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ABSTRACT

Steven M. Seubert, Advisor

A diagonal operator acting on the space H(B(0, R)) of functions analytic on the disk

B(0, R) where 0 < R ≤ ∞ is defined to be any continuous linear map on H(B(0, R)) having

the monomials zn as eigenvectors. In this dissertation, examples of diagonal operators D

acting on the spaces H(B(0, R)) where 0 < R < ∞, are constructed which fail to admit

spectral synthesis; that is, which have invariant subspaces that are not spanned by collec-

tions of eigenvectors. Examples include diagonal operators whose eigenvalues are the points

{nae2πij/b : 0 ≤ j < b} lying on finitely many rays for suitably chosen a ∈ (0, 1) and b ∈ N,

and more generally whose eigenvalues are the integer lattice points Z×iZ. Conditions for re-

moving or perturbing countably many of the eigenvalues of a non-synthetic operator which

yield another non-synthetic operator are also given. In addition, sufficient conditions are

given for a diagonal operator on the space H(B(0, R)) of entire functions (for which R =∞)

to admit spectral synthesis.
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CHAPTER 1

Invariant Subspaces, Diagonal

Operators and Spectral Synthesis

1.1 Introduction

The purpose of this document is to study the closed invariant subspaces of analogues of

diagonal operators acting not on Hilbert spaces, but instead on spaces of functions analytic

on regions in the complex plane. The general setting for our study concerns continuous linear

operators T : X → X , where X is a complete metrizable topological vector space. Recall

that a closed subspace M of X is invariant for T if Tx ∈ M whenever x ∈ M. Examples

of invariant subspaces include the closed linear span of eigenvectors for T if any exist, and

more generally the closed linear spans ∨{T nx : n ≥ 0} of orbits {T nx : n ≥ 0} of vectors

x ∈ X . In fact, ∨{T nx : n ≥ 0} is the smallest closed invariant subspace for T containing

x. However, it may be that such a subspace coincides with all of X ; in this case, we say

that x is a cyclic vector for T and that T is a cyclic operator. If T has no non-trivial

invariant subspaces then every non-zero vector is cyclic. Consequently, examples of non-

trivial invariant subspaces for T are obtained from its non-cyclic vectors. A long-standing

open problem in operator theory is to determine whether or not every operator acting on
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a separable Hilbert space has a non-trivial invariant subspace; it is the Invariant Subspace

Problem.

The importance of cyclic vectors and invariant subspaces derives in part from Linear

Algebra, the study of operators on finite-dimensional spaces. In particular, every linear map

T on Cn is known to have an eigenvector x with associated eigenvalue λ which generates

an invariant subspace R(λ) ≡ ∨{∪kKer((T − λ)k)} for T , called the root space for T . The

map T , when restricted to this root space, is given by the sum of Jordan cells. A Jordan

cell is a matrix (with respect to an appropriately chosen basis for R(x)) having λ’s on the

main diagonal, ones on the super-diagonal, and zeros elsewhere. Each Jordan cell is a cyclic

operator having as cyclic vectors any column vector whose last coordinate is non-zero. The

operator T may be viewed as the assemblage of each of its “parts,” namely, the restrictions

of T to its root spaces. More precisely, the Jordan Decomposition Theorem states that every

linear map on Cn is similar to the direct sum of Jordan cells. It follows that a linear map

T on Cn is cyclic if and only if the diagonal entries of its Jordan cells are distinct. In this

case, a vector is cyclic for T if and only if it is the sum of cyclic vectors for the Jordan cells.

The first infinite-dimensional generalization of Cn that one might study is a separable

Hilbert space H. In an effort to better understand an operator T : H → H, it seems natural

to try to decompose T into its “parts” or restrictions of T to its invariant subspaces. However,

the Invariant Subspace Problem, which remains an open problem, is to determine whether

or not every operator on a separable Hilbert space has a non-trivial invariant subspace.

This problem has been solved in several special cases but not in general. For example, Per

Enflo [14] has constructed a Banach space on which no operator has an invariant subspace,

however, there are examples of Banach spaces on which it is known (see [2], for instance)

that every operator has non-trivial invariant subspaces. In view of the Jordan Decomposition

Theorem on Cn, it seems natural to believe that every operator on a separable Hilbert space

has non-trivial invariant subspaces, namely its root spaces. However, operators on a Hilbert

space need not have any eigenvalues, such as the forward shift. Other operators may have
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uncountably many eigenvalues, such as the backward shift whose eigenvalues are precisely

the points in the open unit disk.

Thus, in general, one can not hope to identify or characterize the set of cyclic vectors or

lattice of invariant subspaces of an arbitrary operator on a separable Hilbert space. For this

reason, research in operator theory is often of one of two types; either study as many different

aspects of a certain class of operators as one can, or try to decide one specific property of all

operators. This dissertation is of the former type; in particular, we study analogues of direct

sums of Jordan cells (reminiscent of the Jordan Decomposition Theorem), called diagonal

operators which act on spaces of functions analytic on a region in the complex plane, and

attempt to decide whether or not their invariant subspaces are of a special type (reminiscent

of root spaces).

We now describe the class of operators in question by revisiting the finite-dimensional

setting of Cn. Recall, a linear map on Cn is similar to the direct sum of Jordan cells, which

have a constant on the main diagonal, ones on the super-diagonal, and zeros elsewhere. A

simple generalization to a Hilbert space is to consider a single Jordan cell with eigenvalue

zero and ones along the super-diagonal, which is precisely the shift operator. In a seminar

paper of 1949, Beurling showed that a closed subspace is invariant for the shift operator S,

when viewed as acting on the Hardy space H2, if and only if it has the form BH2 where B

is a so-called inner function. It then follows, as a corollary, that a function f ∈ H2 is cyclic

for S if and only if f has no inner divisor; that is, if f is a so-called outer function.

Another generalization of an arbitrary operator, which can be thought of as the direct

sum of Jordan cells, acting on Cn to Hilbert spaces is to take the direct sum of many one-

by-one Jordan cells, instead of one large Jordan cell. This is a so-called diagonal operator.

More precisely, if H is a Hilbert space with an orthonormal basis {en} and D : H → H is a

continuous linear operator, we say D is a diagonal operator with eigenvalues {λn} ⊂ C

if D(en) = λnen for all n ≥ 0. Hence, D is a diagonal operator if every basis element en is

an eigenvector for D. Thus, for diagonal operators some simple examples of closed invariant
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subspaces are the closed linear spans of arbitrary collections of eigenvectors ∨{en : n ∈ N}

where N ⊆ N. It may seem that these constitute the entire collection of closed invariant

subspaces of D. However, in 1921, Wolff presented an example showing this need not be

the case. As a result, the invariant subspaces and cyclic vectors of diagonal operators acting

on Hilbert spaces became an active area of research carried out by Wolff [47], Wermer [45],

Scroggs [40], Brown, Shields, and Zeller [8], Sarason [38], Nikol’skii [32] and [33], and Sibilev

[44], amongst others. One of the central open problems is to determine conditions for a

diagonal operator acting on a separable Hilbert space to have closed invariant subspaces

consisting only of spaces spanned by the eigenvectors they contain. Such operators are

said to be synthetic or to admit spectral synthesis, otherwise we say the operator is

non-synthetic. Wolff’s example demonstrated the existence of a non-synthetic diagonal

operator acting on the Hilbert space `2. The concept of spectral synthesis has been extended

to analogues of diagonal operators acting on spaces of functions analytic on regions in the

complex plane in the work of Deters, Marin, Seubert, and Wade ([11]-[13], [31], [41]-[43]).

However, it was not known whether or not there exist diagonal operators on such spaces

which fail spectral synthesis.

In this dissertation, we show that there exist non-synthetic diagonal operators acting on

spaces of functions analytic on the unit disk which fail spectral synthesis by constructing

examples analogous to Wolff’s 1921 example.

In the rest of this chapter, we discuss the known equivalent conditions for a diagonal

operator to admit spectral synthesis on a Hilbert space, the space of entire functions H(C),

and the space of functions analytic on the unit disk H(D). We also discus examples of

non-synthetic diagonal operators acting on a `2, as well as several known results that can be

used to test for synthesis.

In Chapter 2, we show the diagonal operator on H(D) with eigenvalues Z × iZ fails to

admit spectral synthesis.

In Chapter 3, we show the diagonal operator on H(D) with eigenvalues {nae2πij/b : 0 ≤
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j < b} for suitably chosen a ∈ (0, 1) and b ∈ N, fails synthesis.

In Chapter 4, we give conditions for modifying (that is, adding, rearranging, deleting,

or perturbing) countably many eigenvalues of a non-synthetic operator acting on H(D) to

yield another non-synthetic operator. We illustrate these results using the examples of non-

synthetic operators obtained in Chapters 2 and 3.

In Chapter 5, we give a sufficient condition for a diagonal operator acting on the space of

entire functions to admit spectral synthesis. In particular, we strengthen a result of Leontev’s

[25] which asserts that if D is a diagonal operator acting on H(C) with eigenvalues {λn},

which satisfy {|λn|} is increasing and 0 < lim infn→∞ |λn|/n ≤ lim supn→∞ |λn|/n <∞, then

D admits spectral synthesis. We demonstrate that the condition lim infn→∞ |λn|/n > 0 is

not necessary.

For the convenience of the reader, we include an appendix containing an overview of the

results from the theory of entire functions which are necessary in our results. All of the

information given can be found in the books of Boas [5], Levin [29] and [30], Holland [18],

and Rubel [36], amongst others.

1.2 The Hilbert Space Case

In this section, we discuss the relevant background information regarding the spectral syn-

thesis of diagonal operators acting on a separable Hilbert space. In Section 1.5, we have the

analogous discussion for the spectral synthesis of diagonal operators acting on the space of

entire functions, and in Section 1.6, we have the analogous discussion for diagonal operators

acting on the space of functions analytic on the unit disk.

Cyclic vectors and invariant subspaces of diagonal operators acting on a separable Hilbert

space have been studied extensively since at least 1921 by Wolff [47], Wermer [45], Scroggs

[40], Brown, Shields, and Zeller [8], Sarason [38] and [39], Nikol’skii [32] and [33], and Sibilev

[44], amongst others. The following theorem, extracted from these references, gives several
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equivalent conditions for a diagonal operator acting on a separable Hilbert space to admit

spectral synthesis.

Theorem 1.1. Let H be a separable complex Hilbert space and let D be any bounded linear

operator on H for which there exists an orthonormal basis {en} for H and a sequence {λn} of

complex numbers for which Den = λnen for all n ≥ 0. Then {λn} is bounded. Moreover, D

is cyclic if and only if λm 6= λn for all m 6= n, and in this case, the following are equivalent:

(i) D admits spectral synthesis,

(ii) a vector x is cyclic for D if and only if 〈x, en〉 6= 0 for all n,

(iii) there does not exist a sequence {ωn} of complex numbers in `1, not all zero, for which∑∞
n=0 ωnλ

k
n ≡ 0 for all k ≥ 0,

(iv) there does not exist a sequence {ωn} of complex numbers in `1, not all zero, for which

the Wolff-Denjoy series
∑∞

n=0
ωn
z−λn ≡ 0 for all z with |z| > sup |λn|,

(v) there does not exist a sequence {ωn} of complex numbers in `1, not all zero, for which the

complex measure µ ≡
∑∞

n=0 ωnδ{λn} consisting of point masses at the λn with weights

ωn annihilates the polynomials,

(vi) there does not exist a sequence {ωn} of complex numbers in `1, not all zero, for which

the exponential series
∑∞

n=0 ωne
λnz ≡ 0 on the complex plane,

(vii) every closed invariant subspace for D is also invariant for the adjoint D∗ of D,

(viii) the weakly closed algebra generated by D and the identity is the commutant of D, and

(ix) there does not exist a bounded complex domain Ω such that sup {|f(z)| : z ∈ Ω} =

sup {|f(z)| : z ∈ Ω ∩ {λn}} for all f bounded and analytic on Ω.

If, in addition, the λn lie in the open unit disk and accumulate only on the unit circle, then

conditions (i)-(ix) are equivalent to
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(x) not almost every point of the unit circle is in the non-tangential cluster set of {λn},

and

(xi) the map T : H∞ → `∞(µ) from the space of functions bounded and analytic on the open

unit disk to `∞(µ), where µ =
∑∞

n=0 δ{λn} is the measure consisting of point masses at

the eigenvalues defined by T : f → {f(λn)}, is not an isometry.

The equivalent conditions given in the preceding theorem demonstrate the diverse nature

of spectral synthesis. Conditions (i), (ii), (vii), and (viii) are all purely operator theoretic

statements involving invariant subspaces, cyclic vectors, adjoints, commutants, and the alge-

bra generated by D. Condition (iii) is a combinatoric statement about moments. Conditions

(iv) and (vi) regard, in some sense, the linear independence of {1/(z − λn)} and {eλnz}, re-

spectively. Conditions (v) and (xi) are functional analytic statements about measures and

isometries. Conditions (ix) and (x) are purely geometrical statements about so-called dom-

inating sequences.

The equivalence of several of the diverse conditions in the preceding theorem can be

established easily. The combinatoric Condition (iii) is easily seen to be equivalent to the

“linear independence” Condition (vi) by observing
∑∞

n=0 ωnλ
k
n = g(k)(0) for all k ≥ 0, where

g(z) ≡
∑∞

n=0 ωne
λnz ∈ H(C) (and recalling, g(z) ≡ 0 if and only if g(k)(0) = 0 for all k ≥ 0).

Similarly, Condition (iii) is easily seen to be equivalent to the measure theoretic Condition

(v) by observing
∑∞

n=0 ωnλ
k
n =

∫
zkdµ for all k ≥ 0, where µ ≡

∑∞
n=0 ωnδ{λn} is the measure

consisting of weighted point masses. The equivalence of several of the operator theoretic

conditions is discussed in further detail in Section 1.3.

The interpretations of several of the equivalent conditions for spectral synthesis given

in Theorem 1.1 provide some insight into the behavior of the eigenvalues. For example,

Condition (ix) states that the operator fails to admit spectral synthesis if and only if the

sequence of eigenvalues {λn} is a so-called dominating sequence; that is, D is non-synthetic

whenever the eigenvalues are “thick enough” to recapture the supremum of |f(z)| for any

function f bounded and analytic on some domain Ω ⊂ {z ∈ C : |z| < 1} ≡ D. In view of the
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Maximum Modulus Principle, this condition requires that the points {λn} be “thick enough”

near the boundary of Ω for D to fail synthesis on H. Condition (iv) regards representing

the zero function as a Wolff-Denjoy series. Conditions for such representations to be unique,

when they exist, have been studied extensively by Borel [6], Beurling [4], and Sibilev [44].

Condition (vi), regards representing the zero function as an exponential series, which has

been studied extensively by Leontev [25]-[28] and Korobeinik [21]-[24].

It might seem reasonable to believe that each condition in the preceding theorem holds

for any diagonal operator. Surprisingly, this is not always the case. The first example of a

diagonal operator acting on a separable Hilbert space which failed to admit spectral synthesis

was given by Wolff in 1921. The details of the example can be found in [33] and [47], however,

due to its simplicity and elegance we include it here.

Example 1.1. Wolff’s Example

As usual, we let D = {z ∈ C : |z| < 1} denote the open unit disk. Let {Dj : j ≥ 1} be any

collection of disks Dj = {z ∈ C : |z − λj| ≤ rj}, which covers almost all of the entire unit

disk; that is, for which m2(D \ ∪∞j=1Dj) = 0 where m2 denotes planar Lebesgue measure.

Then, for any z such that |z| > 1, we have

1

π

∫
D

dm2(λ)

λ− z
=

1

π

∫
D
−1

z

(
1

1− (λ/z)

)
dm2(λ)

=
1

π

∫
D
−1

z

∞∑
n=0

(
λ

z

)n
dm2(λ)

=
1

π

∫ 2π

0

∫ 1

0

−1

z

∞∑
n=0

(
reiθ

z

)n
rdrdθ

= − 1

π

∫ 2π

0

∫ 1

0

∞∑
n=0

rneiθn

zn+1
rdrdθ

= − 1

π

∞∑
n=0

1

zn+1

∫ 2π

0

∫ 1

0

rn+1eiθndrdθ

= − 1

πz

∫ 2π

0

∫ 1

0

rdrdθ

= −1

z
.
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Moreover, we have

1

π

∫
D

dm2(λ)

λ− z
=

1

π

∫
∪Dj

dm2(λ)

λ− z

=
1

π

∞∑
j=1

∫
B(λj ,rj)

dm2(λ)

λ− z

=
1

π

∞∑
j=1

∫
B(λj ,rj)

−1

z

(
dm2(λ)

1− (λ/z)

)

=
1

π

∞∑
j=1

∫
B(λj ,rj)

−1

z

∞∑
k=0

(
λ

z

)k
dm2(λ)

= − 1

π

∞∑
j=1

∫ 2π

0

∫ rj

0

∞∑
k=0

(λj + reiθ)k

zk+1
rdrdθ

= − 1

π

∞∑
j=1

∞∑
k=0

λkj
zk+1

∫ 2π

0

∫ rj

0

rdrdθ

= −
∞∑
j=1

∞∑
k=0

λkj r
2
j

zk+1

=
∞∑
k=0

(
− 1

zk+1

∞∑
j=1

r2
jλ

k
j

)
.

Hence,

−1

z
=
∞∑
k=0

(
− 1

zk+1

∞∑
j=1

r2
jλ

k
j

)
.

Equating the Laurent series coefficients, we have that
∑∞

j=1 r
2
j = 1 and

∑∞
j=1 r

2
jλ

k
j = 0 for

all k ≥ 1. Hence, {r2
j} ∈ `1, and if we define ωj = r2

jλj for j ≥ 1, then
∑∞

j=1 |ωj| =∑∞
j=1 r

2
j |λj| ≤

∑∞
j=1 r

2
j = 1 and

∑∞
j=1 ωjλ

k
j =

∑∞
j=1 r

2
jλ

k+1
j = 0 for all k ≥ 0. Hence, the

diagonal operator D having eigenvalues {λj} satisfies Condition (iii) of Theorem 1.1, and

thus fails spectral synthesis on `2.

Wolff’s example led the way for years of research in this area (that is, representing the

zero function by series of the form
∑∞

j=0 ωjλ
k
j ) by many prominent mathematicians and has

been extended to sequences {λn} of distinct complex numbers which are not necessarily

bounded. The following four such examples appear on page 128 of Operators, Functions and
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Systems, I by Nikol’skii [32].

Example 1.2. Extensions of Wolff’s Example

In 1936, Natason showed that for the sequence {λn} = {n}, there exists a sequence {ωn}

of complex numbers for which 0 <
∑∞

n=0 |ωn||λn|k < ∞ and
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0.

In 1959, Makarov generalized Natason’s example to include any sequence {λn} for which

|λn| → ∞. In 1968, Markus showed that, for all sequences {λk} of distinct complex numbers

there exists a sequence {εk} such that
∑∞

k=0 εk|λk|n < ∞ for every n ≥ 0, and for every

sequence {ωk} satisfying |ωk| ≤ Cεk for every k ≥ 0, and
∑∞

k=0 ωkλ
n
k = 0 for every n ≥ 0,

we have ωk ≡ 0. Hence, if the sequence {ωk} decays quicker than {εk}, then the moments∑∞
k=0 ωkλ

n
k ≡ 0 only when the coefficients are identically zero. In 1995, Sibilev showed that

for any decreasing sequence {εk} of positive numbers, the following are equivalent:

1. for all bounded sequences {λk} of distinct points and for all sequences {ωk} such that

|ωk| ≤ Cεk for all k ≥ 1,
∑∞

k=1 ωkλ
n
k = 0 for all n ≥ 0 implies ωk = 0 for all k ≥ 0, and

2.
∑∞

k=1 (1/k2) log (1/εk) =∞.

The purpose of this dissertation is to provide examples of cyclic diagonal operators acting

on the space of functions analytic on the unit diskH(D) which fail to admit spectral synthesis,

by providing analogues to Wolff’s example on `2. By definition, diagonal operators acting on

H(D), as well as on the space of entire functions H(C), have as eigenvectors the monomials

zn with associated eigenvalues {λn}. We will see in these two settings that the existence of

a non-synthetic diagonal operator is equivalent to a moment condition
∑∞

n=0 ωnλ
k
n ≡ 0 for

k ≥ 0, where {ωn} satisfies a certain decay rate. However, the exact nature of the decay rate

of {ωn} versus the growth rate of {λn} is the essential ingredient that defines the condition

for non-synthesis on each space. In the following section, we preview the results that we

state in Sections 1.5 and 1.6 regarding conditions for non-synthesis on H(C) and H(D), by

examining the analogues of the moment Condition (iii) of Theorem 1.1. Using these results

we deduce that Wolff’s example, as well as those of Natason and Makarov, do not yield



11

examples of non-synthetic diagonal operators acting on spaces of functions analytic on a

region in the complex plane.

1.3 The Moment Condition

Let H denote a separable Hilbert space with an orthonormal basis {en}. A vector x =∑∞
n=0 anen is inH if and only if {an} ∈ `2. If D is a linear map onH having en as eigenvectors

with associated eigenvalues λn, then D is given formally by D :
∑∞

n=0 anen →
∑∞

n=0 λnanen.

In this case, D is a continuous linear operator on H if and only if {λn} ∈ `∞, by the

Principle of Uniform Boundedness [9, page 95]. We define a diagonal operator acting

on H having eigenvalues {λn} to be an operator D acting on H for which there exists a

sequence {λn} ⊂ C such that {λn} ∈ `∞ and D(en) = λnen for all n ≥ 0.

