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ABSTRACT

Dr Haowen Xi, Advisor

Complex networks exist in many different fields of study. Recently financial networks have

garnered a lot of interest mainly as a way of visualizing the relationships between financial

entities. This makes them useful in assessing current market dynamics and in predicting

future market conditions. The most studied network in econophysics is the correlation

network of stock price returns. Stock price return correlations are used to determine a metric

distance between stocks. A minimum spanning tree algorithm (Prim’s or Kruskal’s) is then

applied to find closest stocks to create a tree. These networks can then be used to identify

and cluster stocks into economic sectors based on their proximity. Some characteristics of

these networks such as topology, connectedness and size will be studied in this thesis. The use

of these correlation networks in modern portfolio optimization problem will be considered.

Using correlation networks to predict large and coordinated price movements will also be

discussed.
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CHAPTER 1

INTRODUCTION

1.1 What are networks

Networks help us understand the relationships between entities. They can be found in

many diverse disciplines. Popular examples include the communication networks like the

Internet or ecological networks like the food web and social networks found in kinships and

genealogy.

Figure 1.1: A visualization on the Internet

In recent years there has been a growing interest in financial networks. These networks

not only help visualize the relationship between different financial entities (Stocks,Companies,Hedge

Funds among others) they may also be used to predict future market conditions. I will ex-
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plore these financial networks, their properties as well as how to in cooperate this properties

in decision making.

1.2 Background and Motivation

Different types of financial networks can be considered. Networks based on company

ownership have been studied in the Italian and US stock market. This study showed how

company ownership was a power law distribution with small number of people controlling

the bulk of companies.

Another network studied involves board membership on companies listed on the NYSE.

if a person sits on the board of two companies then there is a connection between the

companies.Here too board membership was a power law distribution with a small number of

board members sitting on most boardrooms. This leads to a concentation of decision making

in the hands of a few people.

The other more common type of financial network is based on stock price correlations.

This study of this network will form the study of this thesis. There are three main uses of

this network that have emerged in recent years

1.3 Studying the hierarchy of the Stock Market

The initial work on financial networks showed how without prior knowledge of industry

sectors you could generate a hierarchical structure that grouped stocks in the S&P 500 very

closely to their industries based on their stock price correlations [1]. This initial work by

Mantegna has been replicated in various stock markets around the world such the Korean

Stock Market.Foreign Exchange (FX) market [6].
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Figure 1.2: Stock Market Sectors compared to networks

1.4 Optimizing Asset Portfolios

There has also been work on using correlation networks to optimize portfolio[2]. This

work done by Vincenzo Tola and Fabrizio Lillo involves replacing the correlation matrix used

in Markowitz solution to portfolio optimization with a new matrix that uses the ultrametric

distance between stocks. This was then compared to previous attempts to clean the corre-

lation matrix using Random Matrix Theory and it showed better results in predicting the

future risk/return function of the portfolio[2].
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1.5 Revealing dynamics of stock market during ex-

treme market events

Correlation networks have shown some promise in predicting sudden market movements.

One example has been the average distance between stocks in these networks[3]. This was

first observed when the average length of correlation networks was plotted against time

during the period 1985-1990. It showed a significant change before and after the crash of

1987.

Work by Onnela has also hinted at the possibility that such networks may be used to

predict rare catastrophic market events such as the 1987 crash [3]. More recently a paper

from MIT’s Anderw Lo and Khandaniy showed how the events leading to the large losses

incurred by hedge funds in August 2007 could be observed through the correlation network

of different hedge fund strategies[4].

1.6 Thesis Organization

The focus of this thesis is how we can use the information from financial networks

in decision making. Do these networks truly have a predictive power? Are they more or

less sensitive to noise that plagues financial data? To answer these questions we will first

need understand the methodology used to create the networks. We will then test certain

properties of the networks to see how they hold up against real stock market data.

Chapter 2 will introduce the algorithm used to create the network. In order to do so we

will introduce some concepts of graph theory such as edges, vertices and minimum spanning

trees.

