APPLICATIONS OF ENTIRE FUNCTION THEORY TO THE SPECTRAL
SYNTHESIS OF DIAGONAL OPERATORS

Kate Overmoyer

A Dissertation
Submitted to the Graduate College of Bowling Green

State University in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2011

Committee:
Steven M. Seubert, Advisor

Kyoo Kim,
Graduate Faculty Representative

Kit C. Chan

J. Gordon Wade



i

ABSTRACT
Steven M. Seubert, Advisor

A diagonal operator acting on the space H(B(0, R)) of functions analytic on the disk
B(0, R) where 0 < R < oo is defined to be any continuous linear map on H(B(0, R)) having
the monomials z" as eigenvectors. In this dissertation, examples of diagonal operators D
acting on the spaces H(B(0, R)) where 0 < R < oo, are constructed which fail to admit
spectral synthesis; that is, which have invariant subspaces that are not spanned by collec-
tions of eigenvectors. Examples include diagonal operators whose eigenvalues are the points
{nee?m/% . ) < j < b} lying on finitely many rays for suitably chosen a € (0,1) and b € N,
and more generally whose eigenvalues are the integer lattice points Z x iZ. Conditions for re-
moving or perturbing countably many of the eigenvalues of a non-synthetic operator which
yield another non-synthetic operator are also given. In addition, sufficient conditions are
given for a diagonal operator on the space H(B(0, R)) of entire functions (for which R = o)

to admit spectral synthesis.



1ii

This dissertation is dedicated to my family who believed in me even when I did not believe

in myself. Especially to my Grandma, who I know would be proud of me.



iv
ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Steven Seubert, for his patience, guidance,
and support. This dissertation would not have been possible without his encouragement and
countless hours of editing and revising.

I would like to thank the faculty and staff of the Mathematics and Statistics Department
for all of their help, guidance, and advice. This is an amazing department that is more like
a big family. I would also like to thank Bowling Green State University for the financial
support they have provided, without it I would never have completed my degree.

I would like to thank the members of my dissertation committee; Dr. Kit Chan, Dr.
Gordon Wade, and Dr. Kyoo Kim. Thank you for participating in my committee and
helping me through this process.

I would like to thank my parents, Melanie and Dennis Overmoyer, and my sister Nicole,
for being supportive and loving. They are the constant rocks in my life that made me who I
am. I would like to also acknowledge my grandfather, aunts, uncles, and cousins who have
always believed in me and supported me, for this I am eternally grateful.

I have to acknowledge “my girls” at BGSU who have made this experience, which was so
tough at times, enjoyable. Carrie Williams, Tumpa Bhattacharyya, Rachelle Barr, Amanda
Roble, Melanie Henthorn, Shristi Upreti, and Candace Ohm have made me laugh, cry, and
showed me that to get through the hard times you just need a little fun.

Finally, I want to thank my best friend and future husband, Dominick D’Aurora, for his

patience, love, and support in allowing me to follow my dreams.



Table of Contents

(CHAPTER 1: Invariant Subspaces, Diagonal Operators and Spectral Syn-

[_thesis| 1
L1 Tntroductionl . . . . . . . . . .. 1
(1.2 "The Hilbert Space Case| . . . . . . . . . . . . ... ... .. ... ..... 5)
(L3 The Moment Conditionl. . . . . . ... .. ... ... . . ... 11
[L.4 A Preview of the Main Resultsl. . . ... ... ... ... ... ... ... 14
(L.5  The Case H(C)-The Space of Entire Functions|. . . . . . .. ... ... ... 15
(1.6 The Case H(D)-The Space of Functions Analytic on the Diskl. . . . . . . .. 17
(1.7 Testable Conditions for Synthesis| . . . . . . . .. . . ... ... ... .... 20

(CHAPTER 2: A Non-synthetic Operator on the Space of Functions Analytic |

L__on the Umt Diskl 26
2.1 Weierstrass o-functiond . . . . . . . . ... 27
2.2 The Growth Rate of S(z) and S"(2)[ . . . . . . . . ... ... ... ... ... 30
2.3 A Non-synthetic Operator on H(D)| . . . . . . ... ... .. ... ... ... 38

ICHAPTER 3: A Class of Non-synthetic Operators on H(D)| 41
[3.1  Diagonal Operators having Eigenvalues |

| {n!/Pe2mi/3p . () < j < 3p} for p > 1 are Non-synthetic| . . . . . . . ... ... 42
B2 A Generalizationl . . . . . .. .. ... 48



vi
[CHAPTER 4: Preserving Non-synthesis while Modifying the Eigenvalues| 54

4.1  Adding Countably Many Eigenvalues| . . . . . ... . ... ... ... .... 56
(4.2 Rearranging Eigenvalues . . . . . . .. .. ... ... 0L 58
4.3 Deleting Finitely Many Eigenvalues| . . . . . .. .. ... ... ... ... .. 59
4.4 Deleting Countably Many Eigenvalues Symmetrically| . . . . . . ... .. .. 60
4.5 Deleting Countably Many Eigenvalues Without Symmetry| . . . . . . . . .. 65
4.6 Perturbing Eigenvalues| . . . . . . . .. ... ..o 0000 67

[CHAPTER 5: A Sufficient Condition for Admitting Spectral Synthesis on |
72

(5.1 A Sufficient Condition for Synthesison H(C)[. . . . . .. .. ... ... ... 72
[>.2  Leontev’s Result and Examples . . . . .. ... ... ... ... ... .... 7
80
85
85
(A2 Growth as a Function of |z]| . . . ... ... ... ... . . L. 86

[A.3 Growth Along Rays {z:argz=0} . ... .. ... ... ... .. ...... 89




CHAPTER 1

Invariant Subspaces, Diagonal

Operators and Spectral Synthesis

1.1 Introduction

The purpose of this document is to study the closed invariant subspaces of analogues of
diagonal operators acting not on Hilbert spaces, but instead on spaces of functions analytic
on regions in the complex plane. The general setting for our study concerns continuous linear
operators T : X — X, where X is a complete metrizable topological vector space. Recall
that a closed subspace M of X is invariant for T if Tx € M whenever x € M. Examples

of invariant subspaces include the closed linear span of eigenvectors for 71" if any exist, and

more generally the closed linear spans V{T™z : n > 0} of orbits {T"z : n > 0} of vectors

x € X. In fact, V{T™x : n > 0} is the smallest closed invariant subspace for 7" containing
x. However, it may be that such a subspace coincides with all of X’; in this case, we say
that = is a cyclic vector for 7" and that T is a cyclic operator. If T" has no non-trivial
invariant subspaces then every non-zero vector is cyclic. Consequently, examples of non-
trivial invariant subspaces for T" are obtained from its non-cyclic vectors. A long-standing

open problem in operator theory is to determine whether or not every operator acting on
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a separable Hilbert space has a non-trivial invariant subspace; it is the Invariant Subspace
Problem.

The importance of cyclic vectors and invariant subspaces derives in part from Linear
Algebra, the study of operators on finite-dimensional spaces. In particular, every linear map
T on C" is known to have an eigenvector x with associated eigenvalue A which generates
an invariant subspace R(\) = V{UyKer((T — \)¥)} for T, called the root space for T'. The
map T', when restricted to this root space, is given by the sum of Jordan cells. A Jordan
cell is a matrix (with respect to an appropriately chosen basis for R(x)) having \’s on the
main diagonal, ones on the super-diagonal, and zeros elsewhere. Each Jordan cell is a cyclic
operator having as cyclic vectors any column vector whose last coordinate is non-zero. The

” namely, the restrictions

operator 1" may be viewed as the assemblage of each of its “parts,
of T to its root spaces. More precisely, the Jordan Decomposition Theorem states that every
linear map on C" is similar to the direct sum of Jordan cells. It follows that a linear map
T on C" is cyclic if and only if the diagonal entries of its Jordan cells are distinct. In this
case, a vector is cyclic for T"if and only if it is the sum of cyclic vectors for the Jordan cells.

The first infinite-dimensional generalization of C™ that one might study is a separable
Hilbert space H. In an effort to better understand an operator 1" : H — H, it seems natural
to try to decompose T into its “parts” or restrictions of 7' to its invariant subspaces. However,
the Invariant Subspace Problem, which remains an open problem, is to determine whether
or not every operator on a separable Hilbert space has a non-trivial invariant subspace.
This problem has been solved in several special cases but not in general. For example, Per
Enflo [14] has constructed a Banach space on which no operator has an invariant subspace,
however, there are examples of Banach spaces on which it is known (see [2], for instance)
that every operator has non-trivial invariant subspaces. In view of the Jordan Decomposition
Theorem on C”, it seems natural to believe that every operator on a separable Hilbert space

has non-trivial invariant subspaces, namely its root spaces. However, operators on a Hilbert

space need not have any eigenvalues, such as the forward shift. Other operators may have
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uncountably many eigenvalues, such as the backward shift whose eigenvalues are precisely
the points in the open unit disk.

Thus, in general, one can not hope to identify or characterize the set of cyclic vectors or
lattice of invariant subspaces of an arbitrary operator on a separable Hilbert space. For this
reason, research in operator theory is often of one of two types; either study as many different
aspects of a certain class of operators as one can, or try to decide one specific property of all
operators. This dissertation is of the former type; in particular, we study analogues of direct
sums of Jordan cells (reminiscent of the Jordan Decomposition Theorem), called diagonal
operators which act on spaces of functions analytic on a region in the complex plane, and
attempt to decide whether or not their invariant subspaces are of a special type (reminiscent
of root spaces).

We now describe the class of operators in question by revisiting the finite-dimensional
setting of C". Recall, a linear map on C" is similar to the direct sum of Jordan cells, which
have a constant on the main diagonal, ones on the super-diagonal, and zeros elsewhere. A
simple generalization to a Hilbert space is to consider a single Jordan cell with eigenvalue
zero and ones along the super-diagonal, which is precisely the shift operator. In a seminar
paper of 1949, Beurling showed that a closed subspace is invariant for the shift operator S,
when viewed as acting on the Hardy space H?, if and only if it has the form BH? where B
is a so-called inner function. It then follows, as a corollary, that a function f € H? is cyclic
for S if and only if f has no inner divisor; that is, if f is a so-called outer function.

Another generalization of an arbitrary operator, which can be thought of as the direct
sum of Jordan cells, acting on C" to Hilbert spaces is to take the direct sum of many one-
by-one Jordan cells, instead of one large Jordan cell. This is a so-called diagonal operator.
More precisely, if H is a Hilbert space with an orthonormal basis {e,} and D : H — H is a
continuous linear operator, we say D is a diagonal operator with eigenvalues {)\,} C C
if D(e,) = Ae, for all n > 0. Hence, D is a diagonal operator if every basis element e,, is

an eigenvector for D. Thus, for diagonal operators some simple examples of closed invariant
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subspaces are the closed linear spans of arbitrary collections of eigenvectors V{e, : n € N}

where N C N. It may seem that these constitute the entire collection of closed invariant
subspaces of D. However, in 1921, Wolff presented an example showing this need not be
the case. As a result, the invariant subspaces and cyclic vectors of diagonal operators acting
on Hilbert spaces became an active area of research carried out by Wolff [47], Wermer [45],
Scroggs [40], Brown, Shields, and Zeller [§], Sarason [38], Nikol’skii [32] and [33], and Sibilev
[44], amongst others. One of the central open problems is to determine conditions for a
diagonal operator acting on a separable Hilbert space to have closed invariant subspaces
consisting only of spaces spanned by the eigenvectors they contain. Such operators are
said to be synthetic or to admit spectral synthesis, otherwise we say the operator is
non-synthetic. Wolft’s example demonstrated the existence of a non-synthetic diagonal
operator acting on the Hilbert space £2. The concept of spectral synthesis has been extended
to analogues of diagonal operators acting on spaces of functions analytic on regions in the
complex plane in the work of Deters, Marin, Seubert, and Wade ([11]-[13], [31], [41]-[43]).
However, it was not known whether or not there exist diagonal operators on such spaces
which fail spectral synthesis.

In this dissertation, we show that there exist non-synthetic diagonal operators acting on
spaces of functions analytic on the unit disk which fail spectral synthesis by constructing
examples analogous to Wolft’s 1921 example.

In the rest of this chapter, we discuss the known equivalent conditions for a diagonal
operator to admit spectral synthesis on a Hilbert space, the space of entire functions H(C),
and the space of functions analytic on the unit disk H (D). We also discus examples of
non-synthetic diagonal operators acting on a ¢2, as well as several known results that can be
used to test for synthesis.

In Chapter 2, we show the diagonal operator on H (D) with eigenvalues Z x iZ fails to
admit spectral synthesis.

In Chapter 3, we show the diagonal operator on H (D) with eigenvalues {n®e?™/b : ( <



j < b} for suitably chosen a € (0,1) and b € N, fails synthesis.

In Chapter 4, we give conditions for modifying (that is, adding, rearranging, deleting,
or perturbing) countably many eigenvalues of a non-synthetic operator acting on H (D) to
yield another non-synthetic operator. We illustrate these results using the examples of non-
synthetic operators obtained in Chapters 2 and 3.

In Chapter 5, we give a sufficient condition for a diagonal operator acting on the space of
entire functions to admit spectral synthesis. In particular, we strengthen a result of Leontev’s
[25] which asserts that if D is a diagonal operator acting on H(C) with eigenvalues {\,},
which satisfy {|\,|} is increasing and 0 < liminf,, . |A\,|/n < limsup,,_,. |An|/n < 0o, then
D admits spectral synthesis. We demonstrate that the condition liminf, . [A,|/n > 0 is
not necessary.

For the convenience of the reader, we include an appendix containing an overview of the
results from the theory of entire functions which are necessary in our results. All of the
information given can be found in the books of Boas [5], Levin [29] and [30], Holland [I§],

and Rubel [30], amongst others.

1.2 The Hilbert Space Case

In this section, we discuss the relevant background information regarding the spectral syn-
thesis of diagonal operators acting on a separable Hilbert space. In Section we have the
analogous discussion for the spectral synthesis of diagonal operators acting on the space of
entire functions, and in Section [I.6], we have the analogous discussion for diagonal operators
acting on the space of functions analytic on the unit disk.

Cyclic vectors and invariant subspaces of diagonal operators acting on a separable Hilbert
space have been studied extensively since at least 1921 by Wolff [47], Wermer [45], Scroggs
[40], Brown, Shields, and Zeller [§], Sarason [38] and [39], Nikol’skii [32] and [33], and Sibilev

[44], amongst others. The following theorem, extracted from these references, gives several
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equivalent conditions for a diagonal operator acting on a separable Hilbert space to admit

spectral synthesis.

Theorem 1.1. Let H be a separable complex Hilbert space and let D be any bounded linear
operator on H for which there exists an orthonormal basis {e,} for H and a sequence {\,} of
complex numbers for which De, = A\,e, for alln > 0. Then {\,} is bounded. Moreover, D

1s cyclic if and only if N\, # N\, for all m # n, and in this case, the following are equivalent:
(i) D admits spectral synthesis,
(i1) a vector x is cyclic for D if and only if (x,e,) # 0 for all n,

(iii) there does not exist a sequence {wy,} of complex numbers in €*, not all zero, for which

S swaAE =0 for all k > 0,

(iv) there does not exist a sequence {w,} of complex numbers in (*, not all zero, for which

the Wolff-Dengjoy series " -“2— = 0 for all z with |z| > sup |\,|,

n=0 z—\,

(v) there does not exist a sequence {w,} of complex numbers in (', not all zero, for which the
complex measure p = Y7 wplpr,} consisting of point masses at the A, with weights

wy, annihilates the polynomaials,

(vi) there does not exist a sequence {w,} of complex numbers in (', not all zero, for which

the exponential series Y oo, wye™

> =0 on the complex plane,
(vii) every closed invariant subspace for D is also invariant for the adjoint D* of D,

(viii) the weakly closed algebra generated by D and the identity is the commutant of D, and

(iz) there does not exist a bounded complex domain Q such that sup{|f(z)|:z € Q} =
sup {|f(2)| : z € QN { A, }} for all f bounded and analytic on €.

If, in addition, the X\, lie in the open unit disk and accumulate only on the unit circle, then

conditions (i)-(ix) are equivalent to
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(x) not almost every point of the unit circle is in the non-tangential cluster set of {\,},

and

(xi) the map T : H® — (>°(u) from the space of functions bounded and analytic on the open
unit disk to €>°(p), where =73 d\,} is the measure consisting of point masses at

the eigenvalues defined by T : f — {f(\,)}, is not an isometry.

The equivalent conditions given in the preceding theorem demonstrate the diverse nature
of spectral synthesis. Conditions (3), (it), (vii), and (viii) are all purely operator theoretic
statements involving invariant subspaces, cyclic vectors, adjoints, commutants, and the alge-
bra generated by D. Condition (i) is a combinatoric statement about moments. Conditions
(iv) and (vi) regard, in some sense, the linear independence of {1/(z — \,)} and {e**}, re-
spectively. Conditions (v) and (zi) are functional analytic statements about measures and
isometries. Conditions (iz) and (z) are purely geometrical statements about so-called dom-
inating sequences.

The equivalence of several of the diverse conditions in the preceding theorem can be
established easily. The combinatoric Condition (%) is easily seen to be equivalent to the
“linear independence” Condition (vi) by observing >"°7 jw, Ak = g*)(0) for all k > 0, where
9(2) =30°  w,e** € H(C) (and recalling, g(2) = 0 if and only if g (0) = 0 for all k > 0).
Similarly, Condition (%) is easily seen to be equivalent to the measure theoretic Condition
(v) by observing > > jw,A¥ = [ 2Fdu for all k > 0, where pp = >">7 w,d¢y,} is the measure
consisting of weighted point masses. The equivalence of several of the operator theoretic
conditions is discussed in further detail in Section [L.3l

The interpretations of several of the equivalent conditions for spectral synthesis given
in Theorem [1.1]| provide some insight into the behavior of the eigenvalues. For example,
Condition (iz) states that the operator fails to admit spectral synthesis if and only if the
sequence of eigenvalues {)\,} is a so-called dominating sequence; that is, D is non-synthetic
whenever the eigenvalues are “thick enough” to recapture the supremum of |f(z)| for any

function f bounded and analytic on some domain Q C {z € C: |z| < 1} = D. In view of the
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Maximum Modulus Principle, this condition requires that the points {\,,} be “thick enough”

near the boundary of Q for D to fail synthesis on H. Condition (iv) regards representing
the zero function as a Wolff-Denjoy series. Conditions for such representations to be unique,
when they exist, have been studied extensively by Borel [6], Beurling [4], and Sibilev [44].
Condition (vi), regards representing the zero function as an exponential series, which has
been studied extensively by Leontev [25]-[28] and Korobeinik [21]-[24].

It might seem reasonable to believe that each condition in the preceding theorem holds
for any diagonal operator. Surprisingly, this is not always the case. The first example of a
diagonal operator acting on a separable Hilbert space which failed to admit spectral synthesis
was given by Wolff in 1921. The details of the example can be found in [33] and [47], however,

due to its simplicity and elegance we include it here.

Example 1.1. Wolff’s Example

As usual, we let D = {z € C: |z| < 1} denote the open unit disk. Let {D; : j > 1} be any
collection of disks D; = {z € C : |z — \;| < r;}, which covers almost all of the entire unit
disk; that is, for which my(D \ U2, D;) = 0 where my denotes planar Lebesgue measure.