A vector x =
∑∞

n=0 anen ∈ H is non-cyclic for D if and only if there exists a non-zero

linear functional L, in the dual H∗ of H, such that L(Dkx) ≡ 0 for all k ≥ 0, by the Hahn-

Banach Theorem [9, page 78]. If we define ln = L(en) and ωn = anln for all n ≥ 0, we have

for non-cyclic x that 0 = L(Dkx) = L(Dk(
∑∞

n=0 anen)) = L(
∑∞

n=0 anλ
k
nen) =

∑∞
n=0 ωnλ

k
n for

all k ≥ 0. Observe this is Condition (iii) of Theorem 1.1, which is equivalent to the diagonal

operator D acting on H failing spectral synthesis. Since {an} ∈ `2 and {ln} ∈ `2 (as {ln}

corresponds to the linear functional L ∈ H∗ ∼= `2), we have {ωn} ∈ `1. We note this process

can be reversed; that is, given {ωn} ∈ `1, we can factor ωn = anln where {an} ∈ `2 and

{ln} ∈ `2.

Hence the decay rate of the sequence {ωn} in Condition (iii) of Theorem 1.1 depends on

the spaceH and its dual. As mentioned in Section 1.2, the moment condition 0 =
∑∞

n=0 ωnλ
k
n,

will be satisfied if there exists a balance between the growth rate of {λn} and the decay rate

of {ωn}, where the growth of {λn} reflects the continuity of D on H and the decay of

{ωn} = {anln} reflects the membership of x ∈ H and L ∈ H∗. It is this balance that

distinguishes examples of non-synthetic diagonal operators acting on Hilbert spaces from
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examples of non-synthetic diagonal operators acting on spaces of functions analytic on a

region. In Sections 1.5 and 1.6, we observe that the non-synthesis of diagonal operators on

H(C) and H(D) is equivalent to a moment condition 0 =
∑∞

n=0 ωnλ
k
n, analogous to Condition

(iii) for a diagonal operator acting on a Hilbert space being non-synthetic. The difference

in each setting will be the required decay rate of {ωn}. Moreover, on a Hilbert space the

eigenvalues {λn} of a diagonal operator are bounded, while on both H(C) and H(D), the

eigenvalues can be unbounded.

Let H(C) denote the vector space of functions analytic on the entire complex plane C. A

function f(z) =
∑∞

n=0 anz
n is in H(C) if and only if lim supn→∞ |an|1/n = 0, by the Radius

of Convergence Formula. When endowed with the topology of uniform convergence on com-

pacta, H(C) is a complete locally convex topological vector space. The topology of H(C) is

induced by the invariant metric ρ(f, g) ≡
∑∞

n=0 ||f − g||n/[2n(1 + ||f − g||n)], where ||h||n ≡

sup {|h(z)| : |z| ≤ n}. If D is a linear map on H(C) having the monomials zn as eigenvectors

with associated eigenvalues λn, then D is given formally by D :
∑∞

n=0 anz
n →

∑∞
n=0 λnanz

n.

In this case, D is a continuous linear operator on H(C) if and only if lim supn→∞ |λn|1/n <∞,

by an application of the Closed Graph Theorem [31, Lemma 1]. We define a diagonal oper-

ator acting on H(C) having eigenvalues {λn} to be any operator D acting on H(C) for

which there exists a sequence {λn} ⊂ C such that lim supn→∞ |λn|1/n <∞ and D(zn) = λnz
n

for all n ≥ 0.

A vector f(z) ∈ H(C) is non-cyclic for D if and only if there exists a non-zero linear

functional L, in the dual H∗(C) of H(C), such that L(Dkf) ≡ 0 for all k ≥ 0 (see [37, Rudin],

[29, Levin], or [19, Iyer]). If we define ln = L(zn) and ωn = anln for all n ≥ 0, we have for

non-cyclic f that 0 = L(Dkf) = L(Dk(
∑∞

n=0 anz
n)) = L(

∑∞
n=0 anλ

k
nz

n) =
∑∞

n=0 ωnλ
k
n for all

k ≥ 0. Since lim supn→∞ |an|1/n = 0 and lim supn→∞ |ln|1/n <∞ (as {ln} corresponds to the

linear functional L ∈ H∗(C)), we have lim supn→∞ |ωn|1/n = 0. For the moment condition

0 =
∑∞

n=0 ωnλ
k
n to be satisfied, there must exist a balance between the growth rate of {λn}

and the decay rate of {ωn}. The growth of {λn}, namely that lim supn→∞ |λn|1/n < ∞,
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reflects the continuity of the operator D on H(C), and the decay rate of {ωn}, namely that

lim supn→∞ |ωn|1/n = 0, allows for {ωn} to be factored into {anln} where {an} is such that

lim supn→∞ |an|1/n = 0 (which guarantees the corresponding vector is in H(C)), and {ln}

is such that lim supn→∞ |ln|1/n < ∞ (which guarantees the corresponding functional is in

H∗(C)).

Let H(D) = H(B(0, 1)) denote the vector space of functions analytic on the open

unit disk D = {z ∈ C : |z| < 1}. A function f(z) =
∑∞

n=0 anz
n is in H(D) if and

only if lim supn→∞ |an|1/n ≤ 1, by the Radius of Convergence Formula. When endowed

with the topology of uniform convergence on compacta, H(D) is a complete locally con-

vex topological vector space where the topology of H(D) is induced by the invariant metric

ρ(f, g) ≡
∑∞

n=0 ||f − g||n/[2n(1 + ||f − g||n)], where ||h||n ≡ sup {|h(z)| : |z| ≤ (1− 1/n)}.

If D is a linear map on H(D) having the monomials zn as eigenvectors with associated eigen-

values λn, then D is given formally by D :
∑∞

n=0 anz
n →

∑∞
n=0 λnanz

n. In this case, D is a

continuous linear operator on H(D) if and only if lim supn→∞ |λn|1/n ≤ 1, by an application

of the Closed Graph Theorem [12, Proposition 1]. We define a diagonal operator acting

on H(D) having eigenvalues {λn} to be any operator D acting on H(D) for which there

exists a sequence {λn} ⊂ C such that lim supn→∞ |λn|1/n ≤ 1 and D(zn) = λnz
n for all

n ≥ 0.

A vector f(z) ∈ H(D) is non-cyclic for D if and only if there exists a non-zero lin-

ear functional L, in the dual H∗(D) of H(D), such that L(Dkf) ≡ 0 for all k ≥ 0 [37,

Rudin]. If we define ln = L(zn) and ωn = anln for all n ≥ 0, we have for non-cyclic f that

0 = L(Dkf) = L(Dk(
∑∞

n=0 anz
n)) = L(

∑∞
n=0 anλ

k
nz

n) =
∑∞

n=0 ωnλ
k
n for all k ≥ 0. Since

lim supn→∞ |an|1/n ≤ 1 and lim supn→∞ |ln|1/n < 1 [9, page 116], we have lim supn→∞ |ωn|1/n <

1. For the moment condition 0 =
∑∞

n=0 ωnλ
k
n to be satisfied, there must exist a balance be-

tween the growth rate of {λn} and the decay rate of {ωn}. The growth of {λn}, namely that

lim supn→∞ |λn|1/n ≤ 1, reflects the continuity of the operator D on H(D), and the decay

rate of {ωn}, namely that lim supn→∞ |ωn|1/n < 1, allows for {ωn} to be factored into {anln}
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where {an} is such that lim supn→∞ |an|1/n ≤ 1 (which guarantees the corresponding vector

is in H(D)), and lim supn→∞ |ln|1/n < 1, (which guarantees the corresponding functional is

in H∗(D)).

In Wolff’s Example 1.1, we saw that for certain sequences {λn}, there exist sequences

{ωn} ∈ `1 such that
∑∞

n=0 ωnλ
k
n = 0 for all k ≥ 0. Thus, the diagonal operator acting on

a separable Hilbert space with eigenvalues {λn} fails to admit spectral synthesis. However,

Wolff’s sequence {ωn} cannot be factored into the product of two sequences; one corre-

sponding to a vector in H(C) (or H(D)) and the other corresponding to a linear functional

in H∗(C) (or H∗(D)) [44, Sibilev]. Hence, Wolff’s example does not yield a non-synthetic

operator on either of these spaces. This is also the case with the examples of Natason and

Makarov discussed in Example 1.2.

1.4 A Preview of the Main Results

The purpose of this document is to produce diagonal operators acting on the space of func-

tions analytic on the unit disk which fail to admit spectral synthesis. From the preceding

discussion, it is sufficient to find a sequence {λn} for which lim supn→∞ |λn|1/n ≤ 1 and a

non-zero sequence {ωn} for which lim supn→∞ |ωn|1/n < 1 and such that
∑∞

n=0 ωnλ
k
n ≡ 0 for

all k ≥ 0. We showed in Section 1.2, that the moment condition 0 =
∑∞

n=0 ωnλ
k
n is equiva-

lent to the condition 0 ≡
∑∞

n=0 ωne
λnz for all z. An analogous equivalence holds on H(D);

in particular, whenever {λn/n : n ≥ 1} is bounded, the moment condition is equivalent to∑∞
n=0 ωne

λnz ≡ 0 for all z in a disk centered about the origin. In Chapter 2 of this disserta-

tion, we show that the diagonal operator having as eigenvalues Z× iZ ≡ {m+ in : m,n ∈ Z}

fails synthesis on H(D). In Chapter 3, we show that diagonal operators having as eigenvalues

sequences of the form {nae2πij/b : 0 ≤ j < b} for suitably chosen constants a ∈ (0, 1) and

b ∈ N, fail synthesis on H(D).

In the remainder of this section, we outline briefly the technique, which is due to Ermenko,
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used to prove these results. Let D be a diagonal operator having as eigenvalues {λn}, either

Z × iZ or a set of the form {nae2πij/b : 0 ≤ j < b} for suitably chosen constants a ∈ (0, 1)

and b ∈ N. In either case, inf {α :
∑∞

n=1 1/|λn|α <∞} > 1, hence, any entire function S(λ)

having simple zeros at λn has order ρ > 1 [5, Boas]. If follows that there exist constants

α, β > 0, for which |S(λ)| > αeβ|λ|
ρ

whenever λ avoids a disjoint collection of balls B(λn, rn).

In view of which, by the Residue Theorem,
∑∞

n=0 e
λnz/S ′(λn) = limr→∞

∫
Cr

(eλz/S(λ))dλ = 0

for appropriately chosen contours Cr which avoid the balls B(λn, rn). It follows from the

Inverse Function Theorem [15, Gamelin] and Schwarz’ Lemma that lim supn→∞ |ωn|1/n < 1

where ωn ≡ 1/S ′(λn). Hence, 0 ≡
∑∞

n=0 ωne
λnz for all z near the origin, and by the discussion

in Section 1.3, D fails to admit spectral synthesis on H(D).

1.5 The Case H(C)-The Space of Entire Functions

In this section, we discuss the relevant background information regarding the spectral syn-

thesis of diagonal operators acting on the space of entire functions H(C). In particular, we

state the analogue of Theorem 1.1, that is, we provide equivalent conditions for diagonal

operators acting on H(C) to admit spectral synthesis.

Cyclic vectors, invariant subspaces, and the spectral synthesis of diagonal operators acting

on the space of entire functions H(C) have been studied by Deters, Marin, and Seubert ([13],

[31], and [41]). As mentioned before, a diagonal operator on a Hilbert space is cyclic if and

only if the eigenvalues are distinct. The same results holds in H(C) as is stated in the

following proposition [31, Proposition 3]. We also state a result giving equivalent conditions

for a vector in H(C) to be cyclic for a diagonal operator D [31, Proposition 2].

Proposition 1.1. Let D be a diagonal operator on H(C) having eigenvalues {λn}. Then D

is cyclic if and only if λm 6= λn whenever m 6= n.

Proposition 1.2. Let D be a diagonal operator on H(C) having eigenvalues {λn} and let

f(z) =
∑∞

n=0 anz
n be any entire function. The following are equivalent:
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(i) f fails to be cyclic for D,

(ii) the closed linear span of the orbit {
∑∞

n=0 anλ
k
nz

n : k ≥ 0} of f under D is not all of

H(C), and

(iii) there exists a sequence {ln} of complex numbers, not all zero, for which sup |ln|1/n <∞

and 0 ≡
∑∞

n=0 lnanλ
k
n for all k ≥ 0.

As in Theorem 1.1 for a Hilbert space, several equivalent conditions (most of which are

analogues to the conditions on a Hilbert space) for a diagonal operator acting on H(C) to

admit spectral synthesis have been obtained in [31], as the following theorem demonstrates.

Theorem 1.2. Let D be any cyclic diagonal operator on H(C) having distinct eigenvalues

{λn}. Then the following are equivalent:

(i) D admits spectral synthesis,

(ii) every closed invariant subspace of D is the closed linear span of {zn : n ∈ N} where N

is an arbitrary set of nonnegative integers,

(iii) for every function f(z) ≡
∑∞

n=0 anz
n in H(C), span{Djf : j ≥ 0} = span{zr : ar 6= 0},

(iv) every entire function f(z) =
∑∞

n=0 anz
n with an 6= 0 for all n ≥ 0 is cyclic for D,

(v) there do not exist sequences {an} and {ln} of complex numbers with an 6= 0 for all

n ≥ 0, lim supn→∞ |an|1/n = 0, sup |ln|1/n <∞, and {ln} not identically zero, such that

0 ≡
∑∞

n=0 anlnλ
k
n for all k ≥ 0, and

(vi) there does not exist a sequence {ωn} of complex numbers, not identically zero, for which

lim supn→∞ |ωn|1/n = 0 and 0 ≡
∑∞

n=0 ωnλ
k
n for all k ≥ 0.

If, in addition, {λn/n : n ≥ 1} is bounded, then
∑∞

n=0 dne
λnz is entire whenever lim supn→∞ |dn|1/n =

0 and conditions (i)-(vi) are equivalent to
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(vii) there does not exist a sequence {ωn} of complex numbers, not identically zero, for which

lim supn→∞ |ωn|1/n = 0 and 0 ≡
∑∞

n=0 ωne
λnz for all z in C.

The diverse equivalent conditions for spectral synthesis given in the preceding theorem

provide interesting and enlightening information about the eigenvalues. Many of the condi-

tions are almost identical to the conditions of Theorem 1.1 for a Hilbert space, which were

discussed in detail following the theorem in Section 1.2. For example, Condition (iv) is anal-

ogous to Condition (ii) of Theorem 1.1, Condition (vi) to Condition (iii) of Theorem 1.1,

and Condition (vii) is analogous to Condition (vi) of Theorem 1.1. However, we note that

there are no analogous statements to Conditions (vii) and (viii), for example, of Theorem

1.1 in Theorem 1.2, as we do not know how to precisely define the adjoint of an operator on

H(C). The discussion in Section 1.3 shows the equivalence of Conditions (v) and (vi). We

discuss the equivalences of several of the other conditions briefly here. Conditions (i) and

(ii) are equivalent as Condition (ii) is the definition of spectral synthesis since a diagonal

operator acting on H(C) has the monomials zn as eigenvectors. By this same reasoning it is

clear that Condition (ii) is equivalent to Conditions (iii) and (iv).

The first example of a diagonal operator acting on H(C) which fails to admit spectral

synthesis was produced by Henthorn in [16] where it is shown that if D is a cyclic diagonal

operator on H(C) having eigenvalues {λn} such that lim supn→∞ |λn/λn+1| < 1, that is, if

{λn} grows exponentially, then D fails synthesis on H(C). Whether any such example exists

on the space of functions analytic on the unit disk remained an open problem, which we

address in this document.

1.6 The Case H(D)-The Space of Functions Analytic on

the Disk

In this section, we discuss the relevant background information regarding the spectral syn-

thesis of diagonal operators acting on the space of functions analytic on the unit disk H(D).
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In particular, we state the analogue of Theorems 1.1 and 1.2, which provide equivalent con-

ditions for diagonal operators acting on H and H(C) to admit spectral synthesis, to diagonal

operators acting on H(D).

In this document, we study operators acting on H(D), however, we need not limit our-

selves to the unit disk. If we let H(B(0, R)) denote the space of functions analytic on the

disk {z ∈ C : |z| < R}, then
∑∞

n=0 anz
n ∈ H(B(0, R)) if and only if lim supn→∞ |an|1/n ≤

1/R. A linear map D with eigenvalues {λn} is continuous on this space if and only if

lim supn→∞ |λn|1/n ≤ 1 [12, Proposition 1]. In view of which, for the purposes of our study,

we can translate all definitions and results on H(D) to H(B(0, R)). Hence, for simplicity,

we will study operators acting on H(D).

Cyclic vectors, invariant subspaces, and the spectral synthesis of diagonal operators acting

on the space of functions analytic on the unit diskH(D) have been studied be Deters, Seubert,

and Wade ([11], [12], and [42]). We begin, as we did with H(C), by stating results about

the cyclicity of diagonal operators on H(D) and conditions for vectors in H(D) to be cyclic

for a diagonal operator D [12, Theorem 1 and Lemma 1].

Proposition 1.3. Let D be a diagonal operator on H(D) having eigenvalues {λn}. Then D

is cyclic if and only if λm 6= λn whenever m 6= n.

Proposition 1.4. Let D be a diagonal operator on H(D) having eigenvalues {λn} and let

f(z) =
∑∞

n=0 anz
n be any function in H(D). The following are equivalent:

(i) f fails to be cyclic for D,

(ii) the closed linear span of the orbit {
∑∞

n=0 anλ
k
nz

n : k ≥ 0} of f under D is not all of

H(D), and

(iii) there exists a sequence {ln} of complex numbers, not all zero, for which sup |ln|1/n < 1

and 0 ≡
∑∞

n=0 lnanλ
k
n for all k ≥ 0.

In [11] and [12] Deters and Seubert present an analogous result to Theorems 1.1 and

1.2 giving equivalent conditions for a diagonal operator acting on H(D) to admit spectral
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synthesis. Many of the conditions are similar to those on Hilbert spaces and H(C), as the

following theorem demonstrates.

Theorem 1.3. Let D be any cyclic diagonal operator on H(D) having distinct eigenvalues

{λn}. Then the following are equivalent:

(i) D admits spectral synthesis,

(ii) every closed invariant subspace of D is the closed linear span of {zn : n ∈ N} where N

is an arbitrary set of nonnegative integers,

(iii) every closed invariant subspace for D (other than the empty set and {0}) contains at

least one monomial zn for some n ≥ 0,

(iv) every function f(z) ≡
∑∞

n=0 anz
n in H(D) with an 6= 0 for all n ≥ 0 is cyclic for D,

(v) there does not exist a sequence {ωn} of complex numbers, not identically zero, for which

lim supn→∞ |ωn|1/n < 1 and 0 ≡
∑∞

n=0 ωnλ
k
n for all k ≥ 0,

(vi) the function u(z) = 1
1−z is cyclic for D,

(vii) for each j ≥ 0 there is some sequence {pn} of polynomials such that limn→∞ pn(λk) =

δj,k and lim supn→∞ supk>j |pn(λk)|1/k ≤ 1, and

(viii) if A is the algebra generated by D and the identity, that is, A ≡ ∨{Dn : n ≥ 0}, and

we let D denote the set of diagonal operators on H(D), then in the Strong Operator

Topology, A = D.

If, in addition, {λn/n : n ≥ 1} is bounded, then
∑∞

n=0 ωne
λnz is analytic on the open ball

B(0, ε) containing the origin whenever {ωn} is a sequence of complex numbers for which

lim supn→∞ |ωn|1/n < 1 where ε ≡ [ln (1/ lim sup |ωn|1/n)]/[sup {|λn|/n}]. In this case, condi-

tions (i)-(viii) are equivalent to

(ix) there does not exist a sequence {ωn} of complex numbers, not identically zero, for which

lim supn→∞ |ωn|1/n < 1 and 0 ≡
∑∞

n=0 ωne
λnz for all z in the open ball B(0, ε).
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Most of the conditions given in the preceding theorem are nearly identical to the condi-

tions in Theorems 1.1 and 1.2 with the necessary changes on the decay rate of {ωn} made,

as discussed in Section 1.3. We remark on a few of the other conditions. Condition (vi)

states that we need only check the cyclicity of one function, u(z); if it is cyclic for D, then all

of the closed invariant subspaces are known, but if not, then there is some closed invariant

subspace that is not the closure of the span of some set of monomials. Condition (vii) gives

a computational approach to checking synthesis by examining the growth of polynomials.

In this dissertation, as outlined in Section 1.4, we prove that non-synthetic diagonal

operators acting on H(D) do exist. More precisely, we use Condition (ix) of Theorem 1.3

to show the diagonal operator with the integer lattice points Z × iZ as eigenvalues fails to

admit spectral synthesis on H(D). In Chapter 3, we expand upon this example to generate

an entire class of non-synthetic diagonal operators acting on H(D).

1.7 Testable Conditions for Synthesis

In the preceding sections, lists of equivalent conditions for a diagonal operator acting on

H(C) or H(D) to admit spectral synthesis were given in Theorems 1.2 and 1.3. However,

most of the conditions, although sufficient for synthesis, are not convenient for determining

if a given diagonal operator is synthetic. On both of these spaces a handful of results which

are often more useful to determine if an operator is synthetic are known and are stated in

this section.

Recall that on a Hilbert space a diagonal operator is cyclic if and only if its eigenvalues

are bounded. The following result states that if the eigenvalues of a diagonal operator acting

on H(C) or H(D) are bounded, then the operator is synthetic.

Theorem 1.4. (see [31], [12]) Every cyclic diagonal operator D on H(C) (or on H(D))

whose eigenvalues {λn} are bounded admits spectral synthesis.

It follows from this theorem that there exist cyclic diagonal operators acting on H(C) and
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H(D) admitting spectral synthesis, the closure of whose eigenvalues {λn} have non-empty

interior. This is not the case for diagonal operators acting on a separable Hilbert space [40,

Scroggs].

The following theorem asserts that diagonal operators with eigenvalues {λn} = {np} for

p ≤ 1 are synthetic on H(C) and H(D). Moreover, unlike the Hilbert space case, it asserts

that it is possible for a synthetic operator to have unbounded eigenvalues.