Chapter 3 will look at the metric distance used to measure how close or how far stocks

are. We will use the standard metric found in most literature and then try other metrics to

see what difference it makes.
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Chapter 4 deals with how the correlation networks have been used to clean correlation

matrices and therefore improve risk analysis. It will be compared to another common tech-

nique known as Random Matrix Theory. Comparisons show that matrices cleaned using

network techniques give slightly better characterisation of risk.

Chapter 5 looks at how correlation networks can be used to possibly predict sharp

market movements based on the size of the correlation network.
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CHAPTER 2

MINIMUM SPANNING TREE NETWORKS

2.1 Creating correlation network using the Minimum

Spanning Tree (MST)

To create the correlation network between financial entities (in this case stocks) we need

to first select the variable of interest. In the stock market case the stock price appreciation

or depreciation is the variable of interest. This is also known as the return on the stock. If

we let Pt be the price at time t and Pt−1 be price at previous interval the the return Rt is

defined as.

Rt =
Pt − Pt−1

Pt−1
(2.1)

In finance the logarithmic return is used since it makes working with returns over continous

time easier. This is especially true in the case of compound returns over time. Therefore we

will work with ln(Rt) instead of Rt.

It is important to note the time scale t used in measuring the return. Usually returns

are measured as daily,weekly, quarterly and yearly. Changing the time scale changes the

topology and metric size of the network. We will explore this properties (topology and

metric size) once we have described the Minimum Spanning Tree.

After selecting the time scale for return, we need to select a second time scale T to

calculate the correlation. This time scale T consists of all the returns over a certain historical

period. For example you could use the returns for the prior hundred days to create the

correlation. The choice of this time scale to leads to considerable changes in the topology

and metric size of the minimum spanning tree as well.

There is also a more fundamental question regarding how far back one should look

for correlations. For economist most strong advantageous correlations are arbitraged away
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quickly thus the Efficient Market Hypothesis[5]. This is part of what also what makes

financial data noisy. Past correlations may be unreliable in predicting future correlations.

Once we have determined the variable to correlate (ln(Rt)) the time scale of the return

and the time scale of their historic window. The formula to calculate correlations is [6].

ρij (∆t) =
〈pipj〉 − 〈pi〉〈pj〉

√

(〈p2
i 〉 − 〈pi〉2)(〈p2

j〉 − 〈pj〉2)
. (2.2)

By correlating every stock with every other stock we end up with a matrix known as the

correlation matrix. This matrix plays an important role in modern finance. It is especially

prevalent in risk analysis and asset portfolio management. The coefficients present in the

correlation matrix are then used to generate the Minimum Spanning tree. In order to

understand what a Minimum Spanning Tree is we will need to introduce some concepts from

graph theory.

2.2 Basic Graph Theory Concepts

Graph Theory is used when trying to define objects and their relationships. A graph

G = {V, E} consists of a set of vertices V and edges E. The vertices represent the objects

and the edges represent the relationships between the objects.A graph is considered complete

when every vertex has an edge to every other vertex

Figure 2.1: A Complete Graph

In some graphs the edges of the graphs can be assigned values or weights that represent

the ”distance” between vertices.
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2.3 Minimum Spanning Tree

A minimum spanning tree is a graph that connects all the vertices in a graph without

forming any cycles[7]. The size of the tree is also minimized. More formally if we define a

graph G = {V, E} and (u, v) ∈ E and w(u, v) is the weight associated with edge (u, v) then

a tree T is a subset of E and w(T ) is minimized. w(T ) is defined as

w(T ) =
∑

(u,v)∈T

w(u, v) (2.3)

In order to create a minimum spanning tree from stock data the correlation matrix ρij is

first generated. Using this matrix a complete graph is created with a metric distance dij is

assigned to the edge connecting stock i and j where dij can be defined as

dij =
√

2(1 − ρij) (2.4)

Equation 2.4 will be derived in the next chapter.

2.4 Kruskal’s Minimum Spanning Tree Algorithm

An algorithm like Kruskal’s’s algorithm can then be used to extract the Minimum

spanning tree from the complete graph. The algorithm works by create disjoint sets of

vertices. The edges are then sorted by their weight and the smallest weight is picked

each time. If the edge picked connects vertices in the same disjoint set then a cycle is

formed so the algorithm avoids edges with vertices in the same disjoint set. The algo-

rithm continues picking edges using the previous algorithm until all vertices are connected

[7].

