, (2.7)

for y ∈ <d. The notation φd(y − µ; Ω) is used to denote the d dimensional multivariate

normal distribution with the mean vector µ and the covariance matrix Ω, Φd(y−µ; Ω) denotes

the corresponding distribution function. This density is called SUN (acronym for unified skew

normal distribution) and is denoted by y ∼ SUNd,m(µ,γ, ω̄,Ω∗), where ω̄ = ω1d.

Note that if ∆ equal to zero, then the density reduces to the d dimensional multivariate

normal distribution. The derivation of the SUN density was given in Arellano-valle and

Azzalini (2006). The density of univariate SUN distributon is given in figure 2.4.1.

2.4.1 Properties of SUN Density

Before describing the properties of SUN density, we state a lemma as follows which is

useful for evaluating some integrals used in this chapter and some of the rest of the chapters.

Lemma 2.4.1. Let V be a d-dimensional random vector with distribution Nd(µ,Σ) where

µ is a d× 1 vector and Σ is a positive definite matrix. Then

EV

[
Φd(a+BV ;ν,Υ)

]
= Φ(a− ν +Bµ; Υ +BΣBT ),

where a and ν are d-dimensional vectors, B is a constant d × d matrix and Υ is a positive
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Figure 2.4.1: Univariate SUN distribution for different values of δ.

matrix of dimension d× d.

Proof. For the proof of the lemma we refer to Gupta et al (2004)

Remarks: Since Φm(a;µ,Σ) = Φm(0;µ − a,Σ) = Φm(a − µ; 0,Σ) = Φm(a − µ; Σ),

lemma (2.4.1) can be stated and used in a variety of ways.

2.4.1.1 The Moment Generating Function

In this section we present the moment generating function of the SUN density. In order

to derive many of the most important properties of SUN distribution we need the following

result.

Theorem 2.4.1. If y ∼ SUNd,m(µ,γ, ω̄,Ω∗), then its m.g.f is given by

My(t) = exp (µT t+
1

2
tTΩt)

Φm(γ + ∆Tωt; Γ)

Φm(γ; Γ)
, t ∈ <d. (2.8)
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Corollary 2.4.1. Let y be a d dimensional random vector. Then the following results can

be deduced from equation (2.8).

• Taking ∆ = 0 we get My(t) = exp (µT t+ 1
2
tTΩt) which is the m.g.f of Nd(µ,Ω), the

multivariate normal distribution.

• Taking m=1 , γ = 0, Γ = 1 and ∆ = Σα√
(1+αT Σα)

where α is a d dimensional vector,

we get

My(t) = exp (µT t+
1

2
tTΩt)Φ

(
Σα√

(1 +αTΣα)

)
,

which is the m.g.f of the distribution SNd(µ,Ω,α) defined by Azzallini and Dalla Valle

(1996).

• Taking γ = 0, Ω̄ = Σ, ∆ = ΣDT , Γ = Id +DΣDT we get

My(t) = exp (µT t+
1

2
tTΩt)

Φd(DΣt; Id +DΣDT )

Φd(0; Id +DΣDT )
,

which is the m.g.f of the distribution SNd(µ,Σ, D) defined by Gupta et al (2004).

• Taking γ = −ν, Ω̄ = Σ, ∆ = ΣDT , Γ = Ψ +DΣDT we get

My(t) = exp (µT t+
1

2
tTΣt)

Φm(DΣt; Ψ +DΣDT )

Φm(0; Ψ +DΣDT )
,

which is the m.g.f of the distribution CSNd,m(µ,Σ, D,ν,Ψ) defined by Gonzalez-Farias,

Dominguez-Molina and Gupta (2004).

• Taking Ω̄ = Υ + Σ, Γ = CΥCT , ∆ = −(CΥ)T and γ = Cµ+ d we get

My(t) = exp (µT t+
1

2
tT (Υ + Σ)t)

Φm(0;Cµ+ d+ CΥt, CΥCT )

Φm(0;Cµ+ d, CΥCT )
,

which is the m.g.f of HSNd(µ,d,Σ,Υ, C), the hierarchical skew-normal distribution

defined by Liseo and Loperfido (2003).
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2.4.2 Cumulants and Moments

The cumulants and moments can be obtained from the m.g.f defined in (2.8). We deduce

first two moments of SUN random vector. The third and fourth moments can also be derived

accordingly. However, the mathematical espressions for these moments are too complex to

be of any practical use. Therefore we will not derive these moments.

Mean and Variance of SUN random vector

The mean and variance for the SUN random vector is computed from (2.8) by successive

differentiation with respect to the vector t. Taking first derivative with respect to t, we get,

∂

∂t
My(t) = (µ+ Ωt)exp (µT t+

1

2
tTΩt)

Φm(γ + ∆Tωt; Γ)

Φm(γ; Γ)
+

Φ∗m(γ + ∆Tωt; Γ)

Φm(γ; Γ)
exp (µT t+

1

2
tTΩt)

where

Φ∗m(γ + ∆Tωt; Γ) =
∂

∂t
Φm(γ + ∆Tωt; Γ)

and

Φ∗m(γ; Γ) =
∂

∂t
Φm(γ + ∆Tωt; Γ) t=0

Therefore,

Ey =
∂

∂t
My(t) t=0 = µ+

Φ∗m(γ; Γ)

Φm(γ; Γ)
(2.9)

Now using lemma B.1 given in the Appendix of Dominguez-Molina et al (2001) we have

Φ∗m(γ; Γ) =
d∑
i=1

m∑
j=1

(∆Tω)ij Φ{j}m (γ; Γ) ei,

where (∆Tω)ij is the (i,j) element of the matrix ∆Tω, ei is a d× 1 vector with one in the ith

position and zero elsewhere, and

Φ{j}m (γ; Γ) = φ(γj; Γij) Φm−1(γ−j; Γ|γj)
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where γ−j is the vector γ without the jth element.

Next taking second derivative of My(t) in (2.8) we get,

∂

∂t∂tT
My(t)

= (µ+ Ωt)

[
exp (µT t+

1

2
tTΩt)

Φ∗Tm (γ + ∆Tωt; Γ)

Φm(γ; Γ)
+ exp (µT t+

1

2
tTΩt)×

Φm(γ + ∆Tωt; Γ)

Φm(γ; Γ)
(µ+ Ωt)T

]
+

Φm(γ + ∆Tωt; Γ)

Φm(γ; Γ)
exp (µT t+

1

2
tTΩt)Ω +

Φ∗∗m (γ + ∆Tωt; Γ)

Φm(γ; Γ)
exp (µT t+

1

2
tT ) +

Φ∗m(γ + ∆Tωt; Γ)

Φm(γ; Γ)
exp (µT t+

1

2
tT )(µ+ Ωt)T ,

where Φ∗Tm (γ + ∆Tωt; Γ) =
[
Φ∗m(γ + ∆Tωt; Γ)

]T
and

Φ∗∗m (γ + ∆Tωt; Γ) =
∂

∂t∂tT
(t)Φm(γ + ∆Tωt; Γ).

Hence,

∂

∂t∂tT
My(t) t=0 = µ

Φ∗Tm (γ; Γ)

Φm(γ; Γ)
+ µµT + Ω +

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
+

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
µT .

and we get,

EyyT = Ω + µµT + µ
Φ∗Tm (γ; Γ)

Φm(γ; Γ)
+

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
µT +

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
. (2.10)

Finally from (2.9) and (2.10) the variance of the SUN density is

V ar(y) = EyyT − (Ey)(Ey)T

= Ω + µµT + µ
Φ∗Tm (γ; Γ)

Φm(γ; Γ)
+

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
µT +

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
−
[
µ+

Φ∗m(γ; Γ)

Φm(γ; Γ)

][
(µ+

Φ∗m(γ; Γ)

Φm(γ; Γ)

]T
= Ω +

Φ∗∗m (γ; Γ)

Φm(γ; Γ)
− Φ∗m(γ; Γ)

Φm(γ; Γ)

Φ∗Tm (γ; Γ)

Φm(γ; Γ)
.
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The variance of the SUN density can also be expressed as

V ar(y) = Ω +
Φ∗∗m (γ; Γ)

Φm(γ; Γ)
− E(y − µ)E(y − µ)T , (2.11)

where

Φ∗∗m (γ; Γ) =
∂

∂t∂tT
Φm(γ + ∆Tωt; Γ) t=0.

Example 2.4.1. Consider the univariate SUN density SUN1,1(µ, 0, w,Ω∗), where

Ω∗ =

g2 δ

δ v


is the correlation matrix. Then the corresponding density is given by

f(y) = 2φ(y;µ, σ2)Φ(δv−1w−1(y − µ); g2 − δ2/v−1).

The mean of this density from (2.9) is

Ey = µ+ 2Φ∗1(0; g2) = µ+ 2 δw
1√
2πg

= µ+
δw

g

√
2

π
, (2.12)

where Φ∗1(0; g2) = ∂
∂t

Φ1(δ; g2) t=0 = δwφ(0; g2) = δw 1√
2πg
.

The variance of the density from (2.11) is

V ar(y) = σ2 + 2Φ∗∗1 (0; g2)− (2Φ∗1(0; g2))2 = σ2 −

(
δw

g

√
2

π

)2

= σ2 − 2

π

δ2 w2

g2
, (2.13)

where

Φ∗∗1 (0; g2) =
∂

∂2t
Φ1(δwt; g2) t=0.

Note: Taking δ = 0 we get the mean and variance of the MND1(µ, σ2).
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Cumulants and moments in a special case

As mentioned in the previous section deriving moments from (2.8) could be cumbersome.

The difficulty arises because of the absence of the analytical representations for the derivative

of Φm(.; .). The derivation of cumulants and moments is simplified when Γ is taken as

Γ = diag(τ 2
1 , ....., τ

2
m). With Γ defined as diag(τ 2

1 , ....., τ
2
m), the cumulant generating function

from (2.1) is given as

K(t) = logM(t) = µT t+
1

2
tTΩt+

m∑
j=1

logΦ(τ−1
j γj + τ−1

j δ
T
.jωt)− logΦ(γ; Γ),

where δ.1, ....., δ.m are the columns of ∆. Now taking derivative with respect to t ∈ <d we

get:

K
′
(t) = µ+ Ωt+

m∑
j=1

Φ−1(τ−1
j γj + τ−1

j δ
T
.jωt)φ(τ−1

j γj + τ−1
j δ

T
.jωt)τ

−1
j ωδ.j.

Hence the first cumulant (or first raw moment) or mean of SUN distribution is obtained as

κ1 = M1 = E(y) = K
′
(0) = µ+

m∑
j=1

Φ−1(τ−1
j γj)φ(τ−1

j γj)τ
−1
j ωδ.j.

Next, taking second derivative we get:

K
′′
(t) = Ω+

m∑
j=1

Φ(τ−1
j γj + τ−1

j δ
T
.jωt)φ

′
(τ−1
j γj + τ−1

j δ
T
.jωt)− [φ(τ−1

j γj + τ−1
j δ

T
.jωt)]

2

[Φ(τ−1
j γj + τ−1

j δ
T
.jωt)]

2
τ−2
j ωδ.jδ

T
.jω.

Therefore, the 2nd cumulant(or 2nd central moment) or variance of SUN is

κ2 = m2 = var(y) = K
′′
(0) = Ω +

m∑
j=1

Φ(τ−1
j γj)φ

′
(τ−1
j γj)− [φ(τ−1

j γj]
2

[Φ(τ−1
j γj)]2

τ−2
j ωδ.jδ

T
.jω.

Now suppose, ζr(x) is the rth derivative of ζ0(x) = log{Φ(x)}. Then the mean and
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variance of SUN density can be expressed respectively as:

E(y) = µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j, (2.14)

and

V ar(y) = Ω +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j ωδ.jδ

T
.jω. (2.15)

Thus we have the following two theorems:

Theorem 2.4.2. Let y be a random vector with a unified skew normal distribution,

y ∼ SUNd,m(µ, γ, ω̄,Ω∗), where

Ω∗ =

Γ ∆T

∆ Ω̄

.
Suppose Γ = diag(τ 2

1 , ....., τ
2
m). Then the first two central moments of y are:

(a) m1 =
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j

(b) m2 = Ω +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j ωδ.jδ

T
.jω.

Corollary 2.4.2. Let y be a random vector with a unified skew normal distribution,

y ∼ SUNd,m(µ,0, ω̄,Ω∗), where

Ω∗ =

Im ∆T

∆ Ω̄

 .

Then the first two central moments of y are:

(a) m1 =

√
2

π
ω∆1m.

(b) m2 = Ω− 2

π
ω∆∆Tω.
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Proof. With γ = 0 and Γ = Im, it could be easily shown that ζ1(τ−1
j γj) =

√
2
π

and

ζ2(τ−1
j γj) = − 2

π
. The proof then follows from plugging in these values in Theorem 2.4.2.

Theorem 2.4.3. Let y be a random vector with a unified skew normal distribution,

y ∼ SUNd,m(µ, γ, ω̄,Ω∗), where

Ω∗ =

Γ ∆T

∆ Ω̄

.
Suppose Γ = diag(τ 2

1 , ....., τ
2
m). Then the first two raw moments of y are:

(a) M1 = µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j.

(b) M2 = Ω +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j ωδ.jδ

T
.jω + (µ+

m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

(µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

T .

Note that taking δ.j = 0 for all j in (a) and (b) we obtain the moments of multivariate

normal density(MND).

Corollary 2.4.3. Let y be a random vector with a unified skew normal distribution,

y ∼ SUNd,m(µ,0, ω̄,Ω∗), where

Ω∗ =

Im ∆T

∆ Ω̄

 .

Then the first two raw moments of y are:

(a) M1 = µ+

√
2

π
ω∆1m.

(b) M2 = Ω− 2

π
ω∆∆Tω +

(
µ+

√
2

π
ω∆1m

)(
µ+

√
2

π
ω∆1m

)T
.

Proof. The proof follows from Corollary 2.4.2 using the relationship between raw moments

and central moments.
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2.4.3 Linear Transformation

The SUN density is closed under translations and sclar multiplications. Thus

• If y ∼ SUNd,m(µ,γ, ω̄,Ω∗) and a be a real vector of dimension d, then

y + a ∼ SUNd,m(µ+ a,γ, ω̄,Ω∗).

• If c ∈ < then

cy ∼ SUNd,m(cµ,γ, cω̄,Ω∗).