Then, for any z such that |z| > 1, we have

[ s
- 2] ()
-2 —;Z(TZ
=1 /Z e vardy
- _;;W [ eeiras

27 1
— / rdrdf
o Jo

) rdrdf




Moreover, we have

l/dmg()\) - 1/ dms(\)
™ Jp )\—Z N uD; )\—Z

- 5

(Ajr5)

- EES)
=35 St (2)

(Njsms) k=0

27 > N i0\k
— _;Z/O /0 Z—< jzkif ) rdrdf
0o o0 2m
— ——ZZZM/ / rdrdf

7j=1 k=0
00 OO)\k2

- Z Z Zk—i—l

pam =1
Hence,
o0 o0
X 2)
Equating the Laurent series coefficients, we have that Z =1and > 7 i1 ]2)\;“ = 0 for

all K > 1. Hence, {r7} € (', and if we define w; = 77); forj > 1, then 377, |w;| =
Yo ANl < X2t = Tand 302 wiAh = 30 r2AT = 0 for all k > 0. Hence, the

diagonal operator D having eigenvalues {\;} satisfies Condition (%ii) of Theorem and

thus fails spectral synthesis on £2.

Wolff’s example led the way for years of research in this area (that is, representing the
zero function by series of the form Z;’;O wj)\?) by many prominent mathematicians and has
been extended to sequences {\,} of distinct complex numbers which are not necessarily

bounded. The following four such examples appear on page 128 of Operators, Functions and
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Systems, I by Nikol’skii [32].

Example 1.2. Eztensions of Wolff’s Example

In 1936, Natason showed that for the sequence {\,} = {n}, there exists a sequence {wy,}
of complex numbers for which 0 < > w, ||\, | < 0o and Y 07w, AF = 0 for all k& > 0.
In 1959, Makarov generalized Natason’s example to include any sequence {\,} for which
|An| = co. In 1968, Markus showed that, for all sequences {\;} of distinct complex numbers
there exists a sequence {e;} such that Y > x| \;|" < oo for every n > 0, and for every
sequence {wy} satisfying |wy| < Ce for every k > 0, and Y - wg A} = 0 for every n > 0,
we have wy = 0. Hence, if the sequence {wy} decays quicker than {ex}, then the moments
Y reowkAR = 0 only when the coefficients are identically zero. In 1995, Sibilev showed that

for any decreasing sequence {e;} of positive numbers, the following are equivalent:

1. for all bounded sequences {\;} of distinct points and for all sequences {wy.} such that

lwi| < Cey for all k> 1, Y77 wiAp = 0 for all n > 0 implies wy, = 0 for all k£ > 0, and

2. 3 0 (1/k*) 1og (1/€;) = 0.

The purpose of this dissertation is to provide examples of cyclic diagonal operators acting
on the space of functions analytic on the unit disk H (D) which fail to admit spectral synthesis,
by providing analogues to Wolff’s example on ¢2. By definition, diagonal operators acting on
H (D), as well as on the space of entire functions H(C), have as eigenvectors the monomials
2™ with associated eigenvalues {\,}. We will see in these two settings that the existence of
a non-synthetic diagonal operator is equivalent to a moment condition > wp Ak =0 for
k > 0, where {w, } satisfies a certain decay rate. However, the exact nature of the decay rate
of {w,} versus the growth rate of {\,} is the essential ingredient that defines the condition
for non-synthesis on each space. In the following section, we preview the results that we
state in Sections and regarding conditions for non-synthesis on H(C) and H(DD), by
examining the analogues of the moment Condition (iii) of Theorem [1.1] Using these results

we deduce that Wolft’s example, as well as those of Natason and Makarov, do not yield
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examples of non-synthetic diagonal operators acting on spaces of functions analytic on a

region in the complex plane.

1.3 The Moment Condition

Let H denote a separable Hilbert space with an orthonormal basis {e,}. A vector z =
> o> o aney isin M if and only if {a, } € ¢2. If D is a linear map on M having e, as eigenvectors
with associated eigenvalues )\, then D is given formally by D : Y~ jane, — D> 0" Ap@ney.
In this case, D is a continuous linear operator on H if and only if {\,} € ¢, by the
Principle of Uniform Boundedness [9, page 95]. We define a diagonal operator acting
on H having eigenvalues {)\,} to be an operator D acting on H for which there exists a
sequence {\,} C C such that {\,} € £ and D(e,) = A\,e, for all n > 0.

A vector x = Y7 Jae, € H is non-cyclic for D if and only if there exists a non-zero
linear functional L, in the dual H* of H, such that L(D¥z) = 0 for all k¥ > 0, by the Hahn-
Banach Theorem [9] page 78]. If we define [,, = L(e,) and w,, = a,l, for all n > 0, we have
for non-cyclic x that 0 = L(DFz) = L(D*(3 07 g anen)) = L(O 02 yanAie,) = Y 07 jwaAE for
all k > 0. Observe this is Condition (%) of Theorem 1.1} which is equivalent to the diagonal
operator D acting on H failing spectral synthesis. Since {a,} € ¢* and {l,} € * (as {l,,}
corresponds to the linear functional L € H* = (%), we have {w, } € ¢*. We note this process
can be reversed; that is, given {w,} € (', we can factor w, = a,l, where {a,} € ¢* and
{I,} € 2

Hence the decay rate of the sequence {w,} in Condition (%ii) of Theorem |1.1| depends on
the space ‘H and its dual. As mentioned in Section , the moment condition 0 = >">7  w, AF,
will be satisfied if there exists a balance between the growth rate of {\,} and the decay rate
of {w,}, where the growth of {\,} reflects the continuity of D on H and the decay of
{wn} = {anl,} reflects the membership of x € H and L € H*. It is this balance that

distinguishes examples of non-synthetic diagonal operators acting on Hilbert spaces from
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examples of non-synthetic diagonal operators acting on spaces of functions analytic on a
region. In Sections and [1.6] we observe that the non-synthesis of diagonal operators on
H(C) and H (D) is equivalent to a moment condition 0 = > ' w, A" analogous to Condition
(7ii) for a diagonal operator acting on a Hilbert space being non-synthetic. The difference
in each setting will be the required decay rate of {w,}. Moreover, on a Hilbert space the
eigenvalues {\,} of a diagonal operator are bounded, while on both H(C) and H (D), the
eigenvalues can be unbounded.

Let H(C) denote the vector space of functions analytic on the entire complex plane C. A
function f(z) = >.0°, a,2" is in H(C) if and only if limsup,,_, . |a,|*™ = 0, by the Radius
of Convergence Formula. When endowed with the topology of uniform convergence on com-
pacta, H(C) is a complete locally convex topological vector space. The topology of H(C) is
induced by the invariant metric p(f, g) = > oo, [|f — gll./[2" (1 + || f — glls)], where ||h]|, =
sup {|h(2)] : |z| < n}. If D is a linear map on H(C) having the monomials 2™ as eigenvectors
with associated eigenvalues A, then D is given formally by D : >~ ja,z" — > "2 A\a,2".

1/n

In this case, D is a continuous linear operator on H(C) if and only if lim sup,,_, . |Aa|"" < o0,

by an application of the Closed Graph Theorem [31] Lemma 1]. We define a diagonal oper-
ator acting on H(C) having eigenvalues {),} to be any operator D acting on H(C) for
which there exists a sequence {)\,} C C such that limsup,,_,_ |\,|"/" < oo and D(2") = \, 2"
for all n > 0.

A vector f(z) € H(C) is non-cyclic for D if and only if there exists a non-zero linear
functional L, in the dual H*(C) of H(C), such that L(D*f) = 0 for all k > 0 (see [37, Rudin],
[29, Levin], or [19} Iyer]). If we define I, = L(z") and w,, = a,l, for all n > 0, we have for
non-cyclic f that 0 = L(D*f) = L(D*(3_07 janz™)) = L(3>_07 g anAE2™) = 307w, A for all

|1/n 1/n

k > 0. Since limsup,, ., |a,|"™ = 0 and limsup,,_, . |l,|"/" < oo (as {l,} corresponds to the

1/n — 0. For the moment condition

linear functional L € H*(C)), we have limsup,,_, . |wy|
0 =" w,AF to be satisfied, there must exist a balance between the growth rate of {\,}

and the decay rate of {w,}. The growth of {\,}, namely that limsup, . [\.|'/" < o0,
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reflects the continuity of the operator D on H(C), and the decay rate of {w,}, namely that

limsup,, .., |w.|''™ = 0, allows for {w,} to be factored into {a,l,} where {a,} is such that
limsup,, ,.. |a,|"/™ = 0 (which guarantees the corresponding vector is in H(C)), and {l,}
is such that limsup,,_,. |l,|"/" < oo (which guarantees the corresponding functional is in
H*(C)).

Let H(D) = H(B(0,1)) denote the vector space of functions analytic on the open
unit disk D = {z € C : |z|] < 1}. A function f(z) = Y~ a,2" is in H(D) if and
only if limsup,, .. |a,|"" < 1, by the Radius of Convergence Formula. When endowed
with the topology of uniform convergence on compacta, H(D) is a complete locally con-
vex topological vector space where the topology of H(D) is induced by the invariant metric
p(F,9) = S0 1 = glla/[2°(L+11f = glla)], where [[hlln = sup {|A(2)| : || < (1 — 1/n)}.
If D is a linear map on H (D) having the monomials 2" as eigenvectors with associated eigen-
values A, then D is given formally by D : > 7 ja,2" — > " A\a,2". In this case, D is a
continuous linear operator on H (D) if and only if limsup,, ,_ |A,|"/" < 1, by an application
of the Closed Graph Theorem [I2], Proposition 1]. We define a diagonal operator acting
on H(D) having eigenvalues {),} to be any operator D acting on H (D) for which there
exists a sequence {\,} C C such that limsup,_, |\.|"" < 1 and D(z") = \,2" for all
n > 0.

A vector f(z) € H(D) is non-cyclic for D if and only if there exists a non-zero lin-
ear functional L, in the dual H*(D) of H(D), such that L(D*f) = 0 for all & > 0 [37,
Rudin]. If we define [, = L(2") and w,, = a,l, for all n > 0, we have for non-cyclic f that
0= L(D*f) = L(D*(3°0 yanz™)) = L2 g anAiz) = 3727 Jw, AR for all k > 0. Since
limsup,, .. |a,|"/™ < 1and limsup,, . |I,|"/" < 1 [9, page 116], we have lim sup,, , . [w,|"/" <
1. For the moment condition 0 = Y7, w, A* to be satisfied, there must exist a balance be-
tween the growth rate of {\,} and the decay rate of {w, }. The growth of {\,}, namely that

1/n

limsup,,_,, |An]"/™ < 1, reflects the continuity of the operator D on H (D), and the decay

rate of {w,}, namely that limsup,, . |w,|"/™ < 1, allows for {w,} to be factored into {a,l,}
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where {a,} is such that limsup, . |a,|"/™ < 1 (which guarantees the corresponding vector
is in H(D)), and limsup,,_, ., |[I,|"/" < 1, (which guarantees the corresponding functional is
in H*(D)).

In Wolff’s Example 1.1, we saw that for certain sequences {\,}, there exist sequences
{w,} € ¢ such that >>7 jw,\f = 0 for all £ > 0. Thus, the diagonal operator acting on
a separable Hilbert space with eigenvalues {\,} fails to admit spectral synthesis. However,
Wolff’s sequence {w,} cannot be factored into the product of two sequences; one corre-
sponding to a vector in H(C) (or H(D)) and the other corresponding to a linear functional
in H*(C) (or H*(DD)) [44, Sibilev]. Hence, Wolff’s example does not yield a non-synthetic
operator on either of these spaces. This is also the case with the examples of Natason and

Makarov discussed in Example 1.2.

1.4 A Preview of the Main Results

The purpose of this document is to produce diagonal operators acting on the space of func-
tions analytic on the unit disk which fail to admit spectral synthesis. From the preceding
discussion, it is sufficient to find a sequence {\,} for which limsup,, .. [\,|"" < 1 and a
non-zero sequence {wy,} for which limsup,,_, . |w,|*™ < 1 and such that > °°  w,\f = 0 for
all £ > 0. We showed in Section , that the moment condition 0 = >"°7 w,A¥ is equiva-
lent to the condition 0 = >_>7  w,e** for all z. An analogous equivalence holds on H(D);
in particular, whenever {\,/n : n > 1} is bounded, the moment condition is equivalent to
Yoo wpe® = 0 for all z in a disk centered about the origin. In Chapter 2 of this disserta-
tion, we show that the diagonal operator having as eigenvalues Z x iZ = {m+in : m,n € Z}
fails synthesis on H (D). In Chapter 3, we show that diagonal operators having as eigenvalues
sequences of the form {n®e?™/® . 0 < j < b} for suitably chosen constants a € (0,1) and
b € N, fail synthesis on H(D).

In the remainder of this section, we outline briefly the technique, which is due to Ermenko,
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used to prove these results. Let D be a diagonal operator having as eigenvalues {\,}, either
Z x iZ or a set of the form {n%?/% . 0 < j < b} for suitably chosen constants a € (0, 1)
and b € N. In either case, inf {a: >~ 2, 1/|X\,|* < co} > 1, hence, any entire function S(\)
having simple zeros at A, has order p > 1 [5 Boas|. If follows that there exist constants
a, B > 0, for which [S()\)| > ae®” whenever A avoids a disjoint collection of balls B(\,, 7).
In view of which, by the Residue Theorem, Y o2 e*#/S"(\,) = lim, 00 Ie. (e} /S(A\))dX =0
for appropriately chosen contours C, which avoid the balls B(A,,r,). It follows from the
Inverse Function Theorem [I5, Gamelin] and Schwarz’ Lemma that limsup,, ., |w,|"/" < 1
where w,, = 1/5'()\,,). Hence, 0 = "> w,e** for all z near the origin, and by the discussion

in Section D fails to admit spectral synthesis on H (D).

1.5 The Case H(C)-The Space of Entire Functions

In this section, we discuss the relevant background information regarding the spectral syn-
thesis of diagonal operators acting on the space of entire functions H(C). In particular, we
state the analogue of Theorem that is, we provide equivalent conditions for diagonal
operators acting on H(C) to admit spectral synthesis.

Cyclic vectors, invariant subspaces, and the spectral synthesis of diagonal operators acting
on the space of entire functions H(C) have been studied by Deters, Marin, and Seubert ([13],
[31], and [41]). As mentioned before, a diagonal operator on a Hilbert space is cyclic if and
only if the eigenvalues are distinct. The same results holds in H(C) as is stated in the
following proposition [31, Proposition 3]. We also state a result giving equivalent conditions

for a vector in H(C) to be cyclic for a diagonal operator D [31, Proposition 2].

Proposition 1.1. Let D be a diagonal operator on H(C) having eigenvalues {\,}. Then D

is cyclic if and only if A\, # A\, whenever m # n.

Proposition 1.2. Let D be a diagonal operator on H(C) having eigenvalues {\,} and let

f(z) =20y anz" be any entire function. The following are equivalent:
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(i) f fails to be cyclic for D,

(i) the closed linear span of the orbit {>°7  a,\fz" : k > 0} of f under D is not all of
H(C), and

|1/n

(111) there exists a sequence {l,} of complex numbers, not all zero, for which sup |l,|'/™ < oo

and 0= 5" l,a, N5 for all k > 0.

As in Theorem for a Hilbert space, several equivalent conditions (most of which are
analogues to the conditions on a Hilbert space) for a diagonal operator acting on H(C) to

admit spectral synthesis have been obtained in [31], as the following theorem demonstrates.

Theorem 1.2. Let D be any cyclic diagonal operator on H(C) having distinct eigenvalues

{A\n}. Then the following are equivalent:
(i) D admits spectral synthesis,

(i1) every closed invariant subspace of D is the closed linear span of {z" : n € N} where N

is an arbitrary set of nonnegative integers,
(i) for every function f(z) = > 0" a,z" in H(C), span{D?f : j > 0} = span{z" : a, # 0},
(iv) every entire function f(z) =Y " a,2z" with a, # 0 for alln > 0 is cyclic for D,

(v) there do not exist sequences {a,} and {l,,} of complex numbers with a, # 0 for all

1/n

n >0, limsup,_,.. |a,|"/" = 0, sup |[I,|'/" < oo, and {l,,} not identically zero, such that

0= anl, AL for all k >0, and

(vi) there does not exist a sequence {wy} of complex numbers, not identically zero, for which

lim sup,,_, o0 [wa| Y™ =0 and 0 = 307w, AL for all k > 0.

If, in addition, {\,/n : n > 1} is bounded, then Y > d,e** is entire whenever limsup,,_, . |d,|

0 and conditions (i)-(vi) are equivalent to

1/n _



17

(vii) there does not exist a sequence {w,} of complex numbers, not identically zero, for which

lim sup,,_,o |wn|Y™ =0 and 0 = 327 jw,e** for all z in C.

The diverse equivalent conditions for spectral synthesis given in the preceding theorem
provide interesting and enlightening information about the eigenvalues. Many of the condi-
tions are almost identical to the conditions of Theorem for a Hilbert space, which were
discussed in detail following the theorem in Section[1.2] For example, Condition (iv) is anal-
ogous to Condition (i) of Theorem [I.1, Condition (vi) to Condition (7ii) of Theorem [1.1]
and Condition (vii) is analogous to Condition (vi) of Theorem [I.1] However, we note that
there are no analogous statements to Conditions (vii) and (viii), for example, of Theorem
in Theorem [1.2] as we do not know how to precisely define the adjoint of an operator on
H(C). The discussion in Section [1.3| shows the equivalence of Conditions (v) and (vi). We
discuss the equivalences of several of the other conditions briefly here. Conditions (i) and
(i1) are equivalent as Condition (ii) is the definition of spectral synthesis since a diagonal
operator acting on H(C) has the monomials 2" as eigenvectors. By this same reasoning it is
clear that Condition (%) is equivalent to Conditions (i) and (iv).

The first example of a diagonal operator acting on H(C) which fails to admit spectral
synthesis was produced by Henthorn in [16] where it is shown that if D is a cyclic diagonal
operator on H(C) having eigenvalues {\,} such that limsup,,_,. [A\n/Ans1]| < 1, that is, if
{A\n} grows exponentially, then D fails synthesis on H(C). Whether any such example exists
on the space of functions analytic on the unit disk remained an open problem, which we

address in this document.

1.6 The Case H(D)-The Space of Functions Analytic on

the Disk

In this section, we discuss the relevant background information regarding the spectral syn-

thesis of diagonal operators acting on the space of functions analytic on the unit disk H(ID).
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In particular, we state the analogue of Theorems 1.1 and [I.2] which provide equivalent con-

ditions for diagonal operators acting on H and H(C) to admit spectral synthesis, to diagonal
operators acting on H (D).

In this document, we study operators acting on H (D), however, we need not limit our-
selves to the unit disk. If we let H(B(0, R)) denote the space of functions analytic on the
disk {z € C : |z| < R}, then >°° ja,z" € H(B(0, R)) if and only if limsup,,_, |a,|'/" <
1/R. A linear map D with eigenvalues {\,} is continuous on this space if and only if
lim sup,, ,.. |An|"" < 1 [12, Proposition 1]. In view of which, for the purposes of our study,
we can translate all definitions and results on H(D) to H(B(0, R)). Hence, for simplicity,
we will study operators acting on H(ID).

Cyclic vectors, invariant subspaces, and the spectral synthesis of diagonal operators acting
on the space of functions analytic on the unit disk H (D) have been studied be Deters, Seubert,
and Wade ([I1], [12], and [42]). We begin, as we did with H(C), by stating results about
the cyclicity of diagonal operators on H(ID) and conditions for vectors in H(D) to be cyclic

for a diagonal operator D [12, Theorem 1 and Lemma 1].