MST-KRUSKAL(G, w)

A ⇐ ∅

for each vertex v ∈ V [G] do

MAKE-SET (v)
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end for

sort the edges of E into nondecreasing order by weight w

for each edge (u, v) ∈ E, taken in nondecreasing order by weight do

if FIND-SET(u) 6= FIND-SET (v) then

A ⇐ A ∪ {(u, v)}

end if

Union(u,v)

end for

return A

2.5 Generated Trees and Index effect

Previous trees generated by Mantegna showed that the resulting tree shows stocks group-

ings that closely relate to their sectors. This sector identification is the root of this technique.

Clustering stocks with some regularity demonstrates that there are valid relationships being

revealed in the network. Intuitively the closest relationships should exist between companies

in the same sector or companies in closely related sectors such as Industrial and Energy.

Using 400 Stocks from the SP500 with t = 1 and T = 50 the sector identification was still

evident as demonstrated by the clustering of Financials (Fig 2.2).

However when the the time scale was lengthed to T = 800 large number of stock

clustered around the market index and less hierachy appeared (Fig 2.5). When a minimum

spanning tree was created using Dow Jones 30 stocks plus the DJIA Index as shown in figure

2.5 almost all nodes clustered around the index.
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2.6 Time Scale effects

Previous work on this subject has not explored the question of time scale, usually staying

with an arbitrary time period T . The assumption is that smaller historical time windows

are dominated by noisy and therefore should not be used. However the kind of change in

hierarchy that appears in small time scales still appears meaningful suggesting that there is

still information to be gained. The domination of market index in longer time scale suggest

that in the long term the average market movements dominates most of the price movements

on the market.

Figure 2.2: Minimum Spanning Tree of 400 of SP500 stocks (t = 1, T = 50) showing financial

stocks circled
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Figure 2.3: Minimum Spanning Tree of 400 of SP500 stocks (t = 1, T = 800) showing

financial stocks circled

2.7 Correlation Network Topology

To further explore the correlation network a number of important concepts from complex

networks shall be introduced.

1. Degree This is a measure of how many connections(edges) a node (vertex) has.It is

defined as k. The degree distribution P (k) can be used to classify different networks

based on the distribution of their connectness[10].

2. Clustering coefficient This is a measure of the tendency of neighbors of given vertex

to be connected.I k is the degree of a node then the cluster coefficient Ci for node i is

defined as

Ci =
2Ei

ki(ki − 1)
(2.5)
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Where Ei are the number of neighours of i. The average cluster coefficient C for the

whole network can be defined as

C =

N
∑

i=1

Ci

N
(2.6)

However for spanning trees by definition cannot have cycles. Therefore C = 0 for the

generated correlation network.

3. Average Path length The average path〈d〉 length is the measure of how many hops it

should take, on average, to go from any node to any other node.

〈d〉 =
2

N(N − 1)

∑

u,v∈E

duv (2.7)

To study these properties in correlation networks, a network of 400 stocks from SP500

was used. When the degree distribution was plotted it was found to obey a power law

distribution. A power law distribution is indicative of what is known as a scale free network.

Scale free networks are abundant in various systems and fields. Two common examples are

the Internet and the airline flight network. In the Internet the nodes are websites and the

edges are their links. In the case of the airlines the nodes are the airports and the edges are

connecting flights to the different airports. If the degree distribution is a power law it means

a small number of nodes contain a large number of edges or connections [10]. In the case

of the Internet this means a web traffic is concentrated to a small number of websites or in

the case of the airlines there are certain airports that most airline would transit through e.g.

Chicago.

In the case of the correlation network we discovered that the market index would have

the largest links. Other nodes with large edges are K(Coca Cola) and C (Citigroup). Varying

the time scale also changed the degree distribution especially with the addition of the SP500

Index. In longer time scale the central nodes have a much higher concentration of edges.

The average path length for a the minimum spanning tree was shown to grow as O(N)

log(log(N)) < O(N) < log(N) (2.8)
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A scale free network grows at the rate of log(log(N)) and a random network grows at

log(N). This shows that the minimum spanning tree may be lie somewhere in between in

terms of its characteristics. This coulld also be attributed to noise present in the data.