The above two results can be easily verified by m.g.f given in (2.8). Next we establish

two most important properties of SUN density namely:

• The SUN family is closed under the full row rank linear transformation

• The SUN family is closed under the full column rank linear transformation (defining

singular SUN density).

The first property, the closure under the linear transformations property is useful to establish

joint distribution of the independent random variables from the same family and to establish

closure under marginalization, conditional distribution and summation properties of SUN

density.

Theorem 2.4.4. Let y ∼ SUNd,m(µ,γ, ω̄,Ω∗) and A be an n× d (n ≤ d) matrix with rank

n. Then

Ay ∼ SUNn,m(µA,γ, ω̄A,Ω
∗
A),

where

µA = Aµ, ω̄A = ωA1n, ωA = AωAT Ω∗A =

 Γ ∆T
A

∆A Ω̄A

, ∆A = (AωAT )−1Aω∆,

Ω̄A = (AωAT )−1AΩAT (AωAT )−1 and ΩA = AΩAT = ωAΩ̄AωA.



26

Proof. For t ∈ <n the m.g.f of Ay is given by:

MAy(t) = My(AT t) = exp (µTAT t+
1

2
tTAΩAT t)

Φm(γ + ∆TωAT t; Γ)

Φm(γ; Γ)
.

Now by noting that:

Φm(γ + ∆TωAT t; Γ) = Φm

(
γ +

(
(AωAT )−1Aω∆

)T
(AωAT )t; Γ

)

and using µA, ω̄A, ΩA, ∆A, and Ω∗A as defined above, we obtain:

MAy(t) = exp (µTAt+
1

2
tTΩAt)

Φm(γ + ∆T
AωAt; Γ)

Φm(γ; Γ)
, (2.16)

which is the m.g.f of SUNn,m(µA,γ, ω̄A,Ω
∗
A).

Remark 2.4.1. If n = 1 in Theorem 2.4.4 and if a is a non-zero vector in <d then

aTy ∼ SUN1,m(µa,γ, ω̄a,Ω
∗
a),

where

µa = aTµ, ω̄a = aTωa, ∆a = (aTωa)−1aTω∆,

Ω̄a = (aTωa)−1aΩaT (aTωa)−1, Ωa = aTΩa, and Ω∗a =

 Γ ∆T
a

∆a Ω̄a

.
As mentioned before, the result in Theorem 2.4.4 remains true for most of the earlier

versions of skew normal models. As an example, the following corollary shows that closed

skew normal distribution (CSN) when written as a special case of SUN distribution, is closed

under the linear transformation.

Corollary 2.4.4. With the reparameterization scheme γ = −ν, Ω̄ = Σ, ∆ = ΣDT , Γ =
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Ψ +DΣDT ,

Ay ∼ CSNn,m(µA,ΣA, DA,ν,ΨA),

where y ∼ CSNn,m(µ,Σ, D,ν,Ψ) and µA = Aµ, ΣA = AΣAT , DA = DΣAT (AΣAT )−1

and

ΨA = Ψ +DΣDT −DΣAT (AΣAT )−1(AΣDT ).

Proof. Using µA,ΣA, DA,ν,ΨA as defined above and taking γ = −ν, Ω̄ = Ω = Σ that is ω =

Id, ∆ = ΣDT , Γ = Ψ +DΣDT in (2.16) we get,

MAy(t) = exp(µTAT t+
1

2
tTAΣAT t)

Φm(DΣAT t; ν,Ψ +DΣDT )

Φm(0; ν,Ψ +DΣDT )
. (2.17)

Now the numerator in the fraction of the equation(2.17) can be written as,

Φm(DΣAT (AΣAT )−1(AΣAT )t;ν,Ψ +DΣDT −DΣAT (AΣAT )−1(AΣDT ) +

DΣAT (AΣAT )−1(AΣAT )(AΣAT )−1(AΣDT ))

= Φm(DAΣAt;ν,ΨA +DAΣAD
T
A).

and the denominator can be written as

Φm(0; ν,Ψ +DΣDT −DΣAT (AΣAT )−1(AΣDT ) +

DΣAT (AΣAT )−1(AΣAT )(AΣAT )−1(AΣDT ))

= Φm(0;ν,ΨA +DAΣAD
T
A).

Therefore (2.17) becomes

MAy(t) = exp(µTAt+
1

2
tTΣAt)

Φm(DAΣAt;ν,ΨA +DAΣAD
T
A)

Φm(0;ν,ΨA +DAΣADT
A)

,

which is the m.g.f of CSNn,m(µA,ΣA, DA,ν,ΨA).
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Theorem 2.4.5. ( The singular SUN distribution)

Let y ∼ SUNd,m(µ,γ, ω̄,Ω∗) and A be an n× d (n > d) matrix with rank d. Then

Ay ∼ SUNn,m(µA,γ, ω̄A,Ω
∗
A),

where

µA = Aµ, Ω∗A =

 Γ ∆T
A

∆A Ω̄A

, ∆A = A(ATA)−1∆

and

ωA = AωAT , ω̄A = ωA1d, ΩA = AΩAT = ωAΩ̄AωA.

Proof. For t ∈ <n the m.g.f of Ay is given by:

MAy(t) = My(AT t)

= exp (µTAT t+
1

2
tTAΩAT t)

Φm(γ + ∆TωAT t; Γ)

Φm(γ; Γ)
.

By noting that,

Φm(γ + ∆TωAT t; Γ) = Φm

(
γ +

(
A(ATA)−1∆

)T
(AωAT )t; Γ

)

and using µA, Ω∗A, ∆A, and ΩA as defined above we obtain:

MAy(t) = exp (µTAt+
1

2
tTΩAt)

Φm(γ + ∆T
AωAt; Γ)

Φm(γ; Γ)
, (2.18)

which is the m.g.f of singular SUNn,m(µA,γ, ω̄A,Ω
∗
A).

Corollary 2.4.5. (Singular closed skew normal density) With the reparameterization scheme

γ = −ν, Ω̄ = Σ, ∆ = ΣDT , Γ = Ψ +DΣDT ,

Ay ∼ CSNn,m(µA,ΣA, DA,ν,Ψ),
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where y ∼ CSNn,m(µ,Σ, D,ν,Ψ) and µA = Aµ, ΣA = AΣAT , DA = D(ATA)−1AT .

Proof. Using µA,ΣA, DA as defined above and taking γ = −ν, Ω̄ = Ω = Σ that is ω =

Id, ∆ = ΣDT , Γ = Ψ +DΣDT in (2.19) we get,

MAy(t)

= exp(µTAT t+
1

2
tTAΣAT t)

Φm

(
− ν +

(
A(ATA)−1ΣDT

)T
AAT t; Ψ +DΣDT

)
Φm(−ν; Ψ +DΣDT )

= exp(µTAT t+
1

2
tTAΣAT t)

Φm

(
DΣAT t;ν,Ψ +DΣDT

)
Φm(0;ν,Ψ +DΣDT )

= exp(µTAT t+
1

2
tTAΣAT t) ×

Φm

(
D(ATA)−1A(AΣAT )t;ν,Ψ +D(ATA)−1AT (AΣAT )A(ATA)−1DT

)
Φm(0;ν,Ψ +D(ATA)−1AT (AΣAT )A(ATA)−1DT )

= exp(µTAt+
1

2
tTΣAt)

Φm(DAΣAt;ν,Ψ +DAΣAD
T
A)

Φm(0;ν,Ψ +DAΣADT
A)

,

which is the m.g.f of singular CSNn,m(µA,ΣA, DA,ν,Ψ).

2.4.4 Characterization

In the following theorem a characterization for the unified multivariate skew normal

distribution is provided which is similar to the characterization of multivariate normal dis-

tribution.

Theorem 2.4.6. The vector y ∼ SUNd,m(µ,γ, ω̄,Ω∗) if, and only if , aTy ∼ SUN1,m(µa,γ, ω̄a,Ω
∗
a)

, for every non-null vector a ∈ <d, where µa,γ, ω̄a,Ω
∗
a are given in Remark 2.4.1.

Proof. We will only prove the sufficiency since the proof of the necessity is straightforward.

Note that, if aTy ∼ SUN1,m(µa,γ, ω̄a,Ω
∗
a) for every non-zero vector a, then for t ∈ < using

(2.8) we obtain,

MaTy(t) = exp (µat+
1

2
t2Ωa)

Φm(γ + ∆T
aωat; Γ)

Φm(γ; Γ)
.
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Taking t = 1 and using the identity MaTy(t) = My(at), we get

My(a) = exp (µa +
1

2
Ωa)

Φm(γ + ∆T
aωa; Γ)

Φm(γ; Γ)
.

Using µa, ωa, Ωa, as defined in remark 2.4.1 and observing that

∆T
aωa = ∆Tωa(aTωa)−1(aTωa) = ∆Tωa,

the expression for My(a) reduces to

My(a) = exp (aTµ+
1

2
aTΩa)

Φm(γ + ∆Tωa; Γ)

Φm(γ; Γ)
. (2.19)

Since a is arbitrary, the right-hand side of (3.4) is then the m.g.f of y ∼ SUNd,m(µ,γ, ω̄,Ω∗)

and by (2.8) the proof is complete.

2.4.5 Marginal and Conditional Distributions

The SUN family is closed under the marginalization, conditional distributions and joint

distribution of independent random variables in this family. These three results are stated

and established as follows:

Theorem 2.4.7. Let y be a random vector distributed as SUNd,m(µ,γ, ω̄,Ω∗) and be par-

titioned as y =

y1

y2

 k

d− k
. Consider a k × d matrix A = (Ik 0), with a k × k identity

matrix Ik and a k × (d − k) zero matrix 0. Then the marginal distribution of y1 = Ay is

SUNk,m(µ1,γ, ω̄1,Ω
∗
1),

where µ =

µ1

µ2

 k

d− k
, ω̄ =

ω̄1

ω̄2

 k

d− k
, ∆ =

∆1

∆2

 k

d− k
,
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Ω∗1 =

 Γ ∆T
1

∆1 Ω̄11

, and Ω̄ =

Ω̄11 Ω̄12

Ω̄21 Ω̄22

 k

d− k
.

Proof. By Theorem 2.4.4,

y1 = Ay ∼ SUNn,m(µA,γ, ω̄A,Ω
∗
A).

Now,

µA = Aµ = (Ik 0)

µ1

µ2

 = µ1, ω̄A = ωA1d = AωAT1d = ω11d,

∆A = (AωAT )−1Aω∆ = ω−1
1 ω1∆1 = ∆1,

Ω̄A = (AωAT )−1AΩAT (AωAT )−1 = ω−1
1 Ω11ω

−1
1 = Ω̄11.

Therefore,

y1 = Ay is SUNk,m(µ1,γ, ω̄1,Ω
∗
1), where

Ω∗1 =

 Γ ∆T
1

∆1 Ω̄11

.

We provide an alternative proof here as follows:

For t ∈ <k the m.g.f of Ay is given by,

MAy(t) = My(AT t)

= exp (µTAT t+
1

2
tTAΩAT t)

Φm(γ + ∆TωAT t; Γ)

Φm(γ; Γ)
.



32

Since, A = (Ik 0) and considering the partion above,

µTAT = µT1 , AΩAT = Ω11, ∆TωAT = ∆T
1 ω1.

Then

MAy(t) = My1
(t) = exp (µT1 t+

1

2
tTΩ11t)

Φm(γ + ∆T
1 ω1t; Γ)

Φm(γ; Γ)
,

which is the m.g.f of SUNk,m(µ1,γ, ω̄1,Ω
∗
1).

Corollary 2.4.6. With the reparameterization scheme γ = −ν, Ω̄ = Σ, ∆ = ΣDT , Γ =

Ψ +DΣDT ,

y1 ∼ CSNk,m(µ1,Σ11, D
∗,ν,Ψ∗),

where

D∗ = D1 +D2Σ21Σ−1
11 , Ψ∗ = Ψ +D2Σ22.1D

T
2 and Σ22.1 = Σ22 − Σ21Σ−1

11 Σ12.

The parameters µ1, Σ11, Σ22, Σ12, Σ21 come from the partition

µ =

µ1

µ2

 k

d− k
, D =

D1

D2

 k

d− k
, Σ =

Σ11 Σ12

Σ21 Σ22

 k

d− k
.

Theorem 2.4.8. Let y be a random vector distributed as y ∼ SUNd,m(µ,γ, ω̄,Ω∗). Consider

two subvectors y1 and y2, where yT = (yT1 yT2 ), y1 is k dimensional. Suppose µ, ω̄, ∆

and Ω̄ are partitioned as in above Theorem. Then the conditional distribution of y1 given

y2 = y10 is SUNk,m(µ1.2,γ1.2, ω̄1,Ω
∗
11.2), where

µ1.2 = µ1 + Ω12Ω−1
22 (y10 − µ2),γ1.2 = γ + ∆T

2 Ω̄−1
22 ω

−1
2 (y10 − µ2), Ω̄11.2 = Ω̄11 − Ω̄12Ω̄−1

22 Ω̄21,

Ω11.2 = ω1Ω̄11.2ω1 = Ω11−Ω12Ω−1
22 Ω21,with Ωij = ωiΩ̄ijωj, i, j = 1, 2, ∆1.2 = ∆1−Ω̄12Ω̄−1

22 ∆2,
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Γ1.2 = Γ−∆T
2 Ω̄−1

22 ∆2 and Ω∗1.2 =

Γ1.2 ∆T
1.2

∆1.2 Ω̄11.2

.
Proof. The proof follows from direct calculations as shown in Arellano-Valle and Azzalini

(2006) page 571.

2.4.6 Joint Distribution of Independent SUN Random Vectors

In this section we will show that if we have a collection of n independent SUN random

variables then the joint distribution of the n random variables is again SUN distributed

random variable. As mentioned by Gupta et al (2004), this property does not hold for the

multivariate skew normal distribution defined by Azzallini and Dalla Valle (1996).