Proposition 1.3. Let D be a diagonal operator on H (D) having eigenvalues {\,}. Then D

is cyclic if and only if N\, # A\ whenever m # n.
Proposition 1.4. Let D be a diagonal operator on H(D) having eigenvalues {\,} and let
f(z) =220y anz" be any function in H(D). The following are equivalent:

(i) f fails to be cyclic for D,

(ii) the closed linear span of the orbit {> o ja,\f2" : k > 0} of f under D is not all of
H(D), and

(i4i) there exists a sequence {l,,} of complex numbers, not all zero, for which sup |l,|"/™ < 1
and 0= 5" l,a, N5 for all k > 0.

In [I1I] and [I2] Deters and Seubert present an analogous result to Theorems and

1.2| giving equivalent conditions for a diagonal operator acting on H (D) to admit spectral
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synthesis. Many of the conditions are similar to those on Hilbert spaces and H(C), as the

following theorem demonstrates.

Theorem 1.3. Let D be any cyclic diagonal operator on H(D) having distinct eigenvalues

{\n.}. Then the following are equivalent:

(i) D admits spectral synthesis,

(i1) every closed invariant subspace of D is the closed linear span of {z" : n € N} where N

is an arbitrary set of nonnegative integers,

(i1i) every closed invariant subspace for D (other than the empty set and {0}) contains at

least one monomial 2™ for some n > 0,
(iv) every function f(z) =Y a,2z" in H(D) with a, # 0 for alln >0 is cyclic for D,

(v) there does not exist a sequence {wy,} of complex numbers, not identically zero, for which

lim sup,,_,o |wn|Y™ < 1 and 0 = 307w, AE for all k > 0,

(vi) the function u(z) = T is cyclic for D,

(vii) for each j > 0 there is some sequence {p,} of polynomials such that lim, . pp(Ax) =

85 and limsup,, .. sup,s; [pn(Ae)|[Y* < 1, and

(viii) if A is the algebra generated by D and the identity, that is, A =V{D" :n > 0}, and
we let D denote the set of diagonal operators on H(D), then in the Strong Operator
Topology, A = D.

If, in addition, {\,/n : n > 1} is bounded, then Y - wne™* is analytic on the open ball
B(0,€) containing the origin whenever {w,} is a sequence of complex numbers for which
lim sup,, ., |wa|'/™ < 1 where € = [In (1/lim sup |w,|*/™)]/[sup {|\a|/n}]. In this case, condi-

tions (i)-(viii) are equivalent to

(iz) there does not exist a sequence {wy,} of complex numbers, not identically zero, for which

lim Sup,, o0 [walY™ < 1 and 0 = 350 w,e?* for all z in the open ball B(0,¢).
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Most of the conditions given in the preceding theorem are nearly identical to the condi-
tions in Theorems and with the necessary changes on the decay rate of {w,} made,
as discussed in Section We remark on a few of the other conditions. Condition (vi)
states that we need only check the cyclicity of one function, u(z); if it is cyclic for D, then all
of the closed invariant subspaces are known, but if not, then there is some closed invariant
subspace that is not the closure of the span of some set of monomials. Condition (vii) gives
a computational approach to checking synthesis by examining the growth of polynomials.

In this dissertation, as outlined in Section [1.4) we prove that non-synthetic diagonal
operators acting on H (D) do exist. More precisely, we use Condition (iz) of Theorem
to show the diagonal operator with the integer lattice points Z x iZ as eigenvalues fails to
admit spectral synthesis on H(D). In Chapter 3, we expand upon this example to generate

an entire class of non-synthetic diagonal operators acting on H (D).

1.7 Testable Conditions for Synthesis

In the preceding sections, lists of equivalent conditions for a diagonal operator acting on
H(C) or H(D) to admit spectral synthesis were given in Theorems and [1.3] However,
most of the conditions, although sufficient for synthesis, are not convenient for determining
if a given diagonal operator is synthetic. On both of these spaces a handful of results which
are often more useful to determine if an operator is synthetic are known and are stated in
this section.

Recall that on a Hilbert space a diagonal operator is cyclic if and only if its eigenvalues
are bounded. The following result states that if the eigenvalues of a diagonal operator acting

on H(C) or H(D) are bounded, then the operator is synthetic.

Theorem 1.4. (see [31)], [12]) Every cyclic diagonal operator D on H(C) (or on H(D))

whose eigenvalues {\,} are bounded admits spectral synthesis.

It follows from this theorem that there exist cyclic diagonal operators acting on H(C) and
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H (D) admitting spectral synthesis, the closure of whose eigenvalues {\,} have non-empty
interior. This is not the case for diagonal operators acting on a separable Hilbert space [40),
Scroggs].

The following theorem asserts that diagonal operators with eigenvalues {\,} = {n?} for
p < 1 are synthetic on H(C) and H (D). Moreover, unlike the Hilbert space case, it asserts

that it is possible for a synthetic operator to have unbounded eigenvalues.

Theorem 1.5. (see [31)], [12]) Let D be a diagonal operator on H(C) or H(D) having
eigenvalues {\,}. If {\o/n : n > 1} is bounded and the real parts of the N\, are strictly

increasing, then D admats spectral synthesis.

If we instead assert that the eigenvalues lie in a half-plane and satisfy a certain growth
rate, namely that {u,,/n : n > 1} is bounded, then the diagonal operator D with eigenvalues
{1} is synthetic on H(C), thus strengthening Theorem [I.5| As an example the diagonal

operator D having eigenvalues {£n} admits synthesis on H(C).

Theorem 1.6. (see [{1]) Let D be any cyclic diagonal operator having eigenvalues {ji,}
which lie in any half-plane and are such that {p,/n : n > 1} is bounded. Then D admits

spectral synthesis on H(C).

The results in this dissertation suggest that, unlike the previous results, the synthesis of a
diagonal operator not only depends on the growth rate of the eigenvalues, but also on their
distribution in the complex plane. More specifically, we observe that a diagonal operator
with eigenvalues {\/n} is synthetic, but a diagonal operator having as eigenvalues six copies
of \/n placed symmetrically on six rays e™/3, where 0 < j < 6, fails to admit spectral
synthesis on H (D).

The next four theorems involve diagonal operators failing to admit spectral synthesis on
H(C) and H(D). On a Hilbert space analogous results are given in the paper of Brown,

Shields and Zeller [8], where the coefficients {7, } are only required to be in ¢'.
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Theorem 1.7. (see [{1)]) Let D be a cyclic diagonal operator on H(C) having eigenvalues
{A\n} for which {\,/n : n > 1} is bounded. Then D fails spectral synthesis if and only if
for each complex number X\ in ma} the complement of the closure of {\,}, there exists
a sequence {v,} of complex numbers, not identically zero, for which limsup,, . [V.|*™ = 0

and e = 3" e for all complex numbers z.

Theorem 1.8. (see [{2]) Let D be a cyclic diagonal operator on H(D) with eigenval-
ues {\,} such that {\,/n : n > 1} is bounded. If D fails spectral synthesis and X is
mn mc} the complement of the closure of the eigenvalues of D, then there exist coef-
ficients {v,} for which limsup,,_, [v.|"" < 1 and e** = Y20 y.e** on B(0,€) where
e = [In (1/ limsup |7,|™)]/[sup {|A.|/n}]. Conversely, if e’ = S°°°  v,e** on some non-
empty open disc B(0,r) where A # A\, for alln > 0 and limsup,,_,._ |y.|"/" < 1, then D fails

spectral synthesis.

Theorem [1.7] is an extension of Theorem [1.2} that is, by Condition (vii) of Theorem
D fails to admit spectral synthesis if and only if the zero function can be represented as a
Dirichlet series >~ wper?, while Theorem states that we can represent various expo-
nential functions e** as Dirichlet series. Theorem is the analogue on H(ID) of Theorem
on H(C), however, it is somewhat less satisfying as it only concludes the representation
holds on some neighborhood B(0,¢€) of the origin as opposed to holding on all of C or on
D. Regardless, it is still an extension of Theorem in the same way Theorem extends
Theorem [1.2]

The following results are applications of the work of Leontev and Korobeinik [21]-[28]
concerning the possibility of representing analytic functions as generalized Dirichlet series
>, ane* on certain regions. Korobeinik has shown that under the condition Inn/\, —
0, a generalized Dirichlet series Y >° c,e’* converges on a domain Qp if and only if
limsup,,_,, (In|c,|/|A\a] + h(arg A,)) < 0, where h(6) denotes the indicator function. More-
over, he has shown that every function f(z) analytic on {2p can be expressed as f(z) =

> o2 ycne™® if and only if the zero function can be represented as such a series with the
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{c,} not identically zero. Leontev and Korobeinik give numerous conditions for the zero
function to be written as a generalized Dirichlet series. The following two theorems assert
that if D is a cyclic diagonal operator acting on H(C) or H(ID), respectively, then under
certain conditions, every function analytic on a particular region 25 associated with D is

representable as a generalized Dirichlet series on (2p.

Theorem 1.9. (see [[1)]) Let D be a cyclic diagonal operator on H(C) having eigenvalues
{A\n :n > 0} which fails spectral synthesis. Suppose that there exists an entire function g of
exponential type, not identically zero, for which g(\,) = 0 for alln > 0, and denote by Qp the
interior of the convex compact set having supporting function hy(—6). If {\,/n :n > 1} is
bounded, then every function f(z) analytic on Qp is representable as a generalized Dirichlet
series Y oo bpe*® in the sense that the series Y .o, bye* converges uniformly to f(z) on

every compact subset of Qp.

Theorem 1.10. (see [{2]) Let D be a cyclic diagonal operator on H(D) failing spectral
synthesis whose eigenvalues {\, : n > 0} are such that {\,} # C and {\,/n : n > 1} is
bounded, and let {w,} be any nontrivial sequence for which 0 = > 7w A8 for all k > 0
and limsup,, . |wa|"/™ < 1. Define 7 to be the supremum of the radii of all open balls
contained in mc' Then for every entire function f of exponential type less than T, there
exists a sequence {b,} of complex numbers for which f(z) = > o7 b,e** on B(0,¢€) where

lim sup,, ., |6/ = limsup,, . |wa|"/™ < 1 and e = [In (1/limsup |,[*/™)]/[sup {| \n|/n}].

These results are analogous to a result [8, Theorem 3] of Brown, Shields and Zeller for
diagonal operators acting on a Hilbert space H, which asserts D fails spectral synthesis on
H if and only if every entire function f(z) can be represented as f(z) = > o b,e** where
> o lbn] < 0o. On H(C) and H(D) the preceding results require that {\,/n : n > 1} is
bounded and m # C; however, the latter condition is not required for a Hilbert space
H. On H(C) and H(D) we can represent any entire function f(z) of order at most one and

type less than the supremum of the radii of the largest ball contained in the complement
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of the closure of the \,, as Y oo b,e* for some {b,}, while on H we can represent any
entire function of order at most one regardless of its type in this way. On H and H(C)
the representation f(z) = > 7 b,2" holds on C, while on H(D) it only holds on some ball
containing the origin.

The following two theorems give sufficient conditions for a diagonal operator acting on
H(C) to admit spectral synthesis in terms of the growth of the eigenvalues. These results,

unlike the previous ones, do not require the condition {\,/n : n > 1} is bounded.

Theorem 1.11. (see [153]) Let D be a cyclic diagonal operator on H(C) having eigenval-
ues {\,}. If for each j > 0, there exists a sequence {p,(2)} of polynomials for which
limy, o0 Pu(Ak) = 654 and sup {|p.(\)|V* 1 k > 0,n > 1} < oo, then D admits spectral syn-

thesis.

This theorem yields several results, the following states that if there exists a non-trivial
entire function of order p with zeros at the eigenvalues {\,} and sup {|\,|’/n:n > 1} < o0

then D admits spectral synthesis.

Theorem 1.12. (see [15]) Let D be a cyclic diagonal operator on H(C) having eigenvalues
{\n.}. If there exists a non-trivial entire function E(z) of order p and finite type T with

E(\,) =0 for alln >0 and sup {|\g|?/k : k > 1} < oo, then D admits spectral synthesis.

The preceding theorem follows from Theorem by defining the sequence of polynomials
as follows. Let m; denote the order of the zero A; of E(z) for all j > 0, then the function
Ej(z) = E(2)/[(z — \))™ME™I)(\))] = Yoo, ax2® satisfies E;j(\y) = 6;,, for all j,k > 0.
Hence, defining p,(z) = >_,_, axz" gives a sequence of polynomials satisfying the hypotheses
of Theorem [L.T1]

From Theorems and [L.12] we observe that if the eigenvalues of a diagonal operator D
can be expressed as A, = p(n) where p(z) is a polynomial, then D admits spectral synthesis
on H(C). In particular, we conclude that diagonal operators acting on H(C) having as

eigenvalues {n?} are synthetic for any positive integer q. The previous theorems and their



25

consequences improve upon the other results mentioned in this section as they do not require
the condition {\,/n :n > 1} is bounded.

In Chapter 5, we prove another result which gives sufficient conditions for a diagonal
operator on H(C) to admit spectral synthesis. More precisely, we prove that if {\,} is
such that {\,/n : n > 1} is bounded and n(r) = O(r), then the diagonal operator with

eigenvalues {\,} is synthetic on H(C).
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CHAPTER 2

A Non-synthetic Operator on the
Space of Functions Analytic on the
Unit Disk

Wolft’s Example 1.1, gave the first example of a non-synthetic diagonal operator acting on a
separable Hilbert space H. In particular, Wolff showed that for certain bounded sequences
{A\n} of distinct complex numbers there exist sequences {w,} in ¢1, not identically zero, such
that Y o2 w,AF =0 for all £ > 0. By Condition (i) of Theorem such examples yield
non-synthetic diagonal operators acting on 2. Henthorn, in her dissertation [16], proves
that if D is a cyclic diagonal operator acting on H(C) having eigenvalues {\,} such that
lim sup,,_,o. |[An/An+1] < 1, then D fails to admit spectral synthesis, hence giving examples
of non-synthetic diagonal operators acting on H(C). In this Chapter, we obtain an example
of a diagonal operator acting on H (D) which fails to admit spectral synthesis.

If D is a non-synthetic diagonal operator acting on H(C) having as eigenvalues {\,, }, then
by Condition (vi) of Theorem [I.2] there exists a sequence {w,}, not identically zero, such
that lim sup,,_, . [wa|™ = 0 and 0%, w, Ak = 0 for all & > 0. Moreover, if it is also the case

that limsup,,_, . [A\n|"/" < 1, then by Condition (iz) of Theorem , D is also non-synthetic
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when viewed as an operator acting on H (D). Whether there exist diagonal operators which
fail spectral synthesis when viewed as acting on H (D), but admit spectral synthesis when
viewed as acting on H(C) remained an open question, which we answer affirmatively in this
dissertation.

Throughout this chapter, we let D be the cyclic diagonal operator with eigenvalues at
the integer lattice points Z x iZ = {m + in : m,n € Z}, and prove that D is non-synthetic
on H(D) but synthetic on H(C). We let S; denote the square with vertices (j + ij) and
+i(j + ij), for all j > 0, and define {\;} to be the enumeration of Z x iZ defined by
beginning on the positive real line and moving counterclockwise around larger and larger
squares S;; thus, \g =0; Ay =1, o =144 Ag =05 M= =1+ As = —1; \g = =1 — 45
A= —i; Adg =1 —1; Ag = 2;...M04 = 2 —i; A\o5 = 3... To show D, having eigenvalues {\;}, is
non-synthetic on H(ID) we follow the outline given in Section [1.4] In fact, we show that the
sequence {wg} = {1/5 (M)}, where S(z) is an entire function with zeros only at the points
of {\} (all of which are simple), satisfies Condition (iz) of Theorem [1.3} In Section 2.1, we
collect information on Weierstrass o-functions which we use in Section 2.2, to determine the

growth rate of the entire function S, and its derivative.

2.1 Weierstrass o-functions

In this section, we define an entire function S having zeros at the integer lattice points Z x iZ
by means of a canonical product and outline the necessary background information, details
of which can be found in Whittaker and Watson [50, Chapter XX], to determine the growth
rate of S and its derivative S’, computations which appear in the following section. The
function S is used to show that the diagonal operator D on H(ID) having as eigenvalues the
integer lattice points Z X iZ is non-synthetic.

Throughout this section, we use the symbol me to denote the summation over all

integer values of m and n and the symbol Z,mn to denote the same sum except omitting
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the single term m = 0 = n. Similarly, we use the symbol II,,, to denote the product
over all integer values of m and n and the symbol H’mm to denote the same product except
omitting the single term m = 0 = n. If w; and wy are two complex numbers for which ws /wy

has positive imaginary part, then we define the so-called Weierstrass p-function by p(z) =

L+ Zmn < 1 - 1 > The series for this elliptic function converges

—(2w1m—+2wan))? (2w1m+2wan)?

absolutely and uniformly on any compact set omitting its poles {2wym + 2won : m,n € Z}.

Rearranging the terms in the product for p(z), we see that (z) is an even function, since

1 , 1 _ 1
@(_Z> - m ™ mz,n ((—Z — 2wim — ngn)z (2w1m + 2(«02”)2)

Loy 1 1
T 22 “—~ \ (24 2wim + 2wpn)*  (2wim + 2won)?

By a similar argument, we see that the derivative of p(z)

2 —2
/ /
= — g —2
©'(2) 23 + Z (z — 2wim — 2wyn)? Z (z — 2wym — 2wyn)?

m,n m,n

is an odd function, since

/
_ - _9
o(=2) Z —z - 2w1m 2won)?

1
= 2
Z (z + 2wym + 2wsen )?

m,n

= —¢'(2).

Since the poles of ¢/(z) form a lattice, one might suspect that p(z) periodic. In fact,
using the formula for ©'(z), we see that p(z+2w;) = p(2) (the constant of integration is seen
to be zero upon letting z = —w; and recalling that p(z) is even). The analogous argument

shows that p(z) also has period 2ws.
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For the purposes of this dissertation, we consider the integer lattice Z x iZ obtained upon

setting w; = 1/2 and wy = /2. In this case, the associated p-function is defined by p(z) =

L+ Zmn ( = m+m))2 — 1 1 ) The unique function ¢ for which £((z) = —p(z) and

m+in)?
lim, 0 {¢(z) — 1} = 0 is given by ((z) = 1 + Zmn (Z i T — (mjm)Q). It follows
that ¢ is an odd function. Since p(z+1) = p(z) and p(z+1i) = p(z) and £((z) = —p(z), we

see, upon integrating, that ((z 4+ 1) = {(2) + 2, and ((z + 1) = ((z) + 212, where 1y, 17, are
constants of integration. In view of which, ((z+m) = ((z)+2mn; and {(z+in) = ((2)+2nn,
for m,n € Z; the so-called quasi-periodicity of ((z). Letting z = —3 yields 7y = C(%), and
letting z = —% yields 1, = ((3).

In [46], relationships between the two constants of integration 7; and 7 are established for
general lattices of periods 2w; and 2ws. For example, integrating ((z) around a parallelogram
P whose sides avoid the poles of ((z), and applying the Residue Theorem, yields nyws—now; =

mi/2 [46) 20.411, page 446]. For w; = 1 and wy = £ we have
i — N2 = .
Moreover,

m = ((iz) .
- é+gl(iz—(7}1+in)+miin+(mfm)Q)
— ——+Z ( n—zm)+n—_lim+(”:2;)2)
1 z
B < +Z < m+m)+m+m+(m+m)2)>

= —id(2)

= —2772

Combining these two relationships yields n; = 7 and 7o = —*F
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The unique entire function S(z) for which < log S(z) = ((z) and lim,_, @ = 11is given

by

¥ 2 2 /932
S _ 1 . z/(m+zn)+z /2(m+in)? 1— z2/Ap+27 [2)7.
—c H m+ zn) U ¢ ’

a so-called Weierstrass o-function. Since Zlmn (1/|m +in|?) < oo, S is a canonical
product having zeros only at the points of Z x iZ (all of which are simple). In the following

section, we determine the growth rate of S and its derivative S’.