2.8 Conclusion

This chapter has shown that the minimum spanning trees created from stock price

returns can be useful in understanding the hierarchy of the stock mark. The trees created

have a correspondence to market sectors such as the Financials. The characteristics of the

degree distribution were also discussed. The next chapter willl look into how networks have

been used to clean correlation matrices which is important in portfolio optimization.
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Figure 2.4: Complete Graph of Dow Jone 30 stocks + Index

Figure 2.5: MST from Dow Jone 30 stocks + Index
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Figure 2.6: Correlation network of SP500 stocks in March-May 2008
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Figure 2.7: Degree distribution of correlation network for SP500 stocks in March-May 2008
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Figure 2.9: Growth of distance with network size
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CHAPTER 3

METRIC DISTANCE IN MINIMUM SPANNING

TREE

3.1 How do we measure how close stocks are?

In the previous chapter the notion of distance dij was introduced.This measurement was

used to generate the minimum spanning tree. The distance represents how closely stocks

move together based on their correlation. This chapter will explore the derivation of this

distance and how to interpret it. Another way of measuring distance will be introduced and

a comparison of the two will done.

3.2 Derivation of metric measurement dij =
√

2(1 − ρij)

Let the ith stock return with time scale ∆t.

xi(t; ∆t) =
Si(t)

Si(t − ∆t)
− 1 (3.1)

In most literature on correlation networks ∆t is the daily return. If we collect all the returns

over a period of time T then we can generate a stock return vector for each stock defined

as[6]

~xi =









































xi(t) − µi

xi(t − 1) − µi

.

.

xi(t − T + 1) − µi

xi(t − T ) − µi
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The normalized stochastic return vector for ith stock is defined as

~xi =









































(xi(t) − µi)/σi

(xi(t − 1) − µi)/σi

.

.

(xi(t − T + 1) − µi)/σi

(xi(t − T ) − µi)/σi









































The metric distance between the ith stock and jth stock was defined by Mantega using

the relationship

dij =

√

√

√

√

T
∑

k=0

(

xik

|~xi|
−

xjk

|~xj|

)2

(3.2)

dij =

√

√

√

√

√

T
∑

k=0





x2
ik

|~xi|2
+

x2
jk

| ~x2
j |
−

2xikxjk

|~xi||~xj |





2

(3.3)

Since
T
∑

k=0

x2
ik = |~xi|

2 and
T
∑

k=0

x2
jk = |~xj |

2 then dij can be simplified to

dij =

√

√

√

√2

(

1 −
T
∑

k=0

xikxjk

|~xi||~xj|

)

(3.4)

Using the correlation matrix ρij =
T
∑

k=0

xikxjk

|~xi||~xj|
we can define the distance as

dij =
√

2 (1 − ρij) (3.5)

In this thesis a non-normalized distance will also be used to see which distance (nor-

malized or non-normalized). If the distance is non-normalized then

dij =
√

σ2
i + σ2

j + 2σiσjρij (3.6)

An advantage of the normalized distance is that all distances lies within the range
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0 ≤ dij ≤ 2 (3.7)

Since the correlation coefficients lie within

−1 ≤ ρij ≤ 1 (3.8)

The non-normalized distance is less bounded and lies within the range

σi − σj ≤ dij ≤ |σi + σj | (3.9)

The normalized distance is therefore more advantageous because

1. The range of values lie within 0 and 1

2. Since the derivation of both is so similar it has little impact on the network topology

3. If we are given the distance measure dij is easier to deduce the ρij .

3.3 Conclusion

This chapter showed how the metric distance can be derived from stock price returns.

The normalized dij can be used to derive ρij . This will improve important in the next section

as correlation networks are used to reconstruct the correlation matrices.
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CHAPTER 4

USING NETWORKS TO OPTIMIZE PORTFOLIOS

4.1 Modern Portfolio Theory

The traditional model for portfolio optimization comes from the Modern Portfolio The-

ory (MPT) proposed by Harry Markowitz . In this model the return of a portfolio charac-

terised by the mean (average) of the return of a historical period. The risk is defined as the

standard deviation of these sampled returns. If we define rp as the return and σp then we

define the risk of a portfolio as

σ2
p =

N
∑

i=0

N
∑

j=0

pipjσij (4.1)

using the constraint
N
∑

i=0

pi = 1 (4.2)

The portfolio consists of N assets each assigned a weight pi. The quantity sigmaij forms

the covariance matrix that defines how each assets mean return is correlated the other.The

goal of MPT is to deliver a portfolio that minimizes the risk sigmap for a given return rp.