Theorem 1.5. (see [31], [12]) Let D be a diagonal operator on H(C) or H(D) having

eigenvalues {λn}. If {λn/n : n ≥ 1} is bounded and the real parts of the λn are strictly

increasing, then D admits spectral synthesis.

If we instead assert that the eigenvalues lie in a half-plane and satisfy a certain growth

rate, namely that {µn/n : n ≥ 1} is bounded, then the diagonal operator D with eigenvalues

{µn} is synthetic on H(C), thus strengthening Theorem 1.5. As an example the diagonal

operator D having eigenvalues {±n} admits synthesis on H(C).

Theorem 1.6. (see [41]) Let D be any cyclic diagonal operator having eigenvalues {µn}

which lie in any half-plane and are such that {µn/n : n ≥ 1} is bounded. Then D admits

spectral synthesis on H(C).

The results in this dissertation suggest that, unlike the previous results, the synthesis of a

diagonal operator not only depends on the growth rate of the eigenvalues, but also on their

distribution in the complex plane. More specifically, we observe that a diagonal operator

with eigenvalues {
√
n} is synthetic, but a diagonal operator having as eigenvalues six copies

of
√
n placed symmetrically on six rays eiπj/3, where 0 ≤ j < 6, fails to admit spectral

synthesis on H(D).

The next four theorems involve diagonal operators failing to admit spectral synthesis on

H(C) and H(D). On a Hilbert space analogous results are given in the paper of Brown,

Shields and Zeller [8], where the coefficients {γn} are only required to be in `1.
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Theorem 1.7. (see [41]) Let D be a cyclic diagonal operator on H(C) having eigenvalues

{λn} for which {λn/n : n ≥ 1} is bounded. Then D fails spectral synthesis if and only if

for each complex number λ in ({λn})
C

, the complement of the closure of {λn}, there exists

a sequence {γn} of complex numbers, not identically zero, for which lim supn→∞ |γn|1/n = 0

and eλz =
∑∞

n=0 γne
λnz for all complex numbers z.

Theorem 1.8. (see [42]) Let D be a cyclic diagonal operator on H(D) with eigenval-

ues {λn} such that {λn/n : n ≥ 1} is bounded. If D fails spectral synthesis and λ is

in ({λn})
C

, the complement of the closure of the eigenvalues of D, then there exist coef-

ficients {γn} for which lim supn→∞ |γn|1/n < 1 and eλz =
∑∞

n=0 γne
λnz on B(0, ε) where

ε ≡ [ln (1/ lim sup |γn|1/n)]/[sup {|λn|/n}]. Conversely, if eλz ≡
∑∞

n=0 γne
λnz on some non-

empty open disc B(0, r) where λ 6= λn for all n ≥ 0 and lim supn→∞ |γn|1/n < 1, then D fails

spectral synthesis.

Theorem 1.7 is an extension of Theorem 1.2; that is, by Condition (vii) of Theorem 1.2

D fails to admit spectral synthesis if and only if the zero function can be represented as a

Dirichlet series
∑∞

n=0 ωne
λnz, while Theorem 1.7 states that we can represent various expo-

nential functions eλz as Dirichlet series. Theorem 1.8 is the analogue on H(D) of Theorem

1.7 on H(C), however, it is somewhat less satisfying as it only concludes the representation

holds on some neighborhood B(0, ε) of the origin as opposed to holding on all of C or on

D. Regardless, it is still an extension of Theorem 1.3 in the same way Theorem 1.7 extends

Theorem 1.2.

The following results are applications of the work of Leontev and Korobeinik [21]-[28]

concerning the possibility of representing analytic functions as generalized Dirichlet series∑∞
n=0 ane

λnz on certain regions. Korobeinik has shown that under the condition lnn/λn →

0, a generalized Dirichlet series
∑∞

n=0 cne
λnz converges on a domain ΩD if and only if

lim supn→∞ (ln |cn|/|λn|+ h(arg λn)) ≤ 0, where h(θ) denotes the indicator function. More-

over, he has shown that every function f(z) analytic on ΩD can be expressed as f(z) =∑∞
n=0 cne

λnz if and only if the zero function can be represented as such a series with the
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{cn} not identically zero. Leontev and Korobeinik give numerous conditions for the zero

function to be written as a generalized Dirichlet series. The following two theorems assert

that if D is a cyclic diagonal operator acting on H(C) or H(D), respectively, then under

certain conditions, every function analytic on a particular region ΩD associated with D is

representable as a generalized Dirichlet series on ΩD.

Theorem 1.9. (see [41]) Let D be a cyclic diagonal operator on H(C) having eigenvalues

{λn : n ≥ 0} which fails spectral synthesis. Suppose that there exists an entire function g of

exponential type, not identically zero, for which g(λn) = 0 for all n ≥ 0, and denote by ΩD the

interior of the convex compact set having supporting function hg(−θ). If {λn/n : n ≥ 1} is

bounded, then every function f(z) analytic on ΩD is representable as a generalized Dirichlet

series
∑∞

n=0 bne
λnz in the sense that the series

∑∞
n=0 bne

λnz converges uniformly to f(z) on

every compact subset of ΩD.

Theorem 1.10. (see [42]) Let D be a cyclic diagonal operator on H(D) failing spectral

synthesis whose eigenvalues {λn : n ≥ 0} are such that {λn} 6= C and {λn/n : n ≥ 1} is

bounded, and let {ωn} be any nontrivial sequence for which 0 ≡
∑∞

n=0 ωnλ
k
n for all k ≥ 0

and lim supn→∞ |ωn|1/n < 1. Define τ to be the supremum of the radii of all open balls

contained in ({λn})
C

. Then for every entire function f of exponential type less than τ , there

exists a sequence {bn} of complex numbers for which f(z) =
∑∞

n=0 bne
λnz on B(0, ε) where

lim supn→∞ |bn|1/n = lim supn→∞ |ωn|1/n < 1 and ε ≡ [ln (1/ lim sup |γn|1/n)]/[sup {|λn|/n}].

These results are analogous to a result [8, Theorem 3] of Brown, Shields and Zeller for

diagonal operators acting on a Hilbert space H, which asserts D fails spectral synthesis on

H if and only if every entire function f(z) can be represented as f(z) =
∑∞

n=0 bne
λnz where∑∞

n=0 |bn| < ∞. On H(C) and H(D) the preceding results require that {λn/n : n ≥ 1} is

bounded and {λn} 6= C; however, the latter condition is not required for a Hilbert space

H. On H(C) and H(D) we can represent any entire function f(z) of order at most one and

type less than the supremum of the radii of the largest ball contained in the complement
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of the closure of the λn, as
∑∞

n=0 bne
λnz for some {bn}, while on H we can represent any

entire function of order at most one regardless of its type in this way. On H and H(C)

the representation f(z) =
∑∞

n=0 bnz
n holds on C, while on H(D) it only holds on some ball

containing the origin.

The following two theorems give sufficient conditions for a diagonal operator acting on

H(C) to admit spectral synthesis in terms of the growth of the eigenvalues. These results,

unlike the previous ones, do not require the condition {λn/n : n ≥ 1} is bounded.

Theorem 1.11. (see [13]) Let D be a cyclic diagonal operator on H(C) having eigenval-

ues {λn}. If for each j ≥ 0, there exists a sequence {pn(z)} of polynomials for which

limn→∞ pn(λk) = δj,k and sup {|pn(λk)|1/k : k ≥ 0, n ≥ 1} < ∞, then D admits spectral syn-

thesis.

This theorem yields several results, the following states that if there exists a non-trivial

entire function of order ρ with zeros at the eigenvalues {λn} and sup {|λn|ρ/n : n ≥ 1} <∞

then D admits spectral synthesis.

Theorem 1.12. (see [13]) Let D be a cyclic diagonal operator on H(C) having eigenvalues

{λn}. If there exists a non-trivial entire function E(z) of order ρ and finite type τ with

E(λn) ≡ 0 for all n ≥ 0 and sup {|λk|ρ/k : k ≥ 1} <∞, then D admits spectral synthesis.

The preceding theorem follows from Theorem 1.11 by defining the sequence of polynomials

as follows. Let mj denote the order of the zero λj of E(z) for all j ≥ 0, then the function

Ej(z) ≡ E(z)/[(z − λj)
mjE(mj)(λj)] ≡

∑∞
k=0 akz

k satisfies Ej(λk) = δj,k for all j, k ≥ 0.

Hence, defining pn(z) =
∑n

k=0 akz
k gives a sequence of polynomials satisfying the hypotheses

of Theorem 1.11.

From Theorems 1.11 and 1.12, we observe that if the eigenvalues of a diagonal operator D

can be expressed as λn = p(n) where p(z) is a polynomial, then D admits spectral synthesis

on H(C). In particular, we conclude that diagonal operators acting on H(C) having as

eigenvalues {nq} are synthetic for any positive integer q. The previous theorems and their
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consequences improve upon the other results mentioned in this section as they do not require

the condition {λn/n : n ≥ 1} is bounded.

In Chapter 5, we prove another result which gives sufficient conditions for a diagonal

operator on H(C) to admit spectral synthesis. More precisely, we prove that if {λn} is

such that {λn/n : n ≥ 1} is bounded and n(r) = O(r), then the diagonal operator with

eigenvalues {λn} is synthetic on H(C).
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CHAPTER 2

A Non-synthetic Operator on the

Space of Functions Analytic on the

Unit Disk

Wolff’s Example 1.1, gave the first example of a non-synthetic diagonal operator acting on a

separable Hilbert space H. In particular, Wolff showed that for certain bounded sequences

{λn} of distinct complex numbers there exist sequences {ωn} in `1, not identically zero, such

that
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0. By Condition (iii) of Theorem 1.1 such examples yield

non-synthetic diagonal operators acting on `2. Henthorn, in her dissertation [16], proves

that if D is a cyclic diagonal operator acting on H(C) having eigenvalues {λn} such that

lim supn→∞ |λn/λn+1| < 1, then D fails to admit spectral synthesis, hence giving examples

of non-synthetic diagonal operators acting on H(C). In this Chapter, we obtain an example

of a diagonal operator acting on H(D) which fails to admit spectral synthesis.

If D is a non-synthetic diagonal operator acting on H(C) having as eigenvalues {λn}, then

by Condition (vi) of Theorem 1.2, there exists a sequence {ωn}, not identically zero, such

that lim supn→∞ |ωn|1/n = 0 and
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0. Moreover, if it is also the case

that lim supn→∞ |λn|1/n ≤ 1, then by Condition (ix) of Theorem 1.3, D is also non-synthetic



27

when viewed as an operator acting on H(D). Whether there exist diagonal operators which

fail spectral synthesis when viewed as acting on H(D), but admit spectral synthesis when

viewed as acting on H(C) remained an open question, which we answer affirmatively in this

dissertation.

Throughout this chapter, we let D be the cyclic diagonal operator with eigenvalues at

the integer lattice points Z× iZ ≡ {m + in : m,n ∈ Z}, and prove that D is non-synthetic

on H(D) but synthetic on H(C). We let Sj denote the square with vertices ±(j + ij) and

±i(j + ij), for all j ≥ 0, and define {λk} to be the enumeration of Z × iZ defined by

beginning on the positive real line and moving counterclockwise around larger and larger

squares Sj; thus, λ0 = 0; λ1 = 1; λ2 = 1 + i; λ3 = i; λ4 = −1 + i; λ5 = −1; λ6 = −1 − i;

λ7 = −i; λ8 = 1− i; λ9 = 2;...λ24 = 2− i; λ25 = 3... To show D, having eigenvalues {λk}, is

non-synthetic on H(D) we follow the outline given in Section 1.4. In fact, we show that the

sequence {ωk} ≡ {1/S ′(λk)}, where S(z) is an entire function with zeros only at the points

of {λk} (all of which are simple), satisfies Condition (ix) of Theorem 1.3. In Section 2.1, we

collect information on Weierstrass σ-functions which we use in Section 2.2, to determine the

growth rate of the entire function S, and its derivative.

2.1 Weierstrass σ-functions

In this section, we define an entire function S having zeros at the integer lattice points Z×iZ

by means of a canonical product and outline the necessary background information, details

of which can be found in Whittaker and Watson [50, Chapter XX], to determine the growth

rate of S and its derivative S ′, computations which appear in the following section. The

function S is used to show that the diagonal operator D on H(D) having as eigenvalues the

integer lattice points Z× iZ is non-synthetic.

Throughout this section, we use the symbol
∑

m,n to denote the summation over all

integer values of m and n and the symbol
∑′

m,n to denote the same sum except omitting
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the single term m = 0 = n. Similarly, we use the symbol Πm,n to denote the product

over all integer values of m and n and the symbol Π
′
m,n to denote the same product except

omitting the single term m = 0 = n. If ω1 and ω2 are two complex numbers for which ω2/ω1

has positive imaginary part, then we define the so-called Weierstrass ℘-function by ℘(z) =

1
z2

+
∑′

m,n

(
1

(z−(2ω1m+2ω2n))2
− 1

(2ω1m+2ω2n)2

)
. The series for this elliptic function converges

absolutely and uniformly on any compact set omitting its poles {2ω1m + 2ω2n : m,n ∈ Z}.

Rearranging the terms in the product for ℘(z), we see that ℘(z) is an even function, since

℘(−z) =
1

(−z)2
+
∑
m,n

′
(

1

(−z − 2ω1m− 2ω2n)2
− 1

(2ω1m+ 2ω2n)2

)
=

1

z2
+
∑
m,n

′
(

1

(z + 2ω1m+ 2ω2n)2
− 1

(2ω1m+ 2ω2n)2

)
= ℘(z).

By a similar argument, we see that the derivative of ℘(z)

℘′(z) = − 2

z3
+
∑
m,n

′ −2

(z − 2ω1m− 2ω2n)3
= −2

∑
m,n

1

(z − 2ω1m− 2ω2n)3

is an odd function, since

℘′(−z) = −2
∑
m,n

1

(−z − 2ω1m− 2ω2n)3

= 2
∑
m,n

1

(z + 2ω1m+ 2ω2n)3

= −℘′(z).

Since the poles of ℘′(z) form a lattice, one might suspect that ℘(z) periodic. In fact,

using the formula for ℘′(z), we see that ℘(z+2ω1) = ℘(z) (the constant of integration is seen

to be zero upon letting z = −ω1 and recalling that ℘(z) is even). The analogous argument

shows that ℘(z) also has period 2ω2.
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For the purposes of this dissertation, we consider the integer lattice Z× iZ obtained upon

setting ω1 = 1/2 and ω2 = i/2. In this case, the associated ℘-function is defined by ℘(z) =

1
z2

+
∑′

m,n

(
1

(z−(m+in))2
− 1

(m+in)2

)
. The unique function ζ for which d

dz
ζ(z) = −℘(z) and

limz→0 {ζ(z)− 1
z
} = 0 is given by ζ(z) = 1

z
+
∑′

m,n

(
1

z−(m+in)
+ 1

m+in
+ z

(m+in)2

)
. It follows

that ζ is an odd function. Since ℘(z+1) = ℘(z) and ℘(z+ i) = ℘(z) and d
dz
ζ(z) = −℘(z), we

see, upon integrating, that ζ(z + 1) = ζ(z) + 2η1 and ζ(z + i) = ζ(z) + 2η2, where η1, η2 are

constants of integration. In view of which, ζ(z+m) = ζ(z)+2mη1 and ζ(z+in) = ζ(z)+2nη2

for m,n ∈ Z; the so-called quasi-periodicity of ζ(z). Letting z = −1
2

yields η1 = ζ(1
2
), and

letting z = − i
2

yields η2 = ζ( i
2
).

In [46], relationships between the two constants of integration η1 and η2 are established for

general lattices of periods 2ω1 and 2ω2. For example, integrating ζ(z) around a parallelogram

P whose sides avoid the poles of ζ(z), and applying the Residue Theorem, yields η1ω2−η2ω1 =

πi/2 [46, 20.411, page 446]. For ω1 = 1
2

and ω2 = i
2

we have

iη1 − η2 = πi.

Moreover,

η1 = ζ(iz)

=
1

iz
+
∑
m,n

′
(

1

iz − (m+ in)
+

1

m+ in
+

iz

(m+ in)2

)
= − i

z
+
∑
m,n

′
(

−i
z − (n− im)

+
−i

n− im
+

−iz
(n− im)2

)

= −i

(
1

z
+
∑
m,n

′
(

1

z − (m+ in)
+

1

m+ in
+

z

(m+ in)2

))
= −iζ(z)

= −iη2.

Combining these two relationships yields η1 = π
2

and η2 = − iπ
2

.
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The unique entire function S(z) for which d
dz

logS(z) = ζ(z) and limz→0
S(z)
z

= 1 is given

by

S(z) = z

′∏
m,n

(1− z

m+ in
)ez/(m+in)+z2/2(m+in)2 = z

∞∏
k=1

(
1− z

λk

)
ez/λk+z2/2λ2k ;

a so-called Weierstrass σ-function. Since
∑′

m,n (1/|m+ in|2) < ∞, S is a canonical

product having zeros only at the points of Z× iZ (all of which are simple). In the following

section, we determine the growth rate of S and its derivative S ′.

2.2 The Growth Rate of S(z) and S ′(z)

In this section, we determine the growth rate of the function S defined in the previous section

and its derivative S ′. Although many of the computations detailed in this section can be

found, for example in [34] and [29], we include them for the sake of completeness. Before we

begin the computations to find the growth rate of S(z) = z
∏′

m,n (1− z
m+in

)ez/(m+in)+z2/2(m+in)2 ,

we discuss two inequalities and a technical lemma. For z ∈ B(0, 1/2), it can be shown that

1

2
|z| ≤ | log (1 + z)| ≤ 3

2
|z|, (2.1)

by examining the power series expansion of log (1 + z) about z = 0 [10, Conway, page 165].

In our computations we invoke the following inequality.

Lemma 2.1. For z ∈ B(0, 1), |(1− z)ez| ≥ 1− |z|2.

Proof. Write z = reiθ, where 0 ≤ r < 1 and 0 ≤ θ < 2π. Note for any r ≥ 0, we have

er =
∑∞

n=0 r
n/n! ≥ 1 + r. Hence,

|(1− reiθ)ereiθ | = |(1− r(cos θ + i sin θ))||er(cos θ+i sin θ)|

= |(1− r cos θ)− ir sin θ|er cos θ

= er cos θ
√

(1− r cos θ)2 + (−r sin θ)2
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= er cos θ
√

1− 2r cos θ + r2

≥ min
{φ∈[0,2π]}

er cosφ
√

1− 2r cosφ+ r2

= er cos 0
√

1− 2r cos 0 + r2

= er
√

(1− r)2

= (1− r)er

≥ (1− r)(1 + r)

= 1− r2

= 1− |z|2,

and so, |(1− z)ez| ≥ 1− |z|2.

Recall that {λk} is the enumeration of the integer lattice points Z × iZ defined in the

introduction to this chapter. The following technical lemma gives bounds on the index and

the modulus of the eigenvalues lying on the squares Sj, where j ∈ {0, 1, 2, ...}.

Lemma 2.2. If λm ∈ {λk} lies on the square Sj, then j ≤ |λm| ≤
√

2j and (2j− 1)2 ≤ m ≤

4(j2 + j).

Proof. For any λm ∈ Sj, the smallest value of |λm| occurs when λm = j, and the largest

value of |λm| occurs when λm = j + ij. Thus,

j = |j| ≤ |λm| ≤ |j + ij| =
√

2j.

There are 8j points from {λk} on the square Sj. Hence, the smallest value for m such that

λm ∈ Sj is

m = 1 +

j−1∑
i=0

8i = 1 + 4j(j − 1) = (2j − 1)2.
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The largest value for m such that λm ∈ Sj is

m =

j∑
i=1

8i = 4j(j + 1) = 4(j2 + j).

Hence, for λm ∈ Sj, we have

(2j − 1)2 ≤ m ≤ 4(j2 + j).

In the following proposition, a type of periodicity of S is established using the quasi-

periodicity of ζ which was discussed in Section 2.1.

Proposition 2.1. For any z ∈ C and any m+ in ∈ Z× iZ, we have |S(z)| = |S(z − (m+

in))||eπ[(z−(m+in))(m−in)+(m2+n2)/2]|.

Proof. Using the quasi-periodicity of ζ(z) we can integrate the equation ζ(z + m + in) =

ζ(z+m)− inπ = ζ(z) +mπ− inπ to obtain logS(z +m+ in) = log S(z) + (mπ− inπ)z+ c,

whence, S(z +m+ in) = elogS(z)+(mπ−inπ)z+c = S(z)eπ(m−in)z+c. Letting z = −1
2
m− i

2
n, we

have S(−m
2
− in

2
+m+in) = S(−m

2
− in

2
)eπ(m−in)(−(m/2)−(in/2))+c. Since S(z) is an odd function,

we have S(m
2

+ in
2

) = −S(m
2

+ in
2

)eπ(m−in)(−(m/2)−(in/2))+c. Hence 1 = −eπ(m−in)(−(m/2)−(in/2))ec,

and therefore ec = −eπ(m−in)((m/2)+(in/2)) = −eπ((m2/2)+(imn/2)−(imn/2)+(n2/2)) = −eπ((m2+n2)/2).

Thus S(z + m + in) = S(z)eπ(m−in)z+π((m2+n2)/2), or, equivalently, S(z) = −S(z − (m +

in))eπ((z−(m+in))(m−in)+(m2+n2)/2). The result follows.

In the following proposition, we find a lower bound for |S(z)| for z near the origin.

Proposition 2.2. Whenever |z| ≤ 1√
2
, |S(z)| ≥ |z|e−c|z|4 where c = 3

∑′

m,n
1

(m2+n2)2
.