2.2 The Growth Rate of S(z) and 5'(z)

In this section, we determine the growth rate of the function S defined in the previous section
and its derivative S’. Although many of the computations detailed in this section can be
found, for example in [34] and [29], we include them for the sake of completeness. Before we
begin the computations to find the growth rate of S(z) = z H;nn (1— =)/ (metin)+2%/2(m+in)?

we discuss two inequalities and a technical lemma. For z € B(0,1/2), it can be shown that
1 3
12l < llog (14 2)| < 22l (2.)
by examining the power series expansion of log (1 + z) about z = 0 [10, Conway, page 165].
In our computations we invoke the following inequality.
Lemma 2.1. For z € B(0,1), |(1 — 2)e*| > 1 — |z|2.

Proof. Write z = re?, where 0 < r < 1 and 0 < § < 27. Note for any » > 0, we have
e =3y r"/nl >1+r. Hence,

0

(1 —re®)e™”| = |(1 —r(cosf+ ising))||erlcosd+ising)

= |(1—7cosh) —irsinf|e s’

= "% /(1 —rcos)? + (—rsinh)?



31

= €"°%9\/1 — 2rcosf + r2

> min  €"°%%\/1 — 2rcos ¢ + r2
 {¢el0,2n]} \/ ¢

= €"°0%/1 — 2rcos0 + 12

= €1 —r)?

= (1—r)

and so, |(1 — 2)e?| > 1 — |z|% O

Recall that {\;} is the enumeration of the integer lattice points Z X iZ defined in the
introduction to this chapter. The following technical lemma gives bounds on the index and

the modulus of the eigenvalues lying on the squares S;, where j € {0,1,2,...}.

Lemma 2.2. If \,, € {\} lies on the square S;, then j < |\n| < /25 and (25 —1)2 <m <

4(5% + J)-

Proof. For any \,, € S;, the smallest value of |\,,| occurs when \,, = j, and the largest

value of |\,,| occurs when A, = j + ij. Thus,
3 =13l < Al <1 +id] = V25

There are 85 points from {\;} on the square S;. Hence, the smallest value for m such that

/\mGSj is
j—1
m=1+Y 8i=1+4j(j—1)=(2j— 1)

1=0
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The largest value for m such that A, € S; is

J
m= 8 =4j(j+1) =4(;*+ ).
=1

Hence, for A, € S;, we have

m < 4(5% + j).

]

In the following proposition, a type of periodicity of S is established using the quasi-

periodicity of ¢ which was discussed in Section 2.1.

Proposition 2.1. For any z € C and any m + in € Z x iZ, we have |S(z)| = |S(z — (m +

m)) ’ |e7r[(z—(m+in))(m—in)+(m2+n2)/2] ’ ]

Proof. Using the quasi-periodicity of ((z) we can integrate the equation ((z + m + in) =

((z4+m)—inm = ((z) + mm —in7 to obtain log S(z + m + in) = log S(2) + (mm —inm)z +c,

whence, S(z +m + in) = eleSEHmr—inmzte — G(z)em(m=in)zte Tetting z = —1m — Ln, we
have S(—Z—2+4m+in) = S(—2—2)erm=m)(=m/2=(n/2)+c_Gince S(z) is an odd function,
we have §(I i) = —§(m 4 i) or(m—in) (—(m/2)~(in/D) e Hemee 1 = —¢mmmin)(—(m/2=(in/2) e
and therefore e¢ = —em(m—in)((m/2)+(in/2)) — _ om((m?/2)+(imn/2)—(imn/2)+(n?/2)) — _ om((m?+n?)/2)
Thus S(z +m + in) = S(z)emm—imztn((m*+1°)/2) "o equivalently, S(z) = —S(z — (m +
in))em((z=(mtin)(m—in)+(m*+n%)/2) " The result follows. O

In the following proposition, we find a lower bound for |S(z)| for z near the origin.

Proposition 2.2. Whenever || < 2=, |5(2)| > |z|le~*!" where ¢ =3Y, !

Vol mn (m24n?)2°

Proof. Observe

H/ 1~ o#/ (mtin) ,2%/(2(m+in)2)
m—+n
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_ H /(1 7 )ez/(m+in)€z2/(2(m+in)2) <1 _ ? )6z/(—m—in)€z2/(2(m+in)2)

m—+in —m —1n

% H (1 __ = . )ez/(mm)ez2/(2(mm)2) (1 _ ;) o/ (mmtin) 22/ (2(=m-tin)2)
m—n —m +1n

m,n>0

() (1 )t
e m—+n m+n

< I (1 oz ) (1 L c )ez2/<<m—z'n>2>
Rt m—in m—in

z 2 z 2

- 11 l(- < | > ete/mem | T | (1 - ( | ) e/ (m—in))? |

m,n>0 ™+ n m,n>0 moean
Note |(—%-)% = \m!ifm? < (1/\1/5)2 = 1, since it must be the case that at least one of m and

n is nonzero. Applying the inequality from Lemma [2.1] gives

2 2

S(z) , z 2 z 2
> [ (1~ : IT (1- ,
& m,n>0 m+n m,n>0 mem
= |t z
= 11— 1- .
m];[>0 ( ’m—i—m >m1;[>0< m—in )
Observe the largest (1 — |=|*) can be is 1 which occurs when z = 0. When 2 is such that

0 < |z| < 1/4/2, the quantity (1 — | =5 |*) is at most 3/4 which occurs when either m = 1

and n = 0, or m = 0 and n = 1; for all other possibilities of m and n, the quantity is smaller.

Hence, |S(2)/z| <1 for all z € B(0,1/v/2). Therefore,

!
Z elOg HnL,nZO (1_| miin |4)610g H’m,n>0 (1_‘ mfzn ‘4)

‘S(z)

z

/
= GZm,T’«ZO lOg (17‘ miin |4)ezm,’n>0 log (17| mjzn ‘4) .

Moreover, since | —= {4 <1 by 1} we have that log (1 — |—==|*) = —|log (1 — |-Z=|")| >

m+in
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3=
5|—=—]", and so,
3
S(Z) > BZm,"ZO - |m+zn 4€Zm,n>0 _§|mfin‘4
. >
3 ! 1
_ €*§|z|4Zm n>0 We 1D DR Tmin®
7
S 11 DR m(f%‘zﬁ Eonn>0 T2
!
> 673|Z|4Zm,nzom
_ el
! s
where c = 3% -, W < 3? = 7*. Thus, we have a lower bound on | )| whenever
2] < %. O
— V2

We use Proposition [2.2] to find a bound on |S(z)| for all z € C.

Proposition 2.3. For z € C, we have |S(2)| > |z — (m/ + in')|e~ /D= Ve/21P yhere

m' +in' € Z X iZ is such that |z — (m' +in')| = inf {|z — (m +in)| : m,n € Z}.

Proof. Since |z — (m/ +in')| < \%, by Propositions 2.1 and W, we have that

15(2)] = [S(z — (m + in'))||emlE— '+ Dm =i )+ ((m=+n%) /2)])

> |Z - (m/ + Z-nl)lefc|z7(m’+zn | w[(z—(m/+in ))(m/fin/)+((m/2+n’2)/2)}"

Writing z = x + iy, we have that

|eﬂ((z—(m’ﬂ'n’))(m/—in/)+((m/2+n’2)/2))| - |eﬂ(((r—m’)+i(y—n/))(m’—in’)+((m’2+n/2)/2))|

_ eRe[w(xm’—m'Q —izn’ im/n’ diym’ +yn’ —im'n’ —n'24+(m’2 /2)+(n'2/2))]
—  pRelr(@m/+yn'—(m"2/2)—(n" /2)+i(—zn/+ym))]
—  pr(am/+yn’—((m?4n'?)/2))

6(71'/2) (2zm/—m/2+2yn’ —n'?2)

= 6(”/2) (22 +y?— (22 —2xm’+m? +y% —2yn’'+n'2))
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— /2@y = ((z—m")?+(y—n")%))

—  om/2)(2°=[z=(m/+in)|?)
> e(™/2)(|12=(1/v2)?)

_ /D))

Thus, |S(2)| > |z — (m/ +in')|e” (/D= D227, O
The preceding results demonstrate that S is of order 2 and type 7/2. In the following
proposition we obtain a lower bound for |S'(A;)].

Proposition 2.4. [S'(\)] > €28 fo ik > 0.

Proof. Fix Ay, = m + in. Note S(m +in) = 0 but S’(m + in) # 0, since m + in is a simple

zero of S. Moreover, S(z) # 0 for all z with 0 < |z — (m + in)| < 1, since S only has

1
zeros at the integer lattice points all of which are one unit apart. If |z — (m + in)| = %,
then |m + in| — 3 < |z| < |m+in|+ %, by the reverse triangle inequality. Furthermore,

Ax = m + in is the closest lattice point to any such z. Thus, by Proposition 2.3, whenever

|2 = (m +in)| = 1,

El

1S(2)] > |z — (m+in)|e” /D@D (r/2)l2

1
_ L e/ /2P

4
ie—<c/4>—<n/4>e<w/2><m+m—<1/4>)2_

v

If Gy = (1/4)e (/D =@/ (m/D(Imtinl=(1/4)* “then for each w € B(0, apmy), there is a unique
z € B(m +in,1/4) with S(z) = w, by the Inverse Function Theorem [15, Gamelin, page
234]. The restriction S’|571 (B0,amn)) = S (B0, ) = B(0, ) of S to the preimage
S™HB(0, atpy)) of B(0, ) under S, is a bijection. Hence, the inverse S~' of S, exists and
is analytic on S~ (B(0, apnn)). Define g(z) = 4(S~(amnz) — (m +in)). Since f1(2) = Qpnz
maps B(0,1) onto B(0, tmn ), fo(2) = S~'(2) maps B(0, apy) into S~H(B(0, apy)) € B(m+



36
in,1/4), and f3(z) = 4(z — (m + in)) maps B(m + in,1/4) onto B(0.1), we have that
g : B(0,1) = B(0,1) is analytic, and satisfies g(0) = 4(S(0) — (m + in)) = 4((m + in) —

Adamn

(m+in)) = 0, since m+in is the only zero of S in S™(B(0, ayy)). Since ¢'(z) = T ——

we have, by Schwarz’ Lemma that

L > [4(0)
_ Ao
S'(S-1(0))
B 4oty
 S(m+in)’
and so
1S'"(Ae)] = 1S (m +in)
> Adagy,

— o (/)=(7/4) o(7/2)(Imtin|—(1/4))
e(/2)(Im+in|—(1/4))*

o(e/A)+(x/4)
/2 Ael—1/4)

elc/A)+(r/4) -

]

In the preceding proof, the choice of % as the radius of the disk centered at m + in was not
unique as we need only guarantee that for any z on the circle |z — (m + in)| = € the closest
lattice point is m + in. Therefore, we could use any value € < 1/2. We now use the bound
obtained in the preceding proposition to establish that the sequence {wi} = {1/5(M\¢)}
satisfies the decay rate necessary to show a diagonal operator D acting on H (D) fails to

admit spectral synthesis, as discussed in Section [1.3]

Proposition 2.5. limsup,_, i < 1.

1
1S"(Ak)
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Proof. By the preceding result, we have

1
- <
|S" (k)[R

e/ DH(/a) N\
(/2 (e —(1/4)° )

o(e/)+(x/4) ®
@<7r/2><|xk2—(1/2>Ak|+(1/16>>)

I
AN N N

o (e/)+(Tn/32) o (m/DIA| \ F
T /2] )
(/R (/) +(Tm/32)) o (/) (e /B)

e(m/2)(|1Akl?/k)

Hence,

_ LR R/ TR/32) ol A) (Ml B)
hfcﬂi‘jp‘g(xk) < limsup /D2
(e /DNl /)
- (1/k)(e/0)+(7m/32) | c
< limsupe lmsup a7
' (/4 (Ml /8)
= lmsup S

(/D (N g1/k)
(/2 (N2 /k)

To estimate lim sup,,_, we must establish bounds on |Az|/k and |\x|*/k. By

Lemma [2.2], we have for A, € S; that

Asl V2j
k= (27— 1)2
and
P
k4G +7)
Hence,
' ST/MINIR) e e )
lmsup e mymrm < MSUP ey = e
and so limsup,,_, . [1/S"(\)|V/*F < e ™8 < 1. O

In the following proposition, we show that Y ;>  e*?/S’()\;) is analytic on a disk centered

at the origin.
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Proposition 2.6. >/~ % is analytic on B(0,¢€) where

€ = [In (1/ limsup, o [[1/S"(Ax)[Y*D]/[sup {|Axl /£ }]-

Proof. By Lemma sup {|\e|/k : k> 1} < sup{v2j/(2j —1)?:j > 1} = v/2. To prove
this proposition it suffices to show the series Y - (e**/S’(\;)) converges absolutely and

uniformly on B(0,¢€). Let C' be any compact subset of B(0,¢). Then, for z € C,

1 el
i e/\kz k i A |2]
1m sup < limsup ————~
koo | S' (k) koo |S"(Ag)|E
. Pgl o 1
< limsupe * “limsup ————~
k—o0 k—o00 |S’()\k)|E
< Tim sup e(Pel/B) 0 (0 timsup o 175 /%)) sup {1kl /kik=1} 1) g1 :
hsoo koo |S"(AR)[F
. 1 .
< limsup - — limsup ——
koo limsupy o |gos |t koo [S7(Ak)|*
= 1.
Thus, by the Root Test, >~ ;,A—’;\Z) converges absolutely and uniformly on B(0, €), proving
the proposition. O

2.3 A Non-synthetic Operator on H(D)

Using the results of the preceding two sections, we prove the main result of this chapter, and

in doing so, produce an example of a non-synthetic diagonal operator acting on H (D).

Theorem 2.1. The diagonal operator D on H(D) with eigenvalues {\y} = Z X iZ fails to

admit spectral synthesis.

Proof. By Lemma , for all k with Ay € S}, |A\e|V/* < (V25)Y®D* and so

lim sup | Ax|* < lim sup (\/ij)l/@j_l)2 - 1.

k—o00 Jj—roo

Hence, D is a continuous linear operator acting on H (D). The eigenvalues of D are distinct,
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hence D is cyclic by Proposition . The function S(A) = A[] (1- e/ mtin)+(\?/2(m-+in)?)

m+m)
has zeros only at the points of {\;} (all of which are simple), and thus, the function e**/S(\)
has poles only at the points of {\;} (all of which are simple) for any z € C. For each r € Z*,
let C; denote the square with vertices £(r 4 (1/2)) £ i(r + (1/2)), and apply the Residue

Theorem to obtain,

2m/ syt = 2 }Res(;(t)’Ak)

{k:|Ap|<m
> o
et 7 B
(ke[ M| <r} S'(A) =
Z e)\kz
pr— / .
iaren & )
For a fixed z € C, by Proposition
eM ‘ / B
d\| < |d\|
/cr S(A) e 1SN
BN

S /Cr |)\ (m —+ mn )|e (c/4)— (7r/4)6(ﬂ—/2 |)\‘2 ’d>\|

(2r + 1)2er+1/2)1
<
= (1/2) — |m + in] e /DD (m 2+ 1/2)?

as r — 00. Thus, by Proposition [2.6}]

{k: )\kECO}

Hence, if we define wy, = 1/5’(\g) for all k > 0, we have > > jwre™* =0 for all z € B(0,¢)
where € is as defined in Proposition . Moreover, we have limsup, .. |wi|'/® < 1 by
Proposition , and sup {|M\u|/k: k> 1} = /2 < 00, by Lemma . Thus, by Condition
(xi) of Theorem |1.3] D fails to admit spectral synthesis on H (D). O
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The preceding theorem combined with the following theorem demonstrate that D is an
example of a diagonal operator which is synthetic when viewed as acting on H(C) but non-

synthetic when viewed as acting on H (D).

Theorem 2.2. The diagonal operator D on H(C) with eigenvalues {\} admits spectral

synthesis.

Proof. The entire function S of Theorem is of order p = 2 and type 7 = 7/2, by
Proposition [2.3] (or see [29, page 128]). Furthermore, by Lemma [2.2] sup {|A¢|?/k : k > 1} <
sup {252/(2j — 1) : j > 1} = 2. Hence, by Theorem [1.12, D admits spectral synthesis on
H(C). O
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CHAPTER 3

A Class of Non-synthetic Operators
on H(DD)

Theorems 1.3 through 1.10 of Chapter 1 demonstrate that one major factor in determining
whether or not a diagonal operator admits spectral synthesis is the rate of growth of its
eigenvalues. For instance, the diagonal operator having eigenvalues \,, = \/n admits spectral
synthesis as an operator acting on H(D) (see Theorem . However, in Chapter 2, we
showed that the diagonal operator D acting on H (D) having as eigenvalues the integer
lattice points Z x iZ fails synthesis, even though {\} has growth on the order y/n. In view
of which, it appears as though the synthesis of an operator depends not only on the growth
of its eigenvalues, but also on how they are distributed throughout the plane.

The purpose of this chapter is to investigate how distributing eigenvalues of a certain
growth rate along various rays {z € C : arg z = 6} in the complex plane affects the synthesis
of the diagonal operator having the resulting points as its set of eigenvalues. In particular,
we consider sequences of real values {n'/?}, where p € {2,3, ...}, placed symmetrically on
collections of rays resulting in sets of eigenvalues of the form {n'/Pe?™/s : 0 < j < s}.
For instance, when p = 2, we know that the diagonal operator on H(ID) having eigenvalues

{{/n} admits spectral synthesis by Theorem . Similarly, the diagonal operator having
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eigenvalues {#+/n} also admits spectral synthesis by Theorem . However, we show in

Section 3.1 that the diagonal operator on H (D) having eigenvalues {\/ne™/3 : 0 < j < 6},
consisting of six copies of the sequence {y/n} on six rays, fails spectral synthesis.
In Section 3.2, we show that any diagonal operator on H(ID) having sufficiently many

a/b

copies of any real sequence growing on the order n/* placed symmetrically along rays in the

complex plane, where a/b is any rational number smaller than 1, fails spectral synthesis.

3.1 Diagonal Operators having Eigenvalues
{nl/Pe?miif3 . 0 < j < 3p} for p > 1 are Non-synthetic

In this section, we show that the diagonal operator acting on H (D) having eigenvalues
{nl/Pe2mi/3r . () < j < 3p} is non-synthetic, for any integer p > 1. We begin with two

technical lemmas estimating infinite products which occur in our proofs.

Lemma 3.1. For a fized integer n > 1, [[5o, |1 — ?—;] =1

[oe)
Jj#n 2

Proof. Since sinTz = 72 [[}2, (1 — j—;), we have that

H L n_2 ~ lim sin 7z
' P E— mz(1 — (22/n?))
J#n
) T COSTTZ
= lim
e | m(2(—=22/n?) + (1 — (22/712)))‘
_ |cosmn
N -2
B 1
= 3

Lemma [3.1] can be used to show the following estimate.