This results is a quadratic equation to deliver an optimal portfolio of weights pi which meets

the constraint in eq 4.1. The solution to this problem was defined by Markowitz as.

p* = λΣ−11T + γΣ−1m (4.3)

Where Σ is the covariance matrix,1T = (1, , , , 1) and m is the vector containing the

mean returns of each asset. The other parameters can be defined using rp which is the

expected return as

λ = C−rp

∆
γ = rpA−B

∆

A = 1T Σ−11 B = 1Σ−1m

C = mT Σ−1m ∆ = AC − B2
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If we graph the risk-return graph of these optimal solution we get what is known as the

Markowitz bullet. In Figure 4.1 of a three stock portfolio. The optimised portfolio forms

the parabola around the random points (unoptimized portfolios).
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Figure 4.1: Graph of Risk-Return for optimal and non-optimal portfolios

One important assumption made in this model is that the returns are normally dis-

tributed and therefore the first and second moments of the distribution suffice (mean and

standard deviation). Recent work has shown that this assumption of a normally distributed

return for most assets does not hold up to real financial data. Most returns instead show a

return that is a fat tail which means MPT would underestimate the occurrence of extreme

moves in returns of a portfolio. Another assumption made by the MPT is that the correlation

matrix accurately represents the correlation between different assets. However recent stud-

ies have shown that the matrix is actually dominated by noise and only a small amount of

information is contained. Different methods have therefore been proposed to ”clean” these
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correlation matrix.Two common techniques have been proposed, Random Matrix Theory

and clustering algorithms. In order to compare how efficient which technique is we will com-

pare the predicted risk of an optimal portfolio with the realized risk that is observed after a

specified period. So we define

R(t) =
|σp,t+1 − σp,t|

σp,t

(4.4)

The risk-return curve over the period will also reveal how ”clean” or predictive the correlation

matrix is
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Figure 4.2: Graph of Risk Return for optimal portfolio at time t=1 and time t=190
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4.2 Using Random Matrix Theory to clean correlation

matrices

The first is the Random Matrix Theory which is an import from nuclear physics. It

involves decomposing the correlation matrix into eigenvalues and eigenvectors. The basic

idea is that most of the information is contained in the larger eigenvectors. Therefore using

a determined limit we can eliminate eigenvectors that can be explained as noise. We then

reconstruct the correlation matrix using only the largest eigenvectors.

More formally the procedure involves decomposing the matrix C with NxN dimen-

sions into λ1..λn eigenvalues and their respective eigenvectors ~v1.. ~vN . The eigenvalues and

corresponding eigenvectors are sorted such that

λk < λk+1 (4.5)

If Λ is defined as Λ = diag(λi) where the Λ is an NxN matrix with all zeros except for

the diagonals which are set to corresponding eigenvalues.

Λij =

{

0 if i 6= j

λi if i = j

The eigenvectors are also used to construct a matrix W = (~v1, ~v2, ..., ~vN ). These two

matrices can then be used to reconstruct the original matrix C using the equation

C = WΛW (4.6)

This is where Random Matrix Theory comes into play.According to the theory most

of the information is contained in the largest eigenvectors. Eigenvalues and correspond-

ing eigenvectors that lie within a range ]λmin, λmax[ are considered noise and the range is

calculated as.

λmin
max = σ2

(

1 +
1

Q
± 2

√

1

Q

)

(4.7)
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where Q = T
N

,T is the interval, N is the number of variables in our case stocks

σ2 = 1 −
λ1

N
(4.8)

and λ1 is the smallest eigenvalue.