Proof. Observe

∣∣∣∣S(z)

z

∣∣∣∣ =

∣∣∣∣∣∏
m,n

′
(

1− z

m+ in

)
ez/(m+in)ez

2/(2(m+in)2)

∣∣∣∣∣



33

=

∣∣∣∣∣ ∏
m,n≥0

′
(

1− z

m+ in

)
ez/(m+in)ez

2/(2(m+in)2)

(
1− z

−m− in

)
ez/(−m−in)ez

2/(2(m+in)2)

∣∣∣∣∣
×

∣∣∣∣∣ ∏
m,n>0

(
1− z

m− in

)
ez/(m−in)ez

2/(2(m−in)2)

(
1− z

−m+ in

)
ez/(−m+in)ez

2/(2(−m+in)2)

∣∣∣∣∣
=

∏
m,n≥0

′
∣∣∣∣(1− z

m+ in

)(
1 +

z

m+ in

)
ez

2/((m+in)2)

∣∣∣∣
×

∏
m,n>0

∣∣∣∣(1− z

m− in

)(
1 +

z

m− in

)
ez

2/((m−in)2)

∣∣∣∣
=

∏
m,n≥0

′

∣∣∣∣∣
(

1−
(

z

m+ in

)2
)
e(z/(m+in))2

∣∣∣∣∣ ∏
m,n>0

∣∣∣∣∣
(

1−
(

z

m− in

)2
)
e(z/(m−in))2

∣∣∣∣∣.
Note |( z

m±in)2| = |z|2
|m±in|2 ≤

(1/
√

2)2

1
= 1

2
, since it must be the case that at least one of m and

n is nonzero. Applying the inequality from Lemma 2.1 gives

∣∣∣∣S(z)

z

∣∣∣∣ ≥ ∏
m,n≥0

′

1−

∣∣∣∣∣
(

z

m+ in

)2
∣∣∣∣∣
2
 ∏

m,n>0

1−

∣∣∣∣∣
(

z

m− in

)2
∣∣∣∣∣
2


=
∏
m,n≥0

′

(
1−

∣∣∣∣ z

m+ in

∣∣∣∣4
) ∏

m,n>0

(
1−

∣∣∣∣ z

m− in

∣∣∣∣4
)
.

Observe the largest (1− | z
m+in
|4) can be is 1 which occurs when z = 0. When z is such that

0 < |z| < 1/
√

2, the quantity (1 − | z
m+in
|4) is at most 3/4 which occurs when either m = 1

and n = 0, or m = 0 and n = 1; for all other possibilities of m and n, the quantity is smaller.

Hence, |S(z)/z| ≤ 1 for all z ∈ B(0, 1/
√

2). Therefore,

∣∣∣∣S(z)

z

∣∣∣∣ ≥ elog
∏′
m,n≥0 (1−| z

m+in
|4)elog

∏
m,n>0 (1−| z

m−in |
4)

= e
∑′
m,n≥0 log (1−| z

m+in
|4)e

∑
m,n>0 log (1−| z

m−in |
4).

Moreover, since
∣∣ z
m+in

∣∣4 ≤ 1
2
, by (2.1) we have that log (1− | z

m±in |
4) = −| log (1− | z

m±in |
4)| ≥
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−3
2
| z
m±in |

4, and so,

∣∣∣∣S(z)

z

∣∣∣∣ ≥ e
∑′
m,n≥0−

3
2
| z
m+in

|4e
∑
m,n>0−

3
2
| z
m−in |

4

= e
− 3

2
|z|4

∑′
m,n≥0

1
|m+in|4 e

− 3
2
|z|4

∑
m,n>0

1
|m−in|4

= e
− 3

2
|z|4

∑′
m,n≥0

1
(m2+n2)2 e

− 3
2
|z|4

∑
m,n>0

1
(m2+n2)2

≥ e
−3|z|4

∑′
m,n≥0

1
(m2+n2)2

= e−c|z|
4

,

where c ≡ 3
∑′

m,n≥0
1

(m2+n2)2
≤ 3π

2

3
= π2. Thus, we have a lower bound on |S(z)

z
| whenever

|z| ≤ 1√
2
.

We use Proposition 2.2 to find a bound on |S(z)| for all z ∈ C.

Proposition 2.3. For z ∈ C, we have |S(z)| ≥ |z − (m′ + in′)|e−(c/4)−(π/4)e(π/2)|z|2 where

m′ + in′ ∈ Z× iZ is such that |z − (m′ + in′)| = inf {|z − (m+ in)| : m,n ∈ Z}.

Proof. Since |z − (m′ + in′)| ≤ 1√
2
, by Propositions 2.1 and 2.2, we have that

|S(z)| = |S(z − (m′ + in′))||eπ[(z−(m′+in′))(m′−in′)+((m′2+n′2)/2)]|

≥ |z − (m′ + in′)|e−c|z−(m′+in′)|4|eπ[(z−(m′+in′))(m′−in′)+((m′2+n′2)/2)]|.

Writing z = x+ iy, we have that

|eπ((z−(m′+in′))(m′−in′)+((m′2+n′2)/2))| = |eπ(((x−m′)+i(y−n′))(m′−in′)+((m′2+n′2)/2))|

= eRe[π(xm′−m′2−ixn′+im′n′+iym′+yn′−im′n′−n′2+(m′2/2)+(n′2/2))]

= eRe[π(xm′+yn′−(m′2/2)−(n′2/2)+i(−xn′+ym′))]

= eπ(xm′+yn′−((m′2+n′2)/2))

= e(π/2)(2xm′−m′2+2yn′−n′2)

= e(π/2)(x2+y2−(x2−2xm′+m′2+y2−2yn′+n′2))
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= e(π/2)(x2+y2−((x−m′)2+(y−n′)2))

= e(π/2)(|z|2−|z−(m′+in′)|2)

≥ e(π/2)(|z|2−(1/
√

2)2)

= e(π/2)|z|2−(π/4).

Thus, |S(z)| ≥ |z − (m′ + in′)|e−(c/4)−(π/4)e(π/2)|z|2 .

The preceding results demonstrate that S is of order 2 and type π/2. In the following

proposition we obtain a lower bound for |S ′(λk)|.

Proposition 2.4. |S ′(λk)| ≥ e(π/2)(|λk|−(1/4))2

e(c/4)+(π/4) for all k ≥ 0.

Proof. Fix λk = m + in. Note S(m + in) = 0 but S ′(m + in) 6= 0, since m + in is a simple

zero of S. Moreover, S(z) 6= 0 for all z with 0 < |z − (m + in)| ≤ 1
4
, since S only has

zeros at the integer lattice points all of which are one unit apart. If |z − (m + in)| = 1
4
,

then |m + in| − 1
4
≤ |z| ≤ |m+ in|+ 1

4
, by the reverse triangle inequality. Furthermore,

λk = m + in is the closest lattice point to any such z. Thus, by Proposition 2.3, whenever

|z − (m+ in)| = 1
4
,

|S(z)| ≥ |z − (m+ in)|e−(c/4)−(π/4)e(π/2)|z|2

=
1

4
e−(c/4)−(π/4)e(π/2)|z|2

≥ 1

4
e−(c/4)−(π/4)e(π/2)(|m+in|−(1/4))2 .

If αmn ≡ (1/4)e−(c/4)−(π/4)e(π/2)(|m+in|−(1/4))2 , then, for each w ∈ B(0, αmn), there is a unique

z ∈ B(m + in, 1/4) with S(z) = w, by the Inverse Function Theorem [15, Gamelin, page

234]. The restriction Ŝ|S−1(B(0,αmn)) : S−1(B(0, αmn)) → B(0, αmn) of S to the preimage

S−1(B(0, αmn)) of B(0, αmn) under S, is a bijection. Hence, the inverse Ŝ−1 of Ŝ, exists and

is analytic on S−1(B(0, αmn)). Define g(z) = 4(Ŝ−1(αmnz)− (m+ in)). Since f1(z) ≡ αmnz

maps B(0, 1) onto B(0, αmn), f2(z) ≡ Ŝ−1(z) maps B(0, αmn) into Ŝ−1(B(0, αmn)) ⊂ B(m+
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in, 1/4), and f3(z) ≡ 4(z − (m + in)) maps B(m + in, 1/4) onto B(0.1), we have that

g : B(0, 1) → B(0, 1) is analytic, and satisfies g(0) = 4(Ŝ−1(0) − (m + in)) = 4((m + in) −

(m+in)) = 0, since m+in is the only zero of S in S−1(B(0, αmn)). Since g′(z) = 4αmn
Ŝ′(Ŝ−1(αmnz))

we have, by Schwarz’ Lemma that

1 ≥ |g′(0)|

=
4αmn

Ŝ ′(Ŝ−1(0))

=
4αmn

S ′(m+ in)
,

and so

|S ′(λk)| = |S ′(m+ in)|

≥ 4αmn

= e−(c/4)−(π/4)e(π/2)(|m+in|−(1/4))2

=
e(π/2)(|m+in|−(1/4))2

e(c/4)+(π/4)

=
eπ/2(|λk|−1/4)

e(c/4)+(π/4)
.

In the preceding proof, the choice of 1
4

as the radius of the disk centered at m+ in was not

unique as we need only guarantee that for any z on the circle |z − (m+ in)| = ε the closest

lattice point is m + in. Therefore, we could use any value ε < 1/2. We now use the bound

obtained in the preceding proposition to establish that the sequence {ωk} ≡ {1/S ′(λk)}

satisfies the decay rate necessary to show a diagonal operator D acting on H(D) fails to

admit spectral synthesis, as discussed in Section 1.3.

Proposition 2.5. lim supk→∞
1

|S′(λk)|1/k < 1.
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Proof. By the preceding result, we have

1

|S ′(λk)|1/k
≤

(
e(c/4)+(π/4)

e(π/2)(|λk|−(1/4))2

) 1
k

=

(
e(c/4)+(π/4)

e(π/2)(|λk|2−(1/2)|λk|+(1/16))

) 1
k

=

(
e(c/4)+(7π/32)e(π/4)|λk|

e(π/2)|λk|2

) 1
k

=
e(1/k)((c/4)+(7π/32))e(π/4)(|λk|/k)

e(π/2)(|λk|2/k)
.

Hence,

lim sup
k→∞

∣∣∣∣ 1

S ′(λk)

∣∣∣∣1/k ≤ lim sup
k→∞

e(1/k)((c/4)+(7π/32))e(π/4)(|λk|/k)

e(π/2)(|λk|2/2)

≤ lim sup
k→∞

e(1/k)((c/4)+(7π/32)) lim sup
k→∞

e(π/4)(|λk|/k)

e(π/2)(|λk|2/k)

= lim sup
k→∞

e(π/4)(|λk|/k)

e(π/2)(|λk|2/k)
.

To estimate lim supk→∞
e(π/4)(|λk|/k)

e(π/2)(|λk|
2/k)

, we must establish bounds on |λk|/k and |λk|2/k. By

Lemma 2.2, we have for λk ∈ Sj that

|λk|
k
≤

√
2j

(2j − 1)2

and

|λk|2

k
≥ j2

4(j2 + j)
.

Hence,

lim sup
k→∞

e(π/4)(|λk|/k)

e(π/2)(|λk|2/k)
≤ lim sup

j→∞

e(π/4)(
√

2j/(2j−1)2)

e(π/2)(j2/4(j2+j))
=

1

eπ/8
,

and so lim supk→∞ |1/S ′(λk)|1/k ≤ e−π/8 < 1.

In the following proposition, we show that
∑∞

k=0 e
λkz/S ′(λk) is analytic on a disk centered

at the origin.
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Proposition 2.6.
∑∞

k=0
eλkz

S′(λk)
is analytic on B(0, ε) where

ε ≡ [ln (1/ lim supk→∞ [|1/S ′(λk)|1/k])]/[sup {|λk|/k}].

Proof. By Lemma 2.2, sup {|λk|/k : k ≥ 1} ≤ sup {
√

2j/(2j − 1)2 : j ≥ 1} =
√

2. To prove

this proposition it suffices to show the series
∑∞

k=0 (eλkz/S ′(λk)) converges absolutely and

uniformly on B(0, ε). Let C be any compact subset of B(0, ε). Then, for z ∈ C,

lim sup
k→∞

∣∣∣∣ eλkzS ′(λk)

∣∣∣∣ 1k ≤ lim sup
k→∞

e
|λk|
k
|z|

|S ′(λk)|
1
k

< lim sup
k→∞

e
|λk|
k
ε lim sup

k→∞

1

|S ′(λk)|
1
k

≤ lim sup
k→∞

e(|λk|/k) ln (1/ lim supk→∞ |1/S′(λk)|1/k)/ sup {|λk|/k:k≥1} lim sup
k→∞

1

|S ′(λk)|
1
k

≤ lim sup
k→∞

1

lim supk→∞ | 1
S′(λk)

| 1k
lim sup
k→∞

1

|S ′(λk)|
1
k

= 1.

Thus, by the Root Test,
∑∞

k=0
eλkz

S′(λk)
converges absolutely and uniformly on B(0, ε), proving

the proposition.

2.3 A Non-synthetic Operator on H(D)

Using the results of the preceding two sections, we prove the main result of this chapter, and

in doing so, produce an example of a non-synthetic diagonal operator acting on H(D).

Theorem 2.1. The diagonal operator D on H(D) with eigenvalues {λk} = Z × iZ fails to

admit spectral synthesis.

Proof. By Lemma 2.2, for all k with λk ∈ Sj, |λk|1/k ≤ (
√

2j)1/(2j−1)2 , and so

lim sup
k→∞

|λk|1/k ≤ lim sup
j→∞

(
√

2j)1/(2j−1)2 = 1.

Hence, D is a continuous linear operator acting on H(D). The eigenvalues of D are distinct,
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henceD is cyclic by Proposition 1.3. The function S(λ) = λ
∏′ (

1− λ
m+in

)
e(λ/m+in)+(λ2/2(m+in)2)

has zeros only at the points of {λk} (all of which are simple), and thus, the function eλz/S(λ)

has poles only at the points of {λk} (all of which are simple) for any z ∈ C. For each r ∈ Z+,

let Cr denote the square with vertices ±(r + (1/2)) ± i(r + (1/2)), and apply the Residue

Theorem to obtain,

1

2πi

∫
Cr

eλz

S(λ)
dλ =

∑
{k:|λk|<r}

Res

(
eλz

S(λ)
, λk

)

=
∑

{k:|λk|<r}

eλz

S ′(λ)

∣∣∣
λ=λk

=
∑

{k:|λk|<r}

eλkz

S ′(λk)
.

For a fixed z ∈ C, by Proposition 2.3,

∣∣∣∣∫
Cr

eλz

S(λ)
dλ

∣∣∣∣ ≤ ∫
Cr

|eλz|
|S(λ)|

|dλ|

≤
∫
Cr

e|λ||z|

|λ− (m′ + in′)|e−(c/4)−(π/4)e(π/2)|λ|2 |dλ|

≤ (2r + 1)2e(r+(1/2))|z|

(r + (1/2)− |m′ + in′|)e−(c/4)−(π/4)e(π/2)(r+(1/2))2

→ 0.

as r →∞. Thus, by Proposition 2.6,

∞∑
k=0

eλkz

S ′(λk)
= lim

r→∞

∑
{k:λk∈Cor}

eλkz

S ′(λk)
= lim

r→∞

∫
Cr

eλz

S(λ)
dλ = 0.

Hence, if we define ωk = 1/S ′(λk) for all k ≥ 0, we have
∑∞

k=0 ωke
λkz ≡ 0 for all z ∈ B(0, ε)

where ε is as defined in Proposition 2.6. Moreover, we have lim supk→∞ |ωk|1/k < 1 by

Proposition 2.5, and sup {|λk|/k : k ≥ 1} =
√

2 < ∞, by Lemma 2.2. Thus, by Condition

(xi) of Theorem 1.3, D fails to admit spectral synthesis on H(D).
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The preceding theorem combined with the following theorem demonstrate that D is an

example of a diagonal operator which is synthetic when viewed as acting on H(C) but non-

synthetic when viewed as acting on H(D).

Theorem 2.2. The diagonal operator D on H(C) with eigenvalues {λk} admits spectral

synthesis.

Proof. The entire function S of Theorem 2.1 is of order ρ = 2 and type τ = π/2, by

Proposition 2.3 (or see [29, page 128]). Furthermore, by Lemma 2.2, sup {|λk|2/k : k ≥ 1} ≤

sup {2j2/(2j − 1)2 : j ≥ 1} = 2. Hence, by Theorem 1.12, D admits spectral synthesis on

H(C).
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CHAPTER 3

A Class of Non-synthetic Operators

on H(D)

Theorems 1.3 through 1.10 of Chapter 1 demonstrate that one major factor in determining

whether or not a diagonal operator admits spectral synthesis is the rate of growth of its

eigenvalues. For instance, the diagonal operator having eigenvalues λn =
√
n admits spectral

synthesis as an operator acting on H(D) (see Theorem 1.5). However, in Chapter 2, we

showed that the diagonal operator D acting on H(D) having as eigenvalues the integer

lattice points Z× iZ fails synthesis, even though {λk} has growth on the order
√
n. In view

of which, it appears as though the synthesis of an operator depends not only on the growth

of its eigenvalues, but also on how they are distributed throughout the plane.

The purpose of this chapter is to investigate how distributing eigenvalues of a certain

growth rate along various rays {z ∈ C : arg z = θ} in the complex plane affects the synthesis

of the diagonal operator having the resulting points as its set of eigenvalues. In particular,

we consider sequences of real values {n1/p}, where p ∈ {2, 3, ...}, placed symmetrically on

collections of rays resulting in sets of eigenvalues of the form {n1/pe2πij/s : 0 ≤ j < s}.

For instance, when p = 2, we know that the diagonal operator on H(D) having eigenvalues

{
√
n} admits spectral synthesis by Theorem 1.5. Similarly, the diagonal operator having
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eigenvalues {±
√
n} also admits spectral synthesis by Theorem 1.6. However, we show in

Section 3.1 that the diagonal operator on H(D) having eigenvalues {
√
neπij/3 : 0 ≤ j < 6},

consisting of six copies of the sequence {
√
n} on six rays, fails spectral synthesis.

In Section 3.2, we show that any diagonal operator on H(D) having sufficiently many

copies of any real sequence growing on the order na/b placed symmetrically along rays in the

complex plane, where a/b is any rational number smaller than 1, fails spectral synthesis.

3.1 Diagonal Operators having Eigenvalues

{n1/pe2πij/3p : 0 ≤ j < 3p} for p > 1 are Non-synthetic

In this section, we show that the diagonal operator acting on H(D) having eigenvalues

{n1/pe2πij/3p : 0 ≤ j < 3p} is non-synthetic, for any integer p > 1. We begin with two

technical lemmas estimating infinite products which occur in our proofs.

Lemma 3.1. For a fixed integer n ≥ 1,
∏∞

j 6=n |1−
n2

j2
| = 1

2
.

Proof. Since sin πz = πz
∏∞

j=1

(
1− z2

j2

)
, we have that

∏
j 6=n

∣∣∣∣1− n2

j2

∣∣∣∣ = lim
z→n

∣∣∣∣ sin πz

πz(1− (z2/n2))

∣∣∣∣
= lim

z→n

∣∣∣∣ π cos πz

π(z(−2z/n2) + (1− (z2/n2)))

∣∣∣∣
=

∣∣∣∣cos πn

−2

∣∣∣∣
=

1

2
.

Lemma 3.1 can be used to show the following estimate.

Lemma 3.2. For fixed integers n ≥ 1 and q > 2,
∏∞

j 6=n |1−
nq

jq
| ≥ 1

2
( q

2
)
n
2 .
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Proof. Observe that

∞∏
j 6=n

∣∣∣∣1− nq

jq

∣∣∣∣ =
∞∏
j 6=n

|jq − nq|
jq

= lim
N→∞

N∏
j 6=n

|jq − nq|
jq

=
n−1∏
j=1

nq − jq

jq
lim
N→∞

N∏
j=n+1

jq − nq

jq
.

We first estimate
∏N

j=n+1 (jq − nq)/jq, where

N∏
j=n+1

jq − nq

jq
=

N∏
j=n+1

j2 − n2

j2

jq−2 + n2jq−2−nq
j2−n2

jq−2

=
N∏

j=n+1

j2 − n2

j2

N∏
j=n+1

jq − nq

jq − n2jq−2
.

For n+1 ≤ j ≤ N , we have jq−nq ≥ jq−n2jq−2, hence jq−nq
jq−n2jq−2 ≥ 1. Thus,

∏N
j=n+1

jq−nq
jq−n2jq−2 ≥

1. We now estimate
∏n−1

j=1 (nq − jq)/jq, where

n−1∏
j=1

nq − jq

jq
=

n−1∏
j=1

n2 − j2

j2

jq−2 + nq−n2jq−2

n2−j2

jq−2

=
n−1∏
j=1

n2 − j2

j2

n−1∏
j=1

jq−2n2 − jq + nq − n2jq−2

jq−2(n2 − j2)

=
n−1∏
j=1

n2 − j2

j2

n−1∏
j=1

nq − jq

n2jq−2 − jq
,

by considering the terms (nq − jq)/(n2jq−2 − jq) for various values of j. For j = 1,

nq − jq

n2jq−2 − jq
=
nq − 1

n2 − 1
≥ q

2

since the function f(n) = 2nq − qn2 + (q − 2) is increasing for n ≥ 1, and f(1) = 0. For n

even and 2 ≤ j ≤ n/2,

nq − jq

n2jq−2 − jq
≥ q

2
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since

2nq − qn2jq−2 + (q − 2)jq ≥ 2nq − qn2(n/2)q−2 + (q − 2)2q

= 2nq − (q/2q−2)nq + (q − 2)2q

= (2− (q/2q−2))nq + (q − 2)2q

≥ 0,

as 2q−1 ≥ q for any q > 2. The inequality (nq − jq)/(n2jq−2 − jq) ≥ (q/2) also holds for n

odd by a similar argument. For j ≤ n− 1, we have that j < n, and so,

nq − jq

n2jq−2 − jq
≥ 1.

Hence,
n−1∏
j=1

nq − jq

jq
≥
(q

2

)n/2 n−1∏
j=1

n2 − j2

j2
,

and so
N∏

j=1,j 6=n

|nq − jq|
jq

≥
N∏

j=1,j 6=n

|j2 − n2|
j2

(q
2

)n
2
.