Lemma 3.2. For fized integers n > 1 and q > 2, H;X;én 11— 7;—;1| > 1(9)z.
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Proof. Observe that

[e'e) n—1 . N .
q_ pa q_ pa nd — 44 q_ pa
H H |J | _ H |J | H : I~ im J .
. N—>oo ]q N—oo | jq
J#n J#n J#n J=1 J=n+l
We first estimate HJ 1 (T —nT) /g9, where
o 25q-2_
ﬂ ji—nt ﬁ 52 2]q L= ;»Z_nznq
. - cg—2
Jj=n+1 ]q j=n-+1 jq
j ey e
o g _ m25q—2"
j=n+1 j=n+1 ]q n ‘]q
For n+1 < j < N, we have j49—n4 > j9—n2ji-2 hencem > 1. Thus, Hj.V:nH ﬂj_q;—%"j,Q >

1. We now estimate Hj;ll (n? — j7)/4%, where

hlnd — (e R Y —nq;;j;:;fQ
.Hl i Hl s Jo
j= =
_ Hn —J’ qu n® — j9 4 nt —n?e?
i JI3 (n? = 5?)
B T n? —] nd — 54
- 1_[1 H?’L2jq 2 _ 'q’
J

by considering the terms (n? — j)/(n%j972 — j9) for various values of j. For j =1,

nt—ji  ni—1

q
n2ji-2 —j4  p2—1 = 2

since the function f(n) = 2n? — gn® + (¢ — 2) is increasing for n > 1, and f(1) = 0. For n
even and 2 < j < n/2

nd — 44
S >

DO [

n2jq—2 _ jq
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since

2n? — 59 + (¢ — 2)j¢ > 2n?—qn®*(n/2)? * + (g — 2)2°
= 207 — (q/2"7)n? + (¢ — 2)2°

= (2—(¢/277%))n? + (¢ — 2)2°

Vv

0,

as 2971 > ¢ for any ¢ > 2. The inequality (n? — j)/(n%j?%"2 — j9) > (q/2) also holds for n

odd by a similar argument. For j <n — 1, we have that 7 < n, and so,

nd — j1

w2z g = b
Hence,
ﬁnq_]q (g>n/2ﬁn _j2
. -9 Y
oy g 2/
and so

O n O 2 02 n
L -5z () 155 -50)
1 j4 2/ 4 j? 2\2
J=1,j#n J=1,j7#n

O

Before proceeding to the main results of this chapter, we indicate a protocol for enumer-
ating sets of eigenvalues as pertains to our study. We have already seen that a linear map
D having each monomial z" as an eigenvector with associated eigenvalue )\, is continuous
on H(D) if and only if limsup,,_,. [A\s|"/" < 1. Reordering the points in the set {)\,} does

not necessarily result in a new sequence satisfying this condition. In view of which, it is not
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just the collection of eigenvalues, but their order, which affects the continuity of the linear
map D. In fact, we see in the next chapter that there exists a synthetic diagonal operator
on H(D) a reordering of whose eigenvalues yields another diagonal operator on H (D) which
is non-synthetic. That is, a reordering of the eigenvalues of a diagonal operator need not
preserve spectral synthesis.

Throughout the remainder of this chapter, we adopt the convention that any enumeration
{1} of the set of points of the form {a,e*™/? : 0 < j < p} where {a,} is an increasing
sequence of positive numbers and p is a positive integer, be such that {|\x|} is non-decreasing.
Such an enumeration is always obtained by listing the points of the set by starting on the
positive real axis and traversing circles of increasing radii a,, in the counterclockwise direction.
In this case, \g = a1, Ay = a1€2™/P, \y = a1e*™/P ..., etc.

We now show that the diagonal operator D on H (D) having as eigenvalues 3p copies of
the sequence {n'/P} placed on the 3p rays {z € C : argz = 2mij} for 0 < j < 3p, fails
spectral synthesis whenever p is an integer greater than 1. This theorem is generalized in
the subsequent corollaries to include sequences {n%"} for certain rational powers a/b. These
results are valid whenever {)\;} is an enumeration of the eigenvalues for which {|A\|} is
non-decreasing. Throughout the proofs of this chapter, we invoke standard results from the
theory of entire functions, and in particular those concerning canonical products, without
individual citations. These standard results are collected in the appendix for the convenience

of the reader.

Theorem 3.1. The diagonal operator D on H (D) having eigenvalues {n'/Pe*™/3r . () < j <

3p} fails spectral synthesis whenever p is an integer at least 2.

Proof. Let {\;} be any enumeration of the set {n!'/Pe*™/35 . 0 < j < 3p} for which {| x|} is
non-decreasing. The diagonal operator D is cyclic by Proposition since the points {\x}
are distinct. The entire function f(z) =[] (1 — Z) has order 1/3 and zeros {n*} (all of

which are simple) with density A = lim,,_,o |a,|"/3/n = 1. Hence, by Levin [29, pages 94
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and 95],

; T Art/3 1
log | f(re)| ~ Sin (7/3) cos 5(9 —7) + o(r'/?)

outside the exceptional set £ = U, B(n?, dn?) where d is any number in (0,1]. Since
(rA/sin (7/3)) cos (0 — ) /3) > 7/+/3, it follows that for every e > 0, there exists an R,

such that

|f(7"ei9)| > ((/V3)=ert/?

whenever r > R, and re is not in FE.

The entire function S(z) = f(2°F) has zeros only at the points {\z} (all of which are
simple) and is of order 1/p. For each positive integer r we define C, = {z € C : |z| =7} to
be the circle of radius # where 7 = ((r + 1)/ + r/?) /2 and (#¢)* ¢ E. Thus, no point
M lies on any C,, and so S(\) # 0 whenever A € C,.. Since e**/S(\) has poles only at the

points A, (all of which are simple), we have by the Residue Theorem that

1 e)\Z eAkz

27 Jo, SV T 2

!
e (M)

for all z € C for all z € C. Moreover,
6>\z 2m |e’f‘ei9z|
d\| < / ——7|do
L5 ‘ < o TsGen) 1
o ol
| ey

2 el
— - |d#
/o Calhe

7z

IN

< 2nre
= =/ VB—ar

— 0

as r — oo since p > 1. Thus, 0 = lim, Z{k:I/\kISf}%' Furthermore, S'(z) =

3pz*P 1 f'(2%) where f'(z) = 3707, 5 [z, (1 — ). Foreachk € N, [\i] = m*? whenever

n=1"_n3
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3p(m — 1) < k < 3pm. Hence,

_1
3pm

Sl = |G | ] (1- %)

'3
jom J
> (3p)! /BB ((1/2)(3/2)™/2) B

3 1/6p
- (3)

as m — oo, by Lemma [3.2 Thus, limsup,_. 1/]S'(\)[VF < (2/3)Y/%? < 1, and so

Z;‘;O% is analytic in B(0,¢), where ¢ = [In(1/limsup 1/[S"(Ae)|*)]/[sup {|\e|/k}].
Hence, D fails to admit spectral synthesis on H(ID) by Condition (iz) of Theorem [1.3] O

The preceding theorem demonstrates that it is not only the rate of growth of the eigen-
values of a diagonal operator which affects the synthesis of the operator, but also their
distribution throughout the plane. For instance, the diagonal operator D having eigenvalues
{v/n} admits spectral synthesis on H(D) (and on H(C)) by Theorem [L.5, However, the
diagonal operator having eigenvalues {y/ne™/3 : 0 < j < 6} consisting of six copies of {y/n}
placed on the six rays {z € C : argz = j} for 0 < j < 6 fails synthesis by Theorem 3.1.

The following two corollaries generalize Theorem [3.1]to include diagonal operators having
as eigenvalues b copies of {n®*} placed on the b rays {z € C: argz = j} for 0 < j < b, for

certain rational powers a/b smaller than 1.

Corollary 3.1. The diagonal operator D on H(D) having eigenvalues {n®Pe?9™/v . () < j <

p} fails synthesis whenever p is an integer greater than or equal to 3.

Proof. Let {\:} be any enumeration of the set {n3/Pe?7/P . 0 < j < p} for which {|\|}
is non-decreasing. The proof of this corollary is obtained from the proof of Theorem
applied to the entire functions f(z) = [[,~, (1 — %) and S(z) = f(2") by replacing every

occurrence of 3p with p. O

Corollary 3.2. The diagonal operator D on H(D) having eigenvalues {n®/°e*77/% . 0 < j <

b} fails synthesis whenever a and b are integers for which b > a > 2.
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Proof. Let {\} be any enumeration of the set {n%%e?77/* . 0 < j < b} for which {|\|} is

non-decreasing. The proof of this corollary is similar to the proof of Theorem applied to

the entire functions f(z) = []>2, (1 — %) and S(z) = f(2°). O

n=1

3.2 A Generalization

In this section, we generalize Theorem in several ways. In Theorem [3.1] the eigenvalues
of the diagonal operator were precisely 3p copies of {n'/?} placed symmetrically on 3p rays
{z € C:argz = j} for 0 < j < 3p. In the main result of this section, Theorem , the
eigenvalues are only required to grow on the order of n%* for rational powers a/b less than 1.
For example, Theorem shows that a diagonal operator on H (D) whose eigenvalues are ¢
copies of {n? +nP~1} placed symmetrically on q rays {z € C : argz = j} for 0 < j < ¢, where
p is a rational number smaller than 1 and ¢ is an integer greater than 1/p, is non-synthetic,
an example which is not addressed by Theorem [3.1}

Although Theorem is a consequence of the more general Theorem [3.2] we include
both in this dissertation as the proof of Theorem is more transparent than the proof of
Theorem [3.2] The proofs of both results follow the techniques due to Ermenko outlined in
Section 1.4, whereby we define S(\) to be an entire function with zeros only at the points
of {\} (all of which are simple), where {)\;} is an enumeration of {a,e*/7:0 < j < ¢}.

We then apply the Residue Theorem to obtain

%4

A %)
€ Ak2
= W€
S/O\k) ];:0 k

Az
e
lim / dh = lim >~
r—oo Jo S()\) r—00 (b AreCel
where C). are appropriately chosen contours. Since the zeros of S consist of ¢ copies of the
sequence {a,} placed symmetrically on the ¢ rays {argz = j} for 0 < j < g, it follows that

S(A) = f(A\?), where f is an entire function of order p at most 1/2. Using a result of Levin

we obtain the estimate

|f(T€i0)| > 6(H(0)—e)7’p
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# ¢ C with r sufficiently large and 7¢? not in some exceptional set E, where the

for re
indicator function H(0) of f satisfies inf {H(#) : 0 < 6 < 2w} = 2e > 0. The exceptional set

E is obtained from the following two conditions guaranteeing that the points of {a,} are

separated. That is, we say {a,} satisfies Condition (C) if there exists a d > 0 such that the

closed balls {B(ay,d|a,|'=?/?) : n € N} are pairwise disjoint, and {a,} satisfies Condition

(C’) if {|an|} is non-decreasing and there exists a d > 0 such that |a, 1| — |a,| > d|a,]' 77,

where the closed balls {B(ay,d|a,|'=?) : n € N} are pairwise disjoint. For the sequences
discussed in Theorem , Condition (C’) is satisfied automatically since the zeros of f
are {a,} = {n®}. However, in Theorem [3.2, we must include the hypothesis that one of
the separation conditions hold. The exceptional set F is then E = U, B(ay,r,) where

7 = dla,|'~*/? (if Condition (C) holds) or 7,, = d|a,|'~* (if Condition (C’) holds). We then

have that
Az
lim d\ =0
r=o0 Jg, S(A)
for contours C). not intersecting F.
1/k
It is in the final step, that is, showing limsup, .. |wi|'/* = limsup,_, o0 <1,

where the proofs of Theorems [3.1] and [3.2] differ. In Theorem [3.1] we obtain the estimates on
f'(a,), and hence S’(Ay), by using the inequalities on the infinite products proven in Lemma
. In this way, showing limsup,_,. |we|'/® < 1 is a straightforward computation. In the
proof of Theorem 3.2, we use the more abstract (yet effective) approach of invoking the
Inverse Function Theorem [15, page 234], which relies on the separation of the zeros {a,} of
f guaranteed by Condition (C) or (C’) and the estimate |f(re?)| > eHO=" for re?? ¢ F
and r sufficiently large.

Before proceeding with the main result of this section, we establish the following technical

lemma.

Lemma 3.3. Suppose {a,} is a sequence of complex numbers whose convergence exponent

p is less than 1. If A = lim,_, ) erists and A € (0,00), then lim,, o |a,|"/™ = 1.

rP
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Proof. Since p < 1, we have that ) >, 1/|a,| < co. Hence, |a,| > 1 eventually, and so

liminf, o0 |a,|/™ > 1. Since A = lim,,_,o (n/]a,|?), for all € > 0 there exists N € N such
that |[(n/|a,|?) — Al < e for all n > N. Hence |a,|” < n/(A —¢€) for n > N, and so
1 < liminf, s |a,|"™ < limsup,, . |a,|"™ < limsup,, .. (n/(A — €)™ = 1. The result

follows. u

Theorem 3.2. Let f(z) be an entire function of order p € (0,3) whose zeros {a,} are all

positive real numbers and are all simple. If
(1) {an} satisfies either Condition (C) or (C’),

(2) A =lim, @ exists, where A € (0,00),

)

and q is any integer greater than 1/p, then the diagonal operator D on H(D) with eigenvalues

{af,l/ 1e275/9 . () < j < q} fails to admit spectral synthesis.

Proof. Let {\;} be any enumeration of {ay/?e®™/1 : 0 < j < ¢} for which {|As|} is non-

decreasing. By Theorem 5 of Levin [29, page 96], log | f(r€)| ~ =2 cos p(6 — 7)+o(r?) out-

sin pm
side of an exceptional set E = U, B(ay,r,), where r, = d|a,|'~*/? (if {a,} satisfies Con-
dition (C)) or 7, = d|a,|' " (if {a,} satisfies Condition (C”)). Since p < 3, cos p(f — 27) > 0

for 0 < # < 2w, and so the indicator function H(f) = 2 cosp(f — 27) is such that

sinwp

inf {2 cosp(f —27) : 0 < 0 < 27} = 2¢ > 0. Hence, there exists an R, > 0 such that

sinmp

|f(re?)| > e” whenever r > R, and re? ¢ E. The entire function S(z) = f(29) has zeros
only at the points {A;} (all of which are simple). For each positive integer r we define
C, = {z € C: |z| = #} to be the circle of radius # = (a,/? 4 a}/%)/2, whenever (7¢?)? ¢ E.
Since €*?/S(\) has poles only at the points {\z} (all of which are simple), we have by the

Residue Theorem that
1 6>\Z €>\k z

2mi Je, S(A)d/\: Z S' (M)

{R: Ak | <P}
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Moreover, for r > R, and z € C fixed,

/ e d/\‘ / GATPN
<
o SN T e, SOV

2 o712l
= ———7df
/o ey

< —0<gh <2
G R
e’
- T og<(¢<on
| f(79eic)]
- el
S CHQO-9
el
S egrqu
— 0

as r — oo since gp > 1. Thus, 0 = lim, Z{k:m\gf} %

It remains to show limsup, .. 1/|S"(A)|*/* < 1. To this end, observe for k € N, \;, =
ax/ e/ for some n € N and 0 < j < ¢. In fact, |Ak| = ay/? whenever (n—1)g < k < ng.

Since S’(z) = qz77! f'(27), we have
S/<)\k> _ qagqfl)/qe%ij(qfl)/qf/(an>.

Since the closed balls {B(ay,r,) : n € N} are pairwise disjoint, there exists radii 7, > 7,
for which the open balls {B(a,,7,)} are pairwise disjoint. Thus, f(a,) =0, f'(a,) # 0, and
f(2) # 0 for any z € C such that 0 < |z — a,| < #,. For z = 7e? € 9B(ay,,7,) with r > R,,

we have that

|f(T€i9)| Z e(H(Q)—s)rP Z 66(\(171\—1%)’)‘

If a, = ellanl=™)" then, by the Inverse Function Theorem [I5], page 234], we have that
for each w € B(0, ) there exists a unique z € B(ay,7,) such that f(z) = w. Thus, the

restriction f|y-1(p0,a,)) @ fH(B(0,a,)) = B(0,,) of f to the pullback f~((B(0,a,)) of
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B(0, a,) under f, is bijective, and so f~! exists and is analytic on f~*(B(0, a,,)) The function

g(z) = (1/r)(fHanz) — a,) : B(0,1) — B(0,1) is analytic with g(0) = 0. By Schwarz’

Lemma,
a o
12 9(0)] = | =5 ':A .
WSRO0 | Pl f(an)]
and so
1 P T
|f/(an>| (07 N ec(lan|—7n)P
Hence,
I 1 . 1
imsup ——— im su
kaoop |S/()\k)’% B n—>oop |qa%qfl)/qegmj(qfl)/qf/(an)‘%q
< 1k 1 i na
- linjol.}p ql/nqagg—l)/an ce(lan]—7n)P
. 1
= llmSU_p T A\
Nn—00 @Tq(‘an|—rn)
where lim, .« (|a,|?/n) = (1/A) > 0, and lim,_ |F,|/" = 1 (since lim,_,o0 |a,|"/" = 1

by Lemma . Thus, limsup,_,. 1/|S"(Ag)| < 1, and so Y -, % is analytic on B(0,€)
where € = [In (1/limsup (1/]S"(Ae)|*))]/[sup {|\x|/k}]. Therefore, the diagonal operator D
acting on H (D) with eigenvalues {\;} fails to admit spectral synthesis by Condition (iz) of

Theorem [L.3] O

In the proof of Theorem , we require that the indicator function H(0) satisfies that
inf {H(#) :0<60 < 27w} > 0, to conclude (as discussed before the proof of Theorem [3.2)
lim, o0 fi (€22/S(X))dX = 0 and limsupy_,. 1/[S"(A\)['/* < 1. This property of H(#) =
(mA/sin (mp)) cos p(0 — ) is guaranteed since the zeros {a,} of f are positive, real numbers
and the order p of f is strictly less than 1/2. However, if the zeros of an entire function lie

on a finite number of rays 1, with densities Ay, then

™

H(0) = ZAkcosp(G—wk—ﬂ)

sinp -
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[30, page 97]. In view of which, the hypothesis {a,} C RT of Theorem [3.2| can be weakened.

For example, if the zeros {a,} of the entire function f lie on the negative real axis and f
has order p < 1/4, then by an identical proof the diagonal operator D on H(D) having as
eigenvalues {a}/ 1e2m3/4 . () < j < q} fails to admit spectral synthesis, where ¢ is any integer
greater than 1/p. Moreover, if the {a,} lie on any finite number of rays and the condition on
the order p of f is adjusted to guarantee inf { H(6) : 0 < 6 < 27} > 0, then the corresponding
diagonal operator will be non-synthetic. As an example, if f is an entire function with zeros
only at the points {a,} = {£+n’} (all of which are simple), then f has order p = 1/5, and
so, H(f) = (n/sin (7/5))(cos (0 — ) /5 + cos (0 — 27)/5) > 0 for all 0 < 6 < 27. Hence, the
diagonal operator D on H(ID) having as eigenvalues {4n®/9¢?™9/9 : 0 < j < ¢} fails to admit
spectral synthesis for any integer ¢ > 5.

The technique used in Theorem cannot be invoked to establish an analogous result
on H(C), as Condition (2) forces limsup,, .., 1/]S"(Ax)|"/* > 0 while to obtain non-synthesis

on H(C) we need limsup,,_,,, 1/]S"(\)]"/* = 0 (Condition (vii) of Theorem [1.2)).
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CHAPTER 4

Preserving Non-synthesis while

Modifying the Eigenvalues

In this chapter we use the techniques of Chapters 2 and 3 to determine conditions under
which adding, rearranging, deleting, or perturbing the eigenvalues of a non-synthetic diagonal
operator produce another non-synthetic diagonal operator on H (D).