Theorem 2.4.9. Suppose y1, . . . ,yn are independent random vectors with

yi ∼ SUNdi,mi
(µi,γi, ω̄i,Ω

∗
i ). Then the joint distribution of y1, . . . ,yn is given by

y = (yT1 , . . .y
T
n )T ∼ SUNd†,m†(µ

†,γ†, ω̄†,Ω∗†),

where

d† =
n∑
i=1

di, m† =
n∑
i=1

mi, µ† = (µT1 , . . .µ
T
n )T , γ† = (γT1 , . . .γ

T
n )T , ω̄† = (ω̄T1 , . . . ω̄

T
n )T ,

and

ω† =
n⊕
i=1

ωi Ω† =
n⊕
i=1

Ωi, Ω̄† =
n⊕
i=1

Ω̄i, Γ† =
n⊕
i=1

Γi, ∆† =
n⊕
i=1

∆i, Ω∗† =

Γ† ∆†
T

∆† Ω̄†

.
Proof. For y = (yT1 , . . .y

T
n )T , yi ∈ <di , the density function of y is given by,

g(y) =
n∏
i=1

fdi,mi
(yi;µi,γi, ω̄i,Ω

∗
i )
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=
n∏
i=1

φdi
(yi − µi; Ωi)

Φmi
(γi + ∆T

i Ω̄i
−1
ω−1
i (yi − µi); Γi −∆T

i Ω̄i
−1

∆i)

Φmi
(γi; Γi)

=
n∏
i=1

φdi
(yi − µi; Ωi)

∏n
i=1 Φmi

(γi + ∆T
i Ω̄−1

i ω−1
i (yi − µi); Γi −∆T

i Ω̄i
−1

∆i)∏n
i=1 Φmi

(γi; Γi)

= φd†(y − µ†; Ω†)
Φm†(γ

† + ∆†
T
Ω̄†
−1
ω†
−1

(y − µ†); Γ† −∆†
T
Ω̄†
−1

∆†)

Φm†(γ†; Γ†)
,

where

n⊕
i=1

(Γi −∆T
i Ω̄i

−1
∆i) =

n⊕
i=1

Γi −
n⊕
i=1

(∆T
i Ω̄i

−1
∆i)

=
n⊕
i=1

Γi − (
n⊕
i=1

∆T
i )(

n⊕
i=1

Ω̄i
−1

)(
n⊕
i=1

∆i)

= Γ† −∆†
T

Ω̄†
−1

∆†.

Corollary 2.4.7. If y1, . . . ,yn are independent and identically distributed (iid) random

vectors from the SUNd,m(µ,γ, ω̄,Ω∗) distribution, then the joint distribution of y1, . . . ,yn

is

Y = (yT1 , . . .y
T
n )T ∼ SUNd†,m†(µ

†,γ†, ω̄†,Ω∗†),

where

d† = nd, m† = nm, µ† = 1n ⊗ µ, γ† = 1n ⊗ γ, ω̄† = 1n ⊗ ω̄,

and

Ω† = In ⊗ Ω, Ω̄† = In ⊗ Ω̄, ∆† = In ⊗∆, Γ† = In ⊗ Γ, Ω∗† =

Γ† ∆†
T

∆† Ω̄†

.
In the above two theorems, we showed that the SUN family is closed under the linear

transformation, and the joint distribution of random sample belongs to the same family.

These two properties will help us to obtain an important property of SUN density: the sum
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of independent SUN distributions again follows the SUN distribution.

2.4.7 Sum of Independent SUN Random Vectors

In this section we present the main result regarding the additive properties of SUN

random vector. More precisely, we show that the sum of independent SUN random vectors

is again a SUN random vector.

Theorem 2.4.10. If y1, . . . ,yn are independent random vectors with

yi ∼ SUNd,mi
(µi,γi, ω̄i,Ω

∗
i ), i = 1, . . . , n, then

n∑
i=1

yi ∼ SUNd,m∗(µ
∗,γ∗, ω̄∗,Ω∗∗),

where

m∗ =
n∑
i=1

mi, µ∗ =
n∑
i=1

µi, γ∗ = (γT1 , . . .γ
T
n )T , ω∗ =

n∑
i=1

ωi, ω̄∗ = ω∗1nd, Ω∗ =
n∑
i=1

Ωi

and

Γ∗ =
n⊕
i=1

Γi, ∆∗ = (1n ⊗ ω−1
d )(

n⊕
i=1

ωi∆i), Ω∗∗ =

Γ∗ ∆∗T

∆∗ Ω̄∗

.
Proof. Let y = (yT1 , . . .y

T
n )T and A = 1Tn ⊗ Id. Note that

∑n
i=1 yi = Ay, where y is a nd×1

vector and A is a d× nd matrix of rank d. Then by Theorems 2.4.4 and 2.4.9,

Ay ∼ SUNd,nm(µ†A,γ
†
A, ω̄A

†,Ω∗†A ),

where

µ†A = Aµ†, γ†A = γ†, ω†A = Aω†AT , ω̄A
† = ω†A1d, Ω†A = AΩ†AT ,
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and

Ω̄†A = (Aω†AT )−1Ω†A(Aω†AT )−1, Γ†A = Γ†, ∆†A = (Aω†AT )−1Aω†∆†, Ω∗†A =

Γ†A ∆†
T

A

∆†A Ω̄†A

,
where µ†, γ†, ω̄†, Ω̄†, ∆† and Γ† are given in theorem 2.4.9. Now it is easily observed that,

Aµ† =
n∑
i=1

µi, Aω†AT =
n∑
i=1

ωi, AΩ†AT =
n∑
i=1

Ωi

and,

∆†A =(
n∑
i=1

ωi)
−1A(

n⊕
i=1

ωi)(
n⊕
i=1

∆i)

= (
n∑
i=1

ωi)
−1A(

n⊕
i=1

ωi∆i)

= (1n ⊗ ω−1
d )(

n⊕
i=1

ωi∆i).
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CHAPTER 3

QUADRATIC FORMS IN UNIFIED

SKEW NORMAL RANDOM

VECTOR

3.1 Introduction

There is a rich literature on the distribution of quadratic form on the multivariate normal

random vector. Earlier works were due to Cochran (1934), Craig (1943) and Rao (1973a).

Recent references includes the book “Quadratic Forms in Random Variable” by Mathai and

Provost (1992). The quadratic forms of multivariate skew normal distribution was studied

by Genton et al (2001), Loperfido (2001), Gupta and Huang (2002), Huang and Chen (2006),

and most recently by Wang, Li and Gupta (2009). In this chapter we study the quadratic

forms under unified skew normal settings. We will explore their distributions, moments and

conditions under which quadratic forms are independent.
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3.2 Moment Generating Function of a Quadratic Form

of SUN Random Vector

Theorem 3.2.1. Let y ∼ SUNd,m(µ,γ, ω̄,Ω∗). Let A be a d×d symmetric matrix. Consider

the quadratic form, Q(y) = yTAy. Then the m.g.f of Q is

MQ(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆)

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)
. (3.1)

Proof. By the definition of m.g.f for t ∈ < we have,

MQ(t) = E(ety
TAy)

= C

∫
<d

ety
TAyφd(y − µ; Ω)Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆) dy

= K

∫
<d

ety
TAy− 1

2
(y−µ)T Ω−1(y−µ)Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆) dy.

By expanding (y − µ)TΩ−1(y − µ) and rearranging the terms we have,

tyTAy − 1

2
(y − µ)TΩ−1(y − µ)

= −1

2
µTΩ−1µ+

1

2
+ µTAΩ(Id − 2tAΩ)−1Ω−1µ)− 1

2
(y − a)TΩ−1 − 2tA)−1(y − a),

where

a = (Ω−1 − 2tA)−1Ω−1µ.

Therefore

MQ(t)

=
|Id − 2tAΩ|− 1

2

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)

∫
<d

φd

(
y − (Ω−1 − 2tA)−1Ω−1µ;

(Ω−1 − 2tA)−1
)
× Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆) dy
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=
|Id − 2tAΩ|− 1

2

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)
EU [Φm(γ + ∆T Ω̄−1ω−1U ; Γ−∆T Ω̄−1∆)]

where

U ∼ Nd(0, (Ω
−1 − 2tA)−1).

With the lemma (2.4.1) we get,

MQ(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1(Ω−1 − 2tA)−1ω
−1

Ω̄−1∆)

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)
. (3.2)

Noting that

(Ω−1 − 2tA)−1 = Ω
∞∑
j=0

(2t)j(AΩ)j

for ||2tAΩ|| < 1, where ||.|| is the matrix norm. The last term in MQ(t) becomes,

Φm(γ; Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1(Ω−1 − 2tA)−1ω
−1

Ω̄−1∆)

= Φm(γ; Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1Ωω−1Ω̄−1∆ + 2t∆T Ω̄−1ω−1Ω(Id − 2tAΩ)−1AΩω
−1

Ω̄−1∆)

= Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆).

The last identity was obtained from the relation Ω = ωΩ̄ω or equivalently Ω̄ = ω−1Ωω−1

Finally, from (3.2) we get,

MQ(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆)

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)
.

Corollary 3.2.1. Let y ∼ SUNd,m(µ,γ, ω̄,Ω∗). Let A be a d × d symmetric matrix and

Q(y) = yTAy. Then the following results can be deduced from equation (3.1)
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(i) Suppose µ = 0, then the m.g.f of Q becomes

MQ(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆)

Φm(γ; Γ)
, Ω−1 − 2tA > 0, t ∈ <.

(ii) Suppose µ = 0, and Aω∆ = 0d×m, then the m.g.f of Q becomes

MQ(t) = |Id − 2tAΩ|−
1
2 , Ω−1 − 2tA > 0, t ∈ <,

which is the m.g.f of yTAy where y ∼ Nd(0,Ω) and A is a d × d symmetric matrix. Con-

sequently, properties of Q can be showed by using known results of the multivariate normal

distribution.

(iii) Suppose µ = 0, Aω∆ = 0d×m and AΩ=diag(τ1, ....., τd), then the m.g.f of Q becomes

MQ(t) =
d∏
j=1

(1− 2tτj)
−1/2, t ∈ <.

Hence yTAy ∼
∑d

j=1 τjXj,where Xj ∼ χ2
1, j = 1, . . . , d are independently and identically

distributed.

(iv) Suppose µ = 0, and Aω∆ = 0d×m, and A =Ω−1 such that AΩ = Ω−1Ω = I, then the

m.g.f of Q = yTΩ−1y becomes

MQ(t) = (1− 2t)−d/2, t ∈ <.

Hence,

yTΩ−1y ∼ χ2
d.

(v) Suppose µ = 0 and ω̄ = 1d, then the m.g.f of Q becomes

MQ(t) =
|Id − 2tAΩ̄|− 1

2 Φm(γ; Γ + 2t∆T (Id − 2tAΩ̄)
−1
A∆)

Φm(γ; Γ)
,
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which is the m.g.f obtained by Arellano-Valle and Azzalini (2006). Taking A∆ = 0 and

substituting A=Ω̄−1 yields

yT Ω̄−1y ∼ χ2
d.

3.3 Independence of a Linear Form and a Quadratic

Form

In this section we study the conditions under which a linear function of SUN random

vector is independent of its quadratic form. We also give conditions under which the two

quadratic forms are independent.

Theorem 3.3.1. Suppose y ∼ SUNd,m(0,γ, ω̄,Ω∗). Then for h ∈ <d, the linear form hTy

and the quadratic form yTAy are independent if and only if AΩh = 0 and Aω∆ = 0.

Proof. We first derive the joint m.g.f of hTy and yTAy. For t, s ∈ <, the joint m.g.f of hTy

and yTAy is

M(t, s) =
1

Φm(γ; Γ)

∫
<d

exp{t hTy+s yTAy}φd(y; Ω)Φm(γ+∆T Ω̄
−1
ω−1y; Γ−∆T Ω̄

−1
∆) dy

= K exp{−1

2
(yTΩ−1y − 2t hTy − 2s yTAy)}Φm(γ + ∆T Ω̄−1ω−1y; Γ−∆T Ω̄−1∆) dy.

Now,

exp{−1

2
(yTΩ−1y − 2t hTy − 2s yTAy)}

= exp{−1

2
(yT (Ω−1 − 2sA)−1y − 2t hTy)}

= exp{−1

2
(y − t(Ω−1 − 2sA)−1h)T (Ω−1 − 2sA)×

(y − t(Ω−1 − 2sA)−1h)− t2 hT (Ω−1 − 2sA)−1)h)}

= exp{1

2
t2 hT (Ω−1 − 2sA)−1)h} ×

exp{−1

2
(y − t(Ω−1 − 2sA)−1h)T (Ω−1 − 2sA)(y − t(Ω−1 − 2sA)−1h)}.
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Therefore,

M(t, s) =
exp{1

2
t2 hT (Ω−1 − 2sA)−1)h}|Id − 2sAΩ|− 1

2

Φm(γ; Γ)
×∫

<d

φd(y − t(Ω−1 − 2sA)−1h; (Ω−1 − 2sA)−1)Φm(γ + ∆T Ω̄−1ω−1y; Γ−∆T Ω̄−1∆) dy

=
exp{1

2
t2 hT (Ω−1 − 2sA)−1)h}|Id − 2sAΩ|− 1

2

Φm(γ; Γ)
EU [Φm(γ + ∆T Ω̄−1ω−1U ; Γ−∆T Ω̄−1∆)],

where U ∼ Nd(t(Ω
−1 − 2sA)−1h, (Ω−1 − 2sA)−1).

=
exp{1

2
t2 hT (Ω−1 − 2sA)−1)h}|Id − 2sAΩ|− 1

2

Φm(γ; Γ)
× Φm(γ + t∆T Ω̄−1ω−1(Ω−1 − 2sA)−1h;

Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1(Ω−1 − 2sA)−1ω−1Ω̄−1∆)

=
exp{1

2
t2 hT (Ω−1 − 2sA)−1)h}

|Id − 2sAΩ| 12 Φm(γ; Γ)
× Φm(γ + t∆T Ω̄−1ω−1(Ω−1 − 2sA)−1h;

Γ + 2s∆Tω(Id − 2sAΩ)−1Aω∆). (3.3)

Now, note that

(Ω−1 − 2sA)−1 = Ω
∞∑
j=0

(2s)j(AΩ)j (3.4)

for ||2sAΩ|| < 1, where ||.|| is the matrix norm. Finally from (3.3) and (3.4) it follows that

the necessary and sufficient conditions for the independence are AΩh = 0 and Aω∆ = 0.

Remark 3.3.1. Taking m = 1, ω = Id and defining ∆ = Ωα

(1+αT Ωα)
1
2

the condition Aω∆ = 0.

becomes AΩα

(1+αT Ωα)
1
2

= 0 or AΩα = 0. Thus in this special case the conditions are AΩh = 0

and AΩα = 0. These are the conditions for the independence obtained by Gupta and Huang

(2002) for the Q.F of Azzalini’s SNd(Ω,α) distribution.