Thus, by Lemma 3.1,

∞∏
j=1,j 6=n

∣∣∣∣1− nq

jq

∣∣∣∣ ≥ (q2)n2
∞∏

j=1,j 6=n

|j2 − n2|
j2

=
1

2

(q
2

)n
2
.

Before proceeding to the main results of this chapter, we indicate a protocol for enumer-

ating sets of eigenvalues as pertains to our study. We have already seen that a linear map

D having each monomial zn as an eigenvector with associated eigenvalue λn is continuous

on H(D) if and only if lim supn→∞ |λn|1/n ≤ 1. Reordering the points in the set {λn} does

not necessarily result in a new sequence satisfying this condition. In view of which, it is not
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just the collection of eigenvalues, but their order, which affects the continuity of the linear

map D. In fact, we see in the next chapter that there exists a synthetic diagonal operator

on H(D) a reordering of whose eigenvalues yields another diagonal operator on H(D) which

is non-synthetic. That is, a reordering of the eigenvalues of a diagonal operator need not

preserve spectral synthesis.

Throughout the remainder of this chapter, we adopt the convention that any enumeration

{λk} of the set of points of the form {ane2πij/p : 0 ≤ j < p} where {an} is an increasing

sequence of positive numbers and p is a positive integer, be such that {|λk|} is non-decreasing.

Such an enumeration is always obtained by listing the points of the set by starting on the

positive real axis and traversing circles of increasing radii an in the counterclockwise direction.

In this case, λ0 = a1, λ1 = a1e
2πi/p, λ2 = a1e

4πi/p,..., etc.

We now show that the diagonal operator D on H(D) having as eigenvalues 3p copies of

the sequence {n1/p} placed on the 3p rays {z ∈ C : arg z = 2πij} for 0 ≤ j < 3p, fails

spectral synthesis whenever p is an integer greater than 1. This theorem is generalized in

the subsequent corollaries to include sequences {na/b} for certain rational powers a/b. These

results are valid whenever {λk} is an enumeration of the eigenvalues for which {|λk|} is

non-decreasing. Throughout the proofs of this chapter, we invoke standard results from the

theory of entire functions, and in particular those concerning canonical products, without

individual citations. These standard results are collected in the appendix for the convenience

of the reader.

Theorem 3.1. The diagonal operator D on H(D) having eigenvalues {n1/pe2iπj/3p : 0 ≤ j <

3p} fails spectral synthesis whenever p is an integer at least 2.

Proof. Let {λk} be any enumeration of the set {n1/pe2iπj/3p : 0 ≤ j < 3p} for which {|λk|} is

non-decreasing. The diagonal operator D is cyclic by Proposition 1.3 since the points {λk}

are distinct. The entire function f(z) ≡
∏∞

n=1 (1− z
n3 ) has order 1/3 and zeros {n3} (all of

which are simple) with density ∆ = limn→∞ |an|1/3/n = 1. Hence, by Levin [29, pages 94
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and 95],

log |f(reiθ)| ≈ π∆r1/3

sin (π/3)
cos

1

3
(θ − π) + o(r1/3)

outside the exceptional set E ≡ ∪∞n=1B(n3, dn2) where d is any number in (0, 1]. Since

(π∆/ sin (π/3)) cos ((θ − π)/3) ≥ π/
√

3, it follows that for every ε > 0, there exists an Rε

such that

|f(reiθ)| ≥ e((π/
√

3)−ε)r1/3

whenever r ≥ Rε and reiθ is not in E.

The entire function S(z) ≡ f(z3p) has zeros only at the points {λk} (all of which are

simple) and is of order 1/p. For each positive integer r we define Cr ≡ {z ∈ C : |z| = r̂} to

be the circle of radius r̂ where r̂ = ((r + 1)1/p + r1/p)/2, and (r̂eiθ)3p /∈ E. Thus, no point

λk lies on any Cr, and so S(λ) 6= 0 whenever λ ∈ Cr. Since eλz/S(λ) has poles only at the

points λk (all of which are simple), we have by the Residue Theorem that

1

2πi

∫
Cr

eλz

S(λ)
dλ =

∑
{k:|λk|≤r̂}

eλkz

S ′(λk)

for all z ∈ C for all z ∈ C. Moreover,

∣∣∣∣∫
Cr

eλz

S(λ)
dλ

∣∣∣∣ ≤ ∫ 2π

0

|er̂eiθz|
|S(r̂eiθ)|

r̂|dθ|

≤
∫ 2π

0

r̂er̂|z|

|f((r̂eiθ)3p)|
|dθ|

=

∫ 2π

0

r̂er̂|z|

|f(r̂3pe3ipθ)|
|dθ|

≤ 2πr̂er̂|z|

e((π/
√

3)−ε)r̂p

→ 0

as r → ∞ since p > 1. Thus, 0 = limr→∞
∑
{k:|λk|≤r̂}

eλkz

S′(λk)
. Furthermore, S ′(z) =

3pz3p−1f ′(z3p) where f ′(z) =
∑∞

n=1−
1
n3

∏
j 6=n (1− z

j3
). For each k ∈ N, |λk| = m1/p whenever
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3p(m− 1) ≤ k < 3pm. Hence,

|S ′(λk)|
1
k ≥

(3p(m1/p)3p−1
) ∣∣∣∣∣−1

m3

∏
j 6=m

(
1− m3

j3

)∣∣∣∣∣
1

3pm


≥ (3p)1/3pmm−1/3pm

(
(1/2)(3/2)m/2

) 1
3pm

→
(

3

2

)1/6p

as m → ∞, by Lemma 3.2. Thus, lim supk→∞ 1/|S ′(λk)|1/k ≤ (2/3)1/6p < 1, and so∑∞
k=0

eλkz

S′(λk)
is analytic in B(0, ε), where ε ≡ [ln (1/ lim sup 1/|S ′(λk)|1/k)]/[sup {|λk|/k}].

Hence, D fails to admit spectral synthesis on H(D) by Condition (ix) of Theorem 1.3.

The preceding theorem demonstrates that it is not only the rate of growth of the eigen-

values of a diagonal operator which affects the synthesis of the operator, but also their

distribution throughout the plane. For instance, the diagonal operator D having eigenvalues

{
√
n} admits spectral synthesis on H(D) (and on H(C)) by Theorem 1.5. However, the

diagonal operator having eigenvalues {
√
neπij/3 : 0 ≤ j < 6} consisting of six copies of {

√
n}

placed on the six rays {z ∈ C : arg z = j} for 0 ≤ j < 6 fails synthesis by Theorem 3.1.

The following two corollaries generalize Theorem 3.1 to include diagonal operators having

as eigenvalues b copies of {na/b} placed on the b rays {z ∈ C : arg z = j} for 0 ≤ j < b, for

certain rational powers a/b smaller than 1.

Corollary 3.1. The diagonal operator D on H(D) having eigenvalues {n3/pe2ijπ/p : 0 ≤ j <

p} fails synthesis whenever p is an integer greater than or equal to 3.

Proof. Let {λk} be any enumeration of the set {n3/pe2ijπ/p : 0 ≤ j < p} for which {|λk|}

is non-decreasing. The proof of this corollary is obtained from the proof of Theorem 3.1

applied to the entire functions f(z) ≡
∏∞

n=1 (1− z
n3 ) and S(z) ≡ f(zp) by replacing every

occurrence of 3p with p.

Corollary 3.2. The diagonal operator D on H(D) having eigenvalues {na/be2ijπ/b : 0 ≤ j <

b} fails synthesis whenever a and b are integers for which b > a > 2.
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Proof. Let {λk} be any enumeration of the set {na/be2ijπ/b : 0 ≤ j < b} for which {|λk|} is

non-decreasing. The proof of this corollary is similar to the proof of Theorem 3.1 applied to

the entire functions f(z) ≡
∏∞

n=1 (1− z
na

) and S(z) ≡ f(zb).

3.2 A Generalization

In this section, we generalize Theorem 3.1 in several ways. In Theorem 3.1, the eigenvalues

of the diagonal operator were precisely 3p copies of {n1/p} placed symmetrically on 3p rays

{z ∈ C : arg z = j} for 0 ≤ j < 3p. In the main result of this section, Theorem 3.2, the

eigenvalues are only required to grow on the order of na/b for rational powers a/b less than 1.

For example, Theorem 3.2 shows that a diagonal operator on H(D) whose eigenvalues are q

copies of {np+np−1} placed symmetrically on q rays {z ∈ C : arg z = j} for 0 ≤ j < q, where

p is a rational number smaller than 1 and q is an integer greater than 1/p, is non-synthetic,

an example which is not addressed by Theorem 3.1.

Although Theorem 3.1 is a consequence of the more general Theorem 3.2, we include

both in this dissertation as the proof of Theorem 3.1 is more transparent than the proof of

Theorem 3.2. The proofs of both results follow the techniques due to Ermenko outlined in

Section 1.4, whereby we define S(λ) to be an entire function with zeros only at the points

of {λk} (all of which are simple), where {λk} is an enumeration of {ane2πij/q : 0 ≤ j < q}.

We then apply the Residue Theorem to obtain

lim
r→∞

∫
Cr

eλz

S(λ)
dλ = lim

r→∞

∑
{k:λk∈Cor}

eλkz

S ′(λk)
=
∞∑
k=0

ωke
λkz

where Cr are appropriately chosen contours. Since the zeros of S consist of q copies of the

sequence {an} placed symmetrically on the q rays {arg z = j} for 0 ≤ j < q, it follows that

S(λ) = f(λq), where f is an entire function of order ρ at most 1/2. Using a result of Levin

we obtain the estimate

|f(reiθ)| ≥ e(H(θ)−ε)rρ
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for reiθ ∈ C with r sufficiently large and reiθ not in some exceptional set E, where the

indicator function H(θ) of f satisfies inf {H(θ) : 0 ≤ θ < 2π} ≡ 2ε > 0. The exceptional set

E is obtained from the following two conditions guaranteeing that the points of {an} are

separated. That is, we say {an} satisfies Condition (C) if there exists a d > 0 such that the

closed balls {B(an, d|an|1−ρ/2) : n ∈ N} are pairwise disjoint, and {an} satisfies Condition

(C’) if {|an|} is non-decreasing and there exists a d > 0 such that |an+1| − |an| > d|an|1−ρ,

where the closed balls {B(an, d|an|1−ρ) : n ∈ N} are pairwise disjoint. For the sequences

discussed in Theorem 3.1, Condition (C’) is satisfied automatically since the zeros of f

are {an} = {n3}. However, in Theorem 3.2, we must include the hypothesis that one of

the separation conditions hold. The exceptional set E is then E ≡ ∪∞n=1B(an, rn) where

rn = d|an|1−ρ/2 (if Condition (C) holds) or rn = d|an|1−ρ (if Condition (C’) holds). We then

have that

lim
r→∞

∫
Cr

eλz

S(λ)
dλ = 0

for contours Cr not intersecting E.

It is in the final step, that is, showing lim supk→∞ |ωk|1/k = lim supk→∞

∣∣∣ 1
S′(λk)

∣∣∣1/k < 1,

where the proofs of Theorems 3.1 and 3.2 differ. In Theorem 3.1, we obtain the estimates on

f ′(an), and hence S ′(λk), by using the inequalities on the infinite products proven in Lemma

3.2. In this way, showing lim supk→∞ |ωk|1/k < 1 is a straightforward computation. In the

proof of Theorem 3.2, we use the more abstract (yet effective) approach of invoking the

Inverse Function Theorem [15, page 234], which relies on the separation of the zeros {an} of

f guaranteed by Condition (C) or (C’) and the estimate |f(reiθ)| ≥ e(H(θ)−ε)rρ for reiθ /∈ E

and r sufficiently large.

Before proceeding with the main result of this section, we establish the following technical

lemma.

Lemma 3.3. Suppose {an} is a sequence of complex numbers whose convergence exponent

ρ is less than 1. If ∆ = limr→∞
n(r)
rρ

exists and ∆ ∈ (0,∞), then limn→∞ |an|1/n = 1.
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Proof. Since ρ < 1, we have that
∑∞

n=1 1/|an| < ∞. Hence, |an| > 1 eventually, and so

lim infn→∞ |an|1/n ≥ 1. Since ∆ = limn→∞ (n/|an|ρ), for all ε > 0 there exists N ∈ N such

that |(n/|an|ρ) − ∆| < ε for all n ≥ N . Hence |an|ρ < n/(∆ − ε) for n ≥ N , and so

1 ≤ lim infn→∞ |an|1/n ≤ lim supn→∞ |an|1/n ≤ lim supn→∞ (n/(∆− ε))1/(nρ) = 1. The result

follows.

Theorem 3.2. Let f(z) be an entire function of order ρ ∈ (0, 1
2
) whose zeros {an} are all

positive real numbers and are all simple. If

(1) {an} satisfies either Condition (C) or (C’),

(2) ∆ = limr→∞
n(r)
rρ

exists, where ∆ ∈ (0,∞),

and q is any integer greater than 1/ρ, then the diagonal operator D on H(D) with eigenvalues

{a1/q
n e2πij/q : 0 ≤ j < q} fails to admit spectral synthesis.

Proof. Let {λk} be any enumeration of {a1/q
n e2πij/q : 0 ≤ j < q} for which {|λk|} is non-

decreasing. By Theorem 5 of Levin [29, page 96], log |f(reiθ)| ≈ πrρ∆
sin ρπ

cos ρ(θ − π)+o(rρ) out-

side of an exceptional set E = ∪∞n=1B(an, rn), where rn = d|an|1−(ρ/2) (if {an} satisfies Con-

dition (C)) or rn = d|an|1−ρ (if {an} satisfies Condition (C’)). Since ρ < 1
2
, cos ρ(θ − 2π) > 0

for 0 ≤ θ < 2π, and so the indicator function H(θ) = π∆
sinπρ

cos ρ(θ − 2π) is such that

inf { π∆
sinπρ

cos ρ(θ − 2π) : 0 ≤ θ < 2π} = 2ε > 0. Hence, there exists an Rε > 0 such that

|f(reiθ)| ≥ eεr
ρ

whenever r ≥ Rε and reiθ /∈ E. The entire function S(z) ≡ f(zq) has zeros

only at the points {λk} (all of which are simple). For each positive integer r we define

Cr = {z ∈ C : |z| = r̂} to be the circle of radius r̂ ≡ (a
1/q
r + a

1/q
r+1)/2, whenever (r̂eiθ)q /∈ E.

Since eλz/S(λ) has poles only at the points {λk} (all of which are simple), we have by the

Residue Theorem that

1

2πi

∫
Cr

eλz

S(λ)
dλ =

∑
{k:|λk|≤r̂}

eλkz

S ′(λk)
.
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Moreover, for r ≥ Rε and z ∈ C fixed,

∣∣∣∣∫
Cr

eλz

S(λ)
dλ

∣∣∣∣ ≤ ∫
Cr

e|λ||z|

|S(λ)|
|dλ|

=

∫ 2π

0

er̂|z|

|f((r̂eiθ)q)|
r̂dθ

≤ 2πr̂er̂|z|

|f(r̂qeiqθ)|
, 0 ≤ qθ ≤ 2qπ

=
2πr̂er̂|z|

|f(r̂qeiζ)|
, 0 ≤ ζ ≤ 2π

≤ 2πr̂er̂|z|

e(H(ζ)−ε)r̂qρ

≤ 2πr̂er̂|z|

eεr̂qρ

→ 0

as r →∞ since qρ > 1. Thus, 0 = limr→∞
∑
{k:|λk|≤r̂}

eλkz

S′(λk)
.

It remains to show lim supk→∞ 1/|S ′(λk)|1/k < 1. To this end, observe for k ∈ N, λk =

a
1/q
n e2πij/q for some n ∈ N and 0 ≤ j < q. In fact, |λk| = a

1/q
n whenever (n − 1)q ≤ k < nq.

Since S ′(z) = qzq−1f ′(zq), we have

S ′(λk) = qa(q−1)/q
n e2πij(q−1)/qf ′(an).

Since the closed balls {B(an, rn) : n ∈ N} are pairwise disjoint, there exists radii r̂n > rn

for which the open balls {B(an, r̂n)} are pairwise disjoint. Thus, f(an) = 0, f ′(an) 6= 0, and

f(z) 6= 0 for any z ∈ C such that 0 < |z − an| ≤ r̂n. For z = reiθ ∈ ∂B(an, r̂n) with r ≥ Rε,

we have that

|f(reiθ)| ≥ e(H(θ)−ε)rρ ≥ eε(|an|−r̂n)ρ .

If αn ≡ eε(|an|−r̂n)ρ , then, by the Inverse Function Theorem [15, page 234], we have that

for each ω ∈ B(0, αn) there exists a unique z ∈ B(an, r̂n) such that f(z) = ω. Thus, the

restriction f |f−1(B(0,αn)) : f−1(B(0, αn)) → B(0, αn) of f to the pullback f−1((B(0, αn)) of
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B(0, αn) under f , is bijective, and so f−1 exists and is analytic on f−1(B(0, αn)) The function

g(z) = (1/r̂n)(f−1(αnz) − an) : B(0, 1) → B(0, 1) is analytic with g(0) = 0. By Schwarz’

Lemma,

1 ≥ |g′(0)| =
∣∣∣∣ αn
r̂nf ′(f−1(0))

∣∣∣∣ =
αn

r̂n|f ′(an)|
,

and so

1

|f ′(an)|
≤ r̂n
αn

=
r̂n

eε(|an|−r̂n)ρ
.

Hence,

lim sup
k→∞

1

|S ′(λk)|
1
k

≤ lim sup
n→∞

1

|qa(q−1)/q
n e2πij(q−1)/qf ′(an)|

1
nq

≤ lim sup
n→∞

1

q1/nqa
(q−1)/nq2
n

(
r̂n

eε(|an|−r̂n)ρ

) 1
nq

= lim sup
n→∞

1

e
ε
nq

(|an|−r̂n)ρ
,

where limn→∞ (|an|ρ/n) = (1/∆) > 0, and limn→∞ |r̂n|1/n = 1 (since limn→∞ |an|1/n = 1

by Lemma 3.3). Thus, lim supk→∞ 1/|S ′(λk)| < 1, and so
∑∞

k=0
eλkz

S′(λk)
is analytic on B(0, ε)

where ε ≡ [ln (1/ lim sup (1/|S ′(λk)|1/k))]/[sup {|λk|/k}]. Therefore, the diagonal operator D

acting on H(D) with eigenvalues {λk} fails to admit spectral synthesis by Condition (ix) of

Theorem 1.3.

In the proof of Theorem 3.2, we require that the indicator function H(θ) satisfies that

inf {H(θ) : 0 ≤ θ < 2π} > 0, to conclude (as discussed before the proof of Theorem 3.2)

limr→∞
∫
Cr

(eλz/S(λ))dλ = 0 and lim supk→∞ 1/|S ′(λk)|1/k < 1. This property of H(θ) =

(π∆/ sin (πρ)) cos ρ(θ − π) is guaranteed since the zeros {an} of f are positive, real numbers

and the order ρ of f is strictly less than 1/2. However, if the zeros of an entire function lie

on a finite number of rays ψk, with densities ∆k, then

H(θ) ≡ π

sin πρ

∑
k

∆k cos ρ(θ − ψk − π)
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[30, page 97]. In view of which, the hypothesis {an} ⊂ R+ of Theorem 3.2 can be weakened.

For example, if the zeros {an} of the entire function f lie on the negative real axis and f

has order ρ < 1/4, then by an identical proof the diagonal operator D on H(D) having as

eigenvalues {a1/q
n e2πij/q : 0 ≤ j < q} fails to admit spectral synthesis, where q is any integer

greater than 1/ρ. Moreover, if the {an} lie on any finite number of rays and the condition on

the order ρ of f is adjusted to guarantee inf {H(θ) : 0 ≤ θ < 2π} > 0, then the corresponding

diagonal operator will be non-synthetic. As an example, if f is an entire function with zeros

only at the points {an} ≡ {±n5} (all of which are simple), then f has order ρ = 1/5, and

so, H(θ) = (π/ sin (π/5))(cos (θ − π)/5 + cos (θ − 2π)/5) > 0 for all 0 ≤ θ < 2π. Hence, the

diagonal operator D on H(D) having as eigenvalues {±n5/qe2πij/q : 0 ≤ j < q} fails to admit

spectral synthesis for any integer q > 5.

The technique used in Theorem 3.2 cannot be invoked to establish an analogous result

on H(C), as Condition (2) forces lim supk→∞ 1/|S ′(λk)|1/k > 0 while to obtain non-synthesis

on H(C) we need lim supk→∞ 1/|S ′(λk)|1/k = 0 (Condition (vii) of Theorem 1.2).
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CHAPTER 4

Preserving Non-synthesis while

Modifying the Eigenvalues

In this chapter we use the techniques of Chapters 2 and 3 to determine conditions under

which adding, rearranging, deleting, or perturbing the eigenvalues of a non-synthetic diagonal

operator produce another non-synthetic diagonal operator on H(D).

Let D be a non-synthetic diagonal operator on H(D) with eigenvalues {λn} and suppose

we modify the {λn} to obtain a new sequence {λ̂n}. To determine if this modification

produces a set of points which are the eigenvalues of another diagonal operator which is non-

synthetic, we must first verify that the {λ̂n} are the eigenvalues of some diagonal operator

on H(D), and if so, that the operator satisfies one of the conditions of Theorem 1.3.

Since D is continuous, we have that lim supn→∞ |λn|1/n ≤ 1. Depending on the modifica-

tion used to obtain the values {λ̂n}, it may or may not be the case that the set of points {λ̂n}

are the eigenvalues of a continuous linear map D̂ sending zn to λ̂nz
n. The following example

demonstrates that rearranging the eigenvalues of a diagonal operator will not necessarily

produce another diagonal operator.