In order to ’clean’ the matrix the eigenvectors with corresponding eigenvalues within the

range ]λmin, λmax[ are set to zero and a new Λ∗ matrix is used to get the new clean matrix

C∗ using the equation

C∗ = WΛ∗W (4.9)

For a correlation matrix the diagonals of the cleaned matrix are set to one to keep it

meaningful. To illustrate this procedure we will use a matrix

C =

























1 0.20658 0.332996 0.30024

0.20658 1 0.377469 0.410961

0.332996 0.377469 1 0.504519

0.30024 0.410961 0.504519 1

























Then the matrix eigenvalues are

λi =
(

0.49157 0.616292 0.807498 2.08464

)

and the Λ matrix is

Λ =

























−0.0605881 0.343165 −0.842199 0.411421

0.10458 0.705514 0.513184 0.477446

0.679824 −0.48672 0.0205718 0.548197

−0.723348 −0.384176 0.164072 0.54978

























The time window (in days) used to create this correlation matrix was T = 800 and

since there are only four stocks Q = T
N

= 200 and using equation 4.6 and 4.7 we have

λmin = 0.849885 and λmax = 1.12824. After eliminating eigenvalues between this range then
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Λ∗ becomes

Λ∗ =

























0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2.08464

























and the new correlation matrix C∗ using the equation 4.8 is

C∗ =

























0.352862 0.409489 0.47017 0.471527

0.409489 0.475203 0.545622 0.547197

0.47017 0.545622 0.626477 0.628285

0.471527 0.547197 0.628285 0.630098

























Setting the diagonals to one gives the new matrix

C∗ =

























1 0.409489 0.47017 0.471527

0.409489 1 0.545622 0.547197

0.47017 0.545622 1 0.628285

0.471527 0.547197 0.628285 1

























This new matrix C∗ can be used in the portfolio optimization in the place of Σ to

generate p* the optimal portfolio. The risk associated with this portfolio σ∗

t is then compared

with the observed risk after a period of time σ∗

t+T . The risk is calculated as

σ∗

t =
N
∑

i=0

N
∑

j=0

p∗i p
∗

jσij,t (4.10)

and

σ∗

t+T =
N
∑

i=0

N
∑

j=0

p∗i p
∗

jσij,t+T (4.11)

The 30 stock portfolio would look like figure 4.3. It is important to note how the optimised

curve becomes more risky and has less returns after time interval
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Figure 4.3: Graph of Risk-Return for optimal portfolios with RMT cleaned matrix in time

t and time t+T compared to unaltered correlation matrix

4.3 Using clustering to clean correlation matrices

Another technique used to clean correlation matrices are clustering algorithms. Gener-

ally clustering techniques involve grouping assets in our case stocks based on a predefined

criteria. By grouping stocks into clusters one reduces the dimensionality of the problem

from N(N − 1)/2 to N − 1. This can be clearly seen from a minimum spanning tree where

for N vertices there are N − 1 edges. Reducing dimensionality creates a matrix that is less

sensitive to noise and should ideally give us a more robust measure of risk.

Two types of clustering algorithms will be studied. They are the Single Linkage Cluster

Analysis (SLCA) and Average Linkage Cluster Analysis (ALCA). The two techniques are

very similar in that they not only create clusters but reveal a hierarchy of the stock market
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that should closely resemble different sectors. They differ in how they measure the distance

between a stock and a cluster. The distance being the previously defined metric distance

dij =
√

2(1 − ρij)

4.4 Ultrametric distance

Before dealing with the details of the clustering algorithms an important concept known

as ultrametricity should be introduced. If three objects x, y, z exist in a metric space then a

distance d(x, y) can be defined that meets the following requirements

d(x, y) > 0 for x 6= y

d(x, y) = 0 for x = y

d(x, y = d(y, x) ∀x, y

d(x, y) ≤ d(x, z) + d(y, z) (∀x, y, z) triangle inequality

For an ultrametric space the triangle inequality is more strict and is defined as

d(x, y) ≤ max(d(x, z), d(y, z))(∀x, y, z) (4.12)

Ultrametric distances are important to clustering since they redefine the distance be-

tween two objects as the distance between their closest ancestors.If we generate a metric

distance matrix D with NXN dimensions there will be N(N − 1)/2 unique distances. How-

ever an ultrametric distance matrix can be defined by only N − 1 distances

4.5 Single Linkage Cluster Analysis

In order to generate an ultrametric matrix using a single linkage cluster analysis (SLCA)

one uses the following procedure.