Let D be a non-synthetic diagonal operator on H(ID) with eigenvalues {), } and suppose
we modify the {\,} to obtain a new sequence {\,}. To determine if this modification
produces a set of points which are the eigenvalues of another diagonal operator which is non-
synthetic, we must first verify that the {S\n} are the eigenvalues of some diagonal operator
on H(D), and if so, that the operator satisfies one of the conditions of Theorem .

Since D is continuous, we have that limsup,, . [A,|"/" < 1. Depending on the modifica-
tion used to obtain the values {\, }, it may or may not be the case that the set of points {),,}
are the eigenvalues of a continuous linear map D sending 2" to Anz". The following example
demonstrates that rearranging the eigenvalues of a diagonal operator will not necessarily

produce another diagonal operator.

Example 4.1. Continuity Not Preserved
Let {\,} = {n} and let {\,} be the rearrangement of {\, } such that {\,} = {1,102, 2,10%, 3,106, ...},
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Then, limsup, .. |A,|"/" = limsup, .. (102")/" = 100 > 1, and thus, there does not exist

a diagonal operator with eigenvalues {\,}.

However, there are conditions for modifying the eigenvalues {\,} of a diagonal operator
which guarantees the existence of a diagonal operator with eigenvalues {S\n} It is easy to
see that if we delete a subsequence {\,, } from {\,} such that {n;/k : kK > 1} is bounded,
then there exists a diagonal operator D having eigenvalues {A\n.}. In addition, if we add at
most a finite number of eigenvalues in between each pair of elements from {\,} or rearrange
the eigenvalues within finite blocks only, we obtain modifications which yield the eigenvalues
of a continuous operator.

Even if the modification {\,} of {\,} yvields a diagonal operator D, it may or may not
be the case that D is non-synthetic. By Condition (v) of Theorem (1.3, D is non-synthetic
implies there exists a sequence {w,} of complex numbers, not identically zero, such that
lim sup,,_, o [wa|™ < 1 and 307 jw,AE = 0 for all & > 0. However, it may not be the
case that we can find a sequence {&,} corresponding to {\,} which satisfies the necessary
decay rate or the property > >~ djnj\fl — 0, both needed to conclude D is non-synthetic.
The following example demonstrates that adding eigenvalues does not necessarily produce a

non-synthetic diagonal operator, as no such {@,} can exist.

Example 4.2. Non-synthesis Not Preserved

Let {\,} = {n3} and {\,} = {n}, that is, to the set of eigenvalues {n®} we are adding in the
remaining integers. The diagonal operator D having eigenvalues {\,} is non-synthetic ([16]),
however, although the diagonal operator D having eigenvalues {an} exists, it is synthetic by

Theorem [L.5l

In Section 4.1, we address the issue of adding countably many points to the eigenvalues
{A\n} of a non-synthetic diagonal operator D on H (D). Intuitively, it would seem this would
always produce another non-synthetic diagonal operator, however, Example proves this

is not the case. In Section 4.2, we discuss rearrangements of the eigenvalues which would
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also seem to always preserve non-synthesis, but Example demonstrates the existence of
a diagonal operator is not even guaranteed. In both of these sections we discuss simple
conditions on the way in which eigenvalues are added or rearranged which do preserve non-
synthesis. In Sections 4.3 through 4.5, we address the issue of deleting eigenvalues. In
particular, in Section 4.3, we show that any finite collection of eigenvalues can be deleted
and the non-synthesis of the operator preserved. In Sections 4.4 and 4.5, we demonstrate
that we can delete countable collections of eigenvalues from the sequences of eigenvalues
{A\n} defined in Chapters 2 and 3 to obtain other non-synthetic operators. In Section 4.6,
we discuss conditions on perturbations of eigenvalues which produce other non-synthetic
operators. The discussions in Sections 4.1 through 4.3 are very simple arguments for general
operators, while the discussions in Sections 4.4 through 4.6 are very technical in nature and

follow similar techniques to those used in Chapters 2 and 3.

4.1 Adding Countably Many Eigenvalues

In this section, we discuss whether the addition of countably many elements to the eigenvalues
of a non-synthetic diagonal operator will produce another non-synthetic diagonal operator.
In this regard, suppose {\,} are the eigenvalues of a non-synthetic diagonal operator D
acting on H (D). By Theorem there exists a sequence {w,} of complex numbers, not
identically zero, such that limsup,,_,. [wa|Y" < 1 and >°° jw,A™ = 0 for all m > 0.

Suppose {A} = {\} U {7,.}, and define

Wn, j\k < {)\n}
Then, > .2, &)kj\}f = 0 for all m > 0, and so, it appears we should obtain another non-

synthetic operator. However, Exampleshows that it need not be the case that lim sup, . |&x|"/* <
1.
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The following theorem demonstrates that if finitely many eigenvalues are added in be-
tween each pair of eigenvalues of a non-synthetic diagonal operator, then the new diagonal

operator also fails spectral synthesis.

Theorem 4.1. Let D be a diagonal operator acting on H(D) having distinct eigenvalues
{\n}, and suppose D isa non-synthetic diagonal operator on H (D) having as eigenvalues
{A\n.} where {ny} is a subsequence such that {ny/k : k > 1} is bounded. Then, D also fails

synthesis.
Proof. Since D is non-synthetic, there exists a sequence {@,, } such that lim sup,,_,. |&n,, |'/* <

Land 77 @p Apt =0 for all m > 0, by Condition (v) of Theorem . Define for n > 0,

Op, n € {ng}

S
3
Il

Then, > 0" jwAm = 307 (@ A = 0 for all m > 0. Moreover, limsup,_, ., |w,|'/" =
lim supy,_, o, [@n, |Y/™ < limsupy,_, [@n, [Y/M* < 1, where M > 0 is such that n, < Mk for all

k > 1. Hence, D fails to admit spectral synthesis on H (D). O

In [16] it is shown that if {~,} is a sequence of distinct complex numbers with |7,,| — oo,
limsup,,_,.. |V»|"/™ < 1, and |7,|/n? increasing to infinity for some p > 2, then the diagonal
operator with eigenvalues {~,} fails spectral synthesis on H (D). This result combined with

the preceding theorem gives the following result.

Corollary 4.1. Let {)\,} be a sequence of distinct complex numbers with |\,| — oo, limsup,, . |A.|*/" <
1, and having a subsequence {\,,} such that |\, |/k? increases to infinity for some p > 2
where {ny/k : k > 1} is bounded, then the diagonal operator with eigenvalues {\,} is non-

synthetic on H(D).
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4.2 Rearranging Eigenvalues

In this section, we discuss rearrangements of the eigenvalues; that is, if D is a diagonal
operator on H (D) with eigenvalues {\,}, we consider {);,)} where {i(n)} is a rearrangement
of {n}. If D is non-synthetic, then there exists a sequence {w,} C C, not identically zero,
such that lim sup,, . [wn|'/" < 1and Y27 jw, A% = 0 for all k > 0. Thus, >, wim A,y =0
for all k£ > 0. However, as demonstrated in Example [4.1] it may not even be the case that a
diagonal operator with eigenvalues {\;i,} exists.

Moreover, the following example demonstrates that the rearrangement of the eigenvalues

of a synthetic diagonal operator can yield a non-synthetic diagonal operator.

Example 4.3. The diagonal operator D on H(D) with eigenvalues {\,} = {n} admits
spectral synthesis by Theorem Consider the rearrangement of {n}, where {\n} =
{0,13,2,23,3,33,4,43,5,...}; that is, each integer of the form m? is moved to the odd positions
of {Ai(n)}, and the even positions are the remaining integer values listed in increasing order.
If we consider the subsequence {\,, } = {k*} where {n;} = {2k — 1}, by Corollary we

have that the diagonal operator D with eigenvalues {);(,)} fails spectral synthesis on H (D).

However, if the eigenvalues are rearranged within finite blocks, then non-synthesis will be
preserved, as the following theorem demonstrates. In addition, a nearly identical argument

would show that synthesis is preserved under the same restrictions on the rearrangement.

Theorem 4.2. Let D be a non-synthetic diagonal operator on H(D) with eigenvalues {\,}.
Let i(n) be such that n —c < i(n) < n+c for some constant ¢ > 0 and alln € N. Then, the

diagonal operator D with eigenvalues {Nin)} fails spectral synthesis.

Proof. Since D is continuous, limsup,,_,. [M\n|"/" = M < 1. Thus, for every e¢ > 0, there
exists a N € N such that for all n > N, |)\n]1/” < M + e. Moreover, for all n, A\ = Apta

where 0 < a < c¢. Thus, limsup,,_,. |Xim|"" < limsup,,_,., (M + €)D" = M + ¢, and

1/n

therefore, D is continuous. An identical argument gives lim SUDP,,_s00 |Witn)| /™ < 1. Moreover,

> wi(n))\f(n) =0 for all k> 0, and so, D is non-synthetic. O]
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In Chapter 2, it is shown that the diagonal operator D having as eigenvalues {\,}, an
enumeration of the integer lattice points Z x iZ, fails spectral synthesis. We chose the
enumeration to begin on the positive real axis and traversed counterclockwise around larger
and larger squares. However, as a consequence of the preceding theorem, we could rearrange
the eigenvalues in any order along those squares and obtain the same result.

In Chapter 3, it is shown that the diagonal operator having eigenvalues {n!/Pe274/3 .
0 < j < 3p} fails to admit spectral synthesis. In Theorem 3.1} we chose the enumeration
of the eigenvalues to begin on the positive real axis and traversed counterclockwise around
circles of increasing modulus. However, by Theorem we could rearrange the eigenvalues

on any circle, or even on every c circles, and preserve non-synthesis.

4.3 Deleting Finitely Many Eigenvalues

In this section, we show that finitely many of the eigenvalues of a non-synthetic diagonal

operator acting on H (D) can be deleted without affecting the non-synthesis of the operator.

Proposition 4.1. Let D be a diagonal operator on H(D) with distinct eigenvalues {\,} that
fails to admit spectral synthesis. Assume {\,/n : n > 1} is bounded. If D' is the diagonal

operator with eigenvalues {{\,} \ {\o}}, then D’ fails to admit spectral synthesis on H (D).

Proof. Since D fails to admit synthesis, by Condition (iz) of Theorem [I.3] there exists a
sequence {w,} of complex numbers, not identically zero, such that limsup,, .. |w,|"" < 1
and ZZO:O wpe* = 0 for all z near the origin. Thus, —wye*?* = Zzozl wpe?, and so, —wy =
> wyen 202 Differentiating both sides with respect to z gives 0 = Y00 | w, (A, — Ag)ePn=20)z,

Moreover, limsup,, . [\, — Ao|*/" < 1 since the operator D — Aol is continuous. Thus,

lim sup |w,, (A, — o)™ < limsup |w,| ™ limsup |\, — Xo|/™ < 1.

n—o0 n—oo n—oo

Hence, the operator D — A\l having eigenvalues {\, — \o}22, is a non-synthetic diagonal
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operator, and therefore, D’ is also non-synthetic [T, Lemma 2. O

By repeating this process, finitely many eigenvalues can be removed and non-synthesis is
preserved. A nearly identical proof would allow for deleting finitely many eigenvalues from a
diagonal operator acting on H(C). The preceding proposition only addresses the case when
{A\n/n :n > 1} is bounded, which is sufficient for our results, however, in [11, Proposition
3] Deters proves the result for the general case using Condition (v) of Theorem [I.3] As
a corollary of Proposition [1.1I| we observe that removing finitely many eigenvalues from a
synthetic diagonal operator produces another synthetic diagonal operator.

In the next two sections, we consider deleting countable collections of eigenvalues, and

show that under certain conditions, but not always, non-synthesis is preserved.

4.4 Deleting Countably Many Eigenvalues Symmetri-
cally

The following example demonstrates that, unlike finite collections, deleting countable collec-

tions of eigenvalues from a diagonal operator need not preserve non-synthesis.

Example 4.4. Deleting Figenvalues Does Not Preserve Non-synthesis

The diagonal operator D acting on H(D) with eigenvalues {n'/Pe?™/3 . 0 < j < 3p}, where
p is any integer at least 2, fails to admit spectral synthesis by Theorem [3.1] However, the
diagonal operator D on H (D) with eigenvalues {n'/?} admits spectral synthesis by Theorem

Lol

The results of this section provide conditions under which deleting countably many eigen-
values from a non-synthetic diagonal operator produces another non-synthetic diagonal oper-
ator. As previously mentioned, we must first guarantee the existence of a diagonal operator
having eigenvalues {\,}. Recall from Section 1.3 that a linear map D on H(D) such that

D(z") = A\,2" is continuous if and only if limsup,, ,._ |A.|"/™ < 1. The following proposition
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gives a sufficient (but not necessary) condition to preserve continuity when eigenvalues are

deleted.

Proposition 4.2. Let {\,} be such that limsup,,_,. [M\|Y/" < 1. Let {\,,} be a subsequence

such that {ny/k : k > 1} is bounded. Then, limsup;_,. [\n, |"/* < 1.

Proof. Let M > 0 be such that n,/k < M for all k > 1. Then, limsup,_, |\, |"/* =

lim supy_, o, (|)\nk|1/”k)nk/k < limsupy_, o, max{(|)\nk|1/”k)M, 1} =1. 0

The preceding result shows that a diagonal operator exists, however, Example [4.4] shows
that this requirement on the deleted sequence is not enough to preserve the non-synthesis of
the diagonal operator.

In Chapter 2, we proved that the diagonal operator D on H(ID) having as eigenvalues
an enumeration {\,} of the integer lattice points Z x iZ fails to admit spectral synthesis.
In our first result regarding deleting countably many eigenvalues, we delete countably many
lattice points to produce another non-synthetic diagonal operator Don H (D). To do so, we

consider a subsequence {\,, } such that
L 0<inf{a:> 2, 1/|\,|* < oo} <2and

2. A € {{N P\ {£An,, £iN,, }} is on the square S; having vertices £(j £14j), if and only
if aj? —o(j) <m < aj*+o(j) where a > 0 and o(j) is a polynomial of degree at most

one.

We then delete from {\,} the collection {£+\,, , +i)\,, } and obtain a non-synthetic diagonal
operator D on H(D) with eigenvalues {{\,} \ {#\n,, £idn, }}.

To show D is non-synthetic, we obtained in Propositions and [2.3] estimates on the
entire function S(2) = 2 [[°%, (1 — (2/\,))e*/*»+2*/2X% using that the exponential terms can-
cel as the eigenvalues appear in groups of four: the eigenvalue, its negative, its conju-
gate, and its conjugate’s negative. In fact, we showed that S has order 2 and type 7/2.

To show D is non-synthetic, we obtain similar estimates on S(z) = ?((2, where f(z) =
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L“r% -2+ 222 L_% _#_%
o0 __z )‘kn 2)\k z Akn 2>\k - z iAkn 2>\k z i)\kn 2)\k
[T <1 ,\nk> € " (1 + ,\nk> € n\l-mo)e e )e "

since the exponential terms will cancel and Condition (1) forces S to also have order 2. To

show D is non-synthetic, we defined w, = 1/5'(\,) for all n > 0 and proved {w,} satisfies
Condition (iz) of Theorem . In Proposition we proved that limsup,, . |w,|™ < 1,
in part by using the fact that A, is on the square S; if and only if j < |\,| < V24 and if
and only if (27 — 1)? < n < 4(j5% + j). Condition (2) allows for a similar argument to show
G = 1/5"(\n), for n such that \, & {£\,, , £i),, }, satisfies Condition (iz) of Theorem ,
giving D is non-synthetic. We now present this result and give a more detailed outline of its

proof.

Theorem 4.3. Let D be the non-synthetic diagonal operator on H(ID) with eigenvalues {\,},
an enumeration of ZxiZ. Let {ny} be a subsequence such that 0 < inf {a: > 2 1/|\,, |* < o0} =
p < 2. Define {\,} to be the enumeration of {{\n} \ {ZAn,, £in, }} defined by beginning on
the positive real axis and traversing counterclockwise around larger and larger squares S;. If
jxp is on S; if and only if aj*> — o(j) < p < aj* + o(j) where a > 0 and o(j) is a polynomial
of degree at most one, then the diagonal operator D acting on H(D) with eigenvalues {;\p}

fails to admit spectral synthesis.

The proof of Theorem [4.3]follows the same technique as the proof that D is non-synthetic,
given in Chapter 2, hence we provide an outline only. The operator D is continuous since

), is on the square S; if and only if j = [j| < |A,| < |5 +ij] = V/2j and if and only if

aj’ —o(j) < p < aj*+o(j), thus

lim sup |A,| /7 < limsup (v/25)"/(@7° 00D — 1,
p—00 Jj—00
The entire function S(z) = zH;nn (1 — (z/(m +in)))e/ (mtin) g=*/m+in)*) haying simple
zeros only at {\,}, is such that |S(z)| > ad(z)e™**/? for all z € C, where a > 0 and
d(z) = dist(z,Z x iZ) = inf{|z — (m +ik)| : m,k € Z}, by Proposition 2.3 The entire

function f(z) = [[7=, (1 — (2/A\s,)*) having simple zeros only at {£\,,, i), } is of order
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p < 2 since inf {a: 3°5° 1/| A, |* < 00} < 2. Hence, |f(2)] < Be™™ for 0 < e < 2 — p,

whenever |z| > R for some R > 0, and constants /3, 7. Thus, the entire function

has simple zeros only at {),}, and for |z| > R, satisfies

_ 18] ad(z)e/1F
TRl T e

By the Residue Theorem and the previous estimate on |S()\)|, we have that

[eS)
1 6)\2

= — - d\ =0,
rﬁoo 271 c, S()\)

where C,. are contours not passing through any of the lattice points. Using the Inverse

Function Theorem and Schwarz’ Lemma, as in Propositions [2.4] and 2.5 we have that

1 567'(\5\p|+(1/4))p+6
— < - .
|S’()\p)| T ae(™/2)([Ap]—(1/4))?

Since 5\p lies on the square S; if and only if j < |5\p| < v/2j and if and only if aj? — o(j) <

p < aj? + o(j), we have that

1
' 1 ' gef(l;\p|+(1/4))"“ »
limsup — < limsup -

pvoo [S'(Ap)[P p—oo  \ ae(™/2)(Apl=(1/4))2

1 8 \7 [ emPuliaperianlrte/p
< i R
= 1?1)‘30211’ (aewm) el Apl2/2p

. 5 . eV2im/4(aj?—o(4)) e7(V2)* ¢/ (aj?—o(3))
< hin_)Soljp (ae /32) h?isogp e7i/2(aj?4o0(5))

1

- em/2a

< 1,
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and thus, D fails spectral synthesis by Condition (iz) of Theorem where w, = 1/5'(),)

for all p > 0.

By invoking the preceding theorem, from Z x iZ sets of eigenvalues such as {£p, +ip : p €
Z7} can be deleted, and the corresponding diagonal operator D will fail spectral synthesis
on H(D). In the following section, we show it is not necessary to remove the eigenvalues
symmetrically (that is, in groups of four) to preserve non-synthesis.

In Theorem , it is shown that a diagonal operator having eigenvalues {ay/?e*™9/1 : ( <
J < q} fails to admit spectral synthesis whenever {a,} satisfies certain properties. As a spe-
cific example, if {a, } = {n®} the diagonal operator with eigenvalues {n%e?™/¢ : 0 < j < q}
fails synthesis, where ¢ is any integer greater than three. The following examples demon-
strate that we can delete countably many of the {a,}, thus countably many eigenvalues, and
produce other non-synthetic diagonal operators. Note that in both examples we delete the

eigenvalues in groups lying on circles.