Example 4.1. Continuity Not Preserved

Let {λn} = {n} and let {λ̂n} be the rearrangement of {λn} such that {λ̂n} = {1, 102, 2, 104, 3, 106, ...}.
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Then, lim supn→∞ |λ̂n|1/n = lim supn→∞ (102n)1/n = 100 > 1, and thus, there does not exist

a diagonal operator with eigenvalues {λ̂n}.

However, there are conditions for modifying the eigenvalues {λn} of a diagonal operator

which guarantees the existence of a diagonal operator with eigenvalues {λ̂n}. It is easy to

see that if we delete a subsequence {λnk} from {λn} such that {nk/k : k ≥ 1} is bounded,

then there exists a diagonal operator D̂ having eigenvalues {λnk}. In addition, if we add at

most a finite number of eigenvalues in between each pair of elements from {λn} or rearrange

the eigenvalues within finite blocks only, we obtain modifications which yield the eigenvalues

of a continuous operator.

Even if the modification {λ̂n} of {λn} yields a diagonal operator D̂, it may or may not

be the case that D̂ is non-synthetic. By Condition (v) of Theorem 1.3, D is non-synthetic

implies there exists a sequence {ωn} of complex numbers, not identically zero, such that

lim supn→∞ |ωn|1/n < 1 and
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0. However, it may not be the

case that we can find a sequence {ω̂n} corresponding to {λ̂n} which satisfies the necessary

decay rate or the property
∑∞

n=0 ω̂nλ̂
k
n = 0, both needed to conclude D̂ is non-synthetic.

The following example demonstrates that adding eigenvalues does not necessarily produce a

non-synthetic diagonal operator, as no such {ω̂n} can exist.

Example 4.2. Non-synthesis Not Preserved

Let {λn} = {n3} and {λ̂n} = {n}, that is, to the set of eigenvalues {n3} we are adding in the

remaining integers. The diagonal operator D having eigenvalues {λn} is non-synthetic ([16]),

however, although the diagonal operator D̂ having eigenvalues {λ̂n} exists, it is synthetic by

Theorem 1.5.

In Section 4.1, we address the issue of adding countably many points to the eigenvalues

{λn} of a non-synthetic diagonal operator D on H(D). Intuitively, it would seem this would

always produce another non-synthetic diagonal operator, however, Example 4.2 proves this

is not the case. In Section 4.2, we discuss rearrangements of the eigenvalues which would
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also seem to always preserve non-synthesis, but Example 4.1 demonstrates the existence of

a diagonal operator is not even guaranteed. In both of these sections we discuss simple

conditions on the way in which eigenvalues are added or rearranged which do preserve non-

synthesis. In Sections 4.3 through 4.5, we address the issue of deleting eigenvalues. In

particular, in Section 4.3, we show that any finite collection of eigenvalues can be deleted

and the non-synthesis of the operator preserved. In Sections 4.4 and 4.5, we demonstrate

that we can delete countable collections of eigenvalues from the sequences of eigenvalues

{λn} defined in Chapters 2 and 3 to obtain other non-synthetic operators. In Section 4.6,

we discuss conditions on perturbations of eigenvalues which produce other non-synthetic

operators. The discussions in Sections 4.1 through 4.3 are very simple arguments for general

operators, while the discussions in Sections 4.4 through 4.6 are very technical in nature and

follow similar techniques to those used in Chapters 2 and 3.

4.1 Adding Countably Many Eigenvalues

In this section, we discuss whether the addition of countably many elements to the eigenvalues

of a non-synthetic diagonal operator will produce another non-synthetic diagonal operator.

In this regard, suppose {λn} are the eigenvalues of a non-synthetic diagonal operator D

acting on H(D). By Theorem 1.3, there exists a sequence {ωn} of complex numbers, not

identically zero, such that lim supn→∞ |ωn|1/n < 1 and
∑∞

n=0 ωnλ
m
n ≡ 0 for all m ≥ 0.

Suppose {λ̂k} = {λn} ∪ {γn}, and define

ω̂k ≡


ωn λ̂k ∈ {λn}

0 λ̂k ∈ {γn}.

Then,
∑∞

k=0 ω̂kλ̂
m
k ≡ 0 for all m ≥ 0, and so, it appears we should obtain another non-

synthetic operator. However, Example 4.2 shows that it need not be the case that lim supk→∞ |ω̂k|1/k <

1.
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The following theorem demonstrates that if finitely many eigenvalues are added in be-

tween each pair of eigenvalues of a non-synthetic diagonal operator, then the new diagonal

operator also fails spectral synthesis.

Theorem 4.1. Let D be a diagonal operator acting on H(D) having distinct eigenvalues

{λn}, and suppose D̂ is a non-synthetic diagonal operator on H(D) having as eigenvalues

{λnk} where {nk} is a subsequence such that {nk/k : k ≥ 1} is bounded. Then, D also fails

synthesis.

Proof. Since D̂ is non-synthetic, there exists a sequence {ω̂nk} such that lim supk→∞ |ω̂nk |1/k <

1 and
∑∞

k=0 ω̂nkλ
m
nk
≡ 0 for all m ≥ 0, by Condition (v) of Theorem 1.3. Define for n ≥ 0,

ωn ≡


ω̂nk n ∈ {nk}

0 n /∈ {nk}.

Then,
∑∞

n=0 ωnλ
m
n =

∑∞
k=0 ω̂nkλ

m
nk
≡ 0 for all m ≥ 0. Moreover, lim supn→∞ |ωn|1/n =

lim supk→∞ |ω̂nk |1/nk ≤ lim supk→∞ |ω̂nk |1/Mk < 1, where M > 0 is such that nk < Mk for all

k ≥ 1. Hence, D fails to admit spectral synthesis on H(D).

In [16] it is shown that if {γn} is a sequence of distinct complex numbers with |γn| → ∞,

lim supn→∞ |γn|1/n ≤ 1, and |γn|/np increasing to infinity for some p > 2, then the diagonal

operator with eigenvalues {γn} fails spectral synthesis on H(D). This result combined with

the preceding theorem gives the following result.

Corollary 4.1. Let {λn} be a sequence of distinct complex numbers with |λn| → ∞, lim supn→∞ |λn|1/n ≤

1, and having a subsequence {λnk} such that |λnk |/kp increases to infinity for some p > 2

where {nk/k : k ≥ 1} is bounded, then the diagonal operator with eigenvalues {λn} is non-

synthetic on H(D).
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4.2 Rearranging Eigenvalues

In this section, we discuss rearrangements of the eigenvalues; that is, if D is a diagonal

operator on H(D) with eigenvalues {λn}, we consider {λi(n)} where {i(n)} is a rearrangement

of {n}. If D is non-synthetic, then there exists a sequence {ωn} ⊂ C, not identically zero,

such that lim supn→∞ |ωn|1/n < 1 and
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0. Thus,

∑∞
n=0 ωi(n)λ

k
i(n) ≡ 0

for all k ≥ 0. However, as demonstrated in Example 4.1, it may not even be the case that a

diagonal operator with eigenvalues {λi(n)} exists.

Moreover, the following example demonstrates that the rearrangement of the eigenvalues

of a synthetic diagonal operator can yield a non-synthetic diagonal operator.

Example 4.3. The diagonal operator D on H(D) with eigenvalues {λn} ≡ {n} admits

spectral synthesis by Theorem 1.5. Consider the rearrangement of {n}, where {λi(n)} =

{0, 13, 2, 23, 3, 33, 4, 43, 5, ...}; that is, each integer of the formm3 is moved to the odd positions

of {λi(n)}, and the even positions are the remaining integer values listed in increasing order.

If we consider the subsequence {λnk} ≡ {k3} where {nk} = {2k − 1}, by Corollary 4.1, we

have that the diagonal operator D̂ with eigenvalues {λi(n)} fails spectral synthesis on H(D).

However, if the eigenvalues are rearranged within finite blocks, then non-synthesis will be

preserved, as the following theorem demonstrates. In addition, a nearly identical argument

would show that synthesis is preserved under the same restrictions on the rearrangement.

Theorem 4.2. Let D be a non-synthetic diagonal operator on H(D) with eigenvalues {λn}.

Let i(n) be such that n− c ≤ i(n) ≤ n+ c for some constant c > 0 and all n ∈ N. Then, the

diagonal operator D̂ with eigenvalues {λi(n)} fails spectral synthesis.

Proof. Since D is continuous, lim supn→∞ |λn|1/n = M ≤ 1. Thus, for every ε > 0, there

exists a N ∈ N such that for all n ≥ N , |λn|1/n < M + ε. Moreover, for all n, λi(n) = λn±a

where 0 ≤ a ≤ c. Thus, lim supn→∞ |λi(n)|1/n < lim supn→∞ (M + ε)(n±a)/n = M + ε, and

therefore, D̂ is continuous. An identical argument gives lim supn→∞ |ωi(n)|1/n < 1. Moreover,∑∞
n=0 ωi(n)λ

k
i(n) ≡ 0 for all k ≥ 0, and so, D̂ is non-synthetic.
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In Chapter 2, it is shown that the diagonal operator D having as eigenvalues {λn}, an

enumeration of the integer lattice points Z × iZ, fails spectral synthesis. We chose the

enumeration to begin on the positive real axis and traversed counterclockwise around larger

and larger squares. However, as a consequence of the preceding theorem, we could rearrange

the eigenvalues in any order along those squares and obtain the same result.

In Chapter 3, it is shown that the diagonal operator having eigenvalues {n1/pe2πij/3p :

0 ≤ j < 3p} fails to admit spectral synthesis. In Theorem 3.1, we chose the enumeration

of the eigenvalues to begin on the positive real axis and traversed counterclockwise around

circles of increasing modulus. However, by Theorem 4.2, we could rearrange the eigenvalues

on any circle, or even on every c circles, and preserve non-synthesis.

4.3 Deleting Finitely Many Eigenvalues

In this section, we show that finitely many of the eigenvalues of a non-synthetic diagonal

operator acting on H(D) can be deleted without affecting the non-synthesis of the operator.

Proposition 4.1. Let D be a diagonal operator on H(D) with distinct eigenvalues {λn} that

fails to admit spectral synthesis. Assume {λn/n : n ≥ 1} is bounded. If D′ is the diagonal

operator with eigenvalues {{λn} \ {λ0}}, then D′ fails to admit spectral synthesis on H(D).

Proof. Since D fails to admit synthesis, by Condition (ix) of Theorem 1.3, there exists a

sequence {ωn} of complex numbers, not identically zero, such that lim supn→∞ |ωn|1/n < 1

and
∑∞

n=0 ωne
λnz = 0 for all z near the origin. Thus, −ω0e

λ0z =
∑∞

n=1 ωne
λnz, and so, −ω0 =∑∞

n=1 ωne
(λn−λ0)z. Differentiating both sides with respect to z gives 0 =

∑∞
n=1 ωn(λn − λ0)e(λn−λ0)z.

Moreover, lim supn→∞ |λn − λ0|1/n ≤ 1 since the operator D − λ0I is continuous. Thus,

lim sup
n→∞

|ωn(λn − λ0)|1/n ≤ lim sup
n→∞

|ωn|1/n lim sup
n→∞

|λn − λ0|1/n < 1.

Hence, the operator D − λ0I having eigenvalues {λn − λ0}∞n=1 is a non-synthetic diagonal
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operator, and therefore, D′ is also non-synthetic [11, Lemma 2].

By repeating this process, finitely many eigenvalues can be removed and non-synthesis is

preserved. A nearly identical proof would allow for deleting finitely many eigenvalues from a

diagonal operator acting on H(C). The preceding proposition only addresses the case when

{λn/n : n ≥ 1} is bounded, which is sufficient for our results, however, in [11, Proposition

3] Deters proves the result for the general case using Condition (v) of Theorem 1.3. As

a corollary of Proposition 4.1, we observe that removing finitely many eigenvalues from a

synthetic diagonal operator produces another synthetic diagonal operator.

In the next two sections, we consider deleting countable collections of eigenvalues, and

show that under certain conditions, but not always, non-synthesis is preserved.

4.4 Deleting Countably Many Eigenvalues Symmetri-

cally

The following example demonstrates that, unlike finite collections, deleting countable collec-

tions of eigenvalues from a diagonal operator need not preserve non-synthesis.

Example 4.4. Deleting Eigenvalues Does Not Preserve Non-synthesis

The diagonal operator D acting on H(D) with eigenvalues {n1/pe2πij/3p : 0 ≤ j < 3p}, where

p is any integer at least 2, fails to admit spectral synthesis by Theorem 3.1. However, the

diagonal operator D̂ on H(D) with eigenvalues {n1/p} admits spectral synthesis by Theorem

1.5.

The results of this section provide conditions under which deleting countably many eigen-

values from a non-synthetic diagonal operator produces another non-synthetic diagonal oper-

ator. As previously mentioned, we must first guarantee the existence of a diagonal operator

having eigenvalues {λ̂n}. Recall from Section 1.3 that a linear map D on H(D) such that

D(zn) = λnz
n is continuous if and only if lim supn→∞ |λn|1/n ≤ 1. The following proposition
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gives a sufficient (but not necessary) condition to preserve continuity when eigenvalues are

deleted.

Proposition 4.2. Let {λn} be such that lim supn→∞ |λn|1/n ≤ 1. Let {λnk} be a subsequence

such that {nk/k : k ≥ 1} is bounded. Then, lim supk→∞ |λnk |1/k ≤ 1.

Proof. Let M > 0 be such that nk/k < M for all k ≥ 1. Then, lim supk→∞ |λnk |1/k =

lim supk→∞
(
|λnk |1/nk

)nk/k ≤ lim supk→∞max {(|λnk |1/nk)M , 1} = 1.

The preceding result shows that a diagonal operator exists, however, Example 4.4 shows

that this requirement on the deleted sequence is not enough to preserve the non-synthesis of

the diagonal operator.

In Chapter 2, we proved that the diagonal operator D on H(D) having as eigenvalues

an enumeration {λn} of the integer lattice points Z × iZ fails to admit spectral synthesis.

In our first result regarding deleting countably many eigenvalues, we delete countably many

lattice points to produce another non-synthetic diagonal operator D̂ on H(D). To do so, we

consider a subsequence {λnk} such that

1. 0 ≤ inf {α :
∑∞

k=1 1/|λnk |α <∞} < 2 and

2. λm ∈ {{λn} \ {±λnk ,±iλnk}} is on the square Sj having vertices ±(j± ij), if and only

if aj2 − o(j) ≤ m ≤ aj2 + o(j) where a > 0 and o(j) is a polynomial of degree at most

one.

We then delete from {λn} the collection {±λnk ,±iλnk} and obtain a non-synthetic diagonal

operator D̂ on H(D) with eigenvalues {{λn} \ {±λnk ,±iλnk}}.

To show D is non-synthetic, we obtained in Propositions 2.2 and 2.3, estimates on the

entire function S(z) = z
∏∞

n=1 (1− (z/λn))ez/λn+z2/2λ2n using that the exponential terms can-

cel as the eigenvalues appear in groups of four: the eigenvalue, its negative, its conju-

gate, and its conjugate’s negative. In fact, we showed that S has order 2 and type π/2.

To show D̂ is non-synthetic, we obtain similar estimates on Ŝ(z) = S(z)
f(z)

, where f(z) =
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k=1

(
1− z

λnk

)
e

z
λkn

+ z2

2λ2
kn

(
1 + z

λnk

)
e
− z
λkn

+ z2

2λ2
kn

(
1− z

iλnk

)
e

z
iλkn

− z2

2λ2
kn

(
1 + z

iλnk

)
e
− z
iλkn

− z2

2λ2
kn ,

since the exponential terms will cancel and Condition (1) forces Ŝ to also have order 2. To

show D is non-synthetic, we defined ωn = 1/S ′(λn) for all n ≥ 0 and proved {ωn} satisfies

Condition (ix) of Theorem 1.3. In Proposition 2.5, we proved that lim supn→∞ |ωn|1/n < 1,

in part by using the fact that λn is on the square Sj if and only if j ≤ |λn| ≤
√

2j and if

and only if (2j − 1)2 ≤ n ≤ 4(j2 + j). Condition (2) allows for a similar argument to show

ω̂n = 1/Ŝ ′(λn), for n such that λn /∈ {±λnk ,±iλnk}, satisfies Condition (ix) of Theorem 1.3,

giving D̂ is non-synthetic. We now present this result and give a more detailed outline of its

proof.

Theorem 4.3. Let D be the non-synthetic diagonal operator on H(D) with eigenvalues {λn},

an enumeration of Z×iZ. Let {nk} be a subsequence such that 0 ≤ inf {α :
∑∞

k=1 1/|λnk |α <∞} =

ρ < 2. Define {λ̂p} to be the enumeration of {{λn}\{±λnk ,±iλnk}} defined by beginning on

the positive real axis and traversing counterclockwise around larger and larger squares Sj. If

λ̂p is on Sj if and only if aj2 − o(j) ≤ p < aj2 + o(j) where a > 0 and o(j) is a polynomial

of degree at most one, then the diagonal operator D̂ acting on H(D) with eigenvalues {λ̂p}

fails to admit spectral synthesis.

The proof of Theorem 4.3 follows the same technique as the proof that D is non-synthetic,

given in Chapter 2, hence we provide an outline only. The operator D̂ is continuous since

λ̂p is on the square Sj if and only if j = |j| ≤ |λ̂p| ≤ |j + ij| =
√

2j and if and only if

aj2 − o(j) ≤ p < aj2 + o(j), thus

lim sup
p→∞

|λ̂p|1/p ≤ lim sup
j→∞

(
√

2j)1/(aj2−o(j)) = 1.

The entire function S(z) = z
∏′

m,n (1− (z/(m+ in)))ez/(m+in)ez
2/(2(m+in)2) having simple

zeros only at {λn}, is such that |S(z)| ≥ αd(z)eπ|z|
2/2 for all z ∈ C, where α > 0 and

d(z) = dist(z,Z × iZ) = inf {|z − (m+ ik)| : m, k ∈ Z}, by Proposition 2.3. The entire

function f(z) =
∏∞

k=1 (1− (z/λnk)
4) having simple zeros only at {±λnk ,±iλnk} is of order
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ρ < 2 since inf {α :
∑∞

k=1 1/|λnk |α <∞} < 2. Hence, |f(z)| ≤ βeτ |z|
ρ+ε

for 0 < ε < 2 − ρ,

whenever |z| > R for some R > 0, and constants β, τ . Thus, the entire function

Ŝ(z) ≡ z
∞∏
p=1

(
1− z

λ̂p

)
=
S(z)

f(z)

has simple zeros only at {λ̂p}, and for |z| > R, satisfies

|Ŝ(z)| = |S(z)|
|f(z)|

≥ αd(z)e(π/2)|z|2

βeτ |z|ρ+ε
.

By the Residue Theorem and the previous estimate on |Ŝ(λ)|, we have that

∞∑
p=1

eλ̂pz

Ŝ ′(λ̂p)
= lim

r→∞

1

2πi

∫
Cr

eλz

Ŝ(λ)
dλ = 0,

where Cr are contours not passing through any of the lattice points. Using the Inverse

Function Theorem and Schwarz’ Lemma, as in Propositions 2.4 and 2.5, we have that

1

|Ŝ ′(λ̂p)|
≤ βeτ(|λ̂p|+(1/4))ρ+ε

αe(π/2)(|λ̂p|−(1/4))2
.

Since λ̂p lies on the square Sj if and only if j ≤ |λ̂p| ≤
√

2j and if and only if aj2 − o(j) ≤

p < aj2 + o(j), we have that

lim sup
p→∞

1

|Ŝ ′(λ̂p)|
1
p

≤ lim sup
p→∞

(
βeτ(|λ̂p|+(1/4))ρ+ε

αe(π/2)(|λ̂p|−(1/4))2

) 1
p

≤ lim sup
p→∞

(
β

αeπ/32

) 1
p

(
eπ|λ̂p|/4peτ |λ̂p|

ρ+ε/p

eπ|λ̂p|2/2p

)

≤ lim sup
p→∞

(
β

αeπ/32

) 1
p

lim sup
j→∞

e
√

2jπ/4(aj2−o(j))eτ(
√

2j)ρ+ε/(aj2−o(j))

eπj2/2(aj2+o(j))

=
1

eπ/2a

< 1,
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and thus, D̂ fails spectral synthesis by Condition (ix) of Theorem 1.3, where ωp ≡ 1/Ŝ ′(λ̂p)

for all p ≥ 0.

By invoking the preceding theorem, from Z×iZ sets of eigenvalues such as {±p,±ip : p ∈

Z+} can be deleted, and the corresponding diagonal operator D̂ will fail spectral synthesis

on H(D). In the following section, we show it is not necessary to remove the eigenvalues

symmetrically (that is, in groups of four) to preserve non-synthesis.

In Theorem 3.2, it is shown that a diagonal operator having eigenvalues {a1/q
n e2πij/q : 0 ≤

j < q} fails to admit spectral synthesis whenever {an} satisfies certain properties. As a spe-

cific example, if {an} = {n3} the diagonal operator with eigenvalues {n3/qe2πij/q : 0 ≤ j < q}

fails synthesis, where q is any integer greater than three. The following examples demon-

strate that we can delete countably many of the {an}, thus countably many eigenvalues, and

produce other non-synthetic diagonal operators. Note that in both examples we delete the

eigenvalues in groups lying on circles.

Example 4.5. The diagonal operator D̂ with eigenvalues {(2n)3/qe2πij/q : 0 ≤ j < q} fails

synthesis for any integer q > 3.

Proof. Observe that {an} ≡ {(2n)3} satisfies Condition (C) defined in Section 3.2, and

∆ = limr→∞ n(r)/r1/3 = 1/2, thus {an} satisfies the hypotheses of Theorem 3.2. Hence, D̂

fails spectral synthesis.

The previous example demonstrates that the roots of the cubes of all odd integers can

be deleted and non-synthesis preserved. In this example, the convergence exponent of the

deleted sequence is the same as the convergence exponent of the original sequence. The fol-

lowing example demonstrates this need not be the case, however, we must impose additional

conditions on the deleted subsequence to guarantee the existence of a continuous operator

and the existence of the angular density ∆.