To study the independence between two quadratic forms we need the following lemma:

Lemma 3.3.1. (Joint m.g.f of two quadratic forms of SUN density) Let y ∼ SUNd,m(µ,γ, ω̄,Ω∗),
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and A and B be d × d symmetric matrices. Consider the quadratic forms Q1(y) = yTAy

and Q1(y) = yTBy. Then the joint m.g.f of Q1 and Q2 is

MyTAy,yTBy(t, s)

=
|Id − 2(tA+ sB)Ω|− 1

2 Φm(γ; Γ + 2∆Tω(Id − 2(tA+ sB)Ω)−1(tA+ sB)ω∆)

exp (tµTAΩ(Id − 2(tA+ sB)Ω)−1Ω−1µ) Φm(γ; Γ)
, t, s ∈ <.

(3.5)

Proof. By definition,

MyTAy,yTBy(t, s) = E[exp(tyTAy + syTBy]

= E[exp(yT (tA+ sB)y]

= MyT (tA+sB)y(1).

The result then follows from equation (3.1).

Theorem 3.3.2. (Independence of two quadratic forms) Let y ∼ SUNd,m(0,γ, ω̄,Ω∗) and A

and B be d× d symmetric matrices. Then the quadratic forms Q1 = yTAy and Q2 = yTBy

are said to be independent if and only if AΩB = 0d×d, and Aω∆ = 0d×m = Bω∆.

Proof. From the equation (3.5), the joint m.g.f of Q1 and Q2 is

MQ1,Q2(t, s)

=
|Id − 2(tA+ sB)Ω|− 1

2 Φm(γ; Γ + 2∆Tω(Id − 2(tA+ sB)Ω)−1(tA+ sB)ω∆)

Φm(γ; Γ)
,

Id − 2(tA+ sB)Ω > 0, t, s ∈ <.

Hence the m.g.f of Q1, and Q2 are MQ1,Q2(t, 0), MQ1,Q2(0, s) and are obtained respectively

as

MQ1(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆)

Φm(γ; Γ)
, t ∈ <,
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and MQ2(s) =
|Id − 2sBΩ|− 1

2 Φm(γ; Γ + 2s∆Tω(Id − 2sBΩ)−1Bω∆)

Φm(γ; Γ)
, s ∈ <.

Now Q1 and Q2 are independent if and only if

MQ1,Q2(t, s) = MQ1(t) MQ2(s).

That is, if

|Id − 2(tA+ sB)Ω| Φm(γ; Γ + 2∆Tω(Id − 2(tA+ sB)Ω)−1(tA+ sB)ω∆)

Φm(γ; Γ)

= |Id − 2tAΩ− 2sBΩ + 4tsAΩBΩ| Φm(γ; Γ + 2t∆Tω(Id − 2tAΩ)−1Aω∆)

Φm(γ; Γ)
×

Φm(γ; Γ + 2s∆Tω(Id − 2sBΩ)−1Bω∆)

Φm(γ; Γ)
.

By imposing Aω∆ = 0d×m = Bω∆, we observe that the denominator and numerator

of the fraction in both sides of the above equation cancel out. Then it is seen that for the

remaining parts to disappear one needs condition AΩB = 0d×d

Therefore, the conditions for the independence are

(i)AΩB = 0, and (ii)Aω∆ = 0 = Bω∆.

Remark 3.3.2. The following results could be derived from Theorem 3.3.2.

(i) Recall that we retain the multivariate normal distribution taking ∆ = 0 in the SUN

density. When ∆ = 0, the only condition left in the above theorem is AΩB = 0, which is

the condition required for the independence of two quadratic forms for mltivariate normal

random vector.

(ii) Taking m = 1, ω = Id and defining ∆ = Ωα

(1+αT Ωα)
1
2

, the conditions Aω∆ = 0 = Bω∆

become AΩα = 0 and BΩα = 0. Thus in this special case conditions are AΩh = 0 and

AΩα = 0 = BΩα = 0. The first condition was obtained by Gupta and Huang (2002) for
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the independence of two Q.F of Azzalini’s SNd(Ω,α) distribution. The latter two conditions

are not necessary because the joint m.g.f for the two quadratic forms of Azzalini’s SNd(Ω,α)

distribution does not depend on α.

3.4 Expected Value of the Quadratic Form and their

Functions

Theorem 3.4.1. Let y be a random vector with a unified skew normal distribution,

SUNd,m(µ,γ, ω̄,Ω∗), where

Ω∗ =

Γ ∆T

∆ Ω̄

.
Let Γ = diag(τ 2

1 , ....., τ
2
m), A and B be two symmetric d× d matrices. Then

E(yTAy) = tr(AΩ) +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j δ

T
.jωAωδ.j + (µ+

m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

TA

(µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j),

where δ.1, ....., δ.m are the columns of ∆ and ζr(x) is the rth derivative of ζ0(x) = log{Φ(x)}.

Proof. We have the following relation from Li (1987).

E(yTAy) = tr(AM2),

where M2 is the second raw moment of y obtained from Theorem 2.4.3

= tr(A(Ω +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j ωδ.jδ

T
.jω + (µ+

m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

(µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

T ))

= tr(AΩ) +
m∑
j=1

ζ2(τ−1
j γj)τ

−2
j δ

T
.jωAωδ.j + (µ+

m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j)

T



46

A(µ+
m∑
j=1

ζ1(τ−1
j γj)τ

−1
j ωδ.j).

Corollary 3.4.1. Let y be a random vector with a unified skew normal distribution,

SUNd,m(µ,0, ω̄,Ω∗), where

Ω∗ =

Im ∆T

∆ Ω̄

 .

Let A be a symmetric d× d matrix. Then

E(yTAy) = tr[AΩ] + µTAµ+ 2

√
2

π
µTAω∆1m.

Proof. We have,

E(yTAy) = tr(AM2),

where M2 is the second raw moment of y obtained from Corollary 2.4.3

= tr

(
A
(

Ω− 2

π
ω∆∆Tω +

(
µ+

√
2

π
ω∆1m

)(
µ+

√
2

π
ω∆1m

)T))
= tr(AΩ)− 2

π
(1Tm∆Tω)A(ω∆1m) + µTAµ+√

2

π
µTAω∆1m +

√
2

π
1Tm∆TωAµ+

2

π
(1Tm∆Tω)A(ω∆1m)

= tr[AΩ] + µTAµ+ 2

√
2

π
µTAω∆1m.

When m = 1, the result in the above corollary reduces to the one obtained by Genton et

al (2001). When ∆ = 0d×m ,the result reduces to the one obtianed in case of MND.
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3.4.1 Expected Value of the Ratio of Two Quadratic Forms

The ratio of two quadratic forms is used as an estimator in economic and time series data.

The expected value of the ratio of two quadratic forms for a multivariate normal distribution

was studied by Magnus (1986) and Gupta and Kabe (1998). The expected value of the ratio

of quadratic forms for skew normal distribution has not been studied extensively. In this

section we will obtain the expected value of the ratio of two quadratic forms in SUN density.

Before presenting the main result, we present some lemmas which are needed to evaluate the

expected value.

Lemma 3.4.1. Let y be a random vector with a unified skew normal distribution,

SUNd,m(µ,γ, ω̄,Ω∗), where Ω∗ =

Γ ∆T

∆ Ω̄

 and assume µ = 0 . Then the m.g.f of

Q = yTAy is obtained as

MQ(t) =
Φm(γ; Γ + 2t∆TωAω∆)

|Id − 2tAΩ| 12 Φm(γ; Γ)
, Id − 2tAΩ > 0. (3.6)

Proof. From the equation (3.2) we have,

MQ(t) =
|Id − 2tAΩ|− 1

2 Φm(γ; Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1(Ω−1 − 2tA)−1ω
−1

Ω̄−1∆)

exp (tµTAΩ(Id − 2tAΩ)−1Ω−1µ) Φm(γ; Γ)
. (3.7)

Using µ = 0 and noting that

(Ω−1 − 2tA)−1 = Ω
∞∑
j=0

(2t)j(AΩ)j

for ||2tAΩ|| < 1, where ||.|| is the matrix norm. By ignoring 2nd and higher terms, the

multinormal c.d.f in the numerator of (3.7) becomes,

Φm(γ; Γ−∆T Ω̄−1∆ + ∆T Ω̄−1ω−1(Ω−1 − 2tA)−1ω−1Ω̄−1∆) = Φm(γ; Γ + 2t∆TωAω∆).
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The last identity was obtained from the relation Ω = ωΩ̄ω or equivalently Ω̄ = ω−1Ωω−1.

Hence from (3.7) we obtained the desired result.

Lemma 3.4.2. Let y be a random vector with a unified skew normal distribution,

SUNd,m(µ,γ, ω̄,Ω∗), where Ω∗ =

Γ ∆T

∆ Ω̄

 and assume µ = 0 . Then the joint m.g.f of

Q1 = yTAy and Q2 = yTBy is obtained as

MQ1,Q2(t) =
Φm(γ; Γ + 2∆Tω(tA+ sB)ω∆)

|Id − 2(tA+ sB)Ω| 12 Φm(γ; Γ)
, Id − 2(tA+ sB)Ω > 0. (3.8)

Proof. The proof is similar to the proof of Lemma 3.3.1.

Lemma 3.4.3. (Sawa, T. (1978))

Let y be a random vector. Consider the quadratic forms Q1 = yTAy and Q2 = yTBy,

where A and B are d×d symmetric matrices. Define R = Q1

Q2
= yTAy

yTBy
. If M(t, s) is the joint

m.g.f of Q1 and Q2, then the kth order moment of R is given by

E(Rk) =
1

Γ(k)

∫ ∞
0

sk−1
[ ∂k
∂kt

M(t,−s)
]
t=0.

Lemma 3.4.4. (Gupta and Nagar (1999))

Let t ∈ < and A be a symmetric matrix. Let the elements of A be differentiable functions

of t. Then

∂|A(t)|
∂t

= |A| · tr
[
A−1

(∂A
∂t

)]
.

Lemma 3.4.5. (Gupta and Nagar (1999))

Let A be a symmetric matrix and the elements of A be functions of t, where t ∈ <. Then

∂A−1

∂t
= −A−1

(∂A
∂t

)
A−1

Main result
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Let y be a random vector distributed as SUNd,m(µ,γ, ω̄,Ω∗), where Ω∗ =

Γ ∆T

∆ Ω̄


and assume µ = 0 . Let Q1 = yTAy and Q2 = yTBy are quadratic forms in y, where A and

B are d × d symmetric matrices. Define R = Q1/Q2 = yTAy/yTBy. Then from Lemma

3.4.3, the kth order moment of R is given by,

E(Rk) =
1

Γ(k)

∫ ∞
0

sk−1
[ ∂k
∂kt

M(t,−s)
]
t=0 ds. (3.9)

Using Lemma 3.4.2 in (3.9) we obtain,

E(Rk) =
1

Γ(k)

∫ ∞
0

sk−1

{
∂k

∂kt

[
Φm(γ; Γ + 2∆Tω(tA− sB)ω∆)

|Id − 2(tA− sB)Ω| 12 Φm(γ; Γ)

]
t=0

}
ds

=
1

Γ(k) Φm(γ; Γ)

∫ ∞
0

sk−1

{
∂k

∂kt

[
Φm(γ; Γ + 2∆Tω(tA− sB)ω∆)

|Id − 2(tA− sB)Ω| 12

]
t=0

}
ds. (3.10)

Theorem 3.4.2. Suppose k = 1 in (3.10). Then the first moment of the ratio of two

quadratic forms is obtained as

E(R) =

∫ ∞
0

|Id + 2sBΩ|−1/2

Φm(γ; Γ)

{
tr
(

(Id + 2sBΩ)−1ΩA
)

Φm(γ; Γ− 2∆TωsBω∆) +[
E∗x(2xT (Γ− 2∆TωsBω∆)−1∆TωAω∆(Γ− 2∆TωsBω∆)−1x) +

E∗x(2tr((Γ− 2∆TωsBω∆)−1∆TωAω∆))

]}
ds,

where x ∼ Nm(0,Γ− 2∆TωsBω∆).

Proof. Suppose k = 1 in (3.10). Then the first moment of R is given by,

E(R) =
1

Φm(γ; Γ)

∫ ∞
0

{
∂

∂t

[
Φm(γ; Γ + 2∆Tω(tA+ sB)ω∆)

|Id − 2(tA− sB)Ω| 12

]
t=0

}
ds. (3.11)
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Let

R = Id − 2(tA− sB)Ω = R(t, s),

V = Γ + 2∆Tω(tA− sB)ω∆ = V (t, s).

Then

∂R

∂t
= −2ΩA,

∂V

∂t
= 2∆TωAω∆.

With the notations defined above, the problem reduces to evaluate

∂

∂t

[
|R|−

1
2 Φm(γ;V )

]
t=0 =

[
Φm(γ;V )

∂

∂t
|R|−

1
2 + |R|−

1
2
∂

∂t
Φm(γ;V )

]
t=0. (3.12)

Now using lemma (3.4.4) we get,

∂

∂t
|R|−

1
2 = −1

2
|R|−

3
2
∂|R|
∂t

= −1

2
|R|−

3
2 |R| tr

(
R−1

(∂|R|
∂t

))
= −1

2
|R|−

1
2 tr(R−1(−2ΩA))

= |R|−
1
2 tr(R−1ΩA)

= |Id − 2(tA− sB)Ω|−
1
2 tr((Id − 2(tA− sB)Ω)−1ΩA).

The last identity was obtained plugging back the value of R.

Thus

∂

∂t
|R|−

1
2 t=0 = |Id + 2(tA− sB)Ω|−

1
2 tr((Id + 2sB)Ω)−1ΩA).

Next

∂

∂t
Φm(γ;V ) =

∂

∂t

∫ γ1

−∞
. . .

∫ γm

−∞

|V |− 1
2

(2π)m/2
e−

1
2
xTV −1xdx

= C

∫ γ1

−∞
. . .

∫ γm

−∞

[
|V |−

1
2
∂

∂t
e−

1
2
xTV −1x + e−

1
2
xTV −1x ∂

∂t
|V |−

1
2

]
dx
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= C

∫ γ1

−∞
. . .

∫ γm

−∞

{
|V |−

1
2 e−

1
2
xTV −1x

[
− 1

2
xT
(
− V −1

(∂V
∂t

)
V −1

)
x
]

+

e−
1
2
xTV −1x|V |−

1
2 tr(V −1∂V

∂t
)

}
dx,

where lemma 3.4.5 was used to find the derivative of V −1

=

∫ γ1

−∞
. . .

∫ γm

−∞

|V |− 1
2 e−

1
2
xTV −1x

(2π)m/2

[
xT
(
− V −1

(∂V
∂t

)
V −1

)
x+ tr(V −1∂V

∂t
)
]
dx.