Example 4.5. The diagonal operator D with eigenvalues {(2n)%/%27i/1 . 0 < j < ¢} fails

synthesis for any integer ¢ > 3.

Proof. Observe that {a,} = {(2n)3} satisfies Condition (C) defined in Section 3.2, and
A = lim, oo n(r)/r'/® = 1/2, thus {a,} satisfies the hypotheses of Theorem 3.2. Hence, D

fails spectral synthesis. O

The previous example demonstrates that the roots of the cubes of all odd integers can
be deleted and non-synthesis preserved. In this example, the convergence exponent of the
deleted sequence is the same as the convergence exponent of the original sequence. The fol-
lowing example demonstrates this need not be the case, however, we must impose additional
conditions on the deleted subsequence to guarantee the existence of a continuous operator

and the existence of the angular density A.

Example 4.6. Let {a,} be the zeros of an entire function f of order p as in Theorem [3.2]
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Let {a,, } be a subsequence with convergence exponent p; < p, if any exist. The function

Pl — H;O:O (1 —(2/an))
&) = 1 T (fan, )

is an entire function of order p with zeros {{a, }\{an,, }}. Define {\;} to be an enumeration of
{ay/"e?™/4 1 0 < j < ¢} and {},} to be an enumeration of {ay/9e2™/9 : 0 < j < ¢}, where ¢ >
1/p is an integer. Define {7} to be an enumeration of {{\,}\{A\,}}. If limsup, , ||/ =1
and limy_, t/|7:|? > 0 exists, then the diagonal operator with eigenvalues {v;} fails to admit

spectral synthesis by Theorem [3.2]

As a specific example, let f be an entire function with zeros {{n?}U{n*}}. Then, if D is
the diagonal operator defined in Theorem [3.2] we can delete all of the eigenvalues associated
with the roots of n* and preserve non-synthesis. Furthermore, we could delete all of the
eigenvalues associated with the roots of n® and preserve non-synthesis on H (D).

All of the examples of this section involved deleting eigenvalues in a symmetric manner.
In Theorem groups of four eigenvalues were deleted (the lattice point, its negative,
its conjugate, and its conjugate’s negative), and in Examples and all eigenvalues
lying on a circle were deleted. In the next section, we eliminate this restriction for deleting
countably many points from Z x iZ. An open problem is whether or not we could delete
eigenvalues from {a}/ 1e27i/a . 0 < j < ¢} in a non-symmetric manner; that is, not deleting

all of the points lying on a given circle. This would aid in addressing the question of whether

a minimum number of rays the eigenvalues need to lie on exists.

4.5 Deleting Countably Many Eigenvalues Without Sym-
metry

In the following theorem, eigenvalues are deleted from the integer lattice Z x iZ, and unlike

Theorem [£.3] they need not be deleted in groups of four. However, the additional condition
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S orey 1/ An |2 < /2 on the growth of the deleted eigenvalues {\,, } is imposed.

Theorem 4.4. Let D be the non-synthetic diagonal operator on H(ID) with eigenvalues {\,},
an enumeration of ZxiZ. Let {ny} be a subsequence such that 0 <inf {a: Y 2 1/|\,,|* < o0} =
p <2 and Y00 1/|\, > < /2. Define {\,} to be the enumeration of {{\.} \ {\n,}} de-
fined by beginning on the positive real axis and traversing counterclockwise around larger and
larger squares S;. If j\p is on S; if and only if aj*> — o(j) < p < aj®+ o(j) where a > 0 and
o(j) is a polynomial of degree at most one, then the diagonal operator D acting on H(D)

with eigenvalues {;\p} fails to admit spectral synthesis.

The proof of Theorem [£.4] follows almost identically to the proof of Theorem [£.3] except
for the bound on |f(2)| = |[[w, (1 — (z/)\nk))e(z/’\"kH(ZQ/Q’\?%)|. In this case, since the
eigenvalues are not deleted in groups of four some of the exponential terms will not cancel,

and so, we obtain

f(2)] < cell17 e elal® T 1/ A,

for some constants b and ¢, and |z| sufficiently large. Thus, the requirement Y2, 1/, |* <
/2, which was not necessary in Theorem , allows for the bound

ad(z)eMI=?
e

[5(=)] =

cedl

where M = (7/2) = >2°%  1/|\k.|> > 0 and 0 < € < 2 — p. The remainder of the argument
for D to be non-synthetic follows exactly as the outline of the proof of Theorem given in
Section 4.2.

Theorem has the following example as an immediate consequence.

Example 4.7. Let D be the diagonal operator with eigenvalues {\,}, where {\,} is the
enumeration of Z x iZ defined in Chapter 2. Define {)\,, } = {k*}. Then, p = 1/2 and
S T A P = 3000 1/k* = 7%/90 < 7/2. Hence, a diagonal operator D acting on H (D)
with eigenvalues {{m +in : m,n € Z} \ {m? : m € Z}} fails to admit spectral synthesis by
Theorem [4.4]
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4.6 Perturbing Eigenvalues

In this section, we discuss perturbing the eigenvalues of a non-synthetic diagonal operator
to obtain another non-synthetic diagonal operator acting on H(ID). The first result of this
section strengthens Theorem as the eigenvalues are only required to lie in finitely many

0-sectors, instead of on finitely many rays.

Theorem 4.5. Let p be an integer greater than two. Then, there exists a sequence {0,}
of positive real numbers with 6, < & for some § > 0, such that the diagonal operator with
eigenvalues {n'/Pe’On+2m/a . 0 < § < ¢} where ¢ > p is an integer, fails to admit spectral

synthesis on H (D).

As the proof of Theorem follows the same technique as the proof of Theorem we
include an outline only. The entire function f(z) = [[)—, (1 — (z/n?)) has simple zeros {n?}
and order p = 1/3, hence satisfies the hypotheses of Theorem . Thus, as in its proof, we
have that

1/3

|f(re®)| > e

for r sufficiently large and re® outside of some exceptional set E. The following result of

Levin [29] can then be used to obtain a similar bound on another entire function.

Lemma 4.1. ([29, Lemma 1, page 98]) Let us assume that the set {a,} of the zeros of the

canonical product

n(z)=1] (1 — f) k=1 7 /kar

n=1

has a density with index p(r), i.e., there exists the limit

A:hmM

r—oo 1rP(r)’

and suppose that p = lim,_,, p(r) is not an integer. Let us denote by I1°(2) another canonical
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product
5 Pz al
H(z):H<1—a—/>eZk1 [k(@n)”,
n=1 n
in which |a| = |a,| and |argal, — arga,| < . Then, for every e >0 and n > 0 there ezists

a 0 > 0 such that

[ log |TI(2)] — log [IT°(2)]| < er?”

for all z that do not belong to some exceptional set of circles C with upper linear density less

than n.

Hence, there exists a § > 0 so that if {\, = r,e?"} is a sequence such that |\,| = r, = n?,

On = |arg A, —argn®| < 6, and f5(2) = [T, (1 = (2/An)), then [log|fs(2)| —log |f(2)]| <

1/3

€1]2)'/3 outside an exceptional set of circles C. Thus, for z = re? ¢ FUC and |z| = r

sufficiently large, we have the estimate

| fs(ret®)| > eloslftre®l=art/? 5 pert/s

for some €5 > 0. Applying the Residue Theorem and Inverse Function Theorem to fs(z),
exactly as we did to f(z) in the proof of Theorem , gives the diagonal operator D acting
on H (D) having as eigenvalues {n'/Pe®=+2im/a . () < j < ¢} fails to admit spectral synthesis.

The second result we present regarding the perturbation of eigenvalues states that if
D is a non-synthetic diagonal operator acting on H (D) having eigenvalues {)\,}, where
the indicator function H(0) of f is such that inf {H(0) : 0 < 6 < 27} > 0, then the diagonal
operator having as eigenvalues {1, }, where {1, } is such that lim,, o [ttn, — An|/|An| = 0, also
fails synthesis. To establish this result we require two lemmas. The first, due to Korobeinik

[23], asserts that the angular densities of {\,} and {u,} are the same.

Lemma 4.2. (|25, page 124]) Suppose that a set A = {\,}, where |\,| — oo, has for all 0
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and 0; (0 < 0 < 6, <27), except possibly a countable set P, the angular density

AA(Q,Ql) = lim TLA(T,Q,Hl)T_p = AA(01) — AA(Q), (41)

700

where, as usual, ny(r,0,01) denotes the number of points of A lying in the sector {\ : |A| <
r,0 <arg\ < 61} and Ax(¢) is a non-decreasing function defined by up to an additive
constant. Suppose further that the sequence M = { i, } is such that lim, o (|t — Anl/|Anl) =
0. If 0,6, ¢ P and A\(¢) is continuous at 0 and 6y, then inside the angle (6,61) the angular

density of M, Ap(6,01) = lim, oo npr(r,0,01)r=", exists and is equal to Ax(6,07).
The second lemma asserts that {\,} and {u,} have the same convergence exponent.

Lemma 4.3. Suppose that A, — 0o and p = inf {a: >~ 7 j1/|\,|* < oo} > 0. Let {p,} be

such that im,, e |ftn — An|/|An] = 0. Then, py =1inf {a: D07 1/|pa]® < 00} = p.

Proof. Let € > 0 be given. Then, there exists a N € N such that for all n > N,

|Mn - )‘n|
|An

< €.
Hence, for all n > N and a > 0,

1 - 1 - 1
(1 + &))" |11 | (1 =€) Aa])>

Whence, p; = p. [
We can then establish the following theorem.

Theorem 4.6. Let D be a non-synthetic diagonal operator on H (D) having eigenvalues
{A\n}. Let f(z) be an entire function with simple zeros only at {\,}, and suppose the order
p of [ is strictly greater than one and M = inf {H(0):0 <60 <21} > 0 where H(0) is

the indicator function for f. Let {u,} be a sequence of distinct complex numbers such that
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My o0 [t — An|/|An| = 0. Then, the diagonal operator D with eigenvalues {j,} fails to

admit spectral synthesis.

Proof. Since lim,, o0 |ttn, — Anl/|An| = 0, we have that

lim sup |, | < limsup ((1 4 €)[\ )" < 1,

n—oo n—o0

where € > 0, and thus, D is continuous. Let f (z) be an entire function with simple zeros
only at {u,}. By applying Lemmas and as well as a result of Levin [29, Theorem
2, page 94], we have that |f(re?)| > eM™ for all r sufficiently large and re not belonging
to some exceptional set E. Then applying identical arguments as in Theorem [3.2] we have

that D fails to admit spectral synthesis. O

As an immediate corollary of the preceding theorem, we observe that we can perturb the
points of the integer lattice Z x iZ = {m + ik : m,k € Z} and obtain another non-synthetic

diagonal operator.

Example 4.8. Perturbing the Integer Lattice Points

Let S(z) = 222, (1 — (2/An))e*/*n+2° /2% the Weierstrass o-function, where {\,} is the
enumeration of Z x iZ defined in Chapter 2. Define S(2) = [1°%, (1 — (2/pn))e*/Hnt=* /20,
where {1, } is such that lim, o |ptn — A\n|/|An] = 0. We have shown that S has order p = 2
(Proposition [2.3). Hence, by a result of Levin [29, Theorem 2, page 91], log|S(re?)| ~
Hg(0)r?, where Hg(0) = f;fzﬂ (¢ — 0)sin2(¢p — 0)dAg(x)). Moreover, it is shown that
Hs(0) = m/2 [29, page 128]. By Lemmas [4.2] and [.3] we have that Hg(0) = 7/2. Thus, for
2z not in some exceptional set and |z| = r large enough we have |S(re®)| > ¢™*/2. Then ap-
plying nearly identical arguments to S , as we did to S in Chapter 2, gives that the diagonal

operator with eigenvalues {y,} fails to admit spectral synthesis on H (D).

Note that as n gets large, that is, |\,| gets large, u, can lie in a “significantly large” disk
B(An, €|An]), centered at A, allowing for “significant” perturbations of the integer lattice

points.
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The results and examples of this chapter demonstrate that the synthesis or non-synthesis
of diagonal operators is not necessarily preserved when eigenvalues are added, rearranged,
deleted, or perturbed. In some cases the modification of the eigenvalues {\,} of a non-
synthetic operator does not result in a continuous operator, and even when it does, it is not
always the case that the operator is also non-synthetic. However, results and examples are
given when the non-synthesis of an operator is preserved under modifications of the eigenval-
ues. In Sections 4.1 through 4.3, these results were proved for general non-synthetic diagonal
operators, while in Sections 4.4 through 4.6 the examples involved using similar techniques
to those used in Chapters 2 and 3. It would be interesting to determine universal condi-
tions which would allow for modifications of the eigenvalues of any non-synthetic diagonal

operator to preserve non-synthesis.
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CHAPTER 5

A Sufficient Condition for Admitting

Spectral Synthesis on H(C)

A consequence of Leontev’s work [25] is that a diagonal operator D acting on H(C) with
distinct eigenvalues {\,} C C, for which 0 < |[A\;| < |Ao] < ... and 0 < liminf,, , [Au|/n <
limsup,,_, . |[An|/n < oo, admits spectral synthesis on H(C). In this chapter, we present a
result which slightly improves Leontev’s result. In particular, we replace the requirement
liminf,, . % > 0 with the condition n(r)/r is bounded, where n(r) =3, o, 1 counts
the number of A, in B(0,7), and prove the diagonal operator with such eigenvalues {\,}
admits spectral synthesis on H(C). We also generate examples of synthetic operators on

H(C) which were not known to be synthetic by either Leontev’s result of 1976, or the

theorems stated in Section [1.7|from the work of Deters, Marin, and Seubert ([13], [31], [41]).

5.1 A Sufficient Condition for Synthesis on H(C)

In this section, we show a diagonal operator D acting on H(C) with eigenvalues {\,} is
synthetic whenever {\,/n : n > 1} is bounded and n(r)/r is bounded. The condition
{An/n :n > 1} bounded implies the eigenvalues cannot grow too fast as |A,| < Mn for some

M > 0. The condition n(r)/r bounded implies there cannot be too many A, in disks B(0, 7).
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To prove the result we consider a canonical product L(w) having zeros only at {\,} U{—\,}.
The condition {\,/n : n > 1} bounded implies L has order at most one, while the condition
n(r)/r bounded implies L has order at least one, hence L has order one. We proceed by
contradiction, that is, we invoke Condition (vii) of Theorem [1.2] which states that D fails to
admit spectral synthesis if and only if there exists a sequence {w, }, not identically zero, such
that limsup,,_,. |w,|Y" = 0 and F(w) = 37 jw,e* =0 for all w € C. In view of which,
the Borel transform B(w) = Y 7= (a;/w’™) of L, (w) = L(w)/(w — A\y) = Yooy (a;27/5!) (if
the order of the zero at A, is one) or L(w)/(w — A\n)* = 372 (a;27/5!) (if the order of the

zero at A\, is two) satisfies

! 1l e B N
0= Py - Fw)B(w — z)dw = - Z Wi, Z a; / | mdw = W Lin(An)e™?,

and so, w, = 0 for all n > 0, a contradiction.
Before proceeding with the theorem, we prove two technical lemmas; the first shows that

the conditions {\,/n : n > 1} bounded and n(r)/r bounded imply L has order one.

Lemma 5.1. Suppose {\,} is a sequence of distinct complex numbers such that {\,/n :n >

1} is bounded and n(r)/r is bounded. The canonical product L(w) = [[2, (1 — (w?/)2))

n=0

having zeros at Z = {\,} U{—=\,}, is of order one and finite type.

Proof. Since {\,/n : n > 1} is bounded, there exists an M > 0 such that |\,| < Mn
for all n > 1. Hence, Zleﬁ > > W = oo for all 0 < a < 1. Whence, p; =
inf {a: > 2 1/|Au|* < 00} > 1. By Theorem 2.5.8 of [5], p; = limsup,_, . logn(r)/logr,
and since n(r)/r is bounded there exists a K > 0 such that n(r) < Kr for all r sufficiently

large. Therefore, logn(r) < log Kr = log K + logr for r large enough, and hence,

1 log K +1
p1 = lim sup og n(r) < lim supOg——i_Ogr

=1.
rsoo  lOgT o0 logr

Thus, L has order one [5, Theorem 2.6.5]. Since n(r)/r is bounded and S(r) = > c 7.1y 1/2 =
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0, by Lindelof’s Theorem [5, Theorem 2.10.1], L has finite type. ]

The second technical lemma shows that the domain of convergence of the Borel transform

of an entire function f of order one and finite type 7 contains the complement of B(0, 7).

Lemma 5.2. Let f(z) = > 7" 92" be an entire function of order one and finite type 7.

Then, B(z) =Y " ;w5 converges in the domain {z € C: |z| > 7}.

Proof. Since f is of order 1 and finite type 7, we have 7 = %lim SUD,,_ oo n]%]l/” [36, Propo-
sition 11.5]. By Stirling’s Formula [5, page 6], n! = n"e™"v/2mne’ where 1/(12n+1) < 6, <

1/12n, and so, lim,,_,o(n!/n"e™)Y/™ = lim,,_,o, (27n)Y/?"e/™ = 1. Hence

3=

1., a
7 = —limsupn|—
€ n—ooo n!
1
. n an n
= limsup — -
n—oo € 1T
. oL | Q|
= limsup (n"e™")n | —
n—o0 n:
1
1 [nteT "\ "
= limsup|a,|=
Nn—00 n!
1
1 n"e "\
= limsup |a,|» lim

: 1
= limsup|a,|".
n—oo

Thus, > 7 a,z" converges whenever |z| < %, by the Radius of Convergence Formula. If
lw| < 1, then Y707 Ja,w™™| = |w| >0 lanw™| < 2307 |ayw”| < oo. Hence, B(w) =
oo

> ons o anw™ ! converges in the domain {w € C : |w| < 1/7}. Therefore, B(z) = Y >° ) -%;

converges outside the ball B(0, 7). O

The main result of this chapter, and the only result of this dissertation regarding the

synthesis of diagonal operators acting on the space of entire functions, is as follows.

Theorem 5.1. Let D be a diagonal operator acting on H(C) with distinct eigenvalues {\,}
for which



5
(1) {22 :n > 1} is bounded, and

(2) n(r)/r is bounded.
Then, D admits spectral synthesis.