Example 4.6. Let {an} be the zeros of an entire function f of order ρ as in Theorem 3.2.
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Let {anm} be a subsequence with convergence exponent ρ1 < ρ, if any exist. The function

f̂(z) ≡
∏∞

n=0 (1− (z/an))∏∞
m=0 (1− (z/anm))

is an entire function of order ρ with zeros {{an}\{anm}}. Define {λk} to be an enumeration of

{a1/q
n e2πij/q : 0 ≤ j < q} and {λ̂p} to be an enumeration of {a1/q

nme
2πij/q : 0 ≤ j < q}, where q >

1/ρ is an integer. Define {γt} to be an enumeration of {{λk}\{λ̂p}}. If lim supt→∞ |γt|1/t = 1

and limt→∞ t/|γt|ρ > 0 exists, then the diagonal operator with eigenvalues {γt} fails to admit

spectral synthesis by Theorem 3.2.

As a specific example, let f be an entire function with zeros {{n3}∪{n4}}. Then, if D is

the diagonal operator defined in Theorem 3.2, we can delete all of the eigenvalues associated

with the roots of n4 and preserve non-synthesis. Furthermore, we could delete all of the

eigenvalues associated with the roots of n9 and preserve non-synthesis on H(D).

All of the examples of this section involved deleting eigenvalues in a symmetric manner.

In Theorem 4.3, groups of four eigenvalues were deleted (the lattice point, its negative,

its conjugate, and its conjugate’s negative), and in Examples 4.5 and 4.6, all eigenvalues

lying on a circle were deleted. In the next section, we eliminate this restriction for deleting

countably many points from Z × iZ. An open problem is whether or not we could delete

eigenvalues from {a1/q
n e2πij/q : 0 ≤ j < q} in a non-symmetric manner; that is, not deleting

all of the points lying on a given circle. This would aid in addressing the question of whether

a minimum number of rays the eigenvalues need to lie on exists.

4.5 Deleting Countably Many Eigenvalues Without Sym-

metry

In the following theorem, eigenvalues are deleted from the integer lattice Z× iZ, and unlike

Theorem 4.3, they need not be deleted in groups of four. However, the additional condition
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k=1 1/|λnk |2 < π/2 on the growth of the deleted eigenvalues {λnk} is imposed.

Theorem 4.4. Let D be the non-synthetic diagonal operator on H(D) with eigenvalues {λn},

an enumeration of Z×iZ. Let {nk} be a subsequence such that 0 ≤ inf {α :
∑∞

k=1 1/|λnk |α <∞} =

ρ < 2 and
∑∞

k=1 1/|λnk |2 < π/2. Define {λ̂p} to be the enumeration of {{λn} \ {λnk}} de-

fined by beginning on the positive real axis and traversing counterclockwise around larger and

larger squares Sj. If λ̂p is on Sj if and only if aj2 − o(j) ≤ p < aj2 + o(j) where a > 0 and

o(j) is a polynomial of degree at most one, then the diagonal operator D̂ acting on H(D)

with eigenvalues {λ̂p} fails to admit spectral synthesis.

The proof of Theorem 4.4 follows almost identically to the proof of Theorem 4.3, except

for the bound on |f(z)| = |
∏∞

k=1 (1− (z/λnk))e
(z/λnk )+(z2/2λ2nk

)|. In this case, since the

eigenvalues are not deleted in groups of four some of the exponential terms will not cancel,

and so, we obtain

|f(z)| ≤ ceb|z|
ρ+ε

e|z|
2
∑∞
k=1 1/|λnk |

2

for some constants b and c, and |z| sufficiently large. Thus, the requirement
∑∞

n=1 1/|λkn|2 <

π/2, which was not necessary in Theorem 4.3, allows for the bound

|Ŝ(z)| ≥ αd(z)eM |z|
2

ceb|z|ρ+ε
,

where M = (π/2) −
∑∞

n=1 1/|λkn|2 > 0 and 0 < ε < 2 − ρ. The remainder of the argument

for D̂ to be non-synthetic follows exactly as the outline of the proof of Theorem 4.3 given in

Section 4.2.

Theorem 4.4 has the following example as an immediate consequence.

Example 4.7. Let D be the diagonal operator with eigenvalues {λn}, where {λn} is the

enumeration of Z × iZ defined in Chapter 2. Define {λnk} ≡ {k2}. Then, ρ = 1/2 and∑∞
k=1 1/|λnk |2 =

∑∞
k=1 1/k4 = π4/90 < π/2. Hence, a diagonal operator D̂ acting on H(D)

with eigenvalues {{m + in : m,n ∈ Z} \ {m2 : m ∈ Z}} fails to admit spectral synthesis by

Theorem 4.4.
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4.6 Perturbing Eigenvalues

In this section, we discuss perturbing the eigenvalues of a non-synthetic diagonal operator

to obtain another non-synthetic diagonal operator acting on H(D). The first result of this

section strengthens Theorem 3.2 as the eigenvalues are only required to lie in finitely many

δ-sectors, instead of on finitely many rays.

Theorem 4.5. Let p be an integer greater than two. Then, there exists a sequence {θn}

of positive real numbers with θn < δ for some δ > 0, such that the diagonal operator with

eigenvalues {n1/pei(θn+2jπ)/q : 0 ≤ j < q} where q > p is an integer, fails to admit spectral

synthesis on H(D).

As the proof of Theorem 4.5 follows the same technique as the proof of Theorem 3.2 we

include an outline only. The entire function f(z) ≡
∏∞

n=1 (1− (z/n3)) has simple zeros {n3}

and order ρ = 1/3, hence satisfies the hypotheses of Theorem 3.2. Thus, as in its proof, we

have that

|f(reiθ)| ≥ eεr
1/3

for r sufficiently large and reiθ outside of some exceptional set E. The following result of

Levin [29] can then be used to obtain a similar bound on another entire function.

Lemma 4.1. ([29, Lemma 1, page 98]) Let us assume that the set {an} of the zeros of the

canonical product

Π(z) =
∞∏
n=1

(
1− z

an

)
e
∑p
k=1 z

k/kakn

has a density with index ρ(r), i.e., there exists the limit

∆ = lim
r→∞

n(r)

rρ(r)
,

and suppose that ρ = limr→∞ ρ(r) is not an integer. Let us denote by Πδ(z) another canonical
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product

Πδ(z) =
∞∏
n=1

(
1− z

a′n

)
e
∑p
k=1 z

k/k(a′n)k ,

in which |a′n| = |an| and | arg a′n − arg an| < δ. Then, for every ε > 0 and η > 0 there exists

a δ > 0 such that

| log |Π(z)| − log |Πδ(z)|| < εrρ(r)

for all z that do not belong to some exceptional set of circles C with upper linear density less

than η.

Hence, there exists a δ > 0 so that if {λn = rne
iθn} is a sequence such that |λn| = rn = n3,

θn = | arg λn − arg n3| < δ, and fδ(z) =
∏∞

n=1 (1− (z/λn)), then | log |fδ(z)| − log |f(z)|| <

ε1|z|1/3 outside an exceptional set of circles C. Thus, for z = reiθ /∈ E ∪ C and |z| = r

sufficiently large, we have the estimate

|fδ(reiθ)| ≥ elog |f(reiθ)|−ε1r1/3 ≥ eε2r
1/3

for some ε2 > 0. Applying the Residue Theorem and Inverse Function Theorem to fδ(z),

exactly as we did to f(z) in the proof of Theorem 3.2, gives the diagonal operator D acting

on H(D) having as eigenvalues {n1/pei(θn+2jπ)/q : 0 ≤ j < q} fails to admit spectral synthesis.

The second result we present regarding the perturbation of eigenvalues states that if

D is a non-synthetic diagonal operator acting on H(D) having eigenvalues {λn}, where

the indicator function H(θ) of f is such that inf {H(θ) : 0 ≤ θ < 2π} > 0, then the diagonal

operator having as eigenvalues {µn}, where {µn} is such that limn→∞ |µn − λn|/|λn| = 0, also

fails synthesis. To establish this result we require two lemmas. The first, due to Korobeinik

[23], asserts that the angular densities of {λn} and {µn} are the same.

Lemma 4.2. ([23, page 124]) Suppose that a set Λ = {λn}, where |λn| → ∞, has for all θ
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and θ1 (0 < θ < θ1 ≤ 2π), except possibly a countable set P , the angular density

∆Λ(θ, θ1) = lim
r→∞

nΛ(r, θ, θ1)r−ρ = ∆Λ(θ1)−∆Λ(θ), (4.1)

where, as usual, nΛ(r, θ, θ1) denotes the number of points of Λ lying in the sector {λ : |λ| ≤

r, θ < arg λ < θ1} and ∆Λ(φ) is a non-decreasing function defined by (4.1) up to an additive

constant. Suppose further that the sequence M = {µn} is such that limn→∞ (|µn − λn|/|λn|) =

0. If θ, θ1 /∈ P and ∆Λ(φ) is continuous at θ and θ1, then inside the angle (θ, θ1) the angular

density of M , ∆M(θ, θ1) = limr→∞ nM(r, θ, θ1)r−ρ, exists and is equal to ∆Λ(θ, θ1).

The second lemma asserts that {λn} and {µn} have the same convergence exponent.

Lemma 4.3. Suppose that λn → ∞ and ρ = inf {α :
∑∞

n=0 1/|λn|α <∞} > 0. Let {µn} be

such that limn→∞ |µn − λn|/|λn| = 0. Then, ρ1 = inf {α :
∑∞

n=0 1/|µn|α <∞} = ρ.

Proof. Let ε > 0 be given. Then, there exists a N ∈ N such that for all n ≥ N ,

|µn − λn|
|λn|

< ε.

Hence, for all n ≥ N and α > 0,

1

((1 + ε)|λn|)α
<

1

|µn|α
<

1

((1− ε)|λn|)α
.

Whence, ρ1 ≡ ρ.

We can then establish the following theorem.

Theorem 4.6. Let D be a non-synthetic diagonal operator on H(D) having eigenvalues

{λn}. Let f(z) be an entire function with simple zeros only at {λn}, and suppose the order

ρ of f is strictly greater than one and M ≡ inf {H(θ) : 0 ≤ θ < 2π} > 0 where H(θ) is

the indicator function for f . Let {µn} be a sequence of distinct complex numbers such that
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limn→∞ |µn − λn|/|λn| = 0. Then, the diagonal operator D̂ with eigenvalues {µn} fails to

admit spectral synthesis.

Proof. Since limn→∞ |µn − λn|/|λn| = 0, we have that

lim sup
n→∞

|µn|1/n < lim sup
n→∞

((1 + ε)|λn|)1/n ≤ 1,

where ε > 0, and thus, D̂ is continuous. Let f̂(z) be an entire function with simple zeros

only at {µn}. By applying Lemmas 4.2 and 4.3 as well as a result of Levin [29, Theorem

2, page 94], we have that |f̂(reiθ)| > eMrρ for all r sufficiently large and reiθ not belonging

to some exceptional set E. Then applying identical arguments as in Theorem 3.2, we have

that D̂ fails to admit spectral synthesis.

As an immediate corollary of the preceding theorem, we observe that we can perturb the

points of the integer lattice Z× iZ = {m+ ik : m, k ∈ Z} and obtain another non-synthetic

diagonal operator.

Example 4.8. Perturbing the Integer Lattice Points

Let S(z) = z
∏∞

n=1 (1− (z/λn))ez/λn+z2/2λ2n , the Weierstrass σ-function, where {λn} is the

enumeration of Z × iZ defined in Chapter 2. Define Ŝ(z) =
∏∞

n=0 (1− (z/µn))ez/µn+z2/2µ2n ,

where {µn} is such that limn→∞ |µn − λn|/|λn| = 0. We have shown that S has order ρ = 2

(Proposition 2.3). Hence, by a result of Levin [29, Theorem 2, page 91], log |S(reiθ)| ≈

HS(θ)r2, where HS(θ) =
∫ θ
θ−2π

(ψ − θ) sin 2(ψ − θ)d∆S(ψ). Moreover, it is shown that

HS(θ) = π/2 [29, page 128]. By Lemmas 4.2 and 4.3, we have that HŜ(θ) = π/2. Thus, for

z not in some exceptional set and |z| = r large enough we have |Ŝ(reiθ)| > eπr
2/2. Then ap-

plying nearly identical arguments to Ŝ, as we did to S in Chapter 2, gives that the diagonal

operator with eigenvalues {µn} fails to admit spectral synthesis on H(D).

Note that as n gets large, that is, |λn| gets large, µn can lie in a “significantly large” disk

B(λn, ε|λn|), centered at λn allowing for “significant” perturbations of the integer lattice

points.
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The results and examples of this chapter demonstrate that the synthesis or non-synthesis

of diagonal operators is not necessarily preserved when eigenvalues are added, rearranged,

deleted, or perturbed. In some cases the modification of the eigenvalues {λn} of a non-

synthetic operator does not result in a continuous operator, and even when it does, it is not

always the case that the operator is also non-synthetic. However, results and examples are

given when the non-synthesis of an operator is preserved under modifications of the eigenval-

ues. In Sections 4.1 through 4.3, these results were proved for general non-synthetic diagonal

operators, while in Sections 4.4 through 4.6 the examples involved using similar techniques

to those used in Chapters 2 and 3. It would be interesting to determine universal condi-

tions which would allow for modifications of the eigenvalues of any non-synthetic diagonal

operator to preserve non-synthesis.
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CHAPTER 5

A Sufficient Condition for Admitting

Spectral Synthesis on H(C)

A consequence of Leontev’s work [25] is that a diagonal operator D acting on H(C) with

distinct eigenvalues {λn} ⊂ C, for which 0 < |λ1| ≤ |λ2| ≤ ... and 0 < lim infn→∞ |λn|/n ≤

lim supn→∞ |λn|/n < ∞, admits spectral synthesis on H(C). In this chapter, we present a

result which slightly improves Leontev’s result. In particular, we replace the requirement

lim infn→∞
|λn|
n
> 0 with the condition n(r)/r is bounded, where n(r) =

∑
{n:|λn|≤r} 1 counts

the number of λn in B(0, r), and prove the diagonal operator with such eigenvalues {λn}

admits spectral synthesis on H(C). We also generate examples of synthetic operators on

H(C) which were not known to be synthetic by either Leontev’s result of 1976, or the

theorems stated in Section 1.7 from the work of Deters, Marin, and Seubert ([13], [31], [41]).

5.1 A Sufficient Condition for Synthesis on H(C)

In this section, we show a diagonal operator D acting on H(C) with eigenvalues {λn} is

synthetic whenever {λn/n : n ≥ 1} is bounded and n(r)/r is bounded. The condition

{λn/n : n ≥ 1} bounded implies the eigenvalues cannot grow too fast as |λn| ≤Mn for some

M > 0. The condition n(r)/r bounded implies there cannot be too many λn in disks B(0, r).
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To prove the result we consider a canonical product L(ω) having zeros only at {λn}∪{−λn}.

The condition {λn/n : n ≥ 1} bounded implies L has order at most one, while the condition

n(r)/r bounded implies L has order at least one, hence L has order one. We proceed by

contradiction, that is, we invoke Condition (vii) of Theorem 1.2, which states that D fails to

admit spectral synthesis if and only if there exists a sequence {ωn}, not identically zero, such

that lim supn→∞ |ωn|1/n = 0 and F (ω) ≡
∑∞

n=0 ωne
λnω ≡ 0 for all ω ∈ C. In view of which,

the Borel transform B(ω) ≡
∑∞

j=0 (aj/ω
j+1) of Ln(ω) ≡ L(ω)/(ω − λn) ≡

∑∞
j=0 (ajz

j/j!) (if

the order of the zero at λn is one) or L(ω)/(ω − λn)2 ≡
∑∞

j=0 (ajz
j/j!) (if the order of the

zero at λn is two) satisfies

0 ≡ 1

2πi

∫
∂B(z,ε)

F (ω)B(ω − z)dω =
1

2πi

∞∑
m=0

ωm

∞∑
j=0

aj

∫
∂B(z,ε)

eλmω

(ω − z)j+1
dω = ωnLn(λn)eλnz,

and so, ωn = 0 for all n ≥ 0, a contradiction.

Before proceeding with the theorem, we prove two technical lemmas; the first shows that

the conditions {λn/n : n ≥ 1} bounded and n(r)/r bounded imply L has order one.

Lemma 5.1. Suppose {λn} is a sequence of distinct complex numbers such that {λn/n : n ≥

1} is bounded and n(r)/r is bounded. The canonical product L(ω) =
∏∞

n=0 (1− (ω2/λ2
n))

having zeros at Z ≡ {λn} ∪ {−λn}, is of order one and finite type.

Proof. Since {λn/n : n ≥ 1} is bounded, there exists an M > 0 such that |λn| < Mn

for all n ≥ 1. Hence,
∑∞

n=1
1
|λn|α ≥

∑∞
n=1

1
(Mn)α

= ∞ for all 0 < α ≤ 1. Whence, ρ1 ≡

inf {α :
∑∞

n=1 1/|λn|α <∞} ≥ 1. By Theorem 2.5.8 of [5], ρ1 = lim supn→∞ log n(r)/ log r,

and since n(r)/r is bounded there exists a K > 0 such that n(r) ≤ Kr for all r sufficiently

large. Therefore, log n(r) ≤ logKr = logK + log r for r large enough, and hence,

ρ1 = lim sup
r→∞

log n(r)

log r
≤ lim sup

r→∞

logK + log r

log r
= 1.

Thus, L has order one [5, Theorem 2.6.5]. Since n(r)/r is bounded and S(r) =
∑
{z∈Z:|z|≤r} 1/z =
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0, by Lindelof’s Theorem [5, Theorem 2.10.1], L has finite type.

The second technical lemma shows that the domain of convergence of the Borel transform

of an entire function f of order one and finite type τ contains the complement of B(0, τ).

Lemma 5.2. Let f(z) =
∑∞

n=0
an
n!
zn be an entire function of order one and finite type τ .

Then, B(z) =
∑∞

n=0
an
zn+1 converges in the domain {z ∈ C : |z| > τ}.

Proof. Since f is of order 1 and finite type τ , we have τ = 1
e

lim supn→∞ n|ann!
|1/n [36, Propo-

sition 11.5]. By Stirling’s Formula [5, page 6], n! = nne−n
√

2πneδn where 1/(12n+1) < δn <

1/12n, and so, limn→∞(n!/nnen)1/n = limn→∞ (2πn)1/2neδn/n = 1. Hence

τ =
1

e
lim sup
n→∞

n
∣∣∣an
n!

∣∣∣ 1n
= lim sup

n→∞

n

e

∣∣∣an
n!

∣∣∣ 1n
= lim sup

n→∞
(nne−n)

1
n

∣∣∣an
n!

∣∣∣ 1n
= lim sup

n→∞
|an|

1
n

(
nne−n

n!

) 1
n

= lim sup
n→∞

|an|
1
n lim
n→∞

(
nne−n

n!

) 1
n

= lim sup
n→∞

|an|
1
n .

Thus,
∑∞

n=0 anz
n converges whenever |z| < 1

τ
, by the Radius of Convergence Formula. If

|ω| < 1
τ
, then

∑∞
n=0 |anωn+1| = |ω|

∑∞
n=0 |anωn| <

1
τ

∑∞
n=0 |anωn| < ∞. Hence, B(ω) =∑∞

n=0 anω
n+1 converges in the domain {ω ∈ C : |ω| < 1/τ}. Therefore, B(z) =

∑∞
n=0

an
zn+1

converges outside the ball B(0, τ).

The main result of this chapter, and the only result of this dissertation regarding the

synthesis of diagonal operators acting on the space of entire functions, is as follows.

Theorem 5.1. Let D be a diagonal operator acting on H(C) with distinct eigenvalues {λn}

for which
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(1) {λn
n

: n ≥ 1} is bounded, and

(2) n(r)/r is bounded.

Then, D admits spectral synthesis.

Proof. By means of contradiction, suppose D fails to admit spectral synthesis on H(C).

Thus, by Condition (vii) of Theorem 1.2, there exists a sequence {ωn} of complex numbers,

not identically zero, such that lim supn→∞ |ωn|1/n = 0 and F (ω) ≡
∑∞

m=0 ωme
λmω ≡ 0

for all ω ∈ C. Moreover, F is entire by Condition (1). The canonical product L(ω) =∏∞
n=0 (1− (ω2/λ2

n)) has zeros Z ≡ {λn} ∪ {−λn} all having order one or two (if λn and

−λn are both eigenvalues for D). By Lemma 5.1, L has order one. For n ≥ 1, define

Ln(ω) = L(ω)/(ω − λn) if λn is a zero of order one, or Ln(ω) = L(ω)/(ω − λn)2 if λn

is a zero of order two. Then, Ln(ω) =
∑∞

j=0 (ajω
j/j!) is an entire function with zeros

Z \ λn. By Lemma 5.1, Ln is of type τ = lim supj→∞ |aj|1/j < ∞. Hence, by Lemma 5.2,

B(ω) =
∑∞

j=0 aj/ω
j+1 converges in the domain {ω ∈ C : |ω| > τ}. Fix z ∈ C and ε > τ .