Now plugging back the value of V and ∂V
∂t

in the integrand, we obtain,

∂

∂t
Φm(γ;V )

=

∫ γ

−∞

|Γ + 2∆Tω(tA− sB)ω∆|− 1
2 e−

1
2
xT (Γ+2∆Tω(tA−sB)ω∆)−1x

(2π)m/2[
xT
(
− (Γ + 2∆Tω(tA− sB)ω∆)−1

(
2∆TωAω∆

)
(Γ + 2∆Tω(tA− sB)ω∆)−1

)
x+

tr((Γ + 2∆Tω(tA− sB)ω∆)−1(2∆TωAω∆))
]
dx.

Therefore

∂

∂t
Φm(γ;V ) t=0

=

∫ γ

−∞

|Γ− 2∆TωsBω∆|− 1
2 e−

1
2
xT (Γ−2∆TωsBω∆)−1x

(2π)m/2[
xT
(

(Γ− 2∆TωsBω∆)−1
(

2∆TωAω∆
)

(Γ− 2∆TωsBω∆)−1
)
x+

tr((Γ− 2∆TωsBω∆)−1(2∆TωAω∆))
]
dx

= 2E∗x
[
xT
(

(Γ− 2∆TωsBω∆)−1
(

2∆TωAω∆
)

(Γ− 2∆TωsBω∆)−1
)
x
]

+

2E∗x
[
tr((Γ− 2∆TωsBω∆)−1(∆TωAω∆))

]
,

where x ∼ Nm(0,Γ−2∆TωsBω∆) and the notation E∗x(.) is introduced to denote incomplete

expectation of of (.).
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Therefore from (3.12)

∂

∂t

[
|R|−

1
2 Φm(γ;V )

]
t=0

=
[
Φm(γ;V )

∂

∂t
|R|−

1
2 + |R|−

1
2
∂

∂t
Φm(γ;V )

]
t=0

=
[
Φm(γ;V )|Id + 2(tA− sB)Ω|−

1
2 tr((Id + 2sB)Ω)−1ΩA) + |Id + 2sB)Ω|−

1
2{

2E∗x
[
xT
(

(Γ− 2∆TωsBω∆)−1
(

2∆TωAω∆
)

(Γ− 2∆TωsBω∆)−1
)
x
]

+

2E∗x
[
tr((Γ− 2∆TωsBω∆)−1(∆TωAω∆))

]}
.

Finally from (3.11) we obtain,

E(R) =

∫ ∞
0

|Id + 2sBΩ|−1/2

Φm(γ; Γ)

{
tr
(

(Id + 2sBΩ)−1ΩA
)

Φm(γ; Γ− 2∆TωsBω∆) +[
E∗x(2xT (Γ− 2∆TωsBω∆)−1∆TωAω∆(Γ− 2∆TωsBω∆)−1x) +

E∗x(2tr((Γ− 2∆TωsBω∆)−1∆TωAω∆))

]}
ds.
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CHAPTER 4

ESTIMATION OF PARAMETERS

OF SUN DENSITY: METHOD OF

WEIGHTED MOMENTS

4.1 Introduction

Concerning the inference of the SUN density, the first problem is how to estimate its

parameters based on a sample of observations. Although the method of maximum likelihood

estimation is very useful in various estimation problems, use of this method to estimate SUN

parameters could become cumbersome because of the large number of parameters involved

with this density. On the other hand, in order to apply the SUN density to real data, one

needs to be able to implement an easy estimation method that provides reliable estimators

for SUN parameters. Among other existing alternatives “the method of moments” (MOM)

is often used because it leads to very simple computations and provides consistent estimators

although not as efficient as the maximum likelihood estimators. In this chapter, we use the

method of moments (weighted) to estimate the parameters of SUN density. We will observe

that even the MOM estimation to the general form of SUN density may not achieve the goal



54

of estimating all its parameters. The aim could be achieved in some specific cases as would

be discussed in the subsequent sections.

4.2 Estimation Method

To estimate the SUN density parameters by MOM, we need explicit expressions for the

moments of the density in terms of unknown parameters. As pointed out in chapter 2,

the mathematical expressions for the higher moments of SUN density are very complex and

have no practical use. Moreover, estimations of the third and the fourth SUN moments

are contaminated by large variances. In addition, in the univariate case for the values of

the skewness parameter near zero, the third moment gets closer to zero and optimization

becomes complicated and sometimes even impossible. Thus use of third or fourth moments

may not produce accurate estimates. Following Flecher (2009) we will use weighted moments

method (WMOM) to estimate the unknown parameters. In order to obtain the weighted

moments we need the following results.

Lemma 4.2.1. Consider two multivariate normal cumulative distribution functions (cdf)

Φd(Ab;µ,Σ) and Φm(Bb; ν,Γ), where A and B are d× d and m× d matrices respectively, Σ

and Γ are d× d and m×m matrices, b and µ are d× 1 vectors, and ν is an m× 1 vector.

Then

Φd(Ab;µ,Σ) Φm(Bb;ν,Γ) = Φd+m(Cb;γ, V ), (4.1)

where C(d+m)×d =

A
B

, γ(d+m)×1 =

µ
ν

 and V(d+m)×(d+m) =

Σ 0

0 Γ

.
Proof.

R.H.S

= Φd+m(Cb;γ, V )
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= P (y ≤ Cb),

where

y =

y1

y2

 ∼ Nd+m


µ
ν

 ,

Σ 0

0 Γ




and y1 and y2 are independently distributed as y1 ∼ Nd(µ,Σ) and y2 ∼ Nm(ν,Γ). Therefore

P (y ≤ Cb) = P


y1

y2

 ≤
Ab
Bb


 = P (y1 ≤ Ab,y2 ≤ Bb)

= Φd(Ab;µ,Σ) · Φm(Bb;ν,Γ).

Theorem 4.2.1. Let y be a SUN random vector distributed as y ∼ SUNd,m(µ,γ, ω̄,Ω∗)

with the density

f(y) = φd(y − µ; Ω)
Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆)

Φm(γ; Γ)
,

where Ω = ωΩ̄ω, ω̄ = ω1d and Ω∗ =

Γ ∆T

∆ Ω̄

. Also let h(y) = h(y1, . . . yd) be any real

valued function such that E(h(y)) is finite, then

E(h(y) Φr
d(y; 0, Id)) =

Φrd+m(γ†; Γ†)

Φm(γ; Γ)
E(h(y†)), (4.2)

where y† follows a SUNd,rd+m(µ,γ†, ω̄,Ω∗†) with γ†T(rd+m)×1 =

(
∆T
∗µ γ

)
; ∆∗ is a d × rd

matrix defined by ∆∗ = (Id, . . . Id), ∆∗Td×(rd+m) =

∆T
∗ ωΩ̄

∆T

, Γ† =

Ird + ∆T
∗Ω∆∗ ∆T

∗ ω∆

∆Tω∆∗ Γ


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and

Ω∗† =

Γ† ∆†T

∆† Ω̄

.
Proof.

E(h(y) Φr
d(y; 0, Id))

= K

∫
<d

h(y)Φr
d(y; 0, Id)φd(y − µ; Ω)Φm(γ + ∆T Ω̄−1ω−1(y − µ); Γ−∆T Ω̄−1∆) dy,

where K−1 = Φm(γ; Γ) is a constant

= K

∫
<d

h(y)φd(y − µ; Ω)Φrd(∆
T
∗ (y − µ);−∆T

∗µ, Ird) ×

Φm(∆T Ω̄−1ω−1(y − µ);−γ,Γ−∆T Ω̄−1∆) dy,

where ∆∗ is defined as above.

Now using lemma 4.2.1 we have,

Φrd(∆
T
∗ (y − µ);−∆T

∗µ, Ird)Φm(∆T Ω̄−1ω−1(y − µ);−γ,Γ−∆T Ω̄−1∆)

= Φrd+m


 ∆T

∗

∆T Ω̄−1ω−1

 (y − µ);

−∆T
∗µ

−γ


Ird 0

0 Γ−∆T Ω̄−1∆)




= Φrd+m


∆T

∗ ωΩ̄

∆T

 Ω̄−1ω−1(y − µ);

−∆T
∗µ

−γ


Ird 0

0 Γ−∆T Ω̄−1∆)




= Φrd+m(∆†T Ω̄−1ω−1(y − µ);−γ†,Γ† −∆†T Ω̄−1∆†)

= Φrd+m(γ† + ∆†T Ω̄−1ω−1(y − µ); Γ† −∆†T Ω̄−1∆†),
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where γ†, ∆†, Γ† are defined in the statement of the theorem. Therefore,

E(h(y) Φr
d(y; 0, Id))

= K

∫
<d

h(y)φd(y − µ; Ω)Φrd+m(γ† + ∆†T Ω̄−1ω−1(y − µ); Γ† −∆†T Ω̄−1∆†) dy

=
Φrd+m(γ†; Γ†)

Φm(γ; Γ)

∫
<d

h(y)φd(y − µ; Ω)
Φrd+m(γ† + ∆†T Ω̄−1ω−1(y − µ); Γ† −∆†T Ω̄−1∆†)

Φrd+m(γ†; Γ†)
dy

=
Φrd+m(γ†; Γ†)

Φm(γ; Γ)
E(h(y†)),

where y† ∼ SUNd,rd+m(µ,γ†, ω̄,Ω∗†).

Remark 4.2.1. The following calculation was done in Theorem 4.2.1.

• Note that

Γ† −∆†T Ω̄−1∆†

=

Ird + ∆T
∗Ω∆∗ ∆T

∗ ω∆

∆Tω∆∗ Γ

 −

∆T
∗ ωΩ̄

∆T

 Ω̄−1

(
Ω̄ω∆∗ ∆

)

=

Ird + ∆T
∗Ω∆∗ ∆T

∗ ω∆

∆Tω∆∗ Γ

 −

∆T
∗Ω∆∗ ∆T

∗ ω∆

∆Tω∆∗ ∆T Ω̄−1∆



=

Ird 0

0 Γ−∆T Ω̄−1∆

 .

• The independence condition required by Lemma 4.2.1 is satisfied here as shown below

Φrd+m


∆T

∗ ωΩ̄

∆T

 Ω̄−1ω−1(y − µ);

−∆T
∗µ

−γ


Ird 0

0 Γ−∆T Ω̄−1∆)



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= Φrd+m


 ∆T

∗

∆T Ω̄−1ω−1

 (y − µ);

−∆T
∗µ

−γ


Ird 0

0 Γ−∆T Ω̄−1∆)




= P

X =

x1

x2

 ≤
 ∆T

∗

∆T Ω̄−1ω−1

 (y − µ)


= Φrd(∆

T
∗ (y − µ);−∆T

∗µ, Ird)Φm(∆T Ω̄−1ω−1(y − µ);−γ,Γ−∆T Ω̄−1∆).

The last two equalities are obtained by observing that

x =

x1

x2

 ∼ Nrd+m


−∆T

∗µ

−γ


Ird 0

0 Γ−∆T Ω̄−1∆




and x1 and x2 are independently distributed as x1 ∼ Nrd(−∆T
∗µ, Ird) and

x2 ∼ Nm(−γ,Γ−∆T Ω̄−1∆).

Corollary 4.2.1. Let yk, k = 1, 2, . . . , n be univariate independent and identical (iid) random

variables distributed as SUN1,1(µ, 0, w,Ω∗), where Ω∗ =

1 δ

δ v

 is the correlation matrix.

Then

• Defining h(y) = yi, i = 1, 2, . . . , n we obtain

E(yiΦ(yi)] = 2µΦ2

[µ
0

 ;

1 + σ2 wδ

wδ 1

]+ Φ∗2

[µ
0

 ;

1 + σ2 wδ

wδ 1

], σ2 = ωvω.

• Defining h(y) = y2
i , i = 1, 2, . . . , n we obtain

E(y2
i Φ(yi)] = 2Φ2

[µ
0

 ;

1 + σ2 wδ

wδ 1

](µ2+σ2

)
+2µΦ∗2

[µ
0

 ;

1 + σ2 wδ

wδ 1

],
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where

Φ∗2

[µ
0

 ;

1 + σ2 wδ

wδ 1

 = 2σ2φ
(
µ; 1 + σ2

)
Φ
(−µw2δ

1 + σ2
; 1 + σ2 − w2δ2

)
+

2δ
1√
2π

Φ
(
µ; 1 + σ2 − w2δ2

)
.

Proof. Taking r = m = d = 1, in Theorem 4.2.1 we have,

• For the first part,

E(Φ1(y))

=
Φ2(γ†; Γ†)

Φ1(0; 1)
E(y†);

where y† ∼ SUN1,2(µ,γ†, ω̄,Ω∗†) with γ† = (µ, 0)T ,Γ† =

1 + σ2 wδ

wδ 1

.
Now plugging in the value of E(y†) and using (2.9), we obtain

E(Φ1(y)) = 2µΦ2(γ†; Γ†) + 2Φ∗2(γ†; Γ†).

The value of Φ∗2(γ†; Γ†) is calculated following Example 2.4.1.

• For the second part,

E(y2Φ1(y))

=
Φ2(γ†; Γ†)

Φ1(0; 1)
E(y†2); where γ† = (µ, 0)T ,Γ† =

1 + σ2 wδ

wδ 1

.
Now plugging in the value of E(y†2) and using (2.10) and Φ∗2(γ†; Γ†) , we obtain the

desired result.
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Corollary 4.2.2. Suppose y ∼ SUNd,d(µ,0, ω̄,Ω
∗) with Ω∗ =

Id ∆T

∆ Ω̄

 and h(y) = 1.

Then

E(Φd(y,0, Id)) = 2dΦ2d

[µ
0

 ;

Id + ωΩ̄ω ω∆T

ω∆ Id

].
Proof. Taking r = 1 and m = d, in Theorem 4.2.1 we have,

E(Φd(y,0, Id))

=
Φd+d(γ

†; Γ†)

Φd(γ; Γ)
E(h(y†)); where γ†,Γ†,and y† are defined in Theorem 4.2.1.

With h(y) = 1 and y ∼ SUNd,d(µ,0, ω̄,Ω
∗),

E(Φd(y,0, Id))

=
Φ2d(γ

†; Γ†)

Φd(0; Id)

= 2dΦ2d

[µ
0

 ;

Id + ωΩ̄ω ω∆T

ω∆ Id

].