1. Begin with N objects with distance matrix D as a distance matrix
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2. Find the closest objects x, y ∈ N s.t d(x, y) = min(d(i, j))∀i, j ∈ and i 6= j

3. Merge the objects into a cluster u = (x, y) and recalculate the distance matrix D using

the new object u and removing the x, y columns row and columns and adding a u col-

umn. The distance for any z ∈ N to u are calculated as d(z, u) = min(d(z, x), d(z, y)).

4. Repeat step one with N − 1 clusters (remaining objects plus new cluster) and new

distance matrix. If N = 1 then stop

The ultrametric tree or dendogram generated by the SLCA directly corresponds to the

tree produced by the Minimum Spanning Tree algorithm.

4.6 Average Linkage Cluster Analysis

The Average Linkage Cluster analysis (ALCA) is very similar to the SLCA in the

construction except when it comes to calculating the distance between the new cluster u =

(x, y) and z in step 3. To calculate the distance on uses the equation

d(z, u) =
1

2
(d(z, x) + d(z, y)) (4.13)

The risk-return curves generated by the SLCA and ALCA were similar for the Dow 31

stocks plus index used. They both maintained the same risk profile even after 190 days

Using equation 4.4 we can show that R, the measure of how risk predicted varies with

actual result is lowest for portfolios generated with cleaned matrices from ALCA.

4.7 Observations and conclusions

The correlation matrix cleaning done using clustering method yielded more dramatic

results than the RMT cleaning process. This may go to show that the cluster method is better

suited for cleaning that RMT. However RMT has been used in larger correlation matrices for
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example with 1000 stock portfolio’s and has produces better risk profiles[8]. This is because

the statistical assumptions underlying random matrix theory such eigenvalue distribution are

best observed with large NXN matrices. The removal of a large bulk of eigenvectors using

RMT has also been shown to eliminate a lot of vital information from the correlation matrix

[9]. This therefore suggests that clustering techniques may be more suited for correlation

cleaning especially for smaller portfolios
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Figure 4.4: Minimum Spanning Tree for four stocks the circles represent the clusters formed
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Figure 4.5: Dendogram formed using the metric distances between stocks using ALCA
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Figure 4.7: Measure of how much predicted risk differed from observed risk over a period of

190 days
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CHAPTER 5

CORRELATION NETWORKS AND STOCK

MARKET DYNAMICS

5.1 Stock Market Criticality

Critical behaviour is observed in systems that are undergoing a phase transition from one

state to another for example transition from solid to liquid or ferromagnetic demagnetization

at critical Curie temperatures. The stock market has been to shown be a exhibit critical

behaviour more precisely self organized criticality where the critical behaviour emerges from

the interactions with elements within the system as opposed to heat based transitions where

an external effect is added.

Self organized criticality is characterised by a system undergoing sharp movements (crit-

ical points) beyond the expected Gaussian expectations. In the stock market these are char-

acterised by large crashes and rallies such as Black Monday (October 19, 1987) as well as

the August 2007.

5.2 Correlation Network Size and Market Movements

Researchers like Onnela have proposed using correlation networks to predict large mar-

ket movements. By plotting the total distance of the tree w(T ) =
∑

(u,v)∈T

w(u, v) over time

and looking for sharp movements in the graph Onnela noticed that during 1987-1988 the

average total distance dropped at the same time the stock market experienced a crash and

the returned to previous levels.

A similar observation was made by Andrew Lo when he studied the huge losses that

occurred to simulated hedge fund strategies in August 2007. In the previous month (July) the
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Figure 5.1: Crash of 1987

two hedge fund owned by Bear Stearns lost all their value. Within days hedge funds invested

in non-mortgage related assets also took large losses. Interestingly most of these hedge

funds used quantitative strategies that traded a large variety of assets based on ”statistical

arbitrage” and should therefore be immune to market risk (beta).

Lo measured the correlation matrices of these assets and generated correlation networks

before and after August 2007. Thick edges in the graph represent correlations > 50%. If

the month of August was removed from the calculation then the strength of the correlation

between strategies reduced significantly.