For any ω ∈ ∂B(z, ε), we have |ω − z| = ε > τ . So any ω ∈ ∂B(z, ε) is in the domain of

convergence of B(ω − z). Since,

∞∑
j=0

∣∣∣∣ aj
(ω − z)j+1

∣∣∣∣ =
∞∑
j=0

|aj|
εj+1

=
1

ε

∞∑
j=0

|aj|
εj
,

and

lim sup
j→∞

(
|aj|
εj

)1/j

=
1

ε
lim sup
j→∞

|aj|1/j =
τ

ε
< 1,

∑∞
j=0 aj/(ω − z)j+1 converges absolutely and uniformly on ∂B(z, ε), by the Root Test. More-

over,
∞∑
m=0

|ωmeλmω| ≤
∞∑
m=0

|ωm|e|λm||ω| =
∞∑
m=0

|ωm|e|λm|(|z|+ε),

where

lim sup
m→∞

(|ωm|e|λm|(|z|+ε))1/m ≤ lim sup
m→∞

|ωm|1/m lim sup
m→∞

e|λm|(|z|+ε)/m = 0 < 1,
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by Condition (1). Thus,
∑∞

m=0 ωme
λmω converges absolutely and uniformly on ∂B(z, ε), by

the Root Test. Since F (ω) ≡ 0, we have

0 ≡ 1

2πi

∫
∂B(z,ε)

F (ω)B(ω − z)dω

=
1

2πi

∫
∂B(z,ε)

∞∑
m=0

ωme
λmω

∞∑
j=0

aj
(ω − z)j+1

dω

=
1

2πi

∞∑
m=0

ωm

∞∑
j=0

aj

∫
∂B(z,ε)

eλmω

(ω − z)j+1
dω

=
∞∑
m=0

ωm

∞∑
j=0

aj
λjm
j!
eλmz

by Cauchy’s Integral Formula [10, Theorem 5.4]. Thus,

0 =
∞∑
m=0

ωmLn(λm)eλmz = ωnLn(λn)eλnz

since Ln(λm) = 0 for all m 6= n. However, since λn is not a zero of Ln, Ln(λn) 6= 0 and

eλnz 6= 0, so ωn = 0 for all n ≥ 0, a contradiction. The result holds.

The hypotheses of the preceding theorem give some insight into the possible behavior

of the eigenvalues {λn} of a synthetic diagonal operator D acting on H(C). Condition (1)

asserts that |λn| cannot grow very fast, in particular, {|λn|} is bounded by Mn for some

constant M > 0. On the other hand, by Condition (2), |λn| cannot grow too slow since

there cannot be too many λn in disks B(0, r). As an example, we quickly observe a diagonal

operator with eigenvalues {λn} = {n} admits spectral synthesis on H(C); however, this also

follows directly from Theorem 1.5. Moreover, by the preceding theorem, a diagonal operator

acting on H(C) with eigenvalues {±n,±in} admits spectral synthesis, a conclusion which

cannot be determined from any of the previously known results regarding synthesis on H(C)

stated in Section 1.7.

Joint work with Henthorn [16] suggests that a diagonal operator acting on H(D) having
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as eigenvalues six copies of n placed on six rays eiπj/3 for 0 ≤ j < 5, fails spectral synthesis.

Since the eigenvalues satisfy Conditions (1) and (2) of Theorem 5.1, it appears as though the

analogue of Theorem 5.1 for diagonal operators acting on H(D) will not hold. In any event,

the proof of Theorem 5.1 does not shed any light on the synthesis of diagonal operators acting

on H(D). Although the growth condition lim supn→∞ |λn|1/n ≤ 1 for continuity on H(D) is

more restrictive than the growth condition lim supn→∞ |λn|1/n <∞ for continuity on H(C),

the less restrictive decay rate on {ωn}, lim supn→∞ |ωn|1/n < 1 required for membership in

H∗(D) compared to lim supn→∞ |ωn|1/n = 0 required for membership in H∗(C), discussed

in Section 1.3, only guarantees F (ω) =
∑∞

n=0 ωne
λnω is analytic near the origin rather than

entire as needed in the proof of Theorem 5.1.

5.2 Leontev’s Result and Examples

Using Theorem 5.1, we establish the following corollary.

Corollary 5.1. A diagonal operator D acting on H(C) with distinct eigenvalues {λn} such

that 0 < inf {λn
n

: n ≥ 1} ≤ sup {λn
n

: n ≥ 1} <∞ admits spectral synthesis.

Proof. Clearly {λn} satisfies Condition (1) of Theorem 5.1. Moreover, there exists 0 6= a <

b < ∞ such that a ≤ |λn|
n
≤ b, for all n ≥ 1. That is, an ≤ |λn| ≤ bn and (an)α ≤

|λn|α ≤ (bn)α for all α > 0, hence 1/(bn)α ≤ 1/|λn|α ≤ 1/(an)α. By the Comparison Test,∑∞
n=0 1/|λn|α ≤

∑∞
n=0 1/(an)α < ∞ for α > 1. Moreover,

∑∞
n=0 1/|λn|α ≥

∑∞
n=0 1/(bn)α =

∞ for α ≤ 1. Whence, inf {α :
∑∞

n=0 1/|λn|α <∞} = 1. Since an ≤ |λn| ≤ bn, we have

n(m) ≤ 1
b
m for any m ∈ Z. Furthermore, for any r ∈ R+, n(r) ≤ (1/b)(r + 1) ≤ (2r/b).

Hence, n(r)/r is bounded, and D satisfies Condition (2) of Theorem 5.1. Therefore, D

admits spectral synthesis on H(C).

Note that Corollary 5.1 does not require that {|λn|} is increasing as Leontev’s results

does, and thus, Leontev’s result is a consequence of Corollary 5.1. The following example
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demonstrates that the hypothesis inf {λn
n

: n ≥ 1} > 0 in Leontev’s result is not a necessary

condition for spectral synthesis on H(C).

Example 5.1. Define λn =


n n 6= 10k, k ≥ 1

10k/2 n = 10k, k ≥ 1

.

First, note {λn} are distinct and lim sup |λn|1/n = 1 <∞. Thus, if D is the diagonal operator

with eigenvalues {λn}, it is continuous and cyclic.

Claim 1. {λn} satisfies the hypotheses of Theorem 5.1.

Proof. For n 6= 10k, where k ≥ 1, we have |λn/n| = |n/n| = 1. For n = 10k, where k ≥ 1,

we have, |λn/n| = 10
k
2 /n = 10

k
2 /10k = 1/10

k
2 ≤ 1. Thus, {λn/n : n ≥ 1} is bounded. We

show inf {α :
∑∞

n=0 1/|λn|α <∞} = 1. To this end, consider

∞∑
n=1

1

|λn|α
=

∑
n6=10k

1

nα
+
∑
n=10k

1

10αk/2

≤
∞∑
n=1

1

nα
+
∞∑
k=1

(
1

10α/2

)k
=

∞∑
n=1

1

nα
+

1

(1− (1/10α/2))
,

which is finite only when
∑∞

n=1
1
nα
<∞, thus for α > 1. If {λn} = {n}, then n(r) = brc ≤ r

where brc is the greatest integer less than r. When we add in the powers of 10, we really

only add in 10
1
2 , 10

3
2 , 10

5
2 , ... Thus, for example, when r = 100, n(r) will increase by 1; when

r = 10, 000, n(r) increases by 2; when r = 106, n(r) increases by 3, and so on. Clearly,

n(r) ≤ 2 brc ≤ 2r. Hence, n(r)/r is bounded. Therefore, by Theorem 5.1, D admits spectral

synthesis on H(C).

Claim 2. {λn} does not satisfy the hypothesis of Corollary 5.1 (hence Leontev’s result).

Proof. Consider inf {
∣∣λn
n

∣∣ : n ≥ 1} = inf {10k/2

10k
: k ≥ 1} = inf {10−k/2 : k ≥ 1} = 0.
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In general, let {λ̂n} be any sequence which satisfies the hypotheses of Leontev’s result.

Then, define

λn =


λ̂n n 6= ak, k ≥ 1

ak/2 n = ak, k ≥ 1

where a ∈ (1,∞). As long as we remove repeated values to guarantee the cyclicity of the

operator, the diagonal operator acting on H(C) with eigenvalues {λn} will admit spectral

synthesis by Theorem 5.1 but not Corollary 5.1 (or Leontev’s result).
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Appendix A

Entire Function Theory

A.1 Introduction

The results of the preceding dissertation rely heavily on the theory of entire functions. This

area is well-studied and well-documented, for example, see Boas [5], Conway [10], Holland

[18], Levin [29] and [30], and Rubel [36], amongst others. For the convenience of the reader,

many of the basic definitions and theorems that were necessary in the results of this document

are presented in this chapter. Of central importance for our study is the growth of entire

functions, both as a function of |z| as well as the more refined measure of the growth along

rays {z : arg z = θ} for 0 ≤ θ < 2π.

An entire function is a function f(z) which is analytic in the whole complex plane. Entire

functions are represented by their power series f(z) =
∑∞

n=0 anz
n, where lim supn→∞ |an|1/n =

0. From this representation, we observe that all polynomials p(z) are contained in the class of

entire functions. Furthermore, polynomials are classified by their degree which is determined

by the number of roots; the more roots a polynomial has, the higher its degree, and the faster

it grows. This suggests the growth of an entire function is intimately related to its zeros.

However, the relationship is much more complex than with polynomials, as there are many

results that state if f grows “slowly” and its roots “pile up” in a domain, then f(z) ≡ 0.

Moreover, entire functions can potentially have infinitely many zeros or no zeros, so to study
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their growth we must examine not only the number of zeros, but also the distribution of the

zeros in the complex plane. One method for studying the growth of an entire function is

to define the function Mf (r) = sup|z|=r {|f(z)|}, which as an application of the Maximum

Modulus Principle increases monotonically. The function Mf (r) measures the growth of f

in disks centered at the origin.

Other questions that arise regard the growth of functions along different directions, and

the relationship between this growth and the global growth determined by Mf (r). Polyno-

mials grow uniformly in all directions; that is, their growth as z → ∞ depends only on |z|

not on arg z. This is not necessarily the case for an entire function f with zeros {an}. By

considering Liouville’s and Picard’s Theorems, it seems that a function with “small” global

growth cannot decrease “too fast” in some direction, but also must grow on a “large enough”

part of the complex plane. To discuss this issue further, we develop a method for measuring

the growth of an entire function in different directions.

A.2 Growth as a Function of |z|

We first discuss the growth of entire functions in terms of their global growth; that is, we

measure the growth of an entire function f by examining its growth on disks centered at

the origin as characterized by the function Mf (r), which is independent of direction. By

an application of Cauchy’s Estimate, if lim infr→∞Mf (r)/r
λ = 0 for λ > 0, then f(z) is

a polynomial of degree at most λ [30, Theorem 1, page 3]. Hence, to characterize entire

functions according to their growth we need to compare them to monotonic functions that

grow faster than any polynomial; an obvious choice is eαz
β
, where α, β > 0 are constants.

In view of which, we say f is of finite order if there exists a constant λ > 0 such that

|f(z)| < e|z|
λ

for all z ∈ C with |z| large enough. In this case, whenever λ1 > λ, |f(z)| < e|z|
λ1 ,

thus the inequality is satisfied for infinitely many λ’s if it holds for one. Thus, we define the

order ρ of f by ρ ≡ inf {λ : |f(z)| < e|z|
λ

whenever z ∈ C with |z| > R for some R > 0}.



Appendix 87

Hence, if f has order ρ, then for every ε > 0 there exists an rε such that |f(z)| > er
ρ+ε

whenever z ∈ C with r = |z| > rε. Furthermore, there exists a sequence {rn} approaching

infinity such that |f(zn)| < er
ρ−ε
n where zn ∈ C is such that |zn| = rn. Therefore, Mf (r) < er+ε

for r large enough, and Mf (rn) > ern−ε, and so clearly, ρ = lim supr→∞ (log logMf (r)/ log r).

Using only the order to characterize the growth of entire functions is not always sufficient

as it is possible to find two entire functions with the same order that behave very differently.

For example, ez and sin z are both functions of order one, yet have entirely different zero sets.

We refine this measure of the growth by introducing the type of an entire function to further

characterize its growth. We say an entire function f of order ρ is of finite type if there

exists a k > 0 such that Mf (r) < ekr
ρ

for r large enough. More precisely, we define the type

τ of f by τ ≡ inf {k : Mf (r) < ekr
ρ}. Then, if f is an entire function of order ρ and type τ ,

we have that for all ε > 0 there exists an rε such that |f(z)| < e(τ+ε)|z|ρ whenever z ∈ C with

|z| > rε, and there exists a sequence {rn} approaching infinity such that |f(zn)| > e(τ−ε)rρn

where zn ∈ C is such that |zn| = rn. It then follows that τ = lim supr→∞ (logMf (r)/r
ρ). An

entire function is said to be of exponential type if either its order is less than one, or its

order equals one and it has finite type.

Thus far we have defined the order and type of an entire function in two ways; by

comparing its modulus to exponential functions, and in terms of the function Mf (r). We

can also define order and type in terms of the coefficients of the power series expansion

f(z) =
∑∞

n=0 anz
n of f . By an application of Cauchy’s Estimate, if Mf (r) < eAr

k
for r large

enough, then |an| < (eAk/n)n/k for n large enough. Moreover, if |an| < (eAk/n)n/k holds

for n large enough, then Mf (r) < e(A+ε)rk for r large enough and ε > 0, as an application

of Stirling’s formula. In this way, it can be shown ρ = lim supn→∞ (n log n/ log (1/|an|)) and

τ = (1/ρε) lim supn→∞ (n n
√
|an|ρ) ([30, page 6] or [5, Theorem 2.2.10]). Using these formulas

for ρ and τ we can easily create functions of any given order and type, as shown in the

following example [30, page 7].

Example A.1. Functions of Given Order and Type
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Let 0 < ρ <∞ and 0 < τ <∞, we can then show:

1. f(z) =
∑∞

n=1 (eτρ/n)1/ρzn is of order ρ and type τ ,

2. f(z) =
∑∞

n=2 (eτρ/n log n)n/ρzn is of order ρ and type zero,

3. f(z) =
∑∞

n=2 (eρ log n)n/ρzn is of order ρ and infinite type,

4. f(z) =
∑∞

n=2 (1/ log n)nzn is of finite order, and

5. f(z) =
∑∞

n=0 e
−n2

zn is of order zero.

Using these tools we establish a relationship between the growth of an entire function,

in terms of its order, and the distribution of its zeros {an}. To this end, we define the

convergence exponent ρ1 of a sequence {an} by ρ1 ≡ inf {α :
∑∞

n=1 1/|an|α <∞}. If

the number of points of {an} is finite then ρ1 = 0, and if the number of points of {an}

is countable, then the faster |an| → ∞ the smaller the convergence exponent will be.

This concept can be easily thought of, for example, in terms of sequences {an} ≡ {np}

where ρ1 = 1/p. If we define the function n(r) to be the counting function of {an},

n(r) ≡
∑
|an|≤r 1, then it can be shown that n(r) is a nondecreasing function which is constant

in intervals of the form (|an|, |an+1|) whenever {|an|} is increasing [18, Theorem 4.5.1]. Ad-

ditionally, we can compute the convergence exponent by ρ1 = lim supr→∞ (log n(r)/ log r) =

lim supn→∞ (log n/ log |an|). Moreover, as an application of Jensen’s formula, it can be shown

that ρ1 = lim supr→∞ (log n(r)/ log r) ≤ lim supr→∞ (log logMf (r)/ log r) = ρ. That is, the

convergence exponent of the zeros of an entire function does not exceed the order of the

function.

In fact, for certain entire functions the convergence exponent is equal to the order of

the function. To define such functions, we consider a sequence of complex numbers {an}

such that an 6= 0 for any n ≥ 0. Let p ≥ 0 be an integer such that
∑∞

n=0 1/|an|p+1 <

∞, and define the infinite product Π(z) =
∏∞

n=0G(z/an, p), where G(u, 0) = (1 − u) and

G(u, p) = (1− u)eu+u2/2+···+up/p for p > 0, called the Weierstrass primary factors. Using
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the inequality | logG(u, p)| ≤
∑∞

k=p+1 |u|k/k ≤ 2|u|p+1 for |u| ≤ 1/2, we have that the

Weierstrass canonical product of genus p Π(z), converges absolutely and uniformly

in every disk {z ∈ C : |z| ≤ R < ∞}. In this case, Π(z) has simple zeros only at {an}

[10, Theorem 5.12], the order ρ of Π(z) is equal to the convergence exponent of {an} [36,

Theorem 11.5], and the derivate Π′(z) =
∑∞

j=0G
′(z/aj, p)

∏
n6=j G(z/an, p) [15, page 355].

Moreover, by the Weierstrass Factorization Theorem, every entire function f(z) can be

written as f(z) = eg(z)zm
∏∞

n=1G(z/an, p) = eg(z)zmΠ(z), where g(z) is an entire function,

m is the order of the zero of f at z = 0 (possibly m = 0), and {an} are the non-zero zeros

of f . Hence, the order of f is the larger of the order of the non-zero entire function eg(z)

and the canonical product Π(z) =
∏∞

n=1G(z/an, p). Thus, the order of f(z) is at least the

convergence exponent of {an}. Furthermore, if f is an entire function of non-integer order

ρ, then ρ is equal to the convergence exponent of the zero set of f , since the order of g(z)

does not exceed the genus of {an} [30, page 31].

A.3 Growth Along Rays {z : arg z = θ}

A more refined measure of the growth of an entire function f(z) is the growth along rays

{arg z = θ} for 0 ≤ θ < 2π. If f(ω) = 0, then |f(z)| is small for z near ω. Thus, f may grow

differently on a ray where countably many zeros lie than on a ray with finitely many zeros.

In this section, we address this issue and find both lower and upper bounds for |f(z)| which

hold except on small regions containing the zeros, by examining the growth of f along rays.

For a sequence of complex numbers {an} with convergence exponent ρ1, we define the

density of {an} by ∆ = limr→∞ (n(r)/rρ1), provided the limit exists. If it does not, we

define the upper density and lower density by ∆ = lim supr→∞ (n(r)/rρ1) and ∆ =

lim infr→∞ (n(r)/rρ1), respectively. It can be shown that ∆ = lim supn→∞ (n/|an|ρ1) and

∆ = lim infn→∞ (n/|an|ρ1) [30, page 17]. If we denote the number of zeros of f in the sector

{z ∈ C : |z| ≤ r, ψ1 ≤ arg z ≤ ψ2} by nf (r, ψ1, ψ2), then we define the angular density of
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the zeros of f by ∆f (ψ1, ψ2) = limr→∞ (nf (r, ψ1, ψ2)/rρ), provided the limit exists.

In order to describe the growth of an entire function f(z) of order ρ along a ray {z :

arg z = θ}, we define the indicator function of f by hf (θ) = lim supr→∞ log |f(reiθ)|/rρ.

If we consider the canonical product Π(z) =
∏∞

n=1G(z/rn, p), where p < ρ < p + 1 and

{rn} ⊂ R+ with limr→∞ n(r)/rρ = ∆, then the asymptotic formula

log |Π(reiθ)| = π∆rρ

sin πρ
cos ρ(θ − π) +

o(rρ)

sin (θ/2)
,

for 0 < θ < 2π, can be established, where o(rρ) denotes a function of order less than ρ

[30, Lecture 12]. However, to make the given expression valid for θ = 0 as well, we must

exclude some exceptional set containing the zeros of Π(z). To this end, a set of disks

{Cj ≡ B(zj, rj) ⊂ C} will be called a C0-set if limR→∞ (1/R)
∑
|zj |<R rj = 0. Then, outside

of a C0-set of disks the asymptotic relation

log |Π(reiθ)| = π∆

sin πρ
rρ cos ρ(θ − π) + o(rρ)

holds uniformly with respect to θ, 0 ≤ θ < 2π [30, Section 12.3].

The relations established in the preceding paragraph hold for a canonical product with

real, positive zeros. However, similar asymptotic formulas can be established for less restric-

tive conditions on the zero set. In particular, if Π(z) is a canonical product with zeros {an}

lying on a finite number of rays arg z = ψk, having densities ∆k with respect to rρ, where ρ

is non-integer, then

log |Π(z)| = πrρ

sin πρ

∑
k

∆k cos ρ(θ − ψk − π) + o(rρ),

for θ−2π < ψk ≤ θ, outside an exceptional C0-set. Moreover, if f is a function of non-integer

order ρ, then h(θ) = (π/ sin πρ)
∫

[0,2π]
cos ρ(θ − ψ − π)d∆(ψ) where ∆ denotes the angular

density of the zeros {an} of f . Then, for the canonical product Π(z) with zeros {an}, we
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have

log |Π(z)| = rρh(θ) + o(rρ)

outside of an exceptional C0-set [30, Section 13.2]. If Π(z) is of integer order ρ, then we

will have the same asymptotic formula except the indicator function will be given by h(θ) =∫
[0,2π]

(θ − ψ) sin ρ(θ − ψ)d∆(ψ)+τ cos ρ(θ − θ0), where τeiθ0 = limR→∞ (bρ + (1/ρ)
∑
|an|≤R (1/aρn))

and bρ is the coefficient of zρ in the function g(z) when f is written in the form given in the

Weierstrass Factorization Theorem.

When the set {an} has certain properties we may define the exceptional set more ex-

plicitly. As in Levin [29, Chapter II, Section 1], we say that {an} satisfies Condition (C)

if there exists a d > 0 such that {B(an, d|an|1−(ρ/2))}∞n=0 is pairwise disjoint, and we say

{an} satisfies Condition (C’) if {|an|} is nondecreasing and there exists a d > 0 such that

|an+1| − |an| > d|an|1−ρ. These conditions guarantee that the points of {an} cannot come

arbitrarily close together. If (C) or (C’) is satisfied then {an} is called an R-set, while the

disks {z : |z − an| ≤ d|an|1−(ρ/2)} (if (C) holds) and {z : |z − an| ≤ d|an|1−ρ} (if (C’) holds),

are called the exceptional circles of the R-set. Hence, in either case, the exceptional set

is the union of all such disks and the asymptotic relation log |Π(z)| = rρh(θ) + o(rρ) holds

outside of this exceptional set.

The asymptotic formulas discussed in this section give both a lower and upper bound for

|Π(z)| in terms of the indicator function. That is, they provide information regarding the

growth of an entire function except on disks centered at the zeros by examining the growth of

f along rays. The study of the theory of entire functions is extensive, while the information

given in this chapter is a brief overview of the basic concepts. Further information can be

found in Boas [5], Conway [10], Holland [18], Levin [29] and [30], and Rubel [36], amongst

others.
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