4.2.1 Estimation of Univariate SUN Density

Let yk, k = 1, 2, . . . , n be univariate independent and identical (iid) random variables

distributed as SUN1,1(µ, 0, w,Ω∗) with the correlation matrix Ω∗ =

1 δ

δ v

. Thus we have

unknown parameters µ,w, v and δ. To estimate these parameters we need four equations.

From Theorem 2.4.3 the first two moments are given by

E(yi) = µ+ δω

√
2

π
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and

V ar(yi) = σ2 − δ2ω2 2

π
,where σ2 = wvw.

For the remaining two equations we could use third and fourth moment accordingly. However,

the third and fourth moments do not have simple form even in the univariate case. Flecher

(2009) also pointed out that estimation of higher order moments are classically contaminated

by large variances. Therefore we use weighted moments instead of the higher order moments.

The remaining two weighted moments are obtained from Corollary 4.2.1.

By the method of moment approach we need to equate these moments to the sample

moments. The sample mean and the sample variance which have usual expressions of ȳn =∑n
i=1 yi/n and S2

n = 1
n−1

∑n
i=1(yi − ȳn)2 respectively can be plugged in the above first two

moment expressions. For the weighted moments E(yiΦ(yi)] and E(y2
i Φ(yi)], we will use the

unbiased statistics m1n = 1
n

∑n
i=1 yiΦ(yi) and m2n = 1

n

∑n
i=1 y

2
i Φ(yi). Thus in terms of

estimation the following system of four equations with four unknown parameters follows



ȳn = µ̂+ δ̂ŵ
√

2
π

S2
n = σ̂2 − δ̂2ŵ2 2

π

m1n = 2µ̂Φ2

[µ̂
0

 ;

1 + σ̂2 ŵδ̂

ŵδ̂ 1


]

+ 2σ̂2φ
(
µ̂; 1 + σ̂2

)
Φ
(
−µ̂ŵ2δ̂
1+σ̂2 ; 1 + σ̂2 − ŵ2δ̂2

)

+ 2δ̂ 1√
2π

Φ
(
µ̂; 1 + σ̂2 − ŵ2δ̂2

)
m2n = 2Φ2

[µ̂
0

 ;

1 + σ̂2 ŵδ̂

ŵδ̂ 1


](

µ̂2 + σ̂2

)
+ 4µσ̂2φ

(
µ̂; 1 + σ̂2

)
×

Φ
(
−µ̂ŵ2δ̂
1+σ̂2 ; 1 + σ̂2 − ŵ2δ̂2

)
+ 2δ̂ 1√

2π
Φ
(
µ̂; 1 + σ̂2 − ŵ2δ̂2

)
.

(4.3)
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4.2.2 Estimation of Parameters of Multivariate SUN Distribution

Following our univariate procedure we estimate the parameters of the density

SUNd,d(µ,0, ω̄,Ω
∗) with Ω∗ =

Id ∆T

∆ Ω̄

. According to the discussions in section 4.1, for

simplicity we assume m = d,γ = 0 and take Γ to be the identity matrix. These assumptions

ease the estimation procedure and make the optimization faster. In this case the moments

are given by

Ey = µ+ ω∆1d

√
2

π

V ar(y) = Ω− 2

π
ω∆∆Tω

E(Φd(y,0, Id)) = 2dΦ2d

[ µ

0

 ;

Id + Ω ω∆T

ω∆ Id

].

4.3 Numerical Results

In this section we perform numerical analysis for the theoretical results obtained in sec-

tions 4.2.1 and 4.2.2.

4.3.1 Simulation Study in the Univariate Case

The specifications of the simulation design are described as follows. For simplicity we

take, w = 1 , so v = σ2 and we just need first three equations in (4.3). The sample sizes

n are set at 50, 100, and 500. We choose the values of δ to be 0.80, 0.89 and 0.97. From

figure 2.4.1, we notice that the skewness is not evident for the δ values less than 0.80, so the

delta values only near one are considered. The true values for µ and σ are set to 0 and 1

respectively. The following table gives estimated values of the parameters of univariate SUN

density. In parentheses are the mean squared error (MSE).

From the table 4.4.1 we see that our estimation method accurately estimates the param-
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eter especially for the large sample sizes. Figure 4.3.1 shows the box plot of the estimates

from 1000 samples of size 500 with the δ value 0.97. The Boxplot also illustrates that our

estimation method works well especially for the large sample size.

Table 4.3.1: Estimated values (mean square error) of the parameters of univariate SUN
density

Sample size δ µ̂ σ̂ δ̂

0.80 0.1203(0.0942) 0.9331(0.0378) 0.7606(0.1028)

n=50
0.89 0.1108(0.0579) 0.9318(0.0311) 0.8312(0.0512)

0.97 0.0934(0.0401) 0.9201(0.0267) 0.8718(0.0394)

0.80 0.0938(0.0585) 0.9500(0.0241) 0.7977(0.0687)

n=100
0.89 0.0605(0.0242) 0.9507(0.0147) 0.8906(0.0223)

0.97 0.0632(0.0159) 0.9500(0.0145) 0.9175(0.0163)

0.80 0.0130(0.0088) 0.9903(0.0054) 0.8929(0.0194)

n=500
0.89 0.0251(0.0040) 0.9834(0.0034) 0.9455(0.0073)

0.97 0.0271(0.0032) 0.9796(0.0028) 0.9651(0.0026)
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Figure 4.3.1: Boxplot of estimated values of µ, σ and δ obtained from 1000 replicates of size
500 with the true values 0,1,and 0.97 respectively. The dot lines represent the true values.
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4.3.2 Simulation Study in the Bivariate Case

Following our univariate procedure, we assume ω = Id and ∆ = δΩ
1
2 for some 0 ≤ δ ≤ 1

for simplicity. Since ω = Id, we also have Ω = Ω̄. Thus for WMOM approach we use the

bivariate SUN density SUN2,2(µ,0,12,Ω
∗) with Ω∗ =

 Id δΩ
1
2

δΩ
1
2 Ω

. In this setting, the

parameters involved in the bivariate study are mean vector µ, covarince matrix Ω and shape

parameter δ. The true values for the parameters µ and Ω are taken as µ = (0, 0)T ,Ω = 1 0.90

0.90 1

. Following the univariate case the δ values are selected to be 0.80, 0.89 and

0.97. The sample sizes n are set at 100 and 500. Table 4.3.2 gives estimated values of the

parameters of bivariate SUN density. From the table we observe that estimated values and

true values are almost same especially for large sample sizes. Thus our WMOM approach

accurately estimates the parameter of bivariate SUN density. However, from the tabulated

values we also see that there is some tendency of underestimation for δ when δ = 0.80 and

the sample size is 100. Figure 4.3.2 to 4.3.5 present a series of histograms of the parameters

obtained from 1000 samples of varying sample sizes and varying delta values. In Figure

4.3.5 with δ = 0.97 and the sample size 500, we observe a slight departure of some estimates

from the true values. Overall, the histogram plots reveal that WMOM approach works

well especially for the large sample sizes. In figure 4.3.6 we also present the boxplot of the

estimates obtained from 1000 replicates with the size 500 and δ value 0.89. From the boxplot

we do not observe too many outlying observations.
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Table 4.3.2: Estimated values of parameters of bivariate SUN density

Sample size δ µ̂ Ω̂ δ̂

0.80 (0.0285, 0.0281)T
[
0.9968 0.8975
0.8975 0.9984

]
0.7566

n=100
0.89 (0.0251, 0.0217)T

[
0.9892 0.8999
0.8999 0.9920

]
0.8769

0.97 (0.0388, 0.0378)T
[
0.9760 0.8991
0.8991 0.9775

]
0.9556

0.80 (−0.0147,−0.0155)T
[
1.0064 0.8994
0.8994 1.0068

]
0.8090

n=500
0.89 (0.0010, 0.0015)T

[
0.9989 0.8999
0.8999 0.9983

]
0.8931

0.97 (0.0387, 0.0379)T
[
0.9778 0.9784
0.8996 0.8996

]
0.9784
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Figure 4.3.2: Histogram of estimated values of µ1, µ2, σ1, σ2, ρ and δ obtained from 1000
replicates of size 100 with the true values 0,0,1,1, 0.90 and 0.89 respectively. The dot lines
represent the true values.
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Figure 4.3.3: Histogram of estimated values of µ1, µ2, σ1, σ2, ρ and δ obtained from 1000
replicates of size 100 with the true values 0,0,1,1, 0.90 and 0.97 respectively. The dot lines
represent the true values.
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Figure 4.3.4: Histogram of estimated values of µ1, µ2, σ1, σ2, ρ and δ obtained from 1000
replicates of size 500 with the true values 0,0,1,1, 0.90 and 0.89 respectively. The dot lines
represent the true values.
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Figure 4.3.5: Histogram of estimated values of µ1, µ2, σ1, σ2, ρ and δ obtained from 1000
replicates of size 500 with the true values 0,0,1,1, 0.90 and 0.97 respectively. The dot lines
represent the true values.
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Figure 4.3.6: Box Plot of estimated values of µ1, µ2, σ1, σ2, ρ and δ obtained from 1000
replicates of size 500 with the true values 0,0,1,1, 0.90 and 0.89 respectively. The dot lines
represent the true values.
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CHAPTER 5

LOWER CONVEX ORDER BOUND

APPROXIMATIONS FOR SUMS OF

LOG UNIFIED SKEW NORMAL

RANDOM VARIABLES

5.1 Introduction

It is well known that in finance and actuarial science, the data usually have “fat tail”

and in that case the normal distribution is not a good model to use. The skew normal

distributions recently draw considerable attention as an alternative model. Unfortunately,

the distribution of the sum of log-skew normal random variables does not have a closed form.

In this work, we discuss the use of the lower convex order of random variables to approximate

this distribution. Further, two applications of this approximate distribution are given : first

is to describe the final wealth of a series of payments, and second is to describe the present

value of a series of payments.
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5.2 Basic Concepts and Definitions

Definition 5.2.1. Consider two random variables X and Y such that E[φ(X)] ≤ E[φ(Y )] ,

for all the convex functions φ, provided expectation exist.Then X is said to be smaller than

Y in the convex order denoted as X ≤cx Y .

Definition 5.2.2. (Convex order definition using stop-loss premium) Consider two random

variables X and Y . Then X is said to precede Y in convex order sense if and only if

E[X] = E[Y ]

E[(X − d)+] ≤ E[(Y − d)+], I(−∝,∝)(d),

where

(X − d)+ = max(X − d, 0).

An equivalent definition can be derived from the following relation

E[(X − d)+]− E[(d−X)+] = E(X)− d.

For the random variable Y the same relation is given by,

E[(Y − d)+]− E[(d− Y )+] = E(Y )− d.

Now assume X ≤cx Y , which implies that

E[X] = E[Y ],

and

E[(X − d)+] ≤ E[(Y − d)+], I(−∝,∝)(d).
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Hence

E[(d−X)+] ≤ E[(d− Y )+].

Therefore, a definition equivalent to the definition here is

E[X] = E[Y ],

E[(d−X)+] ≤ E[(d− Y )+].

Remark 5.2.1. In economic term E[(X − d)+] is the net premium for a stop-loss contract.

It represents the expected loss over d, and (X − d)+ is often called stop-loss premium. It is

defined as follows:

For a nonnegative loss X the payments equals

(X − d)+ = max{X − d, 0} =


(X − d) if X > d

0 if X ≤ d,

The insurer retains a risk d (also called priority) and lets the reinsurer pay for the remainder.

From the insurer point of view the loss stops at d and hence the name “stop-loss”.

Properties of convex order of random variables

1. If X preceds Y in convex order sense i.e if X ≤cx Y , then

E[X] = E[Y ] and V ar[X] ≤ V ar[Y ].

2. If X ≤cx Y and Z is independent of X and Y then X + Z ≤cx Y + Z.

3. Let X and Y be two random varibales, then X ≤cx Y ⇔ −X ≤cx −Y .

4. Let X and Y be two random variables such that E[X] = E[Y ]. Then X ≤cx Y if and

only if E|X − a| ≤cx E|Y − a|, ∀ a ∈ <.

5. The convex order is closed under mixtures:
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Let X, Y and Θ be random variables such that [X|Θ = θ] ≤cx [Y |Θ = θ] ∀ θ in the

support of Θ. Then X ≤cx Y .

6. The convex order is closed under convolution:

Let X1, X2, ....., Xm be a set of independent random variables and Y1, Y2, ....., Yn be

another set of independent random variables. If Xi ≤cx Yi, for i = 1, ....,m, then∑m
j=1 Xj ≤cx

∑m
j=1 Yj.

7. Let X be a random variable with finite mean. Then X + E[X] ≤cx 2X.

8. Let X1, X2, ....., Xm and Y be (n+1) random variables. If Xi ≤cx Y , i = 1, ...., n, then∑n
i=1 aiXi ≤cx Y , whenever ai ≥ 0,i = 1, ...., n and

∑n
i=1 ai = 1.

9. Let X and Y be independent random variables. Then Xi ≤cx Yi if and only if

E[φ(X, Y )] ≤ E[φ(Y,X)] ∀ φ ∈ ℘cx, where ℘cx = {φ : <2 −→ < : φ(X, Y )− φ(Y,X) is

convex for all x in y}.

10. Let X1 and X2 be a pair of independent random variables and let Y1 and Y2 be another

pair of independent random variables. If Xi ≤cx Yi , i = 1, 2 then X1X2 ≤cx Y1Y2.

5.3 Risk Measures and Comonotonicity

5.3.1 Risk Measures

A risk measure provides the information contained in the distribution function of a ran-

dom variable in one single real number. Risk measures are useful to evaluate and monitor

the risk exposures of investors. One of the most commonly used risk measures in the field

of actuarial science and financial economics is the p-quantile risk measure, based on a per-

centile concept. It is also called value-at-risk (VaR). Roughly speaking, VaR at level p, is

the amount of capital required to ensure that the enterprise does not become technically
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insolvent. In probabilistic terms, the VaR at level p is defined as the 100p% quantile of the

distribution of the terminal wealth. More precisely, for any p ∈ (0, 1), the p-quantile measure

or VaR for a random variable X, denoted by Qp[X], is defined as

Qp[X] = inf{x ∈ <|FX(x) ≥ p} (5.1)

It is a non-decreasing function and left continuous function of p. Other risk measures con-

cerning the upper tail of the distributions are conditional tail expectation, tail-value-at-risk

etc.