From his analysis Lo concludes that hedge fund losses in August of 2007 were due to
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1. The losses to quant funds during the second week of August 2007 were initiated by

the temporary price impact resulting from a large and rapid unwinding of one or more

quantitative equity market-neutral portfolios. The speed and magnitude of the price

impact suggests that the unwind was likely the result of a sudden liquidation of a

multi-strategy fund or proprietary-trading desk, perhaps in response to margin calls

from a deteriorating credit portfolio, a decision to cut risk in light of current market

conditions, or a discrete change in business lines

2. The price impact of the unwind on August 78 caused a number of other types of

equity fundslong/short, 130/30, and long-onlyto cut their risk exposures or de-leverage,

exacerbating the losses of many of these funds on August 8th and 9th

In other words a single hedge fund tried sell the assets it sold and this triggered other

hedge funds to do the same causing losses. Since the hedge funds where heavily lever-

aged(borrowed money to invest) this forced hedge funds to sell due to margin requirements

(a hedge fund can only lose a certain amount, margin, otherwise the creditors will demand

their money. This leads to an event similar to a run on the bank where all depositors want

their money at once which could lead to the collapse of a financial institution.

5.3 Dow Jones Index and the correlation network of

DJIA 30 Stocks

To measure how the correlation distance changed over time the historical data for the

DJIA 30 (9/7/1996-8/27/2008) was downloaded from finance.yahoo.com. The daily return

t = 1 was used and the historical window T was varied from monthly (25 days) to quar-

terly (75 days) and yr (300) and 2yr (600) and 3yr(900). The results showed that with

larger windows (1 year,2 year and 3 year) there were less fluctuations but the increase and

reduction in the size of the networks was large. This sharp lengthening and contractions
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Figure 5.2: Hedge fund strategy correlation strengths (thick black lines ≥ 50%) calculated

with and without August 2007

suggest changes in stock correlation happen over short time periods. The contraction of the

correlation network length also preceded by sharp movements in the Index.

5.4 Conclusion

The size of the correlation network could prove useful in predicting sharp market move-

ments. A smaller size correlation network means that the market as a whole is moving

sharply in one direction.
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Figure 5.3: DJIA from (9/7/1996-8/27/2008
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Figure 5.4: Measure of Tree Length over time using T=25
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Figure 5.5: Measure of Tree Length over time using T=75
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Figure 5.6: Measure of Tree Length over time using T=300
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Figure 5.7: Measure of Tree Length over time using T=600
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Figure 5.8: Measure of Tree Length over time using T=900
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis has shown how correlation networks generated from Minimum Spanning

Trees can be applied to different problems in finance

6.2 Visualization of the hierarchy and interconnected-

ness of the stock market

The correlation networks generated exposed the stock market hierarchy that closely

resembled different sectors of the stock market. That is, stocks within the same sector were

more likely to be closer together. This was demonstrated by the financial sector stocks

The correlation network can be used to show which stocks or entities play a key role in

the movements of stock prices. A clear example of this is the way in which the Dow Index

forms the center of the network of the 30+1 DJIA stocks. The SP 500 index GSPC also

forms the center of the network of 400+ stocks from the SP 500.

Another property that the networks illuminate is the way in which a few stocks have a

large number of connections represented by the power law degree distribution. Stocks with

higher degrees (more edges) may be considered market movers especially the large capital

stocks.

6.3 Portfolio Optimization

The weighted adjacency matrix of the correlation network can be used to clean the

correlation matrix. The adjacency matrix is used to cluster stocks together and since this
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creates a matrix with less coefficients, it is considered cleaner than the raw correlation matrix.

Portfolios created using these cleaner matrices have a risk return curve that does not diverge

as much as portfolios created by other matrices.

The clustering cleaning technique was compared to the raw correlation matrix and

the Random Matrix theory technique (RMT). For smaller stocks the clustering technique

outperformed the RMT. However the technique was less useful for large portfolios.

6.4 Sharp market movements

The size of the correlation network may also be useful in identifying an oncoming sharp

market movement. This is because a smaller network indicates a strong correlation across

the network which may mean the stocks will all move together up or down. Data from

Onnela was used to show how this size reduction coincided with the 1987 crash. The same

technique was later applied to the August 2007 crash .

In all we have seen how we can use the correlation network have been applied to these

problems and how understanding the interconnectedness of stocks affects various financial

decisions.
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