Proof. By means of contradiction, suppose D fails to admit spectral synthesis on H(C).
Thus, by Condition (vii) of Theorem [1.2] there exists a sequence {w,} of complex numbers,
not identically zero, such that limsup,_,. |w.|"" = 0 and F(w) = 30 jwpe* = 0
for all w € C. Moreover, F' is entire by Condition (7). The canonical product L(w) =
[, (1 — (w?/A2)) has zeros Z = {\,} U {—=A\,} all having order one or two (if A, and
—\, are both eigenvalues for D). By Lemma , L has order one. For n > 1, define
L,(w) = L(w)/(w — \,) if A\, is a zero of order one, or L,(w) = L(w)/(w — A\p)? if A,
is a zero of order two. Then, L,(w) = > 22 (a;w?/j!) is an entire function with zeros
Z \ A\n. By Lemma m Ly is of type 7 = limsup,_,, |a;]'7 < oo. Hence, by Lemma ,
B(w) = > 2y a;/w’*" converges in the domain {w € C: |w| > 7}. Fix z € C and € > 7.
For any w € 0B(z,¢€), we have |w — z] = € > 7. So any w € 0B(z,¢) is in the domain of

convergence of B(w — z). Since,

Mg
A=

>

j=0

w—z]-i-l

and

1/
A 1 .
lim sup (M) = — limsup |a;|'7 = T« 1,
Jj—00 €’ € j—ooo €

Z?io a;j/(w — 2z)7 converges absolutely and uniformly on 9B(z, €), by the Root Test. More-

over,
[o.@] o0 oo
D e < 3 fumlePrl = 37 fuyeleleH),
m=0 m=0 m=0

where

lim sup (|wy, [e?mFHENY™ < Jim sup |w,, |Y™ lim sup eAmI(=F9/m — o < 1,
m—ro0 m—o0 m—o0
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by Condition (7). Thus, >.°°_ wy,e** converges absolutely and uniformly on dB(z,€), by

m=0

the Root Test. Since F'(w) = 0, we have

1

0 = — F(w)B(w — z)dw
2mi OB(z,€)
1 S Ao N\ a;
- m mw . d
211 dB(z,¢) mz:()w © ]2:: (w — Z)J+1 w

by Cauchy’s Integral Formula [10, Theorem 5.4]. Thus,
0= wnLn(Am)e™™* = wyLn(Ay)e™
m=0

since L,(\,) = 0 for all m # n. However, since A, is not a zero of L,, L,(\,) # 0 and

eM? £ 0, so wy, = 0 for all n > 0, a contradiction. The result holds. n

The hypotheses of the preceding theorem give some insight into the possible behavior
of the eigenvalues {\,} of a synthetic diagonal operator D acting on H(C). Condition (1)
asserts that |\,| cannot grow very fast, in particular, {|\,|} is bounded by Mn for some
constant M > 0. On the other hand, by Condition (2), |\,| cannot grow too slow since
there cannot be too many A, in disks B(0, ). As an example, we quickly observe a diagonal
operator with eigenvalues {\,} = {n} admits spectral synthesis on H(C); however, this also
follows directly from Theorem Moreover, by the preceding theorem, a diagonal operator
acting on H(C) with eigenvalues {£n, +in} admits spectral synthesis, a conclusion which
cannot be determined from any of the previously known results regarding synthesis on H(C)
stated in Section L7

Joint work with Henthorn [16] suggests that a diagonal operator acting on H (D) having



7

as eigenvalues six copies of n placed on six rays /3 for 0 < j < 5, fails spectral synthesis.
Since the eigenvalues satisfy Conditions (1) and (2) of Theorem [5.1] it appears as though the
analogue of Theorem for diagonal operators acting on H (D) will not hold. In any event,
the proof of Theorem [5.1{does not shed any light on the synthesis of diagonal operators acting
on H(D). Although the growth condition limsup,, . [\,|'/™ < 1 for continuity on H (D) is
more restrictive than the growth condition limsup,, ., |A.|'/™ < oo for continuity on H(C),

1/n

the less restrictive decay rate on {w,}, limsup,_,. |w.|'/™ < 1 required for membership in

1/n = 0 required for membership in H*(C), discussed

H*(D) compared to limsup,,_, .. |wn|
in Section 1.3, only guarantees F(w) = Y - jw,e** is analytic near the origin rather than

entire as needed in the proof of Theorem [5.1]

5.2 Leontev’s Result and Examples

Using Theorem 5.1} we establish the following corollary.

Corollary 5.1. A diagonal operator D acting on H(C) with distinct eigenvalues {\,} such

that 0 < inf {22 :n > 1} <sup{22 :n > 1} < oo admits spectral synthesis.

Proof. Clearly {)\,} satisfies Condition (1) of Theorem [5.1] Moreover, there exists 0 # a <
b < oo such that a < Mn—”‘ < b, for all n > 1. That is, an < |\, < bn and (an)* <
|An|® < (bn)* for all @ > 0, hence 1/(bn)* < 1/|A\,|* < 1/(an)®. By the Comparison Test,
S o /Al <302 1/ (an)™ < oo for @ > 1. Moreover, > 07 (1/|A,|* > > 1 1/(bn)* =
oo for a < 1. Whence, inf {a: ) 2 1/|\,|* < oo} = 1. Since an < |\,| < bn, we have
n(m) < ¢m for any m € Z. Furthermore, for any r € R¥, n(r) < (1/b)(r + 1) < (2r/b).
Hence, n(r)/r is bounded, and D satisfies Condition (2) of Theorem [5.1] Therefore, D

admits spectral synthesis on H(C). O

Note that Corollary does not require that {|\,|} is increasing as Leontev’s results

does, and thus, Leontev’s result is a consequence of Corollary The following example
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demonstrates that the hypothesis inf {’\7" :n > 1} > 0 in Leontev’s result is not a necessary
condition for spectral synthesis on H(C).

n n# 108 k> 1
Example 5.1. Define \,, =

1052 n=10"k>1

|1/n

First, note {\,} are distinct and lim sup |\, |'/™ = 1 < oo. Thus, if D is the diagonal operator

with eigenvalues {\,}, it is continuous and cyclic.
Claim 1. {),} satisfies the hypotheses of Theorem [5.1]

Proof. For n # 10%, where k > 1, we have |\,/n| = |n/n| = 1. For n = 10, where k > 1,
we have, |\,/n| = 102 /n = 102 /10¥ = 1/10% < 1. Thus, {\,/n : n > 1} is bounded. We
show inf {a : >~° [ 1/|A,|* < oo} = 1. To this end, consider

1 1 1
Zp\n’a - E+ZW

n=1 n#10F n=10%

o a/2
n=1 k=1 10 /

=1 1
= 2 Y Aoy

A
NE
3

which is finite only when Y7 | == < oo, thus for a > 1. If {\,} = {n}, then n(r) = |r] <r
where |7 is the greatest integer less than r. When we add in the powers of 10, we really
only add in 102,103,103, ... Thus, for example, when r = 100, n(r) will increase by 1; when
r = 10,000, n(r) increases by 2; when r = 10°% n(r) increases by 3, and so on. Clearly,

n(r) < 2[r] < 2r. Hence, n(r)/r is bounded. Therefore, by Theorem [5.1 D admits spectral
synthesis on H(C). O

Claim 2. {)\,} does not satisfy the hypothesis of Corollary [5.1| (hence Leontev’s result).

Proof. Consider inf { n>1} =inf {12 . k> 1} =inf {10772 : k > 1} = 0. O

10~

An
n
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In general, let {;\n} be any sequence which satisfies the hypotheses of Leontev’s result.

Then, define

where a € (1,00). As long as we remove repeated values to guarantee the cyclicity of the
operator, the diagonal operator acting on H(C) with eigenvalues {\,} will admit spectral

synthesis by Theorem but not Corollary (or Leontev’s result).
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Appendix A

Entire Function Theory

A.1 Introduction

The results of the preceding dissertation rely heavily on the theory of entire functions. This
area is well-studied and well-documented, for example, see Boas [5], Conway [10], Holland
[18], Levin [29] and [30], and Rubel [36], amongst others. For the convenience of the reader,
many of the basic definitions and theorems that were necessary in the results of this document
are presented in this chapter. Of central importance for our study is the growth of entire
functions, both as a function of |z| as well as the more refined measure of the growth along
rays {z :argz = 0} for 0 < 6 < 2.

An entire function is a function f(z) which is analytic in the whole complex plane. Entire
functions are represented by their power series f(z) = Y0 | a,2", where limsup,,_, . |a,|"/" =
0. From this representation, we observe that all polynomials p(z) are contained in the class of
entire functions. Furthermore, polynomials are classified by their degree which is determined
by the number of roots; the more roots a polynomial has, the higher its degree, and the faster
it grows. This suggests the growth of an entire function is intimately related to its zeros.
However, the relationship is much more complex than with polynomials, as there are many
results that state if f grows “slowly” and its roots “pile up” in a domain, then f(z) = 0.

Moreover, entire functions can potentially have infinitely many zeros or no zeros, so to study
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their growth we must examine not only the number of zeros, but also the distribution of the
zeros in the complex plane. One method for studying the growth of an entire function is
to define the function My(r) = sup,_, {[f(2)|}, which as an application of the Maximum
Modulus Principle increases monotonically. The function My(r) measures the growth of f
in disks centered at the origin.

Other questions that arise regard the growth of functions along different directions, and
the relationship between this growth and the global growth determined by M{(r). Polyno-
mials grow uniformly in all directions; that is, their growth as z — oo depends only on |z]
not on arg z. This is not necessarily the case for an entire function f with zeros {a,}. By
considering Liouville’s and Picard’s Theorems, it seems that a function with “small” global
growth cannot decrease “too fast” in some direction, but also must grow on a “large enough”
part of the complex plane. To discuss this issue further, we develop a method for measuring

the growth of an entire function in different directions.

A.2 Growth as a Function of |z

We first discuss the growth of entire functions in terms of their global growth; that is, we
measure the growth of an entire function f by examining its growth on disks centered at
the origin as characterized by the function M(r), which is independent of direction. By
an application of Cauchy’s Estimate, if liminf, ., M;(r)/r* = 0 for A > 0, then f(z) is
a polynomial of degree at most A [30, Theorem 1, page 3]. Hence, to characterize entire
functions according to their growth we need to compare them to monotonic functions that
grow faster than any polynomial; an obvious choice is ¢®*’, where a, 8 > 0 are constants.
In view of which, we say f is of finite order if there exists a constant A > 0 such that
|/(2)] < el for all z € C with |z| large enough. In this case, whenever A, > A, |f(2)] < e/,
thus the inequality is satisfied for infinitely many A’s if it holds for one. Thus, we define the

order p of f by p =inf{\:|f(z)| < el whenever z € C with |z| > R for some R > 0}.
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Hence, if f has order p, then for every e > 0 there exists an r. such that |f(z)] > ™"

whenever z € C with r = |z| > r.. Furthermore, there exists a sequence {r,} approaching
infinity such that | f(z,)| < e’ ~ where 2, € Cissuch that |2,| = r,. Therefore, M;(r) < "¢
for r large enough, and My (r,) > €™, and so clearly, p = limsup, _, (loglog M¢(r)/logr).

Using only the order to characterize the growth of entire functions is not always sufficient
as it is possible to find two entire functions with the same order that behave very differently.
For example, e* and sin z are both functions of order one, yet have entirely different zero sets.
We refine this measure of the growth by introducing the type of an entire function to further
characterize its growth. We say an entire function f of order p is of finite type if there
exists a k > 0 such that M(r) < ek for r large enough. More precisely, we define the type
7 of f by 7 =inf {k : M;(r) < e*"}. Then, if f is an entire function of order p and type T,
we have that for all € > 0 there exists an r, such that |f(2)] < eT9”” whenever » € C with
2| > 7., and there exists a sequence {r,} approaching infinity such that |f(z,)| > e(7=
where z, € C is such that |z,| = r,. It then follows that 7 = limsup,_, . (log M(r)/r?). An
entire function is said to be of exponential type if either its order is less than one, or its
order equals one and it has finite type.

Thus far we have defined the order and type of an entire function in two ways; by
comparing its modulus to exponential functions, and in terms of the function M(r). We
can also define order and type in terms of the coefficients of the power series expansion
f(z) =>""a,z" of f. By an application of Cauchy’s Estimate, if M;(r) < e for r large
enough, then |a,| < (eAk/n)"* for n large enough. Moreover, if |a,| < (eAk/n)™* holds
for n large enough, then M¢(r) < eI for r large enough and € > 0, as an application
of Stirling’s formula. In this way, it can be shown p = limsup,,_, . (nlogn/log(1/|a,|)) and
7 = (1/pe)limsup,,_, ., (n¥/]a,]?) ([30, page 6] or [5, Theorem 2.2.10]). Using these formulas
for p and 7 we can easily create functions of any given order and type, as shown in the

following example [30, page 7].

Example A.1. Functions of Given Order and Type
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Let 0 < p<ooand 0 <7 < oo, we can then show:

L f(2) =322, (etp/n)YP2" is of order p and type T,
2. f(z) =322, (erp/nlogn)™rz" is of order p and type zero,

3. f(z) =3.2%, (eplogn)™/Pz" is of order p and infinite type,

=~

Cf(z) =327, (1/logn)"z" is of finite order, and
5. f(z) = 3200 e~ 2" is of order zero.

Using these tools we establish a relationship between the growth of an entire function,
in terms of its order, and the distribution of its zeros {a,}. To this end, we define the
convergence exponent p; of a sequence {a,} by p1 = inf{a: >~ 1/]a,|* <oo}. If
the number of points of {a,} is finite then p; = 0, and if the number of points of {a,}
is countable, then the faster |a,| — oo the smaller the convergence exponent will be.
This concept can be easily thought of, for example, in terms of sequences {a,} = {n*}
where p; = 1/p. If we define the function n(r) to be the counting function of {a,},
n(r) = 32, <, 1, then it can be shown that n(r) is a nondecreasing function which is constant
in intervals of the form (|a,|, |a,t1|) whenever {|a,|} is increasing [I8, Theorem 4.5.1]. Ad-
ditionally, we can compute the convergence exponent by p; = limsup,_, . (logn(r)/logr) =
limsup,,_, ., (logn/log|a,|). Moreover, as an application of Jensen’s formula, it can be shown
that p; = limsup,_, (logn(r)/logr) < limsup,_,., (loglog Ms(r)/logr) = p. That is, the
convergence exponent of the zeros of an entire function does not exceed the order of the
function.

In fact, for certain entire functions the convergence exponent is equal to the order of
the function. To define such functions, we consider a sequence of complex numbers {a,}
such that a, # 0 for any n > 0. Let p > 0 be an integer such that Y > 1/la,[Ptt <
oo, and define the infinite product II(z) = [[~, G(z/a,,p), where G(u,0) = (1 — u) and

G(u,p) = (1 —u)e T’ /2H+u"/p for p > 0, called the Weierstrass primary factors. Using
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the inequality |log G(u,p)| < 2.2 . [ul*/k < 2[uP*! for Ju| < 1/2, we have that the

Weierstrass canonical product of genus p II(z), converges absolutely and uniformly
in every disk {z € C : |z]| < R < oo}. In this case, II(z) has simple zeros only at {a,}
[10, Theorem 5.12], the order p of II(2) is equal to the convergence exponent of {a,} [30,
Theorem 11.5], and the derivate IT'(z) = >272 G'(z/a;,p) [1,.; G(2/an, p) [15, page 355].
Moreover, by the Weierstrass Factorization Theorem, every entire function f(z) can be
written as f(z) = €92 [[°2, G(2/an,p) = e9®)2™1(2), where g(z) is an entire function,
m is the order of the zero of f at z = 0 (possibly m = 0), and {a,} are the non-zero zeros
of f. Hence, the order of f is the larger of the order of the non-zero entire function e9(*)
and the canonical product II(z) = [[°, G(z/an, p). Thus, the order of f(z) is at least the
convergence exponent of {a,}. Furthermore, if f is an entire function of non-integer order
p, then p is equal to the convergence exponent of the zero set of f, since the order of g(z)

does not exceed the genus of {a,} [30, page 31].

A.3 Growth Along Rays {z:argz =0}

A more refined measure of the growth of an entire function f(z) is the growth along rays
{argz =0} for 0 < 0 < 27. If f(w) = 0, then |f(z)| is small for z near w. Thus, f may grow
differently on a ray where countably many zeros lie than on a ray with finitely many zeros.
In this section, we address this issue and find both lower and upper bounds for | f(z)| which
hold except on small regions containing the zeros, by examining the growth of f along rays.

For a sequence of complex numbers {a,} with convergence exponent p;, we define the
density of {a,} by A = lim,_, (n(r)/r*"), provided the limit exists. If it does not, we
define the upper density and lower density by A = limsup, . (n(r)/r”) and A =
liminf,_,, (n(r)/rft), respectively. It can be shown that A = limsup, .. (n/|a,|”*) and
A =liminf, . (n/|a,|”) [30, page 17]. If we denote the number of zeros of f in the sector

{z € C:|z| <r9py <argz <o} by ng(r,¢r,12), then we define the angular density of
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the zeros of f by A¢(¢1, 1) = lim, o0 (ns(7,¢1,12)/1”), provided the limit exists.

In order to describe the growth of an entire function f(z) of order p along a ray {z :
arg z = 0}, we define the indicator function of f by h;(f) = limsup,_,. log|f(re®)|/r’.
If we consider the canonical product II(z) = [[ -, G(z/r,,p), where p < p < p+ 1 and
{r,} C R" with lim, . n(r)/r” = A, then the asymptotic formula

Arr o(r?)

log |TI(re?)| = =T cos p(0 —m) +

sinp

for 0 < 6 < 2w, can be established, where o(r”) denotes a function of order less than p
[30, Lecture 12]. However, to make the given expression valid for § = 0 as well, we must
exclude some exceptional set containing the zeros of II(z). To this end, a set of disks
{Cj = B(z;,r;) C C} will be called a C%-set if limp_, (1/R) >_1;l<r T = 0. Then, outside

of a C%set of disks the asymptotic relation

log |TI(re)| = P cos p(6 — ) + o(r)

sinp

holds uniformly with respect to 6, 0 < 6 < 27 [30], Section 12.3].

The relations established in the preceding paragraph hold for a canonical product with
real, positive zeros. However, similar asymptotic formulas can be established for less restric-
tive conditions on the zero set. In particular, if TI(z) is a canonical product with zeros {a,}
lying on a finite number of rays arg z = ., having densities A, with respect to r?, where p

is non-integer, then

mrf

log T1(2)| = > " Aycos p(f — by — ) + 0(r”),

sinp -

for § —21 < v, < 0, outside an exceptional C%-set. Moreover, if f is a function of non-integer
order p, then h(f) = (n/sinmp) f[o 2] €OS p(0 — 1 — m)dA(v)) where A denotes the angular

density of the zeros {a,} of f. Then, for the canonical product II(z) with zeros {a,}, we
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have

log |I1(2)| = r?h(8) + o(r?)

outside of an exceptional C%-set [30, Section 13.2]. If II(2) is of integer order p, then we
will have the same asymptotic formula except the indicator function will be given by h(6) =
f[0727r] (0 — ) sin p(0 — ¥)dA()+7 cos p(f — bp), where 7e' = limp o (b, + (1/p) > lanl<r (1/a0))
and b, is the coefficient of z” in the function g(z) when f is written in the form given in the
Weierstrass Factorization Theorem.

When the set {a,} has certain properties we may define the exceptional set more ex-

plicitly. As in Levin [29, Chapter II, Section 1], we say that {a,} satisfies Condition (C)

if there exists a d > 0 such that {B(an,d|a,|'=(#/?))}>° is pairwise disjoint, and we say
{an} satisfies Condition (C’) if {|a,|} is nondecreasing and there exists a d > 0 such that
|ani1| = |an| > d|a,|'™. These conditions guarantee that the points of {a,} cannot come
arbitrarily close together. If (C) or (C’) is satisfied then {a,} is called an R-set, while the
disks {2 : |z — a,| < d|a,|'=/?} (if (C) holds) and {z : |z — a,| < d|a,|*~*} (if (C) holds),
are called the exceptional circles of the R-set. Hence, in either case, the exceptional set
is the union of all such disks and the asymptotic relation log [TI(2)| = 7?h(0) + o(r*) holds
outside of this exceptional set.

The asymptotic formulas discussed in this section give both a lower and upper bound for
ITI(z)| in terms of the indicator function. That is, they provide information regarding the
growth of an entire function except on disks centered at the zeros by examining the growth of
f along rays. The study of the theory of entire functions is extensive, while the information
given in this chapter is a brief overview of the basic concepts. Further information can be
found in Boas [5], Conway [10], Holland [18], Levin [29] and [30], and Rubel [36], amongst

others.
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