5.3.2 Comonotonicity

Comonotonicity is a well-studied and attractive property with diverse applications in the

financial and actuarial field. It describes a very special dependence structure of a random

vector in the sense that a random vector is comonotonic if all its components move in the

same direction. To put it in a simple way, a random vector is said to be comonotonic if all its

components are non-decreasing (or non-increasing) functions of the same random variable.

One of the most important uses of comonotonic property is found in calculating the risk

measures of sums of random variables. When the marginal risks posses the comonotonic

dependence structure, the global value-at-risk can be obtained by summing up the marginal

VaR measures (Roach and Valdez, 2008). Thus for a comonotonic random vector X =

(X1, X2, . . . , Xn) and the sum W =
∑n

i=1Xi, the value at risk (VaR) is

QP (W ) =
n∑
i=1

QP [Xi]
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5.3.3 Main Result on Convex Order: Convex Lower Bound for

Sums of Random Variables

For the evaluation of lower bound for the distribution of sum of log unified skew normal

density we need the following result:

Lemma 5.3.1. For any random vector X = (X1, X2, . . . , Xn) and any radom variable Λ,

which is assumed to be a function of X, we have,

n∑
i=1

E[Xi|Λ] ≤cx
n∑
i=1

Xi. (5.2)

Proof. From the convex order definition we have, X ≤cx Y if and only if E[ϕ(X)] ≤cx E[ϕ(y)].

In accordance with this definition we need to show that

EΛ

[
ϕ
( n∑
i=1

E[Xi|Λ]
)]
≤ E

[
ϕ(

n∑
i=1

Xi)
]
.

Now

E
[
ϕ(

n∑
i=1

Xi)
]

= EΛE
[
ϕ(

n∑
i=1

Xi|Λ)
]
≥ EΛ

[
ϕ
(
E[

n∑
i=1

Xi|Λ]
)]

= EΛ

[
ϕ
( n∑
i=1

E[Xi|Λ]
)]
.

The last inequality was obtained by using Generalized Jenson inequality. Therefore,

EΛ

[
ϕ
( n∑
i=1

E[Xi|Λ]
)]
≤ E

[
ϕ(

n∑
i=1

Xi)
]
.

5.3.4 Examples

*These two examples follow from Dhaene et al (2002)
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Example 1: Convex lower bounds for the distribution of sum of independent

normal random variables

Let X and Y be independent N(0, 1) random variables. We want to derive lower bounds

for S = X + Y . In this case we know the exact distribution of S which is N(0, 2). Let us

demonstrate how lower bound approximation works. Let Z = X+aY for some real a . Then

Z ∼ N(0, 1 + a2) . The conditional distribution of S|Z is

N
[
µS +

ρs,zσs
σz

(z − µz), σ2
s(1− ρ2

s,z)
]

= N
[
z

1 + a

1 + a2
,
(1− a)2

1 + a2

]
,

where Cov(X + Y,X + aY ) = Cov(X,X) + a.Cov(Y, Y ) = 1 + a and ρs,z = 1+a√
2
√

1+a2 . Then

E(S|Z) = 1+a
1+a2Z is a random variable and has the distribution N

[
0, (1+a)2

1+a2

]
. Now for some

choices of a we obtain the following distributions for the lower bounds of S:

a = 0 gives N(0, 1) ≤cx S = X + Y ∼ N(0, 2)

a = 1 gives N(0, 2) ≤cx S = X + Y ∼ N(0, 2)

a = −1 gives N(0, 0) ≤cx S = X + Y ∼ N(0, 2).

Thus in this case best lower bound is obtained when a = 1, which is same as exact distribu-

tion. The variance of the lower bound is seen to have a maximum at a = 1 and a minimum

at a = -1.

Example 2: Convex lower bounds for the distribution of sums of independent

log normal random variables

Suppose Y1 and Y2 are independent N(0, 1). Define X1 = eY1 which implies that X1 ∼

lognormal(0, 1), and X2 = eY1+Y2 that is X2 ∼ lognormal(0, 2). We want to find the lower

bound for the distribution of S = X1 + X2. Let Z = Y1 + Y2. As shown in Example (5.1)

the conditional distribution of Y1|Z is given by,

Y1|Y1 + Y2 = z ∼ N
(1

2
z,

1

2

)
.
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Therefore, E
[
X1 = eY1|Y1 + Y2 = z

]
= MY

(
1; 1

2
z, 1

2

)
with Y ∼ N(µ, σ2)

= exp(
1

2
z +

1

4
)

We also observe that E
[
X2 = eY1|Y1 + Y2 = z

]
= eZ . Therefore the lower bound for ap-

proximating the distribution of S = X1 + X2 is Sl = E
[
X1 + X2|Z

]
= exp(1

2
z + 1

4
). It can

be easily verified that E(Sl) = E
[
exp(1

2
z + 1

4
)
]

= e
1
2 + e and E(S2

l ) = e
3
2 + 2e

5
2 + e4. Thus

variance of the lower bound is 64.374 and is close to the variance of S =67.281. The idea

is to obtain lower convex bound in such a way that the variance of the lower bound gets

as close as possible to the variance of the sum. With this view in mind considering more

general form of the conditioning variable as Z = Y1 + aY2, , it could be shown that optimal

lower bound is reached for a = 1.27 and the variance in this case is 66.082. Thus the choice

of the conditioning variable is crucial in determining the lower convex order bound.

5.4 Description of the Model

Let α0, α1, α2, . . . , αn−1 be non-negative real numbers. Let Y = (Y1, Y2, . . . , Yn)T be

a multivariate skew normal random vector with the specified mean vector and variance-

covariance matrix and satisfying additive properties. Define Zi =
∑n

k=i+1 Yk, i = 0, 1, . . . , n−

1, that is, Zi’s are linear combinations of the components (Y1, Y2, . . . , Yn). With the compo-

nents so defined, consider the sum

S =
n−1∑
i=0

αie
Zi =

n−1∑
i=0

αie
Yi+1+···+Yn . (5.3)

From economic or actuarial point of view, the sum S could be interpreted as the final wealth

or the terminal wealth or the accumulated value of a series of deterministic saving amounts

or alternatively the accumulated value of a series of payments. In this situation, αi (i =

0, . . . , n− 1) represents yearly saving in period i or amount invested in period i, Yi+1 refers
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to the random rate of return in period i for i = 0,. . . ,n-1. The term Yk = log Pk

Pk−1
=

logPk − logPk−1 i.e eYk = Pk

Pk−1
, where Pk is the price of the asset at the period k = 0,. . . ,n ;

is called the random log-return in period k and Zi denote the sum of stochastic or random

returns in the period i = 0, . . . , n − 1. With some suitable adjustment, S could also be

referred as the present value of a series of payments. More precisely, if −Zi denotes the

stochastic log-return over the period [0, i], then eZi represents the stochastic discount factor

over the period [0, i]. In this situation, the sum S is the present value of αi (Vanduffel et al

2008).

The sum defined in (5.3) plays a central role in the actuarial and financial theory because

it allows computation of risk measures such as value at risk or stop-loss premium. To

calculate the risk measures we need to evaluate the distribution function of S. Unfortunately,

the distribution of the sum S (of log-normally or log-skew normally distributed random

variables) is not available in the closed-form. It is possible to use Monte Carlo simulation

method to approximate the distribution function. However, Monte Carlo simulation of the

distribution is often time-consuming. Thus one has to find alternative way to approximate

the distribution of the sum. Among the proposed solutions, moment matching methods

and inverse gamma approximations are commonly used. Both methods approximate the

unknown distribution function by a given one such that the first two moments coincide.

Kaas et al (2001) and Dhaene et al ( 2002a, 2002b) propose to approximate the distribu-

tion function of S by so called “convex lower bound”. The underlying idea of convex lower

order bound is to replace an unknown or too complex distribution (for which no explicit form

is found) by another one which is easier to determine. In this approach, the real distribu-

tion is known to be bounded in terms of convex ordering to the approximated distribution.

To be more precise, the distribution function of S =
∑n−1

i=0 αie
Zi is approximated by the

distribution function of Sl, where Sl is defined by,

Sl =
n−1∑
i=0

αiE(eZi|Λ). (5.4)
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An appropriate choice of the conditioning random variable Λ is required. This approach

has two-fold advantages. Firstly, use of this approach transforms the multidimensionality

problem caused by (Z0, Z2, . . . , Zn−1) to a single dimension caused by Λ. Secondly, an

appropriate choice of Λ (that makes the expectation in (5.4) non-decreasing or non-increasing

function of the conditioning random variable Λ) will make a comonotonic sum, i.e, the

elements of the sum in (5.4) posses the so called comonotonic dependence structure. Using

additivity properties of sum of comonotonic random variables risk measures related to the

distribution function of S is then approximated by the corresponding risk measures of Sl.

According to Kaas et al. (2001), comonotonic upper bound for the sum in convex order

sense can also be derived using the result

n−1∑
i=0

Xi ≤cx
n−1∑
i=0

FXi
(U) ,

where U is the uniform random variable over (0, 1). However, the comonotonic upper bounds

generally provide too conservative estimates of the cumulative distribution function (Roach

and Valdez 2008). Thus we only discuss convex lower bound here.

Remark 5.4.1. In general, the random vector (E(X0|Λ), E(X1|Λ), . . . , E(Xn−1|Λ)) does

not have the same marginal distribution as (X0, X1, . . . , Xn−1). However, if the condi-

tioning random variable Λ is chosen in such a way that all random variables E(Xi|Λ),

(i = 0, 1, 2, . . . , n − 1) are non-decreasing functions of Λ (or non-increasing functions of

Λ), then the sum
∑n−1

i=0 E[Xi|Λ] is a sum of n comonotonius random variables and can be

referred to as comonotonic lower bound. Hence the risk measures for the sum could easily be

obtained by summing the corresponding risk measures for the marginals involved.
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5.5 Bounds for the Sum of Log Unified Skew Normal

Random Variables

In this section we derive the bounds to approximate the distribution of sums of log unified

skew normal variables. The derivation of this bound requires some results that are presented

in the following lemmas. Recall that Yk denote the random log-return in the period k, for

k = 1, 2, . . . , n and Zi denote the accumulated returns from th time i to the final time t = n.

Lemma 5.5.1. (Joint distribution of Y = (Y1, . . . , Yn)T ) Let Yk, k = 1, . . . , n be univariate

iid random variables distributed as

SUN1,m(µ, γ, ω̄,Ω∗),where Ω∗ =

Γ ∆T

∆ Ω̄

.
Then the distribution of Y = (Y1, . . . , Yn)T is

SUNn,mn(µY ,γY , ω̄Y ,Ω
∗
Y ),

where

µY = 1n ⊗ µ, γY = 1n ⊗ γ, ωY = In ⊗ ω ω̄Y = ωY ⊗ 1n,

and

ΩY = In ⊗ Ω, Ω̄Y = In ⊗ Ω̄, ∆Y = In ⊗∆, ΓY = In ⊗ Γ, Ω∗Y =

ΓY ∆T
Y

∆Y Ω̄Y


Proof. The proof follows from Corollary 2.4.5 by noting that ⊕n1 = In ⊗A for any matrix A

where In is an n× n identity matrix and 1n is a unit vector of dimension n.

Lemma 5.5.2. (Joint distribution of Z = (Z0, . . . , Zn−1)T ) Let Zi, i = 0, . . . , n − 1 be the

sum of returns of one unit of capital invested from time t = i to the final time t = n, that
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is, Zi =
∑n

k=i+1 Yk. Let T ∈ <n×n be an upper unit triangular matrix. Then the distribution

of Z = (Z0, . . . , Zn−1)T is

SUNn,mn(µZ ,γZ , ω̄Z ,Ω
∗
Z)

where

µZ = TµY , γZ = γY , ωZ = TωY T
T , ω̄Z = ωZ1n,

and

ΩZ = TΩY T
T , Ω̄Z = ω−1

Z ΩZω
−1
Z , ∆Z = (TΩY T

T )−1TωY ∆Y , ΓZ = ΓY , Ω∗Z =

ΓZ ∆T
Z

∆Z Ω̄Z


Proof. The proof follows from Theorem 2.4.4 with T being the matrix of coefficients

As mentioned in section 5.5, the comonotonicity of the convex lower bound strongly

depends on the special choice of the conditioning random variable Λ. Therefore, it is required

to choose a functional form of this random variable. Since a good choice of Λ is important

in determining the accurate approximations for the final wealth, different choices of Λ have

been proposed in the literature. Following Dhaene et al (2002a), we will choose Λ in such

a way that it becomes a linear transformation of a first order approximation to Sn. This is

known as “Taylor-based” approach. In this approach, Λ is defined as,

Λ =
n−1∑
i=0

νiZi,

with the following choice of the coefficents νi,

νi = αie
E[Zi].

If the random variables Yk, k = 1, . . . , n are iid then the coefficients νi is given by

νi = αie
E[Zi] = αie

E[Y ].
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Lemma 5.5.3. (Distribution of Λ) Let the random variable Λ be defined by Λ =
∑n−1

i=0 νiZi

and V = (ν0, . . . νn−1) be a row vector. Then the distribution of Λ is

SUN1,mn(µΛ,γΛ, ω̄Λ,Ω
∗
Λ)

where

µΛ = V µZ , γΛ = γZ , ωΛ = V ωZV
t, ω̄Λ = ωΛ1,

and

ΩΛ = V ΩZV
t, Ω̄Λ = ω−1

Λ ΩΛω
−1
Λ , ∆Λ = (V ΩZV

t)−1V ωZ∆Z , ΓΛ = ΓZ , Ω∗Λ =

ΓΛ ∆T
Λ

∆Λ Ω̄Λ

.
Proof. The proof follows from the Theorem 2.4.4 with V being the vector of coefficients.

Lemma 5.5.4. (Joint distribution of Λ and each of the elements of vector Z) Let Si ∈ <2×n

be a matrix with the first row as V and second row of 0’s except in column i + 1 where the

0 is replaced by 1. That is

Si =

ν0 ν1 . . . νi . . . νn−1

0 0 . . . 1 . . . 0

. (5.5)

Then the distribution of Xi =
(
Λ, Zi

)T
is

SUN2,mn(µXi
,γXi

, ω̄Xi
,Ω∗Xi

),

where

µXi
= SiµZ , γXi

= γZ , ωXi
= SiωZS

T
i , ω̄Xi

= ωXi
12,

ΩXi
= SiΩZS

T
i , Ω̄Xi

= ω−1
Xi

ΩXi
ω−1
Xi
, ∆Xi

= (SiωXi
STi )−1SiωXi

∆Z , ΓXi
= ΓZ ,
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and

Ω∗Xi
=

ΓXi
∆T
Xi

∆Xi
Ω̄Xi

.
Proof. The proof follows from Theorem 2.4.4 with Si being the matrix of coefficients.

Lemma 5.5.5. (Conditional distribution of Zi|Λ = λ) Let µXi
, Ω̄Xi

, ω̄Xi
and ∆Xi

be parti-

tioned as in Theorem 2.4.7. Then the distribution of Hi = (Zi|Λ = λ) is given by

SUN1,mn(µHi
,γHi

, ω̄Hi
,Ω∗Hi

)

where

µHi
= µ2 + Ω21Ω−1

21 (λ− µ1), γHi
= γXi

+ ∆T
1 Ω̄−1

11 ω
−1
2 (λ− µ1), ω̄Hi

= ω̄1,

ΓHi
= ΓXi

−∆T
1 Ω̄−1

11 ∆1,∆Hi
= ∆2−Ω̄21Ω̄−1

11 ∆1, Ω̄Hi
= Ω̄22−Ω̄21Ω̄−1

11 Ω̄12, ΩHi
= ωHi

Ω̄Hi
ωHi

,

and

Ω∗Hi
=

ΓHi
∆T
Hi

∆Hi
Ω̄Hi

.
Theorem 5.5.1. (The lower convex order bound) The lower convex order bound Sln which

is used to approximate the distribution function of the sum Sn =
∑n−1

i=0 αie
Zi is given by

Sln =
n−1∑
i=0

αiexp
(
µHi

+
1

2
ΩHi

)Φmn

(
γHi

+ ∆T
Hi
ωHi

; ΓHi

)
Φmn(γHi

; ΓHi
)

(5.6)

with µHi
, ΩHi

, γHi
, ∆Hi

, ωHi
, and ΓHi

defined as in Lemma 5.5.5.

Proof. By Lemma 5.3.1 the distribution of
∑n−1

i=0 αie
Zi is approximated by the distribution

of the sum
∑n−1

i=0 E
[
αie

Zi |Λ =
∑n−1

i=0 νiZi
]
.
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Thus the lower convex order bound Sln is given by

Sln =
n−1∑
i=0

E
[
αie

Zi |Λ =
n−1∑
i=0

νiZi

]
=

n−1∑
i=0

αiE
[
eZi |Λ =

n−1∑
i=0

νiZi

]
. (5.7)

The expectation in (5.7) is the m.g.f of a random varible y evaluated at t = 1 where y is

distributed as

SUN1,mn(µHi
,γHi

, ω̄Hi
,Ω∗Hi

).

From (2.8), this m.g.f is obtained as

MY (1) = exp
(
µHi

+
1

2
ΩHi

)Φnm

(
γHi

+ ∆T
Hi
ωHi

; ΓHi

)
Φmn(γHi

; ΓHi
)

.

Therefore from (5.7) the convex lower order bound is

Sln =
n−1∑
i=0

αiexp
(
µHi

+
1

2
ΩHi

)Φmn

(
γHi

+ ∆T
Hi
ωHi

; ΓHi

)
Φmn(γHi

; ΓHi
)

.

5.6 Lower Bound in Multi-Asset Case

In the previous section we consider only one asset while deriving the distribution of

terminal wealth. In the same fashion it is also possible to find the lower bound when the

portfolio consists of multiple assets including risk-free and risky assets. Throughout this

section we will assume that the portfolio has one risk-free asset (e.g cash account) and

multiple risky assets (e.g stock funds). Following the previous section we will derive the

lower bound step by step. However, we will have to redefine some variables to accommodate

in case of multiple assets.
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Let Zi
j be the sum of returns of one unit of capital invested at time t = j to the final

time t = n of assest i, i = 1, . . . , q, that is

Zi
j =

n∑
k=j+1

Y i
k ,

and the terminal wealth Sn(π) is given by

Sn(π) =

q∑
i=1

n−1∑
j=0

πiαj exp(Z
i
j) +

n−1∑
j=0

π0αj exp((n− j)r),

where π = (π1, . . . , πq)
T is the vector of proportions of savings amounts in the risky assets

and π0 is the weight in the risk-free asset.

Lemma 5.6.1. (Joint distribution of Y = (Y T
1 , . . . ,Y

T
n )T ) Let the joint returns random

vector Y k, k = 1, . . . , n be iid distributed as

SUNq,m(µ,γ, ω̄,Ω∗),where Ω∗ =

Γ ∆T

∆ Ω̄

.
Then the vector of log returns Y = (Y T

1 , . . . ,Y
T
n )T is distributed as

SUNnq,mn(µY ,γY , ω̄Y ,Ω
∗
Y ),

where

µY = 1n ⊗ µ, γY = 1n ⊗ γ, ωY = In ⊗ ω, ω̄Y = ωY ⊗ 1n

and

ΩY = In ⊗ Ω, Ω̄Y = In ⊗ Ω̄, ∆Y = In ⊗∆, ΓY = In ⊗ Γ, Ω∗Y =

ΓY ∆T
Y

∆Y Ω̄Y

.
Proof. The proof follows from Corollary 2.4.5



88

Lemma 5.6.2. (Distribution of Z = (ZT
1 , . . . ,Z

T
q )T ) Let Z = (ZT

1 , . . . ,Z
T
q )T be the vector

of accumulated returns, where Zi = (Zi
0, . . . , Z

i
n−1), i = 0, . . . , q. Let T i

j be an m.n dimen-

sional row vector of 0′s except in the (i + q(j + k))th positions, k = 0, 1, . . . , n − (j + 1)

where they are 1′s and let T be a matrix whose rows are defined by vectors T i
j. Then the

distribution of Z is

SUNnq,mn(µZ ,γZ , ω̄Z ,Ω
∗
Z),

where

µZ = TµY , γZ = γY , ωZ = TωY T
T , ω̄Z = ωZ1n,

and

ΩZ = TΩY T
T , Ω̄Z = ω−1

Z ΩZω
−1
Z , ∆Z = (TΩY T

T )−1TωY ∆Y , ΓZ = ΓY , Ω∗Z =

ΓZ ∆T
Z

∆Z Ω̄Z

.
Proof. The proof follows from Theorem (2.4.4) with T being the matrix of coefficients

As in the single asset case, we use “Taylor-based” approach for choosing the random

variable Λ. The random variable is accommodated to the multi asset case in the following

way:

Λ(π) =

q∑
i=0

n−1∑
j=0

νij(π)Zi
j

with the following choice of the coefficents νij,

νij(π) = πiαje
E[Zi

j ].

If the random variables Yk, k = 1, . . . , n are iid then the coefficients νij is given by

νij(π) = πiαje
E[Zi

j ] = πiαje
(n−j)E[Y i],

where E[Y i] denotes the expectation of the ith marginal distribution of the random vector
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Yj .

Lemma 5.6.3. (Distribution of Λ) Let the random variable Λ(π) be defined by

Λ =
∑q

i=0

∑n−1
j=0 ν

i
j(π)Zi

j and let V = (V1, . . . Vq), where Vi = (νi0(π), . . . νin−1(π)), i =

1, . . . , q. Then the distribution of Λ(π) is

SUN1,mn(µΛ,γΛ, ω̄Λ,Ω
∗
Λ),

where

µΛ = V µZ , γΛ = γZ , ωΛ = V ωZV
t ω̄Z = ωΛ1,

and

ΩΛ = V ΩZV
T , Ω̄Λ = ω−1

Λ ΩΛω
−1
Λ , ∆Λ = (V ΩZV

T )−1V ωZ∆Z , ΓΛ = ΓZ , Ω∗Λ =

ΓΛ ∆T
Λ

∆Λ Ω̄Λ

.
Proof. The proof follows from the Theorem 2.4.4 with V being the vector of coefficients.

Lemma 5.6.4. (Joint distribution of Λ(π) and Zij) Let Sij ∈ <2×q·n be a matrix with the

first row as V and the second row of 0’s except in column i ·n− (n− j− 1), i = 1, . . . , q, j =

0, . . . , n− 1 where the 0 is replaced by 1. Then the distribution of X i
j =

(
Λ(π), Zi

j

)T
is

SUN2,mn(µXi
j
,γXi

j
, ω̄Xi

j
,Ω∗Xi

j
),

where

µXi
j

= SijµZ , γXi
j

= γZ , ωXi
j

= SijωZS
T
ji ω̄Xi

j
= ωXi

j
12,

ΩXi
j

= SijΩZS
T
ji , Ω̄Xi

= ω−1
Xi

j
ΩXi

j
ω−1
Xi

j
, ∆Xi

j
= (SijωXi

j
STji)−1SijωXi

j
∆Z , ΓXi

j
= ΓZ

and

Ω∗Xi
j

=

ΓXi
j

∆T
Xi

j

∆Xi
j

Ω̄Xi
j

.
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Proof. The proof follows from Theorem 2.4.4 with Sij being the matrix of coefficients.

Lemma 5.6.5. (Conditional distribution of Zi
j given Λ(π)) Let µXi

j
, Ω̄Xi

j
, ω̄Xi

j
and ∆Xi

j
be

partitioned as in theorem 2.4.7. Then the conditional distribution of H i
j = (Zi

j|Λ = λ) is

given by

SUN1,mn(µHi
j
,γHi

j
, ω̄Hi

j
,Ω∗Hi

j
),

where

µHi
j

= µ2 + Ω21Ω−1
21 (λ− µ1), γHi

j
= γXi

j
+ ∆T

1 Ω̄−1
11 ω

−1
2 (λ− µ1), ω̄Hi

j
= ω̄1,

ΓHi
j

= ΓXi
j
−∆T

1 Ω̄−1
11 ∆1, ∆Hi

j
= ∆2−Ω̄21Ω̄−1

11 ∆1, Ω̄Hi
j

= Ω̄22−Ω̄21Ω̄−1
11 Ω̄12, ΩHi

j
= ωHi

j
Ω̄Hi

j
ωHi

j
,

and

Ω∗Hi
j

=

ΓHi
j

∆T
Hi

j

∆Hi
j

Ω̄Hi
j

.
Theorem 5.6.1. (The lower convex order bound)

The lower convex order bound Sln(π) to approximate the distribution function of the sum

Sn(π) =
∑q

i=1

∑n−1
j=0 πiαj exp(Z

i
j) +

∑n−1
j=0 π0αj exp((n− j)r) is given by

Sln(π) =

q∑
i=1

n−1∑
j=0

πiαjexp
(
µHi

j
+

1

2
ΩHi

j

)Φmn

(
γHi

j
+ ∆T

Hi
j
ωHi

j
; ΓHi

j

)
Φmn(γHi

j
; ΓHi

j
)

+
n−1∑
j=0

π0αj exp((n− j)r)

with µHi
j
, ΩHi

j
, γHi

j
, ∆Hi

j
, ωHi

j
, and ΓHi

j
defined as in lemma 5.7.5.

Proof. The proof is same as the one given in Theorem 5.6.1.

5.7 Numerical Results

In this section we numerically illustrate the accuracy of the approximations obtained in

the previous two sections by using two examples. We do not use a real data set to analyze
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the approximations since making inference on the unified skew normal distribution is difficult

due to its large number of parameters, instead we use a hypothetical data to evaluate the

accuracy.

In the first example, the final wealth of yearly savings distributed as log unified skew

normal random variables is computed using Monte Carlo method and the result presented

in section 5.6.

For n = 20, at every period i, i = 0, . . . , n − 1, consider the yearly savings amounts

αi = 1, i = 0, . . . , 19. That is, at the beginning of each year one unit of savings amount

is invested in the considered asset. At time i = n the invested amount αn = 0, i.e, no

contribution is made at the final period. The returns are considered to be independently and

indentically distributed SUN random variables with parameters m = d = 1, µ = 0.02, γ =

0, ω = 1, Ω = Ω̄ = 0.03, Γ = 1, and ∆ = 0.97.

The results for some selected quantiles of the distribution function of the terminal wealth

obtained by the Monte Carlo simulation (denoted by MCB) and from the convex lower bound

(CLB) are presented in table 5.8.1. The simulated results are obtained from 5000 random

paths. The relative deviations of the approximated values from the Monte Carlo simulation

are computed as follows:

Qp[S
l
n]−Qp[S

MC
n ]

Qp[SMC
n ]

× 100.

Table 5.7.1: Comparison of the selected quantiles of the distribution of the final wealth in
single asset case

p MCB CLB Relative deviation

0.01 22.5789 22.8575 1.23%

0.025 25.9758 26.1992 0.86%

0.05 29.7387 29.9730 0.78%

0.95 152.9541 151.5890 -0.89%

0.975 184.0342 182.4662 -0.85%

0.99 226.9628 222.1930 -2.10%
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Comparing the results obtained with the Monte Carlo simulations, all the lower bound

approximations seem to perform reasonably well, some of them are excellent. The approxi-

mations lose some precision in the tails of the distribution.

In the second example, we illustrate the approximations for a portfolio consisting of two

risky assets and one risk free asset. We consider the same savings amount as in the first

example (that is, αi = 1, i = 1, . . . , n) and the weights are assigned as follows: 19% in

the risk-free asset, 45% in the first risky asset and the remaining 36% will be invested in

the second risky asset. In addition, the yearly return of the risk-free asset is considered

to be 0.03. The parameters of the joint distribution of the risky assets are chosen to be

m = 1, d = 2, µ = (0.06, 0.1)T , γ = 0, ω = I2, Ω = Ω̄ =

0.01 0.01

0.01 0.04

 , Γ = 1, and

∆ = (−0.95,−0.97)T .

The results for the distribution function of the terminal wealth obtained by the Monte

Carlo simulation and from the convex lower bound are presented in table 5.8.2. Following

single asset case, the simulated results are obtained from 5000 random paths.

Table 5.7.2: Comparison of the selected quantiles of the distribution of the final wealth in
multi asset case

p MCB CLB Relative deviation

0.01 19.4143 19.7961 1.97%

0.025 22.0037 22.3248 1.46%

0.05 24.5388 24.7480 0.85%

0.95 124.8726 124.3719 -0.40%

0.975 152.1901 150.5944 -1.05%

0.99 196.4655 191.0344 -2.76%

As observed from Table 5.8.2, the approximation is still reasonably good when we consider

a portfolio. The approximations at the tails of the distribution lose more precisions compared

to the single asset situation. One of the reasons might be that in multi asset case we include

an extra risky asset thus making the number of log unified skew normal random variables
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double compared to the single asset case. However, the approximations will surely improve

with a better choice of the conditioning random variable Λ